Nuclear symmetry energy in density dependent hadronic models
International Nuclear Information System (INIS)
Haddad, S.
2008-12-01
The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)
Density dependence of the nuclear energy-density functional
Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho
2018-01-01
Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic
International Nuclear Information System (INIS)
Rainer, D.; Serene, J.W.
1976-01-01
A systematic scheme is presented for calculating the free energy of superfluid Fermi liquids by an asymptotic expansion in the small parameter T/subc//T/subF/. This scheme is used to evaluate the strong-coupling corrections to the free energy of superfluid 3 He. It is shown that the leading corrections can be expressed in terms of the normal-state quasiparticle scattering amplitude, and the strong-coupling results are discussed using the s-p approximation for the scattering amplitude
International Nuclear Information System (INIS)
Seyfert, P.; Claudet, G.
1988-01-01
The paper reviews the understanding of superfluid helium with regard to its use as coolant for superconducting devices. The topics to be addressed include heat transfer properties of the stagnant fluid, cooling by forced flow superfluid helium, design principles for superfluid helium cryogenic systems and, finally, an illustration of these principles by a few practical examples. 18 refs
Impact of density-dependent symmetry energy and Coulomb ...
Indian Academy of Sciences (India)
2014-03-07
Mar 7, 2014 ... The IMF production increases with the stiffness of symmetry energy. .... to clusterization using minimum spanning tree MST(M) method .... To understand the direct role of Coulomb interactions, we display in figure 4 the mean.
Self-energy dispersion effects on neutron matter superfluidity
International Nuclear Information System (INIS)
Zuo Wei
2001-01-01
The effects of the dispersion and ground state correlation of the single particle self-energy on neutron matter superfluidity have been investigated in the framework of the Extended Brueckner-Hartree-Fock and the generalized BCS approaches. A sizable reduction of the energy gap is found due to the energy dependence of the self-energy. And the inclusion of the ground state correlations in the self-energy suppresses further the neutron matter superfluidity
Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions
International Nuclear Information System (INIS)
Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst
2005-01-01
Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated
Novel Role of Superfluidity in Low-Energy Nuclear Reactions.
Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel
2017-07-28
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.
Haddad, S.
2017-11-01
The symmetry energy of a nucleus is determined in a local density approximation and integrating over the entire density distribution of the nucleus, calculated utilizing the relativistic density-dependent Thomas-Fermi approach. The symmetry energy is found to decrease with increasing neutron excess in the nucleus. The isovector coupling channel reduces the symmetry energy, and this effect increases with increased neutron excess. The isovector coupling channel increases the symmetry energy integral in ^{40}Ca and reduces it in ^{48}Ca, and the interplay between the isovector and the isoscalar channels of the nuclear force explains this isotope effect.
Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment
International Nuclear Information System (INIS)
Poluektov, Yu.M.
2014-01-01
The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively
Why Density Dependent Propulsion?
Robertson, Glen A.
2011-01-01
In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.
International Nuclear Information System (INIS)
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
Density dependent effective interactions
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1994-01-01
An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs
Density dependent hadron field theory
International Nuclear Information System (INIS)
Fuchs, C.; Lenske, H.; Wolter, H.H.
1995-01-01
A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state
International Nuclear Information System (INIS)
Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke
2012-01-01
In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)
Shell Models of Superfluid Turbulence
International Nuclear Information System (INIS)
Wacks, Daniel H; Barenghi, Carlo F
2011-01-01
Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.
density-dependent selection revisited
Indian Academy of Sciences (India)
Unknown
is a more useful way of looking at density-dependent selection, and then go on ... these models was that the condition for maintenance of ... In a way, their formulation may be viewed as ... different than competition among species, and typical.
International Nuclear Information System (INIS)
Gritsenko, I.A.; Klokol, K.A.; Sokolov, S.S.; Sheshin, G.A.
2016-01-01
An experimental study is made of the drag coefficient, which is the characteristics of energy dissipation during oscillations of the tuning forks, immersed in liquid helium. The experiments were performed in the temperature range from 0.1 to 3.5 K covering both the range of a hydrodynamic flow, and the ballistic regime of transfer of thermal excitations of superfluid helium below 0.6 K. It is found that there is the frequency dependence of the drag coefficient in the hydrodynamic limit, when the main dissipation mechanism is the viscous friction of the fluid against the walls of the oscillating body at temperatures above 0.7 K. In this case, the drag coefficient is proportional to the square root of the frequency of oscillation, and its temperature dependence in He II is determined by the respective dependence of the normal component density of the normal component and the viscosity of the fluid. At lower temperatures, the dependence of drag coefficient on the frequency is not available, and the magnitude of the dissipative losses is determined only by the temperature dependence of the density of the normal component. At the same time in the entire range of temperatures value of dissipative losses depends on the geometry of the oscillating body.
Production of zero energy radioactive beams through extraction across superfluid helium surface
Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J
A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with
Simula, Tapio
2018-02-01
We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.
Baryon superfluidity and neutrino emissivity of neutron stars
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Tamagaki, Ryozo
2004-01-01
For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)
Ketterson, John B
This book reports on the latest developments in the field of Superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. It began with the discovery of superconductivity in mercury in 1911, which was ultimately described theoretically by the theory of Bardeen Cooper and Schriever (BCS) in 1957. The analogous phenomena, superfluidity, was discovered in helium in 1938 and tentatively explained shortly thereafter as arising from a Bose-Einstein Condensation (BEC) by London. But the importance of superfluidity, and the range of systems in which it occurs, has grown enormously. In addition to metals and the helium liquids the phenomena has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials, and cold gasses trapped in high vacuum. It very likely exist for neutrons in a neutron star and, possibly, in a conjectured quark state at their center. Even the Universe itself can be regarded as being in a kind of sup...
Nuclear spectroscopy with density dependent effective interactions
International Nuclear Information System (INIS)
Krewald, S.
1976-07-01
The paper investigates excited nuclear states with density-dependent effective interactions. In the first part of the paper, the structure and the width of the multipole giant resonances discovered in 1972 are derived microscopically. Because of their high excitation energy, these giant resonances are unstable to particle emission and thus often have a considerable decay width. Due to their collective structure, the giant resonances can be described by RPA in good approximation. In this paper, the continuum RPA is applied to the spherical nuclei 16 O, 40 Ca, 90 Zr and 208 Pb. The experimental centroid energy are in very good agreement with the calculations performed in the paper. (orig./WL) [de
Hydrodynamics of rotating superfluids
International Nuclear Information System (INIS)
Chandler, E.A.
1981-01-01
In this thesis, a coarse grained hydrodynamics is developed from the exact description of Tkachenko. To account for the dynamics of the vortex lattice, the macroscopic vortex displacement field is treated as an independent degree of freedom. The conserved energy is written in terms of the coarse-grained normal fluid, superfluid, and vortex velocities and includes an elastic energy associated with deformations of the vortex lattice. Equations of motion consistent with the conservation of energy, entropy and vorticity and containing mutual friction terms arising from microscopic interactions between normal fluid excitations and the vortex lines are derived. When the vortex velocity is eliminated from the damping terms, this system of equations becomes essentially that of BK with added elastic terms in the momentum stress tensor and energy current. The dispersion relation and damping of the first and second sound modes and the two transverse modes sustained by the system are investigated. It is shown that mutual friction mixes the transverse modes of the normal and superfluid components and damps the transverse mode associated with the relative velocity of these components, making this wave evanescent in the plane perpendicular to the rotation axis. The wave associated with transverse motion of the total mass current is a generalized Tkachenko mode, whose dispersion relation reduces to that derived by Tkachenko wave when the wavevector lies in this plane
Path-integral computation of superfluid densities
International Nuclear Information System (INIS)
Pollock, E.L.; Ceperley, D.M.
1987-01-01
The normal and superfluid densities are defined by the response of a liquid to sample boundary motion. The free-energy change due to uniform boundary motion can be calculated by path-integral methods from the distribution of the winding number of the paths around a periodic cell. This provides a conceptually and computationally simple way of calculating the superfluid density for any Bose system. The linear-response formulation relates the superfluid density to the momentum-density correlation function, which has a short-ranged part related to the normal density and, in the case of a superfluid, a long-ranged part whose strength is proportional to the superfluid density. These facts are discussed in the context of path-integral computations and demonstrated for liquid 4 He along the saturated vapor-pressure curve. Below the experimental superfluid transition temperature the computed superfluid fractions agree with the experimental values to within the statistical uncertainties of a few percent in the computations. The computed transition is broadened by finite-sample-size effects
and density-dependent quark mass model
Indian Academy of Sciences (India)
Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].
Density dependence of reactor performance with thermal confinement scalings
International Nuclear Information System (INIS)
Stotler, D.P.
1992-03-01
Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research
Density-dependent cladogenesis in birds.
Directory of Open Access Journals (Sweden)
Albert B Phillimore
2008-03-01
Full Text Available A characteristic signature of adaptive radiation is a slowing of the rate of speciation toward the present. On the basis of molecular phylogenies, studies of single clades have frequently found evidence for a slowdown in diversification rate and have interpreted this as evidence for density dependent speciation. However, we demonstrated via simulation that large clades are expected to show stronger slowdowns than small clades, even if the probability of speciation and extinction remains constant through time. This is a consequence of exponential growth: clades, which, by chance, diversify at above the average rate early in their history, will tend to be large. They will also tend to regress back to the average diversification rate later on, and therefore show a slowdown. We conducted a meta-analysis of the distribution of speciation events through time, focusing on sequence-based phylogenies for 45 clades of birds. Thirteen of the 23 clades (57% that include more than 20 species show significant slowdowns. The high frequency of slowdowns observed in large clades is even more extreme than expected under a purely stochastic constant-rate model, but is consistent with the adaptive radiation model. Taken together, our data strongly support a model of density-dependent speciation in birds, whereby speciation slows as ecological opportunities and geographical space place limits on clade growth.
Flowing holographic anyonic superfluid
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2014-10-01
We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.
Wildlife disease elimination and density dependence
Potapov, A.
2012-05-16
Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.
Phenomenological theory of superfluidity and superconductivity
International Nuclear Information System (INIS)
Rabinowitz, M.
1994-01-01
Quantum condensation is used here as the basis for a phenomenological theory of superfluidity and superconductivity. It leads to remarkably good calculations of the transition temperatures T c of superfluid 3 He and 4 He, as well as a large number of cuprate, heavy fermion, organic, dichalcogenide, and bismuth oxide superconductors. Although this approach may apply least to the long-coherence-length metallics, reasonably good estimates are made for them and chevral superconductors. T c for atomic H is estimated. T c can be calculated as a function of number density or density of states and effective mass of normal carriers; or alternatively with the Fermi energy as the only input parameter. Predictions are made for a total of 26 superconductors and four superfluids. An estimate is also made for coherence lengths
Dissipation in the superfluid helium film
International Nuclear Information System (INIS)
Turkington, R.R.; Harris-Lowe, R.F.
1977-01-01
We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021
Development and application of a density dependent matrix ...
Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using
Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei
International Nuclear Information System (INIS)
Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.
1978-01-01
The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found
Landau parameters for finite range density dependent nuclear interactions
International Nuclear Information System (INIS)
Farine, M.
1997-01-01
The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules
Adiabatic effective action for vortices in neutral and charged superfluids
International Nuclear Information System (INIS)
Hatsuda, M.; Sato, M.; Yahikozawa, S.; Hatsuda, T.
1996-01-01
Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed
Superfluid thermodynamic cycle refrigerator
Swift, Gregory W.; Kotsubo, Vincent Y.
1992-01-01
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.
Cooling with Superfluid Helium
Energy Technology Data Exchange (ETDEWEB)
Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)
2014-07-01
The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.
Holographic anyonic superfluidity
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2013-10-01
Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.
Nuclear matter studies with density-dependent meson-nucleon coupling constants
International Nuclear Information System (INIS)
Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.
1997-01-01
Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society
A mechanistic analysis of density dependence in algal population dynamics
Directory of Open Access Journals (Sweden)
Adrian eBorlestean
2015-04-01
Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.
Density-dependent growth in invasive Lionfish (Pterois volitans).
Benkwitt, Cassandra E
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
Density-dependent growth in invasive Lionfish (Pterois volitans.
Directory of Open Access Journals (Sweden)
Cassandra E Benkwitt
Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
International Nuclear Information System (INIS)
Pushkarov, D.I.
2008-08-01
An analysis of previous theories of superfluidity of quantum solids is presented in relation to the nonclassical rotational moment of inertia (NCRM) found first in Kim and Chan experiments. A theory of supersolidity is proposed based on the presence of an additional conservation law. It is shown that the additional entropy or mass fluxes depend on the quasiparticle dispersion relation and vanish in the effective mass approximation. This implies that at low temperatures when the parabolic part of the dispersion relation predominates the supersolid properties should be less expressed. (author)
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Landau superfluids as nonequilibrium stationary states
International Nuclear Information System (INIS)
Wreszinski, Walter F.
2015-01-01
We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system
Tables of density dependent effective interactions between 122 and 800 MeV
International Nuclear Information System (INIS)
Dortmans, P.J.; Amos, K.
1996-01-01
Coordinate space density dependent effective nucleon-nucleon interaction based upon half-off-shell t and g-matrices are presented. These interactions are based upon the Paris interactions and are presented over a range of energies. 5 refs., 8 tabs
Fourth sound of holographic superfluids
International Nuclear Information System (INIS)
Yarom, Amos
2009-01-01
We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.
Isoscalar giant resonances and Landau parameters with density-dependent effective interactions
International Nuclear Information System (INIS)
Kohno, Michio; Ando, Kazuhiko
1979-01-01
Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)
Founder takes all: density-dependent processes structure biodiversity.
Waters, Jonathan M; Fraser, Ceridwen I; Hewitt, Godfrey M
2013-02-01
Density-dependent processes play a key role in the spatial structuring of biodiversity. Specifically, interrelated demographic processes, such as gene surfing, high-density blocking, and competitive exclusion, can generate striking geographic contrasts in the distributions of genes and species. Here, we propose that well-studied evolutionary and ecological biogeographic patterns of postglacial recolonization, progressive island colonization, microbial sectoring, and even the 'Out of Africa' pattern of human expansion, are fundamentally similar, underpinned by a 'founder takes all' density-dependent principle. Additionally, we hypothesize that older historic constraints of density-dependent processes are seen today in the dramatic biogeographic shifts that occur in response to human-mediated extinction events, whereby surviving lineages rapidly expand their ranges to replace extinct sister taxa. Copyright © 2012 Elsevier Ltd. All rights reserved.
Superfluid response in heavy fermion superconductors
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
Density dependence of line intensities and application to plasma diagnostics
International Nuclear Information System (INIS)
Masai, Kuniaki.
1993-02-01
Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Spinning superfluid 4He nanodroplets
Ancilotto, Francesco; Barranco, Manuel; Pi, Martí
2018-05-01
We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.
Stagg, G W; Parker, N G; Barenghi, C F
2017-03-31
We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.
Density-dependence as a size-independent regulatory mechanism
De Vladar, H.P.
2006-01-01
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which
Density-dependent feedbacks can mask environmental drivers of populations
DEFF Research Database (Denmark)
Dahlgren, Johan Petter
I present some results from studies identifying environmental drivers of vital rates and population dynamics when controlling for intraspecific density statistically or experimentally, show that density dependence can be strong even in populations of slow-growing species in stressful habitats, an...
Experimental evidence for density dependence of reproduction in great tits
Both, Christiaan
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not
Experimental evidence for density dependence of reproduction in great tits
Both, C.
1998-01-01
1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not
Density-dependent electron scattering in photoexcited GaAs
DEFF Research Database (Denmark)
Mics, Zoltán; D'Angio, Andrea; Jensen, Søren A.
2013-01-01
—In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...
Prevalence and strength of density-dependent tree recruitment
Kai Zhu; Christopher W. Woodall; Joao V.D. Monteiro; James S. Clark
2015-01-01
Density dependence could maintain diversity in forests, but studies continue to disagree on its role. Part of the disagreement results from the fact that different studies have evaluated different responses (survival, recruitment, or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most...
Transport and extraction of radioactive ions stopped in superfluid helium
Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J
A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.
Superfluid 3He dynamcs in 3He - 4He solutions
International Nuclear Information System (INIS)
Mejerovich, A.Eh.
1984-01-01
The dynamics of a 3 He- 4 He superfluid solution with two condensates ( 3 He and 4 He) is investigated. Despite the fact that the hydrodynamics of the system is a three-velocity one (two superfluid and one normal velocity), all the thermo- and hydrodynamic functions are determined by the value of only a single linear combination of the velocities. 0n the basis of an analogy between a moving solution and a BCS system with coupling with a non-zero momentum, the dependence of the thermodynamic quantities on the velocities and critical velocities can easily be calculated for both homogeneous and inhomogeneous phases of the solution. In a magnetic field the temperature oscillations (analogue of second sound for a superfluid solution) are accompanied by oscillations of the magnetic moment. The velocity and damping of the spin-temperature waves are determined. The orienting action of a current on the inhomogeneous phases of the solution is discussed. It is shown that the energy and size of the vortexes in a superfluid solution are, due to drag effects, oscillating functions of the effective mass of the 3 He quasirartictes (pressure). At a pressure of the order of 10 atm a first order transition should take place in the vortex line which is accompanied by an abrupt change of the circulations of superfluid velocity of 3 He for a fixed circulation of the 4 He velocity
Superfluid H3e in globally isotropic random media
Ikeda, Ryusuke; Aoyama, Kazushi
2009-02-01
Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.
Occurrence of hyperson superfluidity in neutron star cores
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo
2006-01-01
Superfluidity of Λ and Σ - admixed in neutron star (NS) cores is investigated realistically for hyperon (Y)-mixed NS models obtained using a G-matrix-based effective interaction approach. Numerical results for the equation of state (EOS) with the mixing ratios of the respective components and the hyperon energy gaps including the temperature dependence are presented. These are meant to serve as physical inputs for Y-cooling calculations of NSs. By paying attention to the uncertainties of the EOS and the YY interactions, it is shown that both Λ and Σ - are superfluid as soon as they appear although the magnitude of the critical temperature and the density region where superfluidity exists depend considerably on the YY pairing potential. Considering momentum triangle condition and the occurrence of superfluidity, it is found that a so-called hyperon cooling'' (neutrino-emission from direct Urca process including Y) combined with Y-superfluidity may be able to account for observations of the colder class of NSs. It is remarked that Λ-hyperons play a decisive role in the hyperon cooling scenario. Some comments are given regarding the consequences of the less attractive ΛΛ interaction recently suggested by the ''NAGARA event'' 6 ΛΛ He. (author)
Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview
Directory of Open Access Journals (Sweden)
Hojun Song
2011-01-01
Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.
A Neutron Scattering Study of Collective Excitations in Superfluid Helium
DEFF Research Database (Denmark)
Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans
1974-01-01
Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....
Superfluid Kubo formulas from partition function
International Nuclear Information System (INIS)
Chapman, Shira; Hoyos, Carlos; Oz, Yaron
2014-01-01
Linear response theory relates hydrodynamic transport coefficients to equilibrium retarded correlation functions of the stress-energy tensor and global symmetry currents in terms of Kubo formulas. Some of these transport coefficients are non-dissipative and affect the fluid dynamics at equilibrium. We present an algebraic framework for deriving Kubo formulas for such thermal transport coefficients by using the equilibrium partition function. We use the framework to derive Kubo formulas for all such transport coefficients of superfluids, as well as to rederive Kubo formulas for various normal fluid systems
Evolution of density-dependent movement during experimental range expansions.
Fronhofer, E A; Gut, S; Altermatt, F
2017-12-01
Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Does density-dependent diversification mirror ecological competitive exclusion?
Directory of Open Access Journals (Sweden)
Melanie J Monroe
Full Text Available Density-dependence is a term used in ecology to describe processes such as birth and death rates that are regulated by the number of individuals in a population. Evolutionary biologists have borrowed the term to describe decreasing rates of species accumulation, suggesting that speciation and extinction rates depend on the total number of species in a clade. If this analogy with ecological density-dependence holds, diversification of clades is restricted because species compete for limited resources. We hypothesize that such competition should not only affect numbers of species, but also prevent species from being phenotypically similar. Here, we present a method to detect whether competitive interactions between species have ordered phenotypic traits on a phylogeny, assuming that competition prevents related species from having identical trait values. We use the method to analyze clades of birds and mammals, with body size as the phenotypic trait. We find no sign that competition has prevented species from having the same body size. Thus, since body size is a key ecological trait and competition does not seem to be responsible for differences in body size between species, we conclude that the diversification slowdown that is prevalent in these clades is unlikely due to the ecological interference implied by the term density dependence.
Superconducting superfluids in neutron stars
International Nuclear Information System (INIS)
Carter, B.
2002-01-01
For treatment of the layers below the crust of a neutron star it is useful to employ a relativistic model involving three independently moving constituents, representing superfluid neutrons, superfluid protons, and degenerate negatively charged leptons. A Kalb-Ramond type formulation is used here to develop such a model for the specific purpose of application at the semi macroscopic level characterised by lengthscales that are long compared with the separation between the highly localised and densely packed proton vortices of the Abrikosov type lattice that carries the main part of the magnetic flux, but that are short compared with the separation between the neutron vortices. (orig.)
Collective excitations in unconventional superconductors and superfluids
Brusov, Peter
2009-01-01
This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-
Dynamics of vortex assisted metal condensation in superfluid helium.
Popov, Evgeny; Mammetkuliyev, Muhammet; Eloranta, Jussi
2013-05-28
Laser ablation of copper and silver targets immersed in bulk normal and superfluid (4)He was studied through time-resolved shadowgraph photography. In normal fluid, only a sub-millimeter cavitation bubble is created and immediate formation of metal clusters is observed within a few hundred microseconds. The metal clusters remain spatially tightly focused up to 15 ms, and it is proposed that this observation may find applications in particle image velocimetry. In superfluid helium, the cavitation bubble formation process is distinctly different from the normal fluid. Due to the high thermal conductivity and an apparent lag in the breakdown of superfluidity, about 20% of the laser pulse energy was transferred directly into the liquid and a large gas bubble, up to several millimeters depending on laser pulse energy, is created. The internal temperature of the gas bubble is estimated to exceed 9 K and the following bubble cool down period therefore includes two separate phase transitions: gas-normal liquid and normal liquid-superfluid. The last stage of the cool down process was assigned to the superfluid lambda transition where a sudden formation of large metal clusters is observed. This is attributed to high vorticity created in the volume where the gas bubble previously resided. As shown by theoretical bosonic density functional theory calculations, quantized vortices can trap atoms and dimers efficiently, exhibiting static binding energies up to 22 K. This, combined with hydrodynamic Bernoulli attraction, yields total binding energies as high as 35 K. For larger clusters, the static binding energy increases as a function of the volume occupied in the liquid to minimize the surface tension energy. For heliophobic species an energy barrier develops as a function of the cluster size, whereas heliophilics show barrierless entry into vortices. The present theoretical and experimental observations are used to rationalize the previously reported metal nanowire assembly in
International Nuclear Information System (INIS)
Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.
2009-01-01
The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)
Intercohort density dependence drives brown trout habitat selection
Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana
2013-01-01
Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat
Modelling interactions of toxicants and density dependence in wildlife populations
Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.
2013-01-01
1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to
Towards laboratory detection of topological vortices in superfluid phases of QCD
Das, Arpan; Dave, Shreyansh S.; de, Somnath; Srivastava, Ajit M.
2017-10-01
Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from the glitches in pulsars. One also expects that the topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. Though vastly different in energy/length scales, there are universal features in the formation of all these defects. Utilizing this universality, we investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions (HICs). Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give an unambiguous signal for superfluid transition resulting in vortices, allowing for the check of defect formation theories in a relativistic quantum field theory system, and the detection of superfluid phases of QCD. Detection of nucleonic superfluid vortices in low energy HICs will give opportunity for laboratory controlled study of their properties, providing crucial inputs for the physics of pulsars.
Electric response in superfluid helium
Czech Academy of Sciences Publication Activity Database
Chagovets, Tymofiy
2016-01-01
Roč. 488, May (2016), s. 62-66 ISSN 0921-4526 R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2016
Density-dependence as a size-independent regulatory mechanism.
de Vladar, Harold P
2006-01-21
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.
Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4
Kivotides, Demosthenes
2018-06-01
It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.
Nuclear ``pasta'' phase within density dependent hadronic models
Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.
2009-03-01
In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.
Nuclear 'pasta' phase within density dependent hadronic models
International Nuclear Information System (INIS)
Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W. de; Brito, L.; Providencia, C.; Santos, A. M.
2009-01-01
In the present paper, we investigate the onset of the 'pasta' phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations
Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird.
Directory of Open Access Journals (Sweden)
Jenny C Dunn
Full Text Available Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats, high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity, nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.
Novel sound phenomena in superfluid helium in aerogel and other impure superfluids
International Nuclear Information System (INIS)
Brusov, Peter; Brusov, Paul; Lawes, Gavin; Lee, Chong; Matsubara, Akira; Ishikawa, Osamu; Majumdar, Pinaki
2003-01-01
During the last decade new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities (D 2 , N 2 , Ne, Kr), superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and for superfluid He in aerogel. We show that the coupling between these two sound modes is governed either by c∂ρ/∂c or σρ a ρ s (for aerogel) rather than thermal expansion coefficient ∂ρ/∂T, which is enormously small in pure superfluids. This replacement plays a fundamental role in all sound phenomena in impure superfluids. It enhances the coupling between the two sound modes that leads to the existence of such phenomena as the slow mode and heat pulse propagation with the velocity of first sound observed in superfluids in aerogel. This means that it is possible to observe in impure superfluids such unusual sound phenomena as slow pressure (density) waves and fast temperature (entropy) waves. The enhancement of the coupling between the two sound modes decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by shock waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which never been observed in pure superfluids) could be observed in impure superfluids
The mobility of negative ions in superfluid 3He
International Nuclear Information System (INIS)
Solomaa, M.
1982-01-01
This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)
Nuclei: a superfluid condensate of α-particles. A study within the interacting boson model
International Nuclear Information System (INIS)
Gambhir, Y.K.; Ring, P.; Schuck, P.
1983-08-01
We study the question whether pairs of neutrons and pairs of protons of the usual superfluid phases do not form a bound state to give rise to a superfluid condensate of ''α-particles''. We indeed find indications for this to be the case from a BCS like study for bosons using the proton-neutron IBM as well as from an even-odd effect in the number of pairs using experimental binding energies
International Nuclear Information System (INIS)
Theodorakis, S.
1988-01-01
This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition
Light scattering from superfluid fog
International Nuclear Information System (INIS)
Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A.
2003-01-01
The dynamics of the droplets of superfluid 4 He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time τ v =10 -5 s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it
Anisotropic superfluidity of hadronic matter
International Nuclear Information System (INIS)
Chela Flores, J.
1977-10-01
From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions
Simplicity works for superfluid helium
International Nuclear Information System (INIS)
Bowley, Roger
2000-01-01
The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)
Rotons, Superfluidity, and Helium Crystals
Balibar, Sébastien
2006-09-01
Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous "roton" which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his "theory based on the shaky grounds of imaginary rotons". Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist. In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state.
Simplicity works for superfluid helium
Energy Technology Data Exchange (ETDEWEB)
Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)
2000-02-01
The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)
Functional renormalization group study of fluctuation effects in fermionic superfluids
Energy Technology Data Exchange (ETDEWEB)
Eberlein, Andreas
2013-03-22
This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature
On the possibility of simultaneous spiral and superfluid ordering in a Fermi-liquid
International Nuclear Information System (INIS)
Peletminskij, S.V.; Yatsenko, A.A.; Shulga, S.N.
