WorldWideScience

Sample records for density storage system

  1. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  2. High density collinear holographic data storage system (Conference Presentation)

    Science.gov (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong

    2016-09-01

    Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.

  3. Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3

    Institute of Scientific and Technical Information of China (English)

    CAO Liangcai; HE Qingsheng; WEI Haoyun; LIU Guodong; OUYANG Chuan; ZHAO Jian; WU Minxian; JIN Guofan

    2004-01-01

    The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage methods in the information storage as well as information processing.

  4. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  5. Two high-density recording methods with run-length limited turbo code for holographic data storage system

    Science.gov (United States)

    Nakamura, Yusuke; Hoshizawa, Taku

    2016-09-01

    Two methods for increasing the data capacity of a holographic data storage system (HDSS) were developed. The first method is called “run-length-limited (RLL) high-density recording”. An RLL modulation has the same effect as enlarging the pixel pitch; namely, it optically reduces the hologram size. Accordingly, the method doubles the raw-data recording density. The second method is called “RLL turbo signal processing”. The RLL turbo code consists of \\text{RLL}(1,∞ ) trellis modulation and an optimized convolutional code. The remarkable point of the developed turbo code is that it employs the RLL modulator and demodulator as parts of the error-correction process. The turbo code improves the capability of error correction more than a conventional LDPC code, even though interpixel interference is generated. These two methods will increase the data density 1.78-fold. Moreover, by simulation and experiment, a data density of 2.4 Tbit/in.2 is confirmed.

  6. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  7. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    2016-01-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  8. Terrestrial Energy Storage SPS Systems

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1998-01-01

    Terrestrial energy storage systems for the SSP system were evaluated that could maintain the 1.2 GW power level during periods of brief outages from the solar powered satellite (SPS). Short-term outages of ten minutes and long-term outages up to four hours have been identified as "typical" cases where the ground-based energy storage system would be required to supply power to the grid. These brief interruptions in transmission could result from performing maintenance on the solar power satellite or from safety considerations necessitating the power beam be turned off. For example, one situation would be to allow for the safe passage of airplanes through the space occupied by the beam. Under these conditions, the energy storage system needs to be capable of storing 200 MW-hrs and 4.8 GW-hrs, respectively. The types of energy storage systems to be considered include compressed air energy storage, inertial energy storage, electrochemical energy storage, superconducting magnetic energy storage, and pumped hydro energy storage. For each of these technologies, the state-of-the-art in terms of energy and power densities were identified as well as the potential for scaling to the size systems required by the SSP system. Other issues addressed included the performance, life expectancy, cost, and necessary infrastructure and site locations for the various storage technologies.

  9. Massive Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Dan Feng; Hai Jin

    2006-01-01

    To accommodate the explosively increasing amount of data in many areas such as scientific computing and e-Business, physical storage devices and control components have been separated from traditional computing systems to become a scalable, intelligent storage subsystem that, when appropriately designed, should provide transparent storage interface, effective data allocation, flexible and efficient storage management, and other impressive features. The design goals and desirable features of such a storage subsystem include high performance, high scalability, high availability, high reliability and high security. Extensive research has been conducted in this field by researchers all over the world, yet many issues still remain open and challenging. This paper studies five different online massive storage systems and one offline storage system that we have developed with the research grant support from China. The storage pool with multiple network-attached RAIDs avoids expensive store-and-forward data copying between the server and storage system, improving data transfer rate by a factor of 2-3 over a traditional disk array. Two types of high performance distributed storage systems for local-area network storage are introduced in the paper. One of them is the Virtual Interface Storage Architecture (VISA) where VI as a communication protocol replaces the TCP/IP protocol in the system. VISA's performance is shown to achieve better than that of IP SAN by designing and implementing the vSCSI (VI-attached SCSI) protocol to support SCSI commands in the VI network. The other is a fault-tolerant parallel virtual file system that is designed and implemented to provide high I/O performance and high reliability. A global distributed storage system for wide-area network storage is discussed in detail in the paper, where a Storage Service Provider is added to provide storage service and plays the role of user agent for the storage system. Object based Storage Systems not only

  10. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  11. Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bai [ORNL; Hanson, Paul J [ORNL; Riggs, Jeffery S [ORNL; Pallardy, Stephen G. [University of Missouri; Hosman, K. P. [University of Missouri; Meyers, T. P. [NOAA ATDD; Wullschleger, Stan D [ORNL; Gu, Lianhong [ORNL; Heuer, Mark [ATDD, NOAA

    2007-01-01

    CO2 storage in a 30-minute period in a tall forest canopy often makes significant contributions to net ecosystem exchange (NEE) in the early morning and at night. When CO2 storage is properly measured and taken into account, underestimations of NEE on calm nights can be greatly reduced. Using CO2 data from a 12-level profile, we demonstrate that the lower canopy layer (below the thermal inversion) is a disproportional contributor to the total CO2 storage. This is because time derivative of CO2 density ( c/ t) generally shows increasing magnitude of mean and standard deviation with decreasing heights at night and from sunrise to 1000 hr in both growing and dormant seasons. Effects of resolution and configuration in a profiling system on the accuracy of CO2 storage estimation are evaluated by comparing subset profiles to the 12-level benchmark profile. It is demonstrated that the effectiveness of a profiling system in estimating CO2 storage is not only determined by its number of sampling levels but, more importantly, by its vertical configuration. To optimize a profile, one needs to balance the influence of two factors, c/ t and layer thickness, among all vertical sections within a forest. As a key contributor to the total CO2 storage, the lower canopy (with relatively large means and standard deviations of c/ t) requires a higher resolution in a profile system than the layers above. However, if the upper canopy is over-sparsely sampled relative to the lower canopy, the performance of a profile system might be degraded since, in such a situation, the influence of layer thickness dominates over that of c/ t. We also find that, because of different level of complexity in canopy structure, more sampling levels are necessary at our site in order to achieve the same level of accuracy as at a boreal aspen site. These results suggest that, in order to achieve an adequate accuracy in CO2 storage measurements, the number of sampling levels in a profile and its design should

  12. Spacecraft Energy Storage Systems

    OpenAIRE

    Robinson, Wilf; Hanks, James; Spina, Len; Havenhill, Doug; Gisler, Gary; Ginter, Steve; Brault, Sharon

    1997-01-01

    Flywheel Energy Storage Systems represent an exciting alternative to traditional battery storage systems used to power satellites during periods of eclipse. The increasing demand for reliable communication and data access is driving explosive growth in the number of satellite systems being developed as well as their performance requirements. Power on orbit is the key to this performance, and batteries are becoming increasingly unattractive as an energy storage media. Flywheel systems offer ve...

  13. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  14. Interstitial hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A.

    1980-09-30

    A metal hydride fuel system is described that incorporates a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial refueling is presented.

  15. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    Science.gov (United States)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  16. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  17. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

    NARCIS (Netherlands)

    Zeghici, Răzvan Mihai; Oude Essink, Gualbert H P; Hartog, Niels; Sommer, Wijbrand

    2015-01-01

    The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of separ

  18. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

    NARCIS (Netherlands)

    Zeghici, Răzvan Mihai; Oude Essink, Gualbert H.P.; Hartog, Niels; Sommer, Wijb

    2015-01-01

    The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of se

  19. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

    NARCIS (Netherlands)

    Zeghici, Răzvan Mihai; Oude Essink, Gualbert H P; Hartog, Niels; Sommer, Wijbrand

    2015-01-01

    The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of separ

  20. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

    NARCIS (Netherlands)

    Zeghici, Răzvan Mihai; Oude Essink, Gualbert H.P.; Hartog, Niels; Sommer, Wijb

    2015-01-01

    The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of se

  1. Energy Storage System

    Science.gov (United States)

    1996-01-01

    SatCon Technology Corporation developed the drive train for use in the Chrysler Corporation's Patriot Mark II, which includes the Flywheel Energy Storage (FES) system. In Chrysler's experimental hybrid- electric car, the hybrid drive train uses an advanced turboalternator that generates electricity by burning a fuel; a powerful, compact electric motor; and a FES that eliminates the need for conventional batteries. The FES system incorporates technology SatCon developed in more than 30 projects with seven NASA centers, mostly for FES systems for spacecraft attitude control and momentum recovery. SatCon will continue to develop the technology with Westinghouse Electric Corporation.

  2. 智能密集物流系统的分析与研究%Analysis and Research of High-Density Intelligent Storage System

    Institute of Scientific and Technical Information of China (English)

    柳浩芸

    2014-01-01

    At present, all the automatic logistic systems have the problems such as low space utilization, long feedback time for order, A new high-density intelligent storage system is promoted.The system uses the specialized software with WCS and WMS to control the PLC and the movement of each pallet to achieve the warehouse intelligent management function through a wireless network.%针对目前自动化物流系统空间占有率不高,对订单响应时间长的问题,提出一种高密度智能化存储系统。该系统采用专门开发的具有WMS功能的WCS软件,通过无线网路,用于控制每台设备的PLC和每个托盘的运动,实现仓库的智能化管理。

  3. An ultracold neutron storage bottle for UCN density measurements

    CERN Document Server

    Bison, G; Daum, M; Kirch, K; Krempel, J; Lauss, B; Meier, M; Ries, D; Schmidt-Wellenburg, P; Zsigmond, G

    2016-01-01

    We have developed a storage bottle for ultracold neutrons (UCN) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments 32 liter e.g. searching for an electric dipole moment of the neutron.

  4. An ultracold neutron storage bottle for UCN density measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bison, G.; Burri, F.; Daum, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Krempel, J. [Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Meier, M. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Ries, D., E-mail: dieter.ries@psi.ch [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule (ETH), Zürich (Switzerland); Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute (PSI), CH-5232 Villigen PSI (Switzerland)

    2016-09-11

    We have developed a storage bottle for ultracold neutrons (UCNs) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments (32 L) e.g. searching for an electric dipole moment of the neutron.

  5. Solar Thermal Storage System

    Directory of Open Access Journals (Sweden)

    Arjun A. Abhyankar

    2012-06-01

    Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

  6. Compact inductive energy storage pulse power system.

    Science.gov (United States)

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  7. Tribology of magnetic storage systems

    Science.gov (United States)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  8. Systems, distribution and storage

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmakis, A.; Nygaard Rasmussen, C.; Pensini, A.; Marra, F.; Guang Ya Yang

    2012-11-15

    Energy storage is as yet somewhat unprofitable due to its high capital costs and the immaturity of the technology. However, it shows great promise because of its expected ability to cut costs, deal with issues of excess energy supply from intermittent renewable sources, and capture profits from price arbitrage in electricity and heat markets. (LN)

  9. Review of Magnetic Flywheel Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah

    2014-08-01

    Full Text Available This study studies an overview of magnetic flywheel energy storage system. Energy storage is an integral part of any critical power system, as this stored energy is used to offset interruptions in the power delivered system from either a utility or an on-site generator. Magnetic flywheel as mechanical batteries using composite rotor, magnetic support bearings as well as power electronics to store electrical energy to replace stone wheel and chemical batteries has resulted in high power and energy densities. Traditionally, capacitors are used for short term storage (µs-ms and filtering, chemical batteries are used for intermediate storage (min-h and diesel fuel is used for long-term storage (h-days. Electricity generated from renewable sources, which has shown remarkable growth worldwide, can rarely provide immediate response to demand as these sources do not deliver regular supply easily adjustable to consumption needs. Thus, the growth of this decentralization production means greater network load stability problems and requires energy storage, generally using lead acid batteries as a potential solution. Finally the integration of all subsystems optimally of the magnetic flywheel system has resulted in a mechanical battery which can supply more efficient, reliable and uninterrupted power to meet the ever increasing demand of industrial machinery and automobiles.

  10. Storage Area Networks and The High Performance Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, H; Graf, O; Fitzgerald, K; Watson, R W

    2002-03-04

    The High Performance Storage System (HPSS) is a mature Hierarchical Storage Management (HSM) system that was developed around a network-centered architecture, with client access to storage provided through third-party controls. Because of this design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to provide cost effective, large-scale storage systems and high performance global file access for clients. Key attributes of SAN file systems are found in HPSS today, and more complete SAN file system capabilities are being added. This paper traces the HPSS storage network architecture from the original implementation using HIPPI and IPI-3 technology, through today's local area network (LAN) capabilities, and to SAN file system capabilities now in development. At each stage, HPSS capabilities are compared with capabilities generally accepted today as characteristic of storage area networks and SAN file systems.

  11. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  12. GPUs as Storage System Accelerators

    CERN Document Server

    Al-Kiswany, Samer; Ripeanu, Matei

    2012-01-01

    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detectio...

  13. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  14. PC-Cluster based Storage System Architecture for Cloud Storage

    CERN Document Server

    Yee, Tin Tin

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

  15. Secure Repayable Storage System

    Science.gov (United States)

    Alkharobi, T. M.

    This paper proposes a method to create a system that allows data to be stored in several locations in secure and reliable manner. The system should create several shares from the data such that only pre-specified subsets of these shares can be used to retrieve the original data. The shares then will be distributed to shareholders over a local and/or wide area network. The system should allow requesting some/all shares from shareholders and using them to rebuild the data.

  16. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  17. Memory Storage and Neural Systems.

    Science.gov (United States)

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  18. Numerical simulation of hydrogen desorption from high-density metal hydride hydrogen storage vessels

    Science.gov (United States)

    Sang-Kun, O.; Yi, Kyung-Woo; Cho, Sung-Wook

    2017-07-01

    Metal hydride (MH) alloys are a promising type of material in hydrogen storage applications, allowing for low-pressure, high-density storage. However, while many studies are being performed on enhancing the hydrogen storage properties of such alloys, there has been little research on large-scale storage vessels which make use of the alloys. In particular, large-scale, high-density storage devices must make allowances for the temperature variations caused by the heat of reaction between hydrogen and MH alloys, which may impact the storage characteristics. In this study, we propose a numerical model for the design and evaluation of hydrogen storage devices using MH alloys. Hydrogen desorption reaction behavior for an alloy is observed in terms of temperature and reaction rate. This behavioral correlation is used as the basis for a comprehensive simulation model of the alloy system. Calculated results are found to be in good agreement with experimentally measured data, indicating that the model may be applied to multiple system geometries, scales, and alloy compositions.

  19. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  20. Review of ultra-high density optical storage technologies for big data center

    Science.gov (United States)

    Hao, Ruan; Liu, Jie

    2016-10-01

    In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.

  1. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  2. Storage Allocation for Multi-Class Distributed Data Storage Systems

    OpenAIRE

    Roshandeh, Koosha Pourtahmasi; Noori, Moslem; Ardakani, Masoud; Tellambura, Chintha

    2017-01-01

    Distributed storage systems (DSSs) provide a scalable solution for reliably storing massive amounts of data coming from various sources. Heterogeneity of these data sources often means different data classes (types) exist in a DSS, each needing a different level of quality of service (QoS). As a result, efficient data storage and retrieval processes that satisfy various QoS requirements are needed. This paper studies storage allocation, meaning how data of different classes must be spread ove...

  3. APS storage ring vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Goeppner, G.A.; Gonczy, J.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1990-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's experimental program. The Storage Ring's 1104 m circumference is divided into 40 functional sectors. The sectors include vacuum, beam transport, control, acceleration and insertion device components. The vacuum system, which is designed to operate at a pressure of 1 n Torr, consists of 240 connected sections, the majority of which are fabricated from an aluminum alloy extrusion. The sections are equipped with distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. The details of the vacuum system design, selected results of the development program and general construction plans are presented. 11 refs., 6 figs., 3 tabs.

  4. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  5. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Yartys, V.A., E-mail: volodymyr.yartys@ife.no [Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027 (Norway); Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)

    2015-10-05

    Highlights: • Performance evaluation of H stores with various solid H storage materials was done. • Volumetric and gravimetric H storage densities and energy consumption were evaluated. • Effects of H storage containment and heat exchanger were estimated. • Pressure–temperature conditions of H storage strongly affect the overall performance. • Material’s packing density influences safety of operation and efficiency of H stores. - Abstract: Evaluation of the performances of hydrogen storage systems accommodating solid H storage materials should include characteristics on their reversible hydrogen storage capacity, operating pressures and temperatures, packing densities, and heat effects of hydrogen uptake and release. We have conducted a performance evaluation of the systems accumulating 5 kg of hydrogen in a containment of cylindrical geometry filled with a solid H storage material including such hydrides and reactive hydride composites as AlH{sub 3}, MgH{sub 2}, “low-temperature” (inter)metallic hydrides, NaAlH{sub 4}, Na{sub 3}AlH{sub 6}, LiBH{sub 4} + MgH{sub 2}, and MOFs. The analysis yielded gravimetric and volumetric H storage capacities, and energy efficiencies of hydrogen stores. We conclude that the weight efficiency of hydrogen stores, apart from the gravimetric H storage capacity of the material, is greatly affected by its packing density, and by the pressure–temperature conditions which determine type and dimensions of the containment. The materials with low heat effects of H exchange, operating close to the ambient conditions, should be targeted in the course of the development of new hydrogen stores as offering the best energy efficiency of their operation.

  6. High Density Thermal Energy Storage with Supercritical Fluids

    Science.gov (United States)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  7. Solar-energy storage-systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, R W

    1981-04-01

    Systems analysis activities at Brookhaven National Laboratory (BNL) related to energy storage in solar applications are described, and the purpose, methods and, where available, the results of each study are summarized. Areas of investigation include storage of electrical and thermal energy in solar total energy systems, a theoretical investigation of the value of storage, and the national fuel displacement potential of semi-passive solar storage walls. Investigations of the cost effectiveness of a spectrum of passive solar storage devices and the value of several possible improvements in these devices constitutes BNL's contribution to the Solar Applications Analysis for Energy Storage (SAAES) project.

  8. Evaluating Storage Systems for Lustre

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H. Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-20

    Storage systems are complex, including multiple subsystems and components. Sustained operations with top performance require all these subsystems and components working as expected. Having a detailed performance profile helps establishing a baseline. This baseline can be used for easier identification of possible future problems. A systematic bottom-to-top approach, starting with a detailed performance analysis of disks and moving up across layers and subsystems, provides a quantitative breakdown of each component's capabilities and bottlenecks. Coupling these low-level tests with Lustre-level evaluations will present a better understanding of performance expectations under different I/O workloads.

  9. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, Mohammed G.; Hartel, Pieter H.

    2010-01-01

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  10. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  11. Culture systems: embryo density.

    Science.gov (United States)

    Reed, Michael L

    2012-01-01

    Embryo density is defined as the embryo-to-volume ratio achieved during in vitro culture; in other words, it is the number of embryos in a defined volume of culture medium. The same density can be achieved by manipulating either the number of embryos in a given volume of medium, or manipulating the volume of the medium for a given number of embryos: for example, a microdrop with five embryos in a 50 μl volume under oil has the same embryo-to-volume ratio (1:10 μl) as a microdrop with one embryo in a 10 μl volume under oil (1:10 μl). Increased embryo density can improve mammalian embryo development in vitro; however, the mechanism(s) responsible for this effect may be different with respect to which method is used to increase embryo density.Standard, flat sterile plastic petri dishes are the most common, traditional platform for embryo culture. Microdrops under a mineral oil overlay can be prepared to control embryo density, but it is critical that dish preparation is consistent, where appropriate techniques are applied to prevent microdrop dehydration during preparation, and results of any data collection are reliable, and repeatable. There are newer dishes available from several manufacturers that are specifically designed for embryo culture; most are readily available for use with human embryos. The concept behind these newer dishes relies on fabrication of conical and smaller volume wells into the dish design, so that embryos rest at the lowest point in the wells, and where putative embryotrophic factors may concentrate.Embryo density is not usually considered by the embryologist as a technique in and of itself; rather, the decision to culture embryos in groups or individually is protocol-driven, and is based more on convenience or the need to collect data on individual embryos. Embryo density can be controlled, and as such, it can be utilized as a simple, yet effective tool to improve in vitro development of human embryos.

  12. Energy storage system control strategies for power distribution systems

    Directory of Open Access Journals (Sweden)

    Areewan Kajorndech

    2015-03-01

    Full Text Available Energy storage systems have been widely employed to attain several benefits, such as reliability improvement, stabilization of power systems connected with renewable energy resources, economic benefits and etc. To achieve the above objectives, the appropriate and effective control strategies for energy storage systems are needed to be developed. This research proposes energy storage system control strategies for power distribution systems equipped with a limited size of energy storage system in order to improve reliability and save energy costs by determining an optimal charging schedule of the energy storage system. Simulation results demonstrate the benefits of energy storage system applications under the different control strategies.

  13. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral...... of the tank design’s influence on the thermal performance of the systems is possible. By means of the calculations design rules for the two heat storage types are proposed....

  14. A concept of an electricity storage system with 50 MWh storage capacity

    OpenAIRE

    Józef Paska; Mariusz Kłos; Paweł Antos; Grzegorz Błajszczak

    2012-01-01

    Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy), and direct storage (in an electric or magnetic fi eld). Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers an...

  15. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  16. Energy storage system control strategies for power distribution systems

    OpenAIRE

    Areewan Kajorndech; Dulpichet Rerkpreedapong

    2015-01-01

    Energy storage systems have been widely employed to attain several benefits, such as reliability improvement, stabilization of power systems connected with renewable energy resources, economic benefits and etc. To achieve the above objectives, the appropriate and effective control strategies for energy storage systems are needed to be developed. This research proposes energy storage system control strategies for power distribution systems equipped with a limited size of energy storage system ...

  17. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...... to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer...... electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage...

  18. Liquid-crystalline polymer holograms for high-density optical storage and photomechanical analysis

    Science.gov (United States)

    Shishido, A.; Akamatsu, N.

    2012-10-01

    We report linear and crosslinked azobenzene containing liquid-crystalline polymers which can be applied to high-density optical storage and photomechanical analysis. We introduced a molecular design concept of multicomponent systems composed of photoresponse, refactive-index change amplification, and transparency units. Taking advantage of characteristics of liquid crystals (optical anisotropy and cooperative motion), polarization holograms were recorded, which enabled us higher-density holographic storage. On the other hand, crosslinked liquid-crystalline azobenzene polymer films were fabricated to investigate the photomechanical behavior. We have found that a large change in Young's modulus is induced by several mol%-cis form production. Furthermore, a unique bending behavior, which cannot be explained by the conventional bending mechanism, was observed in the crosslinked liquid-crystalline polymer films with azobenzene in the side chain.

  19. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  20. Hydrogen storage and delivery system development

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Wally, K.; Raber, T.N. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  1. Perpendicular patterned media for high density magnetic storage

    Science.gov (United States)

    Wong, Joyce Y.

    2000-11-01

    Current longitudinal thin-film media in magnetic hard- disk drives are facing an oncoming limit caused by the superparamagnetic effect, in which the individual grains in the medium become so small that they are no longer stable against thermal fluctuation. This situation is undesirable as the stored information may be lost within an unexpectedly short time frame. There have been several proposed solutions in addressing the superparamagnetic limit, and one of them is perpendicular patterned media. In this approach, a periodic array of magnetic pillars is defined lithographically on a non-magnetic substrate. Binary data of ``1'' or ``0'' can be stored in each of these elements, which have two possible magnetization directions perpendicular to the plane of the medium. In our perpendicular patterned media design, Ni columns of 150-230nm diameter with a 6:1 aspect ratio are embedded in an (AlGa)2O 3/GaAs substrate. The fabrication procedure uses a combination of high resolution electron beam lithography, dry etching, and electroplating. The high aspect ratio in the column is achieved by taking advantage of the high etching rate and selectivity of AlGaAs/GaAs over (AlGa)2O 3 in the Cl2 chemically assisted ion beam etching process. In addition to being a robust etching mask, the (AlGa)2O3 layer also plays an important role in the chemical mechanical polishing procedure to remove the overplated Ni mushrooms. Once the Ni columns are fabricated, magnetic characterization is performed using magnetic force microscopy and scanning magnetoresistance microscopy. The former measurement confirms that the electroplated Ni columns are magnetic while the latter determines whether the individual columns are stable enough to retain the recorded information. We have successfully demonstrated recording in our 170nm diameter Ni column array arranged in a square format using a commercial read/write head. This is the first demonstration of single magnetic column per bit data storage in a

  2. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    OpenAIRE

    Michel, Benoit; Mazet, Nathalie; Mauran, Sylvain; Stitou, Driss; Jing XU

    2012-01-01

    International audience; This paper focuses on the characterization and modeling of a solid/gas thermochemical reaction between a porous reactive bed and moist air flowing through it. The aim is the optimization of both energy density and permeability of the reactive bed, in order to realize a high density thermochemical system for seasonal thermal storage for house heating application. Several samples with different implementation parameters (density, binder, diffuser, porous bed texture) hav...

