WorldWideScience

Sample records for dental gold alloy

  1. Dissolution ad uptake of cadmium from dental gold solder alloy implants

    International Nuclear Information System (INIS)

    Bergman, B.; Bergman, M.; Soeremark, R.

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium ( 115 Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of 115 Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver. (author)

  2. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  3. Characterization of the interface of two dental palladium alloys cast on a prefabricated implant gold cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Vergos, Vasilis K. [Department of Biomaterials, Dental School, National and Kapodistrian University of Athens, Thivon 2 115 27, Athens (Greece); Papadopoulos, Triantafillos D. [Department of Biomaterials, Dental School, National and Kapodistrian University of Athens, Thivon 2 115 27, Athens (Greece)], E-mail: trpapad@dent.uoa.gr

    2009-06-10

    The interface between two dental alloys (Pd-Cu-Ga, Pd-Ga) cast-to a prefabricated gold cylinder in two thicknesses (1, 2 mm) was investigated. Specimens were observed in optical and scanning electron microscopes. Line scan microanalysis by EDS was performed and polarization curves were taken. Gold cylinders shape was preserved. Characteristic elongated grains were detected at the gold cylinder alloy. The boundaries between the cylinder and the cast-to alloys were distinct. The 2 mm thick Pd-Ga alloy cast to the gold cylinder revealed high porosity at the interface, while the rest of the subgroups showed no or negligible porosity. Line scan analysis revealed the gradual diffusion of the main elements of each alloy in the structure of the gold cylinder and vice-versa in a 3-5 {mu}m zone. Corrosion behaviour was estimated by cyclic polarization tests in 1 M lactic acid. The polarization curves showed negative hysteresis. In the reverse anodic scan the current density was less than that for the forward scan. This fact confirms that all the tested materials are not susceptible to corrosion in 1 M lactic acid.

  4. Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy.

    Science.gov (United States)

    Lee, Jung-Hwan; Seo, Sang-Hee; Lee, Sang-Bae; Om, Ji-Yeon; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Dental alloys containing indium (In) have been used in dental restoration for two decades; however, no study has investigated the biological effects of In ions, which may be released in the oral cavity, on human oral keratinocytes. The objective of the present study was to investigate the biological effects of In ions on human oral keratinocyte after confirming their release from a silver-palladium-gold-indium (Ag-Pd-Au-In) dental alloy. As a corrosion assay, a static immersion tests were performed by detecting the released ions in the corrosion solution from the Ag-Pd-Au-In dental alloy using inductively coupled plasma atomic emission spectroscopy. The cytotoxicity and biological effects of In ions were then studied with In compounds in three human oral keratinocyte cell lines: immortalized human oral keratinocyte (IHOK), HSC-2, and SCC-15. Higher concentrations of In and Cu ions were detected in Ag-Pd-Au-In (PAg-Pd-Au, and AgCl deposition occurred on the surface of Ag-Pd-Au-In after a 7-day corrosion test due to its low corrosion resistance. At high concentrations, In ions induced cytotoxicity; however, at low concentrations (∼0.8In(3+)mM), terminal differentiation was observed in human oral keratinocytes. Intracellular ROS was revealed to be a key component of In-induced terminal differentiation. In ions were released from dental alloys containing In, and high concentrations of In ions resulted in cytotoxicity, whereas low concentrations induced the terminal differentiation of human oral keratinocytes via increased intracellular ROS. Therefore, dental alloys containing In must be biologically evaluated for their safe use. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Skin contact with gold and gold alloys.

    Science.gov (United States)

    Rapson, W S

    1985-08-01

    3 types of reaction to gold merit discussion. First, there is the effect known as black dermographism, in which stroking with certain metals immediately produces well-defined black lines on the skin. Some gold alloys are amongst such metals. The evidence indicates that the effect is the result of impregnation of the skin with black metallic particles generated by mechanical abrasion of the metal by contaminants of the skin. There is no positive and unequivocal evidence of the ability of metals to mark uncontaminated skin so rapidly that it is possible to write upon it. Secondly there are the 2 related phenomena of the wear of gold jewelry, and the susceptibility to certain individuals to blackening of the skin where it is in contact with such jewelry. The occurrence of smudge, as it is often called, is not very common, but is brought to the attention of most jewelers from time to time. In extreme cases it may make it embarrassing for the person concerned to wear metallic jewelry. It would appear as if gold smudge also results mainly from mechanical abrasion of jewelry, though this may be aided and/or supplemented in some instances by corrosion of gold or gold alloy induced by certain components of the sweat. Finally, there is the question of true allergic responses to contact of the skin with gold and its alloys. Judging from the very few cases which have been recorded, such responses are extremely rare. Some recent observations on the reactions of metallic gold with amino acids and of reaction to contact of the skin with gold on the part of rheumatoid arthritis patients undergoing gold therapy, are, however, relevant in this connection.

  6. Comparative Tensile Strengths of Non-Precious Dental Alloy Solders.

    Science.gov (United States)

    1981-12-01

    thesis committee. My gratitude is extended to Dr. Charles Swoope and the Education and Research Foundation of Prosthodontics , Seattle, Washington, for...Most casting and soldering techniques used today in dentistry are those which were developed specifically for dental gold alloys. The newer , non...investment; this procedure yielded a more accurate finished casting. III. MATERIALS AND METHODS Dental materials research is carried out primarily to

  7. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    Muris, J.; Scheper, R.J.; Kleverlaan, C.J.; Rustemeyer, T.; van Hoogstraten, I.M.W.; von Blomberg, M.E.; Feilzer, A.J.

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and

  8. Base metal alloys used for dental restorations and implants.

    Science.gov (United States)

    Roach, Michael

    2007-07-01

    One of the primary reasons for the development of base metal alloys for dental applications has been the escalating cost of gold throughout the 20th century. In addition to providing lower cost alternatives, these nonprecious alloys were also found to provide better mechanical properties and aesthetics for some oral applications. Additionally, certain base metal alloy systems are preferred because of their superior mechanical properties, lower density, and in some cases, their capability to osseo-integrate. The base metal alloy systems most commonly used in dentistry today include stainless steels, nickel-chromium, cobalt-chromium, titanium, and nickel-titanium alloys. Combined, these alloy systems provide a wide range of available properties to choose the correct material for both temporary and long-term restoration and implant applications.

  9. The use of gold and gold alloys in prosthetic dentistry – a literature review

    Directory of Open Access Journals (Sweden)

    Oleszek-Listopad Justyna

    2015-09-01

    Full Text Available Gold is a noble metal with very good chemical resistance. It also does not become oxidized in water or air. Pure gold has a bright yellow color and shine, and it is a heavy, but soft metal with huge plasticity and ductility. For many years, gold and its alloys have been recognized as being great prosthetic material in dental practice. In current dentistry, the progress in materials science and galvanoforming techniques have made it possible to create precise restorations utilizing this metal. This pertains both to fixed and removable dentures. Galvanized gold has a range of advantages, among these being biocompatibility, proper marginal tightness, endurance, its esthetic design and the fact that it boasts bacteriostatic features.

  10. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Science.gov (United States)

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable backs...

  11. Corrosion behavior of dental alloys in various types of electrolyzed water.

    Science.gov (United States)

    Dong, Hongwei; Nagamatsu, Yuki; Chen, Ker-Kong; Tajima, Kiyoshi; Kakigawa, Hiroshi; Shi, Sizhen; Kozono, Yoshio

    2003-12-01

    The corrosion behavior of dental alloys was examined in electrolyzed strong acid water, weak acid water and neutral water using a 7-day immersion test. The precious metal alloys, gold alloy. Au-Ag-Pd alloy and silver alloy showed the greatest surface color change and dissolution of constituents in the strong acid water and the smallest in the neutral water. The release of Au from gold alloy was especially marked in the strong acid water. Co-Cr alloy showed greater corrosion and tarnish resistance in the strong acid water rather than in the weak acid water and the neutral water. X-ray microanalysis revealed that the corrosion products on the precious metal alloys were silver chloride crystals and the thin brown products on Co-Cr alloy were cobalt and chromium oxides. Ti was sound in all three types of electrolyzed water. The neutral water appeared the least corrosive to metals among the three types showing equivalent bactericidal activity.

  12. Microscopic Analysis of Welded Dental Alloys

    OpenAIRE

    S. Porojan; L. Sandu; F. Topalâ

    2011-01-01

    Microplasma welding is a less expensive alternative to laser welding in dental technology. The aim of the study was to highlight discontinuities present in the microplasma welded joints of dental base metal alloys by visual analysis. Five base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using these plates, preliminary tests were conducted by microplasma welding in butt joint configuration, without filler material, bilaterall...

  13. Electronic structures of the L-cysteine film on dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: e7141@cc.saga-u.ac.jp [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Tsujibayashi, T. [Department of Physics, Osaka Dental University, Osaka 573-1121 (Japan); Takahashi, K.; Azuma, J. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Kakimoto, K. [Department of Geriatric Dentistry, Osaka Dental University, Osaka 573-1121 (Japan); Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

    2011-04-15

    Research highlights: {yields} The electronic structures of dental alloys and L-cysteine film were studied by PES. {yields} The density of states in the dental alloy originates from Au and Cu as constituents. {yields} The Cu-3d states contribute dominantly to the occupied states near the Fermi level. {yields} The electronic structure of L-cysteine thin film is different from the thick film. {yields} The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  14. Immunostimulatory capacity of dental casting alloys on endotoxin responsiveness.

    Science.gov (United States)

    Rachmawati, Dessy; von Blomberg, B Mary E; Kleverlaan, Cornelis J; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2017-05-01

    Oral metal exposure has been associated with systemic and local adverse reactions, probably due to elemental release from the alloys. Although supraphysiological concentrations of salts from dentally applied metals can activate innate cells through TLR4 (Ni, Co, Pd) and TLR3 (Au), whether direct exposure to solid alloys can also trigger innate immune reactivity is still unknown. The purpose of this in vitro study was to determine whether dental cast alloy specimens can activate innate cells and influence their responsiveness to bacterial endotoxin. Human monocyte-derived dendritic cells (MoDC) and THP-1 cells were cultured on top of different alloy specimens (Ni-Cr, Co-Cr, Pd-Cu, Pd-Ag, Ti-6Al-4V, amalgam, gold, and stainless steel) or in alloy-exposed culture medium with or without endotoxin (lipopolysaccharide [LPS]; Escherichia coli 055:B5). Interleukin-8 (IL-8) production was used as the parameter for innate stimulation and evaluated by enzyme-linked immunosorbent assay after 24 hours of culture. The statistical significance of the effects of various casting alloys on the secretion of IL-8 was analyzed by using the nonparametric Wilcoxon rank sum test (α=.05). Dental cast alloys induced IL-8 production in MoDC and THP-1 cells, with Au and Pd-Cu providing the strongest stimulation. The alloy-exposed culture media tested contained sufficient stimulatory metal ions to induce detectable IL-8 production in THP-1 cells, except for the Ni-Cr and stainless steel exposed media. Au and Pd-Cu alloys were also most effective in potentiating LPS responsiveness as measured by IL-8 production. Using an in vitro culture system to expose MoDC and THP-1 cells to different alloy specimens this study showed that contact with the solid alloys, in particular when they contain Pd or Au, can trigger innate immune responses and augment responsiveness to bacterial endotoxin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  15. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses.

    Science.gov (United States)

    Muris, Joris; Scheper, Rik J; Kleverlaan, Cornelis J; Rustemeyer, Thomas; van Hoogstraten, Ingrid M W; von Blomberg, Mary E; Feilzer, Albert J

    2014-08-01

    Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitro immune responses. The investigated population consisted of three groups: 26 non-metal-allergic volunteers, 25 metal-allergic patients, and 20 oral disease patients. Medical histories were taken, oral examinations were carried out, and compositions of all dental alloys were determined. Then, Au and Pd patch tests and in vitro assays were performed, revealing cytokine production by peripheral blood mononuclear cells [T helper (Th)1, interferon-γ; Th2, interleukin (IL)-5 and IL-13] and lymphocyte proliferation (LTT-MELISA(®) ). Non-plaque-related gingivitis was associated with the presence of Pd-based dental alloys, and Pd-positive patch tests and in vitro assays. Collectively, participants with Pd-based dental alloys showed increased Pd patch test reactivity (p alloys (p dental alloys. However, most oral disease patients did not show positive patch test results or in vitro signs of specific immunoreactivity, suggesting local toxic reactions or the involvement of innate immune responses. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. In vivo effects of dental casting alloys

    Czech Academy of Sciences Publication Activity Database

    Venclíková, Z.; Benada, Oldřich; Bártová, J.; Joska, L.; Mrklas, L.; Procházková, J.; Stejskal, V.D.M.; Podzimek, Š.

    2006-01-01

    Roč. 27, č. 1 (2006), s. 25-32 ISSN 0172-780X R&D Projects: GA MZd NK7437 Institutional research plan: CEZ:AV0Z50200510 Keywords : dental alloys * metals * gingiva Subject RIV: EE - Microbiology, Virology Impact factor: 0.924, year: 2006

  17. Corrosion of gold alloys and titanium in artificial saliva

    International Nuclear Information System (INIS)

    Brune, D.; Evje, D.

    1982-01-01

    Two types of gold alloys and one type of pure titanium have been submitted to corrosion in artificial saliva for periods of up to about 2 months. The release of copper, gold and silver from the gold alloys as well as titanium from the titanium matrix was measured with nuclear tracer technique. The physical/chemical state of the corrosion products of gold alloys referring to the ionic state or presence in particulate form has been examined retaining the particulate matter on a glass filter. Copper was observed to be mainly present in the ionic state. Considerable amounts of gold were observed to be retained on the glass filter explained by the presence of gold in particulate form or as a compentent of a dispersed collloidal phase. The estimation of the release of titanium was registered by the tracer nuclide 46 Sc assuming particulate matter to be deteriorated from the titanium surface. (author)

  18. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  19. A comparison of the traditional casting method and the galvanoforming technique in gold alloy prosthetic restorations

    Directory of Open Access Journals (Sweden)

    Sarna-Boś Katarzyna

    2015-09-01

    Full Text Available Gold is a dental material with very good mechanical properties. It is also aesthetic and biocompatible with the tissues of the oral cavity even at 100% purity. Prosthetic restorations made of pure gold or its alloys can be practiced either through a normal casting, as well as through using the galvanoforming technique. The electrolytic method was first introduced into dentistry about 20 years ago and it allows for producing “pure” gold (which means 99.99% Au. The lack of additions of other metals improves the properties of dental prostheses, such as marginal tightness, esthetics, biocompatibility, and it helps in eliminating any allergic reactions. The literature review presented in this paper is a comparison of the traditional casting method with the newer galvanoforming technique.

  20. The Effect of Novel Mercapto Silane Systems on Resin Bond Strength to Dental Noble Metal Alloys.

    Science.gov (United States)

    Lee, Yangho; Kim, Kyo-Han; Kim, Young Kyung; Son, Jun Sik; Lee, Eunkyung; Kwon, Tae-Yub

    2015-07-01

    Self-assembled monolayers of thiols (RSH), which are key elements in nanoscience and nanotechnology, have been used to link a range of materials to planar gold surfaces or gold nanoparticles. In this study, the adhesive performance of mercapto silane systems to dental noble metal alloys was evaluated in vitro and compared with that of commercial dental primers. Dental gold-palladium-platinum (Au-Pd-Pt), gold-palladium-silver (Au-Pd-Ag), and palladium-silver (Pd-Ag) alloys were used as the bonding substrates after air-abrasion (sandblasting). One of the following primers was applied to each alloy: (1) no primer treatment (control), (2) three commer- cial primers: V-Primer, Metal Primer II, and M.L. Primer, and (3) two experimental silane primer systems: 2-step application with 3-mercaptopropyltrimethoxysilane (SPS) (1.0 wt%) and then 3-methacryloxypropyltrimethoxysilane (MPS) (1.0 wt%), and a silane blend consisting of SPS and MPS (both 1.0 wt%). Composite resin cylinders with a diameter of 2.38 mm were bonded to the surfaces and irradiated for 40 sec using a curing light. After storage in water at 37 °C for 24 h, all the bonded specimens were thermocycled 5000 times before the shear bond strength test. Regardless of the alloy type, the mercapto silane systems (both the 2-step and blend systems) consistently showed superior bonding performance than the commercial primers. Contact angle analysis of the primed surfaces indicated that higher resin bond strengths were produced on more hydrophilic alloy surfaces. These novel mercapto silane systems are a promising alternative for improving resin bonding to dental noble metal alloys.

  1. Determination of Commercial Karats on Gold Alloys for Jewellery

    International Nuclear Information System (INIS)

    Morales, S.E.A.

    1986-12-01

    An XRF method for the gold content determination in gold alloys was proposed and tested. Gold coins and ingot samples were analyzed. Monoelemental standards and two pint regression curves calculated with the NBSGSC program, Cd-109 annular source, Si-Li detector, 4096 channels analyzer and AXIL deconvolution software were employed. Good precision better than 1.5% and accuracy better than 2% were obtained. (author)

  2. Design of a metal primer containing a dithiooctanoate monomer and a phosphonic acid monomer for bonding of prosthetic light-curing resin composite to gold, dental precious and non-precious metal alloys.

    Science.gov (United States)

    Ikemura, Kunio; Fujii, Toshihide; Negoro, Noriyuki; Endo, Takeshi; Kadoma, Yoshinori

    2011-01-01

    The effect of metal primers on adhesion of a resin composite to dental metal alloys was investigated. Experimental primers containing a dithiooctanoate monomer [10-methacryloyloxydecyl 6,8-dithiooctanoate (10-MDDT) or 6-methacryloyloxyhexyl 6,8-dithiooctanoate (6-MHDT)] and a phosphonic acid monomer [6-methacryloyloxyhexyl phosphonoacetate (6-MHPA) or 6-methacryloyloxyhexyl 3-phosphonopropionate (6-MHPP)] were prepared. After treating Au, Au alloy, Ag alloy, Au-Ag-Pd alloy, and Ni-Cr alloy with the experimental primers, their shear bond strengths (SBSs) with a prosthetic light-curing resin composite (Solidex, Shofu Inc., Japan) were measured after 1-day storage followed by 5,000 thermal cycles. The SBSs between Solidex and the primer-treated metals which were incubated in air at 50°C for 2 months were further measured. Results showed that the SBSs [mean (SD)] of all metal adherends treated with primer DT-PA-1 (5.0 wt% 10-MDDT, 1.0 wt% 6-MHPA) ranged between 31.2 (5.2) and 34.5 (5.8) MPa. The SBSs of the primer-treated metals did not degrade after 2-month incubation at 50°C. Therefore, a combined primer application consisting of a dithiooctanoate monomer and a phosphonic acid monomer provided efficacious bonding to Au as well as precious and non-precious metal alloys.

  3. Internal crystallography and thermal history of natural gold alloys

    Science.gov (United States)

    Hough, R.; Cleverley, J. S.

    2011-12-01

    New studies of gold are revealing how metallography is a key component of our understanding of the deposition of precious alloys in primary ore systems. Alluvial gold nuggets once thought to be secondary in origin have now been shown to be the erosional residue of hypogene systems, i.e. primary. This has been achieved through analysis of the internal crystallography using electron back scattered diffraction of large area ion beam polished gold samples. Comparisons of the microstructure are also being made with experiments on gold alloys with the same Ag contents where real time heating and in-situ microstructure mapping reveal the structures are of high temperature origin. A new frontier in gold analysis in both hypogene and supergene systems is the nano domain. In hypogene settings gold at all scales can be metallic and particulate as has been directly observed in refractory ores, or the so called "invisible gold" in pyrite and arsenopyrite. Such nanoparticulate and colloidal transport of gold is a viable mechanism of dispersing the gold during weathering of ore deposits. These gold nanoparticles, long known about in materials sciences and manufacturing have now been seen in these natural environments. Such colloids are also likely to play an important role in gold transport in hydrothermal deposits. The regularly heterogeneous distribution, trace concentration and nanoparticulate grain size of metallic gold in all ore systems has made it difficult for direct observation. Yet, it is critical to be able to establish a broad view of the microstructural/microchemical residence of the actual gold in a given sample. New generation element mapping tools now allow us to 'see' this invisible gold component for the first time and to probe its chemistry and controls on deposition. These studies have the potential to provide a new approach and view of the formation, deposition and provenance history of the metal in all gold deposits.

  4. Corrosion behavior of silver-palladium dental casting alloys in artificial saliva

    Science.gov (United States)

    Krajewski, Katherine Mary

    Ag-Pd dental casting alloys have been used as alternatives to high gold alloys in restorative dentistry since the 1980s. These alloys exhibited mechanical properties superior to gold alloys and excellent adherence to porcelain in porcelain fused to metal (PFM) restorations, such as dental crowns. However, later increases in the price of palladium along with concerns regarding possible allergic reactions and palladium's cytotoxicity have limited the use of these alloys. Evaluation of the biocompatibility concern requires a better understanding of the interaction of Ag-Pd alloys with the oral environment, and the cost problem would be lessened if the palladium content could be reduced without lowering the corrosion resistance. Previous studies have shown differences in the corrosion behavior between Pd-rich and Ag-rich alloys, but the mechanisms of the two behaviors are not well understood. The purpose of this study was to characterize the electrochemical behavior of binary Ag-Pd alloys under conditions simulating the exposure in the oral cavity. Electrochemical measurements, surface and solution analysis were performed with alloy composition, electrolyte composition, and exposure time as variables. Results showed the corrosion behavior for all alloys was governed by the formation of an insoluble thiocyanate salt combined with selective dissolution of Ag for the Pd-rich alloys. The tendency to form thiocyanate was found to dominate over the tendency to form chloride, the formation of which was suggested in other studies. The electrode behavior has been explained on the basis of the theory of behavior of electrodes of the second kind. The difference in behavior of Ag-rich and Pd-rich alloys has been related to the difference in the solubility of the salts and difference in bonding of thiocyanate with Pd and Ag.

  5. [Electrochemical properties of dental alloys (II)].

    Science.gov (United States)

    Varsányi Magda, L; Sziráki, L; Vass, Z

    1993-05-01

    The studies were focused on the corrosion stability of dental alloys (containing NiCr and stainless steel), for a possible release of Nickel (Ni). The investigations were carried out in artificial saliva at 37 degrees C. The potential range, where Ni dissolution may occur, was determined by transient measurements. It has been established, that: 1. Under in vivo conditions the probability of the pitting corrosion is very low. 2. The Ni release takes place on the temporarily damaged, locally activated parts of the surfaces.

  6. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    Science.gov (United States)

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  7. Cobalt, nickel and chromium release from dental tools and alloys.

    Science.gov (United States)

    Kettelarij, Jolinde A B; Lidén, Carola; Axén, Emmy; Julander, Anneli

    2014-01-01

    Cobalt-chromium alloys are used as casting alloys by dental technicians when producing dental prostheses and implants. Skin exposure and metal release from alloys and tools used by the dental technicians have not been studied previously. To study the release of cobalt, nickel and chromium from alloys and tools that come into contact with the skin of dental technicians. Cobalt and nickel release from tools and alloys was tested with the cobalt spot test and the dimethylglyoxime test for nickel. Also, the release of cobalt, nickel and chromium in artificial sweat (EN1811) at different time-points was assessed. Analysis was performed with inductively coupled plasma-mass spectrometry. Sixty-one tools were spot tested; 20% released nickel and 23% released cobalt. Twenty-one tools and five dental alloys were immersed in artificial sweat. All tools released cobalt, nickel and chromium. The ranges were 0.0047-820, 0.0051-10 and 0.010-160 µg/cm(2) /week for cobalt, nickel and chromium, respectively. All dental alloys released cobalt in artificial sweat, with a range of 0.0010-17 µg/cm(2) /week, and they also released nickel and chromium at low concentrations. Sensitizing metals are released from tools and alloys used by dental technicians. This may cause contact allergy and hand eczema. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Corrosion behavior of dental alloys used for retention elements in prosthodontics.

    Science.gov (United States)

    Nierlich, Judith; Papageorgiou, Spyridon N; Bourauel, Christoph; Hültenschmidt, Robert; Bayer, Stefan; Stark, Helmut; Keilig, Ludger

    2016-06-01

    The purpose of this study was to investigate the corrosion behavior of 10 different high noble gold-based dental alloys, used for prosthodontic retention elements, according to ISO 10271. Samples of 10 high-noble and noble gold-based dental alloys were subjected to: (i) static immersion tests with subsequent analysis of ion release for eight different elements using mass spectrometry; (ii) electrochemical tests, including open-circuit potential and potentiodynamic scans; and (iii) scanning electron microscopy, followed by energy-dispersive X-ray microscopy. The results were analyzed using one-way ANOVA and Sidak multiple-comparisons post-hoc test at a level of significance of α = 0.05. Significant differences were found among the 10 alloys studied for all ions (P alloys. Scanning electron microscopy analysis confirmed the existence of typically small-diameter corrosion defects, whilst the energy-dispersive X-ray analysis found no significant alteration in the elemental composition of the alloys. The results of this study reveal the variability in the corrosive resistance among the materials used for retention elements in prosthodontics. © 2016 Eur J Oral Sci.

  9. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  10. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    Science.gov (United States)

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  11. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  12. In vitro cytotoxicity of metallic ions released from dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J.

    2016-01-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in

  13. Loss of Alloy in Cast Restorations Fabricated by Dental Students.

    Science.gov (United States)

    Soh, George

    1991-01-01

    A study investigated the quantity of alloy lost in the fabrication of three types of cast restoration by dental students, and identified the proportion of loss at each of the four principal stages of the fabrication process. Suggestions for reducing metal loss and related costs in dental schools are offered. (MSE)

  14. Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals.

    Science.gov (United States)

    Reclaru, Lucien; Lüthy, Heinz; Eschler, Pierre-Yves; Blatter, Andreas; Susz, Christian

    2005-07-01

    Precious metal based dental alloys generally exhibit a superior corrosion resistance, in particular enhanced resistance to pitting and crevice corrosion, compared to non-precious metal based alloys such as CoCr alloys. A new generation of Co-Cr alloys enriched with precious metals (Au, Pt, Ru) have now appeared on the market. The goal of this study was to clarify the effect of the precious metals additions on the corrosion behaviour of such alloys. Various commercial alloys with different doping levels were tested by electrochemical techniques in two different milieus based on the Fusayama artificial saliva and an electrolyte containing NaCl. Open circuit potentials, corrosion currents, polarization resistances, and crevices potentials were determined for the various alloys and completed by a coulometric analysis of the potentiodynamic curves. In addition, the microstructures were characterised by metallography and phase compositions analysed by EDX. The results show that the presence of precious metals can deteriorate the corrosion behaviour of Co-Cr alloys in a significant way. Gold doping, in particular, produces heterogeneous microstructures that are vulnerable to corrosive attack.

  15. Clinical evaluations of cast gold alloy, machinable zirconia, and semiprecious alloy crowns: A multicenter study.

    Science.gov (United States)

    Park, Ji-Man; Hong, Yong-Shin; Park, Eun-Jin; Heo, Seong-Joo; Oh, Namsik

    2016-06-01

    Few studies have compared the marginal and internal fits of crowns fabricated from machinable palladium-silver-indium (Pd-Ag-In) semiprecious metal alloy. The purpose of this clinical study was to evaluate and compare the marginal and internal fits of machined Pd-Ag-In alloy, zirconia, and cast gold crowns. A prospective clinical trial was performed on 35 participants and 52 abutment teeth at 2 centers. Individuals requiring prosthetic restorations were treated with gold alloy or zirconia crowns (2 control groups) or Pd-Ag-In alloy crowns (experimental group). A replica technique was used to evaluate the marginal and internal fits. The buccolingual and mesiodistal cross-sections were measured, and a noninferiority comparison was conducted. The mean marginal gaps were 68.2 μm for the gold crowns, 75.4 μm for the zirconia crowns, and 76.9 μm for the Pd-Ag-In alloy crowns. In the 5 cross-sections other than the distal cross-section, the 2-sided 95% confidence limits for the differences between the Pd-Ag-In alloy crowns and the 2 control groups were not larger than the 25-μm noninferiority margin. The control groups displayed smaller internal gaps in the line angle and occlusal spaces compared with the Pd-Ag-In crown group. The marginal gaps of machinable Pd-Ag-In alloy crowns did not meet the noninferiority criterion in the distal margin compared with zirconia and gold alloy crowns. Nonetheless, all 3 crowns had clinically applicable precision. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading

    NARCIS (Netherlands)

    Ccahuana Vasqueza, Vanessa Zulema; Ozcan, Mutlu; Kimpara, Estevao Tomomitsu

    Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy. Methods. Metallic frameworks

  17. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  18. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  19. Cytotoxicity of dental casting alloys pretreated with biologic solutions.

    Science.gov (United States)

    Nelson, S K; Wataha, J C; Neme, A M; Cibirka, R M; Lockwood, P E

    1999-05-01

    Short-term (72-168 hours) in vitro tests are used to evaluate the cytotoxicity of dental casting alloys. The ability of these short-term tests to predict long-term in vivo cytotoxicity has been questioned. A procedure to accelerate the testing of casting alloys would be useful in predicting longer-term alloy cytotoxicity. This study hypothesized that preconditioning casting alloys by soaking in a biologic liquid would change subsequent cytotoxicity by removing some elements. Preconditioning may be 1 method of accelerating short-term in vitro tests. Dental casting alloys were exposed to either saline, cell culture medium, or a saline/bovine serum albumin (BSA) solution for 72 hours before standard in vitro cytotoxicity testing. Six types of alloys were tested (n = 6): 5 Au-Ag-Cu-Pd alloys (single phase) and 1 Ag-Pd-Cu alloy (multiple phase). Teflon (Tf) samples served as a control. After preconditioning, alloys were placed in direct contact with Balb/c fibroblasts for 72 hours, after which cell viability was measured by succinic dehydrogenase activity (MTT method) relative to Tf controls (100% = no toxicity). Elements released into the preconditioning solutions were measured by atomic absorption spectroscopy. Cytotoxicities of preconditioned alloys and amounts of elemental release were compared with unconditioned alloys. A preconditioning time of 72 hours was sufficient to change the cytotoxicity of the tested alloys. The alloys that were more cytotoxic initially became less cytotoxic after preconditioning. For all the alloys tested, except the Ag-Pd-Cu multiphase alloy, preconditioning with either the saline or the saline/BSA solution caused an increase in cellular activity, therefore the preconditioned alloys were less cytotoxic. The cell culture medium preconditioning solution had a variable effect, causing increased or decreased cellular activity depending on the alloy treated. Preconditioning of casting alloys decreased subsequent cytotoxicity. However, not all

  20. Multiple parameter cytotoxicity index on dental alloys and pure metals.

    Science.gov (United States)

    Hornez, J C; Lefèvre, A; Joly, D; Hildebrand, H F

    2002-08-01

    Palladium (Pd) is a metal frequently used for dental alloys. In order to elucidate controversial options about Pd concerning its biological performances, our study consists in the evaluation of commercial and experimental PFM and C&B precious and semi-precious dental alloys. This investigation was also designated to the establishment of a cytotoxicity index (CI) such as it was described for hemocompatibility testing. The following materials were tested: 36 commercial alloys (Au-, Pd- and Ag-base), 14 experimental alloys (Pd-base established by an experience plan) and pure metals (Ag, Au, Cu, Ni, Cr, In, Sn, Pt, Ti, Zn). The cells culture experiments were carried out with epithelial L132 cells and NIH 3T3 fibroblasts. In vitro cell viability tests show that Pt, Sn, In, Ti, Au and Pd have no cytotoxic effect; Cr, Cu and Ag are toxic, Ni, Zn, and Co are highly toxic. An identical ranking was found with the inflammatory and proliferation tests. Toxic and highly toxic metals induced slight or strong prosthetic dental restoration morphological alterations after 3-days cultures and mostly cell death after 6-days cultures. These effects are dependent on the leakage of the element into the culture medium as revealed by ICP. The addition of Au gives benefit to Pd-Ag alloys, but does not produce any major effect on Pd-Cu alloys. This qualitative ranking can quantitatively be confirmed by cytocompatibility testing after application of a CI.

  1. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    International Nuclear Information System (INIS)

    Moreira dos Santos, Margarida; Queiroz, Margarida João; Baptista, Pedro V.

    2012-01-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  2. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Science.gov (United States)

    dos Santos, Margarida Moreira; Queiroz, Margarida João; Baptista, Pedro V.

    2012-05-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  3. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  4. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  5. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  6. Preferential dissolution behaviour in Ni–Cr dental cast alloy

    Indian Academy of Sciences (India)

    A Ni–Cr–Mo dental alloy was fabricated by three different casting methods, viz. centrifugal casting, high frequency induction casting and vacuum pressure casting. The dependence of cast microstructure on the electrochemical corrosion behaviour was investigated using potentiodynamic cyclic and potentiostatic polarization ...

  7. Template free synthesis of silver-gold alloy nanoparticles and cellular uptake of gold nanoparticles in Chinese Hamster Ovary cell

    International Nuclear Information System (INIS)

    Pal, Angshuman; Shah, Sunil; Kulkarni, Vijay; Murthy, R.S.R.; Devi, Surekha

    2009-01-01

    Gold-silver alloy nanoparticles were synthesized by simultaneous reduction of varying mole fractions of HAuCl 4 and AgNO 3 by sodium citrate in aqueous solution without using stabilizing agents such as surfactant or polymer. Appearance of single absorption peak in visible spectrum indicated formation of homogeneous gold-silver alloy nanoparticles. Transmission electron micrographs also support formation of alloy nanoparticles rather than core-shell particles. The plasmon absorption bands for Au-Ag nanoparticles show linear bathochromic shift with increasing Au content. No significant change in surface plasmon band was observed on storage of samples at 25 ± 2 deg. C for 6 months, indicating stability of the particles. Particle size distribution, zeta-potential and conduction of these colloidal suspensions were measured by dynamic light scattering along with Zetasizer. Gold and Au-Ag alloy nanoparticles exhibited fluorescence at 600 nm and in between 600 and 486 nm respectively depending on alloy composition. Gold nanoparticles were used for cell line study using liposome as a carrier. This liposome entrapped gold nanoparticles showed enhanced uptake by Chinese Hamster Ovary (CHO) cells compared to gold nanoparticles

  8. In vitro cytotoxicity of metallic ions released from dental alloys.

    Science.gov (United States)

    Milheiro, Ana; Nozaki, Kosuke; Kleverlaan, Cornelis J; Muris, Joris; Miura, Hiroyuki; Feilzer, Albert J

    2016-05-01

    The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm-1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions.

  9. Development of binary and ternary titanium alloys for dental implants.

    Science.gov (United States)

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-11-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. 21 CFR 872.3070 - Dental amalgam, mercury, and amalgam alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental amalgam, mercury, and amalgam alloy. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3070 Dental amalgam, mercury... elemental mercury, supplied as a liquid in bulk, sachet, or predosed capsule form, and amalgam alloy...

  11. Magnesium–Gold Alloy Formation by Underpotential Deposition of Magnesium onto Gold from Nitrate Melts

    Directory of Open Access Journals (Sweden)

    Vesna S. Cvetković

    2017-03-01

    Full Text Available Magnesium underpotential deposition on gold electrodes from magnesium nitrate –ammonium nitrate melts has been investigated. Linear sweep voltammetry and potential step were used as electrochemical techniques. Scanning electron microscopy (SEM, energy dispersive spectrometry (EDS and X-ray diffraction (XRD were used for characterization of obtained electrode surfaces. It was observed that reduction processes of nitrate, nitrite and traces of water (when present, in the Mg underpotential range studied, proceeded simultaneously with magnesium underpotential deposition. There was no clear evidence of Mg/Au alloy formation induced by Mg UPD from the melt made from eutectic mixture [Mg(NO32·6H2O + NH4NO3·XH2O]. However, EDS and XRD analysis showed magnesium present in the gold substrate and four different Mg/Au alloys being formed as a result of magnesium underpotential deposition and interdiffusion between Mg deposit and Au substrate from the melt made of a nonaqueous [Mg(NO32 + NH4NO3] eutectic mixture at 460 K.

  12. Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor

    International Nuclear Information System (INIS)

    Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.

    1993-01-01

    The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)

  13. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or alloys containing 75 percent or greater gold and metals of the platinum group or stainless steel intended to provide...

  14. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  15. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  16. New Zealand dental practitioners' experience of patient allergies to dental alloys used for prosthodontics.

    Science.gov (United States)

    Zhou, Joe; Paul, Andrew; Bennani, Vincent; Thomson, W Murray; Firth, Norman A

    2010-06-01

    The biocompatibility of metal alloys has generated much concern for practitioners and patients alike over recent years. To investigate dentists' experience of patient allergies to metal alloys used in prosthodontic restorations. Cross-sectional survey of New Zealand practising general dentists. A random sample of 700 was taken from the New Zealand dental register. The questionnaire asked dentists whether any of their patients have encountered any allergic reactions to metal alloys. It also sought information on what alloys were being prescribed for use in different types of prosthodontic restorations. A response rate of 71.4% was obtained (N = 476). Some 83 dentists (17.4%) reported having encountered suspected metal allergies in patients; of those, 70 had had the allergies confirmed with a biopsy. Of the entire sample, 327 dentists (72.2%) were aware of the metals used in their restorations, and 201 (44.8%) specified the alloys used in their restorations. For cast removable prosthodontic restorations (such as removable partial dentures), base metal alloys were the most preferred choice; for full cast crowns, high noble alloys were the most favoured; noble alloys were the most favoured for both porcelain-fused-to-metal crowns and fixed-bridge restorations. As many as one in six general practising dentists have encountered allergic reactions to metal alloys in their patients. General practising dentists' awareness of the indications for the various metal alloys used in prosthodontic restorations should be raised, and biocompatibility issues should be clarified, so that dentists prescribe the optimum metal alloy for each type of restoration.

  17. Effect of repeated firings on the color of opaque porcelain applied on different dental alloys.

    Science.gov (United States)

    Yilmaz, Burak; Ozçelik, Tuncer Burak; Wee, Alvin G

    2009-06-01

    Although metal ceramic fixed restorations are commonly preferred by clinicians, there remain a limited number of studies on how opaque porcelain color is affected by fabrication procedures, such as the number of firings and types of metal alloys. The purpose of this study was to determine the effects of various types of metal alloys on the color of opaque porcelain after repeated firings. Seven different types of metal ceramic alloys (3 base metals: Metalloy CC, chromium cobalt (B-MCC); Heraenium NA, nickel chromium (B-HNA); Argeloy NP, nickel chromium beryllium (B-ANP); 3 noble metals: Ceradelta, palladium silver (N-CD); Cerapall 2, palladium (N-CP2); V-Delta SF, gold palladium (N-VDSF); and 1 high noble metal: V-Gnathos Plus, gold platinum (HN-GP)) were used to support a 0.1-mm-thick layer of opaque porcelain (IPS d.SIGN Opaquer, shade B1) to determine the metal alloys' effect on the opaque porcelain color after repeated porcelain firings. Opaque porcelain was applied on specimens (16 mm x 1 mm) prepared from each type of alloy. The specimens (n=21) were subjected to 1 opaque firing, 4 consecutive dentin firing cycles, and 1 glaze firing cycle. Delta E values were calculated for all metal alloy groups from opaque firing (control group) to each subsequent firing stage within each tested alloy group. One-way ANOVA and Fisher's least significant difference tests were performed to determine the differences between alloys. In addition, DeltaE values calculated after repeated firings were analyzed by 1-way ANOVA and paired t test, to determine whether repeated dentin firing stages affected the color of opaque porcelain (alpha=.05). After the first and second dentin firings, the color shift in opaque porcelain was significant for all tested alloy groups (Palloy groups (P=.022 for B-ANP, P=.042 for N-VDSF, and Palloys). After glaze firing, the color change in opaque porcelain was significant in all but the N-CP2 group (P=.002 for N-VDSF, P=.014 for HN-GP, and Palloys

  18. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces

    DEFF Research Database (Denmark)

    Kratzer, P.; Hammer, Bjørk; Nørskov, Jens Kehlet

    1996-01-01

    to the surface is responsible for the highest real mode. Alloying the surface with gold also affects the reactivity of the Ni atoms on adjacent surface sites. The dissociation barrier is increased by 16 and 38 kJ/mol for a Ni atom with one or two gold neighbors, respectively. We attribute these changes...... to a shift in the local density of d states at the nickel atoms in the neighborhood of gold. (C) 1996 American Institute of Physics....

  19. SIMS and NRA studies of surface contaminants in gold-rich alloys

    International Nuclear Information System (INIS)

    Decroupet, D.; Mathot, S.; Demortier, G.; Blaise, G.

    1991-01-01

    Having prepared low melting temperature gold-cadmium alloys by a non-conventional recipe directly from cadmium ores, we expect a possible contamination of the alloys by oxygen, carbon, and sulphur. The non-destructive nuclear (d, p) reaction is used for the quantitative study of these contaminants, while dynamic secondary ion mass spectrometry gives the relative depth profile of these light elements in the alloys. (author)

  20. [Influence of cryogenic treatment and age-hardening heat treatment on the microhardness of palladium-silver dental alloys].

    Science.gov (United States)

    Zhao, Yao; Tong, Xu; Liu, Jiajun; Hao, Zhichao; Meng, Yukun

    2013-06-01

    The purpose of this study was to investigate the influence of cryogenic treatment and age-hardening heat treatment on the micro-Vicker's hardness of palladium-silver dental alloys. A low-gold content dental casting alloy composed of Ag-Pd-Cu-Au was prepared for this study. Experimental specimens according to standard requirements were prepared following a standard dental laboratory casting procedure, cast specimens were heated to 900 degrees C and quenched in ice water. The specimens were then divided into 4 groups. They were subsequently subjected to different treatments, including age-hardening heat treatment, cryogenic treatment, heat treatment combined with cryogenic treatment. The non-treated group was used as control. The micro-Vicker's hardness value was examined. The significance of correlation was analyzed. The micro-Vicker's hardness of specimens after age-hardening heat treatment, cryogenic treatment, heat treatment combined with cryogenic treatment increased by 129%, 13% and 141%, respectively, compared with that of the non-treated control group. Conclusion Age-hardening heat treatment and cryogenic treatment were effective in elevating the hardness of Ag-Pd-Cu-Au alloy.

  1. Dental devices: classification of dental amalgam, reclassification of dental mercury, designation of special controls for dental amalgam, mercury, and amalgam alloy; technical amendment. Final rule; technical amendment.

    Science.gov (United States)

    2010-06-11

    The Food and Drug Administration (FDA) published a final rule in the Federal Register of August 4, 2009 (74 FR 38686) which classified dental amalgam as a class II device, reclassified dental mercury from class I to class II, and designated special controls for dental amalgam, mercury, and amalgam alloy. The effective date of the rule was November 2, 2009. The final rule was published with an inadvertent error in the codified section. This document corrects that error. This action is being taken to ensure the accuracy of the agency's regulations.

  2. Effect of heat treatments on machinability of gold alloy with age-hardenability at intraoral temperature.

    Science.gov (United States)

    Watanabe, I; Baba, N; Watanabe, E; Atsuta, M; Okabe, T

    2004-01-01

    This study investigated the effect of heat treatment on the machinability of heat-treated cast gold alloy with age-hardenability at intraoral temperature using a handpiece engine with SiC wheels and an air-turbine handpiece with carbide burs and diamond points. Cast gold alloy specimens underwent various heat treatments [As-cast (AC); Solution treatment (ST); High-temperature aging (HA), Intraoral aging (IA)] before machinability testing. The machinability test was conducted at a constant machining force of 0.784N. The three circumferential speeds used for the handpiece engine were 500, 1,000 and 1,500 m/min. The machinability index (M-index) was determined as the amount of metal removed by machining (volume loss, mm(3)). The results were analyzed by ANOVA and Scheffé's test. When an air-turbine handpiece was used, there was no difference in the M-index of the gold alloy among the heat treatments. The air-turbine carbide burs showed significantly (pmachinability of the gold alloy using the air-turbine handpiece. The heat treatments had a small effect on the M-index of the gold alloy machined with a SiC wheel for a handpiece engine.

  3. [Effects of four dental alloys on apoptosis related gene and protein expression of fibroblast L929].

    Science.gov (United States)

    Meng, He; Ding, Jie; Li, Ren; Liang, Ruiying; Wu, Wenhui

    2013-06-01

    To investigate the effects of the leaching liquids of 4 differents kinds of dental alloys (Au alloy, Ag-Pd alloy, Co-Cr alloy, Ni-Cr alloy) on apoptosis related gene and protein of fibroblast L929. The L929 cells of mouse were treated in vitro with leaching liquids of 4 different kinds of dental alloys, Au alloy (group A), Ag-Pd alloy(group B), Co-Cr alloy(group C) and Ni-Cr alloy(group D). The RPMI1640 cell medium containing 10% fetal calf serum was served as a control(group E). The effects of these alloys on the expression of caspase-3, 8, 9 of L929 cells were examined by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry method. Results After 48 h culture, the mRNA levels of caspase-3 and caspase-9 demonstrated significant differences between the groups expect group A and group E. The mRNA levels of caspase-8 had no change in all groups. The expression of caspase-3 and caspase-9 were significant differences between the groups expect group A and C, group B and D. The expression of caspase-8 had no change in all grotps. The leaching liquids of 4 different kinds of dental alloys expect Au alloy may induce cell appotosis through mitochondrion pathway.

  4. [Influence of cryogenic treatment and age-hardening heat treatment on the corrosion behavior of a dental casting Ag-Pd alloy].

    Science.gov (United States)

    Zhao, Yao; Wu, Bin; Meng, Yukun

    2014-06-01

    The purpose of this study is to investigate the influence of cryogenic treatment and age-hardening heat treatment on the corrosion behavior of a dental casting Ag-Pd alloy. A low gold content dental casting alloy composed of Ag-Pd-Cu-Au was prepared for this study. Corrosion test was performed according to ISO 10271:2001 dental metallie-corrosion test methods. Experimental specimens were casted according to a standard dental lost-wax casting procedure, treated with solution by heating the specimens to 900 degrees C, and immediately quenched in ice water. The specimens were then divided into four groups and subjected to heat treatment, cryogenic treatment, and heat treatment combined with cryogenic treatment. The specimens after the solution treatment were taken as control. The metallographic structures of the specimens were observed. The electrochemical parameters and the quantity of non-precious metallic ions released were evaluated via electrochemical and static immersion tests. Metallographic observation revealed that all the treatments resulted in a change in the microstructure of the alloy. The treatments were effective in improving the electrochemical parameters, such as an increase in Eocp and Ecorr and a decrease in Icorr (P 0.05). After different treatments, the antierosion properties of the alloy satisfied the ISO requirements. Age-hardening heat treatment and cryogenic treatment improved the corrosion resistance of the alloy.

  5. Technical aspects of casting and their effect on the quality of Remanium CSe dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka-Tatar

    2016-03-01

    Full Text Available The study concerns on investigation of Remanium CSE alloy, one of the dental alloys used in metal-ceramic connection preparation. The alloys based on Ni-Cr-Mo are widely used in dental engineering because of their high mechanical, tribological properties as well as high corrosion resistance. The tested alloy has been processed in three ways – it has been remelted and then casted using three technologiescommonly used in dental laboratories, i.e. with: oxy-acetylene burner (1, induction furnace (2 and Volts arc (3. The aim of the study was to evaluate the effect of the melting and casting techniques on the mechanical strength and stereometric surface properties. The results revealed that the quality of Remanium CSe dental alloys significantly depend on the method of the material processing.