2004-01-01
The paper concerns a particular possibility of ordering for Fermi systems - a superfluid spiral ordering, at which in addition to the phase invariance breakdown there occurs a violence of the translational and the spin rotation invariance. A general approach of studying of the superfluid spiral ordering is formulated on the basis of the Fermi liquid method. For a monocomponent Fermi system self-consistency equations for four order parameters and the temperature of simultaneous transition to spiral and superfluid states are obtained. The system of equations is studied under the assumption of two order parameters being distinct from zero. The spiral parameter dependences of the transition temperature and the energy gap in the spectrum of elementary fermion excitations are calculated. An interval of the spiral parameter values within which the superfluid spiral ordering can exist is determined. The spin correlation function at the spiral ordering is studied
Goldstone mode and pair-breaking excitations in atomic Fermi superfluids
Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.
2017-10-01
Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.
Density-dependent expressions for photoionization cross-sections
Energy Technology Data Exchange (ETDEWEB)
Sun Weiguo; Ma Xiaoguang; Cheng Yansong
2004-06-07
Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.
Density-dependent expressions for photoionization cross-sections
International Nuclear Information System (INIS)
Sun Weiguo; Ma Xiaoguang; Cheng Yansong
2004-01-01
Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function
Density dependence triggers runaway selection of reduced senescence.
Directory of Open Access Journals (Sweden)
Robert M Seymour
2007-12-01
Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.
Berkeley Experiments on Superfluid Macroscopic Quantum Effects
International Nuclear Information System (INIS)
Packard, Richard
2006-01-01
This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He
Radioactive ions and atoms in superfluid helium
Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R
2006-01-01
We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve
Refitting density dependent relativistic model parameters including Center-of-Mass corrections
International Nuclear Information System (INIS)
Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern
2011-01-01
Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)
Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians
Energy Technology Data Exchange (ETDEWEB)
LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)
2006-10-15
Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)
Modelling the effect of autotoxicity on density-dependent phytotoxicity.
Sinkkonen, A
2007-01-21
An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in
Dark matter superfluidity and galactic dynamics
Directory of Open Access Journals (Sweden)
Lasha Berezhiani
2016-02-01
Full Text Available We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful and galaxy clusters (where MOND is not: dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Dynamics of quantised vortices in superfluids
Sonin, Edouard B
2016-01-01
A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...
Quantized vortices in superfluids and superconductors
International Nuclear Information System (INIS)
Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.
1998-01-01
We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Superfluidity of hyperon-mixed neutron stars
International Nuclear Information System (INIS)
Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Yamamoto, Yasuo; Tamagaki, Ryozo
2002-01-01
Superfluidity of hyperons (Y) admixed in neutron star cores is investigated by a realistic approach. It is found that hyperons such as Λ and Σ - are likely to be superfluid due mainly to their large effective masses in the medium, in addition to their 1 S 0 -pairing attraction not so different from that of nucleons. Also the existence of nucleon superfluidity at high-density is investigated under a developed Y-contamination. It is found that the density change of nucleon components due to the Y-mixing does not work for the realization of n-superfluid and makes the existence of p-superfluid more unlikely, as compared to the normal case without the Y-mixing. (author)
Light scattering from superfluid fog
Energy Technology Data Exchange (ETDEWEB)
Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A
2003-05-01
The dynamics of the droplets of superfluid {sup 4}He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time {tau}{sub v}=10{sup -5} s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it.
Introduction to superfluidity field-theoretical approach and applications
Schmitt, Andreas
2015-01-01
Superfluidity – and closely related to it, superconductivity – are very general phenomena that can occur on vastly different energy scales. Their underlying theoretical mechanism of spontaneous symmetry breaking is even more general and applies to a multitude of physical systems. In these lecture notes, a pedagogical introduction to the field-theory approach to superfluidity is presented. The connection to more traditional approaches, often formulated in a different language, is carefully explained in order to provide a consistent picture that is useful for students and researchers in all fields of physics. After introducing the basic concepts, such as the two-fluid model and the Goldstone mode, selected topics of current research are addressed, such as the BCS-BEC crossover and Cooper pairing with mismatched Fermi momenta.
Strong-coupling effects in superfluid 3He in aerogel
International Nuclear Information System (INIS)
Aoyama, Kazushi; Ikeda, Ryusuke
2007-01-01
Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally
Magnetic conditioning in superfluid
International Nuclear Information System (INIS)
Caspi, S.
1988-08-01
Improvements in superconducting magnet technology have reduced to a handful the number of training quenches typical of dipole magnets. The number of training quenches in long (17 m) and short (1--2 m) SSC magnets are now about the same (operating at 6.6 tesla and 4.4 K). Yet the steps necessary to totally eliminate training are in the future RandD plans for magnet construction and conductor motion prevention. The accepted hypothesis is that Lorentz forces and poor mechanical properties of superconducting cables are the cause of conductor motion. Conductor motion reduces the stored energy in the cable by converting it into heat. The small amount of heat generated (millijoules) during motion is usually enough to quench the magnet when it is close to short sample. During training, the magnet performance normally improves with the number of quenches. It is not the quench itself that improves magnet performance but rather the fact that once conductor motion has occurred it will probably not repeat itself unless subjected to higher forces. Conditioning is a process that enables the magnet to reduce its stored energy without causing a premature quench. During the conditioning process the magnet is further cooled from its operating temperature of 4.4 K to 1.8 K by converting He I into He II. As a result the magnet is placed in a state where it has excess stability as well as excellent heat transfer capabilities. Although this does not eliminate motion, if the magnet is now cycled to /approximately/10% above its operating field at 4.4 K (which is above short sample) the excess stability should be enough to prevent quenching and reduce the probability of conductor motion and training once the magnet has been warmed back up to its operating temperature of 4.4 K. 3 refs., 5 figs
Magnetic conditioning in superfluid
Energy Technology Data Exchange (ETDEWEB)
Caspi, S.
1988-08-01
Improvements in superconducting magnet technology have reduced to a handful the number of training quenches typical of dipole magnets. The number of training quenches in long (17 m) and short (1--2 m) SSC magnets are now about the same (operating at 6.6 tesla and 4.4 K). Yet the steps necessary to totally eliminate training are in the future RandD plans for magnet construction and conductor motion prevention. The accepted hypothesis is that Lorentz forces and poor mechanical properties of superconducting cables are the cause of conductor motion. Conductor motion reduces the stored energy in the cable by converting it into heat. The small amount of heat generated (millijoules) during motion is usually enough to quench the magnet when it is close to short sample. During training, the magnet performance normally improves with the number of quenches. It is not the quench itself that improves magnet performance but rather the fact that once conductor motion has occurred it will probably not repeat itself unless subjected to higher forces. Conditioning is a process that enables the magnet to reduce its stored energy without causing a premature quench. During the conditioning process the magnet is further cooled from its operating temperature of 4.4 K to 1.8 K by converting He I into He II. As a result the magnet is placed in a state where it has excess stability as well as excellent heat transfer capabilities. Although this does not eliminate motion, if the magnet is now cycled to /approximately/10% above its operating field at 4.4 K (which is above short sample) the excess stability should be enough to prevent quenching and reduce the probability of conductor motion and training once the magnet has been warmed back up to its operating temperature of 4.4 K. 3 refs., 5 figs.
Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model
International Nuclear Information System (INIS)
Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas
2006-01-01
A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars
Density-dependent coupling constants and charge symmetry breaking
International Nuclear Information System (INIS)
Barreiro, L.A.
2001-01-01
The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly. (author)
Fourth sound in relativistic superfluidity theory
International Nuclear Information System (INIS)
Vil'chinskij, S.I.; Fomin, P.I.
1995-01-01
The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined
An enlarged superfluid model of atomic nucleus
International Nuclear Information System (INIS)
Dumitrescu, O.; Horoi, M.
1989-01-01
The well known superfluid model (or quasiparticle phonon nuclear model (QPNM)) of atomic nucleus is enlarged by including an adequate four-nucleon effective interaction in addition to the pairing and long-range effective residual interactions. New experimental data can be explained without affecting those observables already described by the QPNM and in addition new features can be enumerated: 1) superfluidities of the neutron and proton systems may be generated by one another; 2) the phase structure is enriched by a new superfluid phase dominated by alpha-type correlations (ATC) and 3) superfluid isomers and their bands of elementary excitations are predicted. Unusual large two-nucleon and alpha transfer reactions cross sections as well as some unusual large alpha decay widths can be explained. (author). 46 refs, 3 figs, 2 tabs
Didactic demonstrations of superfluidity and superconductivity phenomena
International Nuclear Information System (INIS)
Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.
1980-01-01
In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)
Broken superfluid in dense quark matter
Energy Technology Data Exchange (ETDEWEB)
Parganlija, Denis; Schmitt, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Alford, Mark [Department of Physics, Washington University St Louis, MO, 63130 (United States)
2014-07-01
Quark matter at high densities is a superfluid. Properties of the superfluid become highly non-trivial if the effects of strange-quark mass and the weak interactions are considered. These properties are relevant for a microscopic description of compact stars. We discuss the effect of a (small) explicitly symmetry-breaking term on the properties of a zero-temperature superfluid in a relativistic φ{sup 4} theory. If the U(1) symmetry is exact, chemical potential and superflow can be equivalently introduced either via (1) a background gauge field or (2) a topologically nontrivial mode. However, in the case of the explicitly broken symmetry, we demonstrate that the scenarios (1) and (2) lead to quantitatively different results for the mass of the pseudo-Goldstone mode and the critical velocity for superfluidity.
Effective theory of bosonic superfluids
International Nuclear Information System (INIS)
Schakel, A.M.J.
1994-01-01
The authors discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling φ 4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. The authors calculate the critical temperature, the coefficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given
Biomolecular ions in superfluid helium nanodroplets
International Nuclear Information System (INIS)
Gonzalez Florez, Ana Isabel
2016-01-01
The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium
Biomolecular ions in superfluid helium nanodroplets
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Florez, Ana Isabel
2016-07-01
The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium
Quantum turbulence in superfluids with wall-clamped normal component.
Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti
2014-03-25
In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.
Detectability of Light Dark Matter with Superfluid Helium.
Schutz, Katelin; Zurek, Kathryn M
2016-09-16
We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100 keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.
Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine
Brouwer, Lyanne; Tinbergen, Joost M.; Both, Christiaan; Bristol, Rachel; Richardson, David S.; Komdeur, Jan; Sauer, J.R.
Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is
Effects of Density-Dependent Bag Constant and Strange Star Rotation
Institute of Scientific and Technical Information of China (English)
ZHOU Qiao-Er; GUO Hua
2003-01-01
With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.
Kelley M. Stewart; R. Terry Bowyer; Brian L. Dick; Bruce K. Johnson; John G. Kie
2005-01-01
Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density...
Magnon Bose-Einstein condensation and spin superfluidity.
Bunkov, Yuriy M; Volovik, Grigory E
2010-04-28
Bose-Einstein condensation (BEC) is a quantum phenomenon of formation of a collective quantum state in which a macroscopic number of particles occupy the lowest energy state and thus is governed by a single wavefunction. Here we highlight the BEC in a magnetic subsystem--the BEC of magnons, elementary magnetic excitations. The magnon BEC is manifested as the spontaneously emerging state of the precessing spins, in which all spins precess with the same frequency and phase even in an inhomogeneous magnetic field. The coherent spin precession was observed first in superfluid (3)He-B and this domain was called the homogeneously precessing domain (HPD). The main feature of the HPD is the induction decay signal, which ranges over many orders of magnitude longer than is prescribed by the inhomogeneity of magnetic field. This means that spins precess not with a local Larmor frequency, but coherently with a common frequency and phase. This BEC can also be created and stabilized by continuous NMR pumping. In this case the NMR frequency plays the role of a magnon chemical potential, which determines the density of the magnon condensate. The interference between two condensates has also been demonstrated. It was shown that HPD exhibits all the properties of spin superfluidity. The main property is the existence of a spin supercurrent. This spin supercurrent flows separately from the mass current. Transfer of magnetization by the spin supercurrent by a distance of more than 1 cm has been observed. Also related phenomena have been observed: the spin current Josephson effect; the phase-slip processes at the critical current; and the spin current vortex--a topological defect which is the analog of a quantized vortex in superfluids and of an Abrikosov vortex in superconductors; and so on. It is important to mention that the spin supercurrent is a magnetic phenomenon, which is not directly related to the mass superfluidity of (3)He: it is the consequence of a specific
Apparent de-wetting due to superfluid flow
Poujade, M; Rolley, E
2002-01-01
We have investigated the wetting behaviour of superfluid helium-4 on silicon. Surprisingly, we observe pseudo-de-wetting: though a thick superfluid film covers the substrate, the meniscus displays a finite contact angle which decreases from about 5 deg C at low temperature down to zero at the superfluid transition. We show that this behaviour can be explained by a pressure decrease due to a superfluid flow, closely related to the Kontorovich effect. (authors)
Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes
Mongiovì, Maria Stella; Restuccia, Liliana
2018-02-01
This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.
Nonuniform quantum turbulence in superfluids
Nemirovskii, Sergey K.
2018-04-01
The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.
Magnon condensation and spin superfluidity
Bunkov, Yury M.; Safonov, Vladimir L.
2018-04-01
We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.
International Nuclear Information System (INIS)
Holm, D.D.; Kupershmidt, B.A.
1987-01-01
Four levels of nonlinear hydrodynamic description are presented for a nondissipative multicondensate solution of superfluids with vorticity. First, the multivelocity superfluid (MVSF) theory is extended to the case of a multivelocity superfluid plasma (MVSP), in which some of the superfluid condensates (protons, say) are charged and coupled electromagnetically to an additional, normal, charged fluid (electrons). The resulting drag-current density is derived due to the electromagnetic coupling of the condensates with the normal fluids. For the case of one charged condensate, the MVSP equations simplify to what we call superfluid Hall magnetohydrodynamics (SHMHD) in the approximation that displacement current and electron inertia are negligible, and local charge neutrality is imposed. The contribution of the charged condensate to the Hall drift force is determined. In turn, neglecting the Hall effect in SHMHD gives the equations of superfluid magnetohydrodynamics (SMHD). Each set of equations (MVSF, MVSP, SHMHD, and SMHD) is shown to be Hamiltonian and to possess a Poisson bracket associated with the dual space of a corresponding semidirect-product Lie algebra with a generalized two-cocycle defined on it. Topological conservation laws (helicities) associated with the kernels of these Lie algebras are also discussed as well as those associated physically with generalized Kelvin theorems for conservation of superfluid circulation around closed loops moving with the normal fluid
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that in the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Thermodynamics of strange quark matter with the density-dependent bag constant
Institute of Scientific and Technical Information of China (English)
ZHU MingFeng; LIU GuangZhou; YU Zi; XU Yan; SONG WenTao
2009-01-01
The thermodynamics of strange quark matter with density dependent bag constant are studied selfconsistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term Is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,Indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that In the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.
Wave processes in a superfluid liquid
International Nuclear Information System (INIS)
Sanikidze, D.G.
1981-01-01
The monograph is devoted to theory of sound wave propagation in superfluid He 4 and He 3 -He 4 solutions. Hydrodynamic theory of sound oscillation propagation in superfluid liquid under conditions of confined geometry is given. In particular considered are problems of propagation of the first, second and fourth sounds, dispersion, attenuation and absorption, sound propagation in films, channels and waveguides. The monograph summarizes a certain stage of studying different sound oscillations in superfluid liquid and along with original results contains also results obtained by other investigators. The theory and experimental investigations carried on both in the Soviet Union and abroad are compared. The monograph is intended for specialists working in the area of low temperature physics and for students of the given speciality [ru
Transport coefficients in superfluid neutron stars
Energy Technology Data Exchange (ETDEWEB)
Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)
2016-01-22
We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.
Realization of mechanical rotation in superfluid helium
Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.
2017-09-01
The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.
Hydrodynamics of compressible superfluids in confined geometries
International Nuclear Information System (INIS)
Malmi-Kakkada, Abdul N; Valls, Oriol T; Dasgupta, Chandan
2014-01-01
We present a study of the hydrodynamics of compressible superfluids in confined geometries. We use a perturbative procedure in terms of the dimensionless expansion parameter (v/v s ) 2 where v is the typical speed of the flow and v s is the speed of sound. A zero value of this parameter corresponds to the incompressible limit. We apply the procedure to two specific problems: the case of a trapped superfluid with a Gaussian profile of the local density, and that of a superfluid confined in a rotating obstructed cylinder. We find that the corrections due to finite compressibility which are, as expected, negligible for liquid He, are important but amenable to the perturbative treatment for typical ultracold atomic systems. (paper)
Dark lump excitations in superfluid Fermi gases
Xu, Yan-Xia; Duan, Wen-Shan
2012-11-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
Dark lump excitations in superfluid Fermi gases
International Nuclear Information System (INIS)
Xu Yan-Xia; Duan Wen-Shan
2012-01-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity
Intraspecific density dependence and a guild of consumers coexisting on one resource.
McPeek, Mark A
2012-12-01
The importance of negative intraspecific density dependence to promoting species coexistence in a community is well accepted. However, such mechanisms are typically omitted from more explicit models of community dynamics. Here I analyze a variation of the Rosenzweig-MacArthur consumer-resource model that includes negative intraspecific density dependence for consumers to explore its effect on the coexistence of multiple consumers feeding on a single resource. This analysis demonstrates that a guild of multiple consumers can easily coexist on a single resource if each limits its own abundance to some degree, and stronger intraspecific density dependence permits a wider variety of consumers to coexist. The mechanism permitting multiple consumers to coexist works in a fashion similar to apparent competition or to each consumer having its own specialized predator. These results argue for a more explicit emphasis on how negative intraspecific density dependence is generated and how these mechanisms combine with species interactions to shape overall community structure.
Gary D. Grossman; Gary Sundin; Robert E. Ratajczak
2016-01-01
SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.
Directory of Open Access Journals (Sweden)
Elijah Reyes
Full Text Available Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1 egg survival is density dependent or 2 adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.
Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope
2016-01-01
Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.
Superfluid helium-4: An introductory review
International Nuclear Information System (INIS)
Vinen, W.F.
1983-01-01
Helium was first liquefied by Kamerlingh Onnes in Leiden in July 1908, an achievement that followed much careful and painstaking work. On the same day Onnes reduced the temperature of his helium to a value approaching lK, and he must therefore have produced and observed the superfluid phase. These experimental discoveries led very quickly to a series of remarkable theoretical contributions that laid the foundations for all subsequent work. The period since the second world war has of course seen an enormous amount of work on superfluid helium-4. In reviewing it the author tries to see it in terms of two threads: one originating from Landau; the other from London
Superfluid helium at subcritical active core
International Nuclear Information System (INIS)
Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.
2002-01-01
Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru
Effect of deformation and orientation on spin orbit density dependent nuclear potential
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Density-dependent effective baryon–baryon interaction from chiral three-baryon forces
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)
2017-01-15
A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Spin Superfluidity and Magnone BEC in He-3
Bunkov, Yury
2011-03-01
The spin superfluidity -- superfluidity in the magnetic subsystem of a condensed matter -- is manifested as the spontaneous phase-coherent precession of spins first discovered in 1984 in 3 He-B. This superfluid current of spins -- spin supercurrent -- is one more representative of superfluid currents known or discussed in other systems, such as the superfluid current of mass and atoms in superfluid 4 He; superfluid current of electric charge in superconductors; superfluid current of hypercharge in Standard Model of particle physics; superfluid baryonic current and current of chiral charge in quark matter; etc. Spin superfluidity can be described in terms of the Bose condensation of spin waves -- magnons. We discuss different states of magnon superfluidity with different types of spin-orbit coupling: in bulk 3 He-B; magnetically traped `` Q -balls'' at very low temperatures; in 3 He-A and 3 He-B immerged in deformed aerogel; etc. Some effects in normal 3 He can also be treated as a magnetic BEC of fermi liquid. A very similar phenomena can be observed also in a magnetic systems with dinamical frequensy shift, like MnC03 . We will discuss the main experimental signatures of magnons superfluidity: (i) spin supercurrent, which transports the magnetization on a macroscopic distance more than 1 cm long; (ii) spin current Josephson effect which shows interference between two condensates; (iii) spin current vortex -- a topological defect which is an analog of a quantized vortex in superfluids, of an Abrikosov vortex in superconductors, and cosmic strings in relativistic theories; (iv) Goldstone modes related to the broken U (1) symmetry -- phonons in the spin-superfluid magnon gas; etc. For recent review see Yu. M. Bunkov and G. E. Volovik J. Phys. Cond. Matter. 22, 164210 (2010) This work is partly supported by the Ministry of Education and Science of the Russian Federation (contract N 02.740.11.5217).
Blowing smoke rings in superfluid helium
International Nuclear Information System (INIS)
Allum, D.R.; McClintock, P.V.E.
1977-01-01
Among experiments designed to investigate the properties of superfluids, measurements are discussed which aim at determining the variation in the speed of an ion with the size of the electric field propelling it through liquid helium. The experimental set up using helium ions is described. The velocity-field characteristic shows an initial rise but at a higher electric field the ions exhibit the curious behaviour of slowing down before again increasing speed with force. The reason for this region of slowing down is here explained as being due to the fact that the charge is no longer carried by a free ion but, rather, by a charged vortex ring. As the ion speeds thorugh the liquid it suddenly creates a vortex ring and as one of the fundamental characteristics of a vortex ring is that its velocity is inversely proportional to its radius the speed reduction is explained. The subsequent rise in the characteristic indicates that the charge carriers are no longer straightforward charged vortex rings. This behaviour is attributed to ions 'falling off' their rings soon after creating them. It would appear that the force exerted by the electric field is so large that it overcomes the hydrodynamic force which binds the ion to the slowly moving vortex, enabling the ion to escape and accelerate away. In a final levelling off part of the characteristic curve it is considered that the ions are travelling faster than the critical velocity for roton creation, but are moving far below that for phonon creation. One may therefore conclude that the ion, as it travels through the liquid, transforms energy extracted from the electric field into rotons, which fan out forming a sort of wake behind it. (U.K.)
Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A
2018-02-09
It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Condensate fraction in superfluid 4He
International Nuclear Information System (INIS)
Olinto, A.C.
1986-01-01
Recently, a relationship between the chemical potential and the condensate fraction η o (T) has been derived for all temperatures in the superfluid region. An analysis of liquid 4 He chemical potential data yields η o (T=0) = 0.062 and η o (T) is in excellent with the empirical results of Svensson, Sears, and Griffin. (Autor) [pt
Lee, D. M.; Leggett, A. J.
2011-08-01
A history is given of liquid 3He research from the time when 3He first became available following World War II through 1972 when the discovery of the superfluid phases was made. The Fermi liquid nature was established early on, and the Landau Fermi liquid theory provided a framework for understanding the interactions between the Fermions (quasiparticles). The theory's main triumph was to predict zero sound, which was soon discovered experimentally. Experimental techniques are treated, including adiabatic demagnetization, dilution refrigerator technology, and Pomeranchuk cooling. A description of the superfluid 3He discovery experiments using the latter two of these techniques is given. While existing theories provided a basis for understanding the newly discovered superfluid phases in terms of ℓ>0 Cooper pairs, the unexpected stability of the A phase in the high- P, high- T region of the phase diagram needed for its explanation a creative leap beyond the BCS paradigm. The use of sum rules to interpret some of the unusual magnetic resonance in liquid 3He is discussed. Eventually a complete theory of the spin dynamics of superfluid 3He was developed, which predicted many of the exciting phenomena subsequently discovered.
Sounds in one-dimensional superfluid helium
International Nuclear Information System (INIS)
Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.
1989-01-01
The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero
Small objects in superfluid 3He
International Nuclear Information System (INIS)
Rainer, D.; Vuorio, M.
1977-02-01
Distortions in the superfluid order parameter around a small object in 3 He are calculated together with the supercurrents and the angular momentum induced by it in the liquid. The forces acting on the impurity by the liquid texture structure are also considered. (author)
Multipole pair vibrations in superfluid 3He
International Nuclear Information System (INIS)
Baldo, M.; Giansiracusa, G.; Lombardo, U.; Pucci, R.; Petronio, G.
1978-01-01
Starting from a path integral formation of the 3 He superfluidity, the authors study the pair vibrations around the BCS solution. For both the BW and ABM states get a set of possible excitations. In particular it is shown that a new type of excitation is present for pure 1 = 2 spin singlet vibration. (Auth.)
Magnus force in superfluids and superconductors
International Nuclear Information System (INIS)
Sonin, E.B.
1997-01-01
The forces on the vortex, transverse to its velocity, are considered. In addition to the superfluid Magnus force from the condensate (superfluid component), there are transverse forces from thermal quasiparticles and external fields violating the Galilean invariance. The forces between quasiparticles and the vortex originate from interference of quasiparticles with trajectories on the left and on the right from the vortex like similar forces for electrons interacting with the thin magnetic-flux tube (the Aharonov-Bohm effect). These forces are derived for phonons from the equations of superfluid hydrodynamics, and for BCS quasiparticles from the Bogolyubov endash de Gennes equations. The effect of external fields breaking Galilean invariance is analyzed for vortices in the two-dimensional Josephson junction array. The symmetry analysis of the classical equations for the array shows that the total transverse force on the vortex vanishes. Therefore the Hall effect which is linear in the transverse force is absent also. This means that the Magnus force from the superfluid component exactly cancels with the transverse force from the external fields. The results of other approaches are also brought together for discussion. copyright 1997 The American Physical Society
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Directory of Open Access Journals (Sweden)
Rachael K Walsh
Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.
Williams, Jennifer L; Levine, Jonathan M
2018-04-01
Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.
Nucleation and creep of vortices in superfluids and clean superconductors
International Nuclear Information System (INIS)
Sonin, E.B.
1995-01-01
The paper is devoted to vortex nucleation in uniform and nonuniform superflows in superfluids, and to creep of vortices trapped by twin boundaries and columnar defects in isotropic and anisotropic superconductors. The shape of a nuclated loop which yields the maximal nucleation rate is defined from the balance of the Lorentz and the line-tension forces. If the trapping energy is small, the contact angle at which the vortex line meets the plane of the twin-boundary or the axis of the columnar defect is also small. This may strongly enhance the rate of thermal nucleation and especially of quantum nucleation. In the analysis of quantum tunnelling it was assumed that the vortex has no mass and its motion is governed by the Magnus force, as expected for superfluids and very pure superconductors. Quantum nucleation rate from the traditional quasiclassical theory of macroscopic tunnelling is compared with the nucleation rate derived from the Gross-Pitaevskii theory of a weakly nonideal Bose-gas. (orig.)
Incompressible flows of superfluid films on multiply-connected surfaces
International Nuclear Information System (INIS)
Corrada-Emmanuel, A.
1989-01-01
The theory of Riemann surfaces is applied to the problem of constructing quantized vortex flows in closed surfaces of arbitrary but finite genus. An in principle procedure for obtaining the lowest energy flow is presented. It is shown that quantized vortices in non-zero genus surfaces are, in general, not isomorphic to a Coulomb gas. This failure has a geometrical origin: the appearance in non-zero genus surfaces of closed curves that are not the boundary of any area. A theorem of Riemann is applied to the genus one surface, the torus, to show quantitatively how to construct the quantized vortices. Because of the breakdown in the isomorphism between quantized vortices and charges, a novel effect is possible: the violation of Earnshaw's theorem. On a torus a single vortex can be placed in local stable equilibrium. The uniform flows around the holes of the torus also lead to a new result: a non-vortex mechanism for the destruction of superfluidity in the film. An explicit formula is derived showing this effect by considering the response of a helium film to a rotation of the torus. The author predicts that torii of dissimilar proportions will exhibit different superfluid densities at the same temperature
Density dependence in a recovering osprey population: demographic and behavioural processes.
Bretagnolle, V; Mougeot, F; Thibault, J-C
2008-09-01
1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.