  3. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  4. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  5. Ultrahigh-density data storage into thin films of fullerene molecules

    Science.gov (United States)

    Nakaya, Masato; Aono, Masakazu; Nakayama, Tomonobu

    2016-11-01

    Recording nonvolatile digital data with an aerial density above terabit per square inch (Tbits/in.2), the so-called ultrahigh-density data storage, is one of the key technologies toward a sophisticated information-oriented society in the near future. To overcome the limitation of conventional magnetic data storage, one proposed solution is the use of thin films of functional molecules as recording media, in which each nonvolatile digital datum is stored into a single molecule by controlling its chemical reaction. Here, we show the recent progress in ultrahigh-density data storage using ultrathin films of C60 molecules. In this data storage, binary digits (1 and 0) are stored with an aerial density up to 180 Tbits/in.2 by controlling the bound and unbound states of C60 molecules in the films. Writing and erasing bit data have been carried out by selectively inducing the formation and annihilation of a covalent bond between neighboring C60 molecules, respectively, which are precisely controlled for a designated C60 molecule on the surface of a C60 film using the metal tip of a scanning tunneling microscopy (STM) system. It has also been shown that quantum efficiencies of STM-induced intermolecular reactions between C60 molecules are a key factor in determining the speeds of data writing and erasing as well as the reliability of these operations. Controlling the quantum efficiencies of intermolecular reactions by electrostatic charge injection from the conductive substrate to the surface layer of C60 films results in data writing with an operating speed of ∼363 bits/s.

  6. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  7. Energy Storage and Smart Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2016-01-01

    It is often highlighted how the transition to renewable energy supply calls for significant electricity storage. However, one has to move beyond the electricity-only focus and take a holistic energy system view to identify optimal solutions for integrating renewable energy. In this paper......, an integrated cross-sector approach is used to determine the most efficient and least-cost storage options for the entire renewable energy system concluding that the best storage solutions cannot be found through analyses focusing on the individual sub-sectors. Electricity storage is not the optimum solution...... to integrate large inflows of fluctuating renewable energy, since more efficient and cheaper options can be found by integrating the electricity sector with other parts of the energy system and by this creating a Smart Energy System. Nevertheless, this does not imply that electricity storage should...

  8. Transient response of latent heat storage in greenhouse solar system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.K.; Toksoy, M.; Cengel, Y.A.

    1986-01-01

    A latent heat storage system with two different stacking configurations and air bafflings was designed and constructed as an integrated part of the greenhouse solar system (solar barn). Commercial cylindrical storage rods were used as the primary storage elements. The results showed that the designed latent storage systems demonstrated significantly higher compact storage capacity than water or rock storage and that the ring-baffled storage unit performed better than the cross-baffled storage unit.

  9. HORIZONTAL AUTOMATED STORAGE AND RETRIEVAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Jacek Stanisław Tutak

    2017-03-01

    The final stage of the project was to verify the activities of the designed solutions based on tests on a prototype of the storage device. More precisely, it was tested on a machine prepared for a particular customer and a chosen configuration system, which is a combination of the triune manipulator of vertical storage controlled in an open loop.

  10. Energy storage for power systems

    CERN Document Server

    Ter-Gazarian, Andrei

    2011-01-01

    The supply of energy from primary sources is not constant and rarely matches the pattern of demand from consumers. Electricity is also difficult to store in significant quantities. Therefore, secondary storage of energy is essential to increase generation capacity efficiency and to allow more substantial use of renewable energy sources that only provide energy intermittently. Lack of effective storage has often been cited as a major hurdle to substantial introduction of renewable energy sources into the electricity supply network.This 2nd edition, without changing the existing structure of the

  11. FPGA-based prototype storage system with phase change memory

    Science.gov (United States)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  12. Metal hydride-based thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  13. Hydrogen storage and delivery system development: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Malinowski, M.E.; Wally, K. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  14. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  15. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  16. Biodigester as an energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, M.R.; Lopes, L.C.N. [Federal Institute of Education, Science and Technology of Sertao Pernambucano (IFSertao-PE), Petrolina, PE (Brazil)], Emails: rangel@cefetpet.br; Pinheiro Neto, J.S.; Carvalho, P.C.M. [Federal University of Ceara (UFC), Fortaleza, CE (Brazil). Dept. of Electrical Engineering], Emails: neto@tbmtextil.com.br, carvalho@dee.ufc.br; Silveira, G.C.; Moreira, A.P.; Borges, T.S.H. [Federal Institute of Education, Science and Technology of Ceara (IFCE), Fortaleza, CE (Brazil)], Emails: gcsilveira@cefet-ce.br, apmoreira@ifce.edu.br, thatyanys@yahoo.com.br

    2009-07-01

    Electricity supply for rural and remote areas is becoming an increasing priority to developing countries. The high initial cost of renewable energy based unities usually needs an energy storage system; due its operational and even replacement cost contributes to a higher final cost. The choice of energy storage systems depends on the sort and size of adopted power supply. This paper has a main goal to introduce a renewable energy based storage system weakly explored in Brazil: biogas from anaerobic digestion. It also brings a review of the main energy storage systems applied to electrical energy generation. As reference an experiment with an adapted Indian digester of 5 m{sup 3} that produced nearly 2m{sup 3} of biogas daily. The obtained biogas met the consumption of at least 4 typical Brazilian low income households with installed load of 500 W each and was enough to replace the use of 420 Ah lead-acid batteries. (author)

  17. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2012-06-01

    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  18. Transient response of latent heat storage in greenhouse solar system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.K.; Cengel, Y.A.; Toksoy, M.

    1983-06-01

    A latent heat storage system with two different stacking configurations and air bafflings was designed and constructed as an integrated part of the greenhouse solar system. Commercial cylindrical storage rods were used as the primary storage elements. The results showed that the latent storage system performed significantly better than water or rock storage.

  19. Optimal Storage Allocation for Wireless Cloud Caching Systems with a Limited Sum Storage Capacity

    OpenAIRE

    Hong, Bi; Choi, Wan

    2016-01-01

    In wireless cloud storage systems, the recovery failure probability depends on not only wireless channel conditions but also storage size of each distributed storage node. For an efficient utilization of limited storage capacity and the performance characterization of allocation strategies, we asymptotically analyze the recovery failure probability of a wireless cloud storage system with a sum storage capacity constraint for both high SNR regime and low SNR regime. Then, we find the optimal s...

  20. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...... of renewable energy. Meanwhile, the insurance of power system stability through reduction of power gradients is of major importance even at lower penetration levels and some form of energy storage therefore seems unavoidable. A variety of technologies are available for storage of energy in the power system...

  1. Energy storage in future power systems

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Østergaard, Jacob; Divya, K. C.

    2011-01-01

    Most sources of renewable power are characterised by uncontrollable and chaotic variations in power output. We here look at how energy storage may benefit renewable power generation by making it available in periods with little or no intermittent generation and thereby prevent additional...... conventional generation form being used. In addition to this, one of the strongest concerns in relation to renewable power is the instability in the electric power system that it may introduce as a result of large and relatively fast power fluctuations. An additional benefit of energy storage is therefore its...... of renewable energy. Meanwhile, the insurance of power system stability through reduction of power gradients is of major importance even at lower penetration levels and some form of energy storage therefore seems unavoidable. A variety of technologies are available for storage of energy in the power system...

  2. Security for cloud storage systems

    CERN Document Server

    Yang, Kan

    2014-01-01

    Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

  3. Storage and distribution system for multimedia information

    Science.gov (United States)

    Murakami, Tokumichi

    1994-06-01

    Recent advances in technologies such as digital signal processing, LSI devices and storage media have led to an explosive growth in multimedia environment. Multimedia information services are expected to provide an information-oriented infrastructure which will integrate visual communication, broadcasting and computer services. International standardizations in video/audio coding accelerate permeation of these services into society. In this paper, from trends of R & D and international standardization in video coding techniques, an outline is given of a storage and distribution system for multimedia information, and a summary of the requirements of digital storage media.

  4. Progress in materials and technologies for ultrahigh density data storage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the development of information superhighway, nanometer-scale data storage has been proposed and attracted great interest in recent years. This article reviews the research achievements in this field, and especially focuses on the materials for data recording by using an atomic force microscope (AFM) and scanning tunneling microscope (STM).

  5. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  6. A high-density ammonia storage/delivery system based on Mg(NH3)6Cl2 for SCR-DeNOx in vehicles

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Sørensen, Rasmus Zink; Quaade, Ulrich

    2006-01-01

    ammonia density of up to 93% of that of liquid ammonia. This provides a long lasting ammonia storage (approximate to 20000 km of driving per 6.2 L Mg(NH(3))(6)Cl(2) for an average medium-sized vehicle). The controlled thermal decomposition of Mg(NH(3))(6)Cl(2) was demonstrated. A small reactor...... with a volume of 785 mL was filled with approximate to 260 g of Mg(NH(3))(6)Cl(2) yielding a bed density of 331 kg/m(3). The reactor was coupled to a buffer with a free volume of roughly 200 mL. A heating wire wrapped around the outside of the reactor supplied the heat-energy. A mass-flow controller was used...... as the set-point pressure. The low density was improved by compressing the Mg(NH(3))(6)Cl(2) powder to a density of 1219 kg/m(3), which is very close to the theoretical crystal density of 1252 kg/m(3). Temperature programmed desorption showed that the ammonia could easily be desorped by heating the densified...

  7. Hydrogen Storage Technologies for Future Energy Systems.

    Science.gov (United States)

    Preuster, Patrick; Alekseev, Alexander; Wasserscheid, Peter

    2017-06-07

    Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO2 emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120-200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.

  8. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  9. Modernizing the monitoring of Mass Storage systems

    CERN Document Server

    Terrien, Alexandre

    2016-01-01

    The monitoring of a system is essential to ensure its efficiency. On a computer system, this monitoring is partly done via the analysis of log messages. The monitoring of CASTOR, a mass-storage system responsible for the storage of 150Pb of scientific data at CERN, was being done with tools developed by the IT-ST-FDO section. Those tools recently encountered some performance limitations due to the increase in the quantity of data produced by CERN's experiments. In this paper, I will describe how I managed to modernize CASTOR's monitoring tools by leveraging services centrally managed by CERN's IT department.

  10. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  11. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

    NARCIS (Netherlands)

    Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den

    1979-01-01

    A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

  12. The Utility Battery Storage Systems Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  13. Federal Tax Incentives for Battery Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Investments in renewable energy can be more attractive with the contribution of two key federal tax incentives. NREL provides basic information about the investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction, which may apply to battery storage systems owned by a private party (i.e., a tax-paying business).

  14. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  15. Materials challenges in developing H{sub 2} storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, M. [General Motors Research and Development Center, Warren, MI (United States). Chemical Sciences and Materials Systems Laboratory

    2010-07-01

    The development of technically robust and commercially viable hydrogen/fuel cell propulsion technologies is a possible option for creating a sustainable transportation system. Examples of some of these technologies include hydrogen production from renewable energy sources; fuel cell propulsion using inexpensive, durable materials and designs; and practical, high energy density methods for storage of hydrogen both on-board vehicles and at fuel station facilities. Significant materials challenges for the scientific and engineering communities have been generated by the development of proton exchange membrane fuel cell/hydrogen propulsion technology. Several research and development efforts are pursuing a variety of onboard storage approaches, including compressed storage at different pressures, metal hydrides at high pressures, complex hydrides, and cryogenic storage either as a liquid or adsorbed onto porous substrates. This presentation described the results of recent research and development programs focused on hydrogen storage technologies conducted at General Motors. The presentation summarized the status, recent accomplishments and current performance gaps of hydrogen storage technologies for fuel cell applications.

  16. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    Science.gov (United States)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  17. Spectroscopic Feedback for High Density Data Storage and Micromachining

    Science.gov (United States)

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  18. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  19. A Rewritable, Random-Access DNA-Based Storage System

    Science.gov (United States)

    Tabatabaei Yazdi, S. M. Hossein; Yuan, Yongbo; Ma, Jian; Zhao, Huimin; Milenkovic, Olgica

    2015-09-01

    We describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on new constrained coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications.

  20. [Digital photograph storage systems in clinical dermatology].

    Science.gov (United States)

    Taberner, R; Contestí, T

    2010-05-01

    In recent years, digital photography has consolidated its role in clinical dermatology. In view of the quality and low cost of current equipment and the simplicity of digital storage, almost all dermatologists now use digital photography, which is also extremely versatile and readily applicable to teaching. However, to maximize its full potential, image retrieval must be available at any time and with the patient present. This requires a suitable storage system that may vary according to the characteristics of each center. Dermatologists must also find time to maintain and organize the digital archives. The present article describes current options in digital image storage and retrieval, ranging from multidepartmental picture archiving and communication systems at one end to image management freeware at the other, and also including dedicated dermatology software.

  1. Optimization of Korean crop storage insulation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jongho Yoon [Taejon National Univ. of Technology, Dept. of Architectural Engineering, Taejon (Korea); Euyjoon Lee [Korea Inst. of Energy Research, Passive Solar Research Team, Taejon (Korea); Krarti, Moncef [Colorado Univ., CEAE Dept., Boulder, CO (United States)

    2003-05-01

    With the increasing concerns with the quality and the safety of foods, several standards and guidelines have been developed to improve the design, construction and operation of storage warehouses. Several cool storage buildings have been constructed in Korea during the last decade. However, there are no specific standards or guidelines for energy use reduction in refrigerated structures. The main objective of this study is to determine the impact of various insulation systems on the total cooling load of the cool storage structures with particular consideration given to the product thermal mass to find optimal insulation thicknesses for each envelope component for various climatic locations in Korea. An energy analysis model was developed using the DOE-2.1E program. To determine the optimal configuration for the storage building insulation system, life cycle cost analysis was conducted. The selection of optimal insulation configuration for each climatic location is based on various criteria including cost and energy minimization. The results presented in this paper provide easy to use design guidelines to select the optimal insulation thickness for crop storage facilities in Korea. (Author)

  2. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.

    Science.gov (United States)

    Su, Ji; Yang, Lisha; Lu, Mi; Lin, Hongfei

    2015-03-01

    A highly efficient, reversible hydrogen storage-evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density.

  3. Macstor system for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Pattantyus, P. (Atomic Energy of Canada Ltd., Montreal, PQ (Canada). Power Projects)

    1993-01-01

    In 1989, Transnuclear Inc. and AECL jointly developed the conceptual design for the Modular Aircooled Canister Storage System (Macstor) for LWR fuel. The development effort has proceeded to the completion of successful full-scale thermal testing. In 1990, AECL adapted the Macstor System approach for use with Candu fuel. The adapted design, called Canstor, has also successfully completed full-scale thermal testing, and the final system design has been completed. (author) 1 fig.

  4. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy a

  5. Optical Digital Image Storage System

    Science.gov (United States)

    1991-03-18

    This could be accomplished even if the files were artificially determined. " Super files," composed of a number of files, could be artificially created...in order to expedite transfer through the scanning process. These " super files" could later be broken down into their actual component files. Another...hesitant about implementing an optical disk system. While Sandra Napier believed it "looks promising," she felt an optical disk replacement of microfilm

  6. Cost projections for Redox Energy storage systems

    Science.gov (United States)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  7. Flywheel energy storage for electromechanical actuation systems

    Science.gov (United States)

    Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

    1991-01-01

    The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

  8. Assessment of flywheel energy storage for spacecraft power systems

    Science.gov (United States)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  9. Exascale Storage Systems the SIRIUS Way

    Science.gov (United States)

    Klasky, S. A.; Abbasi, H.; Ainsworth, M.; Choi, J.; Curry, M.; Kurc, T.; Liu, Q.; Lofstead, J.; Maltzahn, C.; Parashar, M.; Podhorszki, N.; Suchyta, E.; Wang, F.; Wolf, M.; Chang, C. S.; Churchill, M.; Ethier, S.

    2016-10-01

    As the exascale computing age emerges, data related issues are becoming critical factors that determine how and where we do computing. Popular approaches used by traditional I/O solution and storage libraries become increasingly bottlenecked due to their assumptions about data movement, re-organization, and storage. While, new technologies, such as “burst buffers”, can help address some of the short-term performance issues, it is essential that we reexamine the underlying storage and I/O infrastructure to effectively support requirements and challenges at exascale and beyond. In this paper we present a new approach to the exascale Storage System and I/O (SSIO), which is based on allowing users to inject application knowledge into the system and leverage this knowledge to better manage, store, and access large data volumes so as to minimize the time to scientific insights. Central to our approach is the distinction between the data, metadata, and the knowledge contained therein, transferred from the user to the system by describing “utility” of data as it ages.

  10. Rapid Framing Mass Storage System on the Internet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mass storage system is now very important for storing huge volume of data in many application system such as VOD systems, electronic library, scientific computation and so on. Besides the storage device and network devices, the real performance of mass storage system is greatly influenced by the connection way between the host and storage system. Here we propose a new design of mass storage system by promoting the storage devices' functions and involving them directly into data delivering. It can easily meet the demands both for capacity and I/O bandwidth in those applications, and has better service quality and performance compared with the traditional system in delivering mass data over network.

  11. Monitoring a petabyte scale storage system

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Jon; Berman, Eileen; Huang, Chih-Hao; Moibenko, Alexander; Petravick, Don; Zalokar, Michael; /Fermilab

    2004-12-01

    Fermilab operates a petabyte scale storage system, Enstore, which is the primary data store for experiments' large data sets. The Enstore system regularly transfers greater than 15 Terabytes of data each day. It is designed using a client-server architecture providing sufficient modularity to allow easy addition and replacement of hardware and software components. Monitoring of this system is essential to insure the integrity of the data that is stored in it and to maintain the high volume access that this system supports. The monitoring of this distributed system is accomplished using a variety of tools and techniques that present information for use by a variety of roles (operator, storage system administrator, storage software developer, user). Essential elements of the system are monitored: performance, hardware, firmware, software, network, data integrity. We will present details of the deployed monitoring tools with an emphasis on the different techniques that have proved useful to each role. Experience with the monitoring tools and techniques, what worked and what did not will be presented.

  12. Storage monitoring systems for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Pollock, R.

    1997-12-31

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000.

  13. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  14. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  15. Energy storage for electrical systems in the USA

    Directory of Open Access Journals (Sweden)

    Eugene Freeman

    2016-10-01

    Full Text Available Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems. The paper discusses the basic drivers for energy storage and provides brief descriptions of the various energy storage technologies available. The information summarizes current technical tradeoffs with different storage approaches and identifies issues surrounding deployment of large scale energy storage systems.

  16. Multi personal computer storage system: solution of sea capacity PACS storage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective According to the characteristics of digital medicine and the demands of digitized management in hospitals, we established a storage system that is affordable, highly expandable, and reliable. Methods The multi personal computer storage system (MPCSS) was constructed using hardware and software. The image data were archived from major servers to storage personal computers (PCs) by using Neusoft-picture archiving and communication system (PACS) and backed up on storage PCs. We simulated data loss on storage PCs and then restored the data. We also expanded the storage system to enlarge its capacity. Results The average transfer rate from MPCSS was 27.7 MB/s, and the average cost for this system was $74/GB. In the testing stage, only 6 of 187 instances of data retrieval (from 100 patients) failed. Conclusion The MPCSS is much less expensive than other high capacity systems or devices. It is feasible and suitable for digital image storage.

  17. Final Report: Hydrogen Storage System Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel A. [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-30

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allow comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.

  18. Hydrogen storage systems from waste Mg alloys

    Science.gov (United States)

    Pistidda, C.; Bergemann, N.; Wurr, J.; Rzeszutek, A.; Møller, K. T.; Hansen, B. R. S.; Garroni, S.; Horstmann, C.; Milanese, C.; Girella, A.; Metz, O.; Taube, K.; Jensen, T. R.; Thomas, D.; Liermann, H. P.; Klassen, T.; Dornheim, M.

    2014-12-01

    The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

  19. Mechanical Engineering Refrigeration Systems for Cold Storage

    Science.gov (United States)

    1981-10-01

    LEVELK NAVFAC-DM -3.4 OCTOBER 1981 ,T O MECHANICAL ENGINEERING let REFRIGERATION SYSTEMS FOR COLD STORAGE * ,DESIGN MANUAL 3.4 APPROVED FOR PUBLIC...NUMBERNAVFAC DM3. 4- TITLE (and Subtlte) S. TYPE OF REPORT & PERIOD COVERED NAVFAC Design Manual DM-3.4 Design Criteria Mechanical Engineering Final...U S.Navy I Naval Facilities Engineering Command I r DT I, - - __ IM, *r 3i 3.4-v MECHANICAL ENGINEERING DESIGN MANUALS Chapter superseded DM Number

  20. Analysis of the storage system in the selected company

    OpenAIRE

    BÄUML, Vítězslav

    2014-01-01

    The main aim of the thesis is an analysis the stock system and storage system of a selected company with the focus on material and information flow, storage processes, logistics costs and related logistics indexes.

  1. File Assignment Policy in Network Storage System

    Institute of Scientific and Technical Information of China (English)

    CaoQiang; XieChang-sheng

    2003-01-01

    Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and network, however,mismatched policies and access pattern can significantly reduce network storage performance. So the strategy of data place ment in system is an important factor that impacts the performance of overall system. In this paper, the two algorithms of file assignment are presented. One is Greed partition that aims at the load balance across all NADs (Network Attached Disk). The other is Sort partition that tries to minimize variance of service time in each NAD. Moreover, we also compare the performance of our two algorithms in practical environment. Our experimental results show that when the size distribution (load characters) of all assigning files is closer and larger, Sort partition provides consistently better response times than Greedy algorithm. However, when the range of all assigning files is wider, there are more small files and access rate is higher, the Greedy algorithm has superior performance in compared with the Sort partition in off-line.

  2. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.

    2010-10-01

    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  3. File Assignment Policy in Network Storage System

    Institute of Scientific and Technical Information of China (English)

    Cao Qiang; Xie Chang-sheng

    2003-01-01

    Network storage increase capacity and scalability of storage system, data availability and enables the sharing of data among clients. When the developing network technology reduce performance gap between disk and network, however, mismatched policies and access pattern can significantly reduce network storage performance. So the strategy of data placement in system is an important factor that impacts the performance of overall system. In this paper, the two algorithms of file assignment are presented. One is Greed partition that aims at the load balance across all NADs (Network Attached Disk). The other is Sort partition that tries to minimize variance of service time in each NAD. Moreover, we also compare the performance of our two algorithms in practical environment. Our experimental results show that when the size distribution (load characters) of all assigning files is closer and larger, Sort partition provides consistently better response times than Greedy algorithm. However, when the range of all assigning files is wider, there are more small files and access rate is higher, the Greedy algorithm has superior performance in compared with the Sort partition in off-line.

  4. Optimal two-class-based storage in a live-cube compact storage system

    NARCIS (Netherlands)

    N. Zaerpour (Nima); Y. Yu (Yugang); M.B.M. de Koster (René)

    2017-01-01

    textabstractLive-cube compact storage systems realize high storage space utilization and high throughput, due to full automation and independent movements of unit loads in three-dimensional space. Applying an optimal two-class-based storage policy where high-turnover products are stored at locations

  5. Some considerations of organic materials for high density optical disk data storage

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The application possibilities of organic materials for high density optical disk data storage are discussed.Several points,such as physical and chemical stabilities,wavelength match and reversible property changes,which should be taken into consideration,are presented.

  6. Maximum-Likelihood Sequence Detector for Dynamic Mode High Density Probe Storage

    CERN Document Server

    Kumar, Naveen; Ramamoorthy, Aditya; Salapaka, Murti

    2009-01-01

    There is an ever increasing need for storing data in smaller and smaller form factors driven by the ubiquitous use and increased demands of consumer electronics. A new approach of achieving a few Tb per in2 areal densities, utilizes a cantilever probe with a sharp tip that can be used to deform and assess the topography of the material. The information may be encoded by means of topographic profiles on a polymer medium. The prevalent mode of using the cantilever probe is the static mode that is known to be harsh on the probe and the media. In this paper, the high quality factor dynamic mode operation, which is known to be less harsh on the media and the probe, is analyzed for probe based high density data storage purposes. It is demonstrated that an appropriate level of abstraction is possible that obviates the need for an involved physical model. The read operation is modeled as a communication channel which incorporates the inherent system memory due to the intersymbol interference and the cantilever state ...