  6. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks

    NARCIS (Netherlands)

    Oyafuso, Denise Kanashiro; Ozcan, Mutlu; Bottino, Marco Antonio; Itinoche, Marcos Koiti

    Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or

  7. Investigation of the mechanism of mercury removal from a silver dental amalgam alloy

    Directory of Open Access Journals (Sweden)

    M. DJURDJEVIC

    2004-12-01

    Full Text Available An investigation of silver dental amalgam decomposition and the mercury removal mechanism was performed. The decomposition process was analysed during thermal treatment in the temperature interval from 400 °C to 850 °C and for times from 0.5 to 7.5 h. The chemical compositions of the silver dental amalgam alloy and the treated alloy were tested and microstructure analysis using optical and scanning electron microscopy was carried out. The phases were identified using energy disperse electron probe microanalysis. A mechanism for the mercury removal process from silver dental amalgam alloy is suggested.

  8. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  9. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography.

    Science.gov (United States)

    Braz, Ana K S; de Araujo, Renato E; Ohulchanskyy, Tymish Y; Shukla, Shoba; Bergey, Earl J; Gomes, Anderson S L; Prasad, Paras N

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  10. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-12-01

    To develop an enhanced, reproducible and discriminatory biocompatibility testing model for non-precious dental casting alloys, prepared to a clinically relevant surface finishing condition, using TR146 oral keratinocyte cells.

  11. [Corrosion property and oxide film of dental casting alloys before and after porcelain firing].

    Science.gov (United States)

    Ma, Qian; Wu, Feng-ming

    2011-03-01

    To evaluate the types and compositions of oxide films formed during porcelain-fused-to-metal (PFM) firing on three kinds of dental casting alloys, and to investigate the corrosion property of these alloys in Dulbecco's modification of Eagle's medium (DMEM) cell culture fluid, before and after PFM firing. Specimens of three dental casting alloys (Ni-Cr, Co-Cr and Ni-Ti) before and after PFM firing were prepared, and were immersed in DMEM cell culture fluid. After 30 days, the type and concentration of released metal ions were measured using inductively coupled plasma atomic emission spectroscopy (ICP-AES). X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used for analysis of oxide film on the alloys. One way-ANOVA was adopted in data analysis. The total amount of metal ions released from the three dental alloys was found to be highest in Ni-Cr alloy [(2.829 ± 0.694) mg/L], followed by Co-Cr [(2.120 ± 0.418) mg/L] and Ni-Ti alloy [(1.211 ± 0.101) mg/L]. The amount of Ni ions released from Ni-Cr alloys [(1.531 ± 0.392) mg/L] was higher than that from Ni-Ti alloys [(0.830 ± 0.052) mg/L]. The amount of Cr, Mo ions released from Co-Cr alloy [Cr: (0.048 ± 0.011) mg/L, Mo: (1.562 ± 0.333) mg/L] was higher than that from Ni-Cr alloy [Cr: (0.034 ± 0.002) mg/L, Mo: (1.264 ± 0.302) mg/L] and Ni-Ti alloy [Cr: (0.013 ± 0.006) mg/L, Mo: (0.151 ± 0.026) mg/L] (P metal irons released from the three dental alloys decreased [Ni-Cr: (0.861 ± 0.054) mg/L, Co-Cr: (0.695 ± 0.327) mg/L, Ni-Ti: (0.892 ± 0.115) mg/L] (P alloys after PFM firing. The amount of ions released from Ni-Cr alloy was the highest among the three dental casting alloys, this means Ni-Cr alloy is prone to corrode. The PFM firing process changed the alloys' surface composition. Increased Ni, Cr and Mo were found in oxide film, and the increase in Cr(2)O(3) can improve the corrosion-resistance of alloys.

  12. Effect of different oxidation treatments on the bonding strength of new dental alloys

    International Nuclear Information System (INIS)

    Lee, Sang-Bae; Lee, Ju-hye; Kim, Woong-Chul; Oh, Sae-Yoon; Kim, Kyoung-Nam; Kim, Ji-Hwan

    2009-01-01

    The influences of heat treatment and addition of a small amount of base metal (In, Sn, and Ir) for oxidation in Au-Pt-based alloy were investigated by electron spectroscopy and scanning electron microscopy. Au-Pt-based alloys were prepared by argon-arc melting furnace and then they are heat treated. Oxidation on alloy was significantly affected by addition of base metal (In and Sn) and heat treatment. The bond strength of the alloys was not dependent on the changing heat treatment. These results indicated that the Sn and In could be effective as oxidation elements for porcelain bonding to gold alloys.

  13. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  14. Influence of recasting on the quality of dental alloys: A systematic review.

    Science.gov (United States)

    Vaillant-Corroy, Anne-Sophie; Corne, Pascale; De March, Pascal; Fleutot, Solenne; Cleymand, Franck

    2015-08-01

    Dental alloy manufacturers advise against the reuse of previously melted alloy. However, for economic reasons, dental laboratories often reuse the casting surplus (sprue and metal remaining in the crucible former). Such reuse remains a controversial topic in dental practice. The purpose of this systematic review was to assess the effects of remelting dental alloys by evaluating the following parameters: reasons for recasting and associated processes, feasible number of recastings, treatment of alloys before recasting and its effects on cytotoxicity, color of opaque porcelain, castability of alloys, marginal accuracy, mechanical properties, porcelain-metal interfaces, and corrosion. The systematic review included all studies on dental alloy recasting. MEDLINE, Dentistry and Oral Science Source, Science Direct, and ISI Web of Science were searched (up to July 2014). Data were extracted and the quality of studies was assessed. Thirty-four studies published between 1983 and 2014 were included. The number of recastings ranged from 1 to 10. The percentage of new alloy ranged from 0 to 100 wt%, although the mean value was 50 wt%. Evidence for the feasibility of adding 50% new metal at each recasting is limited. The number of recastings should be limited to a maximum of 4. No general test protocol can be deduced from these studies, which limits the comparison and exploitation of data. Furthermore, no consensus protocol exists for the evaluation of recasting. Future studies should work toward establishing a standard protocol. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Horwood, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stadermann, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percent gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.

  16. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  17. Evaluating bond strength of porcelain to dental alloys and the effects of repeated porcelain sintering on it

    Directory of Open Access Journals (Sweden)

    n. Rashidan

    1998-05-01

    Full Text Available   In this study, porcelain bond strength to three different alloys of Gold-base, pd-Ag and base-Metal were compared and the effect of repeated porcelain sintering on bond strength was evaluated. The obtained results showed best bond strength of porcelain with Gold-base alloy. Pd-Ag and Base-metal alloys showed less strength respectively. During repeated sintering of porcelain, bond strength has not changed in Base-metal and Gold-base alloys while it was weakened in pd-Ag alloy.

  18. Evaluating bond strength of porcelain to dental alloys and the effects of repeated porcelain sintering on it

    OpenAIRE

    n. Rashidan; F Geramipanah

    1998-01-01

      In this study, porcelain bond strength to three different alloys of Gold-base, pd-Ag and base-Metal were compared and the effect of repeated porcelain sintering on bond strength was evaluated. The obtained results showed best bond strength of porcelain with Gold-base alloy. Pd-Ag and Base-metal alloys showed less strength respectively. During repeated sintering of porcelain, bond strength has not changed in Base-metal and Gold-base alloys while it was weakened in pd-Ag alloy.

  19. Effect of metal primers and tarnish treatment on bonding between dental alloys and veneer resin.

    Science.gov (United States)

    Choo, Seung-Sik; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-10-01

    The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (PAg-Pd alloy surfaces presented significantly decreased shear bond strength. Combined use of MDP and VBATDT were effective in bonding of the resin to Co-Cr and Au-Ag-Pd alloy. Tarnish using polyvinylpyrrolidone solution negatively affected on the bonding of veneer resin to Co-Cr and Au-Ag-Pd alloys.

  20. Growth of a Copper-Gold Alloy Phase by Bulk Copper Electrodeposition on Gold Investigated by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1995-01-01

    the potential in the double-layer charging region from 500 to -100 mV and back to 500 mV at a sweep rate of 1 mV/s in an acidified copper sulfate electrolyte (0.01M H2SO4, 0.01M CuSO4, and Millipore water). After completion of the first cycle the gold surface had recrystallized and nuclei of an alloy phase were...... in peak potential for the anodic current transient from E = 20 mV to E = -2 mV was observed after completion of four subsequent cycles of copper electrodeposition/dissolution. The shift is suggested to be equal to the change in potential of the working electrode owing to the formation of the alloy phase....

  1. Resin Bonding to Type IV Gold Alloy Conditioned with a Novel Mercapto Silane System: Effect of Incorporation of a Phosphate Monomer.

    Science.gov (United States)

    Kwon, Sung-Min; Min, Bong Ki; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    Self-assembled monolayers of thiols have been used to link a range of materials to planar gold surfaces or gold nanoparticles in nanoscience and nanotechnology. Novel mercapto silane systems are a promising alternative to dental noble metal alloys for enhanced resin bonding durability Goldbased alloys for full-cast restorations contain various base metal elements, which may bond to acidic functional monomers chemically, in addition to noble metal elements. This study examined how the additional incorporation of a phosphate monomer (di-2-hydroxyethyl methacryl hydrogenphosphate, DHP) into novel mercapto silane primer systems affected the resin bond strength to a type IV gold alloy pretreated with the primers. One of three commercial primers (Alloy Primer and M. L. Primer) and three experimental primer systems ((1) blend of γ-mercaptopropyltrimethoxysilane (SPS) and γ-methacryloxypropyltrimethoxysilane (MPS) (both 1.0 wt%), (2) 1.0 wt% DHP-containing primer, and (3) blend of SPS, MPS, and DHP (each 1.0 wt%)) was applied to the alloy surfaces after sandblasting. Resin cylinders (diameter: 2.38 mm) were bonded to the surfaces and light-cured. All bonded specimens were stored in water at 37 °C for 24 h and then half of them additionally water immersed for 7 days (37 °C) and thermocycled 10,000 times before the shear bond strength test (n = 10). The mercapto silane systems (SPS + MPS) were found to show superior resin bonding durability to the commercial primers and the only DHP-containing primer, regardless of additional incorporation of the phosphate monomer.

  2. Gold-Copper alloy “nano-dumplings” with tunable compositions and plasmonic properties

    International Nuclear Information System (INIS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2016-01-01

    The unique yet tunable optical properties of plasmonic metal nanoparticles have made them attractive targets for a wide range of applications including nanophotonics, molecular sensing, catalysis etc. Such diverse applications that require precisely stable / reproducible plasmonic properties depend sensitively on the particle morphology ie. the shape, size and constituents. Herein, we systematically study the size / shape controlled synthesis of gold-copper “dumpling” shaped alloy nanoparticles by simultaneous reduction of gold and copper salts in the PVP-methanol solute-solvent system, by effectively utilizing the efficient but mild reduction as well as capping abilities of Poly (N-vinylpyrrolidone). Introduction of copper salts not only yielded the alloy nanoparticles, but also slowed down the growth process to maintain high mono-dispersity of the new shapes evolved. Copper and gold has different lattice constants (0.361 and 0.408 nm respectively) and hence doping/addition/replacement of copper atoms to gold FCC unit cell introduces strain into the lattice which is key parameter to the shape evolution in anisotropic nanoparticles. Synthesized alloy nanoparticles were characterized by UV-visible absorption spectroscopy, XRD and TEM imaging.

  3. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pereira, E [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto (Portugal); Franco, R, E-mail: pmvb@fct.unl.pt [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2010-06-25

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  4. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    International Nuclear Information System (INIS)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V; Pereira, E; Franco, R

    2010-01-01

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  5. A comparative analysis of metal allergens associated with dental alloy prostheses and the expression of HLA-DR in gingival tissue.

    Science.gov (United States)

    Zhang, Xin; Wei, Li-Cheng; Wu, Bin; Yu, Li-Ying; Wang, Xiao-Ping; Liu, Yue

    2016-01-01

    The present study aimed to provide guidance for the selection of prosthodontic materials and the management of patients with a suspected metal allergy. This included a comparison of the sensitivity of patients to alloys used in prescribed metal‑containing prostheses, and correlation analysis between metal allergy and accompanying clinical symptoms of sensitized patients using a patch test. The results from the patch test and metal component analyses were processed to reach a final diagnosis. In the present study, four dental alloys were assessed. Subsequent to polishing the surface of a metal restoration, the components were analyzed using an X‑ray fluorescence microscopy and spectrometry. Immunohistochemical analysis, reverse transcription‑polymerase chain reaction and western blotting were used to detect the expression levels of human leukocyte antigen (HLA)‑DR in gingival tissues affected by alloy restoration, and in normal gingival tissue samples. Positive allergens identified in the patch test were consistent with the components of the metal prostheses. The prevalence of nickel (Ni) allergy was highest (22.8%), and women were significantly more allergic to palladium and Ni than men (Palloy, gold alloy and titanium alloy. In conclusion, dentists require an understanding of the corrosion and allergy rates of prescribed alloys, in order to reduce the risk of allergic reactions. Patch testing for hypersensitive patients is recommended and caution is required when planning to use different alloys in the mouth.

  6. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation.

    Science.gov (United States)

    Reclaru, L; Unger, R E; Kirkpatrick, C J; Susz, C; Eschler, P-Y; Zuercher, M-H; Antoniac, I; Lüthy, H

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. In vivo corrosion behavior of gold-plated versus titanium dental retention pins.

    Science.gov (United States)

    Palaghias, G; Eliades, G; Vougiouklakis, G

    1992-02-01

    Two types of titanium dental retention pins and a gold-plated stainless steel pin were tested for their in vivo corrosion behavior. Six paired samples of titanium and gold-plated pins were placed in box preparations of 12 periodontally involved premolars. Half of the samples were restored with a high copper admixed type amalgam while the rest were restored with a BisGMA-POCl2 bonding resin and a hybrid visible light-cured composite resin. After 3 months in vivo, the teeth were extracted, and the pins were removed and examined with an electron microprobe. The surface of the titanium pins was found to be smooth and without defects. Only traces of Ca and P could be identified from dentin. The gold-plated pins demonstrated cracks and pores, especially at the outer part of the serrations, resulting in disruption of the electroplated film. Traces of Hg, Sn, Cu, S, Zn, Ca, K, Cl, P, and S were detected at the gold-plated pin/amalgam interface, while Cl and P were found at the gold-plated pin/composite resin interface. The in vivo corrosion resistance of the titanium pins was found to be superior to that of the gold-plated stainless steel pins.

  8. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  9. A thermodynamic investigation of liquid gold-antimony alloys

    International Nuclear Information System (INIS)

    Hayer, E.; Castanet, R.

    1995-01-01

    The enthalpies of mixing of liquid Au-Sb alloys were determined between 906 and 1028 K giving Δ mix H o m = x Sb x Au (-11.234-1.1078x Sb + 5.713x Sb 2 ) kJ mol -1 . The minimum was found at x Sb = 0.45 with Δ mix H o m = -2.62 ± 0.2 kJ mol -1 contrary to published measurements on liquid Au-Sb alloys. The limiting partial molar enthalpy of Au in Sb at 935 K was measured to Δ mix h o m (Au, liq, in ∞Sb, liq) = -6.05 ± 0.4 kJ mol -1 . The enthalpy of formation of the solid compound AuSb 2 determined at 298 K by solution calorimetry in liquid Sb, Δ f H o m (AuSb 2 ) = -5.40 ± 0.6 kJ mol -1 , is found in fair agreement with literature data. DTA measurements were performed on the Au-rich part of the liquidus and a new liquidus curve is suggested between Au and the eutectic concentration. The eutectic point was found at 630.37 ± 0.25 K and x Sb 0.350. (orig.)

  10. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  11. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

    Science.gov (United States)

    Rittapai, Apiwat; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-01-01

    PURPOSE This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications. PMID:25006386

  12. Study of corrosion of combinations of titanium/Ti-6Al-4V implants and dental alloys.

    Science.gov (United States)

    Yamazoe, Masatoshi

    2010-10-01

    Metal ions released in 1% lactic acid solution from combinations of titanium fixtures with superstructures made of dental precious metal alloys (dental alloys) and titanium and differences based on the fixing method were investigated. In combinations of titanium with dental alloys, the level of Ti release was influenced by micro-structure of titanium: it was lower when the grain size was smaller. In titanium-titanium combinations, differences in the micro-structure of metal also markedly influenced the dissolution: the level of release increased when the micro-structure of titanium was different. The Ti and V release levels were higher in combination with titanium alloy and titanium than with titanium alloy and dental alloys. Regarding the superstructure-fixture fixing method, the level of Ti release was significantly lower in cement than in direct fixation.

  13. The effect of urea on the corrosion behavior of different dental alloys.

    Science.gov (United States)

    Geckili, Onur; Bilhan, Hakan; Bilgin, Tayfun; Anthony von Fraunhofer, J

    2012-01-01

    Intraoral corrosion of dental alloys has biological, functional, and esthetic consequences. Since it is well known that the salivary urea concentrations undergo changes with various diseases, the present study was undertaken to determine the effect of salivary urea concentrations on the corrosion behavior of commonly used dental casting alloys. Three casting alloys were subjected to polarization scans in synthetic saliva with three different urea concentrations. Cyclic polarization clearly showed that urea levels above 20 mg/100 ml decreased corrosion current densities, increased the corrosion potentials and, at much higher urea levels, the breakdown potentials. The data indicate that elevated urea levels reduced the corrosion susceptibility of all alloys, possibly through adsorption of organics onto the metal surface. This study indicates that corrosion testing performed in sterile saline or synthetic saliva without organic components could be misleading.

  14. High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass

    Science.gov (United States)

    Xue, Yanpeng; Scaglione, Federico; Rizzi, Paola; Battezzati, Livio

    2017-12-01

    A Au20Cu48Ag7Pd5Si20 metallic glass precursor has been used to synthesize nanoporous gold by chemical de-alloying in a mixture of HNO3 and HF. Gold ligaments of size ranging from 45 to 100 nm were obtained as a function of HNO3 concentration, electrolyte temperature and de-alloying time. The as-prepared nanoporous gold exhibited strong surface enhanced Raman scattering (SERS) effect using 4,4‧-bi-pyridine as probe molecule. For application in melamine sensing, the detection limit of 10-6 M was achieved, which indicated that this biocompatible material has great potential as SERS active substrate.

  15. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Antunes, Rossana Pereira de Almeida; de Mattos, Maria da Gloria Chiarello; Rosa, Adalberto Luiz; Ribeiro, Ricardo Faria

    2009-01-01

    Cell culture system has been used to evaluate alloy cytotoxicity under different environments, testing the extracts, but the effect of temperature variation on the cytotoxicity of dental alloys has not been analyzed. The aim of the present study was to investigate if temperature variation could affect dental alloy cytotoxicity, testing alloy extracts in an epithelial cell culture system. Discs of Ni-Cr, Co-Cr-Mo, Ni-Cr-Ti, Ti-6Al-4V and commercially pure titanium (cp Ti) were cast by arc melting, under argon atmosphere, injected by vacuum-pressure. Discs were immersed in artificial saliva and subjected to different temperatures: 37 degrees C and thermocycling (37 degrees C/5 degrees C/37 degrees C/55 degrees C/37 degrees C). After thermocycling, extracts were put in a subconfluent culture during 6 h, and the number of cells and their viability were used to evaluate cytotoxicity in these temperatures. For each alloy, data from temperature conditions were compared by Student's t-test (alpha=0.05). The cytotoxicity tests with alloy/metal extracts showed that Ni-Cr, Co-Cr-Mo, Ti-6Al-4V and cp Ti extracts (p>0.05) did not affect cell number or cell viability, while Ni-Cr-Ti (palloy was subjected to thermocycling. Within the limitations of the present study, the Ni-Cr-Ti alloy had cell number and viability decreased when subjected to temperature variation, while the other alloys/metal extracts did not show these results.

  17. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  18. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver, that... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food...

  19. Behavior of Dental/Implant Alloys in Commercial Mouthwash Solution Studied by Electrochemical Techniques

    Science.gov (United States)

    Mareci, Daniel; Strugaru, Sorin Iacob; Iacoban, Sorin; Bolat, Georgiana; Munteanu, Corneliu

    2013-03-01

    This study investigates the electrochemical behavior of the various dental materials: Paliag (Ag-Pd based), Wiron 99 (Ni-Cr based), Cp-Ti (commercial pure titanium), and experimental Ti12Mo5Ta alloy in commercial mouthwash solution with 500 ppm F- (Oral B®) and compares it with the behavior of the same dental materials in artificial saliva. Linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) are the electrochemical procedures of investigation. The passivation of all dental samples in artificial saliva and mouthwash solution occurred spontaneously at open circuit potential. The corrosion current density of all tested dental materials in mouthwash solution were low (1-2 μA/cm2). The results suggest a non-predominant fluoride effect on the passive layer formed on all samples at open circuit potential. No passivation could be established with Paliag alloy when polarized in mouthwash solution. The EIS results confirm that all dental sample exhibit passivity in mouthwash solution at open circuit potential (polarization resistance was around 5 × 105 Ω cm2). For Paliag alloy after LPP in mouthwash solution the protectiveness passive layer was no more present. The corrosion resistances of four dental materials in mouthwash solution are in the following order: Ti12Mo5Ta > Cp-Ti > Wiron 99 > Paliag.

  20. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  1. Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline

    International Nuclear Information System (INIS)

    Guerra, M.F.; Radtke, M.; Reiche, I.; Riesemeier, H.; Strub, E.

    2008-01-01

    Measuring in a non-destructive way the characteristic trace elements of the metal allows following the circulation of gold in the past. The aim of this work is to probe the possibilities of X-ray fluorescence with high energy synchrotron radiation (SR-XRF) at the BAMline at BESSY II to determine the concentration of Pt in ancient gold alloys. A HP-Ge detector was used to measure the Pt K-lines excited with an incident energy of 79.5 keV. Data processing was done by subtraction of a Pt free gold standard spectrum from the spectrum of the sample. Depending on the sample composition, the MDL ranges between 40 and 90 ppm. The first results obtained for a small set of gold alloys of different thickness, size and composition showed that high energy SR-XRF is a significant method for the non-destructive determination of Pt in gold

  2. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V., E-mail: bulgakov@itp.nsc.ru

    2017-02-28

    Highlights: • Laser damage thresholds of Ag, Au and Ag-Au alloys in air and water are measured. • Alloy thresholds are lower than those of Ag and Au due to low thermal conductivity. • Laser damage thresholds in water are ∼1.5 times higher than those in air. • Light scattering mechanisms responsible for high thresholds in water are suggested. • Light scattering mechanisms are supported by optical reflectance measurements. - Abstract: The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  3. Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys

    NARCIS (Netherlands)

    Muris, J.; Goossens, A.; Gonçalo, M.; Bircher, A.J.; Giménez-Arnau, A.; Foti, C.; Rustemeyer, T.; Feilzer, A.J.; Kleverlaan, C.J.

    2015-01-01

    Background The role of palladium and nickel sensitization in oral disease and dermatitis is not fully understood. Objectives To investigate whether sensitization to these metals was associated with exposure to dental alloys and oral and skin complaints/symptoms in a European multicentre study.

  4. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  5. Influence of shape and finishing on the corrosion of palladium-based dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Muris, J.; Kleverlaan, C.J.; Feilzer, A.J.

    2015-01-01

    PURPOSE: The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS: Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were

  6. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

    OpenAIRE

    Al Jabbari, Youssef S.

    2014-01-01

    Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dent...

  7. In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana

    2015-01-01

    Full Text Available Metallic materials, such as Co-Cr-Mo alloys, are exposed to aggressive conditions in the oral cavity which represents ideal environment for metallic ion release and biodegradation. The released metallic ions from dental materials can cause local and/or systemic adverse effects in the human body. Therefore, the dental materials are required to possess appropriate mechanical, physical, chemical and biological properties. The biocompatibility of metallic materials is very important for dental applications. Accordingly, the aim of this study was to examine metallic ion release and cytotoxicity of Co-30Cr-5Mo cast alloy as the initial phase of biocompatibility evaluation. Determination of human (MRC-5 and animal (L929 fibroblast cells viability was conducted using three in vitro test methods: colorimetric methyl-thiazol-tetrazolium (MTT test, dye exclusion test (DET and agar diffusion test (ADT. Furthermore, the cells morphology and growth were analyzed using scanning electron microscopy (SEM. The obtained results indicated that Co-30Cr-5Mo alloy did not release harmful elements in high concentrations that could cause detrimental effects on human and animal fibroblasts under the given experimental conditions. Moreover, the fibroblast cells showed good adhesion on the Co-30Cr-5Mo alloy surface. Therefore, it can be concluded that Co-30Cr-5Mo alloy is biocompatible material which can be safely used in dentistry. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  8. Structural and morphological approach of Co-Cr dental alloys processed by alternative manufacturing technologies

    Science.gov (United States)

    Porojan, Sorin; Bîrdeanu, Mihaela; Savencu, Cristina; Porojan, Liliana

    2017-08-01

    The integration of digitalized processing technologies in traditional dental restorations manufacturing is an emerging application. The objective of this study was to identify the different structural and morphological characteristics of Co-Cr dental alloys processed by alternative manufacturing techniques in order to understand the influence of microstructure on restorations properties and their clinical behavior. Metallic specimens made of Co-Cr dental alloys were prepared using traditional casting (CST), and computerized milling (MIL), selective laser sintering (SLS) and selective laser melting (SLM). The structural information of the samples was obtained by X-ray diffraction, the morphology and the topography of the samples were investigated by Scanning Electron Microscopy and Atomic Force Microscope. Given that the microstructure was significantly different, further differences in the clinical behavior of prosthetic restorations manufactured using additive techniques are anticipated.

  9. Influence of recasting different types of dental alloys on gingival fibroblast cytotoxicity.

    Science.gov (United States)

    Imirzalioglu, Pervin; Alaaddinoglu, Emine; Yilmaz, Zerrin; Oduncuoglu, Bahar; Yilmaz, Burak; Rosenstiel, Stephen

    2012-01-01

    Surplus alloy from the initial casting is commonly reused with the addition of new alloy. This recasting procedure could affect the cytotoxicity of dental alloys. The purpose of this in vitro study was to evaluate the effect of repeated casting of high-noble and base metal alloys on gingival fibroblast cytotoxicity. Disk-shaped specimens (5 × 2 mm, n=60) of a high-noble (Au-Pt) and 2 base metal (Ni-Cr and Cr-Co, n=20) alloys were prepared with 100% new alloy and 50%, 65%, and 100% once recast alloy. The elemental composition of specimens was analyzed with X-ray energy-dispersive spectroscopy. Five specimens from each group were conditioned in saline with 3% fetal bovine serum albumin. The conditioning media were analyzed for elemental release with atomic absorption spectroscopy. Cytotoxic effects were assessed on human gingival fibroblast with a 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyl tetrazolium bromide (MTT) colorimetric assay. The data were analyzed with 1-way and 2-way ANOVA and Tukey's HSD multiple comparison test (α-=.05). Elemental compositions of Co-Cr and Au-Pt alloys were significantly different among casting protocols. Elemental release of Co-Cr and Ni-Cr alloys was significantly different between new and recast specimens (Palloy addition. The 2-way ANOVA showed a significant effect of the casting procedure (Palloy group (Palloy groups with 65% and 100% recast alloy had lower cellular activity than all other specimens (Palloys containing nickel have increased cytotoxic effects and that composition of the alloys affected the cytotoxicity. Furthermore, recasting nickel-containing alloys with 65% surplus metal addition significantly increased the cytotoxic activity. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  10. Laser-welded hollow pontic full-gold fixed dental prosthesis.

    Science.gov (United States)

    Sutton, Alan J; Winn, Terry R

    2010-07-01

    This article describes a technique for the fabrication of a laser-welded hollow pontic full-gold fixed dental prosthesis. Reference to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government. The opinions of the authors expressed herein do not necessarily state or reflect those of the U.S. Government, and shall not be used for advertising or product endorsement purposes.

  11. Polarographic determination of selenium and tellurium in silver-gold alloys

    International Nuclear Information System (INIS)

    Gornostaeva, T.D.; Shmargun, S.V.

    1986-01-01

    The determination of selenium and tellurium is of importance in monitoring the composition of silver-gold alloys (SGA) since these elements are harmful impurities in the pure metals. Tellurium is determined in silver alloys by atomic absorption and atomic emmission methods; selenium determination is made by atomic absorption methods. This paper examines the polarographic determination of silver and tellurium in SGA containing platinum metals and copper. Copper and the bulk of the platinum and palladium were removed by precipitating selenium and tellurium with potassium hypophosphite in the elementary state from 6 M HC1. The results of an analysis of samples of SGA according to the proposed method were compared with the results obtained by the atomic absorption method. the relative deviation in the determination of 0.02-1.0% by weight selenium and tellurium does not exceed 0.12 (n = 5)

  12. Interaction of InGa liquid alloy coolant with gold coated optical materials

    International Nuclear Information System (INIS)

    Hulbert, S.L.

    1991-01-01

    A significant reaction is reported between gold surfaces and an indium-gallium eutectic liquid alloy often used to transfer heat away from optical elements in high power synchrotron radiation beamlines. This reaction proceeds at the slightly elevated temperatures (70 degrees C) typical of conservative bakeouts used to achieve ultrahigh vacuum in the chambers which house these optical elements (mirrors, gratings, and crystals) without damaging their highly precise figure and finish. The nature and extent of this reaction is discussed, based mostly on the experience gained recently during the vacuum commissioning of two mirror chambers for a VUV wiggler-based synchrotron radiation beamline. 2 refs., 5 figs

  13. The effects of thermal-neutron irradiation on platinum and dilute platinum-gold alloys

    International Nuclear Information System (INIS)

    Piani, C.S.B.

    1978-12-01

    The effect of varying defect concentrations on the recovery spectrum of thermal-neutron-irradiated pure platinum after isochronal anneals was investigated. The dose-independence of substages I(A), I(B) and I(C), and the dose dependence of substage I(D) and I(E), were observed to be in agreement with electron-irradiated studies. The 120 K substage in pure platinum was shown not to be due to interstitial-interstitial reactions, but could possibly be accounted for in terms of detrapping of interstitials from impurities or intrinsic immobile defects. The 360 K stage was shown to shift and was suppressed with increasing defect concentration. The possible conversion of the crowdion to a dumbbell near 160 K in Stage ll in platinum, as predicted by the two-interstitial model, was investigated by consideration of the initial slopes of the production curves between 80 K and 300 K. A minimum in these slopes was observed near 160 K and could be interpreted as due to the conversion of the highly mobile crowdion to an immobile dumbbell at this temperature. The influence of varying gold concentrations on the recovery spectrum of platinum was investigated in dilute platinum-gold alloys. The characteristics of several additional substages in Stage ll, due to the gold alloying were comparable to the results of electron-irradiation experiments. The observations made with regard to the impurity (gold) dependence of these substages could be interpreted in terms of the concentrations of the interstitials, vacancies and impurities present in the material. The interpretation of these substages was found to be consistent, if the recovery spectrum was investigated as a function of defect concentration [af

  14. Evaluation of thiouracil-based adhesive systems for bonding cast silver-palladium-copper-gold alloy.

    Science.gov (United States)

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Furuchi, Mika; Matsumura, Hideo

    2010-09-01

    This study aimed to evaluate the effect of adhesive systems based on a thiouracil monomer on bonding to silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12). Disk specimens were cast from the alloy and then air-abraded with alumina. The disks were bonded using six bonding systems selected from four primers and three luting materials. Shear bond strengths were determined both before and after thermocycling. Bond strength varied from 2.7 MPa to 32.0 MPa. Three systems based on a thiouracil monomer (MTU-6) showed durable bonding to the alloy, with post-thermocycling bond strengths of 22.4 MPa for the Metaltite (MTU-6) primer and Super-Bond, a tri-n-butylborane (TBB) initiated resin, 9.0 MPa for the Multi-Bond II resin, and 8.1 MPa for the Metaltite and Bistite II system. It can be concluded that a combination of thiouracil-based primer and TBB initiated resin is effective for bonding Ag-Pd-Cu-Au alloy.

  15. Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium

    Directory of Open Access Journals (Sweden)

    Adriana Cláudia Lapria Faria

    2009-10-01

    Full Text Available Cell culture system has been used to evaluate alloy cytotoxicity under different environments, testing the extracts, but the effect of temperature variation on the cytotoxicity of dental alloys has not been analyzed. OBJECTIVE: The aim of the present study was to investigate if temperature variation could affect dental alloy cytotoxicity, testing alloy extracts in an epithelial cell culture system. MATERIAL AND METHODS: Discs of Ni-Cr, Co-Cr-Mo, Ni-Cr-Ti, Ti-6Al-4V and commercially pure titanium (cp Ti were cast by arc melting, under argon atmosphere, injected by vacuum-pressure. Discs were immersed in artificial saliva and subjected to different temperatures: 37ºC and thermocycling (37ºC/5ºC/37ºC/55ºC/37ºC. After thermocycling, extracts were put in a subconfluent culture during 6 h, and the number of cells and their viability were used to evaluate cytotoxicity in these temperatures. For each alloy, data from temperature conditions were compared by Student's t-test (α=0.05. RESULTS: The cytotoxicity tests with alloy/metal extracts showed that Ni-Cr, Co-Cr-Mo, Ti-6Al-4V and cp Ti extracts (p>0.05 did not affect cell number or cell viability, while Ni-Cr-Ti (p<0.05 extract decreased cell number and viability when the alloy was subjected to thermocycling. CONCLUSION: Within the limitations of the present study, the Ni-Cr-Ti alloy had cell number and viability decreased when subjected to temperature variation, while the other alloys/metal extracts did not show these results.

  16. Fabricating High-Quality 3D-Printed Alloys for Dental Applications

    Directory of Open Access Journals (Sweden)

    Min-Ho Hong

    2017-07-01

    Full Text Available Metal additive manufacturing (AM, especially selective laser melting (SLM, has been receiving particular attention because metallic functional structures with complicated configurations can be effectively fabricated using the technique. However, there still exist some future challenges for the fabrication of high-quality SLM products for dental applications. First, the surface quality of SLM products should be further improved by standardizing the laser process parameters or by appropriately post-treating the surface. Second, it should be guaranteed that dental SLM restorations have good dimensional accuracy and, in particular, a good marginal fit. Third, a definitive standard regarding building and scanning strategies, which affect the anisotropy, should be established to optimize the mechanical properties and fatigue resistance of SLM dental structures. Fourth, the SLM substructure’s bonding and support to veneering ceramic should be further studied to facilitate the use of esthetic dental restorations. Finally, the biocompatibility of SLM dental alloys should be carefully examined and improved to minimize the potential release of toxic metal ions from the alloys. Future research of SLM should focus on solving the above challenges, as well as on fabricating dental structures with “controlled” porosity.

  17. An Investigation on Metallic Ion Release from Four Dental Casting Alloys

    Directory of Open Access Journals (Sweden)

    F. Nejatidanesh

    2005-12-01

    Full Text Available Statement of Problem: Element release from dental casting alloys into the oral environment is of clinical concern and is considered to be a potential health problem to all patients.Purpose: The aim of this study was to investigate the metallic ion release of four base metal alloys.Materials and Methods: Two Ni-Cr (Minalux and Supercast and two Co-Cr alloys (Minalia and Wironit were examined. Nine specimens of each type were prepared in 13×11×1.4 mm dimensions and each of the four alloys (3 specimens per group were conditioned in artificial saliva at 37 c for one, three and seven days.The conditioning media were analyzed for element-release using Inductive CoupledPlasma Atomic Emission Spectrophotometer (ICPAES. Collected data were statistically analyzed using ANOVA and Duncan multiple range test (P< 0.05.Results: The greatest amount of element release was seen after seven days (134.9 ppb Supercast, 159.2 ppb Minalux, 197.2 ppb Minalia, and 230.2 ppb Wironit. There was a significant difference between the released elements from the alloys after the three conditioning times (p<0.001.Conclusion: Element release from the studied alloys is proportional to the conditioning time. The Ni-Cr alloys tested in this investigation were more resistant to corrosion as compared to the Co-Cr alloys in artificial saliva. Supercast had the highest corrosion resistance.

  18. [Effects of different dental alloys on cytotoxic and apoptosis related genes expression of mouse fibroblast cells L929].

    Science.gov (United States)

    Meng, He; Han, Dong; Zhan, De-Song

    2009-08-01

    To investigate effects of the leaching liquids of 5 different kinds of dental alloys on L929 cells at cell level and molecular level. The fibroblast L929 cells of mouse were cultivated in vitro in leaching liquids of 5 different kinds of dental alloys, Au alloy (n = 8), Ag-Pt alloy (n = 8), Co-Cr alloy (n = 8), Ni-Cr alloy (n = 8), and Cu alloy (n = 8). The RPMI 1640 cell medium containing 10% fetal beef serum was used as control. The cytotoxicities of the 5 dental alloys were evaluated by means of methyl thiazolyl tetrazolium (MTT), and the effects of these alloys on the expression of caspase-3, caspase-8, and caspase-9 mRNA of L929 cells were examined using reverse transcription polymerase chain reaction (RT-PCR) method. After 48 hours culture the cytotoxicity of Cu alloy group was in Grade 4 and those of the other groups were all in Grade 0. The mRNA levels of caspase-8 had no change in all groups (P > 0.05). The mRNA levels of caspase-3 were as follows: Cu alloy (0.474 +/- 0.001), the negative control (0.527 +/- 0.003), Au alloy (0.528 +/- 0.013), Co-Cr alloy (0.615 +/- 0.007), Ag-Pd alloy (0.673 +/- 0.009), and Ni-Cr alloy (0.803 +/- 0.037). The mRNA levels of caspase-9 were as follows: Cu alloy (0.532 +/- 0.041), Au alloy (0.574 +/- 0.013), the negative control (0.578 +/- 0.010), Co-Cr alloy (0.617 +/- 0.009), Ag-Pd alloy (0.703 +/- 0.018), and Ni-Cr alloy (0.811 +/- 0.037). There were significant differences between the groups except the negative control group and Au alloy group. The Cu alloy shows the highest cytotoxicity, and the leaching liquids of 5 different kinds of dental alloys may induce cell apoptosis through mitochondrion pathway.

  19. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Chen, J.L.; Li, Z.; Zhu, A.Y.; Luo, L.Y.; Liang, J.

    2012-01-01

    Highlights: → The design alloy has better anti-tarnish property than that of H7211 alloy during salt-spray test. → The corrosion rate of design alloy is much lower than that of H7211 alloy as immersed in NaCl solution. → In the low frequency region, the capacitive behavior normally faded and diffusion process had a key role. → In the medium frequency region, the Bode pattern showed a capacitive behavior. -- Abstract: A novel imitation-gold copper alloy with rare earth was designed and prepared. The corrosion behavior of the alloy immersed in 3.5% NaCl solution and its anti-tarnish property in the salt spray for different days has been studied. The designed alloy (CuZnAlNiMeRe) has more excellent anti-tarnish property and lower corrosion rate than those of currency coinage materials of H7211 alloy (used in China). A uniform and compact of corrosion film has been formed after the designed alloy immersed in 3.5% NaCl solution. The corrosion current densities I corr of the alloy decreased while the polarization resistance R p increased with time. The capacitance of the corrosion product film C film of the alloy decreased while the charge transfer resistance R ct . The Warburg diffusion impedance W R and the resistance of the equivalent circuit R increased with time.

  20. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  1. Ni–Cr based dental alloys; Ni release, corrosion and biological evaluation

    International Nuclear Information System (INIS)

    Reclaru, L.; Unger, R.E.; Kirkpatrick, C.J.; Susz, C.; Eschler, P.-Y.; Zuercher, M.-H.; Antoniac, I.; Lüthy, H.

    2012-01-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10–15% for female adults and 1–3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni–Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni–Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: ► Nickel released was higher than the limits imposed in EU in contact with the skin. ► No direct relationship between the biological evaluation and chemical degradation.

  2. A comparative survey of bond strenght of different metal-ceramic-systems based on precious metal alloys and non-precious alloys in combination with conventional and low-fusing ceramic

    OpenAIRE

    Derfert, Beate

    2010-01-01

    The goal of this study was to show the differences of the bond strength of metal-ceramic-systems based on precious metal alloys (gold-reduced and high-gold-bearing) and non-precious alloys veneered with conventional and low-fusing dental ceramic. Vita Omega 900 was selected as representative of conventional dental ceramics and Duceragold was selected as representative of low-fusing dental ceramics. It was worked with Ponto Lloyd G, Bio Ponto Star (high-gold-bearing alloys veneered with Vit...

  3. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.

    Science.gov (United States)

    Medvedev, Alexander E; Molotnikov, Andrey; Lapovok, Rimma; Zeller, Rolf; Berner, Simon; Habersetzer, Philippe; Dalla Torre, Florian

    2016-09-01

    Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of casting investment preventing blackening of noble metal alloys Part 2. Application of developed investment for type 4 gold alloy.

    Science.gov (United States)

    Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo

    2003-09-01

    The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.

  5. Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM).

    Science.gov (United States)

    Zinelis, Spiros

    2007-05-01

    To evaluate the surface and elemental alterations induced by electro discharge machining (EDM) on the surface of dental cast alloys used for the fabrication of implant retained meso- and super-structures. A completed cast model of an arch that received dental implants was used for the preparation of six wax patterns which were divided into three groups (Au, Co and Ti). The wax patterns of the Au and Co groups were invested with conventional phosphate-bonded silica-based investment material and the Ti group with magnesia-based investment material. The investment rings of the Au and Co groups were cast with an Au-Ag alloy (Stabilor G) and a Co-Cr base alloy (Okta C), respectively, while the investment rings of group Ti were cast with cp Ti (Biotan). One casting of each group was subjected to electro discharge machining (EDM); the other was conventionally ground and polished. The surface morphology and the elemental compositions of conventionally and EDM-finished surfaces were studied by SEM/X-ray EDS analysis. Six spectra were collected from each surface employing the area scan mode and the mean value of each element between conventionally and EDM-finished surfaces was statistically analyzed by t-test (a=0.05). Then the specimens of each group were cut perpendicular to their longitudinal axis and after metallographic grinding and polishing the cross-sections studied under the SEM. The EDM surfaces showed a significant increase in C due to the decomposition of the dielectric fluid during spark erosion. Moreover, a significant Cu uptake was noted on these surfaces from the decomposition of the Cu electrodes used for EDM. Cross-sectional analysis showed that all alloys developed a superficial zone (recast layer) varying from 2 microm for Au-Ag to 10 microm for Co-Cr alloy. The elemental composition of dental alloy surfaces is significantly altered after EDM treatment.

  6. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    Science.gov (United States)

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application.

    Science.gov (United States)

    Li, H F; Qiu, K J; Yuan, W; Zhou, F Y; Wang, B L; Li, L; Zheng, Y F; Liu, Y H

    2016-11-22

    In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti-2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys consisted entirely α-Ti phase. The tensile strength and microhardness of Ti were improved by adding alloying elements. The castability of Ti was significantly improved by separately adding 2 wt.% Bi, Ga, Hf, Mo, Nb, Sn and Zr. The corrosion resistance of Ti in both normal artificial saliva solution (AS) and extreme artificial saliva solution (ASFL, AS with 0.2 wt.% NaF and 0.3 wt.% lactic acid) has been improved by separately adding alloying elements. In addition, the extracts of studied Ti‒2X alloys produced no significant deleterious effect to both fibroblasts L929 cells and osteoblast-like MG63 cells, indicating a good in vitro cytocompatibility, at the same level as pure Ti. The combination of enhanced mechanical properties, castability, corrosion behavior, and in vitro cytocompatibility make the developed Ti‒2X alloys have great potential for future stomatological applications.

  8. Screening on binary Ti alloy with excellent mechanical property and castability for dental prosthesis application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Yuan, W.; Zhou, F. Y.; Wang, B. L.; Li, L.; Zheng, Y. F.; Liu, Y. H.

    2016-11-01

    In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti-2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys consisted entirely α-Ti phase. The tensile strength and microhardness of Ti were improved by adding alloying elements. The castability of Ti was significantly improved by separately adding 2 wt.% Bi, Ga, Hf, Mo, Nb, Sn and Zr. The corrosion resistance of Ti in both normal artificial saliva solution (AS) and extreme artificial saliva solution (ASFL, AS with 0.2 wt.% NaF and 0.3 wt.% lactic acid) has been improved by separately adding alloying elements. In addition, the extracts of studied Ti‒2X alloys produced no significant deleterious effect to both fibroblasts L929 cells and osteoblast-like MG63 cells, indicating a good in vitro cytocompatibility, at the same level as pure Ti. The combination of enhanced mechanical properties, castability, corrosion behavior, and in vitro cytocompatibility make the developed Ti‒2X alloys have great potential for future stomatological applications.

  9. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants

    Directory of Open Access Journals (Sweden)

    Aritza Brizuela-Velasco

    2017-01-01

    Full Text Available The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young’s modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration.

  10. Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys.

    Science.gov (United States)

    Ucar, Yurdanur; Brantley, William A; Johnston, William M; Dasgupta, Tridib

    2011-06-01

    Because noble dental casting alloys for metal ceramic restorations have a wide range of mechanical properties, knowledge of these properties is needed for rational alloy selection in different clinical situations where cast metal restorations are indicated. The purpose of this study was to compare the mechanical properties and examine both the fracture and polished surfaces of 6 noble casting alloys that span many currently marketed systems. Five alloys were designed for metal ceramic restorations, and a sixth Type GPT has Type IV alloy for fixed prosthodontics (Maxigold KF) was included for comparison. Specimens (n=6) meeting dimensional requirements for ISO Standards 9693 and 8891 were loaded to failure in tension using a universal testing machine at a crosshead speed of 2 mm/min. Values of 0.1% and 0.2% yield strength, ultimate tensile strength, elastic modulus, and percentage elongation were obtained. Statistical comparisons of the alloy mechanical properties were made using 1-way ANOVA and the REGW multiple-range test (α=.05). Following fracture surface characterization using scanning electron microscopy (SEM), specimens were embedded in epoxy resin, polished, and again, examined with the SEM. When the multiple comparisons were considered, there were generally no significant differences in the elastic modulus, 0.1% and 0.2% offset yield strength, and ultimate tensile strength for the d.SIGN 91 (Au-Pd), d.SIGN 59 (Pd-Ag), Capricorn 15 (Pd-Ag-Au) and Maxigold KF (Au-Ag-Pd) alloys, except that the ultimate tensile strength was significantly lower (PAg-Pd alloys. Wide variation was found in percentage elongation, with the Pd-Ag and Pd-Ag-Au alloys having the highest values and the Au-Pd-Pt and Au-Ag-Pd alloys having the lowest values. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  11. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    Science.gov (United States)

    Mongkolsuttirat, Kittisun

    modulus relaxation of Au films also proves that the films exhibit linear viscoelastic behavior. From this, a linear viscoelastic model is shown to fit very well to experimental steady state stress relaxation data and can predict time dependent stress for complex loading histories including the ability to predict stress-time behavior at other strain rates during loading. Two specific factors that are expected to influence the viscoelastic behavior-degree of alloying and grain size are investigated to explore the influence of V concentration in solid solution and grain size of pure Au. It is found that the normalized modulus of Au films is dependent on both concentration (C) and grain size (D) with proportionalities of C1/3 and D 2, respectively. A quantitative model of the rate-equation for dislocation glide plasticity based on Frost and Ashby is proposed and fitted well with steady state anelastic stress relaxation experimental data. The activation volume and the density of mobile dislocations is determined using repeated stress relaxation tests in order to further understand the viscoelastic relaxation mechanism. A rapid decrease of mobile dislocation density is found at the beginning of relaxation, which correlates well with a large reduction of viscoelastic modulus at the early stage of relaxation. The extracted activation volume and dislocation mobility can be ascribed to mobile dislocation loops with double kinks generated at grain boundaries, consistent with the dislocation mechanism proposed for the low activation energy measured in this study.