Color-flavor locked strange quark matter in a mass density-dependent model
International Nuclear Information System (INIS)
Chen Yuede; Wen Xinjian
2007-01-01
Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)
DEFF Research Database (Denmark)
Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.
1997-01-01
, but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate...
Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime
DEFF Research Database (Denmark)
Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.
2013-01-01
In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...
Single-particle density matrix and superfluidity in the two-dimensional Bose Coulomb fluid
International Nuclear Information System (INIS)
Minguzzi, A.; Tosi, M.P.; Davoudi, B.
2002-01-01
A study by Magro and Ceperley [Phys. Rev. Lett. 73, 826 (1994)] has shown that the ground state of the two-dimensional fluid of charged bosons with logarithmic interactions is not Bose condensed, but exhibits algebraic off-diagonal order in the single-particle density matrix ρ(r). We use a hydrodynamic Hamiltonian expressed in terms of density and phase operators, in combination with an f-sum rule on the superfluid fraction, to reproduce these results and to extend the evaluation of the density matrix to finite temperature T. This approach allows us to treat the liquid as a superfluid in the absence of a condensate. The algebraic decay of the one-body density matrix is due to correlations between phase fluctuations, and we find that the exponent in the power law is determined by the superfluid density n s (T). We also find that the plasmon gap in the single-particle energy spectrum at long wavelengths decreases with increasing T and closes at the critical temperature for the onset of superfluidity
Flow visualization in superfluid helium-4 using He2 molecular tracers
Guo, Wei
Flow visualization in superfluid helium is challenging, yet crucial for attaining a detailed understanding of quantum turbulence. Two problems have impeded progress: finding and introducing suitable tracers that are small yet visible; and unambiguous interpretation of the tracer motion. We show that metastable He2 triplet molecules are outstanding tracers compared with other particles used in helium. These molecular tracers have small size and relatively simple behavior in superfluid helium: they follow the normal fluid motion at above 1 K and will bind to quantized vortex lines below about 0.6 K. A laser-induced fluorescence technique has been developed for imaging the He2 tracers. We will present our recent experimental work on studying the normal-fluid motion by tracking thin lines of He2 tracers created via femtosecond laser-field ionization in helium. We will also discuss a newly launched experiment on visualizing vortex lines in a magnetically levitated superfluid helium drop by imaging the He2 tracers trapped on the vortex cores. This experiment will enable unprecedented insight into the behavior of a rotating superfluid drop and will untangle several key issues in quantum turbulence research. We acknowledge the support from the National Science Foundation under Grant No. DMR-1507386 and the US Department of Energy under Grant No. DE-FG02 96ER40952.
Effective action for superfluid Fermi systems in the strong-coupling limit
International Nuclear Information System (INIS)
Dupuis, N.
2005-01-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)
Effective action for superfluid Fermi systems in the strong-coupling limit
Dupuis, N.
2005-07-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).
Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.
Zheng, Wei; Zhai, Hui
2014-12-31
In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.
Fluctuations in the thermal superfluid model for heated spherical nuclei
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1990-01-01
The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)
Application of the nuclear field theory to superfluid nuclei
International Nuclear Information System (INIS)
Reinhardt, H.
1980-01-01
The quasiparticle-phonon multiplet of superfluid spherical nuclei is investigated in the framework of the nuclear field theory (NFT), using the pairing plus quadrupole force. In leading order of the NFT expansion there exists a simple relation between the energy splitting of the multiplet and the ground state B(E lambda) transitions from the multiplet. This relation states that the reduced matrix elements for the B(E lambda) transition decrease linearly with increasing energies of the multiplet states. The extent to which this relation is fulfilled by available experimental data is checked. The influence of the spurious correlations involved in the NFT treatment due to the BCS approximation is estimated. The numerical calculations are performed for 93 Nb where the ground state B(E lambda) transitions are measured for all multiplet states. (orig.)
Acquisition system testing with superfluid helium
International Nuclear Information System (INIS)
Anderson, J.E.; Fester, D.A.; DiPirro, M.J.
1988-01-01
NASA is evaluating both a thermomechanical pump and centrifugal pump for the SHOOT experiment using capillary fluid acquisition systems. Tests were conducted for these systems with superfluid helium under adverse operating conditions. Minus one-g outflow tests were run in conjunction with the thermomechanical pump. Both fine mesh screen and porous sponges were tested. A screen acquisition device was also tested with the low-NPSH centrifugal pump. Results to date show that the screen and sponge are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to four cm. This is more than sufficient for the SHOOT application. Results with the sponge were reproducible while those with the screen could not always be repeated
Modern trends in superconductivity and superfluidity
Kagan, M Yu
2013-01-01
This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetism in novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject...
Sound propagation in elongated superfluid fermionic clouds
International Nuclear Information System (INIS)
Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.
2006-01-01
We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor √(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate
Bose-Einstein condensation and superfluidity
Pitaevskii, Lev
2016-01-01
This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.
Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate
Directory of Open Access Journals (Sweden)
Li Yingke
2011-01-01
Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.
Directory of Open Access Journals (Sweden)
Wentao Wang
2012-01-01
Full Text Available This paper presents a new generalized Nicholson’s blowflies system with patch structure and nonlinear density-dependent mortality terms. Under appropriate conditions, we establish some criteria to guarantee the exponential extinction of this system. Moreover, we give two examples and numerical simulations to demonstrate our main results.
DEFF Research Database (Denmark)
Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás
2014-01-01
Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based...
Explaining density-dependent regulation in earthworm populations using life-history analysis
Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.
2003-01-01
At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for
Detection of density dependence requires density manipulations and calculation of lambda.
Fowler, N L; Overath, R Deborah; Pease, Craig M
2006-03-01
To investigate density-dependent population regulation in the perennial bunchgrass Bouteloua rigidiseta, we experimentally manipulated density by removing adults or adding seeds to replicate quadrats in a natural population for three annual intervals. We monitored the adjacent control quadrats for 14 annual intervals. We constructed a population projection matrix for each quadrat in each interval, calculated lambda, and did a life table response experiment (LTRE) analysis. We tested the effects of density upon lambda by comparing experimental and control quadrats, and by an analysis of the 15-year observational data set. As measured by effects on lambda and on N(t+1/Nt in the experimental treatments, negative density dependence was strong: the population was being effectively regulated. The relative contributions of different matrix elements to treatment effect on lambda differed among years and treatments; overall the pattern was one of small contributions by many different life cycle stages. In contrast, density dependence could not be detected using only the observational (control quadrats) data, even though this data set covered a much longer time span. Nor did experimental effects on separate matrix elements reach statistical significance. These results suggest that ecologists may fail to detect density dependence when it is present if they have only descriptive, not experimental, data, do not have data for the entire life cycle, or analyze life cycle components separately.
Dynamical Analysis of Density-dependent Selection in a Discrete one-island Migration Model
James H. Roberds; James F. Selgrade
2000-01-01
A system of non-linear difference equations is used to model the effects of density-dependent selection and migration in a population characterized by two alleles at a single gene locus. Results for the existence and stability of polymorphic equilibria are established. Properties for a genetically important class of equilibria associated with complete dominance in...
The ideal free distribution as an evolutionarily stable state in density-dependent population games
Czech Academy of Sciences Publication Activity Database
Cressman, R.; Křivan, Vlastimil
2010-01-01
Roč. 119, č. 8 (2010), s. 1231-1242 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Institutional research plan: CEZ:AV0Z50070508 Keywords : density-dependent population games Subject RIV: EH - Ecology, Behaviour Impact factor: 3.393, year: 2010
High temperature superconductors and other superfluids
Alexandrov, A S
2017-01-01
Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.
International Nuclear Information System (INIS)
Chernobaj, V.A.; Andronik, V.V.
1978-01-01
The necessity of taking into account the relativistic effects in quantized vortices of pulsar superfluid nuclei is shown. The full energy of a single vortex for special relativity theory approximation is determined. The single vortex full energy asymptotics for quantized numbers n, which are much greater than the ratio of vortex exterior radius to Compton's length of the nucleon, wave is linear with respect to n while in the nonrelativistic case the kinetic energy is proportional to n 2 . This suggests the possibility of existence of quasistable vortices with great quantized numbers n. It is revealed that for small quantized numbers the taking into account of the relativistic effects in the vortices does not lead to qualitative changes of the general condition of superfluid liquid rotation as compared to non-relativistic theory
Superfluidity of bosons on a deformable lattice
International Nuclear Information System (INIS)
Jackeli, G.; Ranninger, J.
2001-01-01
We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts
Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei
Energy Technology Data Exchange (ETDEWEB)
Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)
2017-10-15
The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and
Stability measurements on cored cables in normal and superfluid helium
International Nuclear Information System (INIS)
GHOSH, A.K.; SAMPSON, W.B.; KIM, S.W.; LEROY, D.; OBERLI, L.R.; WILSON, M.N.
1998-01-01
The relative stability of LHC type cables has been measured by the direct heating of one of the individual strands with a short duration current pulse. The minimum energy required to initiate a quench has been determined for a number of cables which have a central core to increase the effective inter-strand cross-over resistance. Experiments were performed in both normal helium at 4.4 K and superfluid at 1.9 K. Conductors in general are less stable at the lower temperature when measured at the same fraction of critical current. Results show that the cored-cables, even when partially filled with solder or with a porous-metal filler exhibit a relatively low stability at currents close to the critical current. It is speculated that the high inter-strand electrical and thermal resistance inherent in these cables may effect the stability at high currents
Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim
2014-11-01
Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high
International Nuclear Information System (INIS)
Huggins, E.R.
1994-01-01
Expressing hydrodynamics in terms of the flow of vorticity, using the vortex current tensor, helps unify the picture of turbulent channel flow for viscous fluids and for superfluids. In both, eddy viscosity plays a major role in energy dissipation, and in both there is a similar cross stream flow of vorticity, which in the case of superfluids leads to the Josephson frequency. The vortex current tensor, which was introduced in an earlier paper to derive an exact three dimensional Magnus effect formula, turns out to be the classical hydrodynamic limit of the vortex current that is the source for a classical Goldstone-boson field
The effects of density dependent resource limitation on size of wild reindeer.
Skogland, Terje
1983-11-01
A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.A decrement in the size of does as a result of gross density was found. This size decrement was further analysed in relation to the habitat densities in winter (R 2 =0.85) and in summer (R 2 =0.75) separately, in order to estimate the relative effects of each factor. For herds with adequate food in winter (no signs of overgrazing of lichens) density in relation to summer habitat and mires yielded the highest predictive power in a multiple regression. For herds with adequate summer pastures, densities per winter habitat and lichen volumes showed likewise a highly significant correlation. The inclusion of the lichen volume data in the regression increased its predictive power. The major effect of resource limitation was to delay the time of calving because a maternal carry-over effect allowed the calf a shorter period of growth to be completed during its first summer. Neonate size at birth was highly correlated with maternal size regardless of the mean calving date although the latter was significantly delayed for small-sized does in food resource-limited herds. Likewise the postnatal growth rate of all calves were not significantly different during 50 days postpartum regardless of maternal conditions in winter feeding. The summer growth rates of bucks ≧1 year did not vary significantly between herds. The age of maturity of food resource-limited does was delayed by one year and growth ceased after the initiation of reproduction. This shows that under conditions of limited resources the does with delayed births of calves allocated less energy to body growth simply because they had less time to replenish body
Symmetric structures of coherent states in superfluid helium-4
International Nuclear Information System (INIS)
Ahmad, M.
1981-02-01
Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)
Normal-superfluid interface for polarized fermion gases
Van Schaeybroeck, B.; Lazarides, A.
2009-01-01
Recent experiments on imbalanced fermion gases have proved the existence of a sharp interface between a superfluid and a normal phase. We show that, at the lowest experimental temperatures, a temperature difference between normal N and superfluid SF phases can appear as a consequence of the blocking
DEFF Research Database (Denmark)
Koons, David; Colchero, Fernando; Hersey, Kent
2015-01-01
Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...
Energy Technology Data Exchange (ETDEWEB)
Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
International Nuclear Information System (INIS)
Sweilam, H N; Khader, M M; Al-Bar, F R
2008-01-01
In this paper, the variational iteration method (VIM) and the Adomian decomposition method (ADM) are presented for the numerical simulation of the population dynamics model with density-dependent migrations and the Allee effects. The convergence of ADM is proved for the model problem. The results obtained by these methods are compared to the exact solution. It is found that these methods are always converges to the right solutions with high accuracy. Furthermore, VIM needs relative less computational work than ADM
Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads.
Rosenbluh, A; Nir, R; Sahar, E; Rosenberg, E
1989-01-01
Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficie...
The importance of spatial models for estimating the strength of density dependence
DEFF Research Database (Denmark)
Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper
2014-01-01
the California Coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so...... that spatial models can be used to re-examine classic questions regarding the presence and strength of density dependence in wild populations Read More: http://www.esajournals.org/doi/abs/10.1890/14-0739.1...
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
Nonlinear hydrodynamic equations for superfluid helium in aerogel
International Nuclear Information System (INIS)
Brusov, Peter N.; Brusov, Paul P.
2003-01-01
Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )
Vortex structure in superfluid color-flavor locked quark matter
Directory of Open Access Journals (Sweden)
Alford Mark G.
2016-01-01
Full Text Available The core region of a neutron star may feature quark matter in the color-flavor-locked (CFL phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.
Superfluid response of two-dimensional parahydrogen clusters in confinement
Energy Technology Data Exchange (ETDEWEB)
Idowu, Saheed; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)
2015-04-07
We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.
Helicity conservation and twisted Seifert surfaces for superfluid vortices.
Salman, Hayder
2017-04-01
Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.
Induced interactions in a superfluid Bose-Fermi mixture
DEFF Research Database (Denmark)
Kinnunen, Jami; Bruun, Georg
2015-01-01
We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...
Vortex Lattices in the Bose-Fermi Superfluid Mixture.
Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui
2017-02-24
In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.
Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid
Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu
2018-03-01
By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.
Pinning down the superfluid and measuring masses using pulsar glitches.
Ho, Wynn C G; Espinoza, Cristóbal M; Antonopoulou, Danai; Andersson, Nils
2015-10-01
Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.
A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy
Directory of Open Access Journals (Sweden)
Xia Wang
2017-01-01
Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.
A consumer-resource approach to the density-dependent population dynamics of mutualism.
Holland, J Nathaniel; DeAngelis, Donald L
2010-05-01
Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.
Directory of Open Access Journals (Sweden)
Karsten Schönrogge
Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.
Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S
2017-10-01
Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.
A consumer-resource approach to the density-dependent population dynamics of mutualism
Holland, J. Nathaniel; DeAngelis, Donald L.
2010-01-01
Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.
Rotary magnetic refrigerator for superfluid helium production
International Nuclear Information System (INIS)
Hakuraku, Y.; Ogata, H.
1986-01-01
A new rotary-magnetic refrigerator designed to obtain superfluid helium temperatures by executing a magnetic Carnot cycle is developed. A rotor containing 12 magnetic refrigerants (gadolinium-gallium-garnet) is immersed in liquid helium at 4.2 K and rotated at constant speed in a steady magnetic field distribution. Performance tests demonstrate that the new rotary refrigerator is capable of obtaining a temperature of 1.48 K. The maximum useful cooling power obtained at 1.8 K is 1.81 W which corresponds to a refrigeration efficiency of 34%
Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei
2014-04-04
Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.
Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall
2016-01-01
Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...
Resource letter SH-1: superfluid helium
International Nuclear Information System (INIS)
Hallock, R.B.
1982-01-01
The resource letter covers the general subject of superfluid helium and treats 3 He and 3 He-- 4 He mixtures as well as 4 He. No effort has been made to include the fascinating experiments on either solid helium or the equally fascinating work on adsorbed helium where the helium coverage is below that necessary for superfluidity. An earlier resource letter by C. T. Lane [Am. J. Phys. 35, 367 (1967)] may be consulted for additional comments on some of the cited earlier manuscripts, but the present work is self-contained and may be used independently. Many high-quality research reports have not been cited here. Rather, the author has tried in most cases to include works particularly readable or relevant. There is a relatively heavy emphasis on experimental references. The primary reason is that these works tend to be more generally readable. No doubt some works that might have been included, have not, and for this the author takes responsibility with apology. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are marked with an asterisk(*). Following each referenced work the general level of difficulty is indicated by E, I, or A for elementary, intermediate, or advanced
Theory of superfluidity macroscopic quantum waves
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs [pt
Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.
Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H
2007-06-01
Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.
Quantum Monte Carlo studies of superfluid Fermi gases
International Nuclear Information System (INIS)
Chang, S.Y.; Pandharipande, V.R.; Carlson, J.; Schmidt, K.E.
2004-01-01
We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak F . We report results for the ground-state energy, the pairing gap Δ, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak F FG . When a>0, the interaction is strong enough to form bound molecules with energy E mol . For 1/ak F > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with Δ and gas energy per particle approaching E mol /2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5 F <0.5, is discussed
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
International Nuclear Information System (INIS)
Singh, M.P.; Tewari, B.S.; Ajay
2006-01-01
In the present work, we have studied the effect of temperature and carrier density on anisotropy in supercurrent density in bilayer cuprate superconductors. Here, we have considered a tight binding bilayered Hubbard Hamiltonian containing intra and interlayer attractive interactions. The situation considered here is similar to a SIS junction. We have got the expressions for the superconducting order parameters, carrier density and anisotropy in superconducting density (I ab /I c ) for such SIS junction. The numerical analysis show that the anisotropy in the supercurrent density depends on temperature and carrier density in layered high T c cuprates. (author)
Knock-on type exchange and the density dependence of an effective interaction
International Nuclear Information System (INIS)
Jeukenne, J.P.; Mahaux, C.
1981-01-01
We investigate the origin of the density-dependence of the strength of an effective interaction previously derived from a Brueckner-Hartree-Fock calculation of the optical-model potential in nuclear matter. From the analysis of a model based on the Hartree-Fock approximation and on a Yukawa interaction with a Majorana exchange component, we study to what extent this dependence derives from the momentum-dependence of the exchange contribution of the knock-on type. The model is also used to discuss zero-range pseudopotential methods for including this knock-on contribution. (orig.)
Temperature- and density-dependent x-ray scattering in a low-Z plasma
International Nuclear Information System (INIS)
Brown, R.T.
1976-06-01
A computer program is described which calculates temperature- and density-dependent differential and total coherent and incoherent x-ray scattering cross sections for a low-Z scattering medium. Temperature and density are arbitrary within the limitations of the validity of local thermodynamic equilbrium, since ionic populations are calculated under this assumption. Scattering cross sections are calculated in the form factor approximation. The scattering medium may consist of any mixure of elements with Z less than or equal to 8, with this limitation imposed by the availability of atomic data
Superfluidity, Bose condensation and neutron scattering in liquid 4He
International Nuclear Information System (INIS)
Silver, R.N.
1997-01-01
The relation between superfluidity and Bose condensation in 4 He provides lessons that may be valuable in understanding the strongly correlated electron system of high T c superconductivity. Direct observation of a Bose condensate in the superfluid by deep inelastic neutron scattering measurements has been attempted over many years. But the impulse approximation, which relates momentum distributions to neutron scattering structure functions, is broadened by final state effects. Nevertheless, the excellent quantitative agreement between ab initio quantum many body theory and high precision neutron experiments provides confidence in the connection between superfluidity and Bose condensation
A hydrodynamic model for superfluid helium with vortices
International Nuclear Information System (INIS)
Lhuillier, D.; Francois, M.
1975-01-01
Although their existence is experimentally well verified, the so-called mutual friction force Fsub(sn) and superfluid friction force Fsub(s) cannot emerge from the Landau irrotational model of superfluidity. Up to now these forces have merely been added to the Landau equations but this is untenable since, as a consequence, one destroys the irrotationality condition with which the equations have expressly been built. It is shown that these friction forces appear in a natural way in a model where superfluid helium with vortices is compared to a fluid with a conserved intrinsic momentum. (Auth.)
Superfluid phase stiffness in electron doped superconducting Gd-123
Das, P.; Ghosh, Ajay Kumar
2018-05-01
Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.
Population imbalance as a vortex catalyst in Fermi superfluids
International Nuclear Information System (INIS)
Tempere, J.; Devreese, J.T.
2008-01-01
Pairing leads to superfluidity in ultracold atomic gases, but this pairing can be frustrated when a population imbalance is present between the pairing partners. Here we investigate how vortices in the fermionic superfluid are affected by imbalance. We show that the vortex core radius is increased by imbalance, accommodating excess component atoms. This has two intriguing consequences. Firstly, a small imbalance acts as a catalyst for vortex formation, decreasing the critical rotation frequency. Secondly, imbalanced gases near critical imbalance can exhibit rotationally induced superfluidity
Decoupling of Solid 4He Layers under the Superfluid Overlayer
Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru
2018-03-01
It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.
Observation of spin superfluidity: YIG magnetic films and beyond
Sonin, Edouard
2018-03-01
From topology of the order parameter of the magnon condensate observed in yttrium-iron-garnet (YIG) magnetic films one must not expect energetic barriers making spin supercurrents metastable. But we show that some barriers of dynamical origin are possible nevertheless until the gradient of the phase (angle of spin precession) does not exceed the critical value (analog of the Landau critical velocity in superfluids). On the other hand, recently published claims of experimental detection of spin superfluidity in YIG films and antiferromagnets are not justified, and spin superfluidity in magnetically ordered solids has not yet been experimentally confirmed.
Lenr:. Superfluids, Self-Trapping and Non-Self States
Chubb, Talbot A.
2005-12-01
LENR ion band state models involve deuteron many-body systems resembling superfluids. The physics of atom Bose-Einstein condensates in optical lattices teaches that superfluid behavior occurs when the potential barriers between adjacent potential wells permit high tunneling rates and the well potentials are shallow. These superfluids have fractional occupation of individual wells. Well periodic symmetry is not affected by the presence of the atoms. This behavior suggests that deuterons in a lattice should be in non-self-trapping sites, which may indicate that D+Bloch occupies the Pd tetrahedral sites.
Detection of density-dependent effects on caribou numbers from a series of census data
Directory of Open Access Journals (Sweden)
Francois Messier
1991-10-01
Full Text Available The main objective of this paper is to review and discuss the applicability of statistical procedures for the detection of density dependence based on a series of annual or multi-annual censuses. Regression models for which the statistic value under the null hypothesis of density independence is set a priori (slope = 0 or 1, generate spurious indications of density dependence. These tests are inappropriate because low sample sizes, high variance, and sampling error consistently bias the slope when applied to a finite number of population estimates. Two distribution-free tests are reviewed for which the rejection region for the hypothesis of density independence is derived intrinsically from the data through a computer-assisted permutation process. The "randomization test" gives the best results as the presence of a pronounced trend in the sequence of population estimates does not affect test results. The other non-parametric test, the "permutation test", gives reliable results only if the population fluctuates around a long-term equilibrium density. Both procedures are applied to three sets of data (Pukaskwa herd, Avalon herd, and a hypothetical example that represent quite divergent population trajectories over time.
Colony Development and Density-Dependent Processes in Breeding Grey Herons
Directory of Open Access Journals (Sweden)
Takeshi Shirai
2013-01-01
Full Text Available The density-dependent processes that limit the colony size of colonially breeding birds such as herons and egrets remain unclear, because it is difficult to monitor colonies from the first year of their establishment, and the most previous studies have considered mixed-species colonies. In the present study, single-species colonies of the Grey Heron (Ardea cinerea were observed from the first year of their establishment for 16 years in suburban Tokyo. Colony size increased after establishment, illustrating a saturation curve. The breeding duration (days from nest building to fledging by a pair increased, but the number of fledglings per nest decreased, with colony size. The reproductive season in each year began earlier, and there was greater variation in the timing of individual breeding when the colony size was larger. The prolonged duration until nestling feeding by early breeders of the colony suggests that herons at the beginning of the new breeding season exist in an unsteady state with one another, likely owing to interactions with immigrant individuals. Such density-dependent interference may affect reproductive success and limit the colony size of Grey Herons.
Density dependence of SOL power width in ASDEX upgrade L-Mode
Directory of Open Access Journals (Sweden)
B. Sieglin
2017-08-01
A recent study [4] with an open divertor configuration found an asymmetry of the power fall-off length between inner and outer target with a smaller power fall-off length λq,i on the inner divertor target. Measurements with a closed divertor configuration find a similar asymmetry for low recycling divertor conditions. It is found, in the experiment, that the in/out asymmetry λq,i/λq,o is strongly increasing with increasing density. Most notably the heat flux density at the inner divertor target is reducing with increasing λq,i whilst the total power onto each divertor target stays constant. It is found that λq,o exhibits no significant density dependence for hydrogen and deuterium but increases with about the square root of the electron density for helium. The difference between H,D and He could be due to the different recycling behaviour in the divertor. These findings may help current modelling attempts to parametrize the density dependence of the widening of the power channel and thus allow for detailed comparison to both divertor effects like recycling or increased upstream SOL cross field transport.
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
Energy Technology Data Exchange (ETDEWEB)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-10-12
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
International Nuclear Information System (INIS)
Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth
2015-01-01
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10 7 cm/s at a low sheet charge density of 7.8 × 10 11 cm −2 . An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs
Ecological change points: The strength of density dependence and the loss of history.
Ponciano, José M; Taper, Mark L; Dennis, Brian
2018-05-01
Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.
How can we model selectively neutral density dependence in evolutionary games.
Argasinski, Krzysztof; Kozłowski, Jan
2008-03-01
The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.
Spin dynamics of superfluid 3He-B in a slab geometry
International Nuclear Information System (INIS)
Ishikawa, O.; Sasaki, Y.; Mizusaki, T.; Hirai, A.; Tsubota, M.
1989-01-01
The spin dynamics and the spin relaxation mechanisms of the superfluid 3 He-B were studied by using the NMR method in a slab geometry, where the superfluid 3 He-B was confined between narrow parallel plates with a gap smaller than the healing length of the n-texture and the magnetic field was applied and to the plates. The relaxation parameter in the Leggett-Takagi (LT) equations was determined from a line width measurement of the transverse CW NMR. By using the pulsed NMR method, spin dynamics were studied in the nonlinear region. The observed spin dynamics were in good agreement with a numerical calculation of the LT equations together with the relaxation parameter determined by the CW NMR. When the tipping angle became larger than a certain critical value, the superfluid 3 He-B entered the Brinkman-Smith (BS) state. In this case, they observed the slow relaxation process in the BS state and then the rapid recovery process from the BS state to the initial non-Leggett configuration. The slow process in the BS state was attributed to the surface relaxation mechanism due to the torque from the surface-field energy
Superfluidity (a bibliography with abstracts). Report for 1964--Feb 1976
International Nuclear Information System (INIS)
Reimherr, G.W.
1976-03-01
The cited reports discuss superfluidity in liquid helium, with both helium 3 and helium 4 considered. Topics discussed include phase studies, heat transfer, hydrodynamics, rotons, zero sound, first sound, second sound, third sound, and fourth sound. (Contains 142 abstracts)
Second sound velocities in superfluid 3He-4He solutions
International Nuclear Information System (INIS)
Dikina, L.S.; Kotenev, G.Ya.; Rudavskij, Eh.Ya.
1978-01-01
The velocities of the second sound in the superfluid He 3 -He 4 solutions were measured by the pulse method in the range of temperatures from 1.3 K to Tsub(lambda) and for He 3 concentrations up to 13%.The results obtained supplemented by those available before give the complete description of the concentration and temperature dependences of the second sound velocity in superfluid He 3 -He 4 solutions. The comprehensive comparison of the experimental data on the velocity of the second sound with the theoretical calculations for the superfluid solutions with arbitrary content of He 3 is performed. The good agreement is found between experiment and the theory. The experimental data obtained are used for determination of the potential, which determines the properties of the superfluid solutions
Identifying a Superfluid Reynolds Number via Dynamical Similarity.