  7. The NOAO Data Lab virtual storage system

    Science.gov (United States)

    Graham, Matthew J.; Fitzpatrick, Michael J.; Norris, Patrick; Mighell, Kenneth J.; Olsen, Knut; Stobie, Elizabeth B.; Ridgway, Stephen T.; Bolton, Adam S.; Saha, Abhijit; Huang, Lijuan W.

    2016-07-01

    Collaborative research/computing environments are essential for working with the next generations of large astronomical data sets. A key component of them is a distributed storage system to enable data hosting, sharing, and publication. VOSpace1 is a lightweight interface providing network access to arbitrary backend storage solutions and endorsed by the International Virtual Observatory Alliance (IVOA). Although similar APIs exist, such as Amazon S3, WebDav, and Dropbox, VOSpace is designed to be protocol agnostic, focusing on data control operations, and supports asynchronous and third-party data transfers, thereby minimizing unnecessary data transfers. It also allows arbitrary computations to be triggered as a result of a transfer operation: for example, a file can be automatically ingested into a database when put into an active directory or a data reduction task, such as Sextractor, can be run on it. In this paper, we shall describe the VOSpace implementations that we have developed for the NOAO Data Lab. These offer both dedicated remote storage, accessible as a local file system via FUSE, and a local VOSpace service to easily enable data synchronization.

  8. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  9. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  10. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance...

  11. Density,Storage and Distribution of Carbon in Mangrove Ecosystem in Guangdong’s Coastal Areas

    Institute of Scientific and Technical Information of China (English)

    Na; LI; Pimao; CHEN; Chuanxin; QIN

    2015-01-01

    Using the mangrove plants and sediment of the typical mangrove areas in Guangdong’s coastal areas,P. R. China as the research object,the density,storage and spatial distribution of carbon are studied. The study method is the combination of the wild field analysis and laboratory testing method. The results show that the carbon density of the sediment will gradually decrease because of the increased depth,and has nothing to do with the difference of the area and tree species. The average carbon density of 50 cm sediment is 0. 007 g C / g. The carbon density is obviously different in different components of different mangrove species in different regions. The total carbon storage in different regions is in the following order: Zhuhai > Gaoqiao > Shenzhen > Shuidong Bay > Guanghai Bay > Raoping > Daya Bay > Chenghai. The carbon density and carbon storage are obviously higher in mangrove covered area than blank area. It shows that mangroves have very strong carbon sink function.

  12. Nuclear Hybrid energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.; Sabharwall, P.; Yoon, S. J.; Bragg-Sitton, S. B.; Stoot, C.

    2014-07-01

    Without growing concerns in reliable energy supply, the next generation in reliable power generation via hybrid energy systems is being developed. A hybrid energy system incorporates multiple energy input source sand multiple energy outputs. The vitality and efficiency of these combined systems resides in the energy storage application. Energy storage is necessary for grid stabilization because stored excess energy is used later to meet peak energy demands. With high thermal energy production the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct thermal properties. This paper discusses the criteria for efficient energy storage and molten salt energy storage system options for hybrid systems. (Author)

  13. Compartmentalized storage tank for electrochemical cell system

    Science.gov (United States)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  14. Impact of Storage Technologies upon Power System Losses

    Directory of Open Access Journals (Sweden)

    DULAU Lucian Ioan

    2015-05-01

    Full Text Available The paper describes the main characteristics of storage technologies. The most important storage technologies are the batteries, hydrogen, pumped hydro, flywheels, compressed air, super-capacitors and superconducting magnetic devices. The storage technologies can be classified based on the function principle into electrochemical, mechanical and electromagnetic devices. The storage systems can also be classified based on their capacity to store power into short and long term devices. A power flow analysis is performed for the situation with and without a storage unit. The storage unit is inserted into the IEEE 14 bus test system.

  15. Simulation of Flywheel Energy Storage System Controls

    Science.gov (United States)

    Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan

    2001-01-01

    This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.

  16. An energy storage and regeneration system

    DEFF Research Database (Denmark)

    2006-01-01

    caverns. When the energy demand exceeds the power production capacity of the plant, the stored gases are burned and the thermal energy is converted into electricity in gas turbine generators. The regenerated electrical power is then used to supplement the output of the electric power plant to meet......  The present invention relates to a method and a system for storing excess energy produced by an electric power plant during periods of lower energy demand than the power plant production capacity. The excess energy is stored by hydrolysis of water and storage of hydrogen and oxygen in underground...... the higher level of energy demand....

  17. On Locality in Distributed Storage Systems

    CERN Document Server

    Rawat, Ankit Singh

    2012-01-01

    This paper studies the design of codes for distributed storage systems (DSS) that enable local repair in the event of node failure. This paper presents locally repairable codes based on low degree multivariate polynomials. Its code construction mechanism extends work on Noisy Interpolating Set by Dvir et al. \\cite{dvir2011}. The paper presents two classes of codes that allow node repair to be performed by contacting 2 and 3 surviving nodes respectively. It further shows that both classes are good in terms of their rate and minimum distance, and allow their rate to be bartered for greater flexibility in the repair process.

  18. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

    Science.gov (United States)

    Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy

    2016-04-01

    Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

  19. Quality Changes in Dried Tomatoes Stored in Sealed Polythene and Open Storage Systems

    Directory of Open Access Journals (Sweden)

    Bosede Adelola ADERIBIGBE

    2007-01-01

    Full Text Available Studies were conducted to quantify the changes in quality attributes of dried tomatoes during storage using High Density Polythene Film (HDPF and normal (traditional open storage systems. 300g of the dried tomato fruits were packaged in each of the six (6 high-density polythene film (HDPF bags while similar quantities were in open bowls as practiced by the rural processors. Periodic assessment of some quality parameters, microbial loads, moisture content, color, vitamins A and C, and phosphorus were conducted for a period of three months to ascertain how these two storage systems influence the changes in these quality attributes. The results showed that the fungal load counts of the dried samples prior to storage were 3.6·103 cfu/g. After three months of storage, the counts were 5.4·103 cfu/g and 7.2·103 cfu/g for the samples stored in HDPF and open systems respectively. These were significantly different at 5% level of confidence. Vitamin A of the samples changed from the initial value 134μg prior to storage to 98 μg and 103.4 μg after three months of storage in open and HDPF systems respectively. Vitamin C content changed from 5.21 mg/ 100g prior to storage to 3.69 mg/100g and 4.24 mg/100g in the samples stored in open and HDPF systems respectively after three months. The moisture content of the dried sample prior to storage was 4.2%. After three months of storage, the values were 7.13% and 3.93% respectively for samples stored in open and HDPF systems and these were highly significant at 5% level of confidence. The HDPF method gave better results compared to the traditional method of storage in Nigeria as far as these quality parameters assessed are concerned.

  20. Energy Storage Systems as a Compliment to Wind Power

    Science.gov (United States)

    Sieling, Jared D.; Niederriter, C. F.; Berg, D. A.

    2006-12-01

    As Gustavus Adolphus College prepares to install two wind turbines on campus, we are faced with the question of what to do with the excess electricity that is generated. Since the College pays a substantial demand charge, it would seem fiscally responsible to store the energy and use it for peak shaving, instead of selling it to the power company at their avoided cost. We analyzed six currently available systems: hydrogen energy storage, flywheels, pumped hydroelectric storage, battery storage, compressed air storage, and superconducting magnetic energy storage, for energy and financial suitability. Potential wind turbine production is compared to consumption to determine the energy deficit or excess, which is fed into a model for each of the storage systems. We will discuss the advantages and disadvantages of each of the storage systems and their suitability for energy storage and peak shaving in this situation.

  1. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  2. Progress in electrochemical storage for battery systems

    Science.gov (United States)

    Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.

    1972-01-01

    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.

  3. Economic Analysis of using Above Ground Gas Storage Devices for Compressed Air Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    LIU Jinchao; ZHANG Xinjing; XU Yujie; CHEN Zongyan; CHEN Haisheng; TAN Chunqing

    2014-01-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types:air storage tanks,gas cylinders,and gas storage pipelines.A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis.The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number.The LCCs of the three types are comprehensively analyzed and compared.The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types.This study may serve as a reference for designing large-scale CAES systems.

  4. Electric utility applications of hydrogen energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  5. Heat storage system adapted for incongruently melting heat storage materials and congruently melting heat storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, J.L.

    1980-12-30

    A heat storage article adapted for prevention of stratification of incongruently melting heat storage materials, such as eutectic salts, and adapted for use with congruently melting heat storage materials, such as paraffins. The article is comprised of a concrete stone composition, a certain portion of which is comprised of metallic heat transfer materials in order to increase heat transfer through the concrete structure. The concrete structure has an internal cavity which is filled with either the eutectic salt material or the paraffin material.

  6. Storage System Design Scheme in Virtualization Construction

    Institute of Scientific and Technical Information of China (English)

    Si Zhen-yu

    2012-01-01

    In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, proposed a new scheme based on virtualization, and established a shared storage platform, which made a good complement and perfected the centralized storage platform.

  7. Heat transfer characteristics of thermal energy storage system using PCM capsules. A review

    Energy Technology Data Exchange (ETDEWEB)

    Regin, A. Felix; Solanki, S.C.; Saini, J.S. [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2008-12-15

    Thermal energy storage has recently attracted increasing interest related to thermal applications such as space and water heating, waste heat utilization, cooling and air-conditioning. Energy storage is essential whenever there is a mismatch between the supply and consumption of energy. Use of phase change material (PCM) capsules assembled as a packed bed is one of the important methods that has been proposed to achieve the objective of high storage density with higher efficiency. A proper designing of the thermal energy storage systems using PCMs requires quantitative information about heat transfer and phase change processes in PCM. This paper reviews the development of available latent heat thermal energy storage technologies. The different aspects of storage such as material, encapsulation, heat transfer, applications and new PCM technology innovation have been carried out. (author)

  8. Simulation of an apodizer's effect for high-density optical storage

    Institute of Scientific and Technical Information of China (English)

    Xiumin Gao; Wendong Xu; Fuxi Gan

    2005-01-01

    @@ The effect of an apodizer with two parallel taper refractive surfaces is theoretically investigated for highdensity optical storage. The apodizer may modulate an incident Gaussian beam into an annular beam. Simulation shows that with the increasing inner radius of the modulated beam, the focal spot shrinks obviously. The depolarization effect gets strong simultaneously, which induces the circular symmetry loss of the focal spot. In this process, pattern density of the orthogonal and longitudinal diffractive fields increases remarkably.

  9. Second Approximation Model for Optical Head in Super High Density Storage Technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper presents second approximation model for optical head in super high-density storage technology firstly and it is an important part for three grades approximate model of ultra-small-size quantum well corn-shaped laser and simulative calculations. It supplies the important and useful results for the NFOD optical head design with ultra thin active layer and ultra small spot laser.

  10. Ultra-high density optical data storage in common transparent plastics

    Science.gov (United States)

    Kallepalli, Deepak L. N.; Alshehri, Ali M.; Marquez, Daniela T.; Andrzejewski, Lukasz; Scaiano, Juan C.; Bhardwaj, Ravi

    2016-05-01

    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.

  11. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  12. Battery outgassing sensor for electric drive vehicle energy storage systems

    Science.gov (United States)

    Beshay, Manal; Chandra Sekhar, Jai Ganesh; Kempen, Lothar U.

    2011-06-01

    Lithium-ion batteries have been proven efficient as high power density and low self-discharge rate energy storage systems, specifically in electrical drive vehicles. An important safety factor associated with these systems is the potential hazardous release and outgassing of toxic chemical vapors such as hydrogen fluoride (HF) and hydrogen sulfides (H2S), and relatively elevated levels of carbon dioxide (CO2). The release and accumulation of such gases emphasizes an in-line monitoring need. Intelligent Optical Systems, Inc. (IOS) has identified a viable approach for the development of an onboard optical sensor array that can be used to monitor battery outgassing. This paper discusses the potential of developing a battery outgas sensing approach that will meet sensitivity and response time requirements.

  13. Object-based Storage Integration within the ATLAS DDM system

    CERN Document Server

    Garonne, Vincent; The ATLAS collaboration

    2016-01-01

    In this paper, we'll talk about our experiences with different data storage technologies within the ATLAS Distributed Data Management system, and in particular about object-based storage. Object-based storage differs in many points from traditional file system storage and offers a highly scalable, simple and most common storage solution for the cloud. First, we describe the needed changes in the Rucio software to integrate this technology, then we present for which use cases we have evaluated them. Finally, we conclude by reporting the results, performances and the potential future by exploiting more of their specificities and features, like metadata support.

  14. Information storage capacity of discrete spin systems

    CERN Document Server

    Yoshida, Beni

    2011-01-01

    What is the limit of information storage capacity of discrete spin systems? To answer this question, we study classical error-correcting codes which can be physically realized as the energy ground space of gapped local Hamiltonians. For discrete spin systems on a D-dimensional lattice governed by local frustration-free Hamiltonians, the following bound is known to hold; $kd^{1/D}\\leq O(n)$ where k is the number of encodable logical bits, d is the code distance, and n is the total number of spins in the system. Yet, previously found codes were far below this bound and it remained open whether there exists an error-correcting code which saturates the bound or not. Here, we give a construction of local spin systems which saturate the bound asymptotically with $k \\sim O(L^{D-1})$ and $d \\sim O(L^{D-\\epsilon})$ for an arbitrary small $\\epsilon> 0$ where L is the linear length of the system. Our model borrows an idea from a fractal geometry arising in Sierpinski triangle.

  15. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  16. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  17. Energy storage systems program report for FY1996

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  18. A novel, high energy-density electrical storage device for electric weapons

    Science.gov (United States)

    Schroeder, Jon M.

    1992-08-01

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L(sup 2)) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, we also found that the L(sup 2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  19. A strategy for load balancing in distributed storage systems

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

  20. Key-value Storage Systems (and Beyond with Python

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Web application developers often use RDBMS systems such as MySql or PostgreSql but there are many other types of databases out there. Key-value storage, schema and schema-less document storage, and column-oriented DBMS systems abound. These kind of database systems are becoming more popular when developing scalable web applications but many developers are unsure how to integrate them into their projects. This talk will focus on the key-value class of data storage systems, weigh the strengths and drawbacks of each and discuss typical use cases for key value storage.

  1. Robo-line storage: Low latency, high capacity storage systems over geographically distributed networks

    Science.gov (United States)

    Katz, Randy H.; Anderson, Thomas E.; Ousterhout, John K.; Patterson, David A.

    1991-01-01

    Rapid advances in high performance computing are making possible more complete and accurate computer-based modeling of complex physical phenomena, such as weather front interactions, dynamics of chemical reactions, numerical aerodynamic analysis of airframes, and ocean-land-atmosphere interactions. Many of these 'grand challenge' applications are as demanding of the underlying storage system, in terms of their capacity and bandwidth requirements, as they are on the computational power of the processor. A global view of the Earth's ocean chlorophyll and land vegetation requires over 2 terabytes of raw satellite image data. In this paper, we describe our planned research program in high capacity, high bandwidth storage systems. The project has four overall goals. First, we will examine new methods for high capacity storage systems, made possible by low cost, small form factor magnetic and optical tape systems. Second, access to the storage system will be low latency and high bandwidth. To achieve this, we must interleave data transfer at all levels of the storage system, including devices, controllers, servers, and communications links. Latency will be reduced by extensive caching throughout the storage hierarchy. Third, we will provide effective management of a storage hierarchy, extending the techniques already developed for the Log Structured File System. Finally, we will construct a protototype high capacity file server, suitable for use on the National Research and Education Network (NREN). Such research must be a Cornerstone of any coherent program in high performance computing and communications.

  2. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    Science.gov (United States)

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors.

  3. Didactic model of the high storage system

    Directory of Open Access Journals (Sweden)

    J. Świder

    2006-04-01

    Full Text Available Purpose: The continuous progress in Computer Integrated Manufacturing (CIM field with automatic storing systems is broadening the range of education process for engineers in future. This document describes the newest didactic station integrated witch a Modular Production System (MPS model [1, 2, 3]. It is a module of high storage. This arrangement is the perfect didactic item for students.Design/methodology/approach: The main reason, why the laboratory position, we have mentioned, has been created is brodening the students knowlegde’s range. To achive this task the warehouse has been made from really industrial elements. All manipulator’s axis were building from different types of transmissions. Findings: During the work with warehouse there has been prepared the new algorithm which controlls the linear drive. Besides that there has been created brand new standards in engineers education, which are based on the described warehouse. Research limitations/implications: The main target of the didactic activity of Institute of Engineering Processes Automation and Integrated Manufacturing Systems is broden the loboratory base. That’s the reason why now there already has been building another laboratory position, which is based on Fanuc manipulator.Practical implications: The algorithm of Pneu-Stat steering hasn’t been finished yet, but when it has been done it can be used in industrial aplicationsOriginality/value: This paper describes the new didactic station with innovational steering algorithm [4, 5].

  4. Energy storage systems: power grid and energy market use cases

    Directory of Open Access Journals (Sweden)

    Komarnicki Przemysław

    2016-09-01

    Full Text Available Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.

  5. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  6. Local density approximations from finite systems

    CERN Document Server

    Entwistle, Mike; Wetherell, Jack; Longstaff, Bradley; Ramsden, James; Godby, Rex

    2016-01-01

    The local density approximation (LDA) constructed through quantum Monte Carlo calculations of the homogeneous electron gas (HEG) is the most common approximation to the exchange-correlation functional in density functional theory. We introduce an alternative set of LDAs constructed from slab-like systems of one, two and three electrons that resemble the HEG within a finite region, and illustrate the concept in one dimension. Comparing with the exact densities and Kohn-Sham potentials for various test systems, we find that the LDAs give a good account of the self-interaction correction, but are less reliable when correlation is stronger or currents flow.

  7. Energy storage management system with distributed wireless sensors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  8. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

    Science.gov (United States)

    Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik

    2016-01-08

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage.

  9. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  10. Intelligent systems for conveyance and storage infrastructure

    Science.gov (United States)

    Juliano, Thomas M.; Meegoda, Jay N.

    2002-02-01

    The objectives of this research project are to identify, demonstrate, and validate intelligent systems for conveyance and storage infrastructure that will enable effective, affordable, real-time, remote measurement, analysis, and reporting of their structural health. Specifically, the project involves testing and validating smart pipes, which could indicate locations of structurally weak areas, i.e., where leaks are likely to occur, and the location of existing leaks for corrective action. During the initial phase of this project an extensive literature search was conducted to identify technologies that could potentially be used in intelligent systems. Although the search was primarily focused on new emerging smart technologies, consideration was also given to innovative uses of established structural monitoring or testing technologies. Four emerging technologies that can potentially locate structurally weak areas and predict incipient leaks were identified: electrically conducting composite pipes, electrochemistry-based corrosion sensors, instrumented cathodic protection, and distributed piezoelectric sensors. Also identified was an innovative use of acoustic emission techniques to track deterioration in pre-stressed concrete pipes by monitoring energy releases from breaking corroded pre-stressing wires. A review of each of these technologies is presented. During the next phase of the program one or more of these technologies will be tested and evaluated further.

  11. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    Science.gov (United States)

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  12. Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems.

    Science.gov (United States)

    Miller, Bo E; Takashima, Yuzuru

    2016-12-26

    Resonant optical cavities have been demonstrated to improve energy efficiencies in Holographic Data Storage Systems (HDSS). The orthogonal reference beams supported as cavity eigenmodes can provide another multiplexing degree of freedom to push storage densities toward the limit of 3D optical data storage. While keeping the increased energy efficiency of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modification of current angular multiplexing HDSS.

  13. Reliability-oriented energy storage sizing in wind power systems

    DEFF Research Database (Denmark)

    Qin, Zian; Liserre, Marco; Blaabjerg, Frede;

    2014-01-01

    Energy storage can be used to suppress the power fluctuations in wind power systems, and thereby reduce the thermal excursion and improve the reliability. Since the cost of the energy storage in large power application is high, it is crucial to have a better understanding of the relationship...... between the size of the energy storage and the reliability benefit it can generate. Therefore, a reliability-oriented energy storage sizing approach is proposed for the wind power systems, where the power, energy, cost and the control strategy of the energy storage are all taken into account....... With the proposed approach, the computational effort is reduced and the impact of the energy storage system on the reliability of the wind power converter can be quantified....

  14. Ultrahigh Density Data Storage on Phase-Change Media Using Electron Beams

    Science.gov (United States)

    Gibson, Gary A.

    2004-03-01

    The unique, microfabricated, electron-beam-based data storage device described here is capable of providing large signals at MHz data rates from nanoscale bits. This device consists of three main components: a microfabricated array of electron-beam sources that are used to read and write bits, a medium containing a phase-changeable data storage layer, and an xy-stage capable of moving the storage medium relative to the electron sources with sub-nanometer precision. The storage medium consists of a pn-junction diode formed by growing the layered III-VI semiconductor InSe epitaxially on Si(111) with a thin intermediate layer of GaSe. Data bits are reversibly recorded as amorphous regions in the InSe layer. These bits are detected by monitoring the current induced in the diode by a scanned electron beam. Differences in the electronic properties of the amorphous and crystalline states of InSe modulate this current. The success of this approach results from the remarkable ability of layered chalcogenides to maintain exceptionally good electrical properties near their surfaces after repeated cycles of amorphization and recrystallization. The micromachined xy-stage utilizes an area-efficient design that allows 50% of the die to contain scanned data. This device is compatible with the integration of CMOS electronics and achieves a scan range of ± 25 μm using biases of only ± 15 V. Each electron-beam source is comprised of multiple nanostructured silicon field-emission tips with individual extractors and lenses. These sources show promise in delivering the high current densities and low noise required for this data storage application.

  15. Density-driven enhanced dissolution of injected CO2 during long-term CO2 geological storage

    Indian Academy of Sciences (India)

    Wei Zhang

    2013-10-01

    Geological storage of CO2 in deep saline formations is increasingly seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, possible leakage of injected CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells is a huge challenge for CO2 geological storage projects. Thus, the density-driven fluid flow as a process that can accelerate the phase change of injected CO2 from supercritical phase into aqueous phase is receiving more and more attention. In this paper, we performed higher-resolution reactive transport simulations to investigate the possible density-driven fluid flow process under the ‘real’ condition of CO2 injection and storage. Simulation results indicated that during CO2 injection and geological storage in deep saline formations, the higher-density CO2-saturated aqueous phase within the lower CO2 gas plume migrates downward and moves horizontally along the bottom of the formation, and the higher-density fingers within the upper gas plume propagate downward. These density-driven fluid flow processes can significantly enhance the phase transition of injected CO2 from supercritical phase into aqueous phase, consequently enhancing the effective storage capacity and long-term storage security of injected CO2 in saline formations.

  16. A Checkpoint Storage System for Desktop Grid Computing

    CERN Document Server

    Kiswany, Samer Al; Vazhkudai, Sudharshan S

    2007-01-01

    Checkpointing is an indispensable technique to provide fault tolerance for long-running high-throughput applications like those running on desktop grids. In these environments, a checkpoint storage system can offer multiple benefits: reduce the load on a traditional file system, offer high-performance through specialization, and, finally, optimize checkpoint data management by taking into account application semantics. Such a storage system can present a unifying abstraction to checkpoint operations, while hiding the fact that there are no dedicated resources to store the checkpoint data. This paper presents a dedicated checkpoint storage system for desktop grid environments. Our solution uses scavenged disk space from participating desktops to build an inexpensive storage space, offering a traditional file system interface for easy integration with checkpointing applications. This paper presents the architecture of our checkpoint storage system, key write optimizations for high-speed I/O, support for increme...

  17. Utility Battery Storage Systems Program report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  18. System Specification for Immobilized High-Level Waste Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    CALMUS, R.B.

    2000-12-27

    This specification establishes the system-level functional, performance, design, interface, and test requirements for Phase 1 of the IHLW Interim Storage System, located at the Hanford Site in Washington State. The IHLW canisters will be produced at the Hanford Site by a Selected DOE contractor. Subsequent to storage the canisters will be shipped to a federal geologic repository.

  19. Macstor dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. E. [Atomic Energy of Canada Limited, Montreal (Canada)

    1996-04-15

    AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive.