  12. An overview of the corrosion aspect of dental implants (titanium and its alloys

    Directory of Open Access Journals (Sweden)

    Chaturvedi T

    2009-01-01

    Full Text Available Titanium and its alloys are used in dentistry for implants because of its unique combination of chemical, physical, and biological properties. They are used in dentistry in cast and wrought form. The long term presence of corrosion reaction products and ongoing corrosion lead to fractures of the alloy-abutment interface, abutment, or implant body. The combination of stress, corrosion, and bacteria contribute to implant failure. This article highlights a review of the various aspects of corrosion and biocompatibility of dental titanium implants as well as suprastructures. This knowledge will also be helpful in exploring possible research strategies for probing the biological properties of materials.

  13. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  14. Oxygen reduction of several gold alloys in 1-molar potassium hydroxide

    Science.gov (United States)

    Miller, R. O.

    1975-01-01

    With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.

  15. Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures.

    Science.gov (United States)

    Dahoumane, Si Amar; Wijesekera, Kushlani; Filipe, Carlos D M; Brennan, John D

    2014-02-15

    This paper reports the production of well-defined, highly stable Ag-Au alloy nanoparticles (NPs) using living cells of Chlamydomonas reinhardtii, with the composition of the bimetallic alloys being solely determined by the stoichiometric ratio in which the metal salts were added to the cultures. The NPs exhibited a single, well-defined surface plasmon resonance (SPR) band confirming that they were made of a homogeneous population of bimetallic alloys. Particle creation by the cells occurred in three stages: (1) internalization of the noble metals by the cells and their reduction resulting in the formation of the NPs; (2) entrapment of the NPs in the extracellular matrix (ECM) surrounding the cells, where they are colloidally stabilized; and (3) release of the NPs from the ECM to the culture medium. We also investigated the effect of the addition of the metals salts on cell viability and the impact on characteristics of the NPs formed. When silver was added to the cultures, cell viability was decreased and this resulted in a ~30nm red shift on the SPR band due to changes in the surrounding environment into which the NPs were released. The same observations (in SPR and cell viability) was made when gold was added to a final concentration of 2 × 10(-4)M, but not when the concentration was equal to 10(-4)M, where cell viability was high and the red shift was negligible. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. [The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys].

    Science.gov (United States)

    Wang, Jue; Qiao, Guang-yan

    2013-04-01

    To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (δE) of nickel-chromium alloys in artificial saliva was 30% alloys to the artificial saliva, and the order of the concentrations of metal ions was 0% corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva.

  17. Influence of shape and finishing on the corrosion of palladium-based dental alloys

    Science.gov (United States)

    Muris, Joris; Kleverlaan, Cornelis J.; Feilzer, Albert J.

    2015-01-01

    PURPOSE The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were used to cast two crowns and two disks. One of each was polished while the other was not. Two as-received alloys were also studied making a total of 5 specimens per alloy type. The specimens were submersed for 7 days in a lactic acid/sodium chloride solution (ISO standard 10271) and evaluated for surface structure characterization using SEM/EDAX. The solutions were quantitatively analysed for the presence of metal ions using ICP-MS and the results were statistically analysed with one-way ANOVA and a Tukey post-hoc test. RESULTS Palladium is released from all specimens studied (range 0.06-7.08 µg·cm-2·week-1), with the Pd-Cu alloy releasing the highest amounts. For both types of alloys, ion release of both disk and crown pairs were statistically different from the as-received alloy except for the Pd-Ag polished crown (P>.05). For both alloy type, disk-shaped pairs and unpolished specimens released the highest amounts of Pd ions (range 0.34-7.08 µg·cm-2·week-1). Interestingly, in solutions submerged with cast alloys trace amounts of unexpected elements were measured. CONCLUSION Shape and surface treatment influence ion release from dental alloys; polishing is a determinant factor. The release rate of cast and polished Pd alloys is between 0.06-0.69 µg·cm-2·week-1, which is close to or exceeding the EU Nickel Directive 94/27/EC compensated for the molecular mass of Pd (0.4 µg·cm-2·week-1). The composition of the alloy does not represent the element release, therefore we recommend manufacturers to report element release after ISO standard corrosion tests beside the original composition. PMID:25722839

  18. Influence of casting procedures on the corrosion resistance of clinical dental alloys containing palladium.

    Science.gov (United States)

    Viennot, Stéphane; Lissac, Michèle; Malquarti, Guillaume; Dalard, Francis; Grosgogeat, Brigitte

    2006-05-01

    The aim of this study was to compare the in vitro corrosion resistance in artificial saliva of two palladium-silver alloys (a Pd-Ag (Pors on 4) and an Ag-Pd (Palliag LTG)), with and without casting defects; 1 nickel-chrome alloy and 1 high-gold alloy, cast under recommended conditions, served as controls. For each of the palladium-based alloys, three specimens corresponding to three different casting conditions were used: under recommended conditions, with the use of a graphite-containing investment and crucible, and by reusing the sprues and sprue button. The electrochemical tests were run in Fusayama-Meyer artificial saliva. The open-circuit potential was recorded in mV/SCE at t=24h. Then, potentiodynamic polarization was performed to measure the polarization resistance (R(p)) in kOmega cm(2) and the corrosion current (i(corr)) in microA cm(-2). Data were evaluated with one-way analysis of variance and multiple comparisons test (alpha=0.05). In addition, each specimen was examined by scanning electron microscopy. Compared to the control alloys, the electrochemical experiments in artificial saliva indicated satisfactory corrosion resistance for the Pd-Ag and Ag-Pd alloys; these results are related to their high noble metal content and stable substructure. The Pd-Ag alloy displayed superior electrochemical properties to those of the Ag-Pd alloy regardless of the casting condition. The use of the graphite-containing crucible and investment during the cast process did not dramatically reduce the corrosion resistance values, but the reuse of sprues and the sprue button did. The optimal corrosion resistance values were obtained for the alloys cast according to the recommended conditions.

  19. Non-Gold Base Dental Casting Alloys. Volume 2. Porcelain-Fused-to-Metal Alloys.

    Science.gov (United States)

    1986-08-01

    nature of nickel release in human saliva at pH levels of 2 through 6 for 5, 10, 20, and 30 days, the specimens were immersed for 120 days. The results...poor thermal con- ductors--a property which can be beneficial to pulpal tissues. COPING - A designation for the metal substructure of a single unit

  20. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Macrophage proinflammatory response to the titanium alloy equipment in dental implantation.

    Science.gov (United States)

    Chen, X; Li, H S; Yin, Y; Feng, Y; Tan, X W

    2015-08-07

    Titanium alloy and stainless steel (SS) had been widely used as dental implant materials because of their affinity with epithelial tissue and connective tissue, and good physical, chemical, biological, mechanical properties and processability. We compared the effects of titanium alloy and SS on macrophage cytokine expression as well as their biocompatibility. Mouse macrophage RAW264.7 cells were cultured on titanium alloy and SS surfaces. Cells were counted by scanning electron microscopy. A nitride oxide kit was used to detect released nitric oxide by macrophages on the different materials. An enzyme linked immunosorbent assay was used to detect monocyte chemoattractant protein-1 levels. Scanning electron microscopy revealed fewer macrophages on the surface of titanium alloy (48.2 ± 6.4 x 10(3) cells/cm(2)) than on SS (135 ± 7.3 x 10(3) cells/cm(2)). The nitric oxide content stimulated by titanium alloy was 22.5 mM, which was lower than that stimulated by SS (26.8 mM), but the difference was not statistically significant (P = 0.07). The level of monocyte chemoattractant protein-1 released was significantly higher in the SS group (OD value = 0.128) than in the titanium alloy group (OD value = 0.081) (P = 0.024). The transforming growth factor-b1 mRNA expression levels in macrophages after stimulation by titanium alloy for 12 and 36 h were significantly higher than that after stimulation by SS (P = 0.31 and 0.25, respectively). Macrophages participate in the inflammatory response by regulating cytokines such as nitric oxide, monocyte chemoattractant protein-1, and transforming growth factor-b1. There were fewer macrophages and lower inflammation on the titanium alloy surface than on the SS surface. Titanium alloy materials exhibited better biological compatibility than did SS.

  2. Electrochemical and corrosion behavior of two chromium dental alloys in artificial bioenvironments

    Directory of Open Access Journals (Sweden)

    Banu Alexandra

    2017-01-01

    Full Text Available The purpose of this study is to compare the corrosion and tarnish behavior of NiCrMo and CoCrMo cast dental alloys in artificial bio environments. The cobalt chromium alloys are known and used in dentistry for many years, but its difficult machinability because of the strength and hardness, is an argument for scientists to study alternative materials with comparable biocompatibility. On the other hand, for dentistry devices beside corrosion behavior is important the aesthetic so, the used alloys have to preserve their shining and do not stain. The corrosion resistance has been evaluated using the Atomic mass spectroscopy method for ion release determination, the anodic polarization curves and the open circuit potential – time monitoring for corrosion behavior evaluation and optical microscopy for the structure analysis. The tarnish tendency of alloys was estimated using the method of cyclic immersion with frequency of 10 seconds for each minute during 72 hours in Na2S containing solution. The most important conclusion is that the alloys are comparable from corrosion and tarnish point of view, but we recommend to use the nickel base alloy only for orthodontic devices implanted for short periods of time, because of higher quantity of released ions.

  3. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

    Science.gov (United States)

    2014-01-01

    Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties. PMID:24843400

  4. Corrosion of dental alloys in artificial saliva with Streptococcus mutans.

    Science.gov (United States)

    Lu, Chunhui; Zheng, Yuanli; Zhong, Qun

    2017-01-01

    A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS) containing tryptic soy broth (Solution 1) and Streptococcus mutans (S. mutans) species (Solution 2) was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR) equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR))) circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces.

  5. Corrosion of dental alloys in artificial saliva with Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Chunhui Lu

    Full Text Available A comparative study of the corrosion resistance of CoCr and NiCr alloys in artificial saliva (AS containing tryptic soy broth (Solution 1 and Streptococcus mutans (S. mutans species (Solution 2 was performed by electrochemical methods, including open circuit potential measurements, impedance spectroscopy, and potentiodynamic polarization. The adherence of S. mutans to the NiCr and CoCr alloy surfaces immersed in Solution 2 for 24 h was verified by scanning electron microscopy, while the results of electrochemical impedance spectroscopy confirmed the importance of biofilm formation for the corrosion process. The R(QR equivalent circuit was successfully used to fit the data obtained for the AS mixture without S. mutans, while the R(Q(R(QR circuit was found to be more suitable for describing the biofilm properties after treatment with the AS containing S. mutans species. In addition, a negative shift of the open circuit potential with immersion time was observed for all samples regardless of the solution type. Both alloys exhibited higher charge transfer resistance after treatment with Solution 2, and lower corrosion current densities were detected for all samples in the presence of S. mutans. The obtained results suggest that the biofilm formation observed after 24 h of exposure to S. mutans bacteria might enhance the corrosion resistance of the studied samples by creating physical barriers that prevented oxygen interactions with the metal surfaces.

  6. Studies on polishing of Ti and Ag-Pd-Cu-Au alloy with five dental abrasives.

    Science.gov (United States)

    Hirata, T; Nakamura, T; Takashima, F; Maruyama, T; Taira, M; Takahashi, J

    2001-08-01

    Titanium (Ti) and Ag-Pd-Cu-Au alloy were examined for their polishing behaviour by conducting manually controlled polishing tests using five dental abrasives [carborundum point (CR) and silicone points (R1 and R2)] driven by a high torque micromotor with rotational speeds ranging from 2000 to 15 000 r.p.m. Polishing of Ti resulted in less volume of removal upon polishing, a rougher surface and larger loss of abrasives, compared with polishing of Ag-Pd-Cu-Au alloy. Polishing of Ti with a rotational speed of 15 000 r.p.m. led to the largest volume of removal upon polishing, whilst that of 10 000 r.p.m. produced the optimal volume for Ag-Pd-Cu-Au alloy. It was concluded that Ti was much more difficult to polish, requiring special care (e.g. frequent exchange of abrasives). Development of new abrasives for polishing Ti is required.

  7. A Review of Titanium Zirconium (TiZr Alloys for Use in Endosseous Dental Implants

    Directory of Open Access Journals (Sweden)

    Michel Dard

    2012-08-01

    Full Text Available Dental implants made from binary titanium-zirconium (TiZr alloys have shown promise as a high strength, yet biocompatible alternative to pure titanium, particularly for applications requiring small diameter implants. The aim of this review is to summarize existing literature reporting on the use of binary TiZr alloys for endosseous dental implant applications as tested in vitro, in animals and clinically. And furthermore to show that TiZr is “at least as good as” pure titanium in terms of biocompatibility and osseointergration. From the twelve papers that met the inclusion criteria, the current literature confirms that TiZr alloys produce small diameter implants with a strength up to 40% higher than conventional, cold-worked, grade IV titanium implants, and with a corrosion resistance and biocompatibility that is at least as good as pure titanium. The surface structure of TiZr is compatible with established surface treatments proven to aid in the osseointegration of titanium implants. Furthermore, binary TiZr alloys have been shown to achieve good osseointegration and high success rates both in animal and in clinical studies.

  8. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    Science.gov (United States)

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical

  10. Facile synthesis of gold-silver alloy nanoparticles for application in metal enhanced bioluminescence.

    Science.gov (United States)

    Abhijith, K S; Sharma, Richa; Ranjan, Rajeev; Thakur, M S

    2014-07-01

    In the present study we explored metal enhanced bioluminescence in luciferase enzymes for the first time. For this purpose a simple and reproducible one pot synthesis of gold-silver alloy nanoparticles was developed. By changing the molar ratio of tri-sodium citrate and silver nitrate we could synthesize spherical Au-Ag colloids of sizes ranging from 10 to 50 nm with a wide range of localized surface plasmon resonance (LSPR) peaks (450-550 nm). The optical tunability of the Au-Ag colloids enabled their effective use in enhancement of bioluminescence in a luminescent bacterium Photobacterium leiognathi and in luciferase enzyme systems from fireflies and bacteria. Enhancement of bioluminescence was 250% for bacterial cells, 95% for bacterial luciferase and 52% for firefly luciferase enzyme. The enhancement may be a result of energy transfer or plasmon induced enhancement. Such an increase can lead to higher sensitivity in detection of bioluminescent signals with potential applications in bio-analysis.

  11. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain.

    Science.gov (United States)

    Akova, Tolga; Ucar, Yurdanur; Tukay, Alper; Balkaya, Mehmet Cudi; Brantley, William A

    2008-10-01

    The purpose of this study was to compare shear bond strengths of cast Ni-Cr and Co-Cr alloys and the laser-sintered Co-Cr alloy to dental porcelain. Dental porcelain was applied on two cast and one laser-sintered base metal alloy. Ten specimens were prepared for each group for bond strength comparison. ANOVA followed by Tukey HSD multiple comparison test (alpha=0.05) was used for statistical analysis. Fractured specimens were observed with a stereomicroscope to classify the type of failure after shear bond testing. While the mean shear bond strength was highest for the cast Ni-Cr metal-ceramic specimens (81.6+/-14.6 MPa), the bond strength was not significantly different (P>0.05) from that for the cast Co-Cr metal-ceramic specimens (72.9+/-14.3 MPa) and the laser-sintered Co-Cr metal-ceramic specimens (67.0+/-14.9 MPa). All metal-ceramic specimens prepared from cast Ni-Cr and Co-Cr alloys exhibit a mixed mode of cohesive and adhesive failure, whereas five of the metal-ceramic specimens prepared from the laser-sintered Co-Cr alloy exhibited the mixed failure mode and five specimens exhibited adhesive failure in the porcelain. The new laser-sintering technique for Co-Cr alloy appears promising for dental applications, but additional studies of properties of the laser-sintered alloy and fit of castings prepared by this new technique are needed before its acceptance into dental laboratory practice. Laser sintering of Co-Cr alloy seems to be an alternative technique to conventional casting of dental alloys for porcelain fused to metal restorations.

  12. Retention of gold alloy crowns cemented with traditional and resin cements.

    Science.gov (United States)

    Pinzón, Lilliam M; Frey, Gary N; Winkler, Mark M; Tate, William H; Burgess, John O; Powers, John M

    2009-01-01

    The aim of this study was to measure in vitro retention of cast gold crowns cemented with traditional and resin cements. Forty-eight human molars were prepared on a lathe to produce complete crown preparations with a consistent taper and split into six groups, eight crowns in each group. Crowns were cast in a high-gold alloy and then cemented. After 24 hours, the retention force (N) was recorded and mean values were analyzed by one-way analysis of variance and the Fisher post-hoc least significant difference (PLSD) multiple comparisons test (a = .05). Failure sites were examined under 3100 magnification and recorded. Mean values (SD) for each group in increasing order of retention force were: Harvard Cement: 43 N (27), TempoCem: 59 N (16), PermaCem Dual: 130 N (42), RelyX Luting Cement: 279 N (26), Contax and PermaCem Dual: 286 N (38), and TempoCem with Contax and PermaCem Dual: 340 N (14). The Fisher PLSD interval (P = .05) for comparing cements was 29 N. Zinc-phosphate cement and provisional resin cements had the lowest retention forces. Resin cement with a bonding agent and the hybrid-ionomer cement had similar retention forces. Resin cement with a bonding agent applied after use of a provisional resin cement had a significantly higher retention force than the other cements tested.

  13. Assessment of exposures and potential risks to the US adult population from the leaching of elements from gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; James, Kyle Jordan; Peters, Rachel Elizabeth; Clemow, Scott Richard; Siciliano, Steven Douglas

    2016-01-01

    Using data from the 2001 to 2004 US National Health and Nutrition Examination Survey (NHANES) on the number and placement of tooth restorations in adults, we quantified daily doses due to leaching of elements from gold (Au) alloy and ceramic restorative materials. The elements with the greatest leaching rates from these materials are often the elements of lowest proportional composition. As a result, exposure due to wear will predominate for those elements of relatively high proportional composition, while exposure due leaching may predominate for elements of relatively low proportional composition. The exposure due to leaching of silver (Ag) and palladium (Pd) from Au alloys exceeded published reference exposure levels (RELs) for these elements when multiple full surface crowns were present. Six or more molar crowns would result in exceeding the REL for Ag, whereas three or more crowns would be necessary to exceed the REL for Pd. For platinum (Pt), the majority of tooth surfaces, beyond just molar crowns, would be necessary to exceed the REL for Pd. Exposures due to leaching of elements from ceramic dental materials were less than published RELs for all components examined here, including having all restorations composed of ceramic.

  14. Dental amalgam: effects of alloy/mercury mixing ratio, uses and waste management

    International Nuclear Information System (INIS)

    Kefi, I.; Maria, A.; Sana, J.; Afreen, J.; Adel, S.; Iftikhar, A.; Yawer, A.; Kaleem, M.

    2011-01-01

    Background: Silver dental amalgam is one of the oldest filling materials used in dentistry. The American Dental Association (ADA) has estimated that billions of amalgam restorations have been placed in patients in the last 150 years. Due to the presence of mercury and mishandling during the filling make it more controversial. The objective of this study was to conduct a survey of the use of different brands and to assess any deviations in practice from the hand mixing manual method of elemental mercury and alloy in a pestle/mortar and encapsulated form. Methods: A questionnaire was sent to 250 of randomly selected dental practitioner in various localities of Karachi. Data was analysed to record the specified brands used along with their powder/liquid (P/L) ratio and the different methods for disposing off mercury in this study. Results: The most commonly used form of dispensing method was hand mixing (57%) and only 30% of the dentists followed the manufacturer instruction for hand mixing ratio. Eighty-seven percent of dental amalgam restoration was performed and 13% removed by the dentist per month and the method of disposing the amalgam wastage that 55%, 25%, and 20% dentists were used the sink, bin and other methods respectively in their dental clinics. Conclusion: Amalgam restoration is still popular filling material in the posterior region of the mouth but we need to create awareness among the dentists who do not follow the ADA specifications. (author)

  15. Dental amalgam: effects of alloy/mercury mixing ratio, uses and waste management.

    Science.gov (United States)

    Kefi, I; Maria, A; Majid, Z; Sana, J; Afreen, M; Fareed, M; Feroze, A; Sajid, H; Adel, S; Iftikhar, A; Yawer, A; Kaleem, M

    2011-01-01

    Silver dental amalgam is one of the oldest filling materials used in dentistry. The American Dental Association (ADA) has estimated that billions of amalgam restorations have been placed in patients in the last 150 years. Due to the presence of mercury and mishandling during the filling make it more controversial. The objective of this study was to conduct a survey of the use of different brands and to assess any deviations in practice from the hand mixing manual method of elemental mercury and alloy in a pestle/mortar and encapsulated form. A questionnaire was sent to 250 of randomly selected dental practitioner in various localities of Karachi. Data was analysed to record the specified brands used along with their powder/liquid (P/L) ratio and the different methods for disposing off mercury in this study. The most commonly used form of dispensing method was hand mixing (57%) and only 30% of the dentists followed the manufacturer instruction for hand mixing ratio.Eighty-seven percent of dental amalgam restoration was performed and 13% removed by the dentist per month and the method of disposing the amalgam wastage that 55%, 25%, and 20% dentists were used the sink, bin and other methods respectively in their dental clinics. Amalgam restoration is still popular filling material in the posterior region of the mouth but we need to create awareness among the dentists who do not follow the ADA specifications.

  16. Precipitation behavior of Ag-Pd-In dental alloys.

    Science.gov (United States)

    Suh, Y C; Lee, Z H; Ohta, M

    2000-01-01

    Age-hardening characteristics and precipitation behavior of Ag-25%Pd-3%In-1%Zn-0.5%Ir alloy were investigated in detail by means of hardness testing, X-ray diffraction, electron microscopy and resistivity measurement. The solution treating could be accomplished at 980 degrees C and the aging in the temperature range from 950 to 850 degrees C occurred by continuous precipitation. The aging in the temperature range from 850 to 450 degrees C occurred first, forming GP-zones with a hardness increase and then in overaging stage by forming discontinuous precipitation, which consisted of lamellae of solute (Pd, In, Zn) depleted Ag-rich phase and (Pd,Ag)3(In,Zn) intermetallic phase. The hardness increased very fast to its peak in 10 min during aging at temperatures between 450 and 550 degrees C. Copyright 2000 Kluwer Academic Publishers

  17. Effect of Nd:YAG laser parameters on the penetration depth of a representative Ni-Cr dental casting alloy.

    Science.gov (United States)

    Al Jabbari, Youssef S; Koutsoukis, Theodoros; Barmpagadaki, Xanthoula; El-Danaf, Ehab A; Fournelle, Raymond A; Zinelis, Spiros

    2015-02-01

    The effects of voltage and laser beam (spot) diameter on the penetration depth during laser beam welding in a representative nickel-chromium (Ni-Cr) dental alloy were the subject of this study. The cast alloy specimens were butted against each other and laser welded at their interface using various voltages (160-390 V) and spot diameters (0.2-1.8 mm) and a constant pulse duration of 10 ms. After welding, the laser beam penetration depths in the alloy were measured. The results were plotted and were statistically analyzed with a two-way ANOVA, employing voltage and spot diameter as the discriminating variables and using Holm-Sidak post hoc method (a = 0.05). The maximum penetration depth was 4.7 mm. The penetration depth increased as the spot diameter decreased at a fixed voltage and increased as the voltage increased at a fixed spot diameter. Varying the parameters of voltage and laser spot diameter significantly affected the depth of penetration of the dental cast Ni-Cr alloy. The penetration depth of laser-welded Ni-Cr dental alloys can be accurately adjusted based on the aforementioned results, leading to successfully joined/repaired dental restorations, saving manufacturing time, reducing final cost, and enhancing the longevity of dental prostheses.

  18. Surface texture and hardness of dental alloys processed by alternative technologies

    Science.gov (United States)

    Porojan, Liliana; Savencu, Cristina E.; Topală, Florin I.; Porojan, Sorin D.

    2017-08-01

    Technological developments have led to the implementation of novel digitalized manufacturing methods for the production of metallic structures in prosthetic dentistry. These technologies can be classified as based on subtractive manufacturing, assisted by computer-aided design/computer-aided manufacturing (CAD/CAM) systems, or on additive manufacturing (AM), such as the recently developed laser-based methods. The aim of the study was to assess the surface texture and hardness of metallic structures for dental restorations obtained by alternative technologies: conventional casting (CST), computerized milling (MIL), AM power bed fusion methods, respective selective laser melting (SLM) and selective laser sintering (SLS). For the experimental analyses metallic specimens made of Co-Cr dental alloys were prepared as indicated by the manufacturers. The specimen structure at the macro level was observed by an optical microscope and micro-hardness was measured in all substrates. Metallic frameworks obtained by AM are characterized by increased hardness, depending also on the surface processing. The formation of microstructural defects can be better controlled and avoided during SLM and MIL process. Application of power bed fusion techniques, like SLS and SLM, is currently a challenge in dental alloys processing.

  19. Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions

    International Nuclear Information System (INIS)

    Bai, Y.J.; Wang, Y.B.; Cheng, Y.; Deng, F.; Zheng, Y.F.; Wei, S.C.

    2011-01-01

    The corrosion behavior of Ti-Nb dental alloy in artificial saliva with and without the addition of lactic acid and sodium fluoride was investigated by electrochemical techniques, with the commercial Titanium-molybdenum alloy (TMA) as a comparison. The chemical composition, microstructure and constitutional phase were characterized via energy dispersive spectrometry, optical microscope and X-ray diffraction, meanwhile the open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements were carried out to study the corrosion resistance of experimental alloys, with the corroded surface being further characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the corrosion behavior of Ti-Nb alloy was similar to those TMA alloy samples in both artificial and acidified saliva solutions, whereas statistical analysis of the electrochemical impedance spectroscopy and polarization parameters showed Ti-Nb alloy exhibited better corrosion resistance in fluoridated saliva and fluoridated acidified saliva. SEM observation indicated that TMA alloy corroded heavily than Ti-Nb alloy in fluoride containing saliva. XPS surface analysis suggested that Nb 2 O 5 played an important role in anti-corrosion from the attack of fluoride ion. Based on the above finding, Ti-Nb alloy is believed to be suitable for the usage in certain fluoride treated dental works with excellent corrosion resistance in fluoride-containing oral media.

  20. Analysis of four dental alloys following torch/centrifugal and induction/ vacuum-pressure casting procedures.

    Science.gov (United States)

    Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur

    2013-12-01

    Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting

  1. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    International Nuclear Information System (INIS)

    Matkovic, Tanja; Matkovic, Prosper; Malina, Jadranka

    2004-01-01

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co 55 Cr 40 Ni 5 and Co 60 Cr 30 Ni 10 have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram

  2. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.

    Science.gov (United States)

    Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z

    2015-12-01

    CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Morphological Analysis (SEM) of the Surface of a Non-Noble Dental Alloy Subjected to Electrocorrosion

    Science.gov (United States)

    Baciu, E. R.; Grădinaru, I.; Baciu, M.; Vasluianu, R. I.; Cimpoesu, R.; Baciu, C.; Bejinariu, C.

    2017-06-01

    Corrosion consists in the degradation of a material under the chemical or electrochemical action of the environment where it is placed. The investigations carried out aimed to show the structural modifications produced in Co-Cr-Mo alloy, Robur 400 (Eisenbacher Dental - Waren ED GmbH, Germany) subjected to electrocorrosion in Fusayama-Mayer artificial saliva. The specimens prepared by mechanical polishing were analysed structurally by using a scanning electron microscope. During the tests run we could notice a general corrosion of the surfaces of the specimens made from Robur alloy. Through 2D and 3D microscopy and qualitative determinations of the luminous variation we could notice the effects of electrocorrosion tests on the surface of the metal material.

  4. Multiscale Electrochemical Investigation of the Corrosion Resistance of Various Alloys Used in Dental Prostheses

    Science.gov (United States)

    Iacoban, Sorin; Mareci, Daniel; Bolat, Georgiana; Munteanu, Corneliu; Souto, Ricardo Manuel

    2015-04-01

    The electrochemical behavior of Ag-Pd (Paliag), Ni-Cr (Heraenium NA), and Co-Cr (Heraenium CE) alloys used in dental prosthetics construction of crowns and bridges was studied in 0.9 pct NaCl solution at 298 K (25 °C). The localized electrochemical characteristics related to corrosion resistance and eventual breakdown of the protecting oxide layers were investigated by scanning electrochemical microscopy (SECM), whereas potentiodynamic polarization and electrochemical impedance spectroscopy techniques were employed to establish oxide stability. When the corrosion resistance of the alloys was evaluated by means of the corrosion current value determined around their corresponding open circuit potential in 0.9 pct NaCl solution, good protection can be expected resulting from their spontaneous passivation (low current densities in the order of tenths of μA cm-2). The polarization resistance of all the samples increased with immersion time, in the sequence Ag-Pd Ag-Pd instead.

  5. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.

    Science.gov (United States)

    Qiu, K J; Liu, Y; Zhou, F Y; Wang, B L; Li, L; Zheng, Y F; Liu, Y H

    2015-03-01

    In this study, the microstructure, mechanical properties, castability, electrochemical behaviors, cytotoxicity and hemocompatibility of Ti-Bi alloys with pure Ti as control were systematically investigated to assess their potential applications in the dental field. The experimental results showed that, except for the Ti-20Bi alloy, the microstructure of all other Ti-Bi alloys exhibit single α-Ti phase, while Ti-20Bi alloy is consisted of mainly α-Ti phase and a small amount of BiTi2 and BiTi3 phases. The tensile strength, hardness and wear resistance of Ti-Bi alloys were demonstrated to be improved monotonically with the increase of Bi content. The castability test showed that Ti-2Bi alloy increased the castability of pure Ti by 11.7%. The studied Ti-Bi alloys showed better corrosion resistance than pure Ti in both AS (artificial saliva) and ASFL (AS containing 0.2% NaF and 0.3% lactic acid) solutions. The concentrations of both Ti ion and Bi ion released from Ti-Bi alloys are extremely low in AS, ASF (AS containing 0.2% NaF) and ASL (AS containing 0.3% lactic acid) solutions. However, in ASFL solution, a large number of Ti and Bi ions are released. In addition, Ti-Bi alloys produced no significant deleterious effect to L929 cells and MG63 cells, similar to pure Ti, indicating a good in vitro biocompatibility. Besides, both L929 and MG63 cells perform excellent cell adhesion ability on Ti-Bi alloys. The hemolysis test exhibited that Ti-Bi alloys have an ultra-low hemolysis percentage below 1% and are considered nonhemolytic. To sum up, the Ti-2Bi alloy exhibits the optimal comprehensive performance and has great potential for dental applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  7. Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells.

    Science.gov (United States)

    Xia, Yang; Chen, Huimin; Zhang, Feimin; Bao, Chongyun; Weir, Michael D; Reynolds, Mark A; Ma, Junqing; Gu, Ning; Xu, Hockin H K

    2018-01-01

    In this study, a novel calcium phosphate cement containing gold nanoparticles (GNP-CPC) was developed. Its osteogenic induction ability on human dental pulp stem cells (hDPSCs) was investigated for the first time. The incorporation of GNPs improved hDPSCs behavior on CPC, including better cell adhesion (about 2-fold increase in cell spreading) and proliferation, and enhanced osteogenic differentiation (about 2-3-fold increase at 14 days). GNPs endow CPC with micro-nano-structure, thus improving surface properties for cell adhesion and subsequent behaviors. In addition, GNPs released from GNP-CPC were internalized by hDPSCs, as verified by transmission electron microscopy (TEM), thus enhancing cell functions. The culture media containing GNPs enhanced the cellular activities of hDPSCs. This result was consistent with and supported the osteogenic induction results of GNP-CPC. In conclusion, GNP-CPC significantly enhanced the osteogenic functions of hDPSCs. GNPs are promising to modify CPC with nanotopography and work as bioactive additives thus enhance bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Morphology, stresses, and surface reactivity of nanoporous gold synthesized from nanostructured precursor alloys

    Science.gov (United States)

    Rouya, Eric

    Nanoporous metallic materials (NMMs) are generally synthesized using dealloying, whereby the more reactive component is dissolved from a homogeneous alloy in a suitable electrolyte, and the more noble metal atoms simultaneously diffuse into 3-D clusters, forming a bi-continuous network of interconnected ligaments. Nanoporous gold (NPG) in particular is a well-known NMM; it is inert, bio-compatible, and capable of developing large surface areas with 1--100nm pores. While several studies have demonstrated its potential usefulness in fuel cell and sensing devices, its structural, mechanical, and electrocatalytic properties still require further investigation, particularly if NPG is synthesized from precursor alloy films exhibiting metastable nanostructures. In this dissertation, the electrodeposition (ECD) process, microstrucural characteristics, and metatstability of Au-Ni precursor alloys are investigated. The stresses evolved during Au-Ni alloy nucleation and growth are investigated in situ and correlated with microstructural and electrochemical data in order to identify the various stress-inducing mechanisms. In situ stresses generated during Au-Ni and Au-Ag dealloying were investigated, and additionally correlated with the growth stresses. Finally, the surface area and electrocatalytic properties of NPG are characterized using a variety of electrochemical techniques. Potentiostatically electrodeposited Au1-x-Nix (x: 0--90at%) films form a continuous series of metastable solid solutions and exhibit a nanocrystalline morphology, with ˜10--20 nm grains, the size of which decreases with increasing Ni content. The formation of a metastable structure was interpreted in terms of the limited surface diffusivities of adatoms at the growing interface and atomic volume differences (˜15%). Internal stresses generated during ECD of Ni-rich films can be explained assuming a 3-D Volmer-Weber growth mode, where the stress is initially compressive, then transitions into tension

  9. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing.

    Science.gov (United States)

    Lin, Hsin-Yi; Bowers, Bonnie; Wolan, John T; Cai, Zhuo; Bumgardner, Joel D

    2008-03-01

    A porcelain veneer is often fired on nickel-chromium casting alloys used in dental restorations for aesthetic purposes. The porcelain-fused-to-metal (PFM) process brings the temperature to over 950 degrees C and may change the alloy's corrosion properties. In this study, the metallurgical, surface, and corrosion properties of two Ni-Cr alloys were examined, before and after PFM firing. Two types of alloy were tested-a high Cr, Mo alloy without Be and a low Cr, Mo alloy with Be. Before the PFM firing, specimens from both alloys were examined for their microstructures, hardness, electrochemical corrosion properties, surface composition, and metal ion release. After the PFM firing, the same specimens were again examined for the same properties. Neither of the alloys showed any differences in their electrochemical corrosion properties after the PFM firing. However, both alloys exhibited new phases in their microstructure and significant changes in hardness after firing. In addition, there was a slight increase in CrO(x) on the surface of the Be-free alloy and increased Mo-Ni was observed on the surface of both alloys via X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). This might be one of the reasons why both alloys had increased Ni and Mo ion release after firing. The PFM firing process changed the alloys' hardness, microstructure, and surface composition. No significant changes in the alloys' corrosion behavior were observed, however, the significant increase in metal ion release over a month may need to be further investigated for its clinical effects.

  10. Deciphering the Surface Composition and the Internal Structure of Alloyed Silver-Gold Nanoparticles.

    Science.gov (United States)

    Grasmik, Viktoria; Rurainsky, Christian; Loza, Kateryna; Evers, Mathies V; Prymak, Oleg; Heggen, Marc; Tschulik, Kristina; Epple, Matthias

    2018-03-09

    Spherical bimetallic AgAu nanoparticles in the molar ratios 30:70, 50:50, and 70:30 with a diameter of 30 to 40 nm were analyzed together with pure silver and gold nanoparticles of the same size. Dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS) were used for size determination. Cyclic voltammetry (CV) was used to determine the nanoalloy composition, together with atomic absorption spectroscopy (AAS), energy-dispersive X-ray spectroscopy (EDX) and Ultraviolet-visible (UV/vis) spectroscopy. Underpotential deposition (UPD) of lead (Pb) on the particle surface gave information about its spatial elemental distribution and surface area. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were applied to study the shape and the size of the nanoparticles. X-ray powder diffraction gave the crystallite size and the microstrain. The particles form a solid solution (alloy) with an enrichment of silver on the nanoparticle surface, including some silver-rich patches. UPD indicated that the surface only consists of silver atoms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Numerical Simulation and Superplastic Forming of Ti-6Al-4V Alloy for a Dental Prosthesis

    Science.gov (United States)

    Li, Xiaomei; Soo, Steven

    2011-04-01

    This article investigates superplastic forming (SPF) technique in conjunction with finite element (FE) simulation applied to dental repair. The superplasticity of Ti-6Al-4V alloys has been studied using a uniquely designed five-hole test with the aim of obtaining the modeled grain size and the flow stress parameters. The data from the five-hole test are subsequently put into the FE program for the simulation of a partial upper denture dental prosthesis (PUD4). The FE simulation of the PUD4 is carried out to set up appropriate input parameters for pressing due to the SPF process being fully automatic controlled. A variety of strain rates ranging from 2.4 × 10-5 to 1 × 10-3 s-1 are selected for the characterization of superplastic properties of the alloy. The Superflag FE program is used to generate an appropriate pressure-time profile and provide information on thickness, grain size, and grain growth rate distribution. Both membrane elements and solid elements have been adopted in the simulation and the results from both types of elements are compared. An evaluation of predicted parameters for the SPF of the prosthesis is presented.

  12. Effect of recasting on element release from base metal dental casting alloys in artificial saliva and saline solution

    Science.gov (United States)

    Jayaprakash, K.; Kumar Shetty, K. Harish; Shetty, A. Nityananda; Nandish, Bantarahalli Thopegowda

    2017-01-01

    Aim: The aim of this study was to quantitatively estimate the concentration of ion release from recasted base metal alloys in various pH conditions using atomic absorption spectroscopy (AAS). Materials and Methods: Specimens of commercially available dental casting alloys (cobalt [Co]-chromium [Cr] and nickel [Ni]- chromium [Cr]) were prepared using lost-wax casting techniques and were stored in the test solution for 1 week and 4 weeks, and ions released during chemical corrosion were detected using AAS. Results: An increase in the quantity of ion release was observed with recasting. These changes were higher after twice recasting in Ni-Cr alloy. PMID:29279626

  13. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  14. Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys.

    Science.gov (United States)

    Shen, Xiao-Ting; Zhang, Yan-Zhen; Xiao, Fang; Zhu, Jing; Zheng, Xiao-Dong

    2017-07-01

    The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO 3 +NaBH 4 → Ag+1/2H 2 +1/2B 2 H 6 +NaNO 3 . A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L) of AgNPs were tested on Staphylococcus aureus (SA) and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorporation of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.

  15. Base-metal dental casting alloy biocompatibility assessment using a human-derived three-dimensional oral mucosal model.

    LENUS (Irish Health Repository)

    McGinley, E L

    2012-01-01

    Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV Ni-induced hypersensitivity. We hypothesised that the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into the mechanisms of Ni-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm™ and maintained until full thickness was achieved prior to Ni-Cr and cobalt-chromium (Co-Cr) alloy disc exposure (2-72 h). Biocompatibility assessment involved histological analyses with cell viability measurements, oxidative stress responses, inflammatory cytokine expression and cellular toxicity analyses. Inductively coupled plasma mass spectrometry analysis determined elemental ion release levels. We detected adverse morphology with significant reductions in cell viability, significant increases in oxidative stress, inflammatory cytokine expression and cellular toxicity for the Ni-Cr alloy-treated oral mucosal models compared with untreated oral mucosal models, and adverse effects were increased for the Ni-Cr alloy that leached the most Ni. Co-Cr demonstrated significantly enhanced biocompatibility compared with Ni-Cr alloy-treated oral mucosal models. The human-derived full-thickness oral mucosal model discriminated between dental alloys and provided insights into the mechanisms of Ni-induced toxicity, highlighting potential clinical relevance.

  16. Comparison of Dental Prostheses Cast and Sintered by SLM from Co-Cr-Mo-W Alloy

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2016-12-01

    Full Text Available The article presents the results of a comparative analysis of the metal substructure for dental prosthesis made from a Co-Cr-Mo-W alloy by two techniques, i.e. precision investment casting and selective laser melting (SLM. It was found that the roughness of the raw surface of the SLM sinter is higher than the roughness of the cast surface, which is compensated by the process of blast cleaning during metal preparation for the application of a layer of porcelain. Castings have a dendritic structure, while SLM sinters are characterized by a compact, fine-grain microstructure of the hardness higher by about 100 HV units. High performance and high costs of implementation the SLM technology are the cause to use it for the purpose of many dental manufacturers under outsourcing rules. The result is a reduction in manufacturing costs of the product associated with dental work time necessary to scan, designing and treatment of sinter compared with the time needed to develop a substructure in wax, absorption in the refractory mass, casting, sand blasting and finishing. As a result of market competition and low cost of materials, sinter costs decrease which brings the total costs related to the construction unit making using the traditional method of casting, at far less commitment of time and greater predictability and consistent sinter quality.

  17. Evaluation of two thione primers and composite luting agents used for bonding a silver-palladium-copper-gold alloy.

    Science.gov (United States)

    Matsumura, H; Atsuta, M; Tanoue, N

    2002-09-01

    The purpose of the current study was to evaluate the bond strength and durability of two metal adhesive systems bonded to a silver-palladium-copper-gold (Ag-Pd) alloy. Disk specimens were cast from an Ag-Pd alloy (Castwell M.C. 12), air-abraded with 50 micro m grain-sized alumina, and they were bonded with two primer-cement bonding systems (Alloy Primer and Panavia Fluoro Cement; Metaltite and Bistite II). For each cement, unprimed specimens were also prepared as experimental controls. Shear bond strengths were determined both before and after thermocycling (4-60 degrees C, 1 min each, 100 000 cycles). The average post-thermocycling bond strengths in MPa (n=8) were: 39.0 for the Metaltite-Bistite II system, 32.2 for the Alloy Primer-Panavia Fluoro Cement system, 23.1 for the Bistite II material and 21.0 for the Panavia Fluoro Cement material. The use of proprietary primers, both of which contain thione functional monomer, enhanced the post-thermocycling bond strengths of both cements (P 0.05). It is concluded that the combined use of the thione primer and the luting agent is necessary for bonding the Ag-Pd alloy examined.

  18. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  19. Evaluation of irradiation effects of near-infrared free-electron-laser of silver alloy for dental application.

    Science.gov (United States)

    Kuwada-Kusunose, Takao; Kusunose, Alisa; Wakami, Masanobu; Takebayashi, Chikako; Goto, Haruhiko; Aida, Masahiro; Sakai, Takeshi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu; Hayakawa, Ken; Suzuki, Kunihiro; Sakae, Toshiro

    2017-08-01

    In the application of lasers in dentistry, there is a delicate balance between the benefits gained from laser treatment and the heat-related damage arising from laser irradiation. Hence, it is necessary to understand the different processes associated with the irradiation of lasers on dental materials. To obtain insight for the development of a safe and general-purpose laser for dentistry, the present study examines the physical effects associated with the irradiation of a near-infrared free-electron laser (FEL) on the surface of a commonly used silver dental alloy. The irradiation experiments using a 2900-nm FEL confirmed the formation of a pit in the dental alloy. The pit was formed with one macro-pulse of FEL irradiation, therefore, suggesting the possibility of efficient material processing with an FEL. Additionally, there was only a slight increase in the silver alloy temperature (less than 0.9 °C) despite the long duration of FEL irradiation, thus inferring that fixed prostheses in the oral cavity can be processed by FEL without thermal damage to the surrounding tissue. These results indicate that dental hard tissues and dental materials in the oral cavity can be safely and efficiently processed by the irradiation of a laser, which has the high repetition rate of a femtosecond laser pulse with a wavelength around 2900 nm.

  20. Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys.

    Science.gov (United States)

    Muris, Joris; Goossens, An; Gonçalo, Margarida; Bircher, Andreas J; Giménez-Arnau, Ana; Foti, Caterina; Rustemeyer, Thomas; Feilzer, Albert J; Kleverlaan, Cornelis J

    2015-05-01

    The role of palladium and nickel sensitization in oral disease and dermatitis is not fully understood. To investigate whether sensitization to these metals was associated with exposure to dental alloys and oral and skin complaints/symptoms in a European multicentre study. In six dermatology clinics, patch tests with palladium (3% Na2 PdCl4 ; Pd = 102.0 µmol/g) and nickel (5% NiSO4 .6H2 O; Ni = 190.2 µmol/g) were performed in consecutive patients, and patients' characteristics were collected with a questionnaire and a clinical investigation. In total, 906 patients were included, of whom 24.3% reacted to palladium and 25.2% to nickel. The rate of monosensitization was 6-7% for both metals. Palladium sensitization (as opposed to no sensitization to both metals) was associated with exposure to dental crowns [odds ratio (OR) 2.0], skin reactivity to metals (OR 2.8), oral lichenoid lesions (OR 4.7), xerostomia (OR 7.3), and metal taste (OR 20.7), but not with eczema, stomatitis, or oral burning sensation. Additionally, xerostomia (OR 8.7) and metal taste (OR 4.6) were associated with sensitization to both metals. Clinically, it is important for palladium-sensitized patients to undergo an oral examination, with particular attention to the presence of/exposure to dental crowns. In the case of metal contact allergy, exposure to dental crowns could play a role. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Bolat, Georgiana, E-mail: georgiana20022@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Chelariu, Romeu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Iasi (Romania); Sutiman, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Munteanu, Corneliu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical, Iasi (Romania)

    2013-08-15

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO{sub 2} is lower than that of TiO{sub 2} rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F{sup −}) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F{sup −} could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions.

  2. In Vitro Cytotoxicity Test and Surface Characterization of CoCrW Alloy in Artificial Saliva Solution for Dental Applications.