Reeves, M T; Billam, T P; Anderson, B P; Bradley, A S
2015-04-17
The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Re(s), that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Re(s)≈0.7, irrespective of obstacle width.
Sustained propagation and control of topological excitations in polariton superfluid
Pigeon, Simon; Bramati, Alberto
2017-09-01
We present a simple method to compensate for losses in a polariton superfluid. Based on a weak support field, it allows for the extended propagation of a resonantly driven polariton superfluid with minimal energetic cost. Moreover, this setup is based on optical bistability and leads to the significant release of the phase constraint imposed by resonant driving. This release, together with macroscopic polariton propagation, offers a unique opportunity to study the hydrodynamics of the topological excitations of polariton superfluids such as quantized vortices and dark solitons. We numerically study how the coherent field supporting the superfluid flow interacts with the vortices and how it can be used to control them. Interestingly, we show that standard hydrodynamics does not apply for this driven-dissipative fluid and new types of behaviour are identified.
Boundary effects on sound propagation in superfluids
International Nuclear Information System (INIS)
Jensen, H.H.; Smith, H.; Woelfle, P.
1983-01-01
The attenuation of fourth sound propagating in a superfluid confined within a channel is determined on a microscopic basis, taking into account the scatter of the quasiparticles from the walls. The Q value of a fourth-sound resonance is shown to be inversely proportional to the stationary flow of thermal excitations through the channel due to an external force. Our theoretical estimates of Q are compared with experimentally observed values for 3 He. The transition between first and fourth sound is studied in detail on the basis of two-fluid hydrodynamics, including the slip of the normal component at the walls. The slip is shown to have a strong influence on the velocity and attenuation in the transition region between first and fourth sound, offering a means to examine the interaction of quasiparticles with a solid surface
On superconductivity and superfluidity. A scientific autobiography
Energy Technology Data Exchange (ETDEWEB)
Ginzburg, Vitaly L. [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.
2009-07-01
This book presents the Nobel Laureate Vitaly Ginzburg's views on the development in the field of superconductivity. It contains a selection of Ginzburg's key writings, including his amended version of the Nobel lecture in Physics 2003. Also included are an expanded autobiography, which was written for the Nobel Committee, an article entitled 'A Scientific Autobiography: An Attempt,' a fundamental article co-written with L.D. Landau entitled 'To the theory of superconductivity,' an expanded review article 'Superconductivity and superfluidity (what was done and what was not done),' and some newly written short articles about superconductivity and related subjects. So, in toto, presented here are the personal contributions of Ginzburg, that resulted in the Nobel Prize, in the context of his scientific biography. (orig.)
On superconductivity and superfluidity. A scientific autobiography
International Nuclear Information System (INIS)
Ginzburg, Vitaly L.
2009-01-01
This book presents the Nobel Laureate Vitaly Ginzburg's views on the development in the field of superconductivity. It contains a selection of Ginzburg's key writings, including his amended version of the Nobel lecture in Physics 2003. Also included are an expanded autobiography, which was written for the Nobel Committee, an article entitled ''A Scientific Autobiography: An Attempt,'' a fundamental article co-written with L.D. Landau entitled ''To the theory of superconductivity,'' an expanded review article ''Superconductivity and superfluidity (what was done and what was not done),'' and some newly written short articles about superconductivity and related subjects. So, in toto, presented here are the personal contributions of Ginzburg, that resulted in the Nobel Prize, in the context of his scientific biography. (orig.)
On superconductivity and superfluidity a scientific autobiography
Ginzburg, Vitalii Lazarevich
2009-01-01
This book presents the Nobel Laureate Vitaly Ginzburg's views on the development in the field of superconductivity. It contains a selection of Ginzburg's key writings, including his amended version of the Nobel lecture in Physics 2003. Also included are an expanded autobiography, which was written for the Nobel Committee, an article entitled "A Scientific Autobiography: An Attempt," a fundamental article co-written with L.D. Landau entitled "To the theory of superconductivity," an expanded review article "Superconductivity and superfluidity (what was done and what was not done)," and some newly written short articles about superconductivity and related subjects. So, in toto, presented here are the personal contributions of Ginzburg, that resulted in the Nobel Prize, in the context of his scientific biography.
Superfluid compressibility and the inertial mass of a moving singularity
International Nuclear Information System (INIS)
Duan, J.
1993-01-01
The concept of finite compressibility of a Fermi superfluid is used to reconsider the problem of inertial mass of vortex lines in both neutral and charged superfluids at T=0. For the charged case, in contrast to previous works where perfect screening was assumed, we take proper account of electromagnetic screening and solve the bulk charge distribution caused by a moving vortex line. A similar problem for a superconducting thin film is also considered
Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.
2015-01-01
Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably
Vortex lattices in a rotating Fermi superfluid in the BCS–BEC crossover with many Landau levels
International Nuclear Information System (INIS)
Song, Tie-ling; Ma, C.R.; Ma, Yong-li
2012-01-01
We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover. - Highlights: ► We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. ► Decomposing the vortex from the condensate, we can explain the vortex lattice. ► The calculation is consistent with numerical and experimental data. ► It can characterize experimentally properties in different regimes of the BCS–BEC crossover.
Cosmiclike domain walls in superfluid 3He-B: Instantons and diabolical points in (k,r) space
International Nuclear Information System (INIS)
Salomaa, M.M.; Volovik, G.E.
1988-01-01
The possible planar superfluid B-B boundaries between inequivalent B-phase vacua are considered; such B-B interfaces provide an analogy with the cosmic domain walls that are believed to have precipitated in the phase transitions of the early Universe. Several of them display nontrivial structure in (k,r) space (i.e., the union of the momentum and real spaces). Such a wall represents an instanton connecting two B-phase vacua with different k-space topology. The transition between the vacua occurs through the formation of a pointlike defect either in the (k,r) space, or in the (k,t) space. These defects are so-called diabolical points of codimension 4, at which the fermionic energy tends to zero, thus providing the fermionic zero modes. Such points are new examples (within condensed-matter physics) of the peculiar diabolical points, which are characterized by the occurrence of a contact between the different branches of the quasiparticle spectra; in the present case, the branches of particles and holes, respectively. These points are here discussed for the case of the superfluid phases of liquid 3 He in close analogy with the quantum field theory of fermions interacting with classical bosonic fields. The cosmiclike domain walls in superfluid 3 He-B are observable in principle; in particular, the motion of the superfluid A-B interface is governed at low temperatures by the periodical emission of these topological excitation planes
The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...
Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region
Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.
2012-05-01
We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.
Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes
DEFF Research Database (Denmark)
Thorson, James T.; Rindorf, Anna; Gao, Jin
2016-01-01
among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species–region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one...... for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea......The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution...
Plant diversity increases with the strength of negative density dependence at the global scale
LaManna, Joseph A.; Mangan, Scott A.; Alonso, Alfonso; Bourg, Norman; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B.; Clay, Keith; Condit, Richard; Cordell, Susan; Davies, Stuart J.; Furniss, Tucker J.; Giardina, Christian P.; Gunatilleke, I.A.U. Nimal; Gunatilleke, C.V. Savitri; He, Fangliang; Howe, Robert W.; Hubbell, Stephen P.; Hsieh, Chang-Fu; Inman-Narahari, Faith M.; Janik, David; Johnson, Daniel J.; Kenfack, David; Korte, Lisa; Kral, Kamil; Larson, Andrew J.; Lutz, James A.; McMahon, Sean M.; McShea, William J.; Memiaghe, Herve R.; Nathalang, Anuttara; Novotny, Vojtech; Ong, Perry S.; Orwig, David A.; Ostertag, Rebecca; Parker, Geoffrey G.; Phillips, Richard P.; Sack, Lawren; Sun, I-Fang; Tello, J. Sebastian; Thomas, Duncan W.; Turner, Benjamin L.; Vela Diaz, Dilys M.; Vrska, Tomas; Weiblen, George D.; Wolf, Amy; Yap, Sandra; Myers, Jonathan A.
2017-01-01
Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
International Nuclear Information System (INIS)
Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang
2003-01-01
The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)
Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret
2017-04-01
Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.
Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta
2018-03-13
Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.
Directory of Open Access Journals (Sweden)
Brock M Huntsman
Full Text Available Density-dependent (DD and density-independent (DI habitat selection is strongly linked to a species' evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.
Microscopic and hydrodynamic theory of superfluidity in periodic solids
International Nuclear Information System (INIS)
Saslow, W.M.
1977-01-01
The microscopic theory of fourth sound and of the superfluid fraction for perfect one-component periodic solids has been derived. It is applicable to finite temperatures and is restricted to the case of well-defined excitations. One finds that the superfluid fraction is a tensor rho/sub s//sub b//sub β//rho 0 and that the fourth-sound velocity C 4 is a tensor (C 2 4 )/sub b//sub β/ = (partialrho 0 /partialμ 0 ) -1 rho/sub s//sub b//sub β/, where μ 0 and rho 0 are the spatially averaged values of the chemical potential (per unit mass) and of the number density. In addition, the exact nonlinearized hydrodynamics is derived, and for fourth sound is found to give agreement with the microscopic theory. Because the superfluid velocity for a periodic solid cannot be generated by a Galilean transformation, it is found that elastic waves are loaded by the average mass density of the system. This is in contrast to the result of Andreev and Lifshitz, which involves only the superfluid fraction. Therefore one cannot look to (hydrodynamic) elastic waves for an obvious signature of superfluidity. A study of the effect of a transducer indicates that fourth sound will be generated to a non-negligible extent only when the crystal is imperfect (i.e., it has vacancies, interstitials, or impurities). On the other hand, a heater might be an effective generator of fourth sound, provided that the mean free path for umklapp processes is sufficiently small. In the limit of zero crystallinity the theory shows that second sound, rather than fourth sound, occurs. Detection of superflow by rotation experiments is also considered. It is pointed out that, because the superfluid velocity is not Galilean, two-fluid counterflow does not occur. Hence, it appears that rapid angular acceleration or deceleration would be the best technique for bringing the superfluid into rotation
Directory of Open Access Journals (Sweden)
D T Tyler Flockhart
Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.
Density-dependent habitat selection and performance by a large mobile reef fish.
Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K
2006-04-01
condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.
Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S
2013-05-03
Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial
Density-dependent selection on mate search and evolution of Allee effects.
Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M
2018-01-01
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness
Normani, S. D.; Sykes, J. F.; Jensen, M. R.
2009-04-01
A high resolution sub-regional scale (84 km2) density-dependent, fracture zone network groundwater flow model with hydromechanical coupling and pseudo-permafrost, was developed from a larger 5734 km2 regional scale groundwater flow model of a Canadian Shield setting in fractured crystalline rock. The objective of the work is to illustrate aspects of regional and sub-regional groundwater flow that are relevant to the long-term performance of a hypothetical nuclear fuel repository. The discrete fracture dual continuum numerical model FRAC3DVS-OPG was used for all simulations. A discrete fracture zone network model delineated from surface features was superimposed onto an 789887 element flow domain mesh. Orthogonal fracture faces (between adjacent finite element grid blocks) were used to best represent the irregular discrete fracture zone network. The crystalline rock between these structural discontinuities was assigned properties characteristic of those reported for the Canadian Shield at the Underground Research Laboratory at Pinawa, Manitoba. Interconnectivity of permeable fracture features is an important pathway for the possibly relatively rapid migration of average water particles and subsequent reduction in residence times. The multiple 121000 year North American continental scale paleoclimate simulations are provided by W.R. Peltier using the University of Toronto Glacial Systems Model (UofT GSM). Values of ice sheet normal stress, and proglacial lake depth from the UofT GSM are applied to the sub-regional model as surface boundary conditions, using a freshwater head equivalent to the normal stress imposed by the ice sheet at its base. Permafrost depth is applied as a permeability reduction to both three-dimensional grid blocks and fractures that lie within the time varying permafrost zone. Two different paleoclimate simulations are applied to the sub-regional model to investigate the effect on the depth of glacial meltwater migration into the subsurface. In
Renormalization group approach to superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Hebeler, K.
2007-06-06
In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)
Optomechanics in a Levitated Droplet of Superfluid Helium
Brown, Charles; Harris, Glen; Harris, Jack
2017-04-01
A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.
Two-fluid hydrodynamic modes in a trapped superfluid gas
International Nuclear Information System (INIS)
Taylor, E.; Griffin, A.
2005-01-01
In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0
Shear viscosity and imperfect fluidity in bosonic and fermionic superfluids
Boyack, Rufus; Guo, Hao; Levin, K.
2014-12-01
In this paper we address the ratio of the shear viscosity to entropy density η /s in bosonic and fermionic superfluids. A small η /s is associated with nearly perfect fluidity, and more general measures of the fluidity perfection/imperfection are of wide interest to a number of communities. We use a Kubo approach to concretely address this ratio via low-temperature transport associated with the quasiparticles. Our analysis for bosonic superfluids utilizes the framework of the one-loop Bogoliubov approximation, whereas for fermionic superfluids we apply BCS theory and its BCS-BEC extension. Interestingly, we find that the transport properties of strict BCS and Bogoliubov superfluids have very similar structures, albeit with different quasiparticle dispersion relations. While there is a dramatic contrast between the power law and exponential temperature dependence for η alone, the ratio η /s for both systems is more similar. Specifically, we find the same linear dependence (on the ratio of temperature T to inverse lifetime γ (T ) ) with η /s ∝T /γ (T ) , corresponding to imperfect fluidity. By contrast, near the unitary limit of BCS-BEC superfluids a very different behavior results, which is more consistent with near-perfect fluidity.
A long-range attractive interaction of rotons in superfluid 4He
International Nuclear Information System (INIS)
Nishiyama, Toshiyuki; Sai, Shunkichi
1974-01-01
With the use of the method of the collective description developed by one of the authors (N) for superfluid 4 He, it is shown that a long-range interaction of rotons transmitted by phonons is attractive and yields a resonance state of a roton pair with the binding energy of the order of magnitude 0.12 K which is relevant to the recent experimental results of the Raman scattering. The effect of the short-range mutual interaction of rotons is also discussed. Some comments on the relationship to the other theories of the collective description are made in appendices. (author)
Influence of the spin-orbit coupling on nuclear superfluidity along the N=Z line
International Nuclear Information System (INIS)
Juillet, O.; Josse, S.
2000-01-01
We show that the spin-orbit potential of the nuclear mean field destroys isoscalar superfluid correlations in self-conjugate nuclei. Using group theory and boson mapping techniques on a Hamiltonian including single particle splittings and a SO ST (8) pairing interaction, we give analytical expression for the spin-orbit dependence of some N =Z properties such as the relative position of T = 0 and T = 1 states in odd-odd systems or double binding-energy differences of even-even nuclei. (authors)
Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism.
Directory of Open Access Journals (Sweden)
Derek W Cain
Full Text Available Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of "emergency" granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis.
International Nuclear Information System (INIS)
Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.
2008-01-01
Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect
A unified dislocation density-dependent physical-based constitutive model for cold metal forming
Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.
2017-10-01
Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
International Nuclear Information System (INIS)
Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf
2010-01-01
Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.
Quorum sensing and density-dependent dispersal in an aquatic model system.
Directory of Open Access Journals (Sweden)
Simon Fellous
Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.
Schrader, Matthew; Jarrett, Benjamin J M; Kilner, Rebecca M
2015-04-01
Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.
Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan
2016-12-01
Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright Â© 2016 Elsevier B.V. All rights reserved.
Baryonic 3P2 superfluidity under charged-pion condensation with Δ isobar
International Nuclear Information System (INIS)
Takatsuka, T.; Tamagaki, R.
1999-01-01
We study the baryonic 3 P 2 superfluidity under charged-pion condensation with isobar (Δ) degrees of freedom. After a remark on motivations of the present study, the outline of theoretical framework is briefly described, typical results of the superfluid critical temperature are shown, and the possibility of coexistence of the superfluid with charged-pion condensation is discussed. (author)
Abrams, Peter A
2009-09-01
Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.
Eikeset, Anne Maria; Dunlop, Erin S; Heino, Mikko; Storvik, Geir; Stenseth, Nils C; Dieckmann, Ulf
2016-12-27
The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.
Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian
2014-09-01
Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.
A microscopic calculation of the fourth-rank shear viscosity tensors of superfluid phases of 3He
International Nuclear Information System (INIS)
Shahzamanian, M.A.
1988-01-01
The fourth-rank shear viscosity tensor of the superfluid phases of 3 He is obtained by using the Kubo formula approach. The viscosity coefficients of 3 He-A, and shear viscosity of 3 He-B are calculated with two different relaxation time approximations. The results for the temperature- and energy-independent relaxation times are in agreement with existing experimental data. (author)
Unconventional superfluids of fermionic polar molecules in a bilayer system
Energy Technology Data Exchange (ETDEWEB)
Boudjemâa, Abdelâali, E-mail: a.boudjemaa@univhb-chlef.dz
2017-05-25
We study unconventional superfluids of fermionic polar molecules in a two-dimensional bilayer system with dipoles are head-to-tail across the layers. We analyze the critical temperature of several unconventional pairings as a function of different system parameters. The peculiar competition between the d- and the s-wave pairings is discussed. We show that the experimental observation of such unconventional superfluids requires ultralow temperatures, which opens up new possibilities to realize several topological phases. - Highlights: • Investigation of novel superfluids of fermionic polar molecules in a bilayer geometry. • Solving the gap equation and the l-wave interlayer scattering problem. • Calculation of the critical temperature of several competing pairings using the BCS approach.
On the disappearance of superfluidity in helium films
International Nuclear Information System (INIS)
Bannink, G.
1983-01-01
Experiments to investigate the changes in superfluid properties when helium films become thinner are reported. A thin-film oscillator, formed by two large filmreservoirs connected by a long and narrow tube, is used to study both the mass transport properties and the third-sound phenomena. Both sets of data are analysed in the framework of a two-fluid model. Absolute values for the areal superfluid density are deduced from the results, and also the observation of friction in the film itself is briefly discussed. A series of additional measurements of the thermo-mechanical effect in the reservoirs, with the purpose of determing the thickness at which onset of superfluidity occurs, are also reported. Finally the overall picture of the film properties is discussed on the basis of a phase diagram of the observed mobilities. (Auth.)
Laszlo Tisza and the two-fluid model of superfluidity
Balibar, Sébastien
2017-11-01
The "two-fluid model" of superfluidity was first introduced by Laszlo Tisza in 1938. On that year, Tisza published the principles of his model as a brief note in Nature and two articles in French in the Comptes rendus de l'Académie des sciences, followed in 1940 by two other articles in French in the Journal de physique et le Radium. In 1941, the two-fluid model was reformulated by Lev Landau on a more rigorous basis. Successive experiments confirmed the revolutionary idea introduced by Tisza: superfluid helium is indeed a surprising mixture of two fluids with independent velocity fields. His prediction of the existence of heat waves, a consequence of his model, was also confirmed. Then, it took several decades for the superfluidity of liquid helium to be fully understood.
Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope
Chui, Talso; Penanen, Konstantin
2004-01-01
A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.
Superfluidity of nuclei and the nucleon--phonon interaction
International Nuclear Information System (INIS)
Kadmenskii, S.G.; Luk'yanovich, P.A.
1989-01-01
The Lehmann expansion for the exact one-particle Green function in a system with superfluidity is obtained. Expressions for the correlation function and mass operator are derived with allowance for a retarded nucleon--phonon interaction. Within the scope of the formalism developed, equations for the superfluidity of nuclei allowing for quasiparticle fragmentation effects are derived. It is concluded that the retarded nucleon--phonon interaction in the particle--particle channel causes a decrease of the fragmentation of the one-particle force in the vicinity of the Fermi surface. It is shown that inclusion of a nonretarded vacuum interaction of two nucleons and of a retarded interaction due to the exchange between two nucleons of low-lying highly collectivized quadrupole phonons is sufficient to provide the necessary scale of attraction in the description of pair correlations of nucleons in nuclei with developed superfluidity
Holographic p-wave superfluid in Gauss–Bonnet gravity
International Nuclear Information System (INIS)
Liu, Shancheng; Pan, Qiyuan; Jing, Jiliang
2017-01-01
We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.
A quantitative experiment on the fountain effect in superfluid helium
Amigó, M. L.; Herrera, T.; Neñer, L.; Peralta Gavensky, L.; Turco, F.; Luzuriaga, J.
2017-09-01
Superfluid helium, a state of matter existing at low temperatures, shows many remarkable properties. One example is the so called fountain effect, where a heater can produce a jet of helium. This converts heat into mechanical motion; a machine with no moving parts, but working only below 2 K. Allen and Jones first demonstrated the effect in 1938, but their work was basically qualitative. We now present data of a quantitative version of the experiment. We have measured the heat supplied, the temperature and the height of the jet produced. We also develop equations, based on the two-fluid model of superfluid helium, that give a satisfactory fit to the data. The experiment has been performed by advanced undergraduate students in our home institution, and illustrates in a vivid way some of the striking properties of the superfluid state.
Holographic p-wave superfluid in Gauss–Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)
2017-02-10
We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.
Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.
Martel, John W; Malcolm, Stephen B
2004-03-01
The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.
Directory of Open Access Journals (Sweden)
Jan Horbowy
Full Text Available Biomass reconstructions to pre-assessment periods for commercially important and exploitable fish species are important tools for understanding long-term processes and fluctuation on stock and ecosystem level. For some stocks only fisheries statistics and fishery dependent data are available, for periods before surveys were conducted. The methods for the backward extension of the analytical assessment of biomass for years for which only total catch volumes are available were developed and tested in this paper. Two of the approaches developed apply the concept of the surplus production rate (SPR, which is shown to be stock density dependent if stock dynamics is governed by classical stock-production models. The other approach used a modified form of the Schaefer production model that allows for backward biomass estimation. The performance of the methods was tested on the Arctic cod and North Sea herring stocks, for which analytical biomass estimates extend back to the late 1940s. Next, the methods were applied to extend biomass estimates of the North-east Atlantic mackerel from the 1970s (analytical biomass estimates available to the 1950s, for which only total catch volumes were available. For comparison with other methods which employs a constant SPR estimated as an average of the observed values, was also applied. The analyses showed that the performance of the methods is stock and data specific; the methods that work well for one stock may fail for the others. The constant SPR method is not recommended in those cases when the SPR is relatively high and the catch volumes in the reconstructed period are low.
Ross, Megan V; Alisauskas, Ray T; Douglas, David C; Kellett, Dana K
2017-07-01
A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992-2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May-30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading
Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).
Vas, Judit; Andersen, Inger Lise
2015-01-01
Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.
Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.
Directory of Open Access Journals (Sweden)
Judit Vas
Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.
Ross, Megan V.; Alisaukas, Ray T.; Douglas, David C.; Kellett, Dana K.
2017-01-01
A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992–2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May–30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment
Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus)
Vas, Judit; Andersen, Inger Lise
2015-01-01
Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e. distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g. resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation. PMID:26657240
Interaction of ions, atoms, and small molecules with quantized vortex lines in superfluid (4)He.
Mateo, David; Eloranta, Jussi; Williams, Gary A
2015-02-14
The interaction of a number of impurities (H2, Ag, Cu, Ag2, Cu2, Li, He3 (+), He(*) ((3)S), He2 (∗) ((3)Σu), and e(-)) with quantized rectilinear vortex lines in superfluid (4)He is calculated by using the Orsay-Trento density functional theory (DFT) method at 0 K. The Donnelly-Parks (DP) potential function binding ions to the vortex is combined with DFT data, yielding the impurity radius as well as the vortex line core parameter. The vortex core parameter at 0 K (0.74 Å) obtained either directly from the vortex line geometry or through the DP potential fitting is smaller than previously suggested but is compatible with the value obtained from re-analysis of the Rayfield-Reif experiment. All of the impurities have significantly higher binding energies to vortex lines below 1 K than the available thermal energy, where the thermally assisted escape process becomes exponentially negligible. Even at higher temperatures 1.5-2.0 K, the trapping times for larger metal clusters are sufficiently long that the previously observed metal nanowire assembly in superfluid helium can take place at vortex lines. The binding energy of the electron bubble is predicted to decrease as a function of both temperature and pressure, which allows adjusting the trap depth for either permanent trapping or to allow thermally assisted escape. Finally, a new scheme for determining the trapping of impurities on vortex lines by optical absorption spectroscopy is outlined and demonstrated for He(*).
Topological charge and chiral anomalies in Fermi superfluids
International Nuclear Information System (INIS)
Stone, M.; Gaitan, F.
1987-01-01
We review some of the topological properties of Fermi superfluids, in particular the persistent currents in superfluid 3 He. We show that the topological charge formalism developed by Garg et al. is related to the chiral anomaly viewpoint of Volovik and co-workers through the Callan--Harvey effect. We stress that the question of the existence of a ''twist'' term in the current induced by a texture is a history-dependent phenomenon which depends on how the textures are envisaged as being created. copyright 1987 Academic Press, Inc
Mobility of negative ions in superfluid 3He
International Nuclear Information System (INIS)
Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.
1976-01-01
We have found that the mobility of negative ions increases rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature-independent mobility between 30 mK and T/sub c/ for all pressures between 0 and 28 bars
Topological superfluids confined in a nanoscale slab geometry
Saunders, John
2013-03-01
Nanofluidic samples of superfluid 3He provide a route to explore odd-parity topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions. We have cooled superfluid 3He confined in a precisely defined nano-fabricated cavity to well below 1 mK for the first time. We fingerprint the order parameter by nuclear magnetic resonance, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We demonstrate that dimensional confinement, at length scales comparable to the superfluid Cooper-pair diameter, has a profound influence on the superfluid order of 3He. The chiral A-phase is stabilized at low pressures, in a cavity of height 650 nm. At higher pressures we observe 3He-B with a surface induced planar distortion. 3He-B is a time-reversal invariant topological superfluid, supporting gapless Majorana surface states. In the presence of the small symmetry breaking NMR static magnetic field we observe two possible B-phase states of the order parameter manifold, which can coexist as domains. Non-linear NMR on these states enables a measurement of the surface induced planar distortion, which determines the spectral weight of the surface excitations. The expected structure of the domain walls is such that, at the cavity surface, the line separating the two domains is predicted to host fermion zero modes, protected by symmetry and topology. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase, which breaks time reversal symmetry, has a protected chiral edge mode, and may host half-quantum vortices with a Majorana zero-mode at the core. We discuss experimental progress toward this phase, through measurements on a 100 nm cavity. On the other hand, a cavity height of 1000 nm may stabilize a novel ``striped'' superfluid with spatially modulated order parameter. Supported by EPSRC (UK) GR/J022004/1 and European Microkelvin Consortium, FP7 grant 228464
Hidden vortex lattices in a thermally paired superfluid
International Nuclear Information System (INIS)
Dahl, E. K.; Sudboe, A.; Babaev, E.
2008-01-01
We study the evolution of rotational response of a statistical mechanical model of two-component superfluid with a nondissipative drag interaction as the system undergoes a transition into a paired superfluid phase at finite temperature. The transition manifests itself in a change of (i) vortex-lattice symmetry and (ii) nature of the vortex state. Instead of a vortex lattice, the system forms a highly disordered tangle which constantly undergoes merger and reconnecting processes involving different types of vortices with a 'hidden' breakdown of translation symmetry
Onset of superfluidity in hot asymmetric nuclear matter
International Nuclear Information System (INIS)
Alm, T.; Roepke, G.; Friman, B.L.
1991-05-01
The onset of superfluidity in hot asymmetric nuclear matter is studied within a generalized Beth-Uhlenbeck approach. The finite tempeature t-matrix is of the Bethe-Goldstone type and contains hole-hole propagation not considered in the Brueckner G-matrix approach. It is shown that the phase contour for the onset of superfluidity in this approach is identical to that obtained within Gorkov's approach to BCS theory. Results for the realistic Paris potential imply that the critical temperature in the neutron-proton triplet channel is on the order of 6-8 MeV and thus much larger than that for singlet pairing. (orig.)