  20. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  1. Ultra High Density Scanning Electrical Probe Phase-Change Memory for Archival Storage

    Science.gov (United States)

    Wang, Lei; Wright, C. David; Shah, Purav; Aziz, Mustafa M.; Sebastian, Abu; Pozidis, Haralampos; Pauza, Andrew

    2011-09-01

    The potential for using probe-based phase-change memories for the future archival storage at densities of around 1 Tbit/in.2 is investigated using a recording medium comprising a Si/TiN/DLC/GeSbTe/diamond-like carbon (DLC) stack together with a conductive PtSi tip for writing and reading. Both experimental and computational simulation results are presented. The simulations include a physically-realistic threshold switching model, as well as the effects of thermal boundary resistance and electrical contact resistance. The simulated bit size and shape correspond closely to that written experimentally.

  2. The CMS event builder and storage system

    CERN Document Server

    Bauer, Gerry; Behrens, Ulf; Biery, Kurt; Brett, Angela; Branson, James; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dusinberre, Elizabeth; Erhan, Samim; Fortes Rodrigues, Fabiana; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gutleber, Johannes; Hatton, Derek; Klute, Markus; Laurens, Jean-François; Loizides, Constantin; Lopez Perez, Juan Antonio; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Patras, Vaios; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Serrano Margaleff, Josep Francesc; Shpakov, Dennis; Simon, Sean; Sumorok, Konstanty; Zanetti, Marco

    2010-01-01

    The CMS event builder assembles events accepted by the first level trigger and makes them available to the high-level trigger. The event builder needs to handle a maximum input rate of 100\\,kHz and an aggregated throughput of 100\\,GB/s originating from approximately 500 sources. This paper presents the chosen hardware and software architecture. The system consists of 2 stages: an initial pre-assembly reducing the number of fragments by one order of magnitude and a final assembly by several independent readout builder (RU-builder) slices. The RU-builder is based on 3 separate services: the buffering of event fragments during the assembly, the event assembly, and the data flow manager. A further component is responsible for handling events accepted by the high-level trigger: the storage manager (SM) temporarily stores the events on disk at a peak rate of 2\\,GB/s until they are permanently archived offline. In addition, events and data-quality histograms are served by the SM to online monitoring clients. We disc...

  3. A solar heating system with annual storage

    Science.gov (United States)

    Lazzari, F.; Raffellini, G.

    1981-07-01

    A solar heated house with long term storage capability, built in Trento, Italy, is described. The one story house was built from modular components and has a total heated volume of 1130 cu m. Flat plate solar collectors with a water-antifreeze medium are located beneath the lawn, and six cylindrical underground tanks holding 130 cu m of water heated by thermal energy from the collectors are situated under the garden. The house walls have an 8 cm cavity filled with 5 cm of formaldehyde foam, yielding a heat transmission (U) of 0.37 W/sq m/deg C. The roof and ceilings are insulated with fiberglass and concrete, producing U-values of 0.46 W/sq m/deg C and 0.57 W/sq m/deg C, respectively. Heat pumps using 6 kW move thermal energy between the house and the tanks. Direct hot water heating occurs in the summer, and direct home heating when the stored water temperature exceeds 32 C. A computer model was developed which traces the annual heat flow and it is shown that the system supplies all heating requirements for the house, with electrical requirements equal to 20 percent of the annual house needs.

  4. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... was realized for a 100 kW active rectier to be used in a 6 kV battery energy storage test bench. In the second part, dierent solutions for power converters to interface energy storage units to medium voltage grid are given. A new modular multilevel converter concept is introduced, where the energy storage......-voltage 100 kW bidirectional grid converter, to be used in a high voltage battery energy storage test bench. The control structure proved to be stable without damping. The converter was tested in the test bench and the experimental results are presented. Multilevel converters are replacing the classical two...

  5. Hydrogen storage on metal oxide model clusters using density-functional methods and reliable van der Waals corrections.

    Science.gov (United States)

    Gebhardt, Julian; Viñes, Francesc; Bleiziffer, Patrick; Hieringer, Wolfgang; Görling, Andreas

    2014-03-21

    We investigate the capability of low-coordinated sites on small model clusters to act as active centers for hydrogen storage. A set of small magic clusters with the formula (XY)6 (X = Mg, Ba, Be, Zn, Cd, Na, Li, B and Y = O, Se, S, F, I, N) and a "drumlike" hexagonal shape showing a low coordination number of three was screened. Oxide clusters turned out to be the most promising candidates for hydrogen storage. For these ionic compounds we explored the suitability of different van der Waals (vdW) corrections to density-functional calculations by comparing the respective H2 physisorption profile to highly accurate CCSD(T) (Coupled Cluster Singles Doubles with perturbative Triples) calculations. The Grimme D3 vdW correction in combination with the Perdew-Burke-Ernzerhof exchange-correlation functional was found to be the best approach compared to CCSD(T) hydrogen physisorption profiles and is, therefore, suited to study these and other light metal oxide systems. H2 adsorption on sites of oxide model clusters is found to meet the adsorption energy criteria for H2 storage, with bond strengths ranging from 0.15 to 0.21 eV. Energy profiles and estimates of kinetic constants for the H2 splitting reaction reveal that H2 is likely to be adsorbed molecularly on sites of (MgO)6, (BaO)6, and (BeO)6 clusters, suggesting a rapid H2 uptake/release at operating temperatures and moderate pressures. The small mass of beryllium and magnesium makes such systems appealing for meeting the gravimetric criterion for H2 storage.

  6. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  7. Computational Design of Non-natural Sugar Alcohols to Increase Thermal Storage Density: Beyond Existing Organic Phase Change Materials.

    Science.gov (United States)

    Inagaki, Taichi; Ishida, Toyokazu

    2016-09-14

    Thermal storage, a technology that enables us to control thermal energy, makes it possible to reuse a huge amount of waste heat, and materials with the ability to treat larger thermal energy are in high demand for energy-saving societies. Sugar alcohols are now one promising candidate for phase change materials (PCMs) because of their large thermal storage density. In this study, we computationally design experimentally unknown non-natural sugar alcohols and predict their thermal storage density as a basic step toward the development of new high performance PCMs. The non-natural sugar alcohol molecules are constructed in silico in accordance with the previously suggested molecular design guidelines: linear elongation of a carbon backbone, separated distribution of OH groups, and even numbers of carbon atoms. Their crystal structures are then predicted using the random search method and first-principles calculations. Our molecular simulation results clearly demonstrate that the non-natural sugar alcohols have potential ability to have thermal storage density up to ∼450-500 kJ/kg, which is significantly larger than the maximum thermal storage density of the present known organic PCMs (∼350 kJ/kg). This computational study suggests that, even in the case of H-bonded molecular crystals where the electrostatic energy contributes mainly to thermal storage density, the molecular distortion and van der Waals energies are also important factors to increase thermal storage density. In addition, the comparison between the three eight-carbon non-natural sugar alcohol isomers indicates that the selection of preferable isomers is also essential for large thermal storage density.

  8. Microencapsulated PCM thermal-energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Hawlader, M.N.A.; Uddin, M.S. [National Univ. of Singapore, Dept. of Chemical and Environmental Engineering, Singapore (Singapore); Khin, Mya Mya [National Univ. of Singapore, Dept. of Mechanical Engineering, Singapore (Singapore)

    2003-02-01

    The application of phase-change materials (PCM) for solar thermal-energy storage capacities has received considerable attention in recent years due to their large storage capacity and isothermal nature of the storage process. This study deals with the preparation and characterization of encapsulated paraffin-wax. Encapsulated paraffin particles were prepared by complex coacervation as well as spray-drying methods. The influence of different parameters on the characteristics and performance of a microencapsulated PCM in terms of encapsulation efficiency, and energy storage and release capacity has been investigated. The distribution of particle size and the morphology of microencapsulated PCM were analyzed by a scanning electron microscope (SEM). In the coacervation method, the optimum homogenizing time is 10 min and the amount of cross-linking agent is 6-8 mI. Results obtained from a differential scanning calorimeter (DSC) show that microcapsules prepared either by coacervation or the spray-drying method have a thermal energy storage/release capacity of about 145-240 J/g. Hence, encapsulated paraffin wax shows a good potential as a solar-energy storage material. (Author)

  9. Energy storage systems - Characteristics and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H. [Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300 allee des Ursulines, Que. (Canada); Anti Icing Materials International Laboratory (AMIL), Universite du Quebec a Chicoutimi, 555 boulevard de l' Universite, Que. (Canada); Ilinca, A. [Wind Energy Research Laboratory (WERL), Universite du Quebec a Rimouski, 300 allee des Ursulines, Que. (Canada); Perron, J. [Anti Icing Materials International Laboratory (AMIL), Universite du Quebec a Chicoutimi, 555 boulevard de l' Universite, Que. (Canada)

    2008-06-15

    Electricity generated from renewable sources, which has shown remarkable growth worldwide, can rarely provide immediate response to demand as these sources do not deliver a regular supply easily adjustable to consumption needs. Thus, the growth of this decentralized production means greater network load stability problems and requires energy storage, generally using lead batteries, as a potential solution. However, lead batteries cannot withstand high cycling rates, nor can they store large amounts of energy in a small volume. That is why other types of storage technologies are being developed and implemented. This has led to the emergence of storage as a crucial element in the management of energy from renewable sources, allowing energy to be released into the grid during peak hours when it is more valuable. The work described in this paper highlights the need to store energy in order to strengthen power networks and maintain load levels. There are various types of storage methods, some of which are already in use, while others are still in development. We have taken a look at the main characteristics of the different electricity storage techniques and their field of application (permanent or portable, long- or short-term storage, maximum power required, etc.). These characteristics will serve to make comparisons in order to determine the most appropriate technique for each type of application. (author)

  10. Distributed Energy Systems with Wind Power and Energy Storage

    OpenAIRE

    Korpås, Magnus

    2004-01-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy s...

  11. Distributed Energy Systems with Wind Power and Energy Storage

    OpenAIRE

    Korpås, Magnus

    2004-01-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy s...

  12. Phase change nanocomposites with tunable melting temperature and thermal energy storage density

    Science.gov (United States)

    Liu, Minglu; Wang, Robert Y.

    2013-07-01

    Size-dependent melting decouples melting temperature from chemical composition and provides a new design variable for phase change material applications. To demonstrate this potential, we create nanocomposites that exhibit stable and tunable melting temperatures through numerous melt-freeze cycles. These composites consist of a monodisperse ensemble of Bi nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. The Bi NPs operate as the phase change component whereas the PI resin matrix prevents nanoparticle coalescence during melt-freeze cycles. We tune melting temperature and enthalpy of fusion in these composites by varying the NP diameter. Adjusting the NP volume fraction also controls the composite's thermal energy storage density. Hence it is possible to leverage size effects to tune phase change temperature and energy density in phase change materials.Size-dependent melting decouples melting temperature from chemical composition and provides a new design variable for phase change material applications. To demonstrate this potential, we create nanocomposites that exhibit stable and tunable melting temperatures through numerous melt-freeze cycles. These composites consist of a monodisperse ensemble of Bi nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. The Bi NPs operate as the phase change component whereas the PI resin matrix prevents nanoparticle coalescence during melt-freeze cycles. We tune melting temperature and enthalpy of fusion in these composites by varying the NP diameter. Adjusting the NP volume fraction also controls the composite's thermal energy storage density. Hence it is possible to leverage size effects to tune phase change temperature and energy density in phase change materials. Electronic supplementary information (ESI) available: Experimental details and additional DSC data on nanocomposites and pure PI resin. See DOI: 10.1039/c3nr02842a

  13. Ni foam-immobilized MIL-101(Cr) nanocrystals toward system integration for hydrogen storage

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-10-01

    Full Text Available Metal–organic framework (MOF) materials are only obtained as loose powders with low packing density and thermal conductivity. To enable the developed MOF powdered materials to be utilized in a hydrogen storage system, in this study, MIL-101...

  14. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    Science.gov (United States)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  15. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled

    Directory of Open Access Journals (Sweden)

    Hossein Safaei

    2017-07-01

    Full Text Available We present analyses of three families of compressed air energy storage (CAES systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic CAES (A-CAES with physical storage of heat is the most efficient option with an exergy efficiency of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar exergy efficiencies (35.6% and 34.2%, partly due to low efficiency of the electrolyzer cell. CAES with high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage volume, followed by A-CAES (5.2 kWh/m3. Conventional CAES and CAES with low-temperature electrolysis have similar energy densities of 3.1 kWh/m3.

  16. Prototype of a magnetically suspended flywheel energy storage system

    Science.gov (United States)

    Plant, David P.; Kirk, J. A.; Anand, D. K.

    1989-01-01

    The authors describe recent progress in the development of a 500-Wh magnetically suspended flywheel stack energy storage system. The design of the system and a critical study of the noncontacting displacement transducers and their placement in the stack system are discussed. The storage system has been designed and constructed and is currently undergoing experimental analysis. The results acquired from the noncontacting displacement transducer study show that currently available transducers will not function as desired and that further research is essential.

  17. Development of a direct contact ice storage system

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, R. [Chicago Bridge & Iron Company, Plainfield, IL (United States)

    1989-03-01

    The program described involves the design, construction, and performance testing of a Direct Freeze Thermal Energy Storage System. Task 1 (Design) has been completed; and Task 2 (construction) is in progress, with equipment procurements presently underway. Once constructed, the system will undergo extensive laboratory performance testing and analysis, followed by an assessment of the system`s cost effectiveness. This study will advance the understanding and development of the direct freeze concept, which offers inherent benefits for thermal energy storage.

  18. Control system design for robotic underground storage tank inspection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission.

  19. NASA Langley Research Center's distributed mass storage system

    Science.gov (United States)

    Pao, Juliet Z.; Humes, D. Creig

    1993-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

  20. Power-reduction techniques for data-center storage systems

    NARCIS (Netherlands)

    Bostoen, Tom; Mullender, Sape; Berbers, Yolande

    2013-01-01

    As data-intensive, network-based applications proliferate, the power consumed by the data-center storage subsystem surges. This survey summarizes, organizes, and integrates a decade of research on power-aware enterprise storage systems. All of the existing power-reduction techniques are classified a

  1. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  2. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-01-01

    Experience and technical innovations in power plant engineering have resulted in continuous improvements of operation control, availability and safety of pumped storage plants. Process control is constantly improved as new developments are made in equipment and systems engineering. Plant control concepts with increasingly complex automation hierarchy are described by which pumped storage processes can be controlled optimally, reliably, and automatically.

  3. Prefeasibility study on compressed air energy storage systems

    Science.gov (United States)

    Elmahgary, Yehia; Peltola, Esa; Sipila, Kari; Vaatainen, Anne

    1991-08-01

    A prefeasibility study on Compressed Air Energy Storage (CAES) systems is presented. The costs of excavating rock caverns for compressed air storage and those for forming suitable storage caverns in existing mines were estimated, and this information was used to calculate the economics of CAES. An analysis of the different possible systems is given following a review of literature on CAES. This was followed by an economic analysis which comprised two separate systems. The first consisted of conventional oil fueled gas turbine plants provided with CAES system. In the second system wind turbines were used to run the compressors which are used in charging the compressed air storage cavern. The results of the current prefeasibility study confirmed the economic attractiveness of the CAES in the first system. Wind turbines still seem, however, to be too expensive to compete with coal power plants. More accurate and straightforward results could be obtained only in a more comprehensive study.

  4. Energy Storage Systems Program Report for FY99

    Energy Technology Data Exchange (ETDEWEB)

    BOYES,JOHN D.

    2000-06-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

  5. Building and managing high performance, scalable, commodity mass storage systems

    Science.gov (United States)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  6. Quantum information storage and state transfer based on spin systems

    CERN Document Server

    Song, Z

    2004-01-01

    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.

  7. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented....... The focus of this paper is to improve the efficiency of this system, which is small at low power levels. The driving motorpump group of the storage system is the key point presented in this paper for efficiency improving. Two control methods, experimentally implemented for induction machine are presented...

  8. Energy Storage Systems Program Report for FY98

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1999-04-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the U.S. Department of Energy's Office of Power Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1998.

  9. Energy storage systems program report for FY97

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1998-08-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to collaborate with industry in developing cost-effective electric energy storage systems for many high-value stationary applications. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1997. 46 figs., 20 tabs.

  10. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  11. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  12. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  13. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as T

  14. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as

  15. Enhancing the design of a superconducting coil for magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Indira, Gomathinayagam, E-mail: gindu80@gmail.com [EEE Department, Prince Shri Venkateshwara Padmavathy Engineering College, Chennai (India); UmaMaheswaraRao, Theru, E-mail: umesh.theru@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India); Chandramohan, Sankaralingam, E-mail: cdramo@gmail.com [Divison of Power Engineering and Management, Anna University, Chennai (India)

    2015-01-15

    Highlights: • High magnetic flux density of SMES coil to reduce the size. • YBCO Tapes for the construction of HTS magnets. • Relation between energy storage and length of the coil wound by various materials. • Design with a certain length of second-generation HTS. - Abstract: Study and analysis of a coil for Superconducting Magnetic Energy Storage (SMES) system is presented in this paper. Generally, high magnetic flux density is adapted in the design of superconducting coil of SMES to reduce the size of the coil and to increase its energy density. With high magnetic flux density, critical current density of the coil is degraded and so the coil is wound with High Temperature Superconductors (HTS) made of different materials. A comparative study is made to emphasize the relationship between the energy storage and length of the coil wound by Bi2223, SF12100, SCS12100 and YBCO tapes. Recently for the construction of HTS magnets, YBCO tapes have been used. Simulation models for various designs have been developed to analyze the magnetic field distribution for the optimum design of energy storage. The design which gives the maximum stored energy in the coil has been used with a certain length of second-generation HTS. The performance analysis and the results of comparative study are done.

  16. Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, D.E.

    1982-12-01

    The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  17. An Effective Cache Algorithm for Heterogeneous Storage Systems

    Directory of Open Access Journals (Sweden)

    Yong Li

    2013-01-01

    Full Text Available Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms.

  18. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  19. The architecture of the High Performance Storage System (HPSS)

    Energy Technology Data Exchange (ETDEWEB)

    Teaff, D.; Coyne, B. [IBM Federal, Houston, TX (United States); Watson, D. [Lawrence Livermore National Lab., CA (United States)

    1995-01-01

    The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements of large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage systems by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.

  20. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

    2004-12-01

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  1. Distributed energy systems with wind power and energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Korpaas, Magnus

    2004-07-01

    The topic of this thesis is the study of energy storage systems operating with wind power plants. The motivation for applying energy storage in this context is that wind power generation is intermittent and generally difficult to predict, and that good wind energy resources are often found in areas with limited grid capacity. Moreover, energy storage in the form of hydrogen makes it possible to provide clean fuel for transportation. The aim of this work has been to evaluate how local energy storage systems should be designed and operated in order to increase the penetration and value of wind power in the power system. Optimization models and sequential and probabilistic simulation models have been developed for this purpose. Chapter 3 presents a sequential simulation model of a general wind hydrogen energy system. Electrolytic hydrogen is used either as a fuel for transportation or for power generation in a stationary fuel cell. The model is useful for evaluating how hydrogen storage can increase the penetration of wind power in areas with limited or no transmission capacity to the main grid. The simulation model is combined with a cost model in order to study how component sizing and choice of operation strategy influence the performance and economics of the wind-hydrogen system. If the stored hydrogen is not used as a separate product, but merely as electrical energy storage, it should be evaluated against other and more energy efficient storage options such as pumped hydro and redox flow cells. A probabilistic model of a grid-connected wind power plant with a general energy storage unit is presented in chapter 4. The energy storage unit is applied for smoothing wind power fluctuations by providing a firm power output to the grid over a specific period. The method described in the chapter is based on the statistical properties of the wind speed and a general representation of the wind energy conversion system and the energy storage unit. This method allows us to

  2. Seismic and structural analysis of high density/consolidated spent fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B. [B and W Fuel Co., Lynchburg, VA (United States); Harstead, G.A. [Harstead Engineering Associates, Inc., Old Tappan, NJ (United States); Kopecky, B. [ATEA/FRAMATOME, Carquefou (France)

    1995-12-31

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, ad the type of the seismic event. This paper presents several of the mathematical models usually used. The models include features to allow sliding and tipping of the racks and to represent the hydrodynamic coupling which can occur between fuel assemblies and rack cells, between adjacent racks, and between the racks and the reinforced concrete walls. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies.

  3. Energy Storage Flywheel System with SMB and PMB and Its Performances

    Science.gov (United States)

    Mitsuda, Hisashi; Komori, Mochimitsu; Subkhan, Mukhamad; Inoue, Atsushi

    Since few years ago, electrical energy storage had been attracted as an effective use of electricity and coping with the momentary voltage drop. Above all, the flywheel energy storages using superconductor have advantages of long life, high energy density, and high efficiency. Our experimental machine uses a superconducting magnetic bearing (SMB) together with the permanent magnet bearing (PMB) and plans to reduce the overall cost and cooling cost. The purpose in this paper is to show the improvement of PMB and the motor drive, and estimate the system at momentary voltage drop by making a discharge system.

  4. Bulk energy storage increases United States electricity system emissions.

    Science.gov (United States)

    Hittinger, Eric S; Azevedo, Inês M L

    2015-03-03

    Bulk energy storage is generally considered an important contributor for the transition toward a more flexible and sustainable electricity system. Although economically valuable, storage is not fundamentally a "green" technology, leading to reductions in emissions. We model the economic and emissions effects of bulk energy storage providing an energy arbitrage service. We calculate the profits under two scenarios (perfect and imperfect information about future electricity prices), and estimate the effect of bulk storage on net emissions of CO2, SO2, and NOx for 20 eGRID subregions in the United States. We find that net system CO2 emissions resulting from storage operation are nontrivial when compared to the emissions from electricity generation, ranging from 104 to 407 kg/MWh of delivered energy depending on location, storage operation mode, and assumptions regarding carbon intensity. Net NOx emissions range from -0.16 (i.e., producing net savings) to 0.49 kg/MWh, and are generally small when compared to average generation-related emissions. Net SO2 emissions from storage operation range from -0.01 to 1.7 kg/MWh, depending on location and storage operation mode.

  5. Effective Data Backup System Using Storage Area Network Solution

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2015-06-01

    Jun 1, 2015 ... Abstract. One of the most crucial benefits of the computer system is its ability to manage data send to it for ... Keywords: Backup, Storage area network, Data, Effective and Data loss ... network can use existing communication.

  6. Agency Secure Image And Storage Tracking System (ASIST)

    Data.gov (United States)

    US Agency for International Development — Agency Secure Image and Storage Tracking System (Missions): is a Documentum-based user interface developed and maintained by the USAID OCIO (formerly IRM) to improve...

  7. Energy storage for electrical systems in the USA

    National Research Council Canada - National Science Library

    Eugene Freeman; Davide Occello; Frank Barnes

    2016-01-01

    Energy storage is becoming increasingly important as renewable generation sources such as Wind Turbine and Photo Voltaic Solar are added to the mix in electrical power generation and distribution systems...

  8. Mutlifunctional Fibers for Energy Storage in Advanced EVA Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase II effort is to demonstrate prototype multifunctional EVA system power patches that integrate energy storage into advanced space...

  9. Phase-change recording medium that enables ultrahigh-density electron-beam data storage

    Science.gov (United States)

    Gibson, G. A.; Chaiken, A.; Nauka, K.; Yang, C. C.; Davidson, R.; Holden, A.; Bicknell, R.; Yeh, B. S.; Chen, J.; Liao, H.; Subramanian, S.; Schut, D.; Jasinski, J.; Liliental-Weber, Z.

    2005-01-01

    An ultrahigh-density electron-beam-based data storage medium is described that consists of a diode formed by growing an InSe/GaSe phase-change bilayer film epitaxially on silicon. Bits are recorded as amorphous regions in the InSe layer and are detected via the current induced in the diode by a scanned electron beam. This signal current is modulated by differences in the electrical properties of the amorphous and crystalline states. The success of this recording scheme results from the remarkable ability of layered III-VI materials, such as InSe, to maintain useful electrical properties at their surfaces after repeated cycles of amorphization and recrystallization.