    Science.gov (United States)

    Souza, Klester Santos; Jaimes, Ruth Flavia Vera Villamil; Rogero, Sizue Otta; Nascente, Pedro Augusto de Paula; Agostinho, Silvia Maria Leite

    2016-01-01

    In order to evaluate its application as a dental prosthesis material, a CoCrW alloy was subjected to in vitro cytotoxicity test, surface characterization and electrochemical studies performed in artificial saliva and 0.15 mol.L-1 NaCl medium. The used techniques were: anodic polarization curves, chronoamperometric measurements, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analysis and X-ray photoelectron spectroscopy (XPS). Cytotoxicity test was also performed. The electrochemical behavior of CoCrW alloy was compared in both studied media, from corrosion potential (Ecorr) to a 600 mV anodic overvoltage. From the electrochemical measurements it was observed that the CoCrW alloy in both media presents only generalized corrosion. SEM and EDS analysis showed that the alloy presents carbide niobium and silicon and manganese oxides as nonmetallic inclusions. XPS results indicated that cobalt does not significantly contribute to the passivating film formation. Cytotoxicity test showed no cytotoxic character of CoCrW alloy. These results suggest that the CoCrW alloy can be used as biomaterial to be applied as prosthesis in dental implants.

  3. Influence of metal dental materials on MR imaging

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Nakata, Minoru; Fujita, Isao

    1998-01-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  4. Influence of metal dental materials on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi [Nippon Medical School, Tokyo (Japan). Main Hospital; Nakata, Minoru; Fujita, Isao

    1998-11-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  5. Electrochemical assessment of some titanium and stainless steel implant dental alloys

    Directory of Open Access Journals (Sweden)

    Echevarría, A.

    2003-12-01

    Full Text Available Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy with immersion times of 30 d. Results were simulated as a "sandwich system" composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed.

    Se utilizó la técnica de la Espectroscopia de Impedancia Electroquímica para evaluar en soluciones fisiológicas artificiales (Ringer y saliva sintética muestras extraídas de tornillos de implantes dentales certificados de titanio comercialmente puro, aleación Ti-6Al-W y acero inoxidable a temperatura corporal, con tiempos de inmersión hasta de 30 d. Los resultados se simularon mediante un modelo del tipo sandwich de cuatro elementos RC, conectados en serie con una resistencia de la solución. A partir de de esta simulación, se propone un modelo que explica los resultados obtenidos en términos de la evolución de la porosidad y el espesor de cuatro diferentes capas que se desarrollan en la superficie de los materiales evaluados.

  6. Evaluation of mechanical properties of recasted dental base metal alloys for considering their reusability in dentistry and engineering field

    Directory of Open Access Journals (Sweden)

    Nandish Bantarahalli Thopegowda

    2014-01-01

    Full Text Available Background: Base metal casting alloys are extensively used in dentistry to fabricate many oral appliances and a huge amount is wasted in the form of sprues and buttons during the casting procedure. Recycling and reusing these alloys by clean technologies may save our natural resources from being depleted and as well reduce the cost of the treatment of the patients. Objectives: To study the mechanical properties of recasted dental base metal alloys, and explore possible ways to recycle and reuse in dentistry and other fields of science and technology. Materials and Methods: Two beryllium-free Cobalt-Chromium (Co-Cr dental casting alloys, Wironit and Wirobond-C, were used for this study. Six groups of specimen (melted once, twice, five, ten, fifteen and twenty times per each alloy were casted. The tensile strength and hardness of these samples were measured by using universal testing machine and Vickers hardness number (VHN tester. Results: Tensile strength decreased from 850 MPa to 777 MPa after 5 th recasting and to 674 MPa at the end of 20 th recasting procedure for the Wironit samples. For Wirobond-C samples, tensile strength decreased from 720 MPa to 678 MPa after 5 th recasting and further reduced to 534 MPa at the end of 20 th recasting procedure. Hardness decreased from 380VHN to 335VHN at the end of 20 th recasting for Wironit samples and 328VHN to 247VHN for Wirobond-C samples after 20 th recasting procedure. The slight decrease in their mechanical properties will not have any impact on the clinical performance for dental applications. Conclusion: There is no major degradation in the mechanical properties after recycling, and hence, the left over alloys after casting procedures can be reused in dentistry with a condition to satisfy cytotoxicity tests.

  7. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  8. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold

    Science.gov (United States)

    Baksi, Ananya; Pradeep, T.

    2013-11-01

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster

  9. Biocompatibility effects of indirect exposure of base-metal dental casting alloys to a human-derived three-dimensional oral mucosal model.

    Science.gov (United States)

    McGinley, Emma Louise; Moran, Gary P; Fleming, Garry J P

    2013-11-01

    The study employed a three-dimensional (3D) human-derived oral mucosal model to assess the biocompatibility of base-metal dental casting alloys ubiquitous in fixed prosthodontic and orthodontic dentistry. Oral mucosal models were generated using primary human oral keratinocyte and gingival fibroblast cells seeded onto human de-epidermidised dermal scaffolds. Nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) base-metal alloy immersion solutions were exposed to oral mucosal models for increasing time periods (2-72h). Analysis methodologies (histology, viable cell counts, oxidative stress, cytokine expression and toxicity) were performed following exposure. Ni-based alloy immersion solutions elicited significantly decreased cell viability (Palloy immersion solutions did not elicit adverse oxidative stress (P>0.4755) or cellular toxicity (Pmetal alloy immersion solutions elicited significantly detrimental effects to the oral mucosal models, it was possible to distinguish between Ni-Cr alloys using the approach employed. The study employed a 3D human-derived full-thickness differentiated oral mucosal model suitable for biocompatibility assessment of base-metal dental casting alloys through discriminatory experimental parameters. Increasing incidences of Ni hypersensitivity in the general population warrants serious consideration from dental practitioners and patients alike where fixed prosthodontic/orthodontic dental treatments are the treatment modality involved. The novel and analytical oral mucosal model has the potential to significantly contribute to the advancement of reproducible dental medical device and dental material appraisals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

    Directory of Open Access Journals (Sweden)

    Ulrike Taylor

    2015-03-01

    Full Text Available The use of engineered nanoparticles has risen exponentially over the last decade. Applications are manifold and include utilisation in industrial goods as well as medical and consumer products. Gold and silver nanoparticles play an important role in the current increase of nanoparticle usage. However, our understanding concerning possible side effects of this increased exposure to particles, which are frequently in the same size regime as medium sized biomolecules and accessorily possess highly active surfaces, is still incomplete. That particularly applies to reproductive aspects, were defects can be passed onto following generations. This review gives a brief overview of the most recent findings concerning reprotoxicological effects. The here presented data elucidate how composition, size and surface modification of nanoparticles influence viablility and functionality of reproduction relevant cells derived from various animal models. While in vitro cultured embryos displayed no toxic effects after the microinjection of gold and silver nanoparticles, sperm fertility parameters deteriorated after co-incubation with ligand free gold nanoparticles. However, the effect could be alleviated by bio-coating the nanoparticles, which even applies to silver and silver-rich alloy nanoparticles. The most sensitive test system appeared to be in vitro oocyte maturation showing a dose-dependent response towards protein (BSA coated gold–silver alloy and silver nanoparticles leading up to complete arrest of maturation. Recent biodistribution studies confirmed that nanoparticles gain access to the ovaries and also penetrate the blood–testis and placental barrier. Thus, the design of nanoparticles with increased biosafety is highly relevant for biomedical applications.

  11. Strength properties of preceramic brazed joints of a gold-palladium alloy with a microwave-assisted oven and gas/oxygen torch technique.

    Science.gov (United States)

    Kim, Hyeongil; Prasad, Soni; Dunford, Robert; Monaco, Edward A

    2014-09-01

    The effect of microwave brazing on the strength properties of dental casting alloys is not yet known. The purpose of this study was to compare the strength properties of preceramic brazed joints obtained by using a microwave oven and a conventional torch flame for a high noble alloy (Au-Pd). A total of 18 tensile bars made of an Au-Pd ceramic alloy were fabricated. Six specimens were cut and joined with a high-fusing preceramic solder in a specially designed microwave oven, and 6 specimens were joined with a conventional natural gas/oxygen torch. The remaining 6 uncut specimens were tested as a control. All the specimens were subjected to testing with a universal testing machine. A 1-way ANOVA was performed for each strength property tested. The tensile strength of the uncut group was the highest (745 ±19 MPa), followed by the microwave group (420 ±68 MPa) and the conventional torch group (348 ±103 MPa) (Ptorch group. The tensile strength of the microwave group exceeded ANSI/ADA Standard No. 88, Dental Brazing Alloys (a joint standard of the American National Standards Institute and the American Dental Association). The microwave heating preceramic solder method demonstrated the excellent tensile strength of an Au-Pd alloy and may be an alternative way of joining alloys when a torch flame is contraindicated. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy.

    Science.gov (United States)

    Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika

    2017-01-01

    The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.

  13. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    Science.gov (United States)

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  14. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications.

    Science.gov (United States)

    Takaichi, Atsushi; Suyalatu; Nakamoto, Takayuki; Joko, Natsuka; Nomura, Naoyuki; Tsutsumi, Yusuke; Migita, Satoshi; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Wakabayashi, Noriyuki; Igarashi, Yoshimasa; Hanawa, Takao

    2013-05-01

    The selective laser melting (SLM) process was applied to a Co-29Cr-6Mo alloy, and its microstructure, mechanical properties, and metal elution were investigated to determine whether the fabrication process is suitable for dental applications. The microstructure was evaluated using scanning electron microscopy with energy-dispersed X-ray spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test. Dense builds were obtained when the input energy of the laser scan was higher than 400 J mm⁻³, whereas porous builds were formed when the input energy was lower than 150 J mm⁻³. The microstructure obtained was unique with fine cellular dendrites in the elongated grains parallel to the building direction. The γ phase was dominant in the build and its preferential orientation was confirmed along the building direction, which was clearly observed for the builds fabricated at lower input energy. Although the mechanical anisotropy was confirmed in the SLM builds due to the unique microstructure, the yield strength, UTS, and elongation were higher than those of the as-cast alloy and satisfied the type 5 criteria in ISO22764. Metal elution from the SLM build was smaller than that of the as-cast alloy, and thus, the SLM process for the Co-29Cr-6Mo alloy is a promising candidate for fabricating dental devices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    Science.gov (United States)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these

  16. Longevity of resin-bonded fixed partial dental prostheses made with metal alloys.

    Science.gov (United States)

    Tanoue, Naomi

    2016-07-01

    The purpose of this study was to evaluate the clinical performance of resin-bonded fixed partial dental prostheses (RBFPDPs) made with metal alloys. The retention of 311 RBFPDPs from 226 patients fabricated from 1983 to 2013 using an adhesive resin was clinically evaluated. Partial or complete debonding of the RBFPDP or framework fracture was considered a treatment failure. All data were obtained from clinical examinations, and missing data were censored at the date of the last available information. The effect of the following factors on survival rate were investigated: patient gender, location (maxilla/mandible and anterior/posterior), number of missing teeth, number of abutment teeth, framework structure, type of metal alloy, patient age at the point of cementation, cement type, and distinction of the treating dentist. Data were analyzed with the Kaplan-Meier survival tests, log-rank tests, and Cox regression analyses (α = 0.05). The Kaplan-Meier survival rate was 41.2 % ± 6.5 % (standard error) at 28.8 years (last outcome event). Significant differences were found for patient age and treating dentist (p < 0.05). The risk of failure in younger patients was 1.7 times greater than that in older patients and that of inexperienced dentists was 2.0 times greater than that of dentist experienced and specialized in adhesive dentistry. When fabricating RBFPDPs for younger patients, mechanical preparation for bonding may be necessary in consideration of the risk for debonding. Experienced dentists may achieve better results. Mastery of skills is necessary to ensure excellent prognoses for RBFPDPs.

  17. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  18. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    International Nuclear Information System (INIS)

    Cui, W.F.; Liu, N.; Qin, G.W.

    2016-01-01

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  19. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: cuiwf@atm.neu.edu.cn; Liu, N.; Qin, G.W.

    2016-06-15

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  20. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    Science.gov (United States)

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  1. Usefulness of an energy-binned photon-counting x-ray detector for dental panoramic radiographs

    Science.gov (United States)

    Fukui, Tatsumasa; Katsumata, Akitoshi; Ogawa, Koichi; Fujiwara, Shuu

    2015-03-01

    A newly developed dental panoramic radiography system is equipped with a photon-counting semiconductor detector. This photon-counting detector acquires transparent X-ray beams by dividing them into several energy bands. We developed a method to identify dental materials in the patient's teeth by means of the X-ray energy analysis of panoramic radiographs. We tested various dental materials including gold alloy, dental amalgam, dental cement, and titanium. The results of this study suggest that X-ray energy scattergram analysis could be used to identify a range of dental materials in a patient's panoramic radiograph.

  2. Metallurgical and interfacial characterization of PFM Co-Cr dental alloys fabricated via casting, milling or selective laser melting.

    Science.gov (United States)

    Al Jabbari, Y S; Koutsoukis, T; Barmpagadaki, X; Zinelis, S

    2014-04-01

    Bulk and interfacial characterization of porcelain fused to metal (PFM) Co-Cr dental alloys fabricated via conventional casting, milling and selective laser melting. Three groups of metallic specimens made of PFM Co-Cr dental alloys were prepared using casting (CST), milling (MIL) and selective laser sintering (SLM). The porosity of the groups was evaluated using X-ray scans. The microstructures of the specimens were evaluated via SEM examination, EDX and XRD analysis. Vickers hardness testing was utilized to measure the hardness of the specimens. Interfacial characterization was conducted on the porcelain-covered specimens from each group to test the elemental distribution with and without the application of INmetalbond. The elemental distribution of the probed elements was assessed using EDX line profile analysis. Hardness results were statistically analyzed using one-way ANOVA and Holm-Sidak's method (α=0.05). X-ray radiography revealed the presence of porosity only in the CST group. Different microstructures were identified among the groups. Together with the γ phase matrix, a second phase, believed to be the Co3Mo phase, was also observed by SEM and subsequent XRD analysis. Cr7C3 and Cr23C6 carbides were also identified via XRD analysis in the CST and MIL groups. The hardness values were 320±12 HV, 297±5 HV and 371±10 HV, and statistically significant differences were evident among the groups. The microstructure and hardness of PFM Co-Cr dental alloys are dependent on the manufacturing technique employed. Given the differences in microstructural and hardness properties among the tested groups, further differences in their clinical behavior are anticipated. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environments.

    Science.gov (United States)

    Mercieca, Sven; Caligari Conti, Malcolm; Buhagiar, Joseph; Camilleri, Josette

    2018-01-01

    The aim of this study was to compare the degradation resistance of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys used as a base material for partial dentures in contact with saliva. Wiron® 99 and Wironit Extra-Hard® were selected as representative casting alloys for Ni-Cr and Co-Cr alloys, respectively. The alloys were tested in contact with deionized water, artificial saliva and acidified artificial saliva. Material characterization was performed by X-ray diffractometry (XRD) and microhardness and nanohardness testing. The corrosion properties of the materials were then analyzed using open circuit potential analysis and potentiodynamic analysis. Alloy leaching in solution was assessed by inductively coupled plasma mass spectrometry techniques. Co-Cr alloy was more stable than the Ni-Cr alloy in all solutions tested. Leaching of nickel and corrosion attack was higher in Ni-Cr alloy in artificial saliva compared with the acidified saliva. The corrosion resistance of the Co-Cr alloy was seen to be superior to that of the Ni-Cr alloy, with the former exhibiting a lower corrosion current in all test solutions. Microstructural topographical changes were observed for Ni-Cr alloy in contact with artificial saliva. The Ni-Cr alloy exhibited microstructural changes and lower corrosion resistance in artificial saliva. The acidic changes did not enhance the alloy degradation. Ni-Cr alloys are unstable in solution and leach nickel. Co-Cr alloys should be preferred for clinical use.

  4. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    Science.gov (United States)

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (Palloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  5. Alloy hardening of a smectic A liquid crystal doped with gold nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Oswald, P.; Milette, J.; Relaix, S.; Reven, L.; Dequidt, A.; Lejček, Lubor

    2013-01-01

    Roč. 103, AUG (2013), "46004-p1"-"46004-p6" ISSN 0295-5075 Institutional support: RVO:68378271 Keywords : smectic A liquid crystals * gold nanoparticles * edge dislocation * precipitation hardening Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  6. Biomechanical Consequences of the Elastic Properties of Dental Implant Alloys on the Supporting Bone: Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-Pevida

    2016-01-01

    Full Text Available The objective of the present study is to evaluate how the elastic properties of the fabrication material of dental implants influence peri-implant bone load transfer in terms of the magnitude and distribution of stress and deformation. A three-dimensional (3D finite element analysis was performed; the model used was a section of mandibular bone with a single implant containing a cemented ceramic-metal crown on a titanium abutment. The following three alloys were compared: rigid (Y-TZP, conventional (Ti-6Al-4V, and hyperelastic (Ti-Nb-Zr. A 150-N static load was tested on the central fossa at 6° relative to the axial axis of the implant. The results showed no differences in the distribution of stress and deformation of the bone for any of the three types of alloys studied, mainly being concentrated at the peri-implant cortical layer. However, there were differences found in the magnitude of the stress transferred to the supporting bone, with the most rigid alloy (Y-TZP transferring the least stress and deformation to cortical bone. We conclude that there is an effect of the fabrication material of dental implants on the magnitude of the stress and deformation transferred to peri-implant bone.

  7. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy

    Directory of Open Access Journals (Sweden)

    Tatjana Puskar

    2014-09-01

    Full Text Available Dental alloys for direct metal laser sintering (DMLS are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS. The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments.

  8. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy

    Science.gov (United States)

    Puskar, Tatjana; Jevremovic, Danimir; Williams, Robert J.; Eggbeer, Dominic; Vukelic, Djordje; Budak, Igor

    2014-01-01

    Dental alloys for direct metal laser sintering (DMLS) are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM) samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS). The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments. PMID:28788197

  9. Long-period structures in gold-copper alloys; Structures a longues periodes dans les alliages or-cuivre

    Energy Technology Data Exchange (ETDEWEB)

    Jehanno, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We first proceed to reevaluation of the gold-copper equilibrium diagram for alloys between Au{sub 20}Cu{sub 80} and Au{sub 65}Cu{sub 35}. The identification of the various phases was performed by X-rays diffraction on quenched polycrystalline samples. We next study the structure of the phase AuCuII. X-ray data collected from bulk single crystals show that this long-period structure must be described with the help of two correlated periodic functions: an 'order function' and a 'displacement function'. The 'order function' conciliates the non-integer value of the period with its rigorous definition. The 'displacement function' accounts for the dis-symmetries of the observed intensities for the antiphase homologous reflections as the appearance of satellites around the fundamental reflections. These two functions are remarkably well defined at long distance in carefully annealed samples and, in some conditions, can be obtained independently. We observe that the improvement of the degree of order increases the 'modulation of position'. In the case of non stoichiometric alloys, the excess of gold atoms (gold rich alloys) is distributed at random whereas the excess of copper (copper rich alloys) is distributed in a preferential manner close to the antiphase boundaries. (author) [French] Nous procedons, tout d'abord, a une reevaluation du diagramme d'equilibre des alliages or-cuivre compris entre Au{sub 20}Cu{sub 80} et Au{sub 65}Cu{sub 35}. L'identification des differentes phases s'est faite par diffraction de rayons X sur des echantillons polycristallins trempes. Nous etudions ensuite, aux rayons X, la structure de la phase AuCuII. Les donnees rassemblees sur monocristaux massifs indiquent que cette structure a longue periode doit etre decrite a l'aide de deux fonctions periodiques correlees: une fonction d'ordre et une fonction de deplacement des atomes. La fonction d'ordre concilie le

  10. Gold in the past, today and future

    Directory of Open Access Journals (Sweden)

    R. Rudolf

    2012-04-01

    Full Text Available This paper deals with gold, which is described as a chemical element. Special attention is paid to its physical-chemical properties and, furthermore, where or in what form it can be found in nature. We discuss the role it has played through history and we inform how gold has been developed to the level it has reached today’s value. Still more, when gold is broken into nanoparticles, this form could be highly useful for a wide range of processes, including general nanotechnology, electronics manufacturing and the synthesizing of different functional materials. It is important that we know that gold is also used in industry in many engineering applications (contacts in micro-electronics and medicine (dental alloys, implants.

  11. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions.

    Science.gov (United States)

    Bosshardt, Dieter D; Chappuis, Vivianne; Buser, Daniel

    2017-02-01

    Bone healing around dental implants follows the pattern and sequence of intramembraneous osteogenesis with formation of woven bone first of all followed later by formation of parallel-fibered and lamellar bone. Bone apposition onto the implant surface starts earlier in trabecular bone than in compact bone. While the first new bone may be found on the implant surface around 1 week after installation, bone remodeling starts at between 6 and 12 weeks and continues throughout life. Bone remodeling also involves the bone-implant interface, thus transiently exposing portions of the implant surface. Surface modifications creating micro-rough implant surfaces accelerate the osseointegration process of titanium implants, as demonstrated in numerous animal experiments. Sandblasting followed by acid-etching may currently be regarded as the gold standard technique to create micro-rough surfaces. Chemical surface modifications, resulting in higher hydrophilicity, further increase the speed of osseointegration of titanium and titanium-zirconium implants in both animals and humans. Surface modifications of zirconia and alumina-toughened zirconia implants also have an influence on the speed of osseointegration, and some implant types reach high bone-to-implant contact values in animals. Although often discussed independently of each other, surface characteristics, such as topography and chemistry, are virtually inseparable. Contemporary, well-documented implant systems with micro-rough implant surfaces, placed by properly trained and experienced clinicians, demonstrate high long-term survival rates. Nevertheless, implant failures do occur. A low percentage of implants are diagnosed with peri-implantitis after 10 years in function. In addition, a low number of implants seem to be lost for primarily reasons other than biofilm-induced infection. Patient factors, such as medications interfering with the immune system and bone cells, may be an element contributing to continuous bone

  12. Mg-containing hydroxyapatite coatings on Ti-6Al-4V alloy for dental materials

    Science.gov (United States)

    Yu, Ji-Min; Choe, Han-Cheol

    2018-02-01

    In this study, Mg-containing hydroxyapatite coatings on Ti-6A1-4 V alloy for dental materials were researched using various experimental instruments. Plasma electrolytic oxidation (PEO) was performed in electrolytes containing Mg (symbols of specimens: CaP, 5M%, 10M%, and 20M%) at 280 V for 3 min. The electrolyte used for PEO was produced by mixing Ca(CH3COO)2·H2O, C3H7NaCaO6P, and MgCl2·6H2O. The phases and composition of the oxide films were evaluated by X-ray diffraction and field-emission scanning electron microscopy with energy dispersive X-ray spectrometry. The irregularity of the surface, pore size, and number of pores decreased as the Mg concentration increased. The ratio of the areas occupied and not occupied by pores decreased as the Mg concentration increased, with the numbers of both large and small pores decreasing with increasing Mg concentration. The number of particles on the internal surfaces of pores was increased as the Mg content increased. Mg content of all samples containing Mg ions showed higher in the pore outside than that of pore inside, whereas the Ca content was higher inside the pores. The P content of samples with the addition of Mg ions showed higher values inside the pores than outside. The Ca/P and [Mg + Ca]/P molar ratios in the PEO films decreased with Mg content. The crystallite size of anatase was increased with increasing Mg concentration in the solution.

  13. [The effect of C-SiO2composite films on corrosion resistance of dental Co-Cr alloy].

    Science.gov (United States)

    Huang, Yi; Hu, Jing-Yu; Liu, Yu-Pu; Zhao, Dong-Yuan; Yu, You-Cheng; Bi, Wei

    2016-10-01

    To study the effect of carbon-silica composite films on corrosion resistance of Co-Cr alloy in simulated oral environment and provide evidences for clinical application of this new material. Co-Cr alloy specimens were cut into appropriate size of 20 mm × 20 mm × 0.5 mm. Then, the carbon-silica composite films were spin-coated onto the specimens. Subsequently, ICP-AES was used to observe the Co, Cr, Mo ion concentrations. Finally, Tafel polarization curves of the specimens were used to measure the electrochemical corrosion resistance by electrochemical workstation. SAS8.0 software package was used for statistical analysis. The results of ICP-AES showed that the ion concentrations of Co, Cr, Mo of specimens coated with composite films in the testing liquid were significantly smaller than that of Co-Cr alloy specimens. Tafel polarization curves showed that in the specimens coated with composite films, the corrosion potential moved in the positive direction and increased from -0.261 V to -0.13 V. At the same time, the corrosion current density decreased from -5.0017μA/cm 2 to -5.3006 μA/cm 2 . Carbon-silica composite films (silica=61.71wt %) can reduce the release of metal ions significantly and improve the corrosion resistance of Co-Cr alloys effectively. Carbon-silica composite films may be a promising dental material.

  14. Potentiodynamic polarization study of the corrosion behavior of palladium-silver dental alloys.

    Science.gov (United States)

    Sun, Desheng; Brantley, William A; Frankel, Gerald S; Heshmati, Reza H; Johnston, William M

    2018-04-01

    Although palladium-silver alloys have been marketed for over 3 decades for metal-ceramic restorations, understanding of the corrosion behavior of current alloys is incomplete; this understanding is critical for evaluating biocompatibility and clinical performance. The purpose of this in vitro study was to characterize the corrosion behavior of 3 representative Pd-Ag alloys in simulated body fluid and oral environments and to compare them with a high-noble Au-Pd alloy. The study obtained values of important electrochemical corrosion parameters, with clinical relevance, for the rational selection of casting alloys. The room temperature in vitro corrosion characteristics of the 3 Pd-Ag alloys and the high-noble Au-Pd alloy were evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. After simulated porcelain firing heat treatment, 5 specimens of each alloy were immersed in the electrolytes for 24 hours. For each specimen, the open-circuit potential (OCP) was first recorded, and linear polarization was then performed from -20 mV to +20 mV (versus OCP) at a rate of 0.125 mV/s. Cyclic polarization was subsequently performed on 3 specimens of each alloy from -300 mV to +1000 mV and back to -300 mV (versus OCP) at a scanning rate of 1 mV/s. The differences in OCP and corrosion resistance parameters (zero-current potential and polarization resistance) among alloys and electrolyte combinations were compared with the 2-factor ANOVA (maximum-likelihood method) with post hoc Tukey adjustments (α=.05). The 24-hour OCPs and polarization resistance values of the 3 Pd-Ag alloys and the Au-Pd alloy were not significantly different (P=.233 and P=.211, respectively) for the same electrolyte, but significant differences were found for corrosion test results in different electrolytes (Palloy and electrolyte (P=.249 and P=.713, respectively). The 3 Pd-Ag silver alloys appeared to be resistant to chloride ion corrosion, and passivation and de-alloying were identified for these

  15. Influence of dental materials on dental MRI.

    Science.gov (United States)

    Tymofiyeva, O; Vaegler, S; Rottner, K; Boldt, J; Hopfgartner, A J; Proff, P C; Richter, E J; Jakob, P M

    2013-01-01

    To investigate the potential influence of standard dental materials on dental MRI (dMRI) by estimating the magnetic susceptibility with the help of the MRI-based geometric distortion method and to classify the materials from the standpoint of dMRI. A series of standard dental materials was studied on a 1.5 T MRI system using spin echo and gradient echo pulse sequences and their magnetic susceptibility was estimated using the geometric method. Measurements on samples of dental materials were supported by in vivo examples obtained in dedicated dMRI procedures. The tested materials showed a range of distortion degrees. The following materials were classified as fully compatible materials that can be present even in the tooth of interest: the resin-based sealer AH Plus(®) (Dentsply, Maillefer, Germany), glass ionomer cement, gutta-percha, zirconium dioxide and composites from one of the tested manufacturers. Interestingly, composites provided by the other manufacturer caused relatively strong distortions and were therefore classified as compatible I, along with amalgam, gold alloy, gold-ceramic crowns, titanium alloy and NiTi orthodontic wires. Materials, the magnetic susceptibility of which differed from that of water by more than 200 ppm, were classified as non-compatible materials that should not be present in the patient's mouth for any dMRI applications. They included stainless steel orthodontic appliances and CoCr. A classification of the materials that complies with the standard grouping of materials according to their magnetic susceptibility was proposed and adopted for the purposes of dMRI. The proposed classification can serve as a guideline in future dMRI research.

  16. Gold-copper nano-alloy, "Tumbaga", in the era of nano: phase diagram and segregation.

    Science.gov (United States)

    Guisbiers, Grégory; Mejia-Rosales, Sergio; Khanal, Subarna; Ruiz-Zepeda, Francisco; Whetten, Robert L; José-Yacaman, Miguel

    2014-11-12

    Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.

  17. Unexpected Au Alloying in Tailoring In-Doped SnTe Nanostructures with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Samuel Atherton

    2017-03-01

    Full Text Available Materials with strong spin-orbit interaction and superconductivity are candidates for topological superconductors that may host Majorana fermions (MFs at the edges/surfaces/vortex cores. Bulk-superconducting carrier-doped topological crystalline insulator, indium-doped tin telluride (In-SnTe is one of the promising materials. Robust superconductivity of In-SnTe nanostructures has been demonstrated recently. Intriguingly, not only 3-dimensional (3D nanostructures but also ultra-thin quasi-2D and quasi-1D systems can be grown by the vapor transport method. In particular, nanostructures with a controlled dimension will give us a chance to understand the dimensionality and the quantum confinement effects on the superconductivity of the In-SnTe and may help us work on braiding MFs in various dimensional systems for future topological quantum computation technology. With this in mind, we employed gold nanoparticles (GNPs with well-identified sizes to tailor In-SnTe nanostructures grown by vapor transport. However, we could not see clear evidence that the presence of the GNPs is necessary or sufficient to control the size of the nanostructures. Nevertheless, it should be noted that a weak correlation between the diameter of GNPs and the dimensions of the smallest nanostructures has been found so far. To our surprise, the ones grown under the vapor–liquid–solid mechanism, with the use of the GNPs, contained gold that is widely and inhomogeneously distributed over the whole body.

  18. Effect of nitrogen on the microstructure and mechanical properties of Co-33Cr-9W alloys prepared by dental casting.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Torita, Yasuhiro; Chiba, Akihiko

    2018-01-01

    The effect of nitrogen concentration on the mechanical properties of Co-33Cr-9W alloy dental castings fabricated using the "high-Cr and high-N" concept was investigated. Microstructural analysis was performed on the alloys, and findings were discussed in relation to the mechanical properties. Owing to their high nitrogen concentrations (0.25-0.35wt%), all alloys prepared exhibited face-centered cubic (fcc) γ-phase matrices with a-few-millimeter grains consisting of dendritic substructures. Strain-induced martensitic transformations to produce hexagonal close-packed (hcp) ε-phases were not identified under tensile deformation. The precipitation of the intermetallic σ-phase was identified at the interdendritic regions where solidification segregation of Cr and W occurred. The size and chemical composition of this σ-phase did not vary with the bulk nitrogen concentration. Adding nitrogen to the alloys did not alter their tensile yield stress or Vickers hardness values significantly, suggesting that the nitrogen strengthening effect is affected by the manufacturing route as well as local chemistry that is involved in the microstructural evolution during solidification. The tensile ductility, on the other hand, increased with an increase in nitrogen concentration; the alloy with 0.35wt% nitrogen exhibited 21% elongation with a high 0.2% proof stress (589MPa). This significant improvement in ductility was likely caused by the reduction in the amount of σ-phase precipitates at the interdendritic regions following the addition of nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study.

    Science.gov (United States)

    Wang, Xiaona; Meng, Xing; Chu, Shunli; Xiang, Xingchen; Liu, Zhenzhen; Zhao, Jinghui; Zhou, Yanmin

    2016-09-01

    This study aimed to evaluate the effects of Ti-Nb-Zr-Ta-Si alloy implants on mineral apposition rate and new BIC contact in rabbits. Twelve Ti-Nb-Zr-Ta-Si alloy implants were fabricated and placed into the right femur sites in six rabbits, and commercially pure titanium implants were used as controls in the left femur. Tetracycline and alizarin red were administered 3 weeks and 1 week before euthanization, respectively. At 4 weeks and 8 weeks after implantation, animals were euthanized, respectively. Surface characterization and implant-bone contact surface analysis were performed by using a scanning electron microscope and an energy dispersive X-ray detector. Mineral apposition rate was evaluated using a confocal laser scanning microscope. Toluidine blue staining was performed on undecalcified sections for histology and histomorphology evaluation. Scanning electron microscope and histomorphology observation revealed a direct contact between implants and bone of all groups. After a healing period of 4 weeks, Ti-Nb-Zr-Ta-Si alloy implants showed significantly higher mineral apposition rate compared to commercially pure titanium implants (P implants and commercially pure titanium implants (P > 0.05) at 8 weeks. No significant difference of bone-to-implant contact was observed between Ti-Nb-Zr-Ta-Si alloy implants and commercially pure titanium implants implants after a healing period of 4 weeks and 8 weeks. This study showed that Ti-Nb-Zr-Ta-Si alloy implants could establish a close direct contact comparedto commercially pure titanium implants implants, improved mineral matrix apposition rate, and may someday be an alternative as a material for dental implants.

  20. Broadband optical absorption enhancement of N719 dye in ethanol by gold-silver alloy nanoparticles fabricated under laser ablation technique

    Science.gov (United States)

    Al-Azawi, Mohammed A.; Bidin, Noriah; Abbas, Khaldoon N.; Bououdina, Mohamed; Azzez, Shrook A.

    2016-04-01

    The formation of gold-silver alloy nanoparticles (Au-Ag alloy NPs) by a two-step process with a pulsed Nd:YAG laser without any additives is presented. Mixtures of Au and Ag colloidal suspensions were separately obtained by 1064-nm laser ablation of metallic targets immersed in ethanol. Subsequently, the as-mixed colloidal suspensions were reirradiated by laser-induced heating at the second-harmonic generation (532 nm) for different irradiation periods of time. The absorption spectra and morphology of the colloidal alloys were studied as a function of exposure time to laser irradiation. Transmission electron microscopy revealed the formation of monodispersed spherical nanoparticles with a homogeneous size distribution in all the synthesized samples. UV-vis and photoluminescence spectroscopy measurements were also employed to characterize the changes in the light absorption and emission of N719 dye solution with different concentrations of Au-Ag colloidal alloys, respectively. The localized surface plasmon resonance (LSPR) of Au-Ag alloy NPs enhanced the absorption and fluorescence peak of the dye solution. The mixture of dye molecules with a higher concentration of alloy NPs exhibited an additional coupling of dipole moments with the LSPR, thereby contributing to the improvement of the optical properties of the mixture.

  1. Photoelectron spectroscopic study on the interaction of l-cysteine with the silver-based dental alloy

    Science.gov (United States)

    Ogawa, Koji; Tsujibayashi, Toru; Takahashi, Kazutoshi; Azuma, Junpei; Kamada, Masao

    2012-07-01

    The electronic structure of the silver-based dental alloy MC12 and its constituent metals and their interaction with l-cysteine have been investigated by ultraviolet photoelectron spectroscopy (UPS) using synchrotron radiation. The UPS spectra of l-cysteine on polycrystalline Ag, Cu, Pd, and Au substrates have been measured to understand the interaction of l-cysteine with the dental alloy surface. It was found that the electronic states of MC12 originate dominantly from Cu 3d states and Pd 4d states around the top of the valence bands, while the 4-7-eV electronic structure of MC12 originates from the Ag 4 d5/2 and Ag 4 d3/2 states. For l-cysteine, it was found that a new peak at 2 eV is observed for the thin films on Ag, Cu, and Au, while the structure around 2 eV on MC12 is similar to that on Pd. The shift of the 5-eV peak is observed for the thin films on Cu, Pd, and Au, but not on Ag and MC12. These results indicate that the interaction of l-cysteine with MC12 may be dominantly due to the Pd-S, Cu-S, and Ag-O bonds, while the contribution of the Ag-S bond is small.

  2. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods

    Science.gov (United States)

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-01-01

    The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806

  3. Microstructural evidence of presence of beryllium in Ni-Cr alloys for dental prostheses; Evidencia microestrutural da presenca de berilio em ligas Ni-Cr para proteses dentarias

    Energy Technology Data Exchange (ETDEWEB)

    Alkmin, L.B.; Nunes, C.A., E-mail: lba@ppgem.eel.usp.b [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Coelho, G.C. [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Santos, C. [Protmat Materiais Avancados, Guaratingueta, SP (Brazil)

    2010-07-01

    This study aimed to characterize the microstructure of commercial Ni-Cr alloys for dental prosthesis, with special focus on those containing Be. For this, the materials were characterized in terms of chemical composition, phases and melting point temperature. The following techniques were used: X-ray fluorescence, ICP-OES, scanning electron microscopy, electron probe microanalysis, X-ray diffraction and differential thermal analysis. The results clearly showed the presence of a typical eutectic, formed by the Ni{sub ss} and NiBe phases in those alloys containing Be, which can be considered a 'fingerprint' of the presence of this element in these alloys. (author)

  4. [Study of dental alloys in the artificial saliva using an electrochemical impedance spectroscopy].

    Science.gov (United States)

    Lu, Chun-Hui; Zheng, Yuan-Li; Qiu, Jing

    2010-04-01

    With the help of electrochemical impedance spectroscopy (EIS), the purpose of the study was to investigate the corrosion resistance of CoCr alloys ,NiCr alloys and commercially pure Ti(cp Ti) in the artificial saliva(AS). With the EIS, a test was made on the three alloys/metals in the AS (See Bode plot and Nyquist plot). And then, an analysis was made on what was known in the test by the software of ZSimpWin, after which the corrosion resistance of the alloys/metals was evaluated against the parameters of equivalent circuit [R(CR)]. In the Nyquist plot, the capacitance arc radius was in the sequence of cp Ti>CoCr>NiCr. From the Bode plot, an one time constant was able to be obtained. That was the capacitor layer. According to the equivalent circuit[R(CR)], there was no significant difference in the capacitor layer of the three alloys/metals. And the sequence of the impedance value of the three alloys/metals was cp Ti>CoCr>NiCr. The EIS results suggest that the three alloys/metals have a great corrosion resistance with cp Ti having the highest corrosion resistance and that CoCr alloys is better than NiCr alloys in the corrosion resistance. Supported by Research Fund of Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2271100) and Shanghai Leading Academic Discipline Project(Grant No.T0202).

  5. Immunological parameters of dental alloy corrosion; A study of gingival inflammation after placement of stainless steel crown

    Directory of Open Access Journals (Sweden)

    Ratna Indriyanti

    2008-11-01

    Full Text Available The dental alloy is widely used in many fields of dentistry as a restoration material, orthodontic, prosthodontic, oral surgery and endodontic treatments. Naturally, most of the metallic materials without exception to stainless steel alloy will experience a process of corrosion in a form of electrochemical reaction to achieve thermodynamic equilibrium. The corrosion process in the oral cavity is due to the reaction of metal with saliva as an oral cavity electrolyte fluid. SSC has preformed restoration material conform with dental anatomy, manufactured from stainless steel alloy which is formable and adaptable to the teeth. Stainless Steel Crown generally made of austenitic stainless steel 18/8 of AISI 304 group contain chrome 18% and Nickel 8%, can be used as a restoration for teeth with excessive caries, crown fracture, email hypoplasia, or restoration after endodontic treatment. The toxic effect of Ni+2 released due to corrosion process may cause an inflammation of the gingiva and periodontal tissue. Laboratorically this condition indicated by the expression of pro-inflammation cytokines as immunological parameters such as IL-6, IL-8, TNF and IL-1β whose main role is to initiate and enhance any inflammation responses. The presence of pro-inflammation cytokines can be detected as soon as 1 hour after placement of SSC by examination of gingival crevicular fluid (GCF by ELISA technique. The magnitude of the toxic effect depends on corrosion rate and ions release which is influenced by metal chemical composition, environment temperature and pH, metal wear due to abrasion and friction, soldering if any, and elongation of the metal. Conclusion: The release of Ni+2 during corrosion process after placement of SSC cause gingival inflammation which is indicated by the change of the immunological parameters.

  6. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  7. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah, Sahar A., E-mail: sahar.fadlallah@yahoo.com [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt); El-Bagoury, Nader [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Casting Technology Lab., Manufacturing Technology Dept., CMRDI, P.O. Box 87, Helwan, Cairo (Egypt); Gad El-Rab, Sanaa M.F. [Biotechnology Department, Faculty of Science, Taif University, Taif (Saudi Arabia); Botany Department, Faculty of Science, Asuit University, Asuit (Egypt); Ahmed, Rasha A. [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Forensic Chemistry Laboratories, Medico Legal Department, Ministry of Justice, Cairo (Egypt); El-Ousamii, Ghaida [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia)

    2014-01-15

    Highlights: • Evaluate the corrosion resistance of NiTi alloy by using electrochemical techniques. • Estimate the Antibacterial inhibition rate of NiTi alloy. • Assessment the mechanical properties of NiTi from the hardness measurements. • Comparsion the microstructures of cast NiTi with Ti, this indicate the role of Ni to change the behavior of alloy in oral environment. • Advise drinking green tea in small quantities in small quantities in the event of present NiTi alloy in the oral cavity. • Recommendation to use NiTi for dental application. -- Abstract: Nowadays, Nickel–titanium nearly equiatomic is considered as one of the best biomaterials. The aim of the present work deals with the evolution of the electrochemical behavior of NiTi in simulated oral environment. The hardness, microstructures corrosion resistance and antibacterial performance of NiTi alloy were compared with pure titanium. The hardness of NiTi is twice the hardness of pure titanium. Electrochemical techniques were used to detect the corrosion resistance of both biomaterials in Hank’s solution containing (−)-epigallocatechin gallate (EGCG) which used to simulate the oral environment. In the physiological solution selected for the present study, the impedance spectroscopy (EIS) results showed that EGCG sharply increase the corrosion resistance of NiTi from 129 kΩ cm{sup 2} to 1.10 T Ω cm{sup 2} while slowly increase the corrosion resistance of pure titanium from 9.4 kΩ cm{sup 2} to 11.3 kΩ cm{sup 2} during the duration time of immersion at 37 °C. The plate-counting method was used to evaluate the antibacterial performance against Staphylococcus aureus (ATCC 6538). Among the two specimens of biomaterials studied, the antibacterial performance results revealed that the NiTi alloy is better than the pure titanium. The morphology and chemical structure of NiTi and Ti samples were systematically investigated by scanning electron microscope (SEM) and energy dispersive X

  8. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application

    International Nuclear Information System (INIS)

    Fadlallah, Sahar A.; El-Bagoury, Nader; Gad El-Rab, Sanaa M.F.; Ahmed, Rasha A.; El-Ousamii, Ghaida

    2014-01-01

    Highlights: • Evaluate the corrosion resistance of NiTi alloy by using electrochemical techniques. • Estimate the Antibacterial inhibition rate of NiTi alloy. • Assessment the mechanical properties of NiTi from the hardness measurements. • Comparsion the microstructures of cast NiTi with Ti, this indicate the role of Ni to change the behavior of alloy in oral environment. • Advise drinking green tea in small quantities in small quantities in the event of present NiTi alloy in the oral cavity. • Recommendation to use NiTi for dental application. -- Abstract: Nowadays, Nickel–titanium nearly equiatomic is considered as one of the best biomaterials. The aim of the present work deals with the evolution of the electrochemical behavior of NiTi in simulated oral environment. The hardness, microstructures corrosion resistance and antibacterial performance of NiTi alloy were compared with pure titanium. The hardness of NiTi is twice the hardness of pure titanium. Electrochemical techniques were used to detect the corrosion resistance of both biomaterials in Hank’s solution containing (−)-epigallocatechin gallate (EGCG) which used to simulate the oral environment. In the physiological solution selected for the present study, the impedance spectroscopy (EIS) results showed that EGCG sharply increase the corrosion resistance of NiTi from 129 kΩ cm 2 to 1.10 T Ω cm 2 while slowly increase the corrosion resistance of pure titanium from 9.4 kΩ cm 2 to 11.3 kΩ cm 2 during the duration time of immersion at 37 °C. The plate-counting method was used to evaluate the antibacterial performance against Staphylococcus aureus (ATCC 6538). Among the two specimens of biomaterials studied, the antibacterial performance results revealed that the NiTi alloy is better than the pure titanium. The morphology and chemical structure of NiTi and Ti samples were systematically investigated by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The

  9. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Lee, Kang; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    In this paper, Ti-Hf (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting, and subjected to heat treatment for 24 h at 1000 o C in an argon atmosphere. Formation of surface nanotubes was achieved by anodizing a Ti-Hf alloy in 1.0 M H 3 PO 4 electrolytes with small amounts of NaF at room temperature. Microstructures of the alloys and nanotube morphology were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The homogenized Ti-Hf alloys had a needle-like microstructure of α phase, and nanotubes formed on Ti-xHf alloys had the anatase phase after treatment that promoted crystallization. Uniform nanotubes formed for Hf contents up to 20 wt.%. Irregular nanotubes formed on the Ti-30Hf and Ti-40Hf alloys. The structure of the irregular layers on the Ti-30Hf and Ti-40Hf alloys had nanotubes of two sizes. Increasing the Hf content in Ti led to the formation of nanotubes with more narrow size. The pores in the nanotubes typically had a diameter ranging from 80-120 nm and a length of approximately 1.7 μm. It is concluded that nanotube morphology on Ti-Hf alloys can controlled by varying the amount of Hf.

  10. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    Science.gov (United States)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  11. Selective Laser Melting Technique of Co-Cr Dental Alloys: A Review of Structure and Properties and Comparative Analysis with Other Available Techniques.

    Science.gov (United States)

    Koutsoukis, Theodoros; Zinelis, Spiros; Eliades, George; Al-Wazzan, Khalid; Rifaiy, Mohammed Al; Al Jabbari, Youssef S

    2015-06-01

    The aim of this study was to review the effect of selective laser melting (SLM) procedure on the properties of dental structures made of Co-Cr alloys and to evaluate its quality and compare it to those produced by conventional casting and milling fabrication techniques. A computerized database search using PubMed and Scopus was conducted for peer-reviewed scientific research studies regarding the use of SLM in Co-Cr dental alloys with no restrictions for publication years. The search engines provided hundreds of results, and only 48 scientific research papers, case studies, or literature reviews were considered relevant for this review. The innovative manufacturing concept of SLM offers many advantages compared with casting and milling fabrication techniques. SLM provides different microstructure from casting and milling with minimal internal porosity and internal fitting, marginal adaptation, and comparable bond strength to porcelain. Mechanical and electrochemical properties of SLM structures are enhanced compared to cast, while clinical longevity of single-metal ceramic crowns is comparable to Au-Pt dental alloy. The SLM technique provides dental prosthetic restorations more quickly and less expensively without compromising their quality compared with restorations prepared by casting and milling techniques. The current SLM devices provide metallic restorations made of Co-Cr alloys for removable and fixed partial dentures without compromising the alloy or restoration properties at a fraction of the time and cost, showing great potential to replace the aforementioned fabrication techniques in the long term; however, further clinical studies are essential to increase the acceptance of this technology by the worldwide dental community. © 2015 by the American College of Prosthodontists.