Mobility of negative ions in superfluid 3He
International Nuclear Information System (INIS)
Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.
1977-01-01
The mobility of negative ions is shown to increase rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature independent mobility between 40 mK and T/sub c/ for all pressures between 0 and 28 bar. The increase of μ/sub N/ with increasing pressure is in agreement with the bubble model for the negative ion
ultrasound studies of superfluid 3He in high magnetic fields
International Nuclear Information System (INIS)
De Vegvar, P.G.N.
1986-01-01
Measurements of ultrasound propagation in superfluid helium-three in magnetic fields of up to 94 kG are reported. The experiments were performed on an adiabatic nuclear demagnetization cryostat using a sensitive radio frequency spectrometer. In addition to observing the expected collective mode splittings, an anomaly near the A-two transition was intensively investigated. The effect is interpreted in terms of a first order transformation in the superfluid I-texture driven by the second order bulk phase transition at the point. Numerical computations give fair agreement with the experimental data
A charged 3P superfluid in the ABM states
International Nuclear Information System (INIS)
Ohmi, Tetsuo; Nakahara, Mikio; Tsuneto, Toshihiko
1980-01-01
Magnetic properties of a charged 3 P superfluid in the ABM states are studied in the framework of the Ginzburg-Landau theory. A non-singular vortex in a cylindrical sample, similar to the Mermin-Ho structure in the superfluid 3 He-A, is considered. In particular, the analytic solutions for the order parameter and the magnetic field are obtained in the limit lambda sub(L)/R → 0, where lambda sub(L) is the penetration depth and R the radius of the cylinder. The possibility of a non-singular vortex lattice is also discussed. (author)
Preliminary results of the Spacelab 2 superfluid helium experiment
International Nuclear Information System (INIS)
Mason, P.V.; Collins, D.J.; Elleman, D.D.; Jackson, H.W.; Wang, T.
1986-01-01
An experiment to investigate the properties of superfluid helium in a microgravity environment flew on the Shuttle on the Spacelab 2 mission in July and August of 1985. This paper summarizes the flight experiment and describes some preliminary results. The experiment comprised an investigation of long-wavelength third-sound waves in micron-thick films, a study of the motions of superfluid helium under milli-g and micro-g accelerations, and measurements of the fluctuations in temperature associated with the small motions of the bulk helium. An additional objective was to qualify and characterize a reflyable, space-compatible cryostat
Anisotropic superfluidity in the two-species polar Fermi gas
International Nuclear Information System (INIS)
Liao Renyuan; Brand, Joachim
2010-01-01
We study the superfluid pairing in a two-species gas of heteronuclear fermionic molecules with equal density. The interplay of the isotropic s-wave interaction and anisotropic long-range dipolar interaction reveals rich physics. We find that the single-particle momentum distribution has a characteristic ellipsoidal shape that can be reasonably represented by a deformation parameter α defined similarly to the normal phase. Interesting momentum-dependent features of the order parameter are identified. We calculate the critical temperatures of both the singlet and triplet superfluids, suggesting a possible pairing symmetry transition by tuning the s-wave or dipolar interaction strength.
A Note on the Field-Theoretical Description of Superfluids
Andrianopoli, L; Grassi, P A; Trigiante, M
2014-01-01
Recently, a Lagrangian description of superfluids attracted some interest from the fluid/gravity-correspondence viewpoint. In this respect, the work of Dubovksy et al. has proposed a new field theoretical description of fluids, which has several interesting aspects. On another side, we have provided in arXiv:1304.2206 a supersymmetric extension of the original works. In the analysis of the Lagrangian structures a new invariant appeared which, although related to known invariants, provides, in our opinion, a better parametrisation of the fluid dynamics in order to describe the fluid/superfluid phases.
LAMBDA-hyperon superfluidity in neutron star cores
Takatsuka, T
2000-01-01
Superfluidity of LAMBDA hyperons in neutron star cores is investigated by a realistic approach to use reliable LAMBDA LAMBDA interactions and the effective mass of LAMBDA based on the G-matrix calculations. It is found that LAMBDA superfluid can exist at rho approx = (rho sub t approx rho sub d) with rho sub t approx = 2 rho sub 0 (rho sub 0 being the nuclear density) and rho sub d approx = (3 - 4.5)rho sub 0 , depending on hyperon core models.
Energy Technology Data Exchange (ETDEWEB)
Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2014-10-01
We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.
Relativistic mean field model for entrainment in general relativistic superfluid neutron stars
International Nuclear Information System (INIS)
Comer, G.L.; Joynt, R.
2003-01-01
General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons
Czech Academy of Sciences Publication Activity Database
Vlasáková, Blanka
2015-01-01
Roč. 31, Part 1 (2015), s. 95-98 ISSN 0266-4674 R&D Projects: GA ČR GPP505/12/P039 Institutional support: RVO:67985939 Keywords : Clusia * ockroach * density dependence Subject RIV: EF - Botanics Impact factor: 0.975, year: 2015
Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.
Galen, Candace; Geib, Jennifer C
2007-05-01
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly
Mutual friction in superfluid 3He: Effects of bound states in the vortex core
International Nuclear Information System (INIS)
Kopnin, N.B.; Salomaa, M.M.
1991-01-01
The motion of singular quantized vortex lines in superfluid 3 He is considered for the A and B phases. Mutual friction is calculated within a microscopic quantum-mechanical Green's-function formalism, valid for dynamical processes. This enables us to include all the different physical phenomena in a unified approach. We consider axisymmetric vortices for temperatures considerably lower than T c . In this regime, the main contribution to the force exerted on a moving vortex originates from the localized Fermi excitations occupying quantized energy eigenstates in the vortex core. These 3 He quasiparticle states are similar to the quantized motion of charge in a magnetic field; thus vortex motion in 3 He resembles the Hall phenomenon in metals. The outcome is that the viscous drag cannot simply be expressed through the cross sections for 3 He quasiparticles scattering off the vortex, but is rather due to the mutual interactions between the localized quasiparticles and the normal excitations. Our calculations conform with the experimental values for the mutual-friction parameters. We also discuss vortex oscillations, and predict that strong dissipation should be observed at a resonant frequency of about 10 kHz, owing to transitions between the bound-state energy levels. This effect could be used for detecting and measuring the quantization of the bound-state spectrum for superfluid 3 He in the vortex-core matter
The breakdown of superfluidity in liquid 4He
International Nuclear Information System (INIS)
Nancolas, G.G.; McClintock, P.V.E.; Bowley, R.M.
1985-01-01
The rate upsilon at which negative ions nucleate charged vortex rings in a series of extremely dilute superfluid 3 He/ 4 He solutions has been measured at a pressure of 23 bar over a temperature range (T) 0.33 - 0.61K, electric field range (E) 1.0 x 10 4 - 1.5 x 10 6 Vm -1 and an isotopic ratio range (x) ( 3 H/ 4 He) = 2.1 x 10 -8 - 1.7 x 10 -7 . The results are presented. A model is proposed which accounts for the behaviour of upsilon(E,T) in terms of changes in the average occupancy by 3 He atoms of trapping states on the surface of the ion if the nucleation rate ν 1 , due to ions each having one trapped 3 He atom, is very much greater than ν 0 for bare ions. The nonlinearities in ν(x 3 ) are interpreted in terms of the simultaneous trapping of two (or more) 3 He atoms on a significant fraction of the ions. The model can be fitted closely to the experimental data, yielding numerical values of ν 1 , of the 3 He binding energy on the ion, and of a number of other relevant quantities. The addition of a 3 He atom to a bare ion affects its propensity to create vortex rings by reducing the critical velocity for the process and by increasing the rate constant. The implications of these results for microscopic theories of the vortex nucleation mechanism are discussed. (U.K.)
Directory of Open Access Journals (Sweden)
Mark C Ladd
2016-12-01
Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.
Briton wins Nobel physics prize for work on superfluids
Connor, S
2003-01-01
A British born scientist, Anthony Leggett, 65, has jointly won this year's Nobel prize in physics for research into the arcane area of superfluids - when matter behaves in its lowest and most ordered state. He shares the 800,000 pounds prize with two Russian physicists who have worked in the field of superconductivity - when electrical conductors lose resistance (1/2 page).
Coulomb-gas scaling, superfluid films, and the XY model
International Nuclear Information System (INIS)
Minnhagen, P.; Nylen, M.
1985-01-01
Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent
Continuous magnetic refrigeration in the superfluid helium range
International Nuclear Information System (INIS)
Lacaze, Alain.
1982-10-01
An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr
Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment
International Nuclear Information System (INIS)
Comer, G.L.
2004-01-01
Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit
Transformation of second sound into surface waves in superfluid helium
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.
1995-01-01
The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs
The dissipative flow of superfluid helium-3 through capillaries
International Nuclear Information System (INIS)
Kopnin, N.B.
1986-01-01
The equations are obtained which describe the behaviour of the chemical potential (pressure) of the superfluid helium-3 flowing through a narrow capillary, diffusively scattering boundaries being taken into consideration. The possibility is discussed whether the dissipation experimentally observed by Manninen and Pekola can be understood in terms of the phase-slip process
Boson localization and the superfluid-insulator transition
International Nuclear Information System (INIS)
Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)
1989-01-01
The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential
Resonance superfluidity in a quantum degenerate Fermi gas
Kokkelmans, S.J.J.M.F.; Holland, M.; Walser, R.; Chiofalo, M.L.; Chu, S.; Vuletic, V.; Kerman, A.J.; Chin, C.
2002-01-01
We consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas. This is related to the phenomenon of superconductivity described by the seminal Bardeen-Cooper-Schrieffer (BCS) theory. In superconductivity, the phase transition is caused by a
Engineering frequency-dependent superfluidity in Bose-Fermi mixtures
Arzamasovs, Maksims; Liu, Bo
2018-04-01
Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.
Finite-size scaling in two-dimensional superfluids
International Nuclear Information System (INIS)
Schultka, N.; Manousakis, E.
1994-01-01
Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments
Internal Magnus effects in superfluid 3He-A
International Nuclear Information System (INIS)
Salmelin, R.H.; Salomaa, M.M.; Mineev, V.P.
1989-01-01
Orbital angular momentum of the coherently aligned Cooper pairs in superfluid 3 He-A is encountered by an object immersed in the condensate. We evaluate the associated quasiparticle-scattering asymmetry experienced by a negative ion; this leads to a measureable, purely quantum-mechanical reactive force deflecting the ion's trajectory. Possible hydrodynamic Magnus effects are also discussed
Mobility of negative ions in superfluid 3He-B
International Nuclear Information System (INIS)
Baym, G.; Pethick, C.J.; Salomaa, M.
1979-01-01
We calculate the mobility of negative ions in superfluid 3 He-B. We first derive the general formula for the mobility, and show that to a good approximation the scattering of quasiparticles from an ion may be treated as elastic, both in the superfluid for temperatures not too far below the transition temperature and also in the normal state. The scattering cross section in the superfluid is then calculated in terms of normal state properties; as we show, it is vital to include the effects of superfluid correlations on intermediate states in the scattering process. We find that for quasiparticles near the gap edge, the quasiparticle: ion scattering amplitude has a resonant behavior, and that as a result of interference among many partial waves, the differential scattering cross section is strongly peaked in the forward direction and reduced at larger angles, in much the same way as in diffraction. The transport cross section for such a quasiparticle is strongly reduced compared to that for a normal state quasiparticle, and the mobility is consequently strongly enhanced. Detailed calculations of the mobility which contain essentially no free parameters, agree well with the experimental data
Rotational speedups accompanying angular deceleration of a superfluid
International Nuclear Information System (INIS)
Campbell, L.J.
1979-01-01
Exact calculations of the angular deceleration of superfluid vortex arrays show momentary speedups in the angular velocity caused by coherent, multiple vortex loss at the boundary. The existence and shape of the speedups depend on the vortex friction, the deceleration rate, and the pattern symmetry. The phenomenon resembles, in several ways, that observed in pulsars
Time correlation functions and transport coefficients in a dilute superfluid
International Nuclear Information System (INIS)
Kirkpatrick, T.R.; Dorfman, J.R.
1985-01-01
Time correlation functions for the transport coefficients in the linear Landau-Khalatnikov equations are derived on the basis of a formal theory. These Green--Kubo expressions are then explicitly evaluated for a dilute superfluid and the resulting transport coefficiencts are shown to be identical to those obtained previously by using a distribution function method
Transverse effects in nonlinear optics: Toward the photon superfluid
McCormick, Colin Fraser
Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.
Sekizawa, Kazuyuki; Wlazłowski, Gabriel; Magierski, Piotr
2017-11-01
Recently, we have reported a novel role of pairing in low-energy heavy ion reactions at energies above the Coulomb barrier, which may have a detectable impact on reaction outcomes, such as the kinetic energy of fragments and the fusion cross section [arXiv:1611.10261, arXiv:1702.00069]. The phenomenon mimics the one studied experimentally with ultracold atomic gases, where two clouds of fermionic superfluids with different phases of the pairing fields are forced to merge, inducing various excitation modes of the pairing field. Although it originates from the phase difference of the pairing fields, the physics behind it is markedly different from the so-called Josephson effect. In this short contribution, we will briefly outline the results discussed in our recent papers and explain relations with the field of ultracold atomic gases.
Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio
2018-03-01
In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed
Light Higgs channel of the resonant decay of magnon condensate in superfluid (3)He-B.
Zavjalov, V V; Autti, S; Eltsov, V B; Heikkinen, P J; Volovik, G E
2016-01-08
In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid (3)He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin-orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in (3)He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model.
Light Higgs channel of the resonant decay of magnon condensate in superfluid 3He-B
Zavjalov, V. V.; Autti, S.; Eltsov, V. B.; Heikkinen, P. J.; Volovik, G. E.
2016-01-01
In superfluids the order parameter, which describes spontaneous symmetry breaking, is an analogue of the Higgs field in the Standard Model of particle physics. Oscillations of the field amplitude are massive Higgs bosons, while oscillations of the orientation are massless Nambu-Goldstone bosons. The 125 GeV Higgs boson, discovered at Large Hadron Collider, is light compared with electroweak energy scale. Here, we show that such light Higgs exists in superfluid 3He-B, where one of three Nambu-Goldstone spin-wave modes acquires small mass due to the spin–orbit interaction. Other modes become optical and acoustic magnons. We observe parametric decay of Bose-Einstein condensate of optical magnons to light Higgs modes and decay of optical to acoustic magnons. Formation of a light Higgs from a Nambu-Goldstone mode observed in 3He-B opens a possibility that such scenario can be realized in other systems, where violation of some hidden symmetry is possible, including the Standard Model. PMID:26743951
Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling
Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi
2018-04-01
A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH
International Nuclear Information System (INIS)
Kohno, M.
1983-01-01
We report fully consistent calculations of the longitudinal and transverse response functions of the inclusive quasi-elastic electron scattering on 12 C in the Hartree-Fock approximation. The distorted wave for the outgoing nucleon is constructed from the same non-local Hartree-Fock field as in the ground-state description. Thus the orthogonality and Pauli principle requirements are naturally satisfied. The theoretical prediction, based on the standard density-dependent effective interaction (GO force), shows a good correspondence to the experimental data. Since the calculated response functions automatically satisfy the relevant sum rule, this work illuminates the well-known puzzle concerning the longitudinal part, which remains to be solved. We study the energy-weighted sum rules and discuss effects beyond the mean-field approximation. Meson-exchange-current contributions to the transverse response function are also estimated and found to be small due to cancellations among them. (orig.)
Directory of Open Access Journals (Sweden)
Rasmus Kaspersson
Full Text Available While the prevalence of density-dependence is well-established in population ecology, few field studies have investigated its underlying mechanisms and their relative population-level importance. Here, we address these issues, and more specifically, how differences in body-size influence population regulation. For this purpose, two experiments were performed in a small coastal stream on the Swedish west coast, using juvenile brown trout (Salmo trutta as a study species. We manipulated densities of large and small individuals, and observed effects on survival, migration, condition and individual growth rate in a target group of intermediate-sized individuals. The generality of the response was investigated by reducing population densities below and increasing above the natural levels (removing and adding large and small individuals. Reducing the density (relaxing the intensity of competition had no influence on the response variables, suggesting that stream productivity was not a limiting factor at natural population density. Addition of large individuals resulted in a negative density-dependent response, while no effect was detected when adding small individuals or when maintaining the natural population structure. We found that the density-dependent response was revealed as reduced growth rate rather than increased mortality and movement, an effect that may arise from exclusion to suboptimal habitats or increased stress levels among inferior individuals. Our findings confirm the notion of interference competition as the primary mode of competition in juvenile salmonids, and also show that the feedback-mechanisms of density-dependence are primarily acting when increasing densities above their natural levels.
International Nuclear Information System (INIS)
Laricchia, G.; Charlton, M.; Beling, C.D.; Griffith, T.C.
1987-01-01
Positron lifetime experiments have been performed on H 2 gas at temperatures between 77 and 297 K and in the density range from 12-160 Amagat. The extracted parameters are discussed in terms of current models. In the case of the positronium fraction it has been found that the observed density dependence can, in part, be interpreted using a combined Ore and spur model. (author)
Dynamics of Superfluid Helium in Low-Gravity
Frank, David J.
1997-01-01
This report summarizes the work performed under a contract entitled 'Dynamics of Superfluid Helium in Low Gravity'. This project performed verification tests, over a wide range of accelerations of two Computational Fluid Dynamics (CFD) codes of which one incorporates the two-fluid model of superfluid helium (SFHe). Helium was first liquefied in 1908 and not until the 1930s were the properties of helium below 2.2 K observed sufficiently to realize that it did not obey the ordinary physical laws of physics as applied to ordinary liquids. The term superfluidity became associated with these unique observations. The low temperature of SFHe and it's temperature unifonrmity have made it a significant cryogenic coolant for use in space applications in astronomical observations with infrared sensors and in low temperature physics. Superfluid helium has been used in instruments such as the Shuttle Infrared Astronomy Telescope (IRT), the Infrared Astronomy Satellite (IRAS), the Cosmic Background Observatory (COBE), and the Infrared Satellite Observatory (ISO). It is also used in the Space Infrared Telescope (SIRTF), Relativity Mission Satellite formally called Gravity Probe-B (GP-B), and the Test of the Equivalence Principle (STEP) presently under development. For GP-B and STEP, the use of SFHE is used to cool Superconducting Quantum Interference Detectors (SQUIDS) among other parts of the instruments. The Superfluid Helium On-Orbit Transfer (SHOOT) experiment flown in the Shuttle studied the behavior of SFHE. This experiment attempted to get low-gravity slosh data, however, the main emphasis was to study the low-gravity transfer of SFHE from tank to tank. These instruments carried tanks of SFHE of a few hundred liters to 2500 liters. The capability of modeling the behavior of SFHE is important to spacecraft control engineers who must design systems that can overcome disturbances created by the movement of the fluid. In addition instruments such as GP-B and STEP are very
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-07-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.
Miller, Tom E X
2007-07-01
1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.
Decay of superfluid currents in the interacting one-dimensional Bose gas
International Nuclear Information System (INIS)
Cherny, Alexander Yu.; Caux, Jean-Sebastien; Brand, Joachim
2009-01-01
We examine the superfluid properties of a one-dimensional (1D) Bose gas in a ring trap based on the model of Lieb and Liniger. While the 1D Bose gas has nonclassical rotational inertia and exhibits quantization of velocities, the metastability of currents depends sensitively on the strength of interactions in the gas: the stronger the interactions, the faster the current decays. It is shown that the Landau critical velocity is zero in the thermodynamic limit due to the first supercurrent state, which has zero energy and finite probability of excitation. We calculate the energy dissipation rate of ring currents in the presence of weak defects, which should be observable on experimental time scales.
International Nuclear Information System (INIS)
Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.
2004-01-01
Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei
Transitions and excitations in a superfluid stream passing small impurities
Pinsker, Florian
2014-05-08
We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.
Physical acoustics at UCLA in the study of superfluid helium
International Nuclear Information System (INIS)
Rudnick, I.
1976-01-01
The theory of sound propagation in superfluid helium is reviewed. The theory of first, second, fourth and third sound is considered. A simple approximate derivation of the velocity of third sound is given and the Doppler shift of first, second, third and fourth sound is discussed. Experimental aspects of first, second, third and fourth sound are considered in turn. For first sound consideration is given to first-sound transducers, cavitation in liquid helium and velocity at the lambda transition. Second-sound transducers and the velocity of second sound at the lambda transition are discussed. Experimental aspects of third-sound transducers, the velocity and attenuation of third sound, the critical velocity of superfluid films and the thickness of a moving film are then discussed. Various aspects of fourth sound are considered. (B.R.H.)
Lifshitz effects on holographic p-wave superfluid
Directory of Open Access Journals (Sweden)
Ya-Bo Wu
2015-02-01
Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime. Keywords: Gauge/gravity duality, Holographic superconductor, Lifshitz black hole, Maxwell-complex vector field
Destruction of superfluidity by disorder in one dimension
International Nuclear Information System (INIS)
Zhang, L.; Ma, M.
1988-01-01
We study the effect of disorder on the superfluidity of the hard-sphere Bose gas in one dimension. This system is equivalent to the spin-(1/2 XY model with a random transverse field, which in turn can be mapped onto a disordered spinless-fermion model. We show that the localization of all fermionic states implies an exponential decay in the spin-spin correlation function and hence the instability of the superfluid against any amount of disorder. We point out a fundamental difference in the characteristics of the Jordan-Wigner transformation between the pure and disordered systems. Generalization of our results beyond the present model and implications to disordered superconductivity are discussed
Superfluid/Bose-glass transition in one dimension
Ristivojevic, Zoran; Petković, Aleksandra; Le Doussal, Pierre; Giamarchi, Thierry
2014-09-01
We consider a one-dimensional system of interacting bosons in a random potential. At zero temperature, it can be either in the superfluid or in the insulating phase. We study the transition at weak disorder and moderate interaction. Using a systematic approach, we derive the renormalization group equations at two-loop order and discuss the phase diagram. We find the universal form of the correlation functions at the transitions and compute the logarithmic corrections to the main universal power-law behavior. In order to mimic large density fluctuations on a single site, we study a simplified model of disordered two-leg bosonic ladders with correlated disorder across the rung. Contrarily to the single-chain case, the latter system exhibits a transition between a superfluid and a localized phase where the exponents of the correlation functions at the transition do not take universal values.
Critical behavior and dimension crossover of pion superfluidity
Wang, Ziyue; Zhuang, Pengfei
2016-09-01
We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.
Fulde–Ferrell superfluids in spinless ultracold Fermi gases
Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo
2018-06-01
The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.
Topological superfluids with finite-momentum pairing and Majorana fermions.
Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei
2013-01-01
Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.
Transitions and excitations in a superfluid stream passing small impurities
Pinsker, Florian; Berloff, Natalia G.
2014-01-01
We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.
px+ipy Superfluid from s-Wave Interactions of Fermionic Cold Atoms
International Nuclear Information System (INIS)
Zhang Chuanwei; Tewari, Sumanta; Lutchyn, Roman M.; Das Sarma, S.
2008-01-01
Two-dimensional (p x +ip y ) superfluids or superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic atom optical traps using p-wave Feshbach resonance is turning out to be challenging. Here we propose a method to create a p x +ip y superfluid directly from an s-wave interaction making use of a topological Berry phase, which can be artificially generated. We discuss ways to detect the spontaneous Hall mass current, which acts as a diagnostic for the chiral p-wave superfluid
Transient heat transfer into superfluid helium under confined conditions
International Nuclear Information System (INIS)
Filippov, Yu.P.; Miklyaev, V.M.; Sergeev, I.A.
1988-01-01
Transient thermal processes at solid-HeII interface at input of step pulse of heat load was investigated. Particular attention is given to the study of influence of geometry of experimental specimen upon the heat transfer dynamics. Abrupt breakdown of highly efficient transfer modes caused by the developmet of superfluid turbulence under confined condition is revealed, and accompanying temperature shift is registered. Some characteristic parameters are selected, their dependence on experimental conditions is established
Characterization of fractals with an adsorbed superfluid film
International Nuclear Information System (INIS)
Golov, A.I.; Berkutov, I.B.; Babuin, S.; Cousins, D.J.
2003-01-01
The tortuosity of a capillary-condensed film of superfluid 4 He adsorbed on 91%-porous silica aerogel has been measured, with transverse sound, as a function of helium coverage. Complementary data from 4 He adsorption isotherms and small-angle X-ray scattering have also been used for substrate characterization. The tortuosity is found to be roughly inversely proportional to the volume fraction of the liquid phase of helium
The Thomas-Kuhn sum rule and superfluidity, 2
International Nuclear Information System (INIS)
Izuyama, Takeo
1977-01-01
Since the ODLRO by itself cannot always lead to dynamical superfluidity, we must seek for a supplementary condition for the persistent flow. The condition found here is that, even when weak impurities exist, the Josephson-Baym phase fluctuation spectrum remains to be valid for long wave-length components of the fluctuation including the extreme cases k=(2π/L), (4π/L),.... (auth.)
Singular f-sum rule for superfluid 4He
International Nuclear Information System (INIS)
Wong, V.K.
1979-01-01
The validity and applicability to inelastic neutron scattering of a singular f-sum rule for superfluid helium, proposed by Griffin to explain the rhosub(s) dependence in S(k, ω) as observed by Woods and Svensson, are examined in the light of similar sum rules rigorously derived for anharmonic crystals and Bose liquids. It is concluded that the singular f-sum rules are only of microscopic interest. (Auth,)
Theory of superfluidity of helium II near the lambda point
International Nuclear Information System (INIS)
Ginzburg, V.L.; Sobyanin, A.A.
1982-01-01
The present state of the Psi theory of superfluidity of helium II near the lambda point is reviewed. The basic assumptions underlying this theory and the limits of its applicability are discussed. The results of the solution of some problems in the framework of the theory are presented and compared with experimental data. The necessity and possibility of further comparison of the theory with experiment are emphasized
Propagative modes along a superfluid helium-4 meniscus
International Nuclear Information System (INIS)
Poujade, M.; Guthmann, C.; Rolley, E.
2002-01-01
We have studied the dynamics of a superfluid helium-4 meniscus on a solid substrate. In a pseudo-non-wetting situation, there is no hysteresis of the contact angle. We show that distortions of a liquid meniscus do propagate along the contact line. We have analyzed the propagation of pulses. We find a good agreement with theoretical predictions by Brochard for the dispersion relation of oscillation modes of the contact line. (authors)
Fractional statistics of the vortex in two-dimensional superfluids
International Nuclear Information System (INIS)
Chiao, R.Y.; Hansen, A.; Moulthrop, A.A.
1985-01-01
The quantum behavior of two identical point vortices (e.g., in a superfluid 4 He thin film) is studied. It is argued that this system obeys neither Bose nor Fermi statistics, but intermediate or theta statistics: We find that a single vortex in this system possesses quarter-fractional statistics (i.e., theta = π/2 or 3π/2). The source of the theta statistics is identified in the relative zero-point motion of the vortices
How important is self-consistency for the dDsC density dependent dispersion correction?
Energy Technology Data Exchange (ETDEWEB)
Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Golubev, Nikolay [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Steinmann, Stephan N., E-mail: sns25@duke.edu [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)
2014-05-14
The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.
Transient behavior of superfluid turbulence in a large channel
International Nuclear Information System (INIS)
Schwarz, K.W.; Rozen, J.R.