  10. Rebuilding for Array Codes in Distributed Storage Systems

    CERN Document Server

    Wang, Zhiying; Bruck, Jehoshua

    2010-01-01

    In distributed storage systems that use coding, the issue of minimizing the communication required to rebuild a storage node after a failure arises. We consider the problem of repairing an erased node in a distributed storage system that uses an EVENODD code. EVENODD codes are maximum distance separable (MDS) array codes that are used to protect against erasures, and only require XOR operations for encoding and decoding. We show that when there are two redundancy nodes, to rebuild one erased systematic node, only 3/4 of the information needs to be transmitted. Interestingly, in many cases, the required disk I/O is also minimized.

  11. Energy Storage Management in Grid Connected Solar Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Vidhya M.E

    2015-04-01

    Full Text Available The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid connected system was performed by the dynamic switching process.

  12. Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

    2004-07-01

    This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

  13. Developing a Model for a CHP System with Storage

    Directory of Open Access Journals (Sweden)

    M. Abunku

    2016-04-01

    Full Text Available A model for a Combined Heat and Power (CHP system developed using Matlab is presented in this project. The model developed includes sub-models of Internal Combustion Engine (ICE and generator, electrical and thermal storage systems, and power converters (rectifier and inverter. The model developed is able to simulate the performance of a CHP system when supplying user load. The battery electrical storage system is modelled and used as the electrical storage for this project, and the water storage tank is modelled and used as thermal storage. The project presents the model developed, and the results of the analysis done on the model. The model considered only heat from engine cooling, which is used to heat water to supply the DHW (District Hot Water needs of the user. The results show that by the addition of storage to the CHP system, the overall system efficiency is increased by 32% indicating that the model developed is reliable, and the project is a feasible one

  14. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  15. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  16. Security System in United Storage Network and Its Implementation

    Institute of Scientific and Technical Information of China (English)

    黄建忠; 谢长生; 韩德志

    2005-01-01

    With development of networked storage and its applications, united storage network (USN) combined with network attached storage (NAS) and storage area network (SAN) has emerged. It has such advantages as high performance, low cost, good connectivity, etc. However the security issue has been complicated because USN responds to block I/O and file I/O requests simultaneously. In this paper, a security system module is developed to prevent many types of atl~cks against USN based on NAS head.The module not only uses effective authentication to prevent unauthorized access to the system data, but also checks the data integrity.Experimental results show that the security module can not only resist remote attacks and attacks from those who has physical access to the USN, but can also be seamlessly integrated into underlying file systems, with little influence on their performance.

  17. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.; Hagstroem, M.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The main technical constraint in solar energy systems which operate around the year is the lack of suitable long-term energy storage. Conventional solutions to overcome the problem of seasonal storage in PV power systems are to use oversized batteries as a seasonal energy storage, or to use a diesel back-up generator. However, affordable lead-acid batteries are not very suitable for seasonal energy storage because of a high self-discharge rate and enhanced deterioration and divergence of the single cells during prolonged periods of low state of charge in times of low irradiation. These disadvantages can be avoided by a back-up system, e.g. a diesel generator, which car supply energy to the loads and charge the battery to the full state of charge to avoid the above mentioned disadvantages. Unfortunately, diesel generators have several disadvantages, e.g. poor starting reliability, frequent need for maintenance and noise

  18. Underground storage systems for high-pressure air and gases

    Science.gov (United States)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  19. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  20. High-density automotive hydrogen storage with cryogenic capable pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Espinosa-Loza, Francisco; Ledesma-Orozco, Elias; Ross, Timothy O.; Weisberg, Andrew H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-792, Livermore, CA 94551 (United States); Brunner, Tobias C.; Kircher, Oliver [BMW Group, Knorrstr. 147, 80788 Munich (Germany)

    2010-02-15

    LLNL is developing cryogenic capable pressure vessels with thermal endurance 5-10 times greater than conventional liquid hydrogen (LH{sub 2}) tanks that can eliminate evaporative losses in routine usage of (L)H{sub 2} automobiles. In a joint effort BMW is working on a proof of concept for a first automotive cryo-compressed hydrogen storage system that can fulfill automotive requirements on system performance, life cycle, safety and cost. Cryogenic pressure vessels can be fueled with ambient temperature compressed gaseous hydrogen (CGH{sub 2}), LH{sub 2} or cryogenic hydrogen at elevated supercritical pressure (cryo-compressed hydrogen, CcH{sub 2}). When filled with LH{sub 2} or CcH{sub 2}, these vessels contain 2-3 times more fuel than conventional ambient temperature compressed H{sub 2} vessels. LLNL has demonstrated fueling with LH{sub 2} onboard two vehicles. The generation 2 vessel, installed onboard an H{sub 2}-powered Toyota Prius and fueled with LH{sub 2} demonstrated the longest unrefueled driving distance and the longest cryogenic H{sub 2} hold time without evaporative losses. A third generation vessel will be installed, reducing weight and volume by minimizing insulation thickness while still providing acceptable thermal endurance. Based on its long experience with cryogenic hydrogen storage, BMW has developed its cryo-compressed hydrogen storage concept, which is now undergoing a thorough system and component validation to prove compliance with automotive requirements before it can be demonstrated in a BMW test vehicle. (author)

  1. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  2. Autothermal hydrogen storage and delivery systems

    Science.gov (United States)

    Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  3. A Review of Flywheel Energy Storage System Technologies and Their Applications

    Directory of Open Access Journals (Sweden)

    Mustafa E. Amiryar

    2017-03-01

    Full Text Available Energy storage systems (ESS provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS, since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

  4. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    Science.gov (United States)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  5. Innovative and cost competitive hydrogen storage systems: STORHY- A European integrated Project

    Energy Technology Data Exchange (ETDEWEB)

    Strubel, V.; Bartlok, G.; Krainz, G.; Gauthier, A.; Mair, G.; Muller, J.; Barral, K.; Zieger, J.

    2005-07-01

    Session Alternative fuel and drive train solutions represent one of the biggest challenge for the vehicle of the future. Current research activities related to hydrogen as an energy carrier indicate that the concept of a hydrogen economy has considerably gained in credibility in recent years. One main technical gap for the wide commercialisation of hydrogen-fuelled vehicles is the improvement of hydrogen storage systems in terms of efficiency, cost and safety. This is indeed the main objective of the Integrated Project StorHy within the EU 6th Framework Programme. In IP StorHy, the major European automotive companies, gas suppliers, research institutes and universities will develop innovative and cost competitive storage solutions with a view to mass production. Technologies of 700 bar compressed gaseous hydrogen storage vessels will be investigated in terms of the following criteria: novel liner materials, modular storage vessel concept, liner and composite vessel manufacturing processes, fast-filling processes for 700 bar vessels applying cool filling protocols, safety on-board monitoring system, recyclability, 700 bar exchangeable rack. Thanks to its low working pressure (compared to high-pressure systems), cryogenic storage of liquid hydrogen allows for new concepts with conformable geometries more suited to vehicle design. Furthermore, the use of new composite materials entails a great potential for weight reduction - with these materials a specific energy storage mass similar to conventional fuel tanks can be achieved. As for the solid hydrogen storage technologies, the StorHy project focuses on light weight complex alanates as these are considered as one of the most promising materials for solid hydrogen storage. The investigations concentrate on improving hydrogen storage density as well as hydrogenation/dehydrogenation kinetics. Furthermore, material production processes capable of supplying larger quantities of storage material for a demonstrator tank

  6. AnalyzeThis: An Analysis Workflow-Aware Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyogi [ORNL; Kim, Youngjae [ORNL; Vazhkudai, Sudharshan S [ORNL; Tiwari, Devesh [ORNL; Anwar, Ali [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Ramakrishnan, Lavanya [Lawrence Berkeley National Laboratory (LBNL)

    2015-01-01

    The need for novel data analysis is urgent in the face of a data deluge from modern applications. Traditional approaches to data analysis incur significant data movement costs, moving data back and forth between the storage system and the processor. Emerging Active Flash devices enable processing on the flash, where the data already resides. An array of such Active Flash devices allows us to revisit how analysis workflows interact with storage systems. By seamlessly blending together the flash storage and data analysis, we create an analysis workflow-aware storage system, AnalyzeThis. Our guiding principle is that analysis-awareness be deeply ingrained in each and every layer of the storage, elevating data analyses as first-class citizens, and transforming AnalyzeThis into a potent analytics-aware appliance. We implement the AnalyzeThis storage system atop an emulation platform of the Active Flash array. Our results indicate that AnalyzeThis is viable, expediting workflow execution and minimizing data movement.

  7. Ceph, a distributed storage system for scientific computing

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Ceph is a distributed storage system designed to providing high performance and reliability at scales of up to thousands of storage nodes. The system is based on a distributed object storage layer call RADOS that provides durability, availability, efficient data distribution, and rich object semantics. This storage can be consumed directly via an object-based interface, or via file, block, or REST-based object services that are built on top of it. Clusters are composed of commodity components to provide a reliable storage service serving multiple use-cases. This seminar will cover the basic architecture of Ceph, with a focus on how each service can be consumed in a research and infrastructure environment. About the speaker Sage Weil, Founder and current CTO of Inktank Inc, is the creator of the Ceph project. He originally designed it as part of his PhD research in Storage Systems at the University of California, Santa Cruz. Since graduating, he has continued to refine the system with the goal of providi...

  8. Standard review plan for dry cask storage systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  9. Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Joel Sminchak

    2011-09-30

    The Arches Province in the Midwestern U.S. has been identified as a major area for carbon dioxide (CO{sub 2}) storage applications because of the intersection of Mt. Simon sandstone reservoir thickness and permeability. To better understand large-scale CO{sub 2} storage infrastructure requirements in the Arches Province, variable density scoping level modeling was completed. Three main tasks were completed for the variable density modeling: Single-phase, variable density groundwater flow modeling; Scoping level multi-phase simulations; and Preliminary basin-scale multi-phase simulations. The variable density modeling task was successful in evaluating appropriate input data for the Arches Province numerical simulations. Data from the geocellular model developed earlier in the project were translated into preliminary numerical models. These models were calibrated to observed conditions in the Mt. Simon, suggesting a suitable geologic depiction of the system. The initial models were used to assess boundary conditions, calibrate to reservoir conditions, examine grid dimensions, evaluate upscaling items, and develop regional storage field scenarios. The task also provided practical information on items related to CO{sub 2} storage applications in the Arches Province such as pressure buildup estimates, well spacing limitations, and injection field arrangements. The Arches Simulation project is a three-year effort and part of the United States Department of Energy (U.S. DOE)/National Energy Technology Laboratory (NETL) program on innovative and advanced technologies and protocols for monitoring/verification/accounting (MVA), simulation, and risk assessment of CO{sub 2} sequestration in geologic formations. The overall objective of the project is to develop a simulation framework for regional geologic CO{sub 2} storage infrastructure along the Arches Province of the Midwestern U.S.

  10. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  11. Storage functions for dissipative linear systems are quadratic state functions

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, Jan C.

    1997-01-01

    This paper deals with dissipative dynamical systems. Dissipative dynamical systems can be used as models for physical phenomena in which energy exchange with their environment plays a role. In a dissipative dynamical system, the book-keeping of energy is done via the supply rate and a storage functi

  12. Overview of a flywheel stack energy storage system

    Science.gov (United States)

    Kirk, James A.; Anand, Davinder K.

    1988-01-01

    The concept of storing electrical energy in rotating flywheels provides an attractive substitute to batteries. To realize these advantages the critical technologies of rotor design, composite materials, magnetic suspension, and high efficiency motor/generators are reviewed in this paper. The magnetically suspended flywheel energy storage system, currently under development at the University of Maryland, consisting of a family of interference assembled rings, is presented as an integrated solution for energy storage.

  13. Thermal energy storage with liquid-liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santana, E.A.; Stiel, L.I. [Polytechnic Univ., Brooklyn, NY (United States)

    1989-03-01

    The use of liquid-liquid mixtures for heat and cool storage applications has been investigated. Suitable mixtures exhibit large changes in the heat of mixing above and below the critical solution temperature of the system. Analytical procedures have been utilized to determine potential energy storage capabilities of systems with upper or lower critical solution temperatures. It has been found that aqueous systems with lower critical solution temperatures in a suitable range can result in large increases in the effective heat capacity in the critical region. For cool storage with a system of this type, the cooling process results in a transformation from two liquid phases to a single phase. Heats of mixing have been measured with a flow calorimeter system for a number of potential mixtures, and the results are summarized.

  14. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  15. Improved accounting of emissions from utility energy storage system operation.

    Science.gov (United States)

    Denholm, Paul; Holloway, Tracey

    2005-12-01

    Several proposed utility-scale energy storage systems in the U.S. will use the spare output capacity of existing electric power systems to create the equivalent of new load-following plants that can rapidly respond to fluctuations in electricity demand and increase the flexibility of baseload generators. New energy storage systems using additional generation from existing plants can directly compete with new traditional sources of load-following and peaking electricity, yet this application of energy storage is not required to meet many of the Clean Air Act standards required of new electricity generators (e.g., coal- or gas-fired power plants). This study evaluates the total emissions that will likely result from the operation of a new energy storage facility when coupled with an average existing U.S. coal-fired power plant and estimates that the emission rates of SO2 and NOx will be considerably higher than the rate of a new plant meeting Clean Air Act standards, even accounting for the efficiency benefits of energy storage. This study suggests that improved emissions "accounting" might be necessary to provide accurate environmental comparisons between energy storage and more traditional sources of electricity generation.

  16. Storage Capacity Modeling of Reservoir Systems Employing Performance Measures

    Directory of Open Access Journals (Sweden)

    Issa Saket Oskoui

    2014-12-01

    Full Text Available Developing a prediction relationship for total (i.e. within-year plus over-year storage capacity of reservoir systems is beneficial because it can be used as an alternative to the analysis of reservoirs during designing stage and gives an opportunity to planner to examine and compare different cases in a fraction of time required for complete analysis where detailed analysis is not necessary. Existing relationships for storage capacity are mostly capable of estimating over-year storage capacity and total storage capacity can be obtained through relationships for adjusting over-year capacity and there is no independent relationship to estimate total storage capacity. Moreover these relationships do not involve vulnerability performance criterion and are not verified for Malaysia Rivers. In this study two different reservoirs in Southern part of Peninsular Malaysia, Melaka and Muar, are analyzed through a Monte Carlo simulation approach involving performance metrics. Subsequently the storage capacity results of the simulation are compared with those of the well-known existing equations. It is observed that existing models may not predict total capacity appropriately for Malaysian reservoirs. Consequently, applying the simulation results, two separate regression equations are developed to model total storage capacity of study reservoirs employing time based reliability and vulnerability performance measures.

  17. Seasonal heat storage in cogeneration systems; Saesongvaermelager i kraftvaermesystem

    Energy Technology Data Exchange (ETDEWEB)

    Zinko, Heimo; Gebremedhin, Alemayehu

    2007-07-01

    There is a rising interest in Sweden for the use of cogeneration power plants in district heating networks, generating both electricity and heat in a coupled operation. This type of cogeneration needs, however, the existence of suitable heat loads. In this study we investigate the use of large long-term heat storages for the cases that the DH-load is not sufficient. For this purpose, the technology of long-term storages is also reviewed based on the know-how developed for solar heating plants at the end of 20th century. Long-term storages have been developed around the 1980s and 1990s. The storages have been built as pits in the ground or as caverns for the storage of hot water or as borehole storages and aquifers for heat storages in rock or ground material. In this report, the different techniques are described and operational experiences from Sweden and Germany are summarised. Furthermore, the storage costs for the different techniques are presented. In order to be of interest for application in cogeneration systems, it is necessary that the storage allows charging and discharging with high heat capacities. The most suitable storage type for that purpose is a rock cavern, which can be constructed in volumes up to millions of m3 water with reasonable costs, as demonstrated in the 1970s with strategic oil storages. Another interesting storage type is the borehole ground storage, as used in solar heating plants. However, in the application for cogeneration, this storage type must be further developed towards higher heat transfer rates. For the analysis of storage applications in cogeneration systems, a number of operational cases from real cogeneration systems in Enkoeping and in Linkoeping have been studied. Models have been developed for calculation in Excel and operational years have been simulated and economically evaluated with different storage sizes. The following basic systems have been analysed: a) System with biofuel-fired cogeneration and biofuel top

  18. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  19. Improved Control Strategy for Microgrid Ultracapacitor Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Xiaobo Dou

    2014-12-01

    Full Text Available Ultracapacitors (UCs, with their features of high power density and high current charge-discharge, have become the best choice for dynamic power compensation to improve the stability of microgrids and are increasingly being applied in microgrids. This paper presents the control of an energy storage system (ESS based on ultracapacitors in the context of grid-connected microgrids. The ESS is composed of DC/AC and DC/DC converters tied by a dc link. An improved dynamic model for the ESS is proposed. Based on the proposed model a Proportional-Integral-Resonant (PIR DC link voltage controller is proposed to maintain the DC link voltage through the charging-discharging control of ultracapacitors, capable of working properly under all operating conditions. An extra double frequency component is injected into the UC current by a R controller to dynamically compensate for DC instantaneous power and double frequency AC instantaneous power due to unbalanced grid conditions and disturbances. This feature maintains the DC link voltage constant under unbalanced conditions and increases the degrees of freedom of the DC/AC converter and thus facilitates the application of UCs in microgrids. Simulation and experimental results verify the effectiveness of the proposed control strategy.

  20. Simulation of diurnal thermal energy storage systems: Preliminary results

    Science.gov (United States)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  1. Simulation of diurnal thermal energy storage systems: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, S.; Somasundaram, S. [Pacific Northwest Lab., Richland, WA (United States); Williams, H.R. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Mechanical Engineering

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  2. Technical and economic evaluation of hydrogen storage systems based on light metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jepsen, Julian

    2014-07-01

    Novel developments regarding materials for solid-state hydrogen storage show promising prospects. These complex hydrides exhibit high mass-related storage capacities and thus great technical potential to store hydrogen in an efficient and safe way. However, a comprehensive evaluation of economic competitiveness is still lacking, especially in the case of the LiBH4 / MgH2 storage material. In this study, an assessment with respect to the economic feasibility of implementing complex hydrides as hydrogen storage materials is presented. The cost structure of hydrogen storage systems based on NaAlH4 and LiBH4 / MgH2 is discussed and compared with the conventional high pressure (700 bar) and liquid storage systems. Furthermore, the properties of LiBH4 / MgH2, so-called Li-RHC (Reactive Hydride Composite), are scientifically compared and evaluated on the lab and pilot plant scale. To enhance the reaction rate, the addition of TiCl3 is investigated and high energy ball milling is evaluated as processing technique. The effect of the additive in combination with the processing technique is described in detail. Finally, an optimum set of processing parameters and additive content are identified and can be applied for scaled-up production of the material based on simple models considering energy input during processing. Furthermore, thermodynamic, heat transfer and kinetic properties are experimentally determined by different techniques and analysed as a basis for modelling and designing scaled-up storage systems. The results are analysed and discussed with respect to the reaction mechanisms and reversibility of the system. Heat transfer properties are assessed with respect to the scale-up for larger hydrogen storage systems. Further improvements of the heat transfer were achieved by compacting the material. In this regard, the influence of the compaction pressure on the apparent density, thermal conductivity and sorption behaviour, was investigated in detail. Finally, scaled

  3. Low-Density and High Porosity Hydrogen Storage Materials Built from Ultra-Light Elements. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Pingyun [Univ. of California, Riverside, CA (United States)

    2014-01-10

    A number of significant advances have been achieved, opening up new opportunities for the synthetic development of novel porous materials and their energy-related applications including gas storage and separation and catalysis. These include lithium-based metal-organic frameworks, magnesium-based metal-organic frameworks, and high gas uptake in porous frameworks with high density of open donor sites.

  4. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  5. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  6. Hydrogen based energy storage for solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Hagstroem, M.T.; Lund, P.H. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics; Leppaenen, J.R.; Nieminen, J.P. [Neste Oy (Finland)

    1998-12-31

    Hydrogen based energy storage options for solar energy systems was studied in order to improve their overall performance. A 1 kW photovoltaic hydrogen (PV-H2) pilot-plant and commercial prototype were constructed and a numerical simulation program H2PHOTO for system design and optimisation was developed. Furthermore, a comprehensive understanding of conversion (electrolysers and fuel cells) and storage (metal hydrides) technologies was acquired by the project partners. The PV-H{sub 2} power system provides a self-sufficient solution for applications in remote locations far from electric grids and maintenance services. (orig.)

  7. A Cassette Based System for Hydrogen Storage and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Britton Wayne E.

    2006-11-29

    A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

  8. Design and Implementation of ZTE Object Storage System

    Institute of Scientific and Technical Information of China (English)

    Huabin Ruan; Xiaomeng Huang; Yang Zhou

    2012-01-01

    This paper introduces the basic concepts and features of an obiect storage system. It also introduces some related standards, specifications, and implementations for several existing systems. ZTE' s Object Storage System (ZTE OSS) was designed by Tsinghua University and ZTE Corporation and is designed to manage large amounts of data. ZTE OSS has a scalable architecture, some open source components, and an efficient key-value database. ZTE OSS is easy to scale and highly reliable. Experiments show that ZTE OSS performs well with mass data and heavy

  9. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  10. Space Station thermal storage/refrigeration system research and development

    Science.gov (United States)

    Dean, W. G.; Karu, Z. S.

    1993-02-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  11. Energy: Systems for Control, Maintenance, and Storage. A Bibliography.

    Science.gov (United States)

    Thomas, Gerald, Comp.; McKane, Irving, Comp.

    This publication is a bibliography of available periodical literature on specific aspects of energy and today's technology. The Applied Science and Technology Indexes were searched for articles that related to these specific areas: (1) Energy control systems; (2) Maintenance of Energy Systems; and (3) Energy storage. The articles and papers…

  12. Monolithic natural gas storage delivery system based on sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-09-27

    The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.

  13. Monolithic natural gas storage delivery system based on sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-09-27

    The invention provides methods for producing a strong, light, sorbent-based storage/dispenser system for gases and fuels. The system comprises a porous monolithic material with an adherent strong impervious skin that is capable of storing a gas under pressure in a safe and usable manner.

  14. Hydrogen-air energy storage gas-turbine system

    Science.gov (United States)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  15. Dry spent fuel storage with the MACSTOR system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations

    1996-10-01

    Atomic Energy of Canada Limited (AECL), and Transnuclear Inc. (TNI) began in 1989 the development of the concrete spent fuel storage system, called MACSTOR (Modular Air-Cooled Canister STORage) for use with LWR spent fuel assemblies. It is a hybrid system which combines the operational economies of metal cask technology with the capital economies of concrete technology. The MACSTOR Module is a monolithic, shielded concrete vault structure that can accommodate up to 20 spent fuel canisters. Each canister typically holds up to 21 PWR or 44 BWR spent fuel assemblies with a nominal fuel burn up rate of 40,000 MWD/MTU and a 7 year minimum cooling period. The structure is passively cooled by natural convection through an array of inlet and outlet gratings and galleries serving a central plenum where the (vertically) stored canisters are located. The canisters are continuously monitored by means of a pressure monitoring system developed by TNI. Thus, the utility can be assured of both positive cooling of the fuel and verification of the integrity of the fuel confinement boundary. The structure is seismically designed and is capable of withstanding site design basis accident events. The MACSTOR system includes the storage module(s), an overhead gantry system for cask handling, a transfer cask for moving fuel from wet to dry storage and a cask transporter. The canister and transfer cask designs are based on Transnuclear transport cask designs and proven hot cell transfer cask technology, adapted to requirements for on-site spent fuel storage. The MACSTOR system can economically address a wide range of storage capacity requirements. The modular concept allows for flexibility in determining each module`s capacity. Starting with 8 canisters, the capacity can be increased by increments of 4 up to 20 canisters. The MACSTOR system is also flexible in accommodating the various spent fuel types from such reactors as VVER-440, VVER-1000 and RBMK 1500. (J.P.N.)

  16. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  17. Dependable Benchmarking for Storage Systems in High-Energy Physics

    CERN Document Server

    Fleri Soler, Edward

    2017-01-01

    In high-energy physics, storage systems play a crucial role to store and secure very valuable data produced by complex experiments. The effectiveness and efficiency of data acquisition systems of such experiments depends directly on those of these storage systems. Coping with present day rates and reliability requirements of such experiments implies operating high-performance hardware under the best possible conditions, with a broad set of hardware and software parameters existing along the hierarchical levels, from networks down to drives. An extensive number of tests are required for the tuning of parameters to achieve optimised I/O operations. Current approaches to I/O optimisation generally consist of manual test execution and result taking. This approach lacks appropriate modularity, durability and reproducibility, attainable through dedicated testing facilities. The aim of this project is to conceive a user-friendly, dedicated storage benchmarking tool for the improved comparison of I/O parameters in re...