  12. Landau theory of the displacive phase transformations in gold-cadmium and titanium-nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barsch, G.R. [Pennsylvania State Univ., Philadelphia, PA (United States). Dept. of Physics

    2000-07-01

    On the basis of group theoretical symmetry criteria, the primary and secondary order parameters (OP's) have been identified for the three ferroelastic martensitic transformations that occur in the Au-Cd binary, and in the Ti-Ni-M (M=Fe,Al,Cu) pseudo-binary shape-memory alloys, viz (i) from the cubic {beta}{sub 2} austenite parent phase (B2 structure) to the rhombohedral (R) {zeta}'{sub 2} product phase of P3 symmetry, (ii) from the {beta}{sub 2} to the orthorhombic ({gamma}{sub 2}) product phase of Pmma symmetry (B19 structure), and (iii) fromthe B19 to the monoclinic B19' structure of P2{sub 1}/m symmetry. For all three transformations, the Landau free energy and the relations between the primary OP and the atom shuffle displacements are given for the transition to a single product phase variant. For case (i), the 12 experimentally measured structural (shuffle) parameters of the R phase can be accounted for and fitted by only two theoretical model parameters, giving satisfactory agreement with the (only available) room temperature data for Au{sub .505}Cd{sub .495}; for Ti{sub .4977}Ni{sub .5023} larger discrepancies, but mostly within the relatively large experimental error are found. For the two cases (ii) and (iii), the two shuffle displacements each can be fitted exactly by the two theoretical model parameters required. (orig.)

  13. Fractal study of Ni-Cr-Mo alloy for dental applications: effect of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, Ali

    2003-12-30

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving 'diffusion towards electrode surface'. The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.

  14. Fractal study of Ni Cr Mo alloy for dental applications: effect of beryllium

    Science.gov (United States)

    Eftekhari, Ali

    2003-12-01

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving "diffusion towards electrode surface". The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.

  15. Microstructure and mechanical properties of sintered Ti Binary alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz Atay, H.; Haro Rodriguez, M.; Amigo Mata, A.; Vicente Escuder, V.; Amigo Borras, V.

    2016-07-01

    Biomaterials have shown rapid growth in the field of elderly population demands with the prolongation of human life. One of those biomaterials, titanium, has excellent properties and biocompatibility though it may cause weakening in the structures due to its higher stiffness. In this study, powder metallurgy process was used to produce Ti-Cr, Ti-Mo and Ti-Cu metal alloys to overcome this problem. Metal powders were mixed by mechanical alloying. After pressing and sintering, alloys structures were investigated. Characterizations were carried out by size analyzer, SEM-EDX, optical microscope and three points bending test. (Author)

  16. Electrochemical assessment of some titanium and stainless steel impact dental alloys

    International Nuclear Information System (INIS)

    Echavarria, A.; Arroyave, C.

    2003-01-01

    Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy) with immersion times of 30 d. Results were simulated as a sandwich system composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed. (Author) 22 refs

  17. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  18. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.

    Science.gov (United States)

    Li, Kai Chun; Prior, David J; Waddell, J Neil; Swain, Michael V

    2015-12-01

    The objective of this study was to identify the different microstructures produced by CC, PM and as-cast techniques for Co-Cr alloys and their phase stability following porcelain firings. Three bi-layer porcelain veneered Co-Cr specimens and one monolithic Co-Cr specimen of each alloy group [cast, powder metallurgy (PM), CAD/CAM (CC)] were manufactured and analyzed using electron backscatter diffraction (EBSD), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Specimens were treated to incremental numbers of porcelain firings (control 0, 5, 15) with crystallographic data, grain size and chemical composition subsequently obtained and analyzed. EBSD datasets of the cast alloy indicated large grains >200 μm whereas PM and CC alloy consisted of mean arithmetic grain sizes of 29.6 μm and 19.2 μm respectively. XRD and EBSD results both indicated the highest increase in hcp content (>13vol%) for cast Co-Cr alloy after treatment with porcelain firing while PM and CC indicated alloy after porcelain firing. The depth of this layer increased with porcelain firings for as-cast and PM but no significant increase (p>.05) was observed in CC. EDS line scans indicated an increase in Cr content at the alloy surface after porcelain firing treatment for all three alloys. PM and CC produced alloy had superior fcc phase stability after porcelain firings compared to a traditional cast alloy. It is recommended that PM and CC alloys be used for porcelain-fused-to-metal restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Decrease of trace elements in erythrocytes and plasma after removal of dental amalgam and other metal alloys.

    Science.gov (United States)

    Frisk, Peter; Lindvall, Anders; Hudecek, Romuald; Lindh, Ulf

    2006-12-01

    The objective of this study was to determine the concentration changes of 13 elements in erythrocytes and plasma after the removal of dental amalgam and other metal alloys. Blood samples from 250 patients were collected, separated into erythrocytes and plasma, and analyzed by inductively coupled plasma-mass spectrometry. The 250 patients were divided into 3 groups (Negative, Zero, and Positive) depending on their estimation of quality of life in an earlier study. Magnesium in plasma, selenium and mercury in plasma, and erythrocytes showed decreased concentrations after amalgam removal in all groups (p amalgam removal in the Negative and Positive groups (p amalgam removal (p amalgam removal in the Negative compared to the Positive group (p amalgam removal.

  20. Analysis of O(2) adsorption on binary-alloy clusters of gold: energetics and correlations.

    Science.gov (United States)

    Joshi, Ajay M; Delgass, W Nicholas; Thomson, Kendall T

    2006-11-23

    We report a B3LYP density-functional theory (DFT) analysis of O(2) adsorption on 27 Au(n)M(m) (m, n = 0-3 and m + n = 2 or 3; M = Cu, Ag, Pd, Pt, and Na) clusters. The LANL2DZ pseudopotential and corresponding double-zeta basis set was used for heavy atoms, while a 6-311+G(3df) basis set was used for Na and O. We employed basis-set superposition error (BSSE) corrections in the electronic adsorption energies at 0 K (deltaE(ads)) and also calculated adsorption thermodynamics at standard conditions (298.15 K and 1 atm), i.e., internal energy of adsorption (deltaU(ads)) and Gibbs free energy of adsorption (deltaG(ads)). Natural Bond Orbital (NBO) analysis showed that all the clusters donated electron density to adsorbed O(2) and we successfully predicted intuitive linear correlations between the NBO charge on adsorbed O(2), O-O bond length, and O-O stretching frequency. Although there was no clear trend in the O(2) binding energy (BE = -deltaE(ads)) on pure and alloy dimers, we found the following interesting trend for trimers: BE (MAu(2)) clusters. The clusters having strongly electropositive Na atoms (e.g., Na(3) and Na(2)Au) donated almost one full electron to adsorbed O(2), and the BE is maximum on these clusters. Although O(2) dissociation is likely in such cases, we have restricted this study to trends in the adsorption of molecular O(2) only. We also found an approximate linear correlation between the charge transfer and BE versus energy difference between the bare-cluster HOMO and O(2) LUMOs, which we speculate to be a fundamental descriptor of the reactivity of small clusters toward O(2). Part of the scatter in these correlations is attributed to the differences in the O(2) binding orientations on different clusters (geometric effect). Relatively higher bare-cluster HOMO energy eases the charge transfer to adsorbed O(2) and enhances the reactivity toward O(2). The Frontier Orbital Picture (FOP) is not always useful in predicting the most favorable O(2) binding

  1. Análisis del comportamiento mecánico de una aleación Ni-Cr-Mo para pilares dentales/Analysis of Mechanical Behavior of Ni-Cr-Mo alloy for Dental Abutments

    Directory of Open Access Journals (Sweden)

    Luis Alberto Laguado Villamizar

    2012-12-01

    Full Text Available El presente estudio caracteriza una aleación aplicable al diseño de pilares para implantes dentales. Se propone un material biocompatible y de alta resistencia mecánica como alternativa a las aleaciones de Titanio, disminuyendo los costos de materia prima y procesamiento. Se realizan pruebas mecánicas de tracción y de compresión a la aleación de Ni-Cr-Mo, posteriormente se realiza modelado 3D y simulación de sus propiedades mecánicas por medio de análisis de elementos finitos. Como resultado se obtiene que el material disminuye su resistencia mecánica después del proceso de fundición empleado. El modelo de simulación es válido para análisis de resistencia en pilares dentales.This study presents the characterization of a dental implant alloy for abutments. It proposes a biocompatible material and high mechanical resistance as an alternative to Titanium alloys, lowering costs of raw materials and processing. Mechanical testing of the Ni-Cr-Mo alloy and subsequently perform simulations of its mechanical properties by means of finite element analysis. As a result is obtained that the material reduces its mechanical strength after the casting for electric induction molding process. The simulation model is valid to make analysis of resistance to this type of dental devices.

  2. Development and properties of Ti–In binary alloys as dental biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.Y. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Wang, Y.B. [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Lin, J.P. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2013-04-01

    The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti–In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP–Ti, ASTM grade 2) as negative control. All of the binary Ti–In alloys investigated in this work were found to have higher strength and microhardness than CP–Ti. Electrochemical results showed that Ti–In alloys exhibited the same order of magnitude of passivation current densities with CP–Ti in artificial saliva solutions. With the presence of NaF, Ti–10In and Ti–15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti–In alloys showed good cytocompatibility, at the same level as CP–Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility. - Highlights: ► The addition of In into Ti can increase the mechanical property. ► Ti-In alloys exhibited similar passivation behavior with CP-Ti. ► Ti-In alloys had good cytocompatibility comparable with CP-Ti. ► Ti-10In and Ti-15In showed transpassive baheviour with the addition of NaF.

  3. THE FIRST BULGARIAN STANDARDIZED SERIES FOR EPICUTANEOUS PATCH TESTING FOR ALLERGIES TO DENTAL MATERIALS AND ALLOYS

    Directory of Open Access Journals (Sweden)

    Maria Dencheva

    2012-07-01

    Full Text Available The teeth and teeth rows restoration in the maxillofacial area is the last stage of the ongoing patient treatment and a basic purpose for the dental doctors. For this purpose a different set of modern and classic contemporary dental materials is used. The choice of each material during the treatment of every patient with proven allergy to different kind of allergens is very specific and strictly individual. In the everyday oral diagnostics a standardized set of allergens for diagnostics is used for proving the allergy to dental materials. The set has been developed on the base of all existing and permitted by the Bulgarian authorities dental materials, as well as professional series.The difference between the developed and standardized allergens for diagnostics used in our country and the existing ready-for-use series is that the first are made of the final product (material in the form introduced to the oral cavity and persisting there for a different period of time, sometimes for tenths of years. This enables the possibility for early or late contact allergic reactions with symptoms in the oral cavity and on the skin, maxillofacial area, head and neck, as well as the entire organism.The current article introduces the readers to the results obtained by the realization of the research project №28/2011 “Research on the type of sensibilisation to contemporary dental materials and development of set of allergens for its diagnosing through epicutaneous patch testing” funded by the Committee of Medical science of MU Sofia (CMC. Through the project became possible the creation and the initial research of the first Bulgarian series for epicutaneous testing whose aim is to prove the allergenic potential of the most frequently used by the dental doctors dental materials.

  4. The influence of the pure metal components of four different casting alloys on the electrochemical properties of the alloys.

    Science.gov (United States)

    Tuna, Süleyman H; Pekmez, Nuran Ozçiçek; Keyf, Filiz; Canli, Fulya

    2009-09-01

    The aim of this study was to investigate the influence of the pure metal components of the four different casting alloys on the corrosion behaviors of these alloys tested. Potentiodynamic polarization tests were carried out on four different types of casting alloys and their pure metals at 37 degrees C in an artificial saliva solution. The ions released from the alloys into the solutions during the polarization test were also determined quantitatively using inductively coupled plasma-mass spectrometry (ICP-MS). Ni-Cr (M1) and Co-Cr (M2) alloys had a more homogenous structure than palladium based (M3) and gold based (M4) alloys in terms of the pitting potentials of the casting alloys and those of the pure metals composing the alloys. The total ion concentration released from M3 and M4 was less than from M1 and M2. This may be because M3 and M4 alloys contained noble metals. It was also found that the noble metals in the M3 and M4 samples decreased the current density in the anodic branch of the potentiodynamic polarization curves. In other words, noble metals contributed positively to dental materials. Corrosion resistance of the casting alloys can be affected by the pure metals they are composed of. Au and Pd based noble alloys dissolved less than Ni-Cr and Co-Cr based alloys.

  5. [Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].

    Science.gov (United States)

    Wei, Fang; Zhan, De-song; Wang, Yan-yan

    2008-10-01

    To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.

  6. In vitro analysis with human bone marrow stem cells on Ti-15Mo alloy for dental and orthopedic implants application

    Directory of Open Access Journals (Sweden)

    N.T.C. Oliveira

    2011-03-01

    Full Text Available Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control, 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks quantitative real-time RT–PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.

  7. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application.

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Li, Junlei; Zhao, Chaoqian; Zhuo, Dongxian; Lin, Jinxin

    2015-04-01

    In this study, an experimental investigation on fabricating Ni-free CoCrW alloys by selective laser melting (SLM) for dental application was conducted in terms of microstructure, hardness, mechanical property, electrochemical behavior, and metal release; and line and island scanning strategy were applied to determine whether these strategies are able to obtain expected CoCrW parts. The XRD revealed that the γ-phase and ε-phase coexisted in the as-SLM CoCrW alloys; The OM and SEM images showed that the microstructure of CoCrW alloys appeared square-like pattern with the fine cellular dendrites at the borders; tensile test suggested that the difference of mechanical properties of line- and island-formed specimens was very small; whilst the outcomes from the electrochemical and metal release tests indicated that the island-formed alloys showed slightly better corrosion resistance than line-formed ones in PBS and Hanks solutions. Considering that the mechanical properties and corrosion resistance of line-formed and island-formed specimens meet the standards of ISO 22674:2006 and EN ISO 10271, CoCrW dental alloys can be successfully fabricated by line and island scanning strategies in the SLM process. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The effect of urea on the corrosion behavior of different dental alloys

    Directory of Open Access Journals (Sweden)

    Onur Geckili

    2012-01-01

    Conclusion: The data indicate that elevated urea levels reduced the corrosion susceptibility of all alloys, possibly through adsorption of organics onto the metal surface. This study indicates that corrosion testing performed in sterile saline or synthetic saliva without organic components could be misleading.

  9. Dental implant superstructures by superplastic forming

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, R.V.; Garriga-Majo, D.; Soo, S.; Pagliaria, D. [Kings Coll., London (United Kingdom). Dept. of Dental Biomaterials Science; Juszczyk, A.S.; Walter, J.D. [Kings Coll., London (United Kingdom). Dept. of Prosthetic Dentistry

    2001-07-01

    A novel application of superplastic forming is described for the production of fixed-bridge dental implant superstructures. Finite element analysis (FEA) has shown that Ti-6Al-4V sheet would be a suitable candidate material for the design of a fixed-bridge dental implant superstructure. Traditionally superstructures are cast in gold alloy onto pre-machined gold alloy cylinders but castings are often quite bulky and 25% of castings do not fit accurately (1) which means that sectioning and soldering is required to obtain a fit that is clinically acceptable and will not prejudice the integrity of the commercially pure cp-titanium implants osseointegrated with the bone. Superplastic forming is shown to be a forming technique that would allow the production of strong, light-weight components of thin section with low residual stress that could be suitable for such applications. Considerable cost savings over traditional dental techniques can be achieved using a low-cost ceramic die material. The properties of these die materials are optimised so that suitable components can be produced. Satisfactory hot strength is demonstrated and thermal properties are matched to those of the titanium alloy for accurate fit of the prosthesis. (orig.)

  10. Hardening behavior after high-temperature solution treatment of Ag-20Pd-12Au-xCu alloys with different Cu contents for dental prosthetic restorations.

    Science.gov (United States)

    Kim, Yonghwan; Niinomi, Mitsuo; Hieda, Junko; Nakai, Masaaki; Cho, Ken; Fukui, Hisao

    2014-07-01

    Ag-Pd-Au-Cu alloys have been used widely for dental prosthetic applications. Significant enhancement of the mechanical properties of the Ag-20Pd-12Au-14.5Cu alloy as a result of the precipitation of the β' phase through high-temperature solution treatment (ST), which is different from conventional aging treatment in these alloys, has been reported. The relationship between the unique hardening behavior and precipitation of the β' phase in Ag-20Pd-12Au-xCu alloys (x=6.5, 13, 14.5, 17, and 20mass%) subjected to the high-temperature ST at 1123K for 3.6ks was investigated in this study. Unique hardening behavior after the high-temperature ST also occurs in Ag-20Pd-12Au-xCu alloys (x=13, 17, and 20) with precipitation of the β' phase. However, hardening is not observed and the β' phase does not precipitate in the Ag-20Pd-12Au-6.5Cu alloy after the same ST. The tensile strength and 0.2% proof stress also increase in Ag-20Pd-12Au-xCu alloys (x=13, 14.5, 17, and 20) after the high-temperature ST. In addition, these values after the high-temperature ST increase with increasing Cu content in Ag-20Pd-12Au-xCu alloys (x=14.5, 17, and 20). The formation process of the β' phase can be explained in terms of diffusion of Ag and Cu atoms and precipitation of the β' phase. Clarification of the relationship between hardening and precipitation of the β' phase via high-temperature ST is expected to help the development of more effective heat treatments for hardening in Ag-20Pd-12Au-xCu alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  12. Machinability Evaluation of Ti-5Nb- xFe Alloys for Dental Applications

    Science.gov (United States)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Kuan-Huang; Ho, Wen-Fu

    2015-03-01

    In this study, we evaluated the machinability of a series of Ti-5Nb- xFe alloys with an Fe content ranging from 1 to 5 mass% and compared the results to those of commercially pure titanium (c.p. Ti) and Ti-6Al-4V. The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated using cutting force which was measured using a dynamometer. The experimental results indicate that the addition of Fe significantly affected the machinability of the Ti alloys in terms of cutting force under the present cutting conditions. Under certain conditions, the cutting force of Ti-5Nb-4Fe was lower than that of c.p. Ti and Ti-6Al-4V, a result which can be explained by a higher degree of hardness and greater amounts of ω phase. Ti-5Nb-4Fe also had a better surface finish: cutting marks were less apparent and metal chips did not adhere to the cut surfaces under cutting condition C (cutting speed: 1.83 m/s, feed rate: 0.0005 m/s, and depth of cut: 0.0002 m). Ti-5Nb-4Fe had the lowest average surface roughness ( R a) after machining (approximately 0.27 μm under cutting condition C).

  13. Conjoint Membership in Orthodontics examination of the Royal College of Surgeons of Edinburgh and the College of Dental Surgeons of Hong Kong 2007 Gold Medal -- report of two cases.

    Science.gov (United States)

    Lee, Wilson; Wong, Ricky; Rabie, Bakr

    2011-06-01

    This article describes the treatment of two orthodontic patients by the recipient of the Gold Medal for the Conjoint Membership in Orthodontics of the Royal College of Surgeons of Edinburgh and the College of Dental Surgeons of Hong Kong in November 2007.

  14. The electrochemical properties of four dental casting suprastructure alloys coupled with titanium implants

    Directory of Open Access Journals (Sweden)

    Suleyman Hakan Tuna

    2009-10-01

    Full Text Available OBJECTIVES: As the choice of suprastructure alloy to be combined with titanium for the oral cavity is still a much debated issue, the aim of this study was to investigate the electrochemical interaction of the suprastructure/implant couples under the determined experiment conditions. MATERIAL AND METHODS: The potentiodynamic polarization curves and open-circuit potentials (OCP of four UCLA type suprastructures coupled with straight Swiss Plus implant fixtures were taken in Afnor type artificial saliva solution at 37°C. The concentration of ions leached into artificial saliva solutions was estimated with ICP-MS. SEM images of the margins of suprastructure/implant couples were obtained before and after the electrochemical tests. RESULTS: The OCP value of titanium became passive at the most negative potential. The lowest difference between the initial and constant OCP value was exhibited by the Au based suprastructure. Suprastructures made greater contributions to the potentiodynamic polarization curves of the implant/suprastructure couples. According to the ICP-MS results, Pd based and Au based couples dissolved less than Co-Ni based and Co-Cr based couples. CONCLUSIONS: Within the conditions this study, it may be concluded that the titanium implant forms a stable passive oxide layer in artificial saliva exposed to open air and does not affect the corrosion properties of the suprastructures. Pd based and Au based couples have been found to be more corrosion-resistant than base alloy couples.

  15. Current bonding systems for resin-bonded restorations and fixed partial dentures made of silver–palladium–copper–gold alloy

    Directory of Open Access Journals (Sweden)

    Hideo Matsumura

    2011-02-01

    Full Text Available This review article describes about the bonding systems for noble metal alloys, bonding techniques of restorations and fixed partial dentures (FPDs made of Ag–Pd–Cu–Au alloys, and their clinical performance. Thione monomers, 6-(4-vinylbenzyl-n-propyl amino-1,3,5-triazine-2,4-dithione (VTD, 6-methacryloyloxyhexyl-2-thiouracil-5-carboxylate (MTU-6, and 10-methacryloxydecyl 6,8-dithiooctanoate (MDDT, has been proved effective for bonding noble metal alloys. An acrylic adhesive consists of the tri-n-butylborane (TBB initiator, methyl methacrylate (MMA monomer liquid with 5% 4-methacryloyloxyethyl trimellitate anhydride (4-META, and poly(methyl methacrylate (PMMA, is being used for bonding metallic restorations to abutment surfaces. Clinical performance of restorations and FPDs made of Ag–Pd–Cu–Au alloys is overall excellent when they are seated with the currently available noble metal bonding systems.

  16. 75 FR 33169 - Dental Devices: Classification of Dental Amalgam, Reclassification of Dental Mercury, Designation...

    Science.gov (United States)

    2010-06-11

    ... Dental Amalgam, Reclassification of Dental Mercury, Designation of Special Controls for Dental Amalgam, Mercury, and Amalgam Alloy; Technical Amendment AGENCY: Food and Drug Administration, HHS. ACTION: Final... device, reclassified dental mercury from class I to class II, and designated special controls for dental...

  17. Nickel dental alloys can induce laryngeal edema attacks: a case report.

    Science.gov (United States)

    Buyukozturk, Suna; Gelincik, Asli; Demirtürk, Mustafa; Erdoğdu, Derya; Pur, Leyla; Colakoğlu, Bahattin; Deniz, Gunnur; Erdem Kuruca, Serap

    2013-09-01

    Nickel is a strong immunological sensitizer and may result in contact hypersensitivity. Case reports of allergic reactions to intraoral nickel have occasionally been reported in the published work and these allergic reactions are generally of a delayed type (type IV). Here, we present a case of a nickel allergic patient displaying frequent laryngeal edema attacks which required treatment with epinephrine injections followed by parenteral corticosteroid doses. Her complaints ceased after the removal of the dental bridge and the foods containing nickel. In summary, we propose that in the case of recurrent laryngeal edema attacks without any explainable cause, an allergic reaction due to nickel exposure should be taken into consideration. © 2013 Japanese Dermatological Association.

  18. [Radiographic evaluation of 12% Au-Ag-Pd alloy cast lower denture plates constructed by dental student as a laboratory exercise].

    Science.gov (United States)

    Miyao, M; Yamauchi, M; Sakai, M; Nishizawa, M; Shimizu, M; Kawano, J

    1990-12-01

    We evaluated 12% Au-Ag-Pd alloy cast lower denture plates prepared by dental students in laboratory exercises for casting defects. First, we determined the most suitable exposure conditions for nondestructive radiographic test of 12% Au-Ag-Pd alloy. Subsequently, 130 plates were nondestructively evaluated by radiography under the most suitable exposure conditions. In radiographic testing using X-Omat RP films (Eastman Kodak Co.) and X-Omatic Fine Screen (Eastman Kodak Co.), the most suitable exposure conditions involved a target-to-film distance of 1.9 m, tube voltage of 148 Kvp, tube current of 10 mA, and exposure time of 1.5 sec. Preliminary radiographic examination of artificial casting defects revealed semispherical defects in the diameter of 0.25 mm in 1.6 mm-thick 12% Au-Ag-Pd alloy plates and detects of 0.26 mm in 2.4 mm thick plates. In the 130 cast plates, 56 casting defects were detected. These defects were found at the left webbing part in 40 (30.8%), right webbing part in 36 (27.7%), lingual bar in 7 (5.4%), I-bar in 4 (3.0%), and at other regions of the metal frames in 3 (2.3%) cases. These results indicate that nondestructive radiographic testing is as effective in detection of casting defects in 12% Au-Ag-Pd alloy cast plates as it is in Co-Cr and Ni-Cr alloy plates. This method was also found to be effective in evaluation of the practice metal frames constructed by dental students.

  19. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  20. Dental amalgam - the effect of the technology of alloy powder preparation on the corrosion behaviour and the release of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Joska, L.; Bystriansky, J.; Novak, P. [Institute of Chemical Technology, Prague, Institute of Metals and Corrosion Engineering, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2003-03-01

    Dental amalgams are based on a broad spectrum of materials differing in their chemical composition, metallurgical treatment, and in the way the initial alloys powders are prepared. In addition to their chemical composition, amalgams based on various powders differ in both their microstructure and the amount of mercury needed for preparation. All these facts may affect electrochemical processes occurring during their interaction with oral fluids, and also mercury release. While verifying the effect of the technology used for the preparation of the high-copper ternary alloy powder on the properties of resulting amalgams, this study aimed at the mechanism of their interaction with a model saliva solution as well as mercury release was included. Measurements were done in a model saliva solution using standard electrochemical methods and exposition measurements. The interaction of individual types of amalgams with artificial saliva did not reveal any significant differences. The free corrosion potential of all these amalgams in an aerated solution settled in the range of values in which tin oxidation, resulting in a layer of insoluble corrosion products, turned out to be the dominant anodic process. The rate of mercury release was the lowest for amalgams based on a gas-atomized alloy. The highest rate of mercury release, and also its dependence on time, was exhibited by lathe-cut powder based amalgam. In addition to different volume fraction of the Ag-Hg phase and the level of its tin alloying, this different behaviour may be explained by differences in the rate at which a layer of tin corrosion products acting as a barrier to mercury release is formed. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Dentalamalgame basieren auf einem breitem Spektrum von Werkstoffen, die sich in ihrer chemischen Zusammensetzung, der metallurgischen Behandlung und der Art, wie die Ausgangslegierungspulver hergestellt werden, unterscheiden. Zusaetzlich zu ihrer chemischen

  1. [The study of the colorimetric characteristics of the cobalt-chrome alloys abutments covered by four different all-ceramic crowns by using dental spectrophotometer].

    Science.gov (United States)

    Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong

    2015-06-01

    This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.

  2. Hydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Katayon Bahrami

    2014-04-01

    Full Text Available   Objective(s: Metal nanoparticles (NPs offer a wide variety of potential applications in pharmaceutical sciences due to the unique advances in nanotechnology research. In this work, bimetal Ag-Au alloy NPs were prepared and their combinations with other antibiotics were tested against Staphylococcus aureus .   Materials and Methods: Firstly, Ag-Au alloy NPs with Au/Ag molar ratio of 1:1 was fabricated and was purified by agarose gel electrophoresis system. The morphology and size of the purified NPs were confirmed by transmission electron microscopy. Chemical composition and surface chemistry of these NPs were studied with atomic absorption spectophotometry and Fourier transforms infrared spectroscopy, respectively. The size of purified Ag-Au alloy NPs was less than 200 nm. Also the presence of organic compounds with a hydroxyl residue was detected on the surface of these purified NPs. In next step the effect of purified Ag-Au alloy NPs on the antibacterial activity of different antibiotics was evaluated at sub-inhibitory content (5 μg/disk using disk diffusion method against S. aureus. Ag NPs and Au NPs were also tested at same content (5 μg using mentioned method. Results: The most enhancing effect of Ag-Au alloy NPs was observed for penicillin G and piperacillin. No enhancing effects on the antibacterial activity of different antibiotics were observed at 5 μg/disk for the mono-metal nanoparticles (Ag NPs and Au NPs against S. aureus. Conclusion: These results signify that the Ag-Au alloy NPs potentiates the antimicrobial action of certain antibiotics suggesting a possible utilization of this nano material in combination therapy against resistant S. aureus.

  3. 16 CFR 23.4 - Misrepresentation as to gold content.

    Science.gov (United States)

    2010-01-01

    ... unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or the... abbreviation to describe all or part of an industry product composed throughout of an alloy of gold, unless a... designation of the karat fineness of the alloy that is of at least equal conspicuousness as the term used. (6...

  4. Stress evaluation of titanium-gold and titanium-aluminum-vanadium alloy for orthodontic implants: A comparative finite element model study

    Directory of Open Access Journals (Sweden)

    Chinglembi Nongthombam

    2017-01-01

    Full Text Available Introduction: With the increased popularity of implants, orthodontists are in search of a better material. Titanium-gold (Ti-Au is a newer material and could be a choice to replace the currently popular titanium-aluminum-vanadium (Ti-6Al-4Va alloy. Materials and Methods: Using the finite element analysis method, three-dimensional computer-aided models of a mini-implant was designed. Two cylindrical bone pieces into which the implant was inserted were used. A force magnitude of 5 N was then horizontally and separately applied to the implant head. Results: Comparison of the maximum von Mises stress in the implants of Ti-6Al-4Va and Ti-Au was done. The maximum stress value of 252.356 and 242.415 Mpa, as well as maximum deformation of 0.025 mm and 0.019 mm, on Ti-6Al-4Va and Ti-Au can be observed, respectively. Conclusion: It was found that the maximum stress and maximum deformation values were lower in Ti-Au as compared to Ti-6Al-4Va implant. As the Ti-Au implant has greater resistance to deformation, it can be concluded that this newer alloy has better strength than Ti-6Al-4Va implant.

  5. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Science.gov (United States)

    Kirmanidou, Yvoni; Sidira, Margarita; Drosou, Maria-Eleni; Bennani, Vincent; Bakopoulou, Athina; Tsouknidas, Alexander; Michailidis, Nikolaos; Michalakis, Konstantinos

    2016-01-01

    Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world. PMID:26885506

  6. Ag-Sn Alloys and dental amalgams: A119Sn Mössbauer, x-ray diffraction and scanning electron microscopy study

    Science.gov (United States)

    Allen, W. J.; Pollard, R. J.; Cashion, J. D.

    1989-03-01

    Examination has been made on aged and fresh Ag-Sn alloys and on commercial Cu-Ag-Sn dental alloys. Although x-ray diffractograms of aged Ag-Sn showed only λ Ag-Sn and free silver,119Sn Mössbauer spectra exhibited Sn(IV) oxide also. A low Debye temperature showed the oxide to be in intimate dynamical contact with the metallic matrix. Upon adding mercury, the phases λ1 Ag-Hg and η' Cu-Sn were observed in a commercial specimen. Conversion-electron spectra of a mercury-coated disk showed the presence of λ2 Sn-Hg and a distribution of line positions smaller than that for particulate amalgams. Internal oxidation was found to prevent amalgamation.

  7. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Directory of Open Access Journals (Sweden)

    Yvoni Kirmanidou

    2016-01-01

    Full Text Available Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.

  8. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    Science.gov (United States)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  9. Effect of non-ionizing radio frequency signals of magnetic resonance imaging on physical properties of dental alloys and metal-ceramic adhesion.

    Science.gov (United States)

    El-Bediwi, Abu Bakr; El-Fallal, Abeer; Saker, Samah; Ozcan, Mutlu

    2014-10-01

    To assess the influence of non-ionizing radio frequency signals of magnetic resonance imaging (MRI) on physical properties of dental alloys and metal-ceramic adhesion. A total of 120 disk-shaped wax patterns (10 mm x 10 mm x 1 mm) were cast in a base metal alloy (Ni-Cr alloy) and commercially pure titanium (Ti) following the manufacturing recommendation. After casting, air abrasion and ultrasonic cleaning, feldspathic ceramic was applied and fired according to manufacturer's instructions using a standard mold. The specimens were subjected to 3000 thermocycles in distilled water between 5°C and 55°C, then veneered alloy specimens were randomly assigned to three groups according to MRI exposure time: a) 15 min of MRI exposure, b) 30 min of MRI exposure and c) no MRI exposure (control group). The specimens were subjected to shear loading until failure. A separate set of Ni-Cr and Ti specimens were prepared, and after exposure to MRI for 15 and 30 min, x-ray diffraction (XRD) analysis, surface roughness, and Vicker's hardness were measured. Both the alloy type (p < 0.005) and exposure duration (p < 0.005) had a significant effect on the bond results. While the control group presented the highest bond strength for Ni-Cr and Ti (36.9 ± 1.4 and 21.5 ± 1.6 MPa, respectively), 30 min MRI exposure significantly decreased the bond strength for both alloys (29.4 ± 1.5 and 12.8 ± 1.5 MPa, respectively) (p < 0.05). XRD analysis indicated formation of the crystalline phase as well as change in crystal size and position for Ni-Cr and Ti after MRI. Compared to the control group where alloys were not exposed to MRI (Ni-Cr: 0.40 μm; Ti: 0.17 μm), surface roughness increased (Ni-Cr: 0.54 μm; Ti: 1.1 μm). Vicker's hardness of both alloys decreased after 30 min MRI (Ni-Cr: 329.5; Ti: 216.1) compared to the control group c (Ni-Cr: 356.1; Ti: 662.1), being more significant for Ti (p < 0.005). Ni-Cr alloy is recommended over Ti for the fabrication of metal-ceramic restorations

  10. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    Science.gov (United States)

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  11. Adhesive performance of silver-palladium-copper-gold alloy and component metals bonded with organic sulfur-based priming agents and a tri-n-butylborane initiated luting material.

    Science.gov (United States)

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Nakayama, Daisuke; Oba, Yusuke; Matsumura, Hideo

    2013-01-01

    The purpose of the current study was to evaluate the effect of thione-based metal priming agents on the adhesive behavior of a Ag-Pd-Cu-Au alloy and component metals bonded with an acrylic resin. Disk specimens (10 mm in diameter by 3 mm thick) were prepared from a silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12), high-purity silver, palladium, copper and gold. Four single-liquid priming agents containing organic sulfur compound (Alloy Primer, Metaltite, M.L. Primer and V-Primer) and three acidic priming agents (All Bond II Primer B, Estenia Opaque Primer and Super-Bond Liquid) were assessed. The metal specimens were flat-ground with abrasive papers, primed with one of the agents and bonded with a tri-n-butylborane initiated resin. The shear bond strengths were determined both before and after repeated thermocycling (5°C and 55°C, 1 min each, 20,000 cycles). The results were statistically analyzed with a non-parametric procedure (p = 0.05 level). The post-thermocycling bond strengths in MPa (median; n = 11) associated with the Alloy Primer, Metaltite, M.L. Primer and V-Primer materials were, respectively, 20.8, 22.8, 17.8 and 18.4 for the Ag-Pd-Cu-Au alloy; 19.6, 21.9, 14.4 and 20.1 for silver; 5.4, 4.5, 12.8 and 5.3 for palladium; 17.1, 19.2, 0.7 and 6.6 for copper; and 18.5, 17.7, 22.8 and 15.4 for gold. It can be concluded that the use of the four priming agents, which are based on organic sulfur compounds, effectively enhanced bonding to the Ag-Pd-Cu-Au alloy and the component metals, although the bonding performance varied among the priming agents and metal elements. The priming agents appeared to have more of an effect on the alloy, silver and gold than on the palladium and copper.

  12. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up

    OpenAIRE

    Larsson, Christel; Drazic, Marko; Nilsson, Eddie; Vult von Steyern, Per

    2015-01-01

    Abstract Objective: The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and metal-ceramic (MC) molar crowns using a modified test set-up to produce fractures similar to those seen in vivo, i.e. fractures of the veneering material rather than complete fractures. Materials and methods: 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged bef...

  13. Influence of different power outputs of intraoral Nd:YAG laser on shear bond strength of a resin cement to nickel-chromium dental alloy.

    Science.gov (United States)

    sadat Madani, Azam; Astaneh, Pedram Ansari; Shahabi, Sima; Nakhaei, Mohammad Reza; Bagheri, Hossein G; Chiniforush, Nasim

    2013-01-01

    Up to now, there is no any experience about the application of dental lasers to bond resin composites to metal surfaces in dentistry. The aim of this preliminary study was to evaluate if the laser irradiation of ceramic-covered alloy surface would improve the bond strength of resin to metal, and if different parameters of laser output may influence the strength of this bond. Fifty three cylinders (thickness of 5 mm and diameter of 10 mm) were made up of a commercially available nickel-chromium alloy by lost-wax technique. Forty prepared specimens were divided into four groups. Five specimens in each group were covered by slurry of dental opaque porcelain and irradiated by Nd:YAG laser using different output parameters for each group. Other five specimens in each group were treated using the same laser parameters without porcelain covering. Five sandblasted specimen served as control group. Panavia F2.0 was bonded on the metal surfaces using polyethylene tubes. In ceramic-coated specimens, silane was applied to achieve chemical bond between silica particles and resin cement. All specimens were thermocycled and subjected to shear bond strength (SBS) test (50 kgf at 0.5 mm/min). Two specimens of each ceramic-coated laser-treated groups were studied using scanning electron microscopy and wavelength dispersive X-ray spectroscopy which showed stabilization of silica particles on the metal surface. ANOVA procedure showed that although shear bond strength was significantly higher in porcelain-covered laser treated samples, but the effect of power output of laser irradiation was not significant (P = 0.917). There were no statistically significant difference between SBS in control samples and laser treated specimens without porcelain covering. It can be concluded that Nd:YAG laser surface treatment may improve the silica coating of alloy surface to achieve better resin-metal bond.

  14. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.

    Science.gov (United States)

    Henriques, B; Soares, D; Silva, F S

    2012-08-01

    The purpose of this study was to compare the microstructure, hardness, corrosion resistance and metal-porcelain bond strength of a CoCrMo dental alloy obtained by two routes, cast and hot pressing. CoCrMo alloy substrates were obtained by casting and hot pressing. Substrates' microstructure was examined by the means of Optical Microscopy (OM) and by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Hardness tests were performed in a microhardness indenter. The electrochemical behavior of substrates was investigated through potentiodynamic tests in a saline solution (8g NaCl/L). Substrates were bonded to dental porcelain and metal-porcelain bond strength was assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Fractured surfaces as well as undestroyed interface specimens were examined with Stereomicroscopy and SEM-EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The t-test (pmicrostructures whereas hot pressed specimens exhibited a typical globular microstructure with a second phase spread through the matrix. The hardness registered for hot pressed substrates was greater than that of cast specimens, 438±24HV/1 and 324±8HV/1, respectively. Hot pressed substrates showed better corrosion properties than cast ones, i.e. higher OCP; higher corrosion potential (E(corr)) and lower current densities (i(corr)). No significant difference was found (p<0.05) in metal-ceramic bond strength between cast (116.5±6.9 MPa) and hot pressed (114.2±11.9 MPa) substrates. The failure type analysis revealed an adhesive failure for all specimens. Hot pressed products arise as an alternative to cast products in dental prosthetics, as they impart enhanced mechanical and electrochemical properties to prostheses without compromising the metal-ceramic bond strength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Direct observation of the vacancy structure of a (220) platelet in an ion-irradiated platinum--4.0 at. % gold alloy

    International Nuclear Information System (INIS)

    Wei, C.Y.; Seidman, D.N.

    1977-06-01

    A detailed field-ion microscope (FIM) study has been made of the vacancy structure of a (220) platelet created by a single 30 keV W + ion in a platinum-4.0 at. percent gold alloy; the specimen was maintained at 40 0 K (below substage II/sub B/) during the in-situ irradiation at approximately 2 x 10 -9 torr. Prior to the pulsed field-evaporation dissection of the specimen at 40 0 K it was warmed isochronally to 100 0 K (above substage II/sub c/). The (220) platelet was found to consist of 31 vacant lattice sites, lying in four (220) planes, and clustered in a disc-shaped region which is approximately 20 A in diameter. If only first nearest-neighbor lattice sites are considered then the distribution of cluster sizes is as follows: (1) two monovacancies; and (2) one jumbo vacancy cluster containing 29 vacancies. The range of the vacancy concentration within the (220) vacancy platelet is approximately 35 to 44 at. percent. Employing the modified Kinchin-Pease equation it was calculated that the displacement efficiency (kappa) for this platelet is 0.12. It is suggested that the prismatic dislocation loops lying on [220] type planes, observed by transmission electron microscopy, in ion or fast-neutron irradiated platinum can form as a result of the direct collapse of [220] type vacancy platelets

  16. A novel reverse fluorescent immunoassay approach for sensing human chorionic gonadotropin based on silver-gold nano-alloy and magnetic nanoparticles.

    Science.gov (United States)

    Huang, Xiaopeng; Li, Yuqin; Huang, Xiang; Xie, Xiaona; Xu, Yanping; Chen, Yaowen; Gao, Wenhua

    2016-01-01

    A novel and environmentally friendly reverse fluorescent immunoassay approach was proposed and utilized for sensing human chorionic gonadotropin (HCG) in human serum by coupling a newly prepared and highly fluorescent glutathione-stabilized silver-gold nano-alloy (GSH-AgAuNAs) with magnetic nanoparticles (MNPs). To construct such a reverse system, fluorescent GSH-AgAuNAs and MNPs were first prepared and bio-functionalized with monoclonal antibodies (Mab-I and Mab-II) toward HCG antigen, respectively. Then, the GSH-AgAuNAs functionalized with Mab-I were incubated with HCG, followed by the addition of MNPs attached to Mab-II. Thereafter, a sandwich-type immunoassay could be constructed for determination of HCG owing to the antibody-antigen recognition between the functionalized GSH-AgAuNAs and MNPs. Afterwards, a magnetic collection was employed. Hence, the amount of GSH-AgAuNAs would be reduced through an immuno-magnetic separation, thus weakening the fluorescent intensity. Different from conventional immunoassay, our work determined the quantitative signal by measuring the decreasing gradient fluorescent intensity. Under optimal conditions, the developed reverse method exhibited a wide linear range of 0.5-600 ng mL(-1) toward HCG with a detection limit of 0.25 ng mL(-1). Additionally, the proposed immunoassay was validated using spiked samples, illustrating a satisfactory result in practical application.

  17. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting.

    Science.gov (United States)

    Antanasova, Maja; Kocjan, Andraž; Kovač, Janez; Žužek, Borut; Jevnikar, Peter

    2018-04-01

    The aim has been to determine the effect of thermo-mechanical cycling on shear-bond-strength (SBS) of dental porcelain to Co-Cr and Ti-based alloys fabricated by casting, computer-numerical-controlled milling, and selective-laser-melting (SLM). Seven groups (n=22/group) of metal cylinders were fabricated by casting (Co-Cr and commercially pure-cpTi), milling (Co-Cr, cpTi, Ti-6Al-4V) or by SLM (Co-Cr and Ti-6Al-4V) and abraded with airborne-particles. The average surface roughness (R a ) was determined for each group. Dental porcelain was applied and each metal-ceramic combination was divided into two subgroups - stored in deionized water (24-h, 37°C), or subjected to both thermal (6000-cycles, between 5 and 60°C) and mechanical cycling (10 5 -cycles, 60N-load). SBS test-values and failure modes were recorded. Metal-ceramic interfaces were analyzed with a focused-ion-beam/scanning-electron-microscope (FIB/SEM) and energy-dispersive-spectroscopy (EDS). The elastic properties of the respective metal and ceramic materials were evaluated by instrumented-indentation-testing. The oxide thickness on intact Ti-based substrates was measured with Auger-electron-spectroscopy (AES). Data were analyzed using ANOVA, Tukey's HSD and t-tests (α=0.05). The SBS-means differed according to the metal-ceramic combination (p<0.0005) and to the fatigue conditions (p<0.0005). The failure modes and interface analyses suggest better porcelain adherence to Co-Cr than to Ti-based alloys. Values of R a were dependent on the metal substrate (p<0.0005). Ti-based substrates were not covered with thick oxide layers following digital fabrication. Ti-based alloys are more susceptible than Co-Cr to reduction of porcelain bond strength following thermo-mechanical cycling. The porcelain bond strength to Ti-based alloys is affected by the applied metal processing technology. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Ceramic Defects in Metal-Ceramic Fixed Dental Prostheses Made from Co-Cr and Au-Pt Alloys: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Boening, Klaus W; Lißke, Benjamin

    2015-01-01

    Ceramic defects in porcelain-fused-to-metal (PFM) restorations may depend on framework alloy type. This study assessed ceramic defects on cobalt-chromium- (Co-Cr-) and gold-platinum- (Au-Pt-) based PFM restorations. In this study, 147 Co-Cr-based and 168 Au-Pt-based PFM restorations inserted between 1998 and 2010 (139 patients) were examined for ceramic defects. Detected defects were assigned to three groups according to clinical defect relevance. Ceramic defect rates (Co-Cr-based: 12.9%; Au-Pt-based: 7.2%) revealed no significant difference but a strong statistical trend (U test, P = .082). Most defects were of little clinical relevance. Co-Cr PFM restorations may be at higher risk for ceramic defects compared to Au-Pt-based restorations.

  19. Machinability of an experimental Ti-Ag alloy in terms of tool life in a dental CAD/CAM system.

    Science.gov (United States)

    Inagaki, Ryoichi; Kikuchi, Masafumi; Takahashi, Masatoshi; Takada, Yukyo; Sasaki, Keiichi

    2015-01-01

    Titanium is difficult to machine because of its intrinsic properties. In a previous study, the machinability of titanium was improved by alloying with silver. This study aimed to evaluate the durability of tungsten carbide burs after the fabrication of frameworks using a Ti-20%Ag alloy and titanium with a computer-aided design and computer-aided manufacturing system. There was a significant difference in attrition area ratio between the two metals. Compared with titanium, the ratio of the area of attrition of machining burs was significantly lower for the experimental Ti-20%Ag alloy. The difference in the area of attrition for titanium and Ti-20%Ag became remarkable with increasing number of machining operations. The results show that the same burs can be used for a longer time with Ti-20%Ag than with pure titanium. Therefore, in terms of tool life, the machinability of the Ti-20%Ag alloy is superior to that of titanium.

  20. Discoloration of gingiva in the presence of fixed dental restorations

    Directory of Open Access Journals (Sweden)

    Ristić Ljubiša

    2005-01-01

    Full Text Available Aim. To investigate the frequency of discoloration of gingiva in the presence of fixed dental restorations, regarding the type of alloy of which restorations were made, and to show histopathological changes of discolored gingiva. Methods. One hundred and eighty four patients of both sexes were examined. The average age of the examinees was 52. They were divided into four groups according to the alloys from which their restorations were made. Standardized history questionnaires and clinical examination procedures were developed for this study. In ten examinees, whose teeth were indicated for extraction and who had a discoloration of gingiva, the samples of tissue were taken from the discolored gingiva for histopathological examination. Results. Our results showed the presence of discolored gingiva in all four groups. It was most frequent in the examinees with fixed restorations made of Ni-Cr alloy (43,5% and less frequent in those with fixed dental restorations made of gold alloy (26,5%. Histopathological examination showed the presence of tissue foreign body granulomas with giant cells in which the metal particles were found, partially as small and partially as large particles. Conclusion. Results suggested that grayish discoloration of gingiva was present in all four groups of examinees. The highest number of examinees with discolored gingiva was in the group with restorations made of Ni-Cr alloy. Grayish discoloration of gingiva was a consequence of incorporation of metal particles into gingival tissue.