1991-01-01
The transient behavior of superfluid turbulence is studied theoretically and experimentally with the aim of understanding the disagreement between vortex-tangle theory and past measurements of free vortex-tangle decay in superfluid 4 He. Scaling theory is extended and large-scale simulations based on the reconnecting-vortex model are carried out. These imply that the Vinen equation should be a reasonable approximation even for rather large transients, and predict definite values for the Vinen parameters. Direct measurements of the vortex-tangle response to a sudden change in the driving velocity are seen to be in reasonable agreement with these predictions. It is found, however, that when the vortex tangle is allowed to decay farther toward zero, it eventually crosses over into a state of anomalously slow decay, which appears to be that observed in previous experiments. We argue that this regime should be interpreted in terms of a coupled-turbulence state in which random superfluid and normal-fluid motion interacts with the vortex tangle, the whole system decaying self-consistently at a rate controlled by the normal-fluid viscosity. Several additional qualitative observations which may be relevant to the question of how the vortex tangle is initiated are also reported
Chiral superfluidity of the quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2012-08-15
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}
Chiral superfluidity of the quark-gluon plasma
International Nuclear Information System (INIS)
Kalaydzhyan, Tigran
2012-08-01
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Both, C.
2000-01-01
The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One
A Room to Grow: The Residential Density-dependence of Childbearing in Europe and the United States
Directory of Open Access Journals (Sweden)
Nathanael Lauster
2010-01-01
Full Text Available I argue that cultural processes linked to the demographic transition produce new density-dependent fertility dynamics. In particular, childbearing becomes dependent upon residential roominess. This relationship is culturally specific, and I argue that the cultural nature of this relationship means that professional and managerial classes are likely to be particularly influenced by residential roominess, while immigrants are less likely to be influenced. I test hypotheses linking residential roominess to the presence of an “own infant” in the household using census data from the Austria, Greece, Portugal, Spain, and the United States. Roominess predicts fertility in all countries, but to differing degrees.
Goater, C. P.
2017-01-01
Density-dependence in worm establishment, numbers, biomass and larval production were examined in primary infections of 0, 10, 40, 80 and 160 larvae of the lung nematode, Rhabdias bufonis in the common toad, Bufo bufo. The infection procedure established 4 non-overlapping levels of infection which persisted until 6 weeks post-infection (p.i.), after which there was an overall decline up to 12 weeks p.i. Worm numbers had no direct effect on adult worm survival but temporal changes in worm weig...
Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid {}4{He}
Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.
2017-06-01
To investigate the formation of quantum turbulence in superfluid {}4{He}, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ ^{-1.2} and ɛ ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.
Applied string theory, hot and cold. A holographic view on quark-gluon plasma and superfluids
Energy Technology Data Exchange (ETDEWEB)
Samberg, Andreas Wilhelm
2015-12-21
This thesis deals with applications of gauge/gravity duality to strong-coupling phenomena in the quark-gluon plasma and far-from-equilibrium superfluids. In a first part we search for model-independent (universal) behavior in various non-Abelian gauge-theory plasmas at finite temperature and chemical potential. We employ the holographic duals of strongly coupled N=4 supersymmetric Yang-Mills theory and three one-parameter families of non-conformal deformations thereof, two of which solve the equations of motion of a five-dimensional Einstein-Maxwell-scalar action. We study the free energy and associated thermodynamic quantities of heavy quarks and bound quark-anti-quark (Q anti Q) pairs as well as the Q anti Q binding energy and the running coupling. We find qualitative agreement with available lattice QCD data. Moreover, we show that several observables exhibit universal behavior for all values of the chemical potential. In a second part we investigate the real-time dynamics of a bosonic superfluid in two spatial dimensions after initial quenches that take the system to far-from-equilibrium states characterized by many topological vortex defects in association with quantum turbulence. To this end we numerically solve the full equations of motion of the holographically dual Abelian Higgs model on four-dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time regime characterized by power-law behavior in a two-point correlation function and in characteristic length scales, which we interpret as a non-thermal fixed point.
Applied string theory, hot and cold. A holographic view on quark-gluon plasma and superfluids
International Nuclear Information System (INIS)
Samberg, Andreas Wilhelm
2015-01-01
This thesis deals with applications of gauge/gravity duality to strong-coupling phenomena in the quark-gluon plasma and far-from-equilibrium superfluids. In a first part we search for model-independent (universal) behavior in various non-Abelian gauge-theory plasmas at finite temperature and chemical potential. We employ the holographic duals of strongly coupled N=4 supersymmetric Yang-Mills theory and three one-parameter families of non-conformal deformations thereof, two of which solve the equations of motion of a five-dimensional Einstein-Maxwell-scalar action. We study the free energy and associated thermodynamic quantities of heavy quarks and bound quark-anti-quark (Q anti Q) pairs as well as the Q anti Q binding energy and the running coupling. We find qualitative agreement with available lattice QCD data. Moreover, we show that several observables exhibit universal behavior for all values of the chemical potential. In a second part we investigate the real-time dynamics of a bosonic superfluid in two spatial dimensions after initial quenches that take the system to far-from-equilibrium states characterized by many topological vortex defects in association with quantum turbulence. To this end we numerically solve the full equations of motion of the holographically dual Abelian Higgs model on four-dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time regime characterized by power-law behavior in a two-point correlation function and in characteristic length scales, which we interpret as a non-thermal fixed point.
Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas
Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.
2011-03-01
We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.
International Nuclear Information System (INIS)
Leggett, W.C.
1977-01-01
The role of density-dependent and density-independent factors in the regulation of the stock-recruitment relationship of the American shad (Alosa sapidissima) population of the Connecticut River was investigated. Significant reductions in egg-to-adult survival and juvenile growth rates occurred in the Holyoke--Turners Falls region in response to increases in the intensity of spawning in this area. For the Connecticut River population as a whole, egg-to-adult survival was estimated to be 0.00056 percent at replacement levels, and 0.00083 percent at the point of maximum population growth. Density-independent factors result in significant annual deviations from recruitment levels predicted by the density-dependent model. Temperature and flow regimes during spawning and early larval development are involved, but they explain only a small portion (less than 16 percent) of the total variation. In spite of an extensive data base, the accuracy of predictions concerning the potential effects of additional mortality to pre-recruit stages is low. The implications of these findings for environmental impact assessment are discussed
Rahmat, M.; Modarres, M.
2018-03-01
The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.
Renormalization group analysis of order parameter fluctuations in fermionic superfluids
International Nuclear Information System (INIS)
Obert, Benjamin
2014-01-01
In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.
Baryonic 3P2-dominant superfluidity under combined pion condensation with Δ isobar. 1. Formulation
International Nuclear Information System (INIS)
Tamagaki, Ryozo
2006-01-01
Baryonic superfluidity is studied in the combined pion condensation with the Δ degrees of freedom. We adopt a model previously proposed, in which both condensates of the neutral and charged pions coexist without interference in neutron star matter above the nuclear density. In setting up the most probable pairing correlation in such situation, it is crucial to extract attractive effects of the baryon-baryon spin-orbit interaction playing a decisive role in realizing the superfluid at moderate high densities. To this aim, using the quasi-baryon basis having the good angular-momentum quantum number, we define the quasi-baryon pairs with the stretched two-dimensional angular momentum with m J =±2, being the sum of a spin component m s =±1 and an orbital-angular momentum m L =±1 of the quasi-baryon pairs. Pairing interaction is given in terms of the operators of these quasi-baryon pairs. This choice enables us to include the usual 3 P 2 pair as a dominant component in the quasi-baryon pairs thus defined. Then we rewrite the quasi-baryon pair operations in terms of the operators of the quasi-particles (denoted as η) describing the single-particle eigenmode in the combined pion condensation. The Bogoliubov transformation is performed according to the scheme previously developed in the study of the neutron 3 P 2 pairing, since both cases are similar in formal structure although different in physical content. Finally we obtain a coupled gap equation among three channels corresponding to three different charge states of the quasi-baryon pairs. This paper presents such a formulation. Analysis of the matrix element of the pairing interaction and numerical results of energy gaps will be reported in a succeeding paper. (author)
Solitons, Bose-Einstein condensation and superfluidity in He II
International Nuclear Information System (INIS)
Chela-Flores, J.; Ghassib, H.B.
1985-09-01
The analytic form of a wave propagating with a constant velocity and a permanent profile is inferred for a weakly interacting Bose gas, using an exact (rather than asymptotic) solution of the field equation of the self-consistent Hartree model. The significance of this approach is indicated, especially when realistic interatomic potentials are used. In addition, the general relation between solitons and Bose-Einstein condensation is underlined by invoking the profound insight recently acquired in studies of the quantum liquids involved in the living state. It is concluded that solitons may occur in He II, and may play a significant role in the phenomena of superfluidity. (author)
Experiments on second-sound shock waves in superfluid helium
International Nuclear Information System (INIS)
Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.
1978-01-01
The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results
Chiral gravitational waves and baryon superfluid dark matter
Alexander, Stephon; McDonough, Evan; Spergel, David N.
2018-05-01
We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.
Radioactive core ions of microclusters, ``snowballs`` in superfluid helium
Energy Technology Data Exchange (ETDEWEB)
Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics
1996-12-01
Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).
Magnus force in discrete and continuous two-dimensional superfluids
International Nuclear Information System (INIS)
Gecse, Z.; Khlebnikov, S.
2005-01-01
Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays
Superfluid helium on on-orbit transfer (SHOOT) flight experiment
International Nuclear Information System (INIS)
DiPirro, M.J.; Kittel, P.
1988-01-01
The SHOOT flight demonstration is being undertaken to verify component and system level technology necessary to resupply large superfluid helium dewars in space. The baseline configuration uses two identical 210 liter dewars connected by a transfer line which contains a quick disconnect coupling. The helium is transferred back and forth between the dewars under various conditions of flow rate, parasitic heat load, and temperature. An astronaut Extra-Vehicular Activity is also planned to manually mate and demate the coupling. The components necessary for the flight and currently being developed are described
Radioactive core ions of microclusters, ''snowballs'' in superfluid helium
International Nuclear Information System (INIS)
Takahashi, N.; Mitsuoka, S.; Matsukawa, T.; Ikeda, N.; Morinobu, S.; Hinde, D.J.; Asahi, K.; Ueno, H.; Izumi, H.
1996-01-01
Short-lived beta-ray emitters, 12 B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of 12 B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of 12 B (20.3 ms). This suggests that the ''snowball'', an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.)
Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao
2016-12-01
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.
Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.
DEFF Research Database (Denmark)
Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob
2018-01-01
embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdWTS) scheme aimed......Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable...... at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdWTSexpression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We...
International Nuclear Information System (INIS)
Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P
2012-01-01
The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions. (paper)
Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro
2005-01-01
The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.
Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H
2017-11-01
Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.
Two-component Superfluid Hydrodynamics of Neutron Star Cores
Energy Technology Data Exchange (ETDEWEB)
Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2017-02-20
We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.
Transport and magnetic resonance in normal and superfluid Fermi liquids
International Nuclear Information System (INIS)
Smith, H.
1976-10-01
This thesis provides a framework for a series of 19 papers published by the author in a study of transport and magnetic resonance in normal and superfluid Fermi liquids. The Boltzmann equation and methods for its solution are discussed. Electron-electron scattering in metals, with particular emphasis on alkali metals, is considered. Transport in a normal uncharged Fermi liquid such as pure 3 He at temperatures well below its degeneracy temperature of approximately 1 K or mixtures of 3 He in 4 He with degeneracy temperatures ranging typically from 100 to 200 mk is discussed with emphasis on comparison with experiments with the aim of testing models of the particle-particle scattering amplitude. Transport and magnetic resonance in superfluid 3 He is considered. The phenomenological treatment of relaxation is reviewed and the magnitude of the phenomenlogical relaxation time close to Tsub(c) is derived for the case of longitudinal resonance. Comments are made on non-linear magnetic resonance and textures and spin waves. (B.R.H.)
Gravitational wave as probe of superfluid dark matter
Cai, Rong-Gen; Liu, Tong-Bo; Wang, Shao-Jiang
2018-02-01
In recent years, superfluid dark matter (SfDM) has become a competitive model of emergent modified Newtonian dynamics (MOND) scenario: MOND phenomenons naturally emerge as a derived concept due to an extra force mediated between baryons by phonons as a result of axionlike particles condensed as superfluid at galactic scales; Beyond galactic scales, these axionlike particles behave as normal fluid without phonon-mediated MOND-like force between baryons, therefore SfDM also maintains the usual success of Λ CDM at cosmological scales. In this paper, we use gravitational waves (GWs) to probe the relevant parameter space of SfDM. GWs through Bose-Einstein condensate (BEC) could propagate with a speed slightly deviation from the speed-of-light due to the change in the effective refractive index, which depends on the SfDM parameters and GW-source properties. We find that Five hundred meter Aperture Spherical Telescope (FAST), Square Kilometre Array (SKA) and International Pulsar Timing Array (IPTA) are the most promising means as GW probe of relevant parameter space of SfDM. Future space-based GW detectors are also capable of probing SfDM if a multimessenger approach is adopted.
Symmetry-protected topological superfluids and superconductors. From the basics to 3He
International Nuclear Information System (INIS)
Mizushima, Takeshi; Tsutsumi, Yasumasa; Kawakami, Takuto; Sato, Masatoshi; Ichioka, Masanori; Machida, Kazushige
2016-01-01
In this article, we give a comprehensive review of recent progress in research on symmetry-protected topological superfluids and topological crystalline superconductors, and their physical consequences such as helical and chiral Majorana fermions. We start this review article with the minimal model that captures the essence of such topological materials. The central part of this article is devoted to the superfluid 3 He, which serves as a rich repository of novel topological quantum phenomena originating from the intertwining of symmetries and topologies. In particular, it is emphasized that the quantum fluid confined to nanofabricated geometries possesses multiple superfluid phases composed of the symmetry-protected topological superfluid B-phase, the A-phase as a Weyl superfluid, the nodal planar and polar phases, and the crystalline ordered stripe phase. All these phases generate noteworthy topological phenomena, including topological phase transitions concomitant with spontaneous symmetry breaking, Majorana fermions, Weyl superfluidity, emergent supersymmetry, spontaneous edge mass and spin currents, topological Fermi arcs, and exotic quasiparticles bound to topological defects. In relation to the mass current carried by gapless edge states, we also briefly review a longstanding issue on the intrinsic angular momentum paradox in 3 He-A. Moreover, we share the current status of our knowledge on the topological aspects of unconventional superconductors, such as the heavy-fermion superconductor UPt 3 and superconducting doped topological insulators, in connection with the superfluid 3 He. (author)
Topological superfluids confined in a regular nano-scale slab geometry
Energy Technology Data Exchange (ETDEWEB)
Saunders, John; Bennett, Robert; Levitin, Lev; Casey, Andrew; Cowan, Brian [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom); Parpia, Jeevak [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Drung, Dietmar; Schurig, Thomas [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, D-19587, Berlin (Germany)
2012-07-01
Superfluid 3He confined in a regular nano-fabricated slab geometry provides a model system for the investigation of surface and thin film effects in a p-wave superfluid. We have fabricated and cooled such samples to well below 1 mK for the first time, and investigated their NMR response, exploiting a SQUID NMR spectrometer of exquisite sensitivity. We have used NMR on a 650 nm thick superfluid slab to identify the profound effect of confinement on the relative stability of the A and B phases and to make quantitative measurements of the suppression and surface induced distortion of the order parameter. In these systems the effective confinement length scale (slab thickness/superfluid coherence length) is the new tuning parameter. Increasing confinement should stabilize new p-wave superfluid states of matter, such as the quasi-2D gapped A phase or the planar phase. Nanofluidic samples of superfluid 3He promise a route to explore topological superfluids and their surface, edge and defect-bound excitations under well controlled conditions.
Collective excitations in a superfluid of color-flavor locked quark matter
International Nuclear Information System (INIS)
Fukushima, Kenji; Iida, Kei
2005-01-01
We investigate collective excitations coupled with baryon density in a system of massless three-flavor quarks in the collisionless regime. By using the Nambu-Jona-Lasinio (NJL) model in the mean-field approximation, we field-theoretically derive the spectra both for the normal and color-flavor locked (CFL) superfluid phases at zero temperature. In the normal phase, we obtain usual zero sound as a low-lying collective mode in the particle-hole (vector) channel. In the CFL phase, the nature of collective excitations varies in a way dependent on whether the excitation energy, ω, is larger or smaller than the threshold given by twice the pairing gap Δ, at which pair excitations with nonzero total momentum become allowed to break up into two quasiparticles. For ω H =1/√(3) in the low momentum regime; the decay constant f H obtained in the NJL model is identical with the QCD result obtained in the mean-field approximation. We also find that, as the momentum of the phonon increases, the excitation energy goes up and asymptotically approaches ω=2Δ. Above the threshold for pair excitations (ω>2Δ), zero sound manifests itself in the vector channel. By locating the zero sound pole of the vector propagator in the complex energy plane, we investigate the attenuation and energy dispersion relation of zero sound. In the long wavelength limit, the phonon mode, the only low-lying excitation, has its spectral weight in the H channel alone, while the spectral function vanishes in the vector channel. This is due to nontrivial mixing between the H and vector channels in the superfluid medium. We finally extend our study to the case of nonzero temperature. We demonstrate how Landau damping smears the phonon peak in the finite temperature spectral function. We find a pure imaginary pole of the H propagator in the complex energy plane, which can be identified as a diffusive mode responsible for the Landau damping. From the pole position we derive the thermal diffusion constant
Energy Technology Data Exchange (ETDEWEB)
Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)
2001-10-01
The Schroedinger equation was originally postulated in 1926 as having a solution of the one electron atom. It gives the principal energy levels of the hydrogen atom as eigenvalues of eigenfunction solutions of the Laguerre differential equation. But, as the principal quantum number n>>1, the eigenfunctions become nonsensical. Despite its wide acceptance, on deeper inspection, the Schroedinger solution is plagued with many failings as well as difficulties in terms of a physical interpretation that have caused it to remain controversial since its inception. Only the one electron atom may be solved without approximations, but it fails to predict electron spin and leads to models with nonsensical consequences such as negative energy states of the vacuum, infinities, and negative kinetic energy. In addition to many predictions which simply do not agree with observations, the Schroedinger equation predicts noncausality, nonlocality, spooky actions at a distance or quantum telepathy, perpetual motion, and many internal inconsistencies where contradicting statements have to be taken true simultaneously. Recently, the behavior of free electrons in superfluid helium has again forced the issue of the meaning of the wave function. Electrons form bubbles in superfluid helium which reveal that the electron is real and that a physical interpretation of the wave function is necessary. Furthermore, when irradiated with light of energy of about a 0.5 to several electron volts (H.J. Marris, J. Low Temp. Phys. 120 (2000) 173), the electrons carry current at different rates as if they exist with different sizes. It has been proposed that the behavior of free electrons in superfluid helium can be explained in terms of the electron breaking into pieces at superfluid helium temperatures (H.J. Marris, J. Low Temp. Phys. 120 (2000) 173). Yet, the electron has proven to be indivisible even under particle accelerator collisions at 90 GeV (LEPII). The nature of the wave function must now be
Superconductivity and superfluidity as universal emergent phenomena in diverse physical systems
International Nuclear Information System (INIS)
Guidry, Mike
2014-01-01
Superconductivity and superfluidity are observed across a strikingly broad range of physical systems. This universality seems unlikely to be coincidental but a unified understanding of superconductivity and superfluidity across these highly disparate fields seems impossible in traditional microscopic terms. I give an overview of superconductivity and superfluidity found in various fermionic condensed matter, nuclear physics, and neutron star systems, and propose that all result from generic algebraic structures for the emergent effective Hamiltonian, with the role of underlying microscopic physics largely relegated to influence on parameter values
Studies of Superfluid 3He Confined to a Regular Submicron Slab Geometry, Using SQUID NMR
International Nuclear Information System (INIS)
Casey, Andrew; Corcoles, Antonio; Lusher, Chris; Cowan, Brian; Saunders, John
2006-01-01
The effect on the superfluid ground state of confining p-wave superfluid 3He in regular geometries of characteristic size comparable to the diameter of the Cooper pair remains relatively unexplored, in part because of the demands placed by experiments on the sensitivity of the measuring technique. In this paper we report preliminary experiments aimed at the study of 3He confined to a slab geometry. The NMR response of a series of superfluid samples has been investigated using a SQUID NMR amplifier. The sensitivity of this NMR spectrometer enables samples of order 1017 spins, with low filling factor, to be studied with good resolution
Deng, Jian; Schlichting, Soeren; Venugopalan, Raju; Wang, Qun
2018-05-01
We map the infrared dynamics of a relativistic single-component (N =1 ) interacting scalar field theory to that of nonrelativistic complex scalar fields. The Gross-Pitaevskii (GP) equation, describing the real-time dynamics of single-component ultracold Bose gases, is obtained at first nontrivial order in an expansion proportional to the powers of λ ϕ2/m2 where λ , ϕ , and m are the coupling constant, the scalar field, and the particle mass respectively. Our analytical studies are corroborated by numerical simulations of the spatial and momentum structure of overoccupied scalar fields in (2+1)-dimensions. Universal scaling of infrared modes, vortex-antivortex superfluid dynamics, and the off-equilibrium formation of a Bose-Einstein condensate are observed. Our results for the universal scaling exponents are in agreement with those extracted in the numerical simulations of the GP equation. As in these simulations, we observe coarsening phase kinetics in the Bose superfluid with strongly anomalous scaling exponents relative to that of vertex resummed kinetic theory. Our relativistic field theory framework further allows one to study more closely the coupling between superfluid and normal fluid modes, specifically the turbulent momentum and spatial structure of the coupling between a quasiparticle cascade to the infrared and an energy cascade to the ultraviolet. We outline possible applications of the formalism to the dynamics of vortex-antivortex formation and to the off-equilibrium dynamics of the strongly interacting matter formed in heavy-ion collisions.
Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid
International Nuclear Information System (INIS)
Alford, Mark G.; Good, Gerald
2008-01-01
We analyze magnetic-flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient ('entrainment') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional κ≡λ/ξ=1/√(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical κ and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to 'type-II(n)' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical κ and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region but might be observed in condensed-matter systems
Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants
Directory of Open Access Journals (Sweden)
Thomsen Lene
2004-11-01
Full Text Available Abstract Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect. Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition.
Directory of Open Access Journals (Sweden)
Valerio Bartolino
Full Text Available Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes.
On the history of creation of the microscopic theories of superfluidity and superconductivity
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Isaev, P.S.
2002-01-01
The history of creation of the microscopic theory of superfluidity (1947) and the microscopic theory of superconductivity (1957) is expounded. The paper is dedicated to the 90th anniversary of the birth of our genius contemporary Academician Nikolaj Nikolaevich Bogolyubov
Critical velocities in He II for independently varied superfluid and normal fluid velocities
International Nuclear Information System (INIS)
Baehr, M.L.
1984-01-01
Experiments were performed to measure the critical velocity in pure superflow and compare to the theoretical prediction; to measure the first critical velocity for independently varied superfluid and normal fluid velocities; and to investigate the propagation of the second critical velocity from the thermal counterflow line through the V/sub n/,-V/sub s/ quadrant. The experimental apparatus employed a thermal counterflow heater to adjust the normal fluid velocity, a fountain pump to vary the superfluid velocity, and a level sensing capacitor to measure the superfluid velocity. The results of the pure superfluid critical velocity measurements indicate that this velocity is temperature independent contrary to Schwarz's theory. It was found that the first critical velocity for independently varied V/sub n/ and V/sub s/ could be described by a linear function of V/sub n/ and was otherwise temperature independent. It was found that the second critical velocity could only be distinguished near the thermal counterflow line
Movement of the boundary between the A and B helium-3 phases in superfluid
International Nuclear Information System (INIS)
Kopnin, N.B.
1987-01-01
The friction force arising on motion of the boundary between the A and B phases in superfluid helium-3 is calculated on the basis of the microscopic theory in a linear approximation with respect to the velocity
On translational superfluidity and the Landau criterion for Bose gases in the Gross-Pitaevski limit
International Nuclear Information System (INIS)
Wreszinski, Walter F
2008-01-01
The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau's criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent. (fast track communication)
Discovery of superfluid 3He phases wins 1996 nobel prize in physics
International Nuclear Information System (INIS)
Yan Shousheng
1997-01-01
The 1996 Nobel prize in physics was awarded to David M. Lee, Douglas D. Osheroff and Robert C. Richardson for their discovery of superfluidity in 3 He in 1971. A short account of the discovery and its importance is given
A Short History of the Theory and Experimental Discovery of Superfluidity in 3He
Brinkman, W. F.
I discuss the development of the theory and experiments on superfluid 3He. After the discovery of superfluidity in 3He by Osheroff, Richardson and Lee, Phil Anderson quickly recruited Doug Osheroff to come to Bell Labs and set up a dilution fridge to continue his experiments. One of the mysteries at that time was how the high-temperature A-phase, which has a gapless excitation spectrum, could be stabilized relative to the fully gapped, lower temperature B-phase. I explain how Phil Anderson and I developed the spin fluctuation theory of the A-phase of superfluid 3He which accounted for its stability, leading to the Anderson-Brinkman-Morel (ABM) theory of the superfluid A-phase...
Superfluidity of a dilute 3He-4He solution
International Nuclear Information System (INIS)
Soda, Toshio
1993-01-01
The interaction between two 3 He atoms is calculated by taking into account the backflow effect of 3 He by the 4 He in the 3 He- 4 He mixture. The effect contributes solely to the P wave part of the interaction. The repulsive S wave part of the contact interaction contributes to the exchange interaction between the 3 He atoms, while the direct one phonon exchange interaction contributes both to the S and P wave attractive interactions. The overall contribution to the attractive interaction is dominated by the P wave part and the superfluidity in the P wave is more predominant than in the S wave for the 5 % dilute 3 He- 4 He solution, and vice versa for the 1.3 % solution. (author)
Transient heat transfer in superfluid helium. Part II
International Nuclear Information System (INIS)
Dresner, L.
1983-01-01
Three classical problems associated with the ordinary diffusion equation concern the temperature in: (1) a half-space with clamped heat flux at the free face, (2) a half-space with clamped temperature at the free face, and (3) an infinite medium with a pulsed plane heat source. These problems are also important for the nonlinear diffusion equation based on the Gorter-Mellink relation, which describes heat transport in superfluid helium. A similarity solution to problem (1), the clamped-flux problem, has already been found and compared, with good agreement, with experimental data of van Sciver. [A similarity solution is one in which the profiles of temperature rise δT versus distance Z at different times t can be obtained from one another by suitable (different) stretching of the temperature and distance axes.] In this paper, similarity solutions are given in analytic form to problems (2) and (3), the clamped-temperature and pulsed-source problems
In situ/non-contact superfluid density measurement apparatus
Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang
2018-04-01
We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.
Attempt to produce both thick and thinned flowing superfluid films
International Nuclear Information System (INIS)
Kwoh, D.S.W.; Goodstein, D.L.
1977-01-01
As discussed in the preceding paper by Graham, a controversy has arisen over conflicting reports of whether a superfluid film becomes thinned when it is set into motion. We have performed an experiment designed to reproduce as nearly as possible two previous measurements giving opposite results. Our experiment is also designed to test directly a theory proposed by Goodstein and Saffman which would have reconciled the apparently contradictory observations. We are unable to reproduce the thick-film result, finding kinetic thinning in all cases, even where the Goodstein--Saffman theory would lead us to expect a thick film. We conclude, in agreement with Graham, that the film is always thinned when it flows, and that the theory is therefore unnecessary
Breakdown of Counterflow Superfluidity in a Disordered Quantum Hall Bilayer
International Nuclear Information System (INIS)
Lee, D.K.K.; Eastham, P.R.; Cooper, N.R.
2011-01-01
We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might be used to interpret experiments in the counterflow geometry and in two-terminal measurements
Breakdown of Counterflow Superfluidity in a Disordered Quantum Hall Bilayer
Directory of Open Access Journals (Sweden)
D. K. K. Lee
2011-01-01
Full Text Available We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might be used to interpret experiments in the counterflow geometry and in two-terminal measurements.