  18. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  19. Sorbent Material Property Requirements for On-Board Hydrogen Storage for Automotive Fuel Cell Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Peng, J-K; Hua, T. Q.

    2015-05-25

    Material properties required for on-board hydrogen storage in cryogenic sorbents for use with automotive polymer electrolyte membrane (PEM) fuel cell systems are discussed. Models are formulated for physical, thermodynamic and transport properties, and for the dynamics of H-2 refueling and discharge from a sorbent bed. A conceptual storage configuration with in-bed heat exchanger tubes, a Type-3 containment vessel, vacuum insulation and requisite balance-of-plant components is developed to determine the peak excess sorption capacity and differential enthalpy of adsorption for 5.5 wt% system gravimetric capacity and 55% well-to-tank (WTT) efficiency. The analysis also determines the bulk density to which the material must be compacted for the storage system to reach 40 g.L-1 volumetric capacity. Thermal transport properties and heat transfer enhancement methods are analyzed to estimate the material thermal conductivity needed to achieve 1.5 kg.min(-1) H-2 refueling rate. Operating temperatures and pressures are determined for 55% WTT efficiency and 95% usable H-2. Needs for further improvements in material properties are analyzed that would allow reduction of storage pressure to 50 bar from 100 bar, elevation of storage temperature to 175-200 K from 150 K, and increase of WTT efficiency to 57.5% or higher.

  20. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  1. Structural factors of solar system cluster ground coupled storage rationalization

    Directory of Open Access Journals (Sweden)

    Viktor V. Wysochin

    2015-12-01

    Full Text Available The computational investigations of unsteady heat transfer in seasonal solar heat storage system were conducted. This storage system consists of nine ground heat exchangers. The investigations were made for periodical diurnal cycle charging during summer season. The heat exchanger is presented as vertical probe with concentric tubes arrangement. Aim: The aim of the work is the optimization of cluster ground coupled storage – the probes quantity in cluster, their lengths and interval – using high precision mathematical model. Materials and Methods: The mathematical model of conjugate solar system functioning and ground coupled storage involves differential equations describing the incoming and conversion of solar energy in solar collector. Also it includes the heat exchange in ground heat exchangers and three-dimensional soil mass. Results: The need of mutual influence accounting of the solar collector and the ground heat exchanger size ranges is shown. One more thing – capability of effectiveness improvement of the collector based on reasonable step size selection for cluster and selection of active heat exchangers quantity in requisite construction. Conclusions: The recommendations for organization of heat exchangers of the collector work are offered. The five-probe structure is the most effective one for cluster arrangement of seasonal heat storage. The recommended interval between probes is 4 meters.

  2. Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications

    OpenAIRE

    ALLEGRE, Anne-Laure; Trigui, Rochdi; Bouscayrol, Alain

    2010-01-01

    The energy storage is a key issue for traction applications like Electric Vehicles (EVs) or Hybrid Electric Vehicles (HEVs). Indeed, it needs a higher power and energy density, a right size, a long lifetime and a low cost. A Hybrid Energy Storage System (HESS) using batteries and supercapacitors seems to be an appropriate device to fulfill these constraints. The objective of the paper is to propose different energy management strategies of HESS using batteries and supercapacitors. Four elabor...

  3. Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications

    OpenAIRE

    ALLEGRE, Anne-Laure; TRIGUI, Rochdi; Bouscayrol, Alain

    2010-01-01

    The energy storage is a key issue for traction applications like Electric Vehicles (EVs) or Hybrid Electric Vehicles (HEVs). Indeed, it needs a higher power and energy density, a right size, a long lifetime and a low cost. A Hybrid Energy Storage System (HESS) using batteries and supercapacitors seems to be an appropriate device to fulfill these constraints. The objective of the paper is to propose different energy management strategies of HESS using batteries and supercapacitors. Four elabor...

  4. Regenerative flywheel energy storage system. Volume 1: Executive summary

    Science.gov (United States)

    1980-06-01

    The development, fabrication, and test of a regenerative flywheel energy storage and recovery system for a battery/flywheel electric vehicle of the 3000 pound class are described. The vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  5. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  6. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues

    2017-07-01

    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  7. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    OpenAIRE

    Alexandre Hugo; Radu Zmeureanu

    2012-01-01

    The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1) reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2) using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS softwar...

  8. Integrated Building Energy Systems Design Considering Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

    2009-04-07

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

  9. Design of a high temperature subsurface thermal energy storage system

    Science.gov (United States)

    Zheng, Qi

    Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher

  10. Management Methods In Sla-Aware Distributed Storage Systems

    Directory of Open Access Journals (Sweden)

    Darin Nikolow

    2012-01-01

    Full Text Available Traditional data storage systems provide access to user’s data on the “besteffort” basis. While this paradigm is sufficient in many use cases it becomesan obstacle for applications with Quality of Service (QoS constraints. ServiceLevel Agreement (SLA is a part of the contract agreed between the serviceprovider and the client and contains a set of well defined QoS requirementsregarding the provided service and the penalties applied in case of violations.In the paper we propose a set of SLA parameters and QoS metrics relevantto data storage processes and the management methods necessary for avoidingSLA violations. A key assumption in the proposed approach is that the underlyingdistributed storage system does not provide functionality for resource orbandwidth reservation for a given client request.

  11. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  12. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  13. Chelonia: A self-healing, replicated storage system

    Science.gov (United States)

    Kerr Nilsen, Jon; Toor, Salman; Nagy, Zsombor; Read, Alex

    2011-12-01

    Chelonia is a novel grid storage system designed to fill the requirements gap between those of large, sophisticated scientific collaborations which have adopted the grid paradigm for their distributed storage needs, and of corporate business communities gravitating towards the cloud paradigm. Chelonia is an integrated system of heterogeneous, geographically dispersed storage sites which is easily and dynamically expandable and optimized for high availability and scalability. The architecture and implementation in term of web-services running inside the Advanced Resource Connector Hosting Environment Dameon (ARC HED) are described and results of tests in both local -area and wide-area networks that demonstrate the fault tolerance, stability and scalability of Chelonia will be presented. In addition, example setups for production deployments for small and medium-sized VO's are described.

  14. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  15. dCache,a Distributed Storage Data Cahing System

    Institute of Scientific and Technical Information of China (English)

    MichaelErns; CharlesWaldman; 等

    2001-01-01

    This article is about a piece of middle ware,allowing to convert a dump tape based Tertiary Storage System into a multi petabyte random access device with thousands of channels.Using typical caching mechanisms,the software optimizes the access to the underlying Storage System and makes better use of possibly expensive drives and robots or allows to integrate cheap and slow devices without introducing unacceptable performance degadation.In addition,using the standard NFS2 protocol,the dCache provides a unique view into the storage repository,hiding the physical location of the file data,cached or tape only.Bulk data transfer is supported through the kerberized FTP protocol and a C-API,providing the posix file access semantics,Dataset staging and disk space management is performed invisibly to the data clients.The project is a DESY,Fermilab joint effort to overcome limitations in the usage of tertiary storage resources common to many HEP labs.The distributed cache nodes may range from high performance SGI machines to commodity CERN Linux-IDE like file server models.Different cache nodes are assumed to have different affinities to particular storage groups or file sets.Affinities may be defined manually or are calculated by the dCache based on topology considerations.Cache nodes may have different disk space management policies to match the large variety of applications from raw data to user analysis data pools.

  16. 75 FR 70241 - Compatibility of Underground Storage Tank Systems With Biofuel Blends

    Science.gov (United States)

    2010-11-17

    ... AGENCY Compatibility of Underground Storage Tank Systems With Biofuel Blends AGENCY: Environmental... tank (UST) compatibility requirement as it applies to UST systems storing gasoline containing greater... underground storage tank systems greater clarity in demonstrating compatibility of their tank systems...

  17. System-level modeling for geological storage of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-04-24

    One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

  18. Stochastic Geomorphology: Indexing Climate Change Through Shifts in Probability Densities of Erosion, Sediment Flux, Storage and Habitats

    Science.gov (United States)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and storage are described by their probability densities. The conceptual and numerical framework can generate a series of general principles (hypotheses) on how basin-scale erosion and sedimentation regimes, viewed through the lens of probability distributions, change with variations in climate, topography, geology, vegetation, basin scale, and network topology; for more detail on the general principles see AGU session EP02. The conceptual and numerical framework of stochastic geomorphology is well suited for forecasting and interpreting affects of climate change on geomorphological systems, including the habitats associated with them. Climate change involves shifts in probability distributions of precipitation (rain and snow), fires, and wind. Consequently, shifts in distributions of precipitation frequency and magnitude or wildfire frequency, intensity and size should lead to shifts in erosion, sediment flux and sedimentation distributions. Shifts could include either a greater or lesser skew of their attendant probability densities. For example, increasing the frequency of fires in a stochastic simulation model of erosion and sedimentation will lead to altered frequency and magnitude of hillslope erosion in the form of pulses of sediment through the river network. This will be reflected in shifts in the probability densities of erosion and sedimentation and also how sediment flux and storage distributions evolve downstream in river networks. Heightened erosion frequency and magnitude due to climate change can increase Hurst Effects in time series of sediment flux and thus an increase in depletion of hillslope stores of sediment can result in temporally lingering sedimentation affects throughout river networks, even if climate relaxed to pre-change conditions. Similarly, heightened hillslope

  19. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    Science.gov (United States)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  20. Intelligent Storage System Based on Automatic Identification

    Directory of Open Access Journals (Sweden)

    Kolarovszki Peter

    2014-09-01

    Full Text Available This article describes RFID technology in conjunction with warehouse management systems. Article also deals with automatic identification and data capture technologies and each processes, which are used in warehouse management system. It describes processes from entering goods into production to identification of goods and also palletizing, storing, bin transferring and removing goods from warehouse. Article focuses on utilizing AMP middleware in WMS processes in Nowadays, the identification of goods in most warehouses is carried through barcodes. In this article we want to specify, how can be processes described above identified through RFID technology. All results are verified by measurement in our AIDC laboratory, which is located at the University of Žilina, and also in Laboratory of Automatic Identification Goods and Services located in GS1 Slovakia. The results of our research bring the new point of view and indicate the ways using of RFID technology in warehouse management system.

  1. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  2. Storage of energy in confined quantum systems

    OpenAIRE

    Malbouisson, A. P. C.

    2002-01-01

    Using the non-perturbative method of {\\it dressed} states introduced in previous publications [N.P.Andion, A.P.C. Malbouisson and A. Mattos Neto, J.Phys.{\\bf A34}, 3735, (2001); G. Flores-Hidalgo, A.P.C. Malbouisson, Y.W. Milla, Phys. Rev. A, {\\bf 65}, 063314 (2002)], we study the evolution of a confined quantum mechanical system embedded in a {\\it ohmic} environment. Our approach furnishes a theoretical mechanism to control inhibition of the decay of excited quantum systems in cavities, in b...

  3. Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions.  The need for advances in energy storage...

  4. Wind energy management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    Increasing integration of wind energy into the power system makes the optimal management of different situations that can occur more and more important. The objective of the present study is to replace the power necessary for electrical feed when the wind resources are not available, and to make a continuous demand tracking of the power. The energy storage systems treated in this study are as follows: a fuel cell, flywheel, pump systems and turbine systems, compressed air systems, electrochemical cells, electric vehicles, supercapacitors and superconductors. As a result the maximum benefit of the smart grid is achieved and it includes coexistence of the energy storage systems described and integrated in the numerous microgrids which can form the distribution grid. The current capacity is observed in order to be able to manage the wind generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations through these storage systems allowing the systems to maintain their constant programming for the base plants, adjusting the variations in these systems in the short term. (orig.)

  5. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo

    2012-10-01

    Full Text Available The reduction of electricity use for heating and domestic hot water in cold climates can be achieved by: (1 reducing the heating loads through the improvement of the thermal performance of house envelopes, and (2 using solar energy through a residential solar-based thermal storage system. First, this paper presents the life cycle energy and cost analysis of a typical one-storey detached house, located in Montreal, Canada. Simulation of annual energy use is performed using the TRNSYS software. Second, several design alternatives with improved thermal resistance for walls, ceiling and windows, increased overall air tightness, and increased window-to-wall ratio of South facing windows are evaluated with respect to the life cycle energy use, life cycle emissions and life cycle cost. The solution that minimizes the energy demand is chosen as a reference house for the study of long-term thermal storage. Third, the computer simulation of a solar heating system with solar thermal collectors and long-term thermal storage capacity is presented. Finally, the life cycle cost and life cycle energy use of the solar combisystem are estimated for flat-plate solar collectors and evacuated tube solar collectors, respectively, for the economic and climatic conditions of this study.

  6. Cake: Enabling High-level SLOs on Shared Storage Systems

    Science.gov (United States)

    2012-11-07

    because the naïve consolidation strategy results in unmediated resource contention within the storage system. concerns itself only with fair sharing...NoSQL at Netflix . http://techblog.netflix.com/2011/01/ nosql-at-netflix.html. [26] V. Jacobson. Congestion avoidance and control. SIGCOMM Computer

  7. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable e

  8. Optical CDMA system using bacteriorhodopsin for optical data storage

    Science.gov (United States)

    Bae; Yang; Jin; Lee; Park

    1999-11-01

    An optical CDMA (code division multiple access) system for the optical data storage using bacteriorhodopsin (BR) is reported as an application of the BR materials. The desired signal of multiple input can be recorded and reconstructed by use of orthogonal codes. An experimental setup is proposed and demonstrated.

  9. Aquifer storage and recovery: recent hydrogeological advances and system performance.

    Science.gov (United States)

    Maliva, Robert G; Guo, Weixing; Missimer, Thomas M

    2006-12-01

    Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.

  10. High-density lipoprotein 3 and apolipoprotein A-I alleviate platelet storage lesion and release of platelet extracellular vesicles.

    Science.gov (United States)

    Pienimaeki-Roemer, Annika; Fischer, Astrid; Tafelmeier, Maria; Orsó, Evelyn; Konovalova, Tatiana; Böttcher, Alfred; Liebisch, Gerhard; Reidel, Armin; Schmitz, Gerd

    2014-09-01

    Stored platelet (PLT) concentrates (PLCs) for transfusion develop a PLT storage lesion (PSL), decreasing PLT viability and function with profound lipidomic changes and PLT extracellular vesicle (PL-EV) release. High-density lipoprotein 3 (HDL3 ) improves PLT homeostasis through silencing effects on PLT activation in vivo. This prompted us to investigate HDL3 and apolipoprotein A-I (apoA-I) as PSL-antagonizing agents. Healthy donor PLCs were split into low-volume standard PLC storage bags and incubated with native (n)HDL3 or apoA-I from plasma ethanol fractionation (precipitate IV) for 5 days under standard blood banking conditions. Flow cytometry, Born aggregometry, and lipid mass spectrometry were carried out to analyze PL-EV release, PLT aggregation, agonist-induced PLT surface marker expression, and PLT and plasma lipid compositions. Compared to control, added nHDL3 and apoA-I significantly reduced PL-EV release by up to -62% during 5 days, correlating with the added apoA-I concentration. At the lipid level, nHDL3 and apoA-I antagonized PLT lipid loss (+12%) and decreased cholesteryl ester (CE)/free cholesterol (FC) ratios (-69%), whereas in plasma polyunsaturated/saturated CE ratios increased (+3%) and CE 16:0/20:4 ratios decreased (-5%). Administration of nHDL3 increased PLT bis(monoacylglycero)phosphate/phosphatidylglycerol (+102%) and phosphatidic acid/lysophosphatidic acid (+255%) ratios and improved thrombin receptor-activating peptide 6-induced PLT aggregation (+5%). nHDL3 and apoA-I improve PLT membrane homeostasis and intracellular lipid processing and increase CE efflux, antagonizing PSL-related reduction in PLT viability and function and PL-EV release. We suggest uptake and catabolism of nHDL3 into the PLT open canalicular system. As supplement in PLCs, nHDL3 or apoA-I from Fraction IV of plasma ethanol fractionation have the potential to improve PLC quality to prolong storage. © 2014 AABB.

  11. Design of Mooring System for Oil Storage Vessels

    Institute of Scientific and Technical Information of China (English)

    李文龙; 谭家华

    2003-01-01

    The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in China. Mooring is one of the key technologies to ensure the safety, reliability, and performance of the oil storage system. This paper describes the concept, analysis, design and reliability of the mooring system. For mooring system design of these oil vessels, analysis is essential of the behavior of the vessel in connection with mooring facilities of nonlinear resilience. A nonlinear mathematical model for analyzing a moored vessel is established and solved. Some results of numerical simulations are presented. Assessment of the safety regarding the mooring system in terms of failure probability is carried out. Another simulation model for calculating the failure probability of the mooring system is proposed. The design parameters that have an influence on the characteristics of the failure probability have been identified. The simulation results show that the mooring system has an annual reliability value of 0.999998. The proposed simulation method is proved to be effective in quantitative evaluation of the safety of the mooring system for floating oil storage vessels.

  12. A data driven model for the impact of IFT and density variations on CO2 storage capacity in geologic formations

    Science.gov (United States)

    Nomeli, Mohammad A.; Riaz, Amir

    2017-09-01

    Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.

  13. Nanostructural Materials for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Bronislaw Buczek

    2011-01-01

    Full Text Available The aim of this study was to assess of carbonaceous monoliths used for adsorption cooling systems. The carbonaceous monoliths prepared from coal precursors are obtained. The porous structure of monoliths was evaluated on the basis of nitrogen adsorption-desorption data. The investigated monoliths have significantly developed microporous structure. The large specific area of carbonaceous monoliths (about 2000 m2/g and volume of micropores are observed. Methanol adsorption isotherms and heat of wetting using methanol was determined. Results show that monoliths materials are high adsorption capacity of methanol and heat of wetting, which can improve of heat exchange and efficiency in processes of refrigeration and air conditioning.

  14. Hydrogen based energy storage for energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Bretthauer, Christian

    2011-07-01

    This thesis presents the development of a novel type of silicon integrated alkaline fuel cell - electrolyser device as on-chip energy storage. The alkaline environment allows not only a facilitated water management compared to state-of-the-art acidic integrated fuel cell systems, it further allows the usage of non-precious metal catalysts and hydrogen storage materials, for the first time. Additionally, a button cell shaped version of the accumulator is presented that incorporates a photoactive SrTiO{sub 3} ceramic for solar recharge. The solar charging mechanism is shown to be inherently self-regulating such that the cell depicts essentially a Micro Hydrogen Economy including energy conversion, energy management and energy storage in a single device. (orig.)

  15. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    OpenAIRE

    Arindam Chakraborty; Musunuri, Shravana K.; Anurag K. Srivastava; Kondabathini, Anil K.

    2012-01-01

    Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as win...

  16. High Performance Storage System Scalability: Architecture, Implementation, and Experience

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R W

    2005-01-05

    The High Performance Storage System (HPSS) provides scalable hierarchical storage management (HSM), archive, and file system services. Its design, implementation and current dominant use are focused on HSM and archive services. It is also a general-purpose, global, shared, parallel file system, potentially useful in other application domains. When HPSS design and implementation began over a decade ago, scientific computing power and storage capabilities at a site, such as a DOE national laboratory, was measured in a few 10s of gigaops, data archived in HSMs in a few 10s of terabytes at most, data throughput rates to an HSM in a few megabytes/s, and daily throughput with the HSM in a few gigabytes/day. At that time, the DOE national laboratories and IBM HPSS design team recognized that we were headed for a data storage explosion driven by computing power rising to teraops/petaops requiring data stored in HSMs to rise to petabytes and beyond, data transfer rates with the HSM to rise to gigabytes/s and higher, and daily throughput with a HSM in 10s of terabytes/day. This paper discusses HPSS architectural, implementation and deployment experiences that contributed to its success in meeting the above orders of magnitude scaling targets. We also discuss areas that need additional attention as we continue significant scaling into the future.

  17. Cost Benefit Analysis of the Power Storage System Considering Outage Cost in the Deregulated Power Market

    Science.gov (United States)

    Tsuru, Hirokazu; Fujii, Yasumasa

    In this paper, the authors propose the mathematical model which derives the optimal operation strategies of an on-site power storage system through the use of stochastic dynamic programming technique. The model takes account of the variations and uncertainties of electricity market prices as well as the outage costs of power grid failures. The market price fluctuation is modeled with stochastic differential equation. The stochastic state transitions between normal and failed systems are modeled with exponential density functions. The derived optimal operation indicates that the economic value of the storage system may be increased substantially, if the avoided outage costs are explicitly taken into account. The results of the sensitivity analysis indicate that the most influential parameters are the magnitude of outage cost and the mean time to failure of power grid.

  18. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times.

    Science.gov (United States)

    Ahn, Chang Won; Amarsanaa, Gantsooj; Won, Sung Sik; Chae, Song A; Lee, Dae Su; Kim, Ill Won

    2015-12-09

    We demonstrate a capacitor with high energy densities, low energy losses, fast discharge times, and high temperature stabilities, based on Pb(0.97)Y(0.02)[(Zr(0.6)Sn(0.4))(0.925)Ti(0.075)]O3 (PYZST) antiferroelectric thin-films. PYZST thin-films exhibited a high recoverable energy density of U(reco) = 21.0 J/cm(3) with a high energy-storage efficiency of η = 91.9% under an electric field of 1300 kV/cm, providing faster microsecond discharge times than those of commercial polypropylene capacitors. Moreover, PYZST thin-films exhibited high temperature stabilities with regard to their energy-storage properties over temperatures ranging from room temperature to 100 °C and also exhibited strong charge-discharge fatigue endurance up to 1 × 10(7) cycles.

  19. Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly(vinylidene fluoride) composite films

    Science.gov (United States)

    Zheng, Ming-Sheng; Zha, Jun-Wei; Yang, Yu; Han, Peng; Hu, Chao-He; Wen, Yong-Qiang; Dang, Zhi-Min

    2017-06-01

    A series of composites blending thermoplastic polyurethane (TPU) with poly(vinylidene fluoride) (PVDF) were prepared in this work to realize a high energy storage density. Low loading of TPU (dispersion state in the PVDF matrix. We demonstrate that the incorporation of TPU induces high breakdown strength which results in promoted energy storage performance. In addition, the influence of the different TPU hardnesses (65, 75, and 85) on the breakdown strength of TPU/PVDF composites was also investigated. Finally, a maximum value up to 537.8 MV/m at 3 vol. % TPU with a hardness of 65 was obtained, which led to a high energy density of 10.36 J/cm3.

  20. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    OpenAIRE

    Erren Yao; Xinbing Wang; Liqin Wang; Huanran Wang

    2013-01-01

    A novel pumped hydro combined with compressed air energy storage (PHCA) system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented...

  1. Enhanced electrophoretic motion using supercapacitor-based energy storage system.

    Science.gov (United States)

    Liu, Ran; Wong, Flory; Duan, Wentao; Sen, Ayusman

    2013-12-23

    Electrophoretic motion at low potentials is facilitated by redox chemistry occurring in a supercapacitor-based electrochemical energy storage system during charge and discharge. We show that MnO2 -modified electrodes can effectively alleviate the electrode surface polarization, the main factor that leads to inefficient electrophoresis at low voltages. A self-powered electrophoretic system based on a discharging battery has been also fabricated.

  2. Improving Recording Density of All-Optical Magnetic Storage by Using High-Pass Angular Spectrum Filters

    Institute of Scientific and Technical Information of China (English)

    ZHUANG You-Yi; ZHANG Yao-Ju

    2009-01-01

    A new design is presented to improve the magnetic recording density in all-optical magnetic storage.By using the high numerical lens with a high-pass angular spectrum filter, circularly polarized laser pulses are focused into the magneto-optic film with the perpendicular anisotropy.Magnetization of the film is induced by the inverse Faraday effect.As the obstructed angle of the filter increases the magnetic recording density increases evidently.The magnetization intensity and the sidelobe effect are also discussed.

  3. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  4. High-power electrochemical energy storage system employing stable radical pseudocapacitors.