  1. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    Directory of Open Access Journals (Sweden)

    Hae Ri Kim

    2016-07-01

    Full Text Available The microstructures and mechanical properties of cobalt-chromium (Co-Cr alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures or dumbbell- (mechanical properties specimens made of Co-Cr alloys were prepared using casting (CS, milling (ML, selective laser melting (SLM, and milling/post-sintering (ML/PS. For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6. The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process.

  2. Osseointegration of KrF laser hydroxylapatite films on Ti6A14V alloy by mini-pigs: loaded osseointegration of dental implants

    Science.gov (United States)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1999-05-01

    Aim of study was to evaluate osseointegration of the KrF laser hydroxyapatite coated titanium alloy Ti6Al4V dental implants. For deposition KrF excimer laser in stainless- steel deposition chamber was used. Thickness of HA films were round 1 μm . Mini-pigs were used in this investigation. Implants were placed vertically into the lower jaw. After 14 weeks unloaded osseointegration the metal ceramic crowns were inserted. the experimental animals were sacrificed (1 year post insertion). The vertical position of implants was controlled with a radiograph. Microscopical sections were cut and ground. Sections were viewed using microscope with CCD camera. 1 year osseointegration in lower jaw confirmed by all implants presence of newly formed bone around the all implants. Laser-deposited coating the layer of fibrous connective tissue was seen only seldom. In the control group (titamium implant without cover) the fibrous connective tissue was seen between implant and newly formed bone.

  3. The complementary nature of x-ray photoelectron spectroscopy and angle-resolved x-ray diffraction part II: Analysis of oxides on dental alloys

    Science.gov (United States)

    Kerber, S. J.; Barr, T. L.; Mann, G. P.; Brantley, W. A.; Papazoglou, E.; Mitchell, J. C.

    1998-06-01

    X-ray photoelectron spectroscopy (XPS) and angle-resolved x-ray diffraction (ARXRD) were used to analyze the oxide layer on three palladium-gallium-based dental casting alloys. The oxide layers were approximately 10 Μm thick. The use of the techniques helped to determine which mechanism was responsible for oxide formation—either (a) oxide layer growth via diffusion of oxygen through the scale to the metal, causing the scale to grow at the metal-oxide interface, or (b) an oxide layer formed by metal ions diffusing through the scale to the surface and reacting with oxygen, causing the scale to grow at the oxide-air interface. The oxide growth mechanisms were correlated to previous layer adhesion results determined with biaxial flexure testing.

  4. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up.

    Science.gov (United States)

    Larsson, Christel; Drazic, Marko; Nilsson, Eddie; Vult von Steyern, Per

    2015-01-01

    Objective : The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and metal-ceramic (MC) molar crowns using a modified test set-up to produce fractures similar to those seen in vivo , i.e. fractures of the veneering material rather than complete fractures. Materials and methods : 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged before final load to fracture. Load was applied using a 7 mm diameter steel ball exerting force on the cusps with stresses directed toward the core-veneer interface. Fracture surface analysis was performed using light- and scanning electron microscopy. Results : The test design produced fractures of the veneering material rather than complete fractures. MC crowns withstood significantly ( p > 0.001) higher loads (mean 2155 N) than Y-TZP (mean 1505 N) crowns, yet both endure loads sufficient for predictable clinical use. Fracture mode differed between MC and Y-TZP. MC crowns exhibited fractures involving the core-veneer interface but without core exposure. One Y-TZP crown suffered a complete fracture, all others except one displayed fractures of the veneering material involving the core-veneer interface with core exposure. Conclusions : The test set-up produces fractures similar to those found in vivo and may be useful to evaluate the core-veneer interface of different material systems, both metals and ceramics. The study confirms suggestions from previous studies of a weaker core-veneer bond for Y-TZP compared to MC crowns.

  5. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up

    Directory of Open Access Journals (Sweden)

    Christel Larsson

    2015-01-01

    Full Text Available Objective: The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP and metal-ceramic (MC molar crowns using a modified test set-up to produce fractures similar to those seen in vivo, i.e. fractures of the veneering material rather than complete fractures. Materials and methods: 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged before final load to fracture. Load was applied using a 7 mm diameter steel ball exerting force on the cusps with stresses directed toward the core-veneer interface. Fracture surface analysis was performed using light- and scanning electron microscopy. Results: The test design produced fractures of the veneering material rather than complete fractures. MC crowns withstood significantly (p > 0.001 higher loads (mean 2155 N than Y-TZP (mean 1505 N crowns, yet both endure loads sufficient for predictable clinical use. Fracture mode differed between MC and Y-TZP. MC crowns exhibited fractures involving the core-veneer interface but without core exposure. One Y-TZP crown suffered a complete fracture, all others except one displayed fractures of the veneering material involving the core-veneer interface with core exposure. Conclusions: The test set-up produces fractures similar to those found in vivo and may be useful to evaluate the core-veneer interface of different material systems, both metals and ceramics. The study confirms suggestions from previous studies of a weaker core-veneer bond for Y-TZP compared to MC crowns.

  6. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up

    Science.gov (United States)

    Larsson, Christel; Drazic, Marko; Nilsson, Eddie; Vult von Steyern, Per

    2015-01-01

    Abstract Objective: The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and metal-ceramic (MC) molar crowns using a modified test set-up to produce fractures similar to those seen in vivo, i.e. fractures of the veneering material rather than complete fractures. Materials and methods: 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged before final load to fracture. Load was applied using a 7 mm diameter steel ball exerting force on the cusps with stresses directed toward the core-veneer interface. Fracture surface analysis was performed using light- and scanning electron microscopy. Results: The test design produced fractures of the veneering material rather than complete fractures. MC crowns withstood significantly (p > 0.001) higher loads (mean 2155 N) than Y-TZP (mean 1505 N) crowns, yet both endure loads sufficient for predictable clinical use. Fracture mode differed between MC and Y-TZP. MC crowns exhibited fractures involving the core-veneer interface but without core exposure. One Y-TZP crown suffered a complete fracture, all others except one displayed fractures of the veneering material involving the core-veneer interface with core exposure. Conclusions: The test set-up produces fractures similar to those found in vivo and may be useful to evaluate the core-veneer interface of different material systems, both metals and ceramics. The study confirms suggestions from previous studies of a weaker core-veneer bond for Y-TZP compared to MC crowns. PMID:28642899

  7. Influence of a bonding agent on the bond strength between a dental Co-Cr alloy and nine different veneering porcelains.

    Science.gov (United States)

    Al Bakkar, Hassan; Spintzyk, Sebastian; Schille, Christine; Schweizer, Ernst; Geis-Gerstorfer, Jürgen; Rupp, Frank

    2016-10-01

    Adequate bonding between dental veneering porcelains and non-precious metal alloys is a main factor for the long-term functionality of porcelain fused to metal restorations. Although a huge number of veneering porcelains are on the market, only few studies have reported about the role of bonding agents for the bond strength at their respective interface to cobalt-chromium (Co-Cr). The aim of this study was to compare the influence of a metal-ceramic bonding agent for Co-Cr alloys on the bond strength of metal-ceramic systems. The bond strength test was done according to ISO 9693 with additional detection of the first acoustic crack initiated signal while testing. The bonding agent had only minor effects on the bond strength of the different Co-Cr/ceramic systems. Only three of the nine studied systems showed statistically significant differences (pveneered with porcelains with and without a bonding agent exceeded the minimum bond strength of 25 MPa required according to ISO 9693. However, if bond strength values based on acoustic signals were calculated, values below the threshold of 25 MPa could be observed. Such findings are important for failures caused by the occurrence of early cracks.

  8. Microstructural analysis of Co-Cr dental alloy at the metal-porcelain interface: a pilot study.

    Science.gov (United States)

    Li, K C; Ting, S; Prior, D J; Waddell, J N; Swain, M V

    2014-12-01

    The purpose of the study was to observe whether conventional porcelain firings had an effect on the underlying microstructure of cobalt-chromium alloys used in porcelain-fused-to-metal systems. One as cast (non-veneered) and two porcelain veneered Co-Cr specimens layered with and without tungsten(W)-metal conditioner were manufactured and analysed. Electron backscatter diffraction was used to determine the crystal structures and grain size across the porcelain-fused-to-metal interface. No difference was found in the microstructure of the alloy in both with and without W-metal conditioner. For the porcelain fired specimens, disparately sized granular structures were observed adjacent to the metal-porcelain interfaces compared to the bulk of the metal. Ellipsoid shaped grains at the alloy surface ranged between 1-11 μm in diameter and averaged 2.70 μm (SD: 2.17 μm) for the specimen layered with W-metal conditioner and 2.86 μm (SD: 1.85 μm) for the specimen layered without W-metal conditioner. Grains located in the bulk were > 200 μm with dendritic-like features. The depth of the fine grain structure adjacent to the surface had an average depth of 15 μm. The crystal structure of the surface layer was found to be predominantly hexagonal close-packed whereas the underlying bulk was a mixture of both face-centered cubic and hexagonal close-packed phases. For the as cast specimen, similar large grains of over 200 μm was observed but exhibited no dendritic like features. In addition, no fine grains were observed at the surface region of the as cast alloy. Conventional porcelain firings altered the interfacial and bulk microstructure of the alloy while the presence of the W-metal conditioner had no influence on the underlying alloy microstructure.

  9. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, M; Margalit, D; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Tso, T; Lee, S; Rosen, E [Harvard School of Dental Medicine, Boston, MA (United States)

    2016-06-15

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  10. The influence of metal and alloy dental works on the quality of magnetic resonance imaging of the head and neck

    Czech Academy of Sciences Publication Activity Database

    Linetskiy, I.; Hubálková, H.; Starčuk jr., Zenon; Mazánek, J.

    2006-01-01

    Roč. 14, č. 2 (2006), s. 201-208 ISSN 1027-3204 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * image artefact * metallic dental work Subject RIV: FS - Medical Facilities ; Equipment

  11. Kondensasi Pada Dental Amalgam

    OpenAIRE

    Batubara, Runi Syahriani

    2011-01-01

    Amalgam merupakan campuran dari dua atau beberapa logam (alloy) yang salah satunya adalah merkuri. Kata amalgam juga didefenisikan untuk menggambarkan kombinasi atau campuran dari beberapa bahan seperti merkuri, perak, timah, tembaga, dan lainnya. Dental amalgam sendiri adalah kombinasi alloy dengan merkuri melalui suatu proses yang disebut amalgamasi. Pemanipulasian amalgam meliputi triturasi, kondensasi, carving, dan polishing. Kondensasi merupakan penekanan amalgam setelah triturasi p...

  12. 21 CFR 872.3100 - Dental amalgamator.

    Science.gov (United States)

    2010-04-01

    ... amalgamator is a device, usually AC-powered, intended to mix, by shaking, amalgam capsules containing mercury and dental alloy particles, such as silver, tin, zinc, and copper. The mixed dental amalgam material...

  13. Structure and strength of low-mercury dental amalgams prepared with liquid Hg-47.4% In alloy.

    Science.gov (United States)

    Friedman, A; Kaufman, A

    1998-06-01

    Two low-mercury amalgams: (1) low-copper lathe-cut and (2) high-copper (Tytin) were prepared by amalgamation with liquid Hg-47.4% In alloy. The strength-structure relationship of these amalgams was investigated and compared with standard amalgams (i.e. amalgams prepared with the same powders and pure mercury). The matrix phase of the low-mercury amalgam was found to be depleted of mercury and may be thought of as In4Ag9 compound with some mercury dissolved, indicating that less mercury (compared with standard amalgam) combines with silver, thus producing a strong amalgam matrix. On the other hand, an increase was observed in the consumption of the initial gamma (Ag3Sn)-phase, leading to an increase of the tin released. As a result, the potential of [HgSn]-phase formation in low-mercury amalgams increases. The observed increase in the quantity of gamma2(Sn7-8Hg)-phase in low-copper amalgam, or its appearance in high-copper amalgam (where it is normally absent), contributes to a deterioration in the strength of the investigated amalgam. The conclusion drawn was that low-mercury amalgam may be prepared with liquid Hg-47.4%In alloy but, in order to eliminate gamma2-phase formation, novel and possibly tin-free amalgamable alloys should be developed. Copyright 1998 Chapman & Hall

  14. The Bond Strength of Composite Resin to Dental Casting Alloys Using an Electro-Chemical Tin Plating System.

    Science.gov (United States)

    1985-06-01

    and ultrasonically cleaned for 10 minutes in 18 percent hydrochloric acid to remove the black film 26 Figure 3. Completed Castings Removed from...of Isosit to electrolytically etched nickel-chromium substrate. J. Dent. Res., 62: 220. Blankenau, R.J., Kelsey, W.P., Cavel , W.T., and Blankenau, D...position of Assistant Director Area Dental Laboratory, Kadena AFB, Okinawa. He will assume this position in August, 1985. FILMED 12-85 DTIC

  15. Wear properties of dental ceramics and porcelains compared with human enamel.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Rondoni, Giuseppe D; De Angelis, Francesco

    2016-03-01

    Contemporary pressable and computer-aided design/manufacturing (CAD/CAM) ceramics exhibit good mechanical and esthetic properties. Their wear resistance compared with human enamel and traditional gold based alloys needs to be better investigated. The purpose of this in vitro study was to compare the 2-body wear resistance of human enamel, gold alloy, and 5 different dental ceramics, including a recently introduced zirconia-reinforced lithium silicate ceramic (Celtra Duo). Cylindrical specimens were fabricated from a Type III gold alloy (Aurocast8), 2 hot pressed ceramics (Imagine PressX, IPS e.max Press), 2 CAD/CAM ceramics (IPS e.max CAD, Celtra Duo), and a CAD/CAM feldspathic porcelain (Vitablocs Mark II) (n=10). Celtra Duo was tested both soon after grinding and after a subsequent glaze firing cycle. Ten flat human enamel specimens were used as the control group. All specimens were subjected to a 2-body wear test in a dual axis mastication simulator for 120000 loading cycles against yttria stabilized tetragonal zirconia polycrystal cusps. The wear resistance was analyzed by measuring the vertical substance loss (mm) and the volume loss (mm(3)). Antagonist wear (mm) was also recorded. Data were statistically analyzed with 1-way ANOVA tests (α=.05). The wear depth (0.223 mm) of gold alloy was the closest to that of human enamel (0.217 mm), with no significant difference (P>.05). The greatest wear was recorded on the milled Celtra Duo (wear depth=0.320 mm), which appeared significantly less wear resistant than gold alloy or human enamel (Pceramics did not statistically differ in comparison with the human enamel. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. 21 CFR 872.3700 - Dental mercury.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental mercury. 872.3700 Section 872.3700 Food and... DENTAL DEVICES Prosthetic Devices § 872.3700 Dental mercury. (a) Identification. Dental mercury is a device composed of mercury intended for use as a component of amalgam alloy in the restoration of a...

  17. Adhesion of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys: shear bond strength and sensitivity to thermocycling.

    Science.gov (United States)

    Serra-Prat, Josep; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Àlvarez, Oscar

    2014-09-01

    New technologies have led to the introduction of new materials, so an evaluation of the adhesion of ceramics to these materials is needed. The purpose of this study was to compare the shear bond strength of dental porcelain to cast, milled, and laser-sintered cobalt-chromium alloys, and to investigate the adhesive bond and failure type after thermocycling, 90 metal cylinders (10 mm diameter and 10 mm height) were prepared from cast (30 specimens), milled (30 specimens), and laser-sintered (30 specimens) alloys. Ceramic cylinders (2.5 mm diameter and 4 mm length) were fused to the alloy cylinders. For each group, 15 specimens were thermocycled 5500 times at temperatures between 4°C and 60°C before testing. After testing, the specimen surfaces were visually examined to determine the failure mode. Differences in adhesion values according to manufacturing method, testing condition (thermocycling or no thermocycling), and interaction between the factors were evaluated with a 2-way ANOVA. The χ(2) test (95% confidence level) was performed to determine whether the failure mode was associated with the testing condition. Adhesion strengths for the nonthermocycled specimens were 42.79 ±14.14 MPa (cast), 37.56 ±9.18 MPa (milled), and 29.09 ±6.95 MPa (laser-sintered), and, for the thermocycled specimens, 16.52 ±8.96 MPa (cast), 22.21 ±13.25 MPa (milled), and 24.28 ±10.13 MPa (laser-sintered). Two-way ANOVA results indicated no statistically significant differences in adhesion among the manufacturing methods (P=.257), but statistically significant differences were observed according to both testing conditions (Papplications. No significant adhesion differences were observed between cast, milled, and laser-sintered specimens, or among thermocycled and nonthermocycled laser-sintered specimens. However, significant adhesion differences were observed among the thermocycled and nonthermocycled cast and the milled specimens. Copyright © 2014 Editorial Council for the

  18. Effects of surface treatments on bond strength of dental Ti-20Cr and Ti-10Zr alloys to porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hsi-Chen [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Wu, Shih-Ching [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taiwan (China); Ho, Wen-Fu [Department of Materials Science and Engineering, Da-Yeh University, Taiwan (China); Huang, Ling-Hsiu [Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taiwan (China); Hsu, Hsueh-Chuan, E-mail: hchsu@ctust.edu.t [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taiwan (China)

    2010-08-27

    The purpose of this study was to investigate the effect of surface treatments, including sandblasting and grinding, on the bond strength between a low-fusing porcelain and c.p. Ti, Ti-20Cr and Ti-10Zr alloys. The surface treatments were divided into 2 groups. Grinding surface treatment was applied to the first group, which served as the control, and sandblasting was applied to the second group. After treatment, low-fusing porcelain (Titankeramik) was fired onto the surface of the specimens. A universal testing machine was used to perform a 3-point bending test. The metal-ceramic interfaces were subjected to scanning electron microscopic analysis. Of the sandblasted samples, the debonding test showed that Ti-20Cr alloy had the strongest (31.50 MPa) titanium-ceramic bond (p < 005), followed by c.p. Ti (29.4 MPa) and Ti-10Zr (24.3 MPa). Of the grinded samples, Ti-20Cr alloy showed 27.3 MPa titanium-ceramic bond (p < 005), followed by c.p. Ti (14.3 MPa) and Ti-10Zr (failure). The SEM micrographs of the metal surface after debonding showed residual porcelain retained on all samples. On the whole, sandblasting surface treatment appears to have had a more beneficial effect on the Ti-ceramic bond strength than grinding surface treatment. Furthermore, surface treatment of Ti-20Cr with either grinding or sandblasting resulted in adequate bond strength, which exceeded the lower limit value in the ISO 9693 standard (25 MPa).

  19. A comparative evaluation between new ternary zirconium alloys as alternative metals for orthopedic and dental prosthetic devices.

    Science.gov (United States)

    Shyti, Genti; Rosalbino, Francesco; Macciò, Daniele; Scarabelli, Linda; Quarto, Rodolfo; Giannoni, Paolo

    2014-02-01

    We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5VM1.0  ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5  Nb1.5Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5  Nb1.5Mo1.0 and Zr97.5   Nb1.5Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5   Nb1.5   Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5Nb1.5Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5Nb1.5Ta1.0 seems to be the most appealing.

  20. Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs

    Science.gov (United States)

    Dostalova, Tatjana; Himmlova, Lucia; Jelinek, Miroslav; Grivas, Christos

    2001-04-01

    This study was performed with the objective of evaluating osseointegration of titanium alloy Ti6Al4V dental implants coated with hydroxylapatite (HA) deposited by a KrF laser. For this a KrF excimer laser and stainless-steel deposition chamber were used. The thickness of the HA films was approximately 1 micrometers . IN this investigation experimental animals minipigs were used; the implants were placed vertically into the lower jaw. After 14 weeks of unloaded osseointegration, metal-ceramic crowns were inserted and, at the same time, fluorescent solution was injected into the experimental animals. Six months after insertion of crowns the animals were sacrificed. The vertical position of the implants was checked by a radiograph. Microscopic sections were cut and ground, and the sections were examined under polarized and fluorescent light using a microscope with a charge coupled device camera. The six month long osseointegration in the lower jaw has confirmed the presence of newly formed bone around all the implants. In the experimental group, which had a laser-deposited coating, the layer of fibrous connective tissue was seen only randomly. In the control group (titanium implant without a cover) the fibrous connective tissue between the implant and the newly formed bone was observed more frequently, but this difference was not significant.

  1. Changed clinical chemistry pattern in blood after removal of dental amalgam and other metal alloys supported by antioxidant therapy.

    Science.gov (United States)

    Frisk, Peter; Danersund, Antero; Hudecek, Romuald; Lindh, Ulf

    2007-01-01

    This study aimed to investigate a possible connection between removal of dental amalgam restorations supported by antioxidant therapy and indicative changes of clinical chemistry parameters. A group of 24 patients, referred for complaints related to amalgam restorations, underwent a removal of their amalgams. All patients were treated with antioxidants (vitamin B-complex, vitamin C, vitamin E, and sodium selenite). An age- and sex-matched control group of 22 individuals was also included. The mercury (Hg) and selenium (Se) concentration in plasma, Hg concentration in erythrocytes, and 17 clinical chemistry variables were examined in three groups: patients before amalgam removal (Before), patients after amalgam removal (After), and control individuals (Control). The Hg and Se values decreased (p p amalgam removal. The variables serum lactate dehydrogenase (serum LDH) and serum sodium differed significantly both when comparing Control with Before (p p p < 0.05). Multivariate statistics (discriminant function analysis) could separate the groups Before and After with only one misclassification.

  2. Similar Marginal Precision of Zirconia- and Metal-Ceramic Fixed Dental Prostheses

    DEFF Research Database (Denmark)

    Nicolaisen, Maj Høygaard; Bahrami, Golnosh; Schropp, Lars

    Similar Marginal Precision of Zirconia- and Metal-Ceramic Posterior Fixed Dental Prostheses Objective: An increased gap between restoration and prepared tooth causes more luting material to be exposed to the oral environment resulting in increased deterioration, leading to bacterial accumulation...... which can cause marginal periodontitis and secondary caries. The purpose of this randomized clinical study was to compare the marginal precision of CAD/CAM Zirconia-ceramic (ZC) and cast gold alloy metal-ceramic (MC) posterior fixed dental prostheses. Methods: As part of an ongoing randomized controlled...... clinical trial, 34 patients were randomized into two groups to receive a 3-unit fixed dental prosthesis (FDP) replacing a second premolar or a first molar. 17 ZC FDPs (BeCe CAD Zirkon, BEGO with Vita VM9, VITA ) and 17 MC FDPs (Bio PontoStar, BEGO with Vita VM13, VITA). All FDPs were made in accordance...

  3. Interaction between dental metals and antioxidants, assessed by cytotoxicity assay and ESR spectroscopy.

    Science.gov (United States)

    Kinoshita, Naoto; Yamamura, Takahiko; Teranuma, Hiroshi; Katayama, Tadashi; Tamanyu, Mikako; Negoro, Takaharu; Satoh, Kazue; Sakagami, Hiroshi

    2002-01-01

    Among dental metals, copper showed the highest cytotoxicity against human oral squamous cell carcinoma and human submandibular gland carcinoma cells, followed by palladium-alloy, gold and silver. Normal human cells (gingival fibroblast, pulp cells, periodontal ligament fibroblast) were relatively resistant to these metals. The palladium-alloy failed to induce internucleosomal DNA fragmentation, a biochemical hallmark of apoptosis, in human promyelocytic leukemic HL-60 cells. The cytotoxic activity of the palladium-alloy was significantly reduced by a non-cytotoxic concentration of N-acetyl-L-cysteine, or more efficiently by sodium ascorbate. However, higher concentrations of sodium ascorbate enhanced the cytotoxic activity of palladium-alloy. ESR spectroscopy showed that the palladium-alloy enhanced the intensity of ascorbate radical, suggesting the possible interaction between metals and antioxidants. All metals, except copper, did not significantly affect the generation of superoxide anion (by hypoxanthine-xanthine oxidase reaction), hydroxyl radical (by Fenton reaction) and nitric oxide (from NOC-7 in the presence of C-PTIO). These data demonstrate for the first time that antioxidants modify the biological activity of dental metals.

  4. Multiple allergies to metal alloys

    Directory of Open Access Journals (Sweden)

    Mei-Eng Tu

    2011-06-01

    Conclusions: Metal alloys may induce multiple metal allergies. Patients suspected of having a metal allergy should be patch tested with an extended series of metals. We recommend adding palladium and gold, at least, to the standard series.

  5. Synthesis of new silane coupling agents with a trimellitic anhydride group and application as primers for ceramics and alloys.

    Science.gov (United States)

    Kurata, Shigeaki; Umemoto, Kozo

    2007-11-01

    With a view to improving the bond strength of resin to dental ceramics and alloys, new silane coupling agents, namely 4-trichlorosilylpropyl- and 4-trimethoxysilylpropyl-trimellitic anhydride (4-CSTA and 4-MSTA, respectively), were synthesized. In addition, silane mixtures of 4-CSTA with 3-methacryloyloxypropyltrimethoxysilane (3-MPS) and 4-MSTA with 3-MPS were used as primers for adhesion of poly (methyl methacrylate) to glass, silver-palladium-gold alloy (Ag-Pd alloy), and cobalt-chromium alloy (Co-Cr alloy). The tensile bond strengths of resin to glass using 4-CSTA+3-MPS and 4-MSTA+3-MPS were 28.5 +/- 5.3 and 23.9 +/- 8.1 MPa respectively. With the metal alloys, the strengths were 14.8 +/- 5.3 MPa for Ag-Pd alloy and 24.7 +/- 7.2 MPa for Co-Cr alloy. In the light of these results obtained, it seemed that the mixture of 4-MSTA and 3-MPS was an effective primer for both metals and ceramics.

  6. Quantitative analysis of leaching of different metals in human saliva from dental casting alloys: An in vivo study.

    Science.gov (United States)

    Siddharth, Ramashanker; Gautam, Roopali; Chand, Pooran; Agrawal, Kaushal Kishor; Singh, Raghuwar Dayal; Singh, Balendra Pratap

    2015-01-01

    The issue of biomaterial-derived ionic release in various sites of the human body has attracted the interest of many investigators because of the possibility that debris or degradation products elicit a foreign body reaction or have a role in the induction of pathological processes. The purpose was to evaluate the saliva of denture wearers after insertion of the prosthesis for leaching of metals from metallic denture. Total 20 subjects of age group of 40-60 years including both males (10) and females (10) were selected for the study. Total subjects were divided into 2 groups each containing 10 subjects, Group I (control group): Subjects having dentition intact up to second molar and free of any dental restoration; Group II (study group): Partially edentulous subjects rehabilitated with cast-metal removable partial denture. Saliva samples were taken at three stages that is, 1 h, 24 h and 72 h after the denture insertion from subjects of study group as well as from the control group. Atomic absorption spectroscopy (AAS) was used to estimate the concentration of elemental ions. Obtained data's were analyzed using SPSS (Statistical Package for Social Sciences) version 15.0 statistical analysis software. The values were represented in a number (%) and mean ± standard deviation. At 1 h, 24 h and 72 h after the denture insertion in study group, chromium (Cr) had statistically significant higher mean concentration as compared to manganese (Mn) (P Metal-based dentures show maximum leaching immediately after wearing of the prosthesis which decreased significantly over the period of 3 days. Cr and Mn were the metal ions mainly found in saliva of cast partial denture wearer. No concentration of cobalt, molybdenum (Mo) and iron (Fe) was found in saliva of metal base denture wearer. There was a significant change in concentration of elutes in saliva in first 72 h/3 days making time an effective variable was observed.

  7. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  8. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.

    Science.gov (United States)

    Qiu, Jing; Yu, Wei-Qiang; Zhang, Fu-Qiang; Smales, Roger J; Zhang, Yi-Lin; Lu, Chun-Hui

    2011-02-01

    This study evaluated the corrosion behaviour and surface properties of a commercial cobalt-chromium (Co-Cr) alloy and two nickel-chromium (Ni-Cr) alloys [beryllium (Be)-free and Be-containing] before and after a simulated porcelain-firing process. Before porcelain firing, the microstructure, surface composition and hardness, electrochemical corrosion properties, and metal-ion release of as-cast alloy specimens were examined. After firing, similar alloy specimens were examined for the same properties. In both as-cast and fired conditions, the Co-Cr alloy (Wirobond C) showed significantly more resistance to corrosion than the two Ni-Cr alloys. After firing, the corrosion rate of the Be-free Ni-Cr alloy (Stellite N9) increased significantly, which corresponded to a reduction in the levels of Cr, molybdenum (Mo), and Ni in the surface oxides and to a reduction in the thickness of the surface oxide film. The corrosion properties of the Co-Cr alloy and the Be-containing Ni-Cr alloy (ChangPing) were not significantly affected by the firing process. Porcelain firing also changed the microstructure and microhardness values of the alloys, and there were increases in the release of Co and Ni ions, especially for Ni from the Be-free Ni-Cr alloy. Thus, the corrosion rate of the Be-free Ni-Cr alloy increased significantly after porcelain firing, whereas the firing process had little effect on the corrosion susceptibility of the Co-Cr alloy and the Be-containing Ni-Cr alloy. © 2011 Eur J Oral Sci.

  9. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  10. Dental Amalgam

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam Dental Amalgam Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Dental amalgam is a dental filling material which is used ...

  11. Laser and plasma dental soldering techniques applied to Ti-6Al-4V alloy: ultimate tensile strength and finite element analysis.

    Science.gov (United States)

    Castro, Morgana G; Araújo, Cleudmar A; Menegaz, Gabriela L; Silva, João Paulo L; Nóbilo, Mauro Antônio A; Simamoto Júnior, Paulo Cézar

    2015-05-01

    The literature provides limited information regarding the performance of Ti-6Al-4V laser and plasma joints welded in prefabricated bars in dental applications. The purpose of this study was to evaluate the mechanical strength of different diameters of Ti-6Al-4V alloy welded with laser and plasma techniques. Forty-five dumbbell-shaped rods were created from Ti-6Al-4V and divided into 9 groups (n=5): a control group with 3-mm and intact bars; groups PL2.5, PL3, PL4, and PL5 (specimens with 2.5-, 3-, 4-, and 5-mm diameters welded with plasma); and groups L2.5, L3, L4, and L5 (specimens with 2.5-, 3-, 4-, and 5-mm diameters welded with laser). The specimens were tested for ultimate tensile strength (UTS), and elongation percentages (EP) were obtained. Fractured specimens were analyzed by stereomicroscopy, and welded area percentages (WAP) were calculated. Images were made with scanning electron microscopy. In the initial analysis, the data were analyzed with a 2-way ANOVA (2×4) and the Tukey Honestly Significant Difference (HSD) test. In the second analysis, the UTS and EP data were analyzed with 1-way ANOVA, and the Dunnett test was used to compare the 4 experimental groups with the control group (α=.05). The Pearson and Spearman correlation coefficient tests were applied to correlate the study factors. Finite element models were developed in a workbench environment with boundary conditions simulating those of a tensile test. The 2-way ANOVA showed that the factors welding type and diameter were significant for the UTS and WAP values. However, the interaction between them was not significant. The 1-way ANOVA showed statistically significant differences among the groups for UTS, WAP, and EP values. The Dunnett test showed that all the tested groups had lower UTS and EP values than the control group. The 2.5- and 3-mm diameter groups showed higher values for UTS and WAP than the other test groups. A positive correlation was found between welded area percentage and UTS

  12. A new route for synthesis of silver:gold alloy nanoparticles loaded within phosphatidylcholine liposome structure as an effective antibacterial agent against Pseudomonas aeruginosa.

    Science.gov (United States)

    Salehi, Amir H; Montazer, Majid; Toliyat, Tayebeh; Mahmoudi-Rad, Mahnaz

    2015-03-01

    Ag:Au alloy nanoparticles were successfully synthesized through the new route using co-reduction method with silver nitrate, chloroauric acid, cetyl trimethyl ammonium bromide (CTAB) and sodium borohydride at room temperature. The Ag:Au alloy nanoparticles were then loaded within the phosphatidylcholine (97%) liposome structure. Various molar ratios of phosphotidylcholine and CTAB to the total metals were investigated showing its importance on the stability of nanocomposites suspension. The size distribution and morphology of encapsulated nanoparticles within the liposome structure were studied via ultraviolet (UV)-visible spectrum, transmission electron microscope (TEM) micrographs, and dynamic light scattering data. The synthesis of alloy nanoparticles were confirmed with formation of single band at 430, 465 and 500 nm for 75:25, 50:50 and 25:75 Ag:Au mole ratios, respectively. The TEM micrographs of different samples indicated formation of three various nanocomposite structures with size of 82-300 nm. The antibacterial activities of Ag:Au nanocomposites were studied against Pseudomonas aeruginosa through well-diffusion agar. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by Broth microdilution method. The results showed that 10 ppm nanocomposite reasonably killed the above bacteria.

  13. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. 21 CFR 872.3640 - Endosseous dental implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  15. 21 CFR 872.3110 - Dental amalgam capsule.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental amalgam capsule. 872.3110 Section 872.3110...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3110 Dental amalgam capsule. (a) Identification. A dental amalgam capsule is a container device in which silver alloy is intended to be mixed with mercury...

  16. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy

    Directory of Open Access Journals (Sweden)

    Sharad Gupta

    2012-01-01

    Conclusion: Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in microstructure.

  17. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  18. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Correa, D.R.N.; Vicente, F.B. [UNESP — Univ. Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); Donato, T.A.G.; Arana-Chavez, V.E. [USP — Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biologia Oral e Biomateriais, 05.508-900, São Paulo, SP (Brazil); Buzalaf, M.A.R. [USP — Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, 17.012-901, Bauru, SP (Brazil); Grandini, C.R., E-mail: betog@fc.unesp.br [UNESP — Univ. Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil)

    2014-01-01

    New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti–Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti–Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. - Highlights: • Ti–Zr alloys for biomedical applications were developed. • Only α′ phase was observed. • Influence of zirconium concentrations on the properties of Ti–Zr alloys was analyzed. • No cytotoxic effects were observed.

  19. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications

    International Nuclear Information System (INIS)

    Correa, D.R.N.; Vicente, F.B.; Donato, T.A.G.; Arana-Chavez, V.E.; Buzalaf, M.A.R.; Grandini, C.R.

    2014-01-01

    New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti–Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti–Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. - Highlights: • Ti–Zr alloys for biomedical applications were developed. • Only α′ phase was observed. • Influence of zirconium concentrations on the properties of Ti–Zr alloys was analyzed. • No cytotoxic effects were observed

  20. Hallmarking as an essential need of gold industry

    International Nuclear Information System (INIS)

    Mahmood, K.; Alam, S.; Ahmed, T.

    2006-01-01

    As gold is a soft metal, for Jewellery making it is alloyed with Silver or Copper so that its strength may increase. Other main alloying elements include; Zinc, Cadmium and Nickel. These alloying elements help to reduce cost, improve appearance and to improve chemical properties of gold. The percentage of alloying elements determines the caratages of gold. The gold Jewellery sold in local market is often under-carated. In order to improve the quality of product sold, complete quality assessment of gold should be done. A complete quality assessment includes both Assaying and Hallmarking. Assaying is the analysis of an individual sample of gold from a customer to find out it's composition and Hallmarking refers to physically marking: a piece of Jewellery according to specific laws to certify the purity of metal. In this paper we have assessed and compared the quality of locally manufactured gold ornaments and its alloying components with international market as well as standards of gold and its alloys. And as Hallmarking is one of the main strategic initiatives to improve the quality of product sold for domestic and export consumption, this paper discusses the necessary steps leading to Hallmarking. We have used micro-XRF spectrometer for assaying and Laser Engraving machine for the purpose of Hallmarking. (author)

  1. Gold alloys: study of the microstructural, mechanical characteristics and final optimization of production parameters for the realization of full and cable pipe chains

    OpenAIRE

    Cason, Claudio

    2017-01-01

    The gold market is one of the major world markets and the Italian companies place the country as one of the major players in this sector. However, the production in these companies is mostly based on the use of artisan skills, without investing in research and studies about the production processes of these materials. In fact, often the process depends on a "craft" way of working, in which the technical and scientific knowledge are dictated more by experience than by a systematic scientific a...

  2. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen.

    Science.gov (United States)

    Shen, Xiaomei; Liu, Wenqi; Gao, Xuejiao; Lu, Zhanghui; Wu, Xiaochun; Gao, Xingfa

    2015-12-23

    Metal and alloy nanomaterials have intriguing oxidase- and superoxide dismutation-like (SOD-like) activities. However, origins of these activities remain to be studied. Using density functional theory (DFT) calculations, we investigate mechanisms of oxidase- and SOD-like properties for metals Au, Ag, Pd and Pt and alloys Au4-xMx (x = 1, 2, 3; M = Ag, Pd, Pt). We find that the simple reaction-dissociation of O2-supported on metal surfaces can profoundly account for the oxidase-like activities of the metals. The activation (Eact) and reaction energies (Er) calculated by DFT can be used to effectively predict the activity. As verification, the calculated activity orders for series of metal and alloy nanomaterials are in excellent agreement with those obtained by experiments. Briefly, the activity is critically dependent on two factors, metal compositions and exposed facets. On the basis of these results, an energy-based model is proposed to account for the activation of molecular oxygen. As for SOD-like activities, the mechanisms mainly consist of protonation of O2(•-) and adsorption and rearrangement of HO2(•) on metal surfaces. Our results provide atomistic-level insights into the oxidase- and SOD-like activities of metals and pave a way to the rational design of mimetic enzymes based on metal nanomaterials. Especially, the O2 dissociative adsorption mechanism will serve as a general way to the activation of molecular oxygen by nanosurfaces and help understand the catalytic role of nanomaterials as pro-oxidants and antioxidants.

  3. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles – A review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Sharma, Anoop Kumar; Poulsen, Morten

    2015-01-01

    . In addition, gold released from dental restorations has been reported to increase the risk of developing gold hypersensitivity. Regarding genotoxicity, in vitro studies indicate that gold nanoparticles induce DNA damage in mammalian cells. In vivo, gold nanoparticles induce genotoxic effects in Drosophila...

  4. Effects of Ar or O2 Gas Bubbling for Shape, Size, and Composition Changes in Silver-Gold Alloy Nanoparticles Prepared from Galvanic Replacement Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jahangir Alam

    2013-01-01

    Full Text Available The galvanic replacement reaction between silver nanostructures and AuCl4- solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Effects of Ar or O2 gas bubbling for the formation of Ag-Au alloy nanoparticles by the galvanic replacement between spherical Ag nanoparticles and AuCl4- especially were studied in ethylene glycol (EG at 150°C. The shape, size, and composition changes occur rapidly under O2 bubbling in comparison with those under Ar bubbling. The major product after 60 min heating under Ar gas bubbling was perforated Ag-Au alloy particles formed by the replacement reaction and the minor product was ribbon-type particles produced from splitting off some perforated particles. On the other hand, the major product after 60 min heating under O2 gas bubbling was ribbon-type particles. In addition, small spherical Ag particles are produced. They are formed through rereduction of Ag+ ions released from the replacement reaction and oxidative etching of Ag nanoparticles by O2/Cl− in EG.

  5. Corrosion and tarnish of dental silver-based alloys in 0.1% Na2S and Ringer's solutions. (Part 1) Electrochemical study.

    Science.gov (United States)

    Endo, K; Araki, Y; Ohno, H

    1989-06-01

    The corrosion behavior of three silver-based alloys, Ag-Sn-Zn, Ag-In, and Ag-Pd-Cu, were investigated by potentiodynamic anodic polarization analysis and the polarization resistance method in 0.1% Na2S and Ringer's solutions. The corrosion activity of the Ag-Sn-Zn alloy was higher in Ringer's solution than in the 0.1% Na2S solution. In contrast, the corrosion rate of the Ag-Pd-Cu alloy was approximately 500 times higher in the 0.1% Na2S solution than in Ringer's solution. The results show that the generally accepted concept that tarnish is merely a surface discoloration due to the deposition of insoluble products is inadequate. The alloy discolors while being severely attacked in the presence of sulfides. For the Ag-In alloy, the corrosion activity in the 0.1% Na2S solution was as high as in Ringer's solution. These silver-based alloys exhibit different electrochemical activities in different solutions. The test solutions for corrosion tests must be carefully chosen for each alloy system through a screening test to replicate the predominant corrosion reaction proceeding in the oral environment.

  6. Corrosion Response of Ti6Al4V and Ti15Mo Dental Implant Alloys in the Presence of Listerine Oral Rinse

    Directory of Open Access Journals (Sweden)

    Rahul Bhola

    2013-01-01

    Full Text Available The influence of a commonly used antibacterial mouth rinse, Listerine, on the corrosion behavior of one of the commonly used titanium alloys Ti6Al4V (two-phase structure, i.e., α and β and a newer Ti15Mo (single β phase in normal saline solution has been investigated using electrochemical techniques. Interfacial electrochemical changes occurring at the oxide-solution interface have been analysed using EIS circuit modeling. Listerine acts as a corrosion inhibitor for Ti15Mo alloy and a corrosion promoter for Ti6Al4V alloy.

  7. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    Science.gov (United States)

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  8. Development of Ag-Pd-Au-Cu alloys for multiple dental applications. Part 2. Mechanical properties of experimental Ag-Pd-Au-Cu alloys containing Sn or Ga for ceramic-metal restorations.

    Science.gov (United States)

    Goto, S; Nakai, A; Miyagawa, Y; Ogura, H

    2001-06-01

    Eighteen Ag-Pd-Au-Cu alloys, consisting of nine Ag-Pd-Au-Cu mother compositions (Pd: 20, 30 or 40%, Au: 20%, Cu: 10, 15 or 20%, Ag: balance) containing either 5% Sn or 5% Ga as an additive metal, were experimentally prepared. Tensile strength, proof stress, elongation, elastic modulus, and Vickers hardness of these alloys were evaluated to clarify the potential of these alloys for use as ceramic-metal restorations as well as the effects of the Pd and Cu contents on their mechanical properties. The tensile strength, proof stress, elongation, elastic modulus and Vickers hardness of the 18 experimental alloys were in the range of 410.0-984.0 MPa, 289.7-774.3 MPa, 2.2-23.7%, 81.3-123.0 GPa and 135.7-332.3 HV1, respectively. Ten of the 18 experimental alloys can be used for ultra-low fusing ceramics based on their proof stress, elastic modulus, elongation and hardness. Between the Ga- and Sn-added alloys, differences in tensile strength, proof stress, elongation and hardness were found at several Ag-Pd-Au-Cu compositions.

  9. American Academy of Dental Sleep Medicine

    Science.gov (United States)

    ... by @AADSMorg Contact Us Site Map Privacy Policy News RSS Links Find A Dentist Platinum Sponsors Dental Sleep Solutions Nierman Practice Management ProSomnus Sleep Technologies Space Maintainers Laboratory Gold Sponsors Airway Metrics LLC ...

  10. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials.

    Science.gov (United States)

    Checketts, Matthew R; Turkyilmaz, Ilser; Asar, Neset Volkan

    2014-11-01

    Bacterial plaque must be routinely removed from teeth, adjacent structures, and prostheses. However, the removal of this plaque can inadvertently increase the risk of future bacterial adhesion. The purpose of this investigation was to assess the change in the surface roughness of 3 different surfaces after dental prophylactic instrumentation and how this influenced bacterial adhesion. Forty specimens each of Type III gold alloy, lithium disilicate, and zirconia were fabricated in the same dimensions. The specimens were divided into 4 groups: ultrasonic scaler, stainless steel curette, prophylaxis cup, and control. Pretreatment surface roughness measurements were made with a profilometer. Surface treatments in each group were performed with a custom mechanical scaler. Posttreatment surface roughness values were measured. In turn, the specimens were inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces viscosus. Bacterial adhesion was assessed by rinsing the specimens with sterile saline to remove unattached cells. The specimens were then placed in sterile tubes with 1 mL of sterile saline. The solution was plated and quantified. Scanning electron microscopy was performed. The statistical analysis of surface roughness was completed by using repeated-measures single-factor ANOVA with a Bonferroni correction. The surface roughness values for gold alloy specimens increased as a result of prophylaxis cup treatment (0.221 to 0.346 Ra) (Pbacterial adhesion to gold alloy proved inconclusive. A quantitative comparison indicated no statistically significant differences in pretreatment and posttreatment surface roughness values for lithium disilicate and zirconia specimens. In spite of these similarities, the overall bacterial adherence values for lithium disilicate were significantly greater than those recorded for gold alloy or zirconia (PInstrumentation of the lithium disilicate and zirconia with the stainless steel curette significantly increased

  11. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  12. Influence of NiTi alloy on the root canal shaping capabilities of the ProTaper Universal and ProTaper Gold rotary instrument systems

    Directory of Open Access Journals (Sweden)

    Jussaro Alves DUQUE

    Full Text Available Abstract Objective This study aimed to evaluate the influence of the NiTi wire in Conventional NiTi (ProTaper Universal PTU and Controlled Memory NiTi (ProTaper Gold PTG instrument systems on the quality of root canal preparation. Material and Methods Twelve mandibular molars with separate mesial canals were scanned using a high-definition microcomputed tomography system. The PTU and PTG instruments were used to shape twelve mesial canals each. The canals were scanned after preparation with F2 and F3 instruments of the PTU and PTG systems. The analyzed parameters included the remaining dentin thickness at the apical and cervical levels, root canal volume and untouched canal walls. Data was analyzed for statistical significance by the Friedman and Dunn’s tests. For the comparison of data between groups, the Mann-Whitney test was used. Results In the pre-operative analysis, there were no statistically significant differences between the groups in terms of the area and volume of root canals (P>.05. There was also no statistically significant difference between the systems with respect to root canal volume after use of the F2 and F3 instruments. There was no statistical difference in the dentin thickness at the first apical level between, before and after instrumentation for both systems. At the 3 cervical levels, the PTG maintained centralization of the preparation on the transition between the F2 and F3 instruments, which did not occur with the PTU. Conclusion The Conventional NiTi (PTU and Controlled Memory NiTi (PTG instruments displayed comparable capabilities for shaping the straight mesial root canals of mandibular molars, although the PTG was better than the PTU at maintaining the centralization of the shape in the cervical portion.

  13. Influence of NiTi alloy on the root canal shaping capabilities of the ProTaper Universal and ProTaper Gold rotary instrument systems.

    Science.gov (United States)

    Duque, Jussaro Alves; Vivan, Rodrigo Ricci; Cavenago, Bruno Cavalini; Amoroso-Silva, Pablo Andrés; Bernardes, Ricardo Affonso; Vasconcelos, Bruno Carvalho de; Duarte, Marco Antonio Hungaro

    2017-01-01

    This study aimed to evaluate the influence of the NiTi wire in Conventional NiTi (ProTaper Universal PTU) and Controlled Memory NiTi (ProTaper Gold PTG) instrument systems on the quality of root canal preparation. Twelve mandibular molars with separate mesial canals were scanned using a high-definition microcomputed tomography system. The PTU and PTG instruments were used to shape twelve mesial canals each. The canals were scanned after preparation with F2 and F3 instruments of the PTU and PTG systems. The analyzed parameters included the remaining dentin thickness at the apical and cervical levels, root canal volume and untouched canal walls. Data was analyzed for statistical significance by the Friedman and Dunn's tests. For the comparison of data between groups, the Mann-Whitney test was used. In the pre-operative analysis, there were no statistically significant differences between the groups in terms of the area and volume of root canals (P>.05). There was also no statistically significant difference between the systems with respect to root canal volume after use of the F2 and F3 instruments. There was no statistical difference in the dentin thickness at the first apical level between, before and after instrumentation for both systems. At the 3 cervical levels, the PTG maintained centralization of the preparation on the transition between the F2 and F3 instruments, which did not occur with the PTU. Conclusion The Conventional NiTi (PTU) and Controlled Memory NiTi (PTG) instruments displayed comparable capabilities for shaping the straight mesial root canals of mandibular molars, although the PTG was better than the PTU at maintaining the centralization of the shape in the cervical portion.