Observation of Spin Superfluidity in a Bose Gas Mixture
Fava, Eleonora; Bienaimé, Tom; Mordini, Carmelo; Colzi, Giacomo; Qu, Chunlei; Stringari, Sandro; Lamporesi, Giacomo; Ferrari, Gabriele
2018-04-01
The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of spin drag, while the two condensates exhibit a counterflow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean-field effect. We also measure the static polarizability of the condensed and thermal parts and we find a large increase of the condensate polarizability with respect to the T =0 value, in agreement with the predictions of theory.
Theoretical modeling of electron mobility in superfluid {sup 4}He
Energy Technology Data Exchange (ETDEWEB)
Aitken, Frédéric; Bonifaci, Nelly [G2ELab-GreEn-ER, Equipe MDE, 21 Avenue des Martyrs, CS 90624, 38031 Grenoble Cedex 1 (France); Haeften, Klaus von [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Eloranta, Jussi, E-mail: Jussi.Eloranta@csun.edu [Department of Chemistry and Biochemistry, California State University at Northridge, 18111 Nordhoff St., Northridge, California 91330 (United States)
2016-07-28
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.
A cryogenic axial-centrifugal compressor for superfluid helium refrigeration
Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L
1997-01-01
CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.
On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems
International Nuclear Information System (INIS)
Vil'chinskij, S.I.
1999-01-01
Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds
Bulk damping of sound in superfluid 3He--4He under stagnation of the normal component
International Nuclear Information System (INIS)
Karchava, T.A.; Sanikidze, D.G.; Chkhaidze, N.D.
1983-01-01
The propagation of waves in superfluid 3 He-- 4 He solutions is considered under partial stagnation of the normal component. The wave processes in capillaries are presented as a superposition of the first sound, second sound, and viscous and diffusion waves. The damping coefficients are calculated for the modified first sound and for the thermal wave in superfluid 3 He-- 4 He solutions and related to the viscosity, thermal conductivity, diffusion, barodiffusion, and thermodiffusion coefficients
Second sound shock waves in rotating superfluid helium
International Nuclear Information System (INIS)
Torczynski, J.R.
1983-01-01
Second sound shock waves have been used to examine the breakdown of superfluidity in bulk He II. The maximum counterflow velocity achieved in this manner was measured at a variety of temperatures and pressures. The results are found to agree with predictions of vortex nucleation theories (Langer and Fisher, 1967) in their pressure and temperature dependences although it was shown that dissipation occurred only near the heater. A simple scaling argument is suggested, assuming breakdown occurs near the heater. A vortex dynamics model of breakdown (following the method of Turner, private communication) is developed. To examine the effect of vorticity on breakdown, second sound shocks were produced in rotating helium. Experiments were performed in which the shocks propagated either along or normal to the axis of rotation, called axial and transverse cases, respectively. In both cases the decay was seen to increase monotonically with the rotation rate. Furthermore, the decay was ongoing rather than being confined to a narrow region near the heater. However, the extraordinary dissipation in the transverse case seemed to be related primarily to the arrival of secondary waves from the heater-sidewall boundary. An explanation of this difference is put forth in terms of vortex nucleation in the bulk fluid, using ideas similar to Crocco's Theorem. In order to examine the breakdown of superfluidity away from walls in nonrotation fluid, spherically converging second shocks were produced. The temperature jumps of the waves were measured, and exact numerical solutions of the two-fluid jump conditions (Moody, 1983) were used to calculate the relative velocity in each case
Transport properties near the superfluid transition in helium
International Nuclear Information System (INIS)
Ikushima, Akira
1980-01-01
Description are given primarily on recent experimental results and related topics of acoustic attenuation and dispersion, and of thermal transport properties near the superfluid transition in pure 4 He and 3 He- 4 He mixtures ( 3 He). Attenuation and dispersion of sound above the lambda point T sub(lambda) can well be understood fundamentally from the dynamic scaling hypothesis with the mode coupling theory. Attenuation and dispersion at T sub(lambda) as a function of frequency is expressed with the exponent which is slightly dependent on frequency and on 3 He concentration. The situation below T sub(lambda) would still have problems since at higher frequencies the simple splitting of observed attenuation and dispersion into that due to order-parameter fluctuation and that due to order-parameter relaxation proposed by Pokrovskii and Khalatnikov does not work. The possibility that the recent theory of Ferrell and Bhattacharjee offers explanations for the results above and below T sub(lambda) is discussed. Thermal conductivity in 4 He and mixtures, and thermo-diffusion ratio in mixtures are measured near the superfluid transition points. Thermal conductivity in the absence of a concentration gradient and its corresponding thermal diffusivity are then calculated. The critical exponent of this thermal diffusivity is approximately 1/3, irrespective of 3 He concentration. The thermo-diffusion ratio has very weak divergence, if any, when T sub(lambda) is approached. Two damping modes in mixtures in non-stationary condition are then calculated. Only the mode corresponding to the Brillouin linewidth does diverge with critical exponent approximately equal to 1/3, irrespective of 3 He concentration. (author)
International Nuclear Information System (INIS)
Duri, D.
2012-01-01
This experimental work is focused on the statistical study of the high Reynolds number turbulent velocity field in an inertially driven liquid helium axis-symmetric round jet at temperatures above and below the lambda transition (between 2.3 K and 1.78 K) in a cryogenic wind tunnel. The possibility to finely tune the fluid temperature allows us to perform a comparative study of the quantum He II turbulence within the classical framework of the Kolmogorov turbulent cascade in order to have a better understanding of the energy cascade process in a superfluid. In particular we focused our attention on the intermittency phenomena, in both He I and He II phases, by measuring the high order statistics of the longitudinal velocity increments by means of the flatness and the skewness statistical estimators. A first phase consisted in developing the cryogenic facility, a closed loop pressurized and temperature regulated wind tunnel, and adapting the classic hot-wire anemometry technique in order to be able to work in such a challenging low temperature environment. A detailed calibration procedure of the fully developed turbulent flow was the carried out at 2.3 K at Reynolds numbers based on the Taylor length scale up to 2600 in order to qualify our testing set-up and to identify possible facility-related spurious phenomena. This procedure showed that the statistical properties of the longitudinal velocity increments are in good agreement with respect to previous results. By further reducing the temperature of the working fluid (at a constant pressure) below the lambda point down to 1.78 K local velocity measurements were performed at different superfluid density fractions. The results show a classic behaviour of the He II energy cascade at large scales while, at smaller scales, a deviation has been observed. The occurrence of this phenomenon, which requires further investigation and modelling, is highlighted by the observed changing sign of the third order structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Hajar Bahri; Fatemeh Kayanikhoo
2012-01-01
We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field.To this end,we use the MITbag model with a density dependent bag constant.To parameterize the density dependence of the bag constant,we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter.By calculating the equation of state of strange quark matter,we have shown that the pressure of this system increases by increasing both density and magnetic field.Finally,we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.
Neutron spin echo investigation of elementary excitations in superfluid 4He
International Nuclear Information System (INIS)
Mezei, F.
1980-01-01
The present work represents the first experimental evidence for the application of Neutron Spin Echo (NSE) in high resolution study of both optical-like (non dispersive) and dispersive elementary excitations. The results obtained proved to be relevant contributions concerning the temperature dependence of the energy and linewidth of the roton excitation between 0.96 and 1.4 K; the temperature dependence of the linewidth of the 1.1 A -1 and 1.72 A -1 phonons and the suggested onset of three-phonon decay between 2.1 A -1 and 2.4 A -1 . The energy transfer resolution achieved in this work was 10-40 times superiour to those in previous similar neutron scattering experiments. In this paper most of the attention will be paid to the experimental aspects. In the first section the details of the NSE experiment are described, with particular emphasis on the first demonstration of the general scheme of NSE focussing, which involves the tuning of both the ratio of the precession fields H 0 /H 1 and their geometrical assymetry ('tilt angle'). The second section gives the experimental results without, however, a detailed discussion of their significance for the understanding of superfluid 4 He, which will be published elsewhere. (orig.)
Properties of superfluid 3He-B in the low-temperature limit
International Nuclear Information System (INIS)
Guenault, A.M.; Pickett, G.R.
1987-01-01
Several experiments are described in 3 He-Β at temperatures down to 125 μΚ and below. In this low-temperature regime, the normal-fluid density is negligible with the consequence that the quasi-particle gas is virtually noninteracting, because the mean free paths for quasi-particle-quasi-particle scattering are orders of magnitude greater than the size of the experiment. We have measured the boundary conductance across a liquid-to-silver sinter interface. The measured conductance shows an exp(-Δ/kT) dependence, with Δ being a superfluid energy gap that is apparently lower than that appropriate for the bulk liquid. We observe the onset of dissipation by pair-breaking induced by a moving wire, which also implies that the energy gap is depressed near a boundary. Finally, we have used such a supercritically driven wire as a ballistic quasi-particle source to observe a new thermomechanical effect in 3 He-Β, and hence to devise the elements of a quasi-particle spectrometer. (5 refs., 2 figs.)
International Nuclear Information System (INIS)
Johnson, R.S.
1984-01-01
The propagation of surface waves - that is 'third' sound -on superfluid helium is considered. The fluid is treated as a continuum, using the two-fluid model of Landau, and incorporating the effects of healing, relaxation, thermal conductivity and Newtonian viscosity. A linear theory is developed which includes some discussion of the matching to the outer regions of the vapour. This results in a comprehensive propagation speed for linear waves, although a few properties of the flow are left undetermined at this order. A nonlinear theory is then outlined which leads to the Burgers equation in an appropriate far field, and enables the leading-order theory to be concluded. Some numerical results, for two temperatures, are presented by first recording the Helmholtz free energy as a polynomial in densities, but only the equilibrium state can be satisfactorily reproduced. The propagation speed, as a function of film thickness, is roughly estimated. The looked-for reduction in the predicted speeds is evident, but the magnitude of this reduction is too large for very thin films. However, these analytical results should prove more effective when a complete and accurate description of the Helmholtz free energy is available. (author)
Parametric excitation of the J=2+ modes by zero sound in superfluid 3He-B
International Nuclear Information System (INIS)
Sauls, J.A.; McKenzie, R.H.
1991-01-01
We discuss order-parameter collective modes in weakly inhomogeneous states of superfluid 3 He-B, i.e., states in which the scale of the inhomogeneities is considerably longer than the coherence length ξ 0 =v t /2πTc and the energy associated with the inhomogeneity is small compared to the condensation energy. The theory describes resonance phenomena between order-parameter modes and zero sound. We discuss two specific cases, both of which involve excitation of the J=2 + modes via a parametric field that lifts the selection rule due to particle-hole symmetry. In the case of a static superflow the modes with J=2 + , M=±1 couple to sound for qparallelH, and should be observable as Zeeman states with a maximum absorption that scales as the square of the superflow velocity. The J=2 + modes may also be excited parametrically in a three-wave resonance process involving two zero-sound phonons. We summarize the nonlinear response theory for two-phonon excitation of these modes. (orig.)
Superfluid 3He at very low temperatures: a very unusual excitation gas
International Nuclear Information System (INIS)
Pickett, G.R.; Enrico, M.P.; Fisher, S.N.; Guenault, A.M.; Torizuka, K.
1994-01-01
The excitation gas in superfluid 3 He at low temperatures shows a number of remarkable dynamical properties arising from the unusual dispersion curve. The existence of an energy gap leads to many of the observed properties varying rapidly with temperature, since the excitation density is dominated by the gap Boltzmann factor exp(-Δ/kT). But also, the fact that the minimum energy lies at finite momentum gives rise to Andreev scattering processes, in which the velocity of the excitation is reversed but the momentum left virtually unchanged. Since the dispersion curve looks different to a moving observer, there is the possibility of the free production of quasiparticle-quasihole pairs at a Landau critical velocity. At low temperatures the mean free path becomes much larger than any experimental size. Using vibrating wire resonators as universal probes, we can monitor the temperature, measure the Kapitz resistance, examine the nonlinear regime beyond the two-fluid model, observe the Landau velocity, create and detect thermal beams of excitation with black-body radiators, observe Andreev reflection directly and probe A-phase textures (in which the gas is one-dimensional). Future possibilities are discussed. (orig.)
Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
Thomas, Claire K; Barter, Thomas H; Leung, Tsz-Him; Okano, Masayuki; Jo, Gyu-Boong; Guzman, Jennie; Kimchi, Itamar; Vishwanath, Ashvin; Stamper-Kurn, Dan M
2017-09-08
The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number z. We test this scaling directly by comparing coherence properties of ^{87}Rb gases that are driven across the superfluid to Mott insulator transition within optical lattices of either the kagome (z=4) or the triangular (z=6) geometries. The coherent fraction measured for atoms in the kagome lattice is lower than for those in a triangular lattice with the same interaction and tunneling energies. A comparison of measurements from both lattices agrees quantitatively with the scaling prediction. We also study the response of the gas to a change in lattice geometry, and observe the dynamics as a strongly interacting kagome-lattice gas is suddenly "hole doped" by introducing the additional sites of the triangular lattice.
Choo, Juanita; Carasco, Cecilia; Alvarez-Loayza, Patricia; Simpson, Beryl B; Economo, Evan P
2017-07-01
Natural enemies are known to be important in regulating plant populations and contributing to species coexistence (Janzen-Connell effects). The strength of Janzen-Connell effects (both distance- and density-effects) varies across species, but the life history traits that may mediate such a variation are not well understood. This study examined Janzen-Connell effects across the life stages (seed through adult stages) of two sympatric palm species with distinct phenologies and shade tolerances, two traits that may mediate the strength and timing of Janzen-Connell effects. Populations of two common palm species, Attalea phalerata and Astrocaryum murumuru , were studied in Manu National Park, Peru. Seed predation experiments were conducted to assess Janzen-Connell effects at the seed stage. In the post-seed stages, spatial point pattern analyses of the distributions of individuals and biomass were used to infer the strength of distance- and density-effects. Seed predation was both negative distance- and density-dependent consistent with the Janzen-Connell effects. However, only seedling recruitment for asynchronously fruiting Attalea phalerata was depressed near adults while recruitment remained high for synchronously fruiting Astrocaryum murumuru , consistent with weak distance-effects. Negative density-effects were strong in the early stages for shade-intolerant Attalea phalerata but weak or absent in shade-tolerant Astrocaryum murumuru. Distance- and density-effects varied among the life stages of the two palm species in a manner that corresponded to their contrasting phenology and shade tolerance. Generalizing such connections across many species would provide a route to understanding how trait-mediated Janzen-Connell effects scale up to whole communities of species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
A Herbivore Tag-and-Trace System Reveals Contact- and Density-Dependent Repellence of a Root Toxin.
Bont, Zoe; Arce, Carla; Huber, Meret; Huang, Wei; Mestrot, Adrien; Sturrock, Craig J; Erb, Matthias
2017-03-01
Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner.
Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li
2011-04-01
The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Allsopp, N; Stock, W D
1992-08-01
The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.
Schmutz, J.A.; Laing, K.K.
2002-01-01
Broods of geese spend time feeding according to availability and quality of food plants, subject to inherent foraging and digestive constraints. We studied behavioral patterns of broods of Emperor Geese (Chen canagica) on the Yukon–Kuskokwim Delta, Alaska, and examined how feeding and alert behavior varied in relation to habitat and goose density. During 1994–1996, time spent feeding by Emperor Goose goslings and adult females was positively related to multispecies goose densities near observation blinds, and not to just Emperor Goose density. Similarly, body mass of Emperor Goose goslings was more strongly related (negatively) to multispecies goose densities than intraspecific densities. A grazing experiment in 1995 indicated that most above ground primary production by Carex subspathacea, a preferred food plant, was consumed by grazing geese. Those results demonstrate that interspecific competition for food occurred, with greatest support for goslings whose behavioral repertoire is limited primarily to feeding, digesting, and resting. Although the more abundant Cackling Canada Geese (Branta canadensis minima) differed from Emperor Geese in their preferred use of habitats during brooding rearing (Schmutz 2001), the two species occurred in equal abundance in habitats preferred by Emperor Goose broods. Thus, Cackling Canada Geese were a numerically significant competitor with Emperor Geese. Comparing these results to an earlier study, time spent feeding by goslings, adult females, and adult males were greater during 1993–1996 than during 1985–1986. During the interval between those studies, densities of Cackling Canada Geese increased two to three times whereas Emperor Goose numbers remained approximately stable, which implies that interspecific competition affected foraging behavior over a long time period. These density-dependent changes in foraging behavior and body mass indicate that interspecific competition affects nutrient acquisition and gosling
International Nuclear Information System (INIS)
Bauhoff, W.; Collins, S.F.; Henderson, R.S.
1983-01-01
Differential cross-sections have been measured for the elastic and inelastic scattering of 135 MeV protons from 12 C. The data from the transitions to 9 select states up to 18.3 MeV in excitation have been analysed using a distorted wave approximation with various microscopic model nuclear structure transition densities and free and density dependent two nucleon t-matrices. Clear signatures of the density dependence of the t-matrix are defined and the utility of select transitions to test different attributes of that t-matrix when good nuclear structure models are used is established
Orientational dynamics of superfluid 3He: A ''Two-fluid'' model . II. orbital dynamics
International Nuclear Information System (INIS)
Leggett, A.J.; Takagi, S.
1978-01-01
We present a phenomenological theory of the homogeneous orbital dynamics of the class of ''separable'' anisotropic superfluid phases which includes the ABM state generally identified with 3 He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the ''pseudo-angular momentum'' of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the ''superfluid spin'' S/sub p/. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (''normal locking''), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies ωvery-much-less-thanΔ (T)/h irrespective of the value of ωtau. (Δ=gap parameter, tau=quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the ''gapless'' region very close to T/sub c/.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an ''orbital susceptibility of the Cooper pairs'' chi/sub orb/
International Nuclear Information System (INIS)
Tamagaki, Ryozo
2007-01-01
According to the formulation developed in I, we calculate energy gaps of the baryonic 3 P 2 -dominant superfluidity under the combined pion condensation with Δ-mixing at moderately high density in neutron star interior. Adopting a baryon-baryon potential extended from a 'root' NN potential to be workable in the N+Δ space, we obtain the concrete form of the pairing interaction matrix elements between the quasi-baryon pairs, which constitute a two-dimensional angular-momentum stretched state and a charge triplet. With use of OPEG-B as a 'root' NN potential and an available set of the parameters representing the combined pion condensation, we study the properties of two-dimensional pairing potentials and the matrix elements of pairing interaction. We find that the strong attraction of pairing interaction for the quasi-neutron pairs is brought about by the spin-orbit potential and the spin- and isospin-dependent core terms of the central potential, whose effects are enhanced due to the pion condensation. The quasi-neutron pair plays a decisive role to bring about meaningful energy gaps, while the coupling between different quasi-baryon pairs plays no important role, as a consequence of a unique feature of the combined pion condensation we adopt. We numerically solve the energy gap equation for baryon density of (2-6) times the nuclear density and clarify substantial aspects of resulting superfluid energy gaps, and discuss related problems by taking into account possible change in the factors affecting the energy gaps, such as baryon-baryon potentials, some of the pion condensation parameters and an effective mass of the quasi-particle. Standing on these results, we can say that the 3 P 2 -dominant superfluid is realized with the critical temperatures T c of the order of 10 9 K, equivalent to the energy gaps of the order of 0.1 MeV, under the combined pion condensation in neutron star matter. The key point of the recognition lies in the aspects that the
Tamagaki, R.; Takatsuka, T.
2007-05-01
According to the formulation developed in I, we calculate energy gaps of the baryonic (3) P_2-dominant superfluidity under the combined pion condensation with Delta-mixing at moderately high density in neutron star interior. Adopting a baryon-baryon potential extended from a ``root" NN potential to be workable in the N + Delta space, we obtain the concrete form of the pairing interaction matrix elements between the quasi-baryon pairs, which constitute a two-dimensional angular-momentum stretched state and a charge triplet. With use of OPEG-B as a ``root" NN potential and an available set of the parameters representing the combined pion condensation, we study the properties of two-dimensional pairing potentials and the matrix elements of pairing interaction. We find that the strong attraction of pairing interaction for the quasi-neutron pairs is brought about by the spin-orbit potential and the spin- and isospin-dependent core terms of the central potential, whose effects are enhanced due to the pion condensation. The quasi-neutron pair plays a decisive role to bring about meaningful energy gaps, while the coupling between different quasi-baryon pairs plays no important role, as a consequence of a unique feature of the combined pion condensation we adopt. We numerically solve the energy gap equation for baryon density of (2-6) times the nuclear density and clarify substantial aspects of resulting superfluid energy gaps, and discuss related problems by taking into account possible change in the factors affecting the energy gaps, such as baryon-baryon potentials, some of the pion condensation parameters and an effective mass of the quasi-particle. Standing on these results, we can say that the (3) P_2-dominant superfluid is realized with the critical temperatures T_c of the order of 10(9) K, equivalent to the energy gaps of the order of 0.1 MeV, under the combined pion condensation in neutron star matter. The key point of the recognition lies in the aspects that the
DEFF Research Database (Denmark)
van Gemert, Rob; Andersen, Ken Haste
2018-01-01
-in-life density-dependent growth: North Sea plaice (Pleuronectes platessa), Northeast Atlantic (NEA) mackerel (Scomber scombrus), and Baltic sprat (Sprattus sprattus balticus). For all stocks, the model predicts exploitation at MSY with a large size-at-entry into the fishery, indicating that late-in-life density...
Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.
2006-01-01
Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these
Directory of Open Access Journals (Sweden)
Yoshioka Miho
2012-10-01
Full Text Available Abstract Background Oviposition-site choice is an essential component of the life history of all mosquito species. According to the oviposition-preference offspring-performance (P-P hypothesis, if optimizing offspring performance and fitness ensures high overall reproductive fitness for a given species, the female should accurately assess details of the heterogeneous environment and lay her eggs preferentially in sites with conditions more suitable to offspring. Methods We empirically tested the P-P hypothesis using the mosquito species Aedes albopictus by artificially manipulating two habitat conditions: diet (measured as mg of food added to a container and conspecific density (CD; number of pre-existing larvae of the same species. Immature development (larval mortality, development time to pupation and time to emergence and fitness (measured as wing length were monitored from first instar through adult emergence using a factorial experimental design over two ascending gradients of diet (2.0, 3.6, 7.2 and 20 mg food/300 ml water and CD (0, 20, 40 and 80 larvae/300 ml water. Treatments that exerted the most contrasting values of larval performance were recreated in a second experiment consisting of single-female oviposition site selection assay. Results Development time decreased as food concentration increased, except from 7.2 mg to 20.0 mg (Two-Way CR ANOVA Post-Hoc test, P > 0.1. Development time decreased also as conspecific density increased from zero to 80 larvae (Two-Way CR ANOVA Post-Hoc test, P . Combined, these results support the role of density-dependent competition for resources as a limiting factor for mosquito larval performance. Oviposition assays indicated that female mosquitoes select for larval habitats with conspecifics and that larval density was more important than diet in driving selection for oviposition sites. Conclusions This study supports predictions of the P-P hypothesis and provides a mechanistic understanding
Exciton correlations and input–output relations in non-equilibrium exciton superfluids
International Nuclear Information System (INIS)
Ye, Jinwu; Sun, Fadi; Yu, Yi-Xiang; Liu, Wuming
2013-01-01
The photoluminescence (PL) measurements on photons and the transport measurements on excitons are the two types of independent and complementary detection tools to search for possible exciton superfluids in electron–hole semi-conductor bilayer systems. In fact, it was believed that the transport measurements can provide more direct evidences on superfluids than the spectroscopic measurements. It is important to establish the relations between the two kinds of measurements. In this paper, using quantum Heisenberg–Langevin equations, we establish such a connection by calculating various exciton correlation functions in the putative exciton superfluids. These correlation functions include both normal and anomalous greater, lesser, advanced, retarded, and time-ordered exciton Green functions and also various two exciton correlation functions. We also evaluate the corresponding normal and anomalous spectral weights and the Keldysh distribution functions. We stress the violations of the fluctuation and dissipation theorem among these various exciton correlation functions in the non-equilibrium exciton superfluids. We also explore the input–output relations between various exciton correlation functions and those of emitted photons such as the angle resolved photon power spectrum, phase sensitive two mode squeezing spectrum and two photon correlations. Applications to possible superfluids in the exciton–polariton systems are also mentioned. For a comparison, using conventional imaginary time formalism, we also calculate all the exciton correlation functions in an equilibrium dissipative exciton superfluid in the electron–electron coupled semi-conductor bilayers at the quantum Hall regime at the total filling factor ν T =1. We stress the analogies and also important differences between the correlations functions in the two exciton superfluid systems. - Highlights: ► Establish the relations between photoluminescence and transport measurements. ► Stress the
Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device
Jeong, S.; Park, C.; Kim, K.
2018-03-01
Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.
International Nuclear Information System (INIS)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-01
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
Crevecoeur, R.M.
1996-01-01
In this thesis we have presented the results of a neutron scattering study of the analogies in the microscopic behavior of superfluid and classical helium. Therefore we performed both neutron-diffraction experiments to study the structure and inelastic neutron scattering experiments to study the
Mongiovì, Maria Stella; Jou, David; Sciacca, Michele
2018-01-01
This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to
Atomic and Molecular Dynamics on and in Superfluid Helium Nanodroplets
Lehmann, Kevin K.
2003-03-01
Studies of intramolecular and intermolecular dynamics is at the core of Molecular Spectroscopic research several decades. Gas phase, particularly molecular beam, studies have greatly illuminated these processes in isolated molecules, bimolecular collisions, or small covalent and van der Waals complexes. Parallel to this effort have been studies in condensed phases, but there has unfortunately been little intellectual contact between these. The recent development of Helium Nanodropet Isolation Spectroscopy is providing an intellectual bridge between gas phase and condensed phase spectroscopy. While droplets of 10,000 He atoms are effectively a condensed phase, their low temperature ( 0.4 K) and ultralow heat capacities combined with their superfluid state make them an almost ideal matrix in which to study both molecular dynamics, including solute induced relaxations. The nsec times scales for many of the relaxation events, orders of magnitude slower than in classical liquids, results in spectra with unprecedented resolution for the liquid state. In this talk, studies of the Princeton group will be highlighted, with particular emphasis on those for which a combination of theory and experiment have combined to reveal dynamics in this unique Quantum Fluid.
Spherical model for superfluidity in a restricted geometry
International Nuclear Information System (INIS)
Fishman, S.; Ziman, T.A.L.
1982-01-01
The spherical model is solved on a hypercubic lattice in d dimensions, each bond of which is decorated with l spins. The thermodynamic functions and the helicity modulus, analogous to a superfluid density, are calculated. We find that at least two spherical fields are required for the model to exhibit low-temperature properties that can approximate reasonably those of O(n) models. The heuristic prediction that the critical temperature behaves as T/sub c/(l)approx.(l+1) -1 is checked for the model and found to hold quite accurately even for small l(> or approx. =2). The helicity modulus and magnetization of the two-constraint spherical model are found to scale approximately with the critical temperature, but the relation between them is more complex than in the undecorated model. This relation is used to check heuristic arguments concerning the helicity modulus at low temperatures. We comment on the relevance to physical systems, in particular, the problem of boson condensation in a restricted geometry
Grüneisen parameter for gases and superfluid helium
International Nuclear Information System (INIS)
De Souza, Mariano; Menegasso, Paulo; Paupitz, Ricardo; Seridonio, Antonio; Lagos, Roberto E
2016-01-01
The Grüneisen ratio (Γ), i.e. the ratio of the thermal expansivity to the specific heat at constant pressure, quantifies the degree of anharmonicity of the potential governing the physical properties of a system. While Γ has been intensively explored in solid state physics, very little is known about its behavior for gases. This is most likely due to the difficulties posed in carrying out both thermal expansion and specific heat measurements in gases with high accuracy as a function of pressure and temperature. Furthermore, to the best of our knowledge a comprehensive discussion about the peculiarities of the Grüneisen ratio is still lacking in the literature. Here we report on a detailed and comprehensive overview of the Grüneisen ratio. Particular emphasis is placed on the analysis of Γ for gases. The main findings of this work are: (i) for the van der Waals gas Γ depends only on the co-volume b due to interaction effects, it is smaller than that for the ideal gas (Γ = 2/3) and diverges upon approaching the critical volume; (ii) for the Bose–Einstein condensation of an ideal boson gas, assuming the transition as first-order, Γ diverges upon approaching a critical volume, similarly to the van der Waals gas; (iii) for 4 He at the superfluid transition Γ shows a singular behavior. Our results reveal that Γ can be used as an appropriate experimental tool to explore pressure-induced critical points. (paper)
The breakdown of superfluidity in liquid 4He
International Nuclear Information System (INIS)
Bowley, R.M.; McClintock, P.V.E.; Moss, F.E.; Nancolas, G.G.; Stamp, P.C.E.