    Science.gov (United States)

    Maruyama, Hitoshi; Nakano, Hideyuki; Nakamoto, Masaaki; Sekiguchi, Akira

    2014-01-27

    The development of electrical energy storage devices that can operate at high charge and discharge rates is fundamentally important, however although electrochemical capacitors (ECs) can charge and discharge at high rates, their electrochemical storage capacity remains an order of magnitude lower than that of conventional lithium-ion batteries. Novel pseudocapasitors are developed, based on the stable persilyl-susbtituted free radicals of the heavy group 14 elements, (tBu2 MeSi)3 E(.) [E=Si (1), Ge (2), and Sn (3)], as anode materials for energy storage system. Such systems showed a remarkable cycle stability without significant loss of power density, in comparison with similar characteristics of the known organic radical batteries, the dual carbon cell, and the electrochemical capacitor. Particularly important is that these novel electrochemical energy storage systems employing stable heavy group 14 element radicals are lithium-free. The electrochemical properties and structures of the reduced and oxidized species were studied by the cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and X-ray diffraction (XRD).

  5. K Basins sludge removal temporary sludge storage tank system

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  6. A combined uninterruptible power supply and dynamic voltage compensator using a flywheel energy storage system

    Science.gov (United States)

    Weissbach, Robert Stephen

    Due to recent technological advances in materials, power electronics, magnetic bearings and controls, the flywheel energy storage system has become a viable alternative to electrochemical batteries. The advantages of the flywheel system are its higher power density, insensitivity to environmental conditions, lack of hazardous materials and ease of checking the charge. One potential use is in a power distribution system. The flywheel energy storage system may be used as both an uninterruptible power supply as well as a means of dynamic voltage compensation to protect critical loads on radial distribution feeders. To perform dynamic voltage compensation, a comparison was performed which shows that the series injection of power is preferable to the shunt injection of power in utilizing the available kVA of the flywheel system motor/generator. The system was designed and modeled using the Electromagnetic Transients Program to ensure a proper dynamic response of the flywheel energy storage system in either mode of operation. The design incorporates a boost converter on the dc link to enable the load voltage to be maintained as the flywheel spins down. The same boost converter also allows for extended operation in the series compensation mode, by implementing a novel control scheme where sinusoidal pulse width modulation control is used for to compensate for smaller supply voltage dips, while the boost converter is used to control the compensation for larger supply voltage dips.

  7. Performance Analysis of a Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    K. Ghedamsi

    2008-06-01

    Full Text Available The flywheel energy storage systems (FESSs are suitable for improving the quality of the electric power delivered by the wind generators and to help these generators to contribute to the ancillary services. In this paper, a flywheel energy storage system associated to a grid connected variable speed wind generation (VSWG scheme using a doubly fed induction generator (DFIG is investigated. Therefore, the dynamic behavior of a wind generator, including models of the wind turbine (aerodynamic, DFIG, matrix converter, converter control (algorithm of VENTURINI and power control is studied. This paper investigates also, the control method of the FESS with a classical squirrel-cage induction machine associated to a VSWG using back-to-back AC/AC converter. Simulation results of the dynamic models of the wind generator are presented, for different operating points, to show the good performance of the proposed system.

  8. Review of power quality applications of energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-05-01

    Under the sponsorship of the US Department of Energy (DOE) Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories contracted Sentech, Inc., to assess the impact of power quality problems on the electricity supply system. This report contains the results of several studies that have identified the cost of power quality events for electricity users and providers. The large annual cost of poor power quality represents a national inefficiency and is reflected in the cost of goods sold, reducing US competitiveness. The Energy Storage Systems (ESS) Program takes the position that mitigation merits the attention of not only the DOE but affected industries as well as businesses capable of assisting in developing solutions to these problems. This study represents the preliminary stages of an overall strategy by the ESS Program to understand the magnitude of these problems so as to begin the process of engaging industry partners in developing solutions.

  9. Noble gas storage and delivery system for ion propulsion

    Science.gov (United States)

    Back, Dwight Douglas (Inventor); Ramos, Charlie (Inventor)

    2001-01-01

    A method and system for storing and delivering a noble gas for an ion propulsion system where an adsorbent bearing a noble gas is heated within a storage vessel to desorb the noble gas which is then flowed through a pressure reduction device to a thruster assembly. The pressure and flow is controlled using a flow restrictor and low wattage heater which heats an adsorbent bed containing the noble gas propellant at low pressures. Flow rates of 5-60 sccm can be controlled to within about 0.5% or less and the required input power is generally less than 50 W. This noble gas storage and delivery system and method can be used for earth orbit satellites, and lunar or planetary space missions.

  10. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali; Bialek, Tom

    2017-06-27

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  11. The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

    Science.gov (United States)

    van Egmond, W. J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C. J. N.; Hamelers, H. V. M.

    2016-09-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

  12. Optimization of a solar cooling system with interior energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)

    2010-07-15

    This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)

  13. Storage and shipment system for beer and beverage; Beer inryo hokan shukka system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    This storage and shipment system for beer and beverage was delivered to Suita factory of Asahi Breweries, Ltd. for reducing the shipment lead time essential for the total fresh management activity promoted by the whole company. Main specifications: (1) Warehouse capacity: 26,880 pallets, (2) Stacker crane: 24 units (twin shuttle system), (3) Conveyer: 1 unit, (4) Truck loader: 3 units, (5) Handling capacity: 760 pallet/h for storage, 670 pallet/h for shipment. Features: (1) Storage system directly connected with a plant by immediate automatic storage after palletizing, (2) One-point loading by a package loading berth with an alignment function, (3) High-speed mass storage and shipment handling by distributing system, (4) High reliability by block distributing system. (translated by NEDO)

  14. Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability.

    Science.gov (United States)

    Roy, Swagata; Thakur, Pradip; Hoque, Nur Amin; Bagchi, Biswajoy; Sepay, Nayim; Khatun, Farha; Kool, Arpan; Das, Sukhen

    2017-07-19

    Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.4%) and dielectric constant (ε ≈ 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of β-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.

  15. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  16. Novel, high-energy-density electrical-storage device for electric weapons. Final report 26 Feb-25 Aug 92

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.M.

    1992-08-25

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L2) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, the authors also found that the L(2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  17. High-temperature molten salt thermal energy storage systems

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.

    1980-02-01

    The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.

  18. Unified storage systems for distributed Tier-2 centres

    CERN Document Server

    Cowan, Greig A; Elwell, Andrew

    2008-01-01

    The start of data taking at the Large Hadron Collider will herald a new era in data volumes and distributed processing in particle physics. Data volumes of hundreds of Terabytes will be shipped to Tier-2 centres for analysis by the LHC experiments using the Worldwide LHC Computing Grid (WLCG). In many countries Tier-2 centres are distributed between a number of institutes, e.g., the geographically spread Tier-2s of GridPP in the UK. This presents a number of challenges for experiments to utilise these centres efficaciously, as CPU and storage resources may be sub-divided and exposed in smaller units than the experiment would ideally want to work with. In addition, unhelpful mismatches between storage and CPU at the individual centres may be seen, which make efficient exploitation of a Tier-2's resources difficult. One method of addressing this is to unify the storage across a distributed Tier-2, presenting the centres' aggregated storage as a single system. This greatly simplifies data management for the VO, ...

  19. Optimal Planning and Operation Management of a Ship Electrical Power System with Energy Storage System

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Meng, Lexuan

    2016-01-01

    for the proposed plan is derived based on the solution from a mixed-integer nonlinear programming (MINLP) problem. Simulation results showed that including well-sized energy storage options together with optimal operation management of generating units can improve the economic operation of the test system while...... problems to shipboard systems where some means of generation and storage are also schedulable. First, the question of whether or how much energy storage to include into the system is addressed. Both the storage power rating in MW and the capacity in MWh are optimized. Then, optimal operating strategy......Next generation power management at all scales is highly relying on the efficient scheduling and operation of different energy sources to maximize efficiency and utility. The ability to schedule and modulate the energy storage options within energy systems can also lead to more efficient use...

  20. A Low Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Li, Xianfeng; Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin

    2017-10-05

    Flow battery (FB) is one of the most promising stationary energy storage devices for storing renewable energies. However, commercial progress of the FBs is limited by their high cost and low energy density. Here we report a neutral zinc-iron FB with very low cost and high energy density. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh/L can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66% can be obtained at 40 mA/cm2 and the battery can run stably for more than 100 cycles. Furthermore, a porous membrane with low cost was employed to lower the capital cost to less than 50 $/kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB becomes a promising candidate for stationary energy storage applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  2. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  3. Integrated Bidding and Operating Strategies for Wind-Storage Systems

    DEFF Research Database (Denmark)

    Ding, Huajie; Pinson, Pierre; Hu, Zechun

    2016-01-01

    to perform arbitrage and to alleviate wind power deviations from day-ahead contracts. The strategy is developed with two-price balancing markets in mind. A mixed integer nonlinear optimization formulation is built to determine optimal offers by taking into account expected wind power forecasting errors......Due to their flexible charging and discharging capabilities, energy storage systems (ESS) are considered a promising complement to wind farms (WFs) participating in electricity markets. This paper presents integrated day-ahead bidding and real-time operation strategies for a wind-storage system...... and the power balancing capability of the ESS. A modified gradient descent algorithm is designed to solve this nonlinear problem. A number of case studies validate the computational efficiency and optimality of the algorithm. Compared to the existing strategies, the proposed strategies yield increased economic...

  4. Efficient proof of ownership for cloud storage systems

    Science.gov (United States)

    Zhong, Weiwei; Liu, Zhusong

    2017-08-01

    Cloud storage system through the deduplication technology to save disk space and bandwidth, but the use of this technology has appeared targeted security attacks: the attacker can deceive the server to obtain ownership of the file by get the hash value of original file. In order to solve the above security problems and the different security requirements of the files in the cloud storage system, an efficient and information-theoretical secure proof of ownership sceme is proposed to support the file rating. Through the K-means algorithm to implement file rating, and use random seed technology and pre-calculation method to achieve safe and efficient proof of ownership scheme. Finally, the scheme is information-theoretical secure, and achieve better performance in the most sensitive areas of client-side I/O and computation.

  5. Investigation of storage system designs and techniques for optimizing energy conservation in integrated utility systems. Volume 2: (Application of energy storage to IUS)

    Science.gov (United States)

    1976-01-01

    The applicability of energy storage devices to any energy system depends on the performance and cost characteristics of the larger basic system. A comparative assessment of energy storage alternatives for application to IUS which addresses the systems aspects of the overall installation is described. Factors considered include: (1) descriptions of the two no-storage IUS baselines utilized as yardsticks for comparison throughout the study; (2) discussions of the assessment criteria and the selection framework employed; (3) a summary of the rationale utilized in selecting water storage as the primary energy storage candidate for near term application to IUS; (4) discussion of the integration aspects of water storage systems; and (5) an assessment of IUS with water storage in alternative climates.

  6. NVRAM as Main Storage of Parallel File System

    OpenAIRE

    MALINOWSKI Artur

    2016-01-01

    Modern cluster environments' main trouble used to be lack of computational power provided by CPUs and GPUs, but recently they suffer more and more from insufficient performance of input and output operations. Apart from better network infrastructure and more sophisticated processing algorithms, a lot of solutions base on emerging memory technologies. This paper presents evaluation of using non-volatile random-access memory as a main storage of Parallel File System. The author justifies fea...

  7. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  8. A Model of BES Data Storage Management System

    Institute of Scientific and Technical Information of China (English)

    MeiYE; MeiMA; 等

    2001-01-01

    In this article we will introduce the system structure of a model built for BES data management and storage as well as the basic methods on how to establish the system.Additionally the analysis of the data structure,the data process,the selection of experimental program,the image manipulation and the key techniques will be discussed in detail,The model implements the setup of the system environment and all those functions from data loading,database cresting,data accessing,remote data process to data figuring.

  9. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  10. Alternative Energetics DC Microgrid With Hydrogen Energy Storage System

    Directory of Open Access Journals (Sweden)

    Zaļeskis Genadijs

    2016-12-01

    Full Text Available This paper is related to an alternative energetics microgrid with a wind generator and a hydrogen energy storage system. The main aim of this research is the development of solutions for effective use of the wind generators in alternative energetics devices, at the same time providing uninterrupted power supply of the critical loads. In this research, it was accepted that the alternative energetics microgrid operates in an autonomous mode and the connection to the conventional power grid is not used. In the case when wind speed is low, the necessary power is provided by the energy storage system, which includes a fuel cell and a tank with stored hydrogen. The theoretical analysis of the storage system operation is made. The possible usage time of the stored hydrogen depends on the available amount of hydrogen and the consumption of the hydrogen by the fuel cell. The consumption, in turn, depends on used fuel cell power. The experimental results suggest that if the wind generator can provide only a part of the needed power, the abiding power can be provided by the fuel cell. In this case, a load filter is necessary to decrease the fuel cell current pulsations.

  11. Solar power management for smart grids with storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, Manuel [Universidad de Alicante (Spain). Area de Ingenieria Electrica; Rios, Alberto [Universidad Europea de Madrid (Spain). Area de Ingenieria Electrica

    2012-07-01

    The increasing integration of solar photovoltaic power into the power system makes the optimal management of different situations that can occur more and more important. The current capacity is observed in order to be able to predict the solar generation for short periods of time. This way it is possible to plan the production which would be adjusted to the variations in these storage systems allowing the system to maintain its constant programming for base plants, adjusting the variations in these systems in the short term. The referred accumulation systems are as follows: a fuel cell, mass flywheel, pump and turbine systems, compressed air systems, electrochemical cells, supercapacitors, superconductors, and electric vehicles. As a result the maximum benefit for the smart grid is achieved. (orig.)

  12. Energy storage systems for renewable island systems. An enormous global market potential

    Energy Technology Data Exchange (ETDEWEB)

    Blechinger, Philipp [Reiner Lemoine Institut gGmbH, Berlin (Germany); Berlin Institute of Technology, Berlin (Germany). Dept. of Engineering; Howe, Enrico; Cader, Catherina; Plessmann, Guido; Hlusiak, Markus; Seguin, Robert; Breyer, Christian [Reiner Lemoine Institut gGmbH, Berlin (Germany)

    2012-07-01

    Mini-grids with high shares of renewable energies usually require energy storage systems based on technological and economic reasons. According to natural conditions battery storage is often the only applicable storage technology and thus hybrid mini-grids can be considered as very attractive niche market in substitution of diesel minigrids. Unfortunately these mini-grids are difficult to identify in terms of location and size. Thus within this study small islands are analyzed to determine the market potential for energy storage systems. The focus is on tropical islands as they seem to be the most favourable islands due to their natural conditions. After simulating one hybrid energy system of Bequia, St Vincent, as case study, similar islands are identified via GIS analysis. The overall market potential for battery storage on tropical islands between 1,000 and 10,000 inhabitants ranges between 1.2 and 2.4 billion USD.

  13. Data systems and computer science space data systems: Onboard memory and storage

    Science.gov (United States)

    Shull, Tom

    1991-01-01

    The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.

  14. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  15. Development of hydrogen storage systems using sodium alanate

    Energy Technology Data Exchange (ETDEWEB)

    Lozano Martinez, Gustavo Adolfo

    2010-12-06

    In this work, hydrogen storage systems based on sodium alanate were studied, modelled and optimised, using both experimental and theoretical approaches. The experimental approach covered investigations of the material from mg scale up to kg scale in demonstration test tanks, while the theoretical approach discussed modelling and simulation of the hydrogen sorption process in a hydride bed. Both approaches demonstrated the strong effect of heat transfer on the sorption behaviour of the hydride bed and led to feasible methods to improve and optimise the volumetric and gravimetric capacities of hydrogen storage systems. The applied approaches aimed at an optimal integration of sodium alanate material in practical hydrogen storage systems. First, it was experimentally shown that the size of the hydride bed influences the hydrogen sorption behaviour of the material. This is explained by the different temperature profiles that are developed inside the hydride bed during the sorptions. In addition, in a self-constructed cell it was possible to follow the hydrogen sorptions and the developed temperature profiles within the bed. Moreover, the effective thermal conductivity of the material was estimated in-situ in this cell, given very good agreement with reported values of ex-situ measurements. It was demonstrated that the effective thermal conductivity of the hydride bed can be enhanced by the addition of expanded graphite. This enhancement promotes lower temperature peaks during the sorptions due to faster heat conduction through the bed, which in addition allows faster heat transfer during sorption. Looking towards simulations and further evaluations, empirical kinetic models for both hydrogen absorption and desorption of doped sodium alanate were developed. Based on the results of the model, the optimal theoretical pressure-temperature conditions for hydrogen sorptions were determined. A new approach is proposed for the mass balance of the reactions when implementing

  16. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  17. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    Science.gov (United States)

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  18. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  19. Energy Storage System Safety: Plan Review and Inspection Checklist

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Pam C (PNNL); Conover, David R (PNNL)

    2017-03-01

    Codes, standards, and regulations (CSR) governing the design, construction, installation, commissioning, and operation of the built environment are intended to protect the public health, safety, and welfare. While these documents change over time to address new technology and new safety challenges, there is generally some lag time between the introduction of a technology into the market and the time it is specifically covered in model codes and standards developed in the voluntary sector. After their development, there is also a timeframe of at least a year or two until the codes and standards are adopted. Until existing model codes and standards are updated or new ones are developed and then adopted, one seeking to deploy energy storage technologies or needing to verify the safety of an installation may be challenged in trying to apply currently implemented CSRs to an energy storage system (ESS). The Energy Storage System Guide for Compliance with Safety Codes and Standards1 (CG), developed in June 2016, is intended to help address the acceptability of the design and construction of stationary ESSs, their component parts, and the siting, installation, commissioning, operations, maintenance, and repair/renovation of ESS within the built environment.

  20. Simulation of mass storage systems operating in a large data processing facility

    Science.gov (United States)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  1. An Energy Storage System Sizing Method for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2013-07-01

    Full Text Available Combining an energy storage system (ESS with a wind farm is an effective way to increase the penetration rate of wind power. ESS sizing is an important part in wind farm planning nowadays. In this paper, a basic method for determining the optimal capacity of an ESS integrated with a wind power generator to meet the requirements of grid integration is presented. With the proposed method, the necessary ESS capacity which can provide the best benefits between the regulation effects and energy storage size was calculated. The segmentation method and automatic segmentation method are proposed to improve the performance of the basic method. Further work on expanding the method to determine the necessary capacity of ESS for real-time control is studied. The time window method is used to enable the proposed method available under all working conditions. The simulation results verify the effectiveness of the proposed method.

  2. Development of superconducting magnetic bearing for flywheel energy storage system

    Science.gov (United States)

    Miyazaki, Yoshiki; Mizuno, Katsutoshi; Yamashita, Tomohisa; Ogata, Masafumi; Hasegawa, Hitoshi; Nagashima, Ken; Mukoyama, Shinichi; Matsuoka, Taro; Nakao, Kengo; Horiuch, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    2016-12-01

    We have been developing a superconducting magnetic bearing (SMB) that has high temperature superconducting (HTS) coils and bulks for a flywheel energy storage system (FESS) that have an output capability of 300 kW and a storage capacity of 100 kW h (Nagashima et al., 2008, Hasegawa et al., 2015) [1,2]. The world largest-class FESS with a SMB has been completed and test operation has started. A CFRP flywheel rotor that had a diameter of 2 m and weight of 4000 kg had a capability to be rotated at a maximum speed of 6000 min-1. The SMB using superconducting material both for its rotor and stator is capable of supporting the flywheel that had the heavy weight and the high seed rotation mentioned above. This paper describes the design of the SMB and results of the cooling test of the SMB.

  3. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  4. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou

  5. Optical Disc Utilized As A Data Storage System For Reconnaissance

    Science.gov (United States)

    Herzog, Donald G.

    1984-01-01

    Electra-optic and Radar sensing reconnaissance systems have many advantages including remote transmission and image data processing that conventional film camera systems do not have. However, data storage and retrieval that was naturally and easily accomplished with film must now be accommodated by other techniques. The optical disc data storage and retrieval systems offer significant advantage towards fulfilling this need. This paper will provide an overview description of the technology, some of the fundamental alternatives of configuration approach, and some examples of where it may be considered in the reconnaissance system. Silver halide film has been and still is the work horse of the image based reconnaissance field. It will not be replaced in the near future either, but rather a gradual transition to total electronic systems is expected. It is not the intent of this paper to debase film, because in fact it has its advantages. We have learned to optimize its advantages and minimize its disadvantages. However optical disc systems have a definite role to play in the reconnaissance field.

  6. Thermal Storage Systems Assessment for Energy Sustainability in Housing Units

    Directory of Open Access Journals (Sweden)

    Tania I. Lagunes Vega

    2016-04-01

    Full Text Available In order to achieve greater enhancements in energy sustainability for housing, the function and efficiency of two different passive cooling systems were studied: encapsulated water in recycled bottles of Polyethylene terephthalate (PET and polystyrene plates, in comparison with standard concrete slab systems, which are customarily used in housing. Experiments were placed over a tile surface, in which temperature changes were monitored for a period of 20 days from 08:00 to 20:00. The efficiency of passive thermal storage systems was endorsed through statistical analysis using the “SPSS” software. This resulted in a 17% energy saving, thus promoting energy sustainability in housing units, which reduces the use of electrical appliances required to stabilize conditions to achieve optimum thermal comfort for the human body inside a house, therefore, reducing electrical power consumption, CO2 emissions to the atmosphere and generating savings. Due to the complexity of a system with temperature changes, a fractal analysis was performed for each experimental system, using the “Benoit” software (V.1.3 with self-compatible tools of rescaled range (R/S and a wavelets method, showing that the thermal fluctuations on the tiles with the thermal storage system adapt to the rescaled range analysis and the regular tiles adapt to the wavelets method.

  7. Benefits of using virtual energy storage system for power system frequency response

    OpenAIRE

    Cheng, Meng; Sami, Saif Sabah; Wu, Jianzhong

    2016-01-01

    This paper forms a Virtual Energy Storage System (VESS) and validates that VESS is an innovative and cost-effective way to provide the function of conventional Energy Storage Systems (ESSs) through the utilization of the present network assets represented by the flexible demand. The VESS is a solution to convert to a low carbon power system and in this paper, is modelled to store and release energy in response to regulation signals by coordinating the Demand Response (DR) from domestic refrig...

  8. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Dam Density and Storage Volume

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National...

  9. Al enhances the H2 storage capacity of graphene at nanoribbon borders but not at central sites: A study using nonlocal van der Waals density functionals

    Science.gov (United States)

    Carrete, J.; Longo, R. C.; Gallego, L. J.; Vega, A.; Balbás, L. C.

    2012-03-01

    We performed ab initio density-functional-theory calculations to investigate the adsorption of molecular hydrogen on pristine and Al-doped hydrogen-passivated zigzag graphene nanoribbons (GNRs) using nonlocal van der Waals functionals that have recently been proposed for an accurate description of exchange and correlation effects in weakly bound systems. Our results, which are compared with those obtained using the standard local density and generalized gradient approximations, show that neither pristine GNRs nor substitutionally Al-doped GNRs with an Al atom occupying a central, lateral, or subedge site satisfy the binding-energy criterion specified by the U.S. Department of Energy for novel hydrogen-storage materials. However, the criterion is satisfied by a GNR doped with an Al atom at an edge site and also by zigzag GNRs with adsorbed Al at lateral hole sites.

  10. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  11. DC Bus Regulation with a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.

    2003-01-01

    This paper describes the DC bus regulation control algorithm for the NASA flywheel energy storage system during charge, charge reduction and discharge modes of operation. The algorithm was experimentally verified with results given in a previous paper. This paper presents the necessary models for simulation with detailed block diagrams of the controller algorithm. It is shown that the flywheel system and the controller can be modeled in three levels of detail depending on the type of analysis required. The three models are explained and then compared using simulation results.

  12. Regenerative Energy Storage System for Space Exploration Missions

    Directory of Open Access Journals (Sweden)

    Wærnhus Ivar

    2017-01-01

    The breadboard was operated for 1250 hours alternating between electrolyser mode and fuel cell mode with H2/H2O as reactants. During the tests, as long as the mechanical integrity of the system was maintained, no degradation effect was observed. At the end of the test period, the fuel cell was operated for three full cycles (approx. 50 hours with CO/CO2 as reactants. The performance on CO/CO2 was lower than for hydrogen, but sufficient to be used in a compact energy storage system for Mars exploration.

  13. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  14. LVFS: A Scalable Petabye/Exabyte Data Storage System

    Science.gov (United States)

    Golpayegani, N.; Halem, M.; Masuoka, E. J.; Ye, G.; Devine, N. K.