  14. Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs

    Czech Academy of Sciences Publication Activity Database

    Dostálová, T.; Jelínek, Miroslav; Grivas, C.

    2001-01-01

    Roč. 6, č. 2 (2001), s. 239-243 ISSN 1083-3668 Institutional research plan: CEZ:AV0Z1010914 Keywords : osseointegration * titanium alloy * KrF laser Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.292, year: 2001

  15. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that is...

  16. 21 CFR 872.3080 - Mercury and alloy dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury and alloy dispenser. 872.3080 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3080 Mercury and alloy dispenser. (a) Identification. A mercury and alloy dispenser is a device with a spring-activated valve intended to measure and...

  17. A concise overview of dental implantology

    Directory of Open Access Journals (Sweden)

    Olanrewaju Abdurrazaq Taiwo

    2015-01-01

    Full Text Available Background: The emergence of osseointegrated dental implants has resulted in several applications in diverse clinical settings. Hence, has contributed to the suitable replacement of missing teeth and the realization of an optimal facial appearance. This paper describes the benefits, applications, contraindications, and complications of dental implants in contemporary dental practice. Materials and Methods: An electronic search was undertaken in PUBMED without time restriction for appropriate English papers on dental implants based on a series of keywords in different combinations. Results: Fifty-eight acceptable, relevant articles were selected for review. The review identified the various components of dental implants, classification, and brands. It also looked at osseointegration and factors promoting and inimical to it. It also explored primary and secondary stability; and patients' selection for a dental implant. Complications of dental implants were also highlighted. Conclusion: With over 95% success rate, dental implants remain the gold standard for achieving aesthetic and functional oral rehabilitation.

  18. 21 CFR 872.3580 - Preformed gold denture tooth.

    Science.gov (United States)

    2010-04-01

    ... tooth in a fixed or removable partial denture. (b) Classification. Class I (general controls). The... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Preformed gold denture tooth. 872.3580 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3580 Preformed gold denture tooth. (a...

  19. Red gold analysis by using gamma absorption tchnique

    International Nuclear Information System (INIS)

    Kurtoglu, A.; Tugrul, A.B.

    2001-01-01

    Gold is a valuable metal and also preferable materials for antique artefacts and some advanced technology products. It can be offered for the analysis of the gold as namely; neutron activation analysis, X-ray florescence technique, Auger spectroscopy, atomic absorption and wet chemistry. Some limitations exist in practice for these techniques, especially in the points of financial and applicability concepts. An advanced a practical technique is gamma absorption technique for the gold alloys. This technique is based on discontinuities in the absorption coefficient for gamma rays at corresponding to the electronic binding energies of the absorber. If irradiation is occurred at gamma absorption energy for gold, absorption rates of the red gold changes via the gold amounts in the alloy. Red gold is a basic and generally preferable alloy that has copper and silver additional of the gold in it. The gold amount defines as carat of the gold. Experimental studies were observed for four different carats of red gold; these are 8, 14, 18 and 22 carats. K-edge energy level of the gold is on 80 keV energy. So, Ba-133 radioisotope is preferred as the gamma source because of it has gamma energy peak in that energy. Experiments observed in the same geometry for all samples. NaI(Tl) detector and multichannel analyser were used for measurements. As a result of the experiments, the calibration curves could be drawn for red gold. For examine this curve, unknown samples are measured in experimental set and it can be determined the carat of it with the acceptability. So the red gold analysis can be observed non-destructively, easily and quickly by using the gamma absorption technique

  20. The interaction of gold with gallium arsenide

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  1. The future of dental amalgam: a review of the literature. Part 7: Possible alternative materials to amalgam for the restoration of posterior teeth.

    Science.gov (United States)

    Eley, B M

    1997-07-12

    This is the last in a series of articles on the future of dental amalgam. It considers possible alternative materials to amalgam for the restoration of posterior teeth. The materials discussed are gold inlays, gold foil, gallium alloys, and tooth coloured non-metal alternatives including glass-ionomer cements, composite resins, glass-ionomer-resin hybrids, compomers and ceramics. The clinical indications for these restorations are first described along with their potential clinical problems and their mean survival rates in comparison with dental amalgam. Secondly, the safety of composite resins is considered and potential toxic and hypersensitive effects of these materials are discussed. Finally, it is concluded that the present evidence does not appear to demonstrate that dental amalgam is hazardous to the health of the general population. It does, however, recommend that in continuing to use amalgam dentists must use strict mercury hygiene procedures to avoid risk to their staff and contamination of the environment. It seems that mercury contamination of the environment is likely to be the main reason for any future government action against the continued clinical use of dental amalgam.

  2. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  3. Dental sealants

    Science.gov (United States)

    Pit and fissure sealants ... that your bite is not right Lose your sealant ... American Dental Association. Dental sealants. Updated October 19, 2016. ADA.org Web site. www.ada.org/en/member-center/oral-health-topics/dental-sealants . ...

  4. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants.

    Science.gov (United States)

    Chandar, Sanchitha; Kotian, Ravindra; Madhyastha, Prashanthi; Kabekkodu, Shama Prasada; Rao, Padmalatha

    2017-01-01

    The aim of this study was to investigate the cytotoxicity in human gingival fibroblast by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and corrosion behavior by potentiodynamic polarization technique of commercially pure titanium (Ti 12) and its alloy Ti-6Al-4V (Ti 31). In the present in vitro study, cytotoxicity of Ti 12 and Ti 31 in human gingival fibroblast by MTT assay and the corrosion behavior by potentiodynamic polarization technique in aqueous solutions of 0.1 N NaCl, 0.1 N KCl, and artificial saliva with and without NaF were studied. The independent t -test within materials and paired t-test with time interval showed higher cell viability for Ti 12 compared to Ti 31. Over a period, cell viability found to stabilize in both Ti 12 and Ti 31. The effects of ions of Ti and alloying elements aluminum and vanadium on the cell viability were found with incubation period of cells on samples to 72 h. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO 2 and additional metal oxides. The multiphase alloy Ti-6Al-4V showed more surface pitting. The commercially pure Ti showed better cell viability compared to Ti 31. Less cell viability in Ti 31 is because of the presence of aluminum and vanadium. A significant decrease in cytotoxicity due to the formation of TiO 2 over a period of time was observed both in Ti 12 and Ti 31. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. Ti 31 alloy showed surface pitting because of its multiphase structure.

  5. Study of the microstructural and mechanical properties of titanium-niobium-zirconium based alloys processed with hydrogen and powder metallurgy for use in dental implants

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio

    2009-01-01

    Hydrogen has been used as pulverization agent in alloys based on rare earth and transition metals due to its extremely high diffusion rate even on low temperatures. Such materials are used on hydrogen storage dispositives, generation of electricity or magnetic fields, and are produced by a process which the first step is the transformation of the alloy in fine powder by miling. Besides those, hydrogenium is also being used to obtain alloys based on titanium - niobium - zirconium in the pulverization. Powder metallurgy is utilized on the production of these alloys, making it possible to obtain structures with porous surface as result, requirement for its application as biomaterials. Other advantages of powder metallurgy usage include better surface finish and better microstructural homogeneity. In this work samples were prepared in the Ti-13Nb-13Zr composition. The hydrogenation was performed at 700 degree C, 600 degree C, and 500 degree C for titanium, niobium and zirconium respectively. After hydrogenation, the milling stage was carried out on high energy planetary ball milling with 200rpm during 90 minutes, and also in conventional ball milling for 30 hours. Samples were pressed in uniaxial press, followed by isostatic cold press, and then sintered at 1150 degree C for 7-13 hours. Microstructural properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction. Mechanical and structural properties determined were density, microhardness and moduli of elasticity. The sample sintered at 1150 degree C for 7h, hydrogenated using 10.000 mbar and produced by milling on high energy planetary ball milling presented the best mechanical properties and microstructural homogeneity. (author)

  6. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  7. Dental Emergencies

    OpenAIRE

    Pedersen, Marke

    1982-01-01

    Emergency dental problems can result from trauma, dental pathology, or from dental treatment itself. While the physician can treat many instances of dental trauma, the patient should see a dentist as soon as possible so that teeth can be saved. Emergency treatment of dental pathology usually involves relief of pain and/or swelling. Bleeding is the most frequent post-treatment emergency. The physician should be able to make the patient comfortable until definitive dental treatment can be avail...

  8. Comparative corrosion study of Ag–Pd and Co–Cr alloys used in ...

    Indian Academy of Sciences (India)

    Because the electrochemical behaviour of the Co–Cr alloy was compared with that of Ag–Pd alloy, this type of alloy may be a suitable alternative for use in the manufacture of fixed dental prostheses. The present study, though limited, has shown that electrochemical characteristics can be used to identify such alloys.

  9. GOLD WEIGHTS IN FACIAL PARALYSIS (REVISITED)

    NARCIS (Netherlands)

    ZECHA, PJ; ROBINSON, PH; VANOORT, RP; COENRAADS, PJ

    A retrospective study of 11 patients with facial paralysis was undertaken. Correction of lagophthalmos was accomplished by inserting a dental gold weight into the upper eyelid. All weights were assessed and adjusted to fit the patient's individual need. The primary objective was to achieve adequate

  10. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  11. Análisis del comportamiento mecánico de una aleación Ni-Cr-Mo para pilares dentales/Analysis of Mechanical Behavior of Ni-Cr-Mo alloy for Dental Abutments

    OpenAIRE

    Luis Alberto Laguado Villamizar; John Faber Archila Díaz

    2012-01-01

    El presente estudio caracteriza una aleación aplicable al diseño de pilares para implantes dentales. Se propone un material biocompatible y de alta resistencia mecánica como alternativa a las aleaciones de Titanio, disminuyendo los costos de materia prima y procesamiento. Se realizan pruebas mecánicas de tracción y de compresión a la aleación de Ni-Cr-Mo, posteriormente se realiza modelado 3D y simulación de sus propiedades mecánicas por medio de análisis de elementos finitos. Como resultado ...

  12. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants

    Directory of Open Access Journals (Sweden)

    Sanchitha Chandar

    2017-01-01

    Conclusion: The commercially pure Ti showed better cell viability compared to Ti 31. Less cell viability in Ti 31 is because of the presence of aluminum and vanadium. A significant decrease in cytotoxicity due to the formation of TiO2over a period of time was observed both in Ti 12 and Ti 31. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. Ti 31 alloy showed surface pitting because of its multiphase structure.

  13. Effect of argon purity on mechanical properties, microstructure and fracture mode of commercially pure (cp) Ti and Ti-6Al-4V alloys for ceramometal dental prostheses

    International Nuclear Information System (INIS)

    Bauer, Jose; Cella, Suelen; Pinto, Marcelo M; Filho, Leonardo E Rodrigues; Reis, Alessandra; Loguercio, Alessandro D

    2009-01-01

    Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey's test (α = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.

  14. Effect of argon purity on mechanical properties, microstructure and fracture mode of commercially pure (cp) Ti and Ti-6Al-4V alloys for ceramometal dental prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jose [Department of Dentistry I, School of Dentistry, University Federal of Maranhao, Campus Universitario do Bacanga, Av. dos Portugueses, s/n, 65085680, Sao Luis/MA (Brazil); Cella, Suelen; Pinto, Marcelo M; Filho, Leonardo E Rodrigues [Department of Dental Materials, School of Dentistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 2227, 05508-900, Sao Paulo/SP (Brazil); Reis, Alessandra; Loguercio, Alessandro D, E-mail: jrob@usp.b [Department of Restorative Dentistry, Universidade Estadual de Ponta Grossa Av. General Carlos Cavalcanti, 4748, Bloco M, Sala 64 A, 84030-900, Ponta Grossa/PR (Brazil)

    2009-12-15

    Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey's test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.

  15. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications

    Science.gov (United States)

    Zhang, F.; Weidmann, A.; Nebe, B. J.; Burkel, E.

    2009-01-01

    TiMn alloy was prepared by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS) technique for exploration of biomedical applications. The microstructures, mechanical properties and cytotoxicity of the TiMn alloys were investigated in comparison with the pure Ti and Mn metals. Ti8Mn and Ti12Mn alloys with high relative density (99%) were prepared by mechanical alloying for 60 h and SPS at 700 °C for 5 min. The doping of Mn in Ti has decreased the transformation temperature from α to β phase, increased the relative density and enhanced the hardness of the Ti metal significantly. The Ti8Mn alloys showed 86% cell viability which was comparable to that of the pure Ti (93%). The Mn can be used as a good alloying element for biomedical Ti metal, and the Ti8Mn alloy could have a potential use as bone substitutes and dental implants.

  16. Data Recording on Dental Prostheses for Personal Identification

    Science.gov (United States)

    Fujita, Keiji; Takita, Akihiro; Nagao, Kan; Ichikawa, Tetsuo; Hayasaki, Yoshio

    2008-09-01

    Data recording on a dental prosthesis for personal identification is proposed. Data recording was performed on a dental Au-Ag-Pd alloy with a complex surface shape by femtosecond laser processing with a surface detection function based on confocal optical detection. The processed morphology of a flat dental alloy sample was investigated over wide ranges of focus positions and laser fluences of the irradiating pulses. From the experimental results, appropriate recording conditions are discussed from the viewpoint of data recording. This is the first demonstration of two-dimensional data recording on such an object with a complex curved shape (an alloy crown).

  17. Mechanical properties of biomedical titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niinomi, M. [Toyohashi Univ. of Technol. (Japan). Sch. of Production Syst. Eng.

    1998-03-15

    Titanium alloys are expected to be much more widely used for implant materials in the medical and dental fields because of their superior biocompatibility, bioaffinity, corrosion resistance and specific strength compared with other metallic implant materials. Pure titanium and Ti-6Al-4V, in particular, Ti-6Al-4V ELI have been, however, mainly used for implant materials among various titanium alloys to date. V free alloys like Ti-6Al-7Nb and Ti-5Al-2.5Fe have been recently developed for biomedical use. More recently V and Al free alloys have been developed. Titanium alloys composed of non-toxic elements like Nb, Ta, Zr and so on with lower modulus have been started to be developed mainly in the USA. The {beta} type alloys are now the main target for medical materials. The mechanical properties of the titanium alloys developed for implant materials to date are described in this paper. (orig.) 17 refs.

  18. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  19. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  20. Use of low fusing alloy in dentistry.

    Science.gov (United States)

    Wee, A G; Schneider, R L; Aquilino, S A

    1998-11-01

    Low fusing alloy has been used in dentistry for remount procedures in both fixed and removable prosthodontics, in implant prosthodontics for the fabrication of solid implant casts, in maxillofacial prosthetics as oral radiation shields, and in dental research for its unique properties. Previously, the use of low fusing alloy was thought to offer a high degree of dimensional accuracy. However, multiple in vitro studies have shown that its presumed dimensional accuracy may be questionable. This article reviews the physical properties, metallurgical considerations of low fusing alloy, its applications in dentistry, and a safe, simple method of using low fusing alloy.

  1. Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4V alloy for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    López, M.M. Machado, E-mail: machadolopez23@gmail.com [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico); Fauré, J. [Laboratoire Ingénierie et Sciences des Matériaux (LISM EA 4695) - Université de Reims Champagne-Ardenne, 21 rue Clément Ader, Reims, BP 138 Cedex 02, 51685 France (France); Cabrera, M.I. Espitia [Facultad de ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “D”, C.P. 58000, Morelia, Michoacán, México (Mexico); García, M.E. Contreras, E-mail: eucontre@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, C.U. Edificio “U”, C.P. 58000, Morelia, Michoacán, México (Mexico)

    2016-04-15

    Graphical abstract: - Highlights: • Bioglass 45S5 nanostructured films were obtained by colloidal electrophoretic deposition (CEDP) method, proposed in this work, on Ti6Al4 V substrates. • Ti6Al4 V corrosion resistance in Hank's solution was increased with bioglass 45S5 coating. • Crystalline phases of 45S5 bioglass xerogels were obtained and characterized by XRD. • The model of chemical anchoring between Ti6Al4 V and bioglass 45S5 is proposed. - Abstract: In the present work, 45S5 bioglass coatings were deposited on the Ti6Al4 V alloy substrate through the cathodic colloidal electrophoretic deposition process (CEDP) proposed in this work. The coatings were thermally treated at temperatures of 500, 600, 700, and 800 °C for 2 h, and their structure was characterized by FESEM and DRX. Nanostructure and phase evolution of the coatings and xerogels was followed as a function of temperature. The corrosion resistance of the Ti6Al4 V alloy and the 45S5/Ti6Al4 V coating was studied by means of Tafel extrapolation in Hank's solution, at 37 °C, simulating the conditions inside the mouth. The 45S5 bioglass coatings displayed an amorphous nanostructure at lower temperatures, and partial crystallization at higher temperatures. An increase in the corrosion resistance was observed in the 45S5/Ti6l4 V coating treated at 700 °C because it reduced the i{sub corr}, and there was a change in the E{sub corr} towards more noble values. A model of the chemical anchorage of the 45S5 bioglass coating on Ti6Al4 V was proposed.

  2. Direct determination of thermodynamic activities of gold in the systems gold-palladium and gold-silver-palladium

    International Nuclear Information System (INIS)

    Hoehn, R.; Herzig, C.

    1986-01-01

    The thermodynamic activity of the gold component was directly measured in Au-Pd alloys in the concentration range between X Au =0.048 and 0.850 and in the temperature range 1070 and 1300 K. The ratio of the vapour pressures of pure gold and of the gold component of the alloys was determined - after effusion from a Knudsen twin cell and condensation on a collecting plate - by analysing the decay rate of the radioisotopes 195 Au and 198 Au in an intrinsic germanium well-type detector. The partial mixing enthalpy and the partial mixing entropy of Au were directly obtained from these results. By Gibbs-Duhem integration the integral mixing functions were deduced. Similar measurements were performed in several ternary Au-Ag-Pd alloys of fixed mole fraction X Ag /X Pd =1/9. A comparison of the directly measured partial free excess enthalpy of Au in these ternary alloys with data obtained by the approximate models of Kohler, Toop and Bonnier using data of the corresponding three binary systems yields satisfactory agreement. (orig.) [de

  3. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  4. Development of Ag-Pd-Au-Cu alloy for multiple dental applications. Part 1. Effects of Pd and Cu contents, and addition of Ga or Sn on physical properties and bond with ultra-low fusing ceramic.

    Science.gov (United States)

    Goto, S; Miyagawa, Y; Ogura, H

    2000-09-01

    Ag-Pd-Au-Cu quaternary alloys consisting of 30-50% Ag, 20-40% Pd, 10-20% Cu and 20% Au (mother alloys) were prepared. Then 5% Sn or 5% Ga was added to the mother alloy compositions, and another two alloy systems (Sn-added alloys and Ga-added alloys) were also prepared. The bond between the prepared alloys and an ultra-low fusing ceramic as well as their physical properties such as the solidus point, liquidus point and the coefficient of thermal expansion were evaluated. The solidus point and liquidus point of the prepared alloys ranged from 802 degrees C to 1142 degrees C and from 931 degrees C to 1223 degrees C, respectively. The coefficient of thermal expansion ranged from 14.6 to 17.1 x 10(-6)/degrees C for the Sn- and Ga-added alloys. In most cases, the Pd and Cu contents significantly influenced the solidus point, liquidus point and coefficient of thermal expansion. All Sn- and Ga-added alloys showed high area fractions of retained ceramic (92.1-100%), while the mother alloy showed relatively low area fractions (82.3%) with a high standard deviation (20.5%). Based on the evaluated properties, six Sn-added alloys and four Ga-added alloys among the prepared alloys were suitable for the application of the tested ultra-low fusing ceramic.

  5. A comparison on the marginal gap of two base metal alloys (Minalux, VeraBond2 during firing cycles of porcelain

    Directory of Open Access Journals (Sweden)

    Monzavi A.

    2004-06-01

    Full Text Available Statement of Problem: Nowadays economical issues on high gold alloys have changed the practice of metal-ceramic restorations toward base-metal alloys. Minalux is one of the base-metal alloys produced in Iran. Marginal fitness is of high importance to be evaluated in dental alloys."nPurpose: The aim of the present study was to compare the marginal adaptation of two base-metal alloys, Minalux (Mavadkaran Co. Iran and VeraBond2 (Aibadent Co. USA during firing cycles of porcelain. Materials and Methods: In an experimental study 24 standard brass dies, with 135° chamfer finishing line were fabricated by Computer Numeric Controlled (CNC milling machine. The samples were randomly divided in two groups, A and B, 12 in each. Following wax-up, the samples were equally cast with two mentioned alloys. In each group, there were 4 controlled samples, which proceeded to firing cycle without veneering porcelain. Scanning electron microscope (SEM measurements of marginal gap from buccal and lingual aspects were performed after 4 stages of casting, degassing, porcelain application and glazing. The data were analyzed using Four-way ANOVA and multiple comparative test based on Tukey criteria. Results: The findings of this study revealed that there was no significant difference in the marginal gap of Minalux (31.10±7.8u.m and VeraBond2 (30.27±6.96u.m with confidence level at 0.95 (P=0.43. For both alloys the greatest gap was observed after degassing stage (P<0.05. Porcelain and porcelain veneering proximity caused significant changes in the marginal gap of Minalux castings (P<0.05, however, such changes did not occur in VeraBond2 (PO.05."nConclusion: Based on the findings of this study, the marginal gaps of two base metal alloys, Minalux and VeraBond2, were proved to be identical and that of the Minalux alloy existed in the range of acceptable clinical application. It was also concluded that Minalux dental alloys could provide proper marginal adaptation.

  6. Epithelial attachment and downgrowth on dental implant abutments--a comprehensive review.

    Science.gov (United States)

    Iglhaut, Gerhard; Schwarz, Frank; Winter, Robert R; Mihatovic, Ilja; Stimmelmayr, Michael; Schliephake, Henning

    2014-01-01

    The soft tissues around dental implants are enlarged compared with the gingiva because of the longer junctional epithelium and the hemidesmosonal attachments are fewer, suggestive of a poorer quality attachment. Inflammatory infiltrates caused by bacterial colonization of the implant-abutment interface are thought to be one of the factors causing epithelial downgrowth and subsequent peri-implant bone loss. Gold alloys and dental ceramics as well as the contamination of the implant surface with amino alcohols, appear to promote epithelial downgrowth. Physical manipulaton of the abutment surfaces, including concave abutment designs, platform switching, and microgrooved surfaces are believed to inhibit epithelial downgrowth and minimizes bone loss at the implant shoulder. This paper reviews the factors that are believed to influence the migration of epithelial attachment the dental implant and abutment surfaces. Exploration of innovative computer-aided design/computer-aided manufacturing-based concepts such as "one abutment-one time" and their effect on epithelial downgrowth are discussed. Based on the review of current literature, the authors recommend inserting definitive abutments at the time of surgical uncovering. To implement this concept, registration of the implant position should to be taken at the time of surgical implant placement. © 2014 Wiley Periodicals, Inc.

  7. Dental radiology.

    Science.gov (United States)

    Woodward, Tony M

    2009-02-01

    Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning "cheat sheet" to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed.

  8. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, surgery, ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, surgery, ...

  9. About Dental Amalgam Fillings

    Science.gov (United States)

    ... Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More sharing ... I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material used ...

  10. 19 CFR 11.13 - False designations of origin and false descriptions; false marking of articles of gold or silver.

    Science.gov (United States)

    2010-04-01

    ... descriptions; false marking of articles of gold or silver. 11.13 Section 11.13 Customs Duties U.S. CUSTOMS AND... gold or silver. (a) Articles which bear, or the containers which bear, false designations of origin, or.... 1405q, and shall be detained. (b) Articles made in whole or in part of gold or silver or alloys thereof...

  11. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  12. CONCURRENT CONTACT SENSITIZATION TO METALS IN DENTAL EXPOSURES

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2018-03-01

    Full Text Available Purpose: Sensitization to metals is a significant problem for both dental patients treated with dental materials and for dental professionals in occupational exposures. The purpose of the present study was to evaluate the incidence of concurrent contact sensitization to relevant for dental practice metals among students of dental medicine, students from dental technician school, dental professionals and patients. Material and Methods: A total of 128 participants were included in the study. All of them were patch-tested with nickel, cobalt, copper, potassium dichromate, palladium, aluminium, gold and tin. The results were subject to statistical analysis (p < 0.05. Results: For the whole studied population, potassium dichromate exhibited concomitant reactivity most often; copper and tin also often manifested co-reactivity. For the groups, exposed in dental practice, potassium dichromate and tin were outlined as the most often co-reacting metal allergens, but statistical significance concerning the co-sensitization to copper and the other metals was established only for aluminium. An increased incidence and OR for concomitant sensitization to cobalt and nickel was established in the group of dental students; to copper and nickel - in the control group; to palladium and nickel - in the group of dental professionals, the group of students of dental medicine and in the control group; to potassium dichromate and cobalt - in the group of dental students; to copper and palladium - in the control group of dental patients; to potassium dichromate and copper - in the group of dental professionals; to copper and aluminum - in the groups of students from dental technician school and of dental professionals; to copper and gold - in the groups of dental professionals and in the group of dental patients; to potassium dichromate and aluminum - in the group of dental professionals; to potassium dichromate and gold - in the group of dental professionals, and to

  13. Gold in Modern Economy

    Directory of Open Access Journals (Sweden)

    Boryshkevych Olena V.

    2014-01-01

    Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.

  14. Increased mercury emissions from modern dental amalgams

    OpenAIRE

    Bengtsson, Ulf G.; Hylander, Lars D.

    2017-01-01

    All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor ...

  15. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  16. Investigation on adhering properties of dental materials by means of radioactively labelled bacteria

    International Nuclear Information System (INIS)

    Pfister, W.; Kleinert, P.; Sandig, H.C.; Wutzler, P.; Ruschitschka, A.; Schaefer, U.

    1987-01-01

    Bacteria of the species Streptococcus mutans were radioactively labelled with 113 In-oxinate. Different dental materials were incubated with the labelled bacteria. Counts per minute of the dental materials could be determined as proportion of the quantity of adhering microorganisms. Silver-palladium-alloy had a lower adherence than silver-tin-alloy. Finest polished alloys had lower adhering properties than unpolished surfaces of materials. (author)

  17. Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan

    International Nuclear Information System (INIS)

    Morishita, Y.; Shimada, N.; Shimada, K.

    2008-01-01

    Gold occurs as both electrum (a natural alloy of gold and silver) and invisible gold in arsenian pyrite in the Hishikari epithermal gold deposit in Japan. Microanalyses of arsenian pyrite from the deposit using secondary ion mass spectrometry (SIMS) and electron probe microanalysis (EPMA) revealed that Au concentrations (0.1-2600 ppm) are positively correlated with As concentrations (0.0-6.1%). A small (3 μm) area of pyrite was analyzed because the sample textures were fine and complicated. The Au/As ratio is high in the Sanjin ore zone, which has very high-grade veins, while the ratio is low in the Yamada ore zone, which has average-grade veins

  18. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    New, P.F.J.; Rosen, B.R.; Brady, T.J.

    1983-01-01

    The risks to patients with metal surgical implants who are undergoing nuclear magnetic resonance (NMR) imaging and the artifacts caused by such implants were studied. Twenty-one aneurysm and other hemostatic clips and a variety of other materials (e.g., dental amalgam, 14 karat gold) were used. Longitudinal forces and torques were found to be exerted upon 16 of the 21 clips. With five aneurysm clips, forces and torques sufficient to produce risk of hemorrhage from dislocation of the clip from the vessel or aneurysm, or cerebral injury by clip displacement without dislodgement were identified. The induced ferromagnetism was shown to be related to the composition of the alloys from which the clips were manufactured. Clips with 10-14% nickel are evidently without sufficient induced ferromagnetism to cause hazard. The extent of NMR imaging artifacts was greater for materials with measurable ferromagnetic properties, but metals without measurable ferromagnetism in our tests also resulted in significant artifacts. Dental amalgam and 14 karat gold produced no imaging artifacts, but stainless steels in dentures and orthodontic braces produced extensive artifacts in the facial region

  19. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  20. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

    of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... value maximization forces the manager of high type to extract the gold.The implications are three-fold. First, all managers (except the lowest type) extract the gold too soon compared to the first-best policy of leaving the gold in the mine forever. Second, a manager of high type extracts the gold......  Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...

  1. Machinability of experimental Ti-Ag alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  2. Development of technique for in vitro embryotoxicity of dental biomaterials

    Directory of Open Access Journals (Sweden)

    Koichi Imai, D.D.S., Ph.D.

    2016-08-01

    Full Text Available The Embryonic Stem Cell Test (EST developed in Germany in 1997 is known as a screening test method capable of predicting the presence of unknown chemicals influencing normal human development. Firstly, we investigated the embryotoxicity of 24 types of monomer including dental monomers and dental alloy-component metal elements using this test. Monomers including Bis-GMA contained in base resin of composite resin exhibited weak embryotoxicity, and the toxicity level varied among dental alloy-component metal elements. It was clarified that metal ions eluted from currently sold dental alloys show no embryotoxicity. Then, we investigated a method that also considers human metabolic activity, which is not possible with the EST, in the results of embryotoxicity. In addition, an evaluation method using a hybrid culture system for hepatocytes and mouse ES cells and a method using oviduct or uterus cells for feeder cells were also investigated.

  3. A comparison of tensile bond strengths of resin-retained prostheses made using five alloys.

    Science.gov (United States)

    Rubo, J H; Pegoraro, L F; Ferreira, P M

    1996-01-01

    This in vitro study evaluated the bond strength of metal frameworks cast using Ni-Cr, Ni-Cr-Be, Cu-Al, type IV gold, and noble metal ceramic alloy with and without tin electroplating. The castings were luted to human teeth using Panavia Ex resin. It was found that tin electroplating had a negative effect for the Cu-Al and type IV gold alloys and a positive effect for gold for metal ceramic restorations. The best results were obtained using the Ni-Cr alloy.

  4. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  5. BIOACTIVE GLASS SHELL GROWTH OF A Si–Na–Ca–P LAYER ON GOLD NANOPARTICLES FUNCTIONALIZED WITH MERCAPTOPROPYLTRIMETHYLOXYSILANE–SILICATE–TETRAETHYLOTHOSILICATE

    OpenAIRE

    CHIH-KUANG WANG; SZU-HSIEN CHEN; WAN-YUN LI; CHERN-HSIUNG LAI; WEN-CHENG CHEN

    2009-01-01

    Calcium phosphate and silicate-modified gold surfaces have potential applications in orthopedic and dental reconstruction, especially when combined with bone cement or dental resins. The aim of this study was to evaluate the formation of a Si–Na–Ca–P glass system nanoshell on functionalized gold nanoparticles. Stable gold nanoparticle suspensions were prepared by controlled reduction of HAuCl4 using the sodium citrate method to obtain a nanogold-mercaptopropyltrimethyloxysilane (MPTS)–silicat...

  6. Molecular dynamics study of atomic displacements in disordered solid alloys

    Science.gov (United States)

    Puzyrev, Yevgeniy S.

    The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.

  7. Review: Microstructure Engineering of Titanium Alloys via Small Boron Additions (Preprint)

    Science.gov (United States)

    2011-07-01

    cast Ti alloys with the motivation of enhancing mechanical properties for dental applications. They observed significant grain refinement which was...Addition of inoculants to many molten metal alloys (e.g. trace B to Al alloys [17]) is the most commonly used commercial practice to achieve grain... metallic inclusions were the life limiting mechanisms in the pre- alloyed powder Ti-64B material, especially in two outlier data points with life less than

  8. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  9. Dental OCT

    Science.gov (United States)

    Wilder-Smith, Petra; Otis, Linda; Zhang, Jun; Chen, Zhongping

    This chapter describes the applications of OCT for imaging in vivo dental and oral tissue. The oral cavity is a diverse environment that includes oral mucosa, gingival tissues, teeth and their supporting structures. Because OCT can image both hard and soft tissues of the oral cavity at high resolution, it offers the unique capacity to identity dental disease before destructive changes have progressed. OCT images depict clinically important anatomical features such as the location of soft tissue attachments, morphological changes in gingival tissue, tooth decay, enamel thickness and decay, as well as the structural integrity of dental restorations. OCT imaging allows for earlier intervention than is possible with current diagnostic modalities.

  10. Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry.

    Science.gov (United States)

    Ottria, L; Lauritano, D; Andreasi Bassi, M; Palmieri, A; Candotto, V; Tagliabue, A; Tettamanti, L

    2018-01-01

    Implant dentistry has become a popular restorative option in clinical practice. Titanium and titanium alloys are the gold standard for endo-osseus dental implants production, thanks to their biocompatibility, resistance to corrosion and mechanical properties. The characteristics of the titanium implant surface seem to be particularly relevant in the early phase of osseointegration. Furthermore, the microstructure of implant surface can largely influence the bone remodelling at the level of the bone-implant surface. Recently, research has stated on the long-term of both survival and success rates of osseointegrated implants and mainly on biomechanical aspects, such as load distribution and biochemical and histological processes at the bone-implant interface. This short review reports recent knowledge on chemical and mechanical properties, biological aspects, innovations in preventing peri-implantitis, describing clinical applications and recent improvements of titanium dental implants. In addition, it highlights current knowledge about a new implant coating that has been demonstrated to reduce the number of initially adhering bacteria and peri-implantitis.

  11. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review

    Directory of Open Access Journals (Sweden)

    Wellington Luiz de Oliveira ROSA

    Full Text Available ABSTRACT Objective A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. Material and Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma statement. Searches were performed until December 2014 in six databases: MedLine (PubMed, Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States. Results A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers, synthetic resins (681 papers, dental cements (440 papers, dental alloys (392 papers and dental adhesives (361 papers. The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents, followed by dental implants (8 patents and composite resins (7 patents. Conclusions Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development

  12. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira; Silva, Tiago Machado; Lima, Giana da Silveira; Silva, Adriana Fernandes; Piva, Evandro

    2016-01-01

    A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in countries such as Brazil.

  13. Fifty years of Brazilian Dental Materials Group: scientific contributions of dental materials field evaluated by systematic review

    Science.gov (United States)

    ROSA, Wellington Luiz de Oliveira; SILVA, Tiago Machado; LIMA, Giana da Silveira; SILVA, Adriana Fernandes; PIVA, Evandro

    2016-01-01

    ABSTRACT Objective A systematic review was conducted to analyze Brazilian scientific and technological production related to the dental materials field over the past 50 years. Material and Methods This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (Prisma) statement. Searches were performed until December 2014 in six databases: MedLine (PubMed), Scopus, LILACS, IBECS, BBO, and the Cochrane Library. Additionally, the Brazilian patent database (INPI - Instituto Nacional de Propriedade Industrial) was screened in order to get an overview of Brazilian technological development in the dental materials field. Two reviewers independently analyzed the documents. Only studies and patents related to dental materials were included in this review. Data regarding the material category, dental specialty, number of documents and patents, filiation countries, and the number of citations were tabulated and analyzed in Microsoft Office Excel (Microsoft Corporation, Redmond, Washington, United States). Results A total of 115,806 studies and 53 patents were related to dental materials and were included in this review. Brazil had 8% affiliation in studies related to dental materials, and the majority of the papers published were related to dental implants (1,137 papers), synthetic resins (681 papers), dental cements (440 papers), dental alloys (392 papers) and dental adhesives (361 papers). The Brazilian technological development with patented dental materials was smaller than the scientific production. The most patented type of material was dental alloys (11 patents), followed by dental implants (8 patents) and composite resins (7 patents). Conclusions Dental materials science has had a substantial number of records, demonstrating an important presence in scientific and technological development of dentistry. In addition, it is important to approximate the relationship between academia and industry to expand the technological development in

  14. DENTAL ANXIETY AMONG DENTAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Donka G. Kirova

    2011-10-01

    Full Text Available Dental anxiety and dental fear are major factors causing much troubles for the people attending to their own personal health. Statistics show that the 25-26-year-olds experience higher dental anxiety than others. This can be accounted for by the diverse, intense effects of a number of psychological factors in this age range that can cause dental fear and dental anxiety.The aim of the present study was to survey the dental anxiety levels among the students of the Faculty of Dentistry in Plovdiv and determine whether they change throughout the course of study. Material and methods. The self-reported assessment scale developed by N. Corah, the Dental Anxiety Scale (DAS was used in the study; it was applied in the form of a questionnaire containing data on gender, age, education. A total of 535 students of all years in the Faculty of Dentistry in Plovdiv were recruited in the study; they were interviewed either individually or in groups. Results and discussion. Anxiety-free students were the most numerous group in the sample (369, 63.08%, which were followed by students showing moderate anxiety. The mean DAS score of the whole sample was 7.83±0.12; the mean scores by groups were as follows: 8.37±0.26 for the first year students (n1, 7.34±0.19 for the second, third and fourth year students (n2, 7.82±0.16 for the fifth and sixth year students (n3. Twenty five (4.27% students experienced high anxiety and 11 students (1.88% - severe anxiety. Analysis of the mean dental anxiety scores for the three groups showed that fear of dental treatment statistically significantly declined with each successive year of study (P = 0.008.Conclusions: Dental students have a significantly higher level of dental anxiety at the beginning of their training than at its end (P <0.01. Enhancing education and awareness affects favourably dental anxiety.

  15. Corrosion wear fracture of new {beta} biomedical titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niinomi, M.; Fukunaga, K.-I. [Toyohashi Univ. of Technol. (Japan). Dept. of Production Syst. Eng.; Kuroda, D.; Morinaga, M.; Kato, Y.; Yashiro, T.; Suzuki, A.

    1999-05-15

    Metallic materials such as stainless steel, Co-Cr alloy, pure titanium and titanium alloys have been used for surgical implant materials. The {alpha} + {beta} type titanium alloy such as Ti-6Al-4V ELI has been most widely used as an implant material for artificial hip joint and dental implant because of its high strength and excellent corrosion resistance. Toxicity of alloying elements in conventional biomedical titanium alloys like Al and V, and the high modulus of elasticity of these alloy as compared to that of bone have been, however, pointed out [1,2]. New {beta} type titanium alloys composed of non-toxic elements like Nb, Ta, Zr, Mo and Sn with lower moduli of elasticity, greater strength and greater corrosion resistance were, therefore, designed in this study. The friction wear properties of titanium alloys are, however, low as compared to those of other conventional metallic implant materials such as stainless steels and Co-Cr alloy. Tensile tests and friction wear tests in Ringer`s solution were conducted in order to investigate the mechanical properties of designed alloys. The friction wear characteristics of designed alloys and typical conventional biomedical titanium alloys were evaluated using a pin-on-disk type friction wear testing system and measuring the weight loss and width of groove of the specimen. (orig.) 8 refs.

  16. A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, I., E-mail: isabeltissot@gmail.com [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Department of Physics, Faculty of Sciences, University of Lisbon, Campo Grande, 1649-004 Lisbon (Portugal); Troalen, L.G. [National Museums Scotland, Collections Services Department, 242 West Granton Road, Edinburgh EH5 1JA (United Kingdom); Manso, M. [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Faculdade de Belas-Artes da Universidade de Lisboa, Largo da Academia Nacional de Belas-Artes, 1249-058 Lisbon (Portugal); Ponting, M. [Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ (United Kingdom); Radtke, M.; Reinholz, U. [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin (Germany); Barreiros, M.A. [LNEG, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisbon (Portugal); Shaw, I. [Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ (United Kingdom); Carvalho, M.L. [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Guerra, M.F. [ArchAm, UMR 8096 CNRS - Université Paris Sorbonne, MAE, 21 allée de l' Université, 92023 Nanterre (France)

    2015-06-01

    Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (μXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D{sup 2}XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. - Highlights: • Multi-analytical protocol based on techniques with different MDLs and spatial resolution • Application of D{sup 2}XRF developed at synchrotron BESSY II for determination of Pt in Au with a MDL of 1 ppm • Egyptian gold alloys have nanoporous corrosion layers where distinct corrosion phases could be identified. • Egyptian gold foils are made with different gold base alloys, but all containing alluvial gold.

  17. Dental Arch Wire

    Science.gov (United States)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  18. Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst

    Directory of Open Access Journals (Sweden)

    Britta Kämpken

    2012-07-01

    Full Text Available In this work the applicability of neopentasilane (Si(SiH34 as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

  19. Radiographic detection of approximal caries: a comparison between senior dental students and senior dental hygiene students.

    Science.gov (United States)

    Wojtowicz, Patricia A; Brooks, Sharon L; Hasson, Hana; Kerschbaum, Wendy E; Eklund, Stephen A

    2003-01-01

    Dental hygienists do not legally (or definitively) diagnose caries, but they often are responsible for preliminary interpretation of bitewing (BW) radiographs taken during prophylaxis appointments. Given this custom of practice, it is important to understand whether there is a difference between the capabilities of dental hygienists and dentists in interpreting BWs based on education and clinical experience. This study compared proximal carious lesion classification from BWs by senior dental students and senior dental hygiene students. Volunteers (40 dental [D] and 54 dental hygiene [DH] students) classified proximal carious lesions from BWs of 96 extracted teeth, which were mounted in wax to simulate quadrants of the mouth. A soft tissue equivalent was placed in front of the mounted teeth before x-ray exposure. Films were developed automatically and mounted into six sets point scale. The teeth were sectioned vertically and evaluated clinically at 5x magnification with an explorer. The "gold standard" of carious lesion classification was then compared to the students' classifications. All students detected 54% of the carious lesions and correctly identified lack of caries 80.5% of the time. There were no differences between the two groups of students in terms of sensitivity, but dental students showed higher specificity (p = 0.0006). Permitting dental hygienists to make preliminary interpretations of caries from BWs in the dental office appears to be an acceptable practice.

  20. Cytotoxicity of alloying elements and experimental titanium alloys by WST-1 and agar overlay tests.

    Science.gov (United States)

    Song, Yo-Han; Kim, Min-Kang; Park, Eun-Jin; Song, Ho-Jun; Anusavice, Kenneth J; Park, Yeong-Joon

    2014-09-01

    This study was performed to evaluate the biocompatibility of nine types of pure metals using 36 experimental prosthetic titanium-based alloys containing 5, 10, 15, and 20wt% of each substituted metal. The cell viabilities for pure metals on Ti alloys that contain these elements were compared with that of commercially pure (CP) Ti using the WST-1 test and agar overlay test. The ranking of pure metal cytotoxicity from most potent to least potent was: Co>Cu>In>Ag>Cr>Sn>Au>Pd>Pt>CP Ti. The cell viability ratios for pure Co, Cu, In, and Ag were 13.9±4.6%, 21.7±10.4%, 24.1±5.7%, and 24.8±6.0%, respectively, which were significantly lower than that for the control group (pcytotoxic', whereas all Ti alloys were ranked as 'noncytotoxic'. The cytotoxicity of pure Ag, Co, Cr, Cu, and In suggests a need for attention in alloy design. The cytotoxicity of alloying elements became more biocompatible when they were alloyed with titanium. However, the cytotoxicity of titanium alloys was observed when the concentration of the alloying element exceeded its respective allowable limit. The results obtained in this study can serve as a guide for the development of new Ti-based alloy systems. Copyright © 2014 Academy of Dental Materials. All rights reserved.

  1. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  2. Marginal Gap of Milled versus Cast Gold Restorations.

    Science.gov (United States)

    Johnson, Russell; Verrett, Ronald; Haney, Stephan; Mansueto, Michael; Challa, Suman

    2017-01-01

    This in vitro study evaluated and compared the vertical marginal gap of cast and milled full coverage gold copings using two margin designs (chamfer and chamfer bevel) before and after fitting adjustments. Ten impressions were made of two metal master dies (one chamfer margin, one chamfer-bevel margin) and poured twice in Type IV stone. The 20 subsequent casts with 40 dies were split into four groups (n = 10); cast gold bevel, cast gold chamfer, milled gold bevel, and milled gold chamfer groups. The cast specimens received approximately 40 μm die relief no closer than 1 mm from the finish line. Cast copings were hand waxed, cast in a high noble gold alloy, chemically divested, and the sprues were removed. For milled gold copings, casts were scanned and copings designed using 3shape D900 scanner and software. Parameters were set to approximate analog fabrication (cement gap = 0.01 mm; extra cement gap = 0.04 mm, drill radius = 0.65 mm). Copings were milled from the same high noble alloy. All copings were seated on their respective master die in a custom scanning jig and measured using a measuring microscope at 90× (60 measurements per specimen, 15 per surface). Following initial measurements, all copings were adjusted on stone dies. The number of adjustment cycles was recorded and post-adjustment measurements were made using the same method. Data were analyzed using independent and paired t-tests. Milled gold copings with a beveled margin (11.7 ± 20.4 μm) had a significantly (p < 0.05) smaller marginal gap than cast gold copings with a beveled margin (43.6 ± 46.8 μm) after adjustment. Cast gold copings with a chamfer margin (22.7 ± 24.7 μm) had a significantly (p < 0.05) smaller marginal gap than milled gold copings with a chamfer margin (27.9 ± 31.6 μm) following adjustments. Adjustments significantly decreased marginal gap for both cast groups (p < 0.05) and the milled chamfer bevel group (p < 0.05) but had no significant effect on the milled chamfer

  3. Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb{sub 2}O{sub 5} layer on Ti–Al–V alloy for dental implants applications

    Energy Technology Data Exchange (ETDEWEB)

    Kalisz, M., E-mail: malgorzata.kalisz@its.waw.pl [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Grobelny, M. [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Mazur, M. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Zdrojek, M. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Wojcieszak, D. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Świniarski, M.; Judek, J. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Kaczmarek, D. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland)

    2015-08-31

    In this paper the comparative studies on structural, mechanical and corrosion properties of Nb{sub 2}O{sub 5}/Ti–Al–V and graphene/Ti–Al–V alloy systems have been investigated. We show that the hardness of pure niobium pentoxide was ca. 8.64 GPa and graphene deposited on titanium alloy surface was equal 5.63 GPa. However, the graphene monolayer has no effect on surface hardness of titanium alloy and can be easily removed from the surface. On the other hand, the sample with graphene coating has much better corrosion resistance. Our results suggest, that the use of combined layers of niobium pentoxide and graphene, in the hybrid multilayer system can greatly improve the mechanical and corrosion properties of the titanium alloy surface. Such hybrid system can be used in the future, as protection coating for Ti alloy, in biomedical application and in other applications, where Ti alloys work in an aggressive corrosive environment and in engineering applications where friction is involved. - Highlights: • Corrosion properties of Nb{sub 2}O{sub 5}/TiAlV and graphene/TiAlV systems were investigated. • Nb{sub 2}O{sub 5} thin film improves titanium alloy surface hardness from 5.64 GPa to 8.64 GPa. • Nb{sub 2}O{sub 5} thin film improves corrosion resistance of Ti{sub 6}Al{sub 4}V in aggressive environment. • i{sub corr} for graphene monolayer deposited on Ti{sub 6}Al{sub 4}V surface decreases to 0.01 μA/cm{sup 2}. • Graphene monolayer caused decrease in the electrochemical activity of the Ti surface.