1982-01-01
The rate, ν, at which negative ions nucleate charge vortex rings in isotopically pure superfluid 4 He has been measured for pressures, P 1 (15 - 25 bar), temperatures, T 1 (0.3 - 0.9K), and electric fields E (5 x 10 4 - 10 6 Vm -1 ). The measurements were done by a novel electrostatic induction technique specially developed for the purpose, and this is described in detail. Results are given. In all cases, ν was found to be considerably smaller than had been measured for low E by earlier workers using helium of the natural isotopic ratio (ca. 2 x 10 -7 ). Ionic drift velocities v-bar, were measured for ν less than ca. 3 x 10 4 s -1 . Values of the matrix element for roton pair emission have been deduced from the v-bar(E) measurements in the range 17 approximately vsub(v) (or vsub(r)); this is the first experimental evidence that the microscopic mechanisms responsible for vortex nucleation are probabilistic in nature. (U.K.)
Maria Goeppert Mayer Prize Talk: Superfluid Atom Circuits
Campbell, Gretchen
2016-05-01
We have performed a series of experiments with ring-shaped Bose-Einstein Condensates, with and without the addition of a ``weak link'' barrier. Weak connections between superconductors or superfluids can differ from classical links due to quantum coherence, which allows for flow without resistance. The properties of a weak link are characterized by a single function, the current-phase relationship. In recent experiments, we have developed a technique to directly measure the current-phase relationship of the weak link. The weak link is created using a laser beam that acts as a barrier across one side of the ring condensate. By rotating the barrier, we can control the current around the ring. When the weak link is rotated at at low rotation rates, we observe phase slips between well-defined, quantized current states, and have demonstrated that the system exhibits hysteresis. At higher rotation rates we have directly measured the onset of resistive flow across the weak link. Such measurements may open new avenues of research in quantum transport. More recently, we have studied the behavior of the ring BEC when the radius is expanded at supersonic rates. Because information can propagate only at the speed of sound, the supersonic expansion creates causally disconnected regions, whose phases evolve at different rates. Such experiments may allow us to study cosmic inflation at laboratory scales.
Momentum, vorticity, and helicity in covariant superfluid dynamics
International Nuclear Information System (INIS)
Carter, B.; Khalatnikov, I.M.
1992-01-01
The convective and potential variational principles that can be used for alternative derivations of the same natural relativistic generalisation of the standard Landau theory of perfect superfluid dynamics are both characterised by the feature that, instead of attributing special importance to a partition in terms of certain non-conserved open-quotes superfluidclose quotes and open-quotes normalclose quotes current vectors j v s and j v N they accord a much more prominent role to certain open-quotes particleclose quotes and open-quotes thermalclose quotes momentum convectors μ v and Θ v of which the latter in particular has been unduly neglected in traditional discussions. The present article discusses the interdependence and the dynamic evolution of these quantities, drawing attention to consequences such as the conservation of the flux associated with the open-quotes thermal velocityclose quotes form W μv , and the conservation of the related open-quotes thermal helicityclose quotes current H v . The comparison of this theory with some other conducting fluid theories is briefly discussed, and more particularly it is shown explicitly how this generalisation of the fully non-linear Landau theory relates to an analogous generalisation of the more restricted type of theory previously developed by Tisza and London, in which the quantities j v s and j v N had a more fundamental role. 40 refs., 1 fig., 1 tab
Faraday instability and Faraday patterns in a superfluid Fermi gas
International Nuclear Information System (INIS)
Tang Rongan; Xue Jukui; Li Haocai
2011-01-01
With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.
Dynamics of superfluid helium-3 in flow channels with restricted geometries
International Nuclear Information System (INIS)
Kopnin, N.B.
1986-01-01
The dynamics of superfluid helium-3 in flow channels with transverse sizes smaller than the mean free path of quasiparticles with respect to collisions with each other is considered, taking into account the diffusive reflection of quasiparticles from the walls. For quasiclassical Green functions the boundary conditions obtained by Ovchinnikov for the similar problem in superconductors have been used. Equations are derived defining the behavior of the difference between chemical potentials of normal and superfluid components of helium-3. These equations describe a phenomenon similar to the branch imbalance (or charge imbalance) in superconductors, and determine the relaxation depth of the pressure gradient in superfluid helium-3. The time-dependent GinzburgLandau equations are also obtained for the order parameter in the case when the transverse size of the channel is close to the critical value when the superfluid transition temperature goes to zero. The approach makes it possible to study theoretically effects related to the overcritical flows of superfluid helium-3 through narrow channels under pressure
Examining empirical evidence of the effect of superfluidity on the fusion barrier
Scamps, Guillaume
2018-04-01
Background: Recent time-dependent Hartree-Fock-Bogoliubov (TDHFB) calculations predict that superfluidity enhances fluctuations of the fusion barrier. This effect is not fully understood and not yet experimentally revealed. Purpose: The goal of this study is to empirically investigate the effect of superfluidity on the distribution width of the fusion barrier. Method: Two new methods are proposed in the present study. First, the local regression method is introduced and used to determine the barrier distribution. The second method, which requires only the calculation of an integral of the cross section, is developed to determine accurately the fluctuations of the barrier. This integral method, showing the best performance, is systematically applied to 115 fusion reactions. Results: Fluctuations of the barrier for open-shell systems are, on average, larger than those for magic or semimagic nuclei. This is due to the deformation and the superfluidity. To disentangle these two effects, a comparison is made between the experimental width and the width estimated from a model that takes into account the tunneling, the deformation, and the vibration effect. This study reveals that superfluidity enhances the fusion barrier width. Conclusions: This analysis shows that the predicted effect of superfluidity on the width of the barrier is real and is of the order of 1 MeV.
Depression of the Superfluid Transition Temperature in 4He by a Heat Flow
International Nuclear Information System (INIS)
Yin Liang; Qi Xin; Lin Peng
2014-01-01
The depression of the superfluid transition temperature T λ in 4 He by a heat flow Q is studied. A small sealed cell with a capillary is introduced and a stable and flat superfluid transition temperature plateau is easily obtained by controlling the temperature of the variable-temperature platform and the bottom chamber of the sealed cell. Owing to the depression effect of the superfluid transition temperature by the heat flow, the heat flow through the capillary is changed by the temperature control to obtain multiple temperature plateaus of different heat flows. The thermometer self-heating effect, the residual heat leak of the 4.2 K environment, the temperature difference on the He II liquid column, the Kapiza thermal resistance between the liquid helium and the copper surface of the sealed cell, the temperature gradient of the sealed cell, the static pressure of the He II liquid column and other factors have influence on the depression effect and the influence is analyzed in detail. Twenty experiments of the depression of the superfluid transition temperature in 4 He by heat flow are made with four sealed cells in one year. The formula of the superfluid transition temperature pressured by the heat flow is T λ (Q) = −0.00000103Q + 2.1769108, and covers the range 229 ≤ Q ≤ 6462 μW/cm 2
Investigation of thermal transfers in super-fluid helium in porous media
International Nuclear Information System (INIS)
Allain, H.
2009-10-01
Particle accelerators are requiring increased magnetic fields for which niobium tin superconducting magnets are considered. This entails electric insulation and cooling problems. Porous ceramic insulations are potential candidates for cable insulation. As they are permeable to helium, they could allow a direct cooling by super-fluid helium. Therefore, this research thesis deals with the investigation of thermal transfers in superfluid helium in porous media. After a description of an accelerator's superconducting magnet, of its thermodynamics and its various cooling modes, the author describes the physical properties of super-fluid helium, its peculiarities with respect to conventional fluids as well as its different phases (fluid and super-fluid), its dynamics under different regimes (the Landau regime which is similar to the laminar regime for a conventional fluid, and the Gorter-Mellink regime which is the super-fluid turbulent regime). He determines the macroscopic equations governing the He II dynamics in porous media by applying the volume averaging method developed by Whitaker. Theoretical results are validated by comparison with a numerical analysis performed with a numerical code. Then, the author presents the various experimental setups which have been developed for the measurement of the intrinsic permeability, one at room temperature and another at high temperature. Experimental results are discussed, notably with respect to pore size and porosity
Winkler, T.; Koettig, T.; van Weelderen, R.; Bremer, J.; ter Brake, H. J. M.
Management of transient heat deposition in superconducting magnets and its extraction from the aforementioned is becoming increasingly important to bring high energy particle accelerator performance to higher beam energies and intensities. Precise knowledge of transient heat deposition phenomena in the magnet cables will permit to push the operation of these magnets as close as possible to their current sharing limit, without unduly provoking magnet quenches. With the prospect of operating the Large Hadron Collider at CERN at higher beam energies and intensities an investigation into the response to transient heat loads of LHC magnets, operating in pressurized superfluid helium, is being performed. The more frequently used approach mimics the cable geometry by resistive wires and uses Joule-heating to deposit energy. Instead, to approximate as closely as possible the real magnet conditions, a novel method for depositing heat in cable stacks made out of superconducting magnet-cables has been developed. The goal is to measure the temperature difference as a function of time between the cable stack and the superfluid helium bath depending on heat load and heat pulse length. The heat generation in the superconducting cable and precise measurement of small temperature differences are major challenges. The functional principle and experimental set-up are presented together with proof of principle measurements.
International Nuclear Information System (INIS)
Goeje, M.P. de.
1986-01-01
Second sound, in which the normal and the superfluid fraction move in opposite directions, is very suitable as probe of superfluid turbulence. Owing to viscous effects, the application of second sound is restricted to relatively high frequencies in relatively wide tubes. Up to now no attempts are reported in literature to use fourth sound as a probe in narrow tubes - fourth sound being the sound mode in which only the superfluid fraction takes part. This thesis is divided into two parts. The first part describes the use of second sound as a probe to investigate superfluid turbulence, generated by a heat flow in a relatively wide flow tube. Part two treats an investigation of the damping of a fourth-sound oscillator, as well as the question to which extent fourth sound can be used as a probe of superfluid turbulence in relatively narrow capillaries. In both experiments standing waves have been used, generated in a Helmholtz oscillator. (Auth.)
Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA
International Nuclear Information System (INIS)
Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.
1993-01-01
The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)
International Nuclear Information System (INIS)
Lopatnikova, A.; Berker, A.N.
1997-01-01
Superfluidity and phase separation in 3 He- 4 He mixtures immersed in aerogel are studied by renormalization-group theory. The quenched disorder imposed by aerogel, both at the atomic level and at the geometric level, is included. The calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of the quenched probability distributions of random interactions. Random-bond effects on the onset of superfluidity and random-field effects on superfluid-superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general predictions and experiments. The effects of the atomic and geometric randomness of aerogel are investigated separately and jointly. copyright 1997 The American Physical Society
Neri, Elettra; Scazza, Francesco; Roati, Giacomo
2018-04-01
Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.
Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin
International Nuclear Information System (INIS)
Kotsubo, V.; Swift, G.W.
1990-01-01
We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the 3 He solute in a superfluid 3 He-- 4 He solution. At low temperatures, the superfluid 4 He is in its quantum ground state, and therefore is thermodynamically inert, while the 3 He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the 3 He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the 3 He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
Colloquium: Criticality and superfluidity in liquid 4He under nonequilibrium conditions
International Nuclear Information System (INIS)
Weichman, Peter B.; Harter, Alexa W.; Goodstein, David L.
2001-01-01
We review a striking array of recent experiments and their theoretical interpretations on the superfluid transition in 4 He in the presence of a heat flux Q. We define and evaluate a new set of critical point exponents. The statics and dynamics of the superfluid-normal interface are discussed, with special attention to the role of gravity. If Q is in the same direction as gravity, a self-organized state can arise, in which the entire sample has a uniform reduced temperature, on either the normal or superfluid side of the transition. Finally, we review recent theory and experiment regarding the heat capacity at constant Q. The excitement that surrounds this field arises from the fact that advanced thermometry and the future availability of a microgravity experimental platform aboard the International Space Station will soon open to experimental exploration decades of reduced temperature that were previously inaccessible
Analytical study on holographic superfluid in AdS soliton background
International Nuclear Information System (INIS)
Lai, Chuyu; Pan, Qiyuan; Jing, Jiliang; Wang, Yongjiu
2016-01-01
We analytically study the holographic superfluid phase transition in the AdS soliton background by using the variational method for the Sturm–Liouville eigenvalue problem. By investigating the holographic s-wave and p-wave superfluid models in the probe limit, we observe that the spatial component of the gauge field will hinder the phase transition. Moreover, we note that, different from the AdS black hole spacetime, in the AdS soliton background the holographic superfluid phase transition always belongs to the second order and the critical exponent of the system takes the mean-field value in both s-wave and p-wave models. Our analytical results are found to be in good agreement with the numerical findings.
Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.
2018-05-01
Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.
Single-particle energies and density of states in density functional theory
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Theory of a condensed charged-Bose, charged Fermi gas and Ginzburg--Landau studies of superfluid 3He
International Nuclear Information System (INIS)
Dahl, D.A.
1976-01-01
Two independent topics in the field of condensed matter physics are examined: the condensed charged-Bose, charged Fermi gas and superfluid 3 He. Green's function (field theoretic) methods are used to derive the low-temperature properties of a dense, neutral gas of condensed charged bosons and degenerate charged fermions. Restriction is made to the case where the fermion mass is much lighter than the boson mass. Linear response and the density-density correlation function are examined and shown to exhibit two collective modes: a plasmon branch and a phonon branch with speed equal to that of ionic sound in solids. Comparison with a possible astrophysical application (white dwarf stars) is made. The behavior near the superfluid transition temperature (Ginzburg--Landau regime) of 3 He is then studied. Gorkov equations are derived and studied in the weak-coupling limit. In this way the form and order of magnitude estimates of coefficients appearing in the Ginzburg--Landau theory are obtained. Weak-coupling particle and spin currents are derived. Various perturbations break the large degeneracy of the states and have experimental implications. The electric contribution to the Ginzburg--Landau free energy is studied for the proposed A and B phases. Imposition of an electric field orients the axial state, but does not give rise to shifts in the NMR resonances. Shifts and discontinuous jumps in the longitudinal and transverse signals are predicted for the Balian--Werthamer state, the details depending on the relative strengths of the fields, as well as the angle between them
BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Pisani, L.; Strinati, G.C.
2004-01-01
We consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings
Velocity-dependent quantum phase slips in 1D atomic superfluids.
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara
2016-05-18
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures
International Nuclear Information System (INIS)
Illuminati, Fabrizio; Albus, Alexander
2004-01-01
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions
Observation of a second-sound-like mode in superfluid-filled aerogel
International Nuclear Information System (INIS)
McKenna, M.J.; Slawecki, T.; Maynard, J.D.
1991-01-01
Superfluid 4 He is interesting acoustically because it can support more than one mode of sound propagation, and these can be used to study critical properties. Recently, there has been interest in superfluid-filled aerogels, but for such compressible materials one does not observe the ordinary (fourth) sound; instead there is a mode intermediate between first and fourth sound and a second-sound-like mode. We present a theory for the modes and the first observation of the aerogel second-sound-like mode, which is important because it propagates near the critical temperature
Prospects of detecting baryon and quark superfluidity from cooling neutron stars
Page; Prakash; Lattimer; Steiner
2000-09-04
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.
Depletion of superfluidity in a disordered non-equilibrium quantum condensate
Energy Technology Data Exchange (ETDEWEB)
Janot, Alexander; Rosenow, Bernd [Institut fuer Theoretische Physik, Universitaet Leipzig, 04009 Leipzig (Germany); Hyart, Timo [Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Eastham, Paul [School of Physics, Trinity College, Dublin 2 (Ireland)
2013-07-01
Observations of quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We analyze the superfluid stiffness of a non-equilibrium quantum-condensate in a disordered environment taking gain and loss of particles into account. To this end a modified effective Gross-Pitaevskii equation is employed. We find that the disorder-driven depletion of superfluidity is strongly enhanced due to the gain-loss mechanism. It turns out that the condensate remains stiff at finite length scales only.
Motions of quantized vortices attached to a boundary in alternating currents of superfluid 4He
International Nuclear Information System (INIS)
Yano, H.; Hashimoto, N.; Handa, A.; Obara, K.; Ishikawa, O.; Hata, T.; Nakagawa, M.
2007-01-01
The motions of superfluid vortices attached to a boundary are investigated in alternating currents by using a vibrating wire. The attached vortices appear to form a layer on the wire and enhance the mass of the wire, even for low velocity currents. In turbulence, chaotic motions of vortices such as entanglement and reconnection reduce the thickness of the layer in spite of the fact that the vortices unstably expand. When turbulence subsides, the attached vortices appear to shrink, with the degree of shrinking influenced by thermal excitations in the superfluid
International Nuclear Information System (INIS)
Lilly, M.P.; Wootters, A.H.; Hallock, R.B.
1996-01-01
Capacitive studies of hysteretic capillary condensation of superfluid 4 He in Nuclepore have shown that the initial draining of the pores occurs over a small range of the chemical potential with avalanches present as groups of pores drain. In the work reported here, the avalanches in this system are shown to be nonlocal events which involve pores distributed at low density across the entire sample. The nonlocal avalanche behavior is shown to be enabled by the presence of a superfluid film connection among the pores. copyright 1996 The American Physical Society
The path integral model of D-pairing for HTSC, heavy fermion superconductors, and superfluids
International Nuclear Information System (INIS)
Brusov, P.N.; Brusova, N.P.
1996-01-01
A model of d-pairing for superconducting and superfluid Fermi-systems has been formulated within the path integration technique. By path integration over open-quote fastclose quotes and open-quotes slowclose quotes Fermi-fields, the action functional (which determines all properties of model system) has been obtained. This functional could be used for the determination of different superconducting (superfluid) states, for calculation of the transition temperatures for these states, and for the calculation of the collective mode spectrum for HTSC, as well as for heavy fermion superconductors
Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases
International Nuclear Information System (INIS)
Xu Yan-Xia; Duan Wen-Shan
2011-01-01
We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases, including the linear and nonlinear waves of the system. A Korteweg de Vries (KdV) solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime, a BCS regime and unitarity. The dependences of the propagation velocity, amplitude and the width of the solitary wave on the dimensionless interaction parameter y = 1/(k F a sc ) are given for the limited cases of BEC and unitarity. (physics of gases, plasmas, and electric discharges)
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
International Nuclear Information System (INIS)
Gottwald, Tobias
2010-01-01
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Tobias
2010-08-27
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Energy Technology Data Exchange (ETDEWEB)
Perraud, S
2007-12-15
This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.
Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions
Zhang, Leifeng; Chen, Qijin
Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.
Observing the drop of resistance in the flow of a superfluid Fermi gas.
Stadler, David; Krinner, Sebastian; Meineke, Jakob; Brantut, Jean-Philippe; Esslinger, Tilman
2012-11-29
The ability of particles to flow with very low resistance is characteristic of superfluid and superconducting states, leading to their discovery in the past century. Although measuring the particle flow in liquid helium or superconducting materials is essential to identify superfluidity or superconductivity, no analogous measurement has been performed for superfluids based on ultracold Fermi gases. Here we report direct measurements of the conduction properties of strongly interacting fermions, observing the well-known drop in resistance that is associated with the onset of superfluidity. By varying the depth of the trapping potential in a narrow channel connecting two atomic reservoirs, we observed variations of the atomic current over several orders of magnitude. We related the intrinsic conduction properties to the thermodynamic functions in a model-independent way, by making use of high-resolution in situ imaging in combination with current measurements. Our results show that, as in solid-state systems, current and resistance measurements in quantum gases provide a sensitive probe with which to explore many-body physics. Our method is closely analogous to the operation of a solid-state field-effect transistor and could be applied as a probe for optical lattices and disordered systems, paving the way for modelling complex superconducting devices.
Recent Spin Pump Experiments on Superfluid 3He-A1
Yamaguchi, A.; Kamada, N.; Motoyama, G.; Sumiyama, A.; Aoki, Y.; Okuda, Y.; Kubota, M.; Kojima, H.
2013-05-01
The superfluid 3He A1 phase, containing a spin-polarized condensate allows us to explore the dynamics of superfluid spin current. In the mechano-spin effect (MSE), a mechanically applied pressure gradient and a superleak-spin filter enable one to directly boost spin polarization of 3He in a small chamber. We are developing new apparatus for achieving greater enhancement of spin density. A development of a new-type 3He-hydraulic actuator has been already reported. We present here the construction of new-type of superleak-spin-filter made of packed powder aluminum oxide (referred as PAP-SL). The PAP-SL is popular in the study of superfluid 4He, but has not been established for that of the superfluid 3He. The attempt to construct the PAP-SL for the spin pump experiment was made by using aluminum oxide powder with nominal 1 μm powder diameter and with packing fraction of 40 %. Before executing the experiment, the nuclear demagnetization cryostat of ISSP, Univ. Tokyo which has been used for this experimental activity, was heavily damaged by the 2011 Great East Japan (Higashi Nihon) Earthquake. The repair work and earthquake damage protection strengthening has just been accomplished.
Vortex flow in rotating superfluid .sup.3./sup.He-B
Czech Academy of Sciences Publication Activity Database
Skrbek, Ladislav; Blaauwgeers, R.; Eltsov, V. B.; Finne, A. P.; Kopnin, N. B.; Krusius, M.
329-333, - (2003), s. 106-107 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z1010914 Keywords : superfluid 3 He * vortex dynamics * vortex formation * critical velocity * counterflow * magnus force * mutual friction Subject RIV: BK - Fluid Dynamics Impact factor: 0.908, year: 2003
Theory of superfluidity and drag force in the one-dimensional Bose gas
Cherny, A.Y.; Caux, J.-S.; Brand, J.
2012-01-01
The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and
International Nuclear Information System (INIS)
Vyil'chins'kij, S.Yi.
1993-01-01
The equations describing the propagation of the first, second and fourth sound in the relativistic theory of superfluidity are derived with account for dissipation. The expressions for the velocity of the first, second and fourth sound are obtained. (author). 4 refs
Long-wavelength phonons and the condensate in superfluid 4He
International Nuclear Information System (INIS)
Olinto, A.C.
1987-08-01
From Ward identities that take into account the condensate reservoir, the velocity of long-wavelength phonons is obtained as a function of the condensate fraction in the shielded potential approximation. The results are in good agreement with superfluid 4 He data. (Author) [pt
Film thinning in unsaturated superfluid 4He films during persistent flow
International Nuclear Information System (INIS)
Ekholm, D.T.; Hallock, R.B.
1979-01-01
We report measurements of the thickness of unsaturated superfluid 4 He films in persistent flow as a function of persistent current velocity. Our results are in quantitative agreement with the predictions of Kontorovich, and thus disagree with the conclusion of Rudnick and coworkers that rho/sub s//rho has an enhanced velocity dependence in these films
3 scientists win Nobel for physics electric superconductivity, superfluidity work honoured
2003-01-01
The Royal Swedish Academy of Sciences awarded the Nobel prize for physics to Russian Vitaly Ginzburg, 87, and Russian-born American Alexei Abrikosov, 75, for their work on electric superconductivity, and to British-born American Anthony Leggett, 65, for describing how liquid helium can become a "superfluid." The three scientists will split $1.3 million in prize money (1 page).
Realizing Fulde-Ferrell Superfluids via a Dark-State Control of Feshbach Resonances
He, Lianyi; Hu, Hui; Liu, Xia-Ji
2018-01-01
We propose that the long-sought Fulde-Ferrell superfluidity with nonzero momentum pairing can be realized in ultracold two-component Fermi gases of K 40 or Li 6 atoms by optically tuning their magnetic Feshbach resonances via the creation of a closed-channel dark state with a Doppler-shifted Stark effect. In this scheme, two counterpropagating optical fields are applied to couple two molecular states in the closed channel to an excited molecular state, leading to a significant violation of Galilean invariance in the dark-state regime and hence to the possibility of Fulde-Ferrell superfluidity. We develop a field theoretical formulation for both two-body and many-body problems and predict that the Fulde-Ferrell state has remarkable properties, such as anisotropic single-particle dispersion relation, suppressed superfluid density at zero temperature, anisotropic sound velocity, and rotonic collective mode. The latter two features can be experimentally probed using Bragg spectroscopy, providing a smoking-gun proof of Fulde-Ferrell superfluidity.
Dipole modes of a superfluid Bose–Fermi mixture in the BCS-BEC crossover
International Nuclear Information System (INIS)
Wen, Wen; Chen, Bingyan; Zhang, Xuewu
2017-01-01
Motivated by the first experimental realization by the Ecole Normale Supérieure (ENS) group of a mixture of a Bose–Einstein condensate with a Fermi superfluid continuously changing from a Bardeen–Cooper–Schrieffer (BCS) superfluid to a Bose–Einstein condensate (BEC) (Ferrier-Barbut et al 2014 Science 345 1035), we analytically study the dipole modes of the superfluid Bose–Fermi mixture in the BCS-BEC crossover. The analytical approach can explicitly reveal relationships between the frequencies of the dipole modes and the microscopic properties of the novel system. We start from coupled hydrodynamic equations, where the equation of state for the Fermi superfluid in the crossover is an analytical fitting formula based on experimental data, and by using a scaling approach we analytically study eigenfrequencies of the dipole modes for the coupled system in the ENS experimental parameters. Without the boson–fermion interaction in the equilibrium density profiles, our theoretical results can be reduced to the mean-field model and is consistent with the experimental data. However, by further taking into account the boson–fermion interaction numerically and analytically, we find that the results disagree with the experiment, especially in the parameter regime where the boson interaction is smaller than the boson–fermion interaction. (paper)
Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance
International Nuclear Information System (INIS)
Ohashi, Y.
2004-01-01
We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theory developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance
Modelling Pulsar Glitches: The Hydrodynamics of Superfluid Vortex Avalanches in Neutron Stars
Khomenko, V.; Haskell, B.
2018-05-01
The dynamics of quantised vorticity in neutron star interiors is at the heart of most pulsar glitch models. However, the large number of vortices (up to ≈1013) involved in a glitch and the huge disparity in scales between the femtometre scale of vortex cores and the kilometre scale of the star makes quantum dynamical simulations of the problem computationally intractable. In this paper, we take a first step towards developing a mean field prescription to include the dynamics of vortices in large-scale hydrodynamical simulations of superfluid neutron stars. We consider a one-dimensional setup and show that vortex accumulation and differential rotation in the neutron superfluid lead to propagating waves, or `avalanches', as solutions for the equations of motion for the superfluid velocities. We introduce an additional variable, the fraction of free vortices, and test different prescriptions for its advection with the superfluid flow. We find that the new terms lead to solutions with a linear component in the rise of a glitch, and that, in specific setups, they can give rise to glitch precursors and even to decreases in frequency, or `anti-glitches'.