  4. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... in silico methods are here proposed for apoptosis studies and for AMG studies.   Methods   MR - heating of high concentration micrometer gold and low concentration nano gold.   CSLM of ethidum bromide stained cell lines, with and witout gold and automated image processing.   AMG gold uptake study...

  5. Dental caries

    DEFF Research Database (Denmark)

    Pitts, Nigel B; Zero, Domenick T; Marsh, Phil D

    2017-01-01

    Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Caries can occur throughout life, both in primary and permanent dentitions, and can damage the tooth crown and, in later life......, acknowledging the historical era dominated by restoration of tooth decay by surgical means, but focuses on current, progressive and more holistic long-term, patient-centred, tooth-preserving preventive care.......Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Caries can occur throughout life, both in primary and permanent dentitions, and can damage the tooth crown and, in later life......, exposed root surfaces. The balance between pathological and protective factors influences the initiation and progression of caries. This interplay between factors underpins the classification of individuals and groups into caries risk categories, allowing an increasingly tailored approach to care. Dental...

  6. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  7. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  8. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  9. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sashuk, Volodymyr, E-mail: vsashuk@ichf.edu.pl; Rogaczewski, Konrad [Polish Academy of Sciences, Institute of Physical Chemistry (Poland)

    2016-09-15

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV–Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold–silver bimetallic nanoparticles.

  10. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    International Nuclear Information System (INIS)

    Sashuk, Volodymyr; Rogaczewski, Konrad

    2016-01-01

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV–Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold–silver bimetallic nanoparticles.

  11. Magnetism in nanocrystalline gold.

    Science.gov (United States)

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  12. Dental Calculus Arrest of Dental Caries.

    Science.gov (United States)

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  13. Dental Calculus Arrest of Dental Caries

    Science.gov (United States)

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  14. Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex-type implants.

    Science.gov (United States)

    Hoyer, S A; Stanford, C M; Buranadham, S; Fridrich, T; Wagner, J; Gratton, D

    2001-06-01

    The clinical long-term success of single-tooth implant restorations depends, in part, on a stable connection between the prosthetic restoration and the implant body. The purpose of this experiment was to investigate the fatigue life of UCLA-style abutment screws in wide-diameter versus conventionally sized dental implant restorations. Five 3.75 x 15-mm and five 6.0 x 15-mm hexed dental implants were used. Ten frameworks were fabricated, 5 with a single UCLA-style, 3.75-mm hexed gold alloy cylinder, and 5 with a single UCLA-style, 6.0-mm hexed gold alloy cylinder. To simulate a common laboratory procedure, 2 abutment interfaces were relieved with a one-quarter round bur for both diameters. The 3.75-mm implant used a Gold-Tite central abutment screw torqued to 32 Ncm, and the 6.0-mm implant used a titanium central abutment screw torqued to 25 Ncm. Frameworks were dynamically loaded ( approximately 10 Hz) with a 120 +/- 10-N, 4-mm off-axis force. Liquid metal strain gauges were used to measure joint opening. Measurements were made at intervals of 10(3), 10(4), 10(5), and 5x10(5) cycles. Gauge output data were converted to displacement with a conversion factor determined by calibration. Linear regression analysis then was performed. Two observations were made in this study. Two of three 3.75-mm nonadjusted specimens and all three 6.0-mm nonadjusted specimens maintained joint closure (range of opening 0-20 microm) while measured under dynamic loading. The median joint opening at 5x10(5) cycles for 3.75-mm nonadjusted specimens was 14 +/- 7 microm; for 6.0-mm specimens, it was 11 +/- 10 microm. Both 3.75-mm adjusted specimens and 1 nonadjusted specimen failed to maintain joint closure (excess joint opening >50 microm). One of the 3.75-mm adjusted specimens had abutment screw fracture. One of two 6.0-mm adjusted specimens failed to maintain joint closure because of screw fracture. The dental implant-abutment interface of 3.75-mm and 6.0-mm externally hexed implants

  15. Assisted laser ablation: silver/gold nanostructures coated with silica

    Science.gov (United States)

    González-Castillo, J. R.; Rodríguez-González, Eugenio; Jiménez-Villar, Ernesto; Cesar, Carlos Lenz; Andrade-Arvizu, Jacob Antonio

    2017-11-01

    The synthesis processes of metallic nanoparticles have seen a growing interest in recent years, mainly by the potential applications of the phenomenon of localized surface plasmon resonance associated with metallic nanoparticles. This paper shows a fast method to synthesize silver, gold and silver/gold alloy nanoparticles coated with a porous silica shell by the assisted laser ablation method in three steps. The method involves a redox chemical reaction where the reducing agent is supplied in nanometric form by laser ablation. In the first step, a silicon target immersed in water is ablated for several minutes. Later, AgNO3 and HAuCl4 aliquots are added to the solution. The redox reaction between the silver and gold ions and products resulting from ablation process can produce silver, gold or silver/gold alloy nanoparticles coated with a porous silica shell. The influence of the laser pulse energy, ablation time, Ag+ and Au3+ concentration, as well as the Ag+/Au3+ ratio, on optical and structural properties of the nanostructures was investigated. This work represents a step forward in the study of reaction mechanisms that take place during the synthesis of nanoscale materials by the assisted laser ablation technique.

  16. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  17. Unexpected interactions between gold and N-morpholino-sulfonates

    OpenAIRE

    Nielsen, Frederick Stappen; Engelbrekt, Christian; Elliot, Samuel Gilbert; Junor, Glen; Sørensen, Kasper; Jensen, Knud J.; Clausen, Mads Hartvig; Zhang, Jingdong

    2017-01-01

    Nanoporous gold (NPG) has a high surface area and excellent conductivity. It is an ideal supporting material for the electrocatalysis, e.g. in fuel cell applications. NPG is traditionally produced by etching a gold/silver alloy. This method has significant drawbacks, such as the introduction of silver into your NPG, and its multi-step fabrication. A method has been discovered for producing NPG as a thin film chemically. This bottom-up approach entails reduction of Au3+ precursor using morphol...

  18. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  19. Longevity of posterior tooth dental restorations.

    Science.gov (United States)

    Christensen, Gordon J

    2005-02-01

    Several forms of restorative techniques are used for posterior teeth. They vary significantly in cost and longevity. The following restorative concepts are the most commonly used: amalgam, resin-based composite, PFM, cast gold alloy restorations and all-ceramic restorations. I suggest that patients be informed about the potential longevity of restorative treatment for posterior teeth as they make decisions about treatment for their oral restorative needs.

  20. Elementary characterization of Ti metal alloys used in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Deniak, Valeriy [Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR (Brazil); Camargo, Liliane [Universidade Paranaense, Umuarama, PR (Brazil); Assis, J.T, E-mail: cata-montenegro@bol.com.br, E-mail: spaschuk@gmail.com, E-mail: denyak@gmail.com, E-mail: lili_camargo2@hotmail.com, E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)

    2017-07-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  1. Elementary characterization of Ti metal alloys used in implant dentistry

    International Nuclear Information System (INIS)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi; Deniak, Valeriy; Camargo, Liliane; Assis, J.T

    2017-01-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  2. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  3. Orthodontic applications of a superelastic shape-memory alloy model

    International Nuclear Information System (INIS)

    Glendenning, R.W.; Enlow, R.L.

    2000-01-01

    During orthodontic treatment, dental appliances (braces) made of shape memory alloys have the potential to provide nearly uniform low level stresses to dentitions during tooth movement over a large range of tooth displacement. In this paper we model superelastic behaviour of dental appliances using the finite element method and constitutive equations developed by F. Auricchio et al. Results of the mathematical model for 3-point bending and several promising 'closing loop' designs are compared with laboratory results for the same configurations. (orig.)

  4. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility

    OpenAIRE

    Rodrigues,Luiz Erlon A.; Carvalho,Antônio A.V.F.; Azevedo,Antônio L.M.; Cruz,Cecília B.B.V.; Maia,Antônio Wanderley C.

    2003-01-01

    Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very ...

  5. The Department of Defense Retiree Dental Program.

    Science.gov (United States)

    1997-05-01

    program under section 1076a of title 10, United States Code. Orthodontic services, crowns, gold fillings, bridges, complete or partial dentures , and...gums) 30 60 Fixed Fee 50 Bridges 30 50 Fixed Fee 50 Dentures 30 100 Fixed Fee 50 Dental Accident 100 100 100 100 Yearly cost per Participant $145...as amalgam, silicate, acrylic , and resin restorations. • Endodontics (sometimes Type III). • Periodontics (sometimes Type III, sometimes periodontal

  6. Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications

    DEFF Research Database (Denmark)

    Christiansen, Mikkel U. -B.; Seselj, Nedjeljko; Engelbrekt, Christian

    2018-01-01

    at the liquid/air interface starting from gold nanoparticles (AuNPs) in an aqueous solution, providing silver-free gold films. Chloroauric acid is reduced to AuNP building blocks by 2-(N-morpholino)ethanesulfonic acid, which also acts as a protecting agent and pH buffer. By adding potassium chloride before Au......Nanoporous gold (NPG) is an effective material for electrocatalysis and can be made via a dealloy method such as etching of silver–gold alloys. Dealloyed NPG may contain residual silver that affects its catalytic performance. Herein, a different approach has been reported for the formation of NPG......NP synthesis and hydrochloric acid to the resultant AuNP solutions, we can reproducibly obtain continuous gold networks. The sintered AuNPs produced by this method result in chemically synthesized nanoporous gold films (cNPGFs) that resemble dealloyed NPG in terms of morphology and porosity; additionally...

  7. Superfluid density and heat capacity measurements of 4He in porous gold

    International Nuclear Information System (INIS)

    Yoon, J.; Chan, M.

    1995-01-01

    Superfluid density of full pore 4 He as well as thin film 4 He confined in porous gold were measured as a function of temperature. The superfluid transition temperature of full pore was found to be 2.156 K. In both cases power law dependence on reduced temperature was found and the exponent was found to be the same as that of bulk 4 He. Porous gold is made by electrochemically leaching out silver from silver-gold alloy. The porous gold sample the authors fabricated has porosity of 55 with a diameter of 250 angstrom. Electron microscope picture shows that the structure of porous gold is exceedingly similar to that of Vycor. Heat capacity measurement of full pore 4 He in porous gold is in progress

  8. Gold geochemistry and mineralogy of till fines: a new approach for data integration

    Directory of Open Access Journals (Sweden)

    Vladimir Knauf

    2000-01-01

    Full Text Available A new method of heavy mineral (HM separation and assessment of gold grade was compared with the results of conventional AAS analysis. Sixteen gold micronuggets and a number of particles of native metal and metal alloys (brass, tin, bismuth, lead were extracted from 100 g of till fines (< 50 μm. From the size, number, and composition of micronuggets, the total gold grade (58 ppb of till fines was evaluated. The assessments agree well with the results of AASanalysis (57 ppb. A slightly lower value (44 ppb was obtained by Flame Atomic Absorption Analysis with Fire Assay (FAAS FA method of the extracted HM. Mineralogical investigations allow identification of two types of gold micronuggets thus revealing a complex origin for the geochemical anomaly. The association of brass-pyroxene (Mg# = 80–82 with complex gold-brass-lead-tin intergrowths indicates that some gold in till is derived from ultramafic rocks.

  9. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts

    Czech Academy of Sciences Publication Activity Database

    Starčuková, Jana; Starčuk jr., Zenon; Hubálková, H.; Linetskiy, I.

    2008-01-01

    Roč. 24, č. 6 (2008), s. 715-723 ISSN 0109-5641 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : metallic dental materials * dental alloys * amalgams * MR imaging * magnetic susceptibility * electric conductivity * image artifact Subject RIV: FF - HEENT, Dentistry Impact factor: 2.941, year: 2008

  10. Japanese research and development on metallic biomedical, dental, and healthcare materials

    Science.gov (United States)

    Niinomi, Mitsuo; Hanawa, Takao; Narushima, Takayuki

    2005-04-01

    There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

  11. Determination of vitamin C in drugs using of an optimized novel TCPO–Amplex red–gold/silver alloy nanoparticles–H2O2 chemiluminescence method by the Box–Behnken design

    International Nuclear Information System (INIS)

    Chaichi, M.J.; Alijanpour, S.O.

    2013-01-01

    Response surface methodology (RSM), based on a Box–Behnken design (BBD) was used to optimize three of the most important operating variables (concentrations of TCPO, Amplex red and pH effect) at peroxyoxalate-chemiluminescence (PO-CL) system. For the first time Amplex red (AR) was introduced as a new fluorescent emitter for predicting the reaction mechanism of PO-CL by means of the fluorescence property of its oxidation product. In optimum conditions, it was found that Au/Ag alloy nanoparticles (NPs) could enhance the CL intensity and the method sensitivity toward the evaluation of trace amount of vitamin C. Based on the antioxidant property of vitamin C noticeably the CL signal of the bis-(2,4,6-trichlorophenyl)oxalate–AR–NPs–hydrogen peroxide–sodium salicylate system was quenched in a low basic medium. A simple, rapid and sensitive CL method for the determination of vitamin C has been developed. The results showed a linear relationship between vitamin C concentration and PO-CL intensity in the range of 0.082–82.7 μg/mL. Detection limit of 0.012 μg/mL and the relative standard deviation (RSD)<4% was obtained. - Highlights: ► The Box-Behnken design was used to optimize peroxyoxalate-chemiluminescence system. ► Amplex red is as new fluorescent emitters for peroxyoxalate chemiluminescence. ► It is introduce a method for determination of vitamin C. ► Detection limit of vitamin C was obtained about 0.012 μg/mL.

  12. Determination of vitamin C in drugs using of an optimized novel TCPO-Amplex red-gold/silver alloy nanoparticles-H{sub 2}O{sub 2} chemiluminescence method by the Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Chaichi, M.J., E-mail: jchaichi@yahoo.com [Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of); Alijanpour, S.O. [Faculty of Chemistry, University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2013-02-15

    Response surface methodology (RSM), based on a Box-Behnken design (BBD) was used to optimize three of the most important operating variables (concentrations of TCPO, Amplex red and pH effect) at peroxyoxalate-chemiluminescence (PO-CL) system. For the first time Amplex red (AR) was introduced as a new fluorescent emitter for predicting the reaction mechanism of PO-CL by means of the fluorescence property of its oxidation product. In optimum conditions, it was found that Au/Ag alloy nanoparticles (NPs) could enhance the CL intensity and the method sensitivity toward the evaluation of trace amount of vitamin C. Based on the antioxidant property of vitamin C noticeably the CL signal of the bis-(2,4,6-trichlorophenyl)oxalate-AR-NPs-hydrogen peroxide-sodium salicylate system was quenched in a low basic medium. A simple, rapid and sensitive CL method for the determination of vitamin C has been developed. The results showed a linear relationship between vitamin C concentration and PO-CL intensity in the range of 0.082-82.7 {mu}g/mL. Detection limit of 0.012 {mu}g/mL and the relative standard deviation (RSD)<4% was obtained. - Highlights: Black-Right-Pointing-Pointer The Box-Behnken design was used to optimize peroxyoxalate-chemiluminescence system. Black-Right-Pointing-Pointer Amplex red is as new fluorescent emitters for peroxyoxalate chemiluminescence. Black-Right-Pointing-Pointer It is introduce a method for determination of vitamin C. Black-Right-Pointing-Pointer Detection limit of vitamin C was obtained about 0.012 {mu}g/mL.

  13. Comparative corrosion study of Ag–Pd and Co–Cr alloys used in ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The electrochemical behaviour of two Ag–Pd alloys (Unique White and Paliag) used in dental prosthetics construction for crowns and bridges and one Co–Cr alloy (Vitallium 2000) was studied in artificial saliva using the polarization curves and electrochemical impedance spectroscopy (EIS). The corrosion resi-.

  14. Comparative corrosion study of Ag–Pd and Co–Cr alloys used in ...

    Indian Academy of Sciences (India)

    The electrochemical behaviour of two Ag–Pd alloys (Unique White and Paliag) used in dental prosthetics construction for crowns and bridges and one Co–Cr alloy (Vitallium 2000) was studied in artificial saliva using the polarization curves and electrochemical impedance spectroscopy (EIS). The corrosion resistance was ...

  15. A new method to prevent the corrosion of dental metals, during disinfection using functional water: sacrificial protection.

    Science.gov (United States)

    Kashiwabara, Toshiya; Goto, Takaharu; Sato, Yutaka; Tomotake, Yoritoki; Nagao, Kan; Ichikawa, Tetsuo

    2010-07-01

    This paper demonstrates a simple method using sacrificial protection for preventing the corrosion of dental metals. Dental metals are directly connected or/and wound with a pure commercial aluminum/zinc wire/plate with high ionization tendency, before their immersion into oxidizing functional water. Dental materials such as Co-Cr alloy wires, stainless steel, and Au-Ag-Pd alloys did not corrode when this method was used. Thus, this method is very simple and effective for preventing corrosion of dental metals during disinfection using functional water. Copyright 2010 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

    Science.gov (United States)

    Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.

    2017-08-01

    The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.

  17. A Critical Review of High Entropy Alloys and Related Concepts (Postprint)

    Science.gov (United States)

    2016-10-21

    orthopedic surgery and dental appliances. As many as 18 elements are known to produce SMAs, giving opportunities for concentrated alloying. Other...performed here, results from each report are counted with equal weight. This is an imperfect approach, since alloys, micro - structures and phases that...and 4.2.2 thus report the percentages of total microstructure reports that display particular phases or micro - structures in the alloys selected for

  18. Changes in mechanical properties and microstructure following heat treatment of a nickel-chromium base alloy.

    Science.gov (United States)

    Winkler, S; Morris, H F; Monteiro, J M

    1984-12-01

    Heat treatment of a nickel-chromium base metal alloy produced changes (percent elongation, ultimate tensile strength, modulus of elasticity, yield strength, and hardness) that simulated properties of various types of noble metal alloys. Further research is indicated to determine if the properties of a base metal alloy can be altered by heat treatment or other means to enable its use for a wide variety of fixed dental restorations.

  19. The effect of dental restorative materials on dental biofilm.

    Science.gov (United States)

    Auschill, Thorsten Mathias; Arweiler, Nicole Birgit; Brecx, Michel; Reich, Elmar; Sculean, Anton; Netuschil, Lutz

    2002-02-01

    To investigate the arrangement of biofilms formed in vivo, volunteers wore splints with slabs of six different dental materials inserted to collect smooth surface plaque. After 5 d of undisturbed plaque accumulation, the specimens were vital stained and analyzed by the confocal laser scanning microscopy (CLSM) to evaluate the percentage of vital biofilm microflora (VF percentage). Further parameters were the area of the specimens covered by plaque (surface coating; SC, %) and the height of the biofilms (BH, pm). The metals amalgam and gold, the compomer, as well as the glass-ionomer cement harboured an almost entirely dead biofilm (VF composite led to vitality values between 4 and 21%, while a very thin biofilm on ceramic revealed the highest vitality values (34-86%). SC varied from 6% on glass-ionomer cement to 100% on amalgam. BH reached its highest value on amalgam and gold of 17 and 11 microm, respectively, while heights of between 1 and 6 microm were found on the ceramic, resin composite, compomer and the glass-ionomer cement. Within their limits, the present findings indicate that amalgam, gold, compomer and glass-ionomer cement exert an influence against the adhering biofilm. No general relationship could be established between the different parameters VF percentage, SC percentage and BH (microm).

  20. Holography And Holometry Applications In Dental Research

    Science.gov (United States)

    Willenborg, George C.

    1987-06-01

    The earliest reference to holographic applications appeared in the dental literature in 1972 when Wictorin, Bjelkhagen and Abramson described a method to study elastic deformation of defective gold solder joints in simulated fixed bridges. Their paper, published in the Swedish dental literature, offered a concise presentation of the interferometry technique which led to the development of other research applications of holographic interferometry(holometry) in dentistry. In this presentation, the development and application of the interferometry technique in the dental field will be discussed. Various interesting and potentially useful applications of holography have appeared in the dental literature over the past decade. Some of these, which will be discussed, include the use of holograms as a storage medium for dental study models, multiplexing of computer(CT) scan sections to form white light viewable holograms and the potential application of holographic training aids in the teaching of the basic courses of dental anatomy and restorative dentistry. In addition, some unique related applications will be mentioned including a laser reflection method for accurate non-contact measurement of tooth mobility/movement and a technique for contour mapping of occlusal surfaces to measure wear of restorative materials.

  1. Clareamento Dental

    OpenAIRE

    Sossai, Najara; Universidade Paranaense - UNIPAR; Verdinelli, Ellen Carla; Universidade Paranaense - UNIPAR; Bassegio, Wagner; Universidade Paranaense - UNIPAR

    2011-01-01

    O clareamento dental já é utilizado há bastante tempo na Odontologia e atualmente é um dos tratamentos odontológicos mais solicitados para obtenção de um sorriso mais estético. Classificado em clareamento caseiro e/ou de consultório, ambas as técnicas são motivo de polêmica quanto aos seus benefícios, riscos, limitações e efeito clareador, bem como sobre qual é a melhor técnica existente para a promoção de um clareamento dental eficaz e seguro. Neste contexto, o presente estudo tem por objeti...

  2. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  3. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    Science.gov (United States)

    2014-08-15

    their wear and fatigue resistance, hard coatings for dental implants and dental surgery tools, tribological orthopedic devices, gears, valves, pumps...SPS) of blended titanium and vanadium elemen- tal powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting micro ...for structural [15] aerospace [2–5], marine [16], automotive, biomedical (such as in dental and orthopedic as bone implants) [1–6,8–12,15–20], and

  4. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  5. Dental caries.

    Science.gov (United States)

    Pitts, Nigel B; Zero, Domenick T; Marsh, Phil D; Ekstrand, Kim; Weintraub, Jane A; Ramos-Gomez, Francisco; Tagami, Junji; Twetman, Svante; Tsakos, Georgios; Ismail, Amid

    2017-05-25

    Dental caries is a biofilm-mediated, sugar-driven, multifactorial, dynamic disease that results in the phasic demineralization and remineralization of dental hard tissues. Caries can occur throughout life, both in primary and permanent dentitions, and can damage the tooth crown and, in later life, exposed root surfaces. The balance between pathological and protective factors influences the initiation and progression of caries. This interplay between factors underpins the classification of individuals and groups into caries risk categories, allowing an increasingly tailored approach to care. Dental caries is an unevenly distributed, preventable disease with considerable economic and quality-of-life burdens. The daily use of fluoride toothpaste is seen as the main reason for the overall decline of caries worldwide over recent decades. This Primer aims to provide a global overview of caries, acknowledging the historical era dominated by restoration of tooth decay by surgical means, but focuses on current, progressive and more holistic long-term, patient-centred, tooth-preserving preventive care.

  6. Dental Holography

    Science.gov (United States)

    Dirtoft, Ingegerd

    1983-12-01

    Ten years have passed since the first articles appeared in this new field. The qualities of the laser light together with the need of contactless 3-D measurements for different dental purposes seemed to be extremely promising, but still just a few scientists have used the method and mostly for laboratory studies. For some reason there has been a preponderance for orthodontic measurements. This seems to be a bit peculiar from holographic view compared with measurements for engineering purposes, which usually are made on metals. So naturally holography can become a clinical tool for measurements in the field of fixed bridges, removable partial dentures and implants. One of the problems is that the need for holography in dental research must be fulfilled in collaboration with physicists. Only a two-way communication during an entire experiment can balance both technical and odontological demands and thus give practical and clinical important results. The need for an easy way of handling the evaluation to get all required information is another problem and of course the holographic equipment must be converted to a box easy to handle for everyone. At last the position of dental holography today is going to be carefully examined together with an attempt to look into the hopefully exciting and not to utopic future for this research field.

  7. American Dental Education Association

    Science.gov (United States)

    ... For Dental Schools Teaching Resources ADEA weTeach® MedEdPORTAL Critical Thinking Skills Toolbox Resources for Teaching Policy Policy Topics Dental Education on the Opioid Epidemic Financing Dental Education Holistic ...

  8. Strength and microstructure of gallium alloys.

    Science.gov (United States)

    Miller, B H; Woldu, M; Nakajima, H; Okabe, T

    1999-03-01

    This study investigated the physical and mechanical properties and the microstructure of four different gallium alloys. For all gallium alloys, the compressive strengths measured at one hour (86-223 MPa) and 24 hours (265-286 MPa) after specimen preparation were found to be well within the range exhibited by many high-copper amalgams. The creep values and dimensional change of the gallium alloys were comparable to those of leading amalgams, except for the dimensional change value of one alloy. The set gallium alloys consisted of a multi-phase structure including beta-Sn, CuGa2, In4Ag9, Ag72Ga28, and Ga5Pd (except for one product that did not contain Pd) that was more complicated than the structure of dental amalgams. Although the gallium alloys had physical and mechanical properties comparable to those of high-copper amalgams, the microstructure, coupled with the instability of the element gallium itself, could make these materials more prone to corrosive attack compared to amalgams.

  9. Danish dental education:

    DEFF Research Database (Denmark)

    Moore, Rod

    1985-01-01

    The effects of Danish cultural traditions on dental education in Denmark are described, as well as the system's current structure and developing issues. Some Danish ideas for future exports of dental education programs and dental personnel are also discussed.......The effects of Danish cultural traditions on dental education in Denmark are described, as well as the system's current structure and developing issues. Some Danish ideas for future exports of dental education programs and dental personnel are also discussed....

  10. Axially chiral allenyl gold complexes.

    Science.gov (United States)

    Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción

    2014-09-17

    Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.

  11. Side effects of mercury in dental amalgam

    Directory of Open Access Journals (Sweden)

    Titiek Berniyanti

    2008-03-01

    Full Text Available Dental amalgam is an alloy composed of mixture of approximately equal parts of elemental liquid mercury and an alloy powder. The popularity of amalgam arises from excellent long term performance, ease of use and low cost. Despite the popularity of dental amalgam as restorative material, there have been concerns regarding the potential adverse health and environmental effects arising from exposure to mercury in amalgam. They have long been believed to be of little significance as contributors to the overall body burden of mercury, because the elemental form of mercury is rapidly consumed in the setting reaction of the restoration. In 1997, 80% of dentist in Indonesia still using amalgam as an alternative material, and 60% of them treat the rest of unused amalgam carelessly. In recent years, the possible environmental and health impact caused by certain routines in dental practice has attracted attention among regulators. As part of point source reduction strategies, the discharge of mercury/amalgam-contaminated wastes has been regulated in a number of countries, even though it has been documented that by adopting appropriate mercury hygiene measures, the impact of amalgam use in dentistry is minimal. The purpose of this paper is to examine on studies that relate mercury levels in human to the presence of dental amalgams. It is concluded that even though mercury used in filling is hazardous, if normal occupational recommendations for proper mercury hygiene routines and source of reduction strategies are followed, no occupational health risk can be assumed.

  12. Romanian ancient gold objects studies using nuclear methods

    International Nuclear Information System (INIS)

    Constantinescu, B.; Cojocaru, V.; Bugoi, R.; Herrmann, F.; Grambole, D.

    2002-01-01

    The study of trace-elements in archaeological metallic objects can provide important clues about the metal provenance and the involved manufacturing procedures, leading to important conclusions regarding the commercial, cultural and religious exchanges between the antique populations. Ancient metallic materials are usually inhomogeneous on a scale of 20 microns or less: they contain remains of imperfect smelting, segregated phases in alloys, inclusions. Due to their exceptional chemical stability, gold artifacts remain essentially unchanged during weathering and aging processes. Several fragments of ancient gold objects coming from an Eneolithic treasury and from Pietroasa 'Closca cu Puii de Aur' (The Golden Brood Hen with Its Chickens) hoard, unearthed on Romanian territory and two Romanian native gold nuggets samples were analysed using micro-PIXE technique. The purpose of the study was to clarify the metal provenance, establishing if the hypothesis of local gold holds. To reach this goal, trace elements (Cu, Te, Sn, Pb, Hg, As, Zr, Sb) and PGE (Platinum Group Elements) concentrations were determined. The presence of inclusions (micrometric size areas of composition different from the surroundings) was also checked. We found some Si, Ca, Fe ones on two Eneolithic samples, and Ta and Cr on a sample from Pietroasa hoard. The measurements led to conclusions regarding the alluvial origin of the gold for the Eneolithical samples and gave some indications for the possible gold ore sources of Pietroasa treasury, confirming the heterogeneity of this treasury (the two analysed pieces belonged to different stylistic and compositional groups). (authors)

  13. Dental metal-induced innate reactivity in keratinocytes

    NARCIS (Netherlands)

    Rachmawati, D.; Buskermolen, J.K.; Scheper, R.J.; Gibbs, S.; von Blomberg, B.M.E.; van Hoogstraten, I.M.W.

    2015-01-01

    Gold, nickel, copper and mercury, i.e. four metals frequently used in dental applications, were explored for their capacity to induce innate immune activation in keratinocytes (KC). Due to their anatomical location the latter epithelial cells are key in primary local irritative responses of skin and

  14. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  15. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  16. Dental fear among medical and dental undergraduates.

    Science.gov (United States)

    Hakim, H; Razak, I A

    2014-01-01

    To assess the prevalence and level of dental fear among health related undergraduates and to identify factors causing such fear using Kleinknecht's Dental Fear Survey (DFS) questionnaire. Kleinknecht's DFS questionnaire was used to assess dental fear and anxiety among the entire enrollment of the medical and dental undergraduates' of the University of Malaya. Overall response rate was 82.2%. Dental students reported higher prevalence of dental fear (96.0% versus 90.4%). However, most of the fear encountered among dental students was in the low fear category as compared to their medical counterpart (69.2 versus 51.2%). Significantly more medical students cancelled dental appointment due to fear compared to dental students (P = 0.004). "Heart beats faster" and "muscle being tensed" were the top two physiological responses experienced by the respondents. "Drill" and "anesthetic needle" were the most fear provoking objects among respondents of both faculties. Dental fear and anxiety are a common problem encountered among medical and dental undergraduates who represent future health care professionals. Also, high level of dental fear and anxiety leads to the avoidance of the dental services.

  17. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  18. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Moreno-Alvarez, S. A.; Martinez-Castanon, G. A.; Nino-Martinez, N.; Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P.; Ruiz, Facundo

    2010-01-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  19. [Systemic reactions to orally applied metal alloys].

    Science.gov (United States)

    Feilzer, A J; Kleverlaan, C J; Prahl, C; Muris, J

    2013-06-01

    Orally applied metal alloys can cause undesirable physical effects. A distinction needs to be made in this respect between local and systemic reactions and toxic and immunological reactions. A case is presented which illustrates this problem. In this case, the application of orthodontic appliances was probably the trigger for an exacerbation of nickel allergy. The oral exposure to nickel resulted in hand eczema. The patient was also exposed to nickel by single-unit fixed dental prostheses, a removable dental prosthesis, and food, as a result of which removal of the orthodontic appliances did not result in complete healing. Therefore, the single-unit fixed dental prostheses also had to be removed and food had to be prepared henceforward in nickel free pans.

  20. Corrosion behavior of nickel-containing alloys in artificial sweat.

    Science.gov (United States)

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  1. Metal-ceramic alloys in dentistry: a review.

    Science.gov (United States)

    Roberts, Howard W; Berzins, David W; Moore, B Keith; Charlton, David G

    2009-02-01

    The purpose of this article is to review basic information about the alloys used for fabricating metal-ceramic restorations in dentistry. Their compositions, properties, advantages, and disadvantages are presented and compared. In addition to reviewing traditional noble-metal and base-metal metal-ceramic alloys, titanium and gold composite alloys are also discussed. A broad search of the published literature was performed using Medline to identify pertinent current articles on metal-ceramic alloys as well as articles providing a historical background about the development of these alloys. Textbooks, the internet, and manufacturers' literature were also used to supplement this information. The review discusses traditional as well as more recently-developed alloys and technologies used in dentistry for fabricating metal-ceramic restorations. Clear advantages and disadvantages for these alloy types are provided and discussed as well as the role that compositional variations have on the alloys' performance. This information should enable clinicians and technicians to easily identify the important physical properties of each type and their primary clinical indications. A number of alloys and metals are available for metal-ceramic use in dentistry. Each has its advantages and disadvantages, primarily based on its specific composition. Continuing research and development are resulting in the production of new technologies and products, giving clinicians even more choices in designing and fabricating metal-ceramic restorations.

  2. Dental reductions and dental caries.

    Science.gov (United States)

    Anderson, D L; Popovich, F

    1977-11-01

    Although first permanent molar hypoconulid absence, third molar agenesis, and small tooth size are all part of evolutionary trend of dental retardation, each bears a different relationship to dental caries. Caries prevalence in the maxillary and mandibular permanent first molars of the Burlington Research Centre serial experimental group at age 16 years was less in the children whose first molars were missing the hypoconulid. Conversely, caries prevalence in mandibular first molars was greater in the children who had agenesis of third molars. The extraction of first molars due to caries was more frequent in children with agenesis of third molars, less frequent in those with absence of hypoconulids of the first molars and unrelated to tooth size. Caries prevalence was less in small teeth, and occurred least in the small mandibular first molars with four cusps. Whereas this is in harmony with the hypothesis that evolutionary dental reductions resulted from the pressure of caries, the increased prevalence of caries and extractions coinciding with third molar agenesis does not support this view. In addition, agenesis of hypoconulids and agenesis of third molars were related to changes in structures unrelated to caries.

  3. Bismuth mineral inclusions in gold-bearing magnetite from the giant Beiya gold deposit, SW China: insights into mineralization process

    Science.gov (United States)

    Zhou, Haoyang; Sun, Xiaoming

    2017-04-01

    Bi melt scavenging gold is responsible for significant volumes of gold inclusions enclosed by magnetite at Beiya. References Afifi A et al. (1988) Econ. Geol. 83: 377-394. He W et al. (2016) Ore Geol. Rev. (in press). Okamoto H et al. (1983) Bull. Alloy Phase Diagr. 4: 401-407. Tooth B. et al. (2008) Geology 36: 815-818. Tooth B. et al. (2011) Geochim. Cosmochim. Acta 75: 5423-5443. Zhou H. et al. (2016) Ore Geol. Rev. 79: 408-424. Zhou H. et al. (2017) Econ. Geol. (in press).

  4. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  5. Evaluation of MRI artifacts caused by metallic dental implants and classification of the dental materials in use

    Czech Academy of Sciences Publication Activity Database

    Starčuk jr., Zenon; Bartušek, Karel; Hubálková, H.; Bachorec, T.; Starčuková, Jana; Krupa, P.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 24-27 ISSN 1335-8871 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : magnetic resonance imaging * artifacts * metallic implants * dental alloys * magnetic susceptibility Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  7. Corrosion Characteristics of Ti-29Nb-xHf Ternary Alloy for Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sun Young; Choi, Han Chul [Chosun Univ., Kwangju (Korea, Republic of)

    2015-12-15

    The Cp-Ti and Ti-6Al-4V alloys were widely used for dental materials due to their mechanical properties and good corrosion resistance. However, Cp-Ti was known as bio-inert materials, Ti-6Al-4V alloy has a problem such as high Young modulus, potential loss of the surrounding bone, and to the release of potentially toxic ions from the alloy. To overcome this problem, Ti alloys containing Nb and Hf elements have been used for biomaterials due to low toxicity and high corrosion resistance. Especially, alloying element of Nb was known as β phase stabilizer. The β phase alloy was widely used to replace currently used implant materials. The corrosion resistances of Ti-29Nb-xHf ternary alloys were dependent on Hf content in oral environment solution.

  8. Dental education in Colombia.

    Science.gov (United States)

    Jaramillo, Jorge A; Pulido, Jairo H Ternera; Castro Núñez, Jaime A; Bird, William F; Komabayashi, Takashi

    2010-03-01

    This article describes Colombia's development of formal dentistry, its dental school system, curriculum, and dental licensure, and current issues in oral health care. In 1969, there were only 4 dental schools in Colombia; at this writing there are 21. Five dental schools are public and the other 16 are private. Nearly all classes are conducted in Spanish. Undergraduate pre-dental coursework is not a prerequisite for dental school in Colombia. To obtain licensure, Colombian dental students must complete 5 years of study in dental school, earn a diploma, and work for the government for 1 year. There are approximately 41,400 dentists in Colombia, and the number is increasing quickly. However, the unemployment rate among dentists is very high, even though graduation from dental school is extremely difficult. Although the 1,100:1 ratio of citizens to dentists is considered satisfactory, access to dental care is limited due to the high rate of poverty.

  9. Dental education in Colombia

    Science.gov (United States)

    Jaramillo, Jorge A.; Pulido, Jairo H. Ternera; Núñez, Jaime A. Castro; Bird, William F.; Komabayashi, Takashi

    2014-01-01

    This article describes Colombia's development of formal dentistry, its dental school system, curriculum, and dental licensure, and current issues in oral health care. In 1969, there were only 4 dental schools in Colombia; at this writing there are 21. Five dental schools are public and the other 16 are private. Nearly all classes are conducted in Spanish. Undergraduate pre-dental coursework is not a prerequisite for dental school in Colombia. To obtain licensure, Colombian dental students must complete 5 years of study in dental school, earn a diploma, and work for the government for 1 year. There are approximately 41,400 dentists in Colombia, and the number is increasing quickly. However, the unemployment rate among dentists is very high, even though graduation from dental school is extremely difficult. Although the 1,100:1 ratio of citizens to dentists is considered satisfactory, access to dental care is limited due to the high rate of poverty. PMID:20339245

  10. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  11. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  12. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...... are increasingly being noted, there is little analysis of miners' mobility patterns and material outcomes. In this article, on the basis of a sample survey and interviews at two gold-mining sites in Tanzania, we probe when and why miners leave one site in favour of another. Our findings indicate that movement...

  13. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  14. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  15. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  16. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...

  17. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  18. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  19. X-Ray Fluorescence Analysis of XII–XIV Century Italian Gold Coins

    Directory of Open Access Journals (Sweden)

    Monica Baldassarri

    2014-01-01

    Full Text Available An extensive analytical study has been performed on a large number of gold coins (Norman-Swabian Augustale and Tarì, Grosso of Lucca, Florin of Florence minted in Italy from the end of XII century to XIV century. The X-ray fluorescence (XRF technique was used for verifying the composition of the coins. XRF is a nondestructive technique particularly suited for in situ quantitative analysis of gold and minor elements in the precious alloy. The Florins turned out to have a gold content very close to 24 carats (pure gold although in a couple of cases we observed relatively high concentrations of iron (around 2% or lead (around 1%. The Grosso of Lucca has a similar composition, with a measured gold content around 97% due to a higher silver percentage (about 2%, with respect to the average Florin. The Augustali analyzed showed, on average, a gold content around 89%. The average gold content of the Tarì analysed is around 72%, with a relatively large variability. The analysis revealed the use of native gold for the coinage of the Florins, excluding the possibility of recycling gold coming from other sources. On the other hand, the variability observed in the compositions of the Tarì and Augustali could suggest the reuse of Islamic and North African gold. The study could shed some light on the sudden diffusion of gold coins in Italy around the first half of XIII century, allowing hypotheses on the provenience of the gold used for a coinage that dominated the economic trades from then on.

  20. Effect of recasting of nickel-chromium alloy on its porosity

    Directory of Open Access Journals (Sweden)

    Jayant Palaskar

    2010-01-01

    Full Text Available Statement of Problem: As per the review of literature very few studies have been carried on recasting of dental casting alloy and in particlular its effect on occurrence of porosities. Purpose of Study: This study was designed to find out occurrence of porosities in new alloy and recasted alloy using a scanning electron microscope. Materials and Methods: Different percentage combinations of new and once casted alloy were used to produce twenty five samples. Castings obtained from new alloy were used as control group. All the samples were scanned under scanning electron mocroscope and photographs were taken from three specific sites for comparison. Results: There is no significant difference in occurrence of porosities in casting obtained by using new alloy and recasted alloy. Conclusion: With in the limitations of the study it is conducted that the prorosities will not be affected by recasting of neckel-chromium alloy. Clinical Implication: Porosities in dental casting alloy can alter physical and mechanical properties of the mental which inturn may lead to failure of crown and bridge, and also cast partial denture prosthesis.

  1. Multi-material laser densification (MMLD) of dental restorations: Process optimization and properties evaluation

    Science.gov (United States)

    Li, Xiaoxuan

    This Ph.D. thesis proposes to investigate the feasibility of laser-assisted dental restoration and to develop a fundamental understanding of the interaction between laser beam and dental materials. Traditional dental restorations are produced by the porcelain-fused-to-metal (PFM) process, in which a dental restoration is cast from a metallic alloy and then coated with dental porcelains by multiple furnace-firing processes. PFM method is labor-intensive and hence very expensive. In order to fabricate dental restoration units faster and more cost-effectively, the Solid Freeform Fabrication (SFF) technique has been employed in this study. In particular, a Multi-Material Laser Densification (MMLD) process has been investigated for its potential to fabricate artificial teeth automatically from 3-D computer dental tooth files. Based on the principle of SFF, the MMLD process utilizes a micro-extruder system to deliver commercial dental alloy and porcelain slurry in a computer-controlled pattern line by line and layer by layer. Instead of firing the artificial tooth/teeth in a furnace, the extruded dental materials are laser scanned to convert the loose powder to a fully dense body. Different laser densification parameters including the densification temperature, laser output power, laser beam size, line dimension, ratio of the beam size to line width, beam scanning rate, processing atmosphere and pressure, dental powder state (powder bed or slurry), powder particle size, etc. have been used to evaluate their effects on the microstructures and properties of the laser densified dental body, and hence to optimize MMLD conditions. Furthermore, laser-scanning induced phase transformations in dental porcelains have been studied because the transformations have great impact on coefficient of thermal expansion (CTE) of dental porcelains, which should match that of dental alloy substrate. Since a single dental material line delivered by the MMLD system functions as a "construction

  2. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  3. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  4. Experimental constraints on gold and silver solubility in iron sulfides

    International Nuclear Information System (INIS)

    Pal'yanova, Galina; Mikhlin, Yuri; Kokh, Konstantin; Karmanov, Nick; Seryotkin, Yurii

    2015-01-01

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au) wt ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag 2 S) to uytenbogaardtite (Ag 3 AuS 2 ) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with native gold in

  5. Gold Nanoparticles Cytotoxicity

    Science.gov (United States)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  6. The Impact of Force Transmission on Narrow-Body Dental Implants Made of Commercially Pure Titanium and Titanium Zirconia Alloy with a Conical Implant-Abutment Connection: An Experimental Pilot Study.

    Science.gov (United States)

    Nelson, Katja; Schmelzeisen, Rainer; Taylor, Thomas D; Zabler, Simon; Wiest, Wolfram; Fretwurst, Tobias

    2016-01-01

    The purpose of this study was to visualize the mode and impact of force transmission in narrowdiameter implants with different implant-abutment designs and material properties and to quantify the displacement of the abutment. Narrow-diameter implants from two manufacturers were examined: Astra 3.0-mm-diameter implants (Astra OsseoSpeed TX; n = 2) and Straumann Bone Level implants with a 3.3-mm diameter made of commercially pure titanium (cpTi) Gr. 4 (n = 2) and 3.3-mm TiZr-alloy (n = 2; Bone Level, Straumann) under incremental force application using synchrotron radiography (absorption and inline x-ray phase-contrast) and tomography. During loading (250 N), Astra 3.0 and Bone Level 3.3- mm implants showed a deformation of the outer implant shoulder of 61.75 to 95 μm independent of the implant body material; the inner implant diameter showed a deformation of 71.25 to 109.25 μm. A deformation of the implant shoulder persisted after the removal of the load (range, 42.75 to 104.5 μm). An angulated intrusion of the abutment (maximum, 140 μm) into the implant body during load application was demonstrated; this spatial displacement persisted after removal of the load. This study demonstrated a deformation of the implant shoulder and displacement of the abutment during load application in narrow-diameter implants.

  7. Dental education in Mexico.

    Science.gov (United States)

    Masuoka, David; Komabayashi, Takashi; Reyes-Vela, Enrique

    2014-06-01

    The aim of this article is to provide information about dental education in Mexico, including its history, the dental school system, curriculum and dental licensure. In 1977, there were only 59 Mexican dental schools; however, there were 83 schools registered in the last official national count in 2007. Forty-one dental schools are public, and the other 42 are private. Every year the number of private dental schools increases. Admission to dental schools in Mexico requires a high school diploma. All classes are conducted in Spanish. To obtain licensure in Mexico, dental students must complete a 3 to 5-year program plus a year of community service. No formal nationwide standard clinical/didactic curriculum exists in Mexico. There are approximately 153,000 dentists in Mexico, a number that increases each year. The dentist-patient ratio is approximately 1:700. However, the high percentage of inactive licensed dentists in Mexico points to a serious problem.

  8. Dental Sealants Prevent Cavities

    Science.gov (United States)

    ... FAQs CDC SEALS Software CDC State Strategies: Preventing Tooth Decay CDC Oral Health Data Other Sites MedlinePlus – Child Dental Health MedlinePlus – Tooth Decay American Dental Association – Evidence-based clinical practice guideline ...

  9. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  10. Dental Exam for Children

    Science.gov (United States)

    ... months to 1 year. The American Academy of Pediatric Dentistry and the American Dental Association recommend scheduling a ... age children and adolescents. The American Academy of Pediatric Dentistry recommends scheduling regular dental checkups, with the most ...

  11. Dental Encounter System (DES)

    Data.gov (United States)

    Department of Veterans Affairs — Dental Encounter System (DES) is an automated health care application designed to capture critical data about the operations of VA Dental Services. Information on...

  12. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  13. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  14. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  15. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  16. Radioactive gold ring dermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Aldrich, J.E. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  17. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  18. Tribological characteristics of dental metal biomaterials

    Directory of Open Access Journals (Sweden)

    Walczak Mariusz

    2016-12-01

    Full Text Available The paper is a report of the examination of the tribological wear characteristics of certain dental metal biomaterials. In the study, tests were undertaken on the following materials: 316L steel, NiCrMo alloy, technically pure titanium (ASTM-grade 2 and Ti6Al4V ELI alloy (ASTM-grade 5. The tribological tests were performed in artificial saliva to determine the coefficient of friction and wear factor; the traces of wear were then ascertained through SEM. The significance of variations in the wear factor, was subsequently assessed by the U Mann-Whitney test. The resistance to wear in the ball-on-disc test under in vitro conditions was observed for the tested materials in the following order: NiCrMo>316L>Ti6Al4V>Ti grade 2.

  19. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold

    Science.gov (United States)

    Lee, Dongyun; Wei, Xiaoding; Zhao, Manhong; Chen, Xi; Jun, Seong C.; Hone, James; Kysar, Jeffrey W.

    2007-01-01

    The results of two sets of experiments to measure the elastic-plastic behaviour of gold at the nanometre length scale are reported. One set of experiments was on free-standing nanoscale single crystals of gold, and the other was on free-standing n