    2013-12-01

    Managing petabytes of data with hundreds of millions of files is the first step necessary towards an effective big data computing and collaboration environment in a distributed system. We describe here the MODAPS LAADS Virtual File System (LVFS), a new storage architecture which replaces the previous MODAPS operational Level 1 Land Atmosphere Archive Distribution System (LAADS) NFS based approach to storing and distributing datasets from several instruments, such as MODIS, MERIS, and VIIRS. LAADS is responsible for the distribution of over 4 petabytes of data and over 300 million files across more than 500 disks. We present here the first LVFS big data comparative performance results and new capabilities not previously possible with the LAADS system. We consider two aspects in addressing inefficiencies of massive scales of data. First, is dealing in a reliable and resilient manner with the volume and quantity of files in such a dataset, and, second, minimizing the discovery and lookup times for accessing files in such large datasets. There are several popular file systems that successfully deal with the first aspect of the problem. Their solution, in general, is through distribution, replication, and parallelism of the storage architecture. The Hadoop Distributed File System (HDFS), Parallel Virtual File System (PVFS), and Lustre are examples of such file systems that deal with petabyte data volumes. The second aspect deals with data discovery among billions of files, the largest bottleneck in reducing access time. The metadata of a file, generally represented in a directory layout, is stored in ways that are not readily scalable. This is true for HDFS, PVFS, and Lustre as well. Recent experimental file systems, such as Spyglass or Pantheon, have attempted to address this problem through redesign of the metadata directory architecture. LVFS takes a radically different architectural approach by eliminating the need for a separate directory within the file system

  15. Experimental analysis of Hybridised Energy Storage Systems for automotive applications

    Science.gov (United States)

    Sarwar, Wasim; Engstrom, Timothy; Marinescu, Monica; Green, Nick; Taylor, Nigel; Offer, Gregory J.

    2016-08-01

    The requirements of the Energy Storage System (ESS) for an electrified vehicle portfolio consisting of a range of vehicles from micro Hybrid Electric Vehicle (mHEV) to a Battery Electric Vehicle (BEV) vary considerably. To reduce development cost of an electrified powertrain portfolio, a modular system would ideally be scaled across each vehicle; however, the conflicting requirements of a mHEV and BEV prevent this. This study investigates whether it is possible to combine supercapacitors suitable for an mHEV with high-energy batteries suitable for use in a BEV to create a Hybridised Energy Storage System (HESS) suitable for use in a HEV. A passive HESS is found to be capable of meeting the electrical demands of a HEV drive cycle; the operating principles of HESSs are discussed and factors limiting system performance are explored. The performance of the HESS is found to be significantly less temperature dependent than battery-only systems, however the heat generated suggests a requirement for thermal management. As the HESS degrades (at a similar rate to a specialised high-power-battery), battery resistance rises faster than supercapacitor resistance; as a result, the supercapacitor provides a greater current contribution, therefore the energy throughput, temperature rise and degradation of the batteries is reduced.

  16. Flywheel Energy Storage System Designed for the International Space Station

    Science.gov (United States)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  17. Battery Energy Storage System for PV Output Power Leveling

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2014-01-01

    Full Text Available Fluctuating photovoltaic (PV output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper proposes two controllers: a current controller using the d-q synchronous reference and a phase-shift controller. The main function of the current controller is to regulate the voltage at the high-side dc, so that the voltage ratio of the high-voltage side (HVS with low-voltage side (LVS is equal to the transformer turns ratio. The phase-shift controller is employed to manage the charging and discharging modes of the battery based on PV output power and battery voltage. With the proposed system, unity power factor and efficient active power injection are achieved. The feasibility of the proposed control system is investigated using PSCAD simulation.

  18. Final prototype of magnetically suspended flywheel energy storage system

    Science.gov (United States)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  19. Improved thermal storage material for portable life support systems

    Science.gov (United States)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  20. UV-Photodimerization in Uracil-substituted dendrimers for high density data storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Vestberg, Robert; Ivanov, Mario Tonev

    2007-01-01

    Two series of uracil-functionalized dendritic macromolecules based on poly (amidoamine) PAMAM and 2,2-bis(hydroxymethylpropionic acid) bis-MPA backbones were prepared and their photoinduced (2 pi+2 pi) cycloaddition reactions upon exposure to UV light at 257 nm examined. Dendrimers up to 4th...... nm with an intensity of 70 mW/cm(2) could be obtained suggesting future use as recording media for optical data storage. (c) 2007 Wiley Periodicals, Inc....

  1. Coumarin-Containing Polymers for High Density Non-Linear Optical Data Storage

    Directory of Open Access Journals (Sweden)

    Denis Gindre

    2016-01-01

    Full Text Available Optical data storage was performed with various thin polymer films containing coumarin-based derivatives and by using femtosecond laser pulses as well as two-photon absorption processes. Exploring the photodimerization attribute of coumarin derivatives and using appropriate irradiation wavelengths, recording/erasing processes could be carried out in the same area. Second harmonic generation microscopy was used to read the stored information.

  2. A File Allocation Strategy for Energy-Efficient Disk Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow J; Otoo, Ekow J.; Rotem, Doron; Pinar, Ali; Tsao, Shi-Chiang

    2008-06-27

    Exponential data growth is a reality for most enterprise and scientific data centers.Improvements in price/performance and storage densities of disks have made it both easy and affordable to maintain most of the data in large disk storage farms. The provisioning of disk storage farms however, is at the expense of high energy consumption due to the large number of spinning disks. The power for spinning the disks and the associated cooling costs is a significant fraction of the total power consumption of a typical data center. Given the trend of rising global fuel and energy prices and the high rate of data growth, the challenge is to implement appropriateconfigurations of large scale disk storage systems that meet performancerequirements for information retrieval across data centers. We present part of the solution to this challenge with an energy efficient file allocation strategy on a large scale disk storage system. Given performance characteristics of thedisks, and a profile of the workload in terms of frequencies of file requests and their sizes, the basic idea is to allocate files to disks such that the disks can be configured into two sets of active (constantly spinning), and passive (capable of being spun up or down) disk pools. The goal is to minimize the number of active disks subject to I/O performance constraints. We present an algorithm for solving this problem with guaranteed bounds from the optimal solution. Our algorithm runs in O(n) time where n is the number of files allocated. It uses a mapping of our file allocation problem to a generalization of the bin packing problem known as 2-dimensional vector packing. Detailed simulation results are also provided.

  3. Progress in electrical energy storage system:A critical review

    Institute of Scientific and Technical Information of China (English)

    Haisheng Chen; Thang Ngoc Cong; Wei Yang; Chunqing Tan; Yongliang Li; Yulong Ding

    2009-01-01

    Electrical energy storage technologies for stationary applications are reviewed.Particular attention is paid to pumped hydroelectric storage,compressed air energy storage,battery,flow battery,fuel cell,solar fuel,superconducting magnetic energy storage, flywheel, capacitor/supercapacitor,and thermal energy torage.Comparison is made among these technologies in terms of technical characteris-tics,applications and deployment status.

  4. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  5. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  6. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    Directory of Open Access Journals (Sweden)

    Arindam Chakraborty

    2012-01-01

    Full Text Available Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as wind power generation is also discussed in the paper. At the beginning of this paper, an overall review of the STATCOM and energy storage systems are elaborated. A brief overview of the advantages of using STATCOM in conjunction to energy storage systems in achieving power system stability is presented. In the second part of the paper, a typical transient stability model of a STATCOM is presented. The dynamics of real and reactive power responses of the integrated system to transients is studied. The study is aimed at showing that the combination of STATCOM and battery energy storage significantly improves the performance of the system. The final results show that the STATCOM reactive power/voltage control helps in transient stability enhancement.

  7. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lawder, M. T.; Suthar, B.; Northrop, P. W. C.; De, S.; Hoff, C. M.; Leitermann, O.; Crow, M. L.; Santhanagopalan, S.; Subramanian, V. R.

    2014-05-07

    The current electric grid is an inefficient system that wastes significant amounts of the electricity it produces because there is a disconnect between the amount of energy consumers require and the amount of energy produced from generation sources. Power plants typically produce more power than necessary to ensure adequate power quality. By taking advantage of energy storage within the grid, many of these inefficiencies can be removed. Advanced modeling is required when using battery energy storage systems (BESS) for grid storage in order to accurately monitor and control the storage system. Battery management systems (BMS) control how the storage system will be used and a BMS that utilizes advanced physics-based models will offer for much more robust operation of the storage system. The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries. In addition, system architecture and how it can be useful in monitoring and control is discussed. A pathway for advancing BMS to better utilize BESS for grid-scale applications is outlined.

  8. Optimally focused cold atom systems obtained using density-density correlations.

    Science.gov (United States)

    Putra, Andika; Campbell, Daniel L; Price, Ryan M; De, Subhadeep; Spielman, I B

    2014-01-01

    Resonant absorption imaging is a common technique for detecting the two-dimensional column density of ultracold atom systems. In many cases, the system's thickness along the imaging direction greatly exceeds the imaging system's depth of field, making the identification of the optimally focused configuration difficult. Here we describe a systematic technique for bringing Bose-Einstein condensates (BEC) and other cold-atom systems into an optimal focus even when the ratio of the thickness to the depth of field is large: a factor of 8 in this demonstration with a BEC. This technique relies on defocus-induced artifacts in the Fourier-transformed density-density correlation function (the power spectral density, PSD). The spatial frequency at which these artifacts first appear in the PSD is maximized on focus; the focusing process therefore both identifies and maximizes the range of spatial frequencies over which the PSD is uncontaminated by finite-thickness effects.

  9. Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  10. Operating Experiences with an Advanced Fabric Energy Storage System

    Directory of Open Access Journals (Sweden)

    R.J Fuller

    2012-11-01

    Full Text Available Despite their proven track record in the cold climate countries of northern Europe, there are no reports in the research literature of experiences using advanced fabric energy storage (FES systems in countries where cooling rather than heating is the main priority. This paper reports some of the experiences with the first known advanced FES system in Australia made over the first full calendar year of operation. It is located in a three-storey building on a university campus in Victoria and has been in operation since mid-2002. Temperature, energy use and operational mode data were recorded during 2003. Airflow measurements through the FES system have been made in five areas of the building. On-going operating problems still exist with the system and this has prevented a conclusive evaluation of its suitability for the southern Australian climate.

  11. NVRAM as Main Storage of Parallel File System

    Directory of Open Access Journals (Sweden)

    MALINOWSKI Artur

    2016-05-01

    Full Text Available Modern cluster environments' main trouble used to be lack of computational power provided by CPUs and GPUs, but recently they suffer more and more from insufficient performance of input and output operations. Apart from better network infrastructure and more sophisticated processing algorithms, a lot of solutions base on emerging memory technologies. This paper presents evaluation of using non-volatile random-access memory as a main storage of Parallel File System. The author justifies feasibility of such configuration and evaluates it with MPI I/O, OrangeFS as a file system, two popular cluster I/O benchmarks and software memory simulation. Obtained results suggest, that with Parallel File System highly optimized for block devices, small differences in access time and memory bandwidth does not influence system performance.

  12. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Stroe, Daniel-Ioan

    2017-01-01

    In this work, we present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected...... inverter, which emulates the charge regulator and battery bank. The real-time control of the two power electronic converters is implemented in a Simulink/dSpace platform, together with the real-time simulation model of the battery pack, whereas the PV array input can be connected to a PV emulator...... or directly to a physical PV array. The platform enables real-time testing of PV+BES control systems, including battery (BMS) and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility...

  13. Development of a PMAD System for Flywheel Based Energy Storage System

    Science.gov (United States)

    Wolff, Fred

    2001-01-01

    We will discuss the following: (1) the Flywheel Energy Storage System (FESS) program objective; (2) benefits of flywheels for the International Space Station; (3) the FESS development team; (4) FESS electrical requirements; (5) FESS electrical architecture; and (6) electrical subsystem functionality. The objective of the FESS program is to demonstrate flywheel technologies operating together as a system and having improved performance characteristics over batteries in a low earth orbit energy storage application (such as the ISS).

  14. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.

    Science.gov (United States)

    Wu, Chao; Huang, Xingyi; Wu, Xinfeng; Xie, Liyuan; Yang, Ke; Jiang, Pingkai

    2013-05-07

    Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Since the intrinsic dielectric constant of most polymers is very low, the integration of carbon nanotubes (CNTs) into the polymers provides an attractive and promising way to reach a high dielectric constant owing to their outstanding intrinsic physical performances. However, these CNT-based composites usually suffer from high dielectric loss, low breakdown strength and the difficulty to tailor the dielectric constant. Herein, we have designed and fabricated a new class of candidates composed of graphene oxide-encapsulated carbon nanotube (GO-e-CNT) hybrids. The obtained GO-e-CNT-polymer composites not only exhibit a high dielectric constant and low dielectric loss, but also have a highly enhanced breakdown strength and maximum energy storage density. Moreover, the dielectric constant of the composites can be tuned easily by tailoring the loading of GO-e-CNTs. It is believed that the GO shells around CNTs play an important role in realizing the high dielectric performances of the composites. GO shells can not only effectively improve the dispersion of CNTs, but also act as insulation barriers for suppressing leakage current and increasing breakdown strength. Our strategy provides a new pathway to achieve CNT-based polymer composites with high dielectric performances for energy storage applications.

  15. Natural Language Query System Design for Interactive Information Storage and Retrieval Systems. M.S. Thesis

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Liu, I-Hsiung

    1985-01-01

    The currently developed multi-level language interfaces of information systems are generally designed for experienced users. These interfaces commonly ignore the nature and needs of the largest user group, i.e., casual users. This research identifies the importance of natural language query system research within information storage and retrieval system development; addresses the topics of developing such a query system; and finally, proposes a framework for the development of natural language query systems in order to facilitate the communication between casual users and information storage and retrieval systems.

  16. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  17. Improvement of a Chemical Storage Room Ventilation System

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, Emad; Al-Dahhan, Wedad; Abed, Rashed Nema; Al-Zuhairi, Ali Jassim; Hussein, Falah; Rodda, Kabrena E.

    2017-06-02

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the third in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize an improvement to the chemical storage room ventilation system at Al-Nahrain University to create and maintain a safe working atmosphere in an area where chemicals are stored and handled, using US and European design practices, standards, and regulations.

  18. A Flywheel Energy Storage System Demonstration for Space Applications

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Jansen, Ralph; Dever, Timothy

    2003-01-01

    A novel control algorithm for the charge and discharge modes of operation of a flywheel energy storage system for space applications is presented. The motor control portion of the algorithm uses sensorless field oriented control with position and speed estimates determined from a signal injection technique at low speeds and a back EMF technique at higher speeds. The charge and discharge portion of the algorithm use command feed-forward and disturbance decoupling, respectively, to achieve fast response with low gains. Simulation and experimental results are presented.

  19. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  20. Assessment of Economic Efficiency Pertaining to Application of Energy Storage Units in Power System

    Directory of Open Access Journals (Sweden)

    A. Chernetsky

    2013-01-01

    Full Text Available The paper considers some aspects pertaining to an application of technologies for energy storage in electric power. Review of technical and cost characteristics of energy storage units has been given in the paper. The review reflects data of the energy storage units which are available and which are under development. The paper proposes an approach that permits to assess boundaries of economically reasonable application of energy storage systems in order to balance daily load curve of a power system.

  1. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    Science.gov (United States)

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  2. Energy storage in electric power systems, what prospects?; Stockage d'energie dans les systemes electriques, quelles perspectives?

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A.; Prestat, B. [Electricite de France (EDF), Recherche et Developpement, 75 - Paris (France)

    2011-07-15

    The massive development of intermittent renewable energy sources is a disturbing factor for the stability of power grids. The time response of classical power balance stabilization systems, like hydraulic storage, compressed air storage and thermal storage systems, may be too slow in some situations. In this case fast response storage systems, like electrochemical systems, flywheels, super-capacitors or electromagnetic storage systems, can be the solution but their profitability depends on many technical and economical parameters. Tests of these systems with experimental facilities and demonstration projects are in progress in order to evaluate their technical and economical performances in real conditions of use. (J.S.)

  3. Simulation of a high temperature thermal energy storage system employing several families of phase-change storage material

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, G.A. [Mississippi State Univ., MS (United States)

    1989-03-01

    Previous work by the author entailed modeling of the Packed Bed Thermal Energy Storage System, utilizing Phase-Change Materials, and a performance evaluation of the system based on the Second Law of thermodynamics. A principal conclusion reached is that the use of a single family of phase-change storage material may not in fact produce a thermodynamically superior system relative to one utilizing sensible heat storage material. This prompted us to modify our model so that we could investigate whether or not a significantly improved performance may be achieved via the use of multiple families of phase-change materials instead. Other factors investigated in the present work include the effect on system performance due to the thermal mass of the containment vessel wall, varying temperature and mass flow rate of the flue gas entering the packed bed during the storage process, and thermal radiation which could be a significant factor at high temperature levels. The resulting model is intended to serve as an integral part of a real-time simulation of the application of a high temperature regenerator in a periodic brick plant. This paper describes the more comprehensive model of the high temperature thermal energy storage system and presents results indicating that improved system performance could be achieved via a judicious choice of multiple families of phase-change materials.

  4. MIMIC: An Innovative Methodology for Determining Mobile Laser Scanning System Point Density

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2014-08-01

    Full Text Available Understanding how various Mobile Mapping System (MMS laser hardware configurations and operating parameters exercise different influence on point density is important for assessing system performance, which in turn facilitates system design and MMS benchmarking. Point density also influences data processing, as objects that can be recognised using automated algorithms generally require a minimum point density. Although obtaining the necessary point density impacts on hardware costs, survey time and data storage requirements, a method for accurately and rapidly assessing MMS performance is lacking for generic MMSs. We have developed a method for quantifying point clouds collected by an MMS with respect to known objects at specified distances using 3D surface normals, 2D geometric formulae and line drawing algorithms. These algorithms were combined in a system called the Mobile Mapping Point Density Calculator (MIMIC and were validated using point clouds captured by both a single scanner and a dual scanner MMS. Results from MIMIC were promising: when considering the number of scan profiles striking the target, the average error equated to less than 1 point per scan profile. These tests highlight that MIMIC is capable of accurately calculating point density for both single and dual scanner MMSs.

  5. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  6. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility. (DLC)

  7. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna International, Rochester Mills, MI (United States)

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  8. Hybrid data storage system in an HPC exascale environment

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Gupta, Uday K.; Tzelnic, Percy; Ting, Dennis P. J.

    2015-08-18

    A computer-executable method, system, and computer program product for managing I/O requests from a compute node in communication with a data storage system, including a first burst buffer node and a second burst buffer node, the computer-executable method, system, and computer program product comprising striping data on the first burst buffer node and the second burst buffer node, wherein a first portion of the data is communicated to the first burst buffer node and a second portion of the data is communicated to the second burst buffer node, processing the first portion of the data at the first burst buffer node, and processing the second portion of the data at the second burst buffer node.

  9. Composites in energy generation and storage systems - An overview

    Science.gov (United States)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  10. Output Current Ripple Reduction Algorithms for Home Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Park

    2013-10-01

    Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.

  11. Systems based on hypo-eutectic Mg–Mg{sub 2}Ni alloys for medium to large scale hydrogen storage and delivery

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, Stephanie, E-mail: stephanie.moroz@hydrexia.com; Tan, Xin Fu; Pierce, Jordan; Greaves, Matthew; Duguid, Andrew; Dumur, Krista; Ng, Jeffrey

    2013-12-15

    Highlights: •High performance, low cost hydrogen storage systems are in development based on a Mg–Mg2Ni alloy. •These systems have higher storage density than compressed gas •They can be filled with hydrogen at low pressure, removing the need for a compressor •The systems can deliver hydrogen at a lower cost per unit of hydrogen delivered than compressed gas. •The metal hydride systems also have significant safety advantages over compressed gas. -- Abstract: Magnesium based metal hydrides have a number of attractive properties for hydrogen storage, particularly the high storage density and the safety benefits of low pressure operation. A hypo-eutectic Mg–Mg{sub 2}Ni alloy has been developed. The material can be produced at a much lower cost than ball-milled materials while achieving a reversible storage of 6.5–7 wt% hydrogen at a rate of reaction that is acceptable for existing industrial applications. This alloy has been employed in a series of increasingly large prototype systems, reaching commercial scale in 2010 with a system storing 22 kg of hydrogen, appropriate for industrial merchant applications. The technology is also under development for larger scale applications such as refueling infrastructure and energy storage. This paper will discuss the potential applications of these systems and their technical and economic comparison to traditional compressed gas hydrogen storage and delivery.

  12. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  13. A magnetic suspension system for measuring liquid density

    Directory of Open Access Journals (Sweden)

    Luz María Centeno González

    2013-04-01

    Full Text Available Density is a derived quantity of mass and length; it is defined as mass per volume unit and its SI unit is kg/m3. National metrology institutes have been designing and building their own magnetic suspension systems during the last 5 decades for making fluid density measurements; this has allowed them to carry out research into liquids and gases’ physical characteristics. This paper was aimed at designing and developing a magnetic suspension system for a magnetic balance used in determining liquid density to be used in CENAM’s metrology density laboratories.

  14. Carbon Storage in Mountain Land Use Systems in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Narit Yimyam

    2016-05-01

    Full Text Available Conversion of forested land for agriculture has obvious detrimental effects on its ecological functions, but these effects are not uniform. Mountain land use systems are diverse, encompassing managed forests and cultivated land. This study examined land use systems in 3 mountain villages in northern Thailand with different patterns of cultivation and evaluated the amount of carbon they have accumulated. Land use and management by individual farmers and communities were determined by interviews, field verification, and mapping. Biomass carbon in trees was determined nondestructively, and carbon in ground cover, litter, and soil organic matter was determined by chemical analysis of replicated samples. The 3 villages, with access to land ranging from 1.3 to 6.3 ha per capita, managed largely pristine headwater forests for security of water supply and made a living from crop production supplemented by harvests of timber, firewood, and other forest products from managed community forests. Cultivated land varied in composition and management among the villages, from shifting cultivation with fallow periods of different lengths to permanent cultivation of food and commercial crops. Per capita carbon storage in the villages well exceeded average per capita carbon dioxide emissions in Thailand, with most of the carbon stored in the forests. This has important implications for programs that offer incentives to mountain villages to maintain or enhance their carbon storage, such as the United Nations’ REDD (Reducing Emissions from Deforestation and Forest Degradation program.

  15. Hydrogen storage and ionic mobility in amide-halide systems.

    Science.gov (United States)

    Anderson, Paul A; Chater, Philip A; Hewett, David R; Slater, Peter R

    2011-01-01

    We report the results of a systematic study of the effect of halides on hydrogen release and uptake in lithium amide and lithium imide, respectively. The reaction of lithium amide and lithium imide with lithium or magnesium chloride, bromide and iodide resulted in a series of amide-halide and imide-halide phases, only two of which have been reported previously. On heating with LiH or MgH2, the amide-halides synthesised all released hydrogen more rapidly than lithium amide itself, accompanied by much reduced, or in some cases undetectable, release of ammonia by-product. The imide-halides produced were found to hydrogenate more rapidly than lithium imide, reforming related amide-halide phases. The work was initiated to test the hypothesis that the incorporation of halide anions might improve the lithium ion conductivity of lithium amide and help maintain high lithium ion mobility at all stages of the de/rehydrogenation process, enhancing the bulk hydrogen storage properties of the system. Preliminary ionic conductivity measurements indicated that the most conducting amide- and imide-halide phases were also the quickest to release hydrogen on heating and to hydrogenate. We conclude that ionic conductivity may be an important parameter in optimising the materials properties of this and other hydrogen storage systems.

  16. Optimal sizing of energy storage system for microgrids

    Indian Academy of Sciences (India)

    Babak Mozafari; Sirus Mohammadi

    2014-08-01

    Microgrids (MGs) are Low Voltage distribution networks comprising various distributed generators (DG), storage devices and controllable loads that can operate either interconnected or isolated from the main distribution grid as a controlled entity. Energy storage system (ESS) is a vital part of an MG. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG. Self-adaptive Bee Swarm Optimization (SBSO) algorithm is applied to optimize the operation strategies and capacities of ESS in MGs in order to find maximal NPV, the generation schedule of ESS and distributed generation sources. This paper is to suggest, among those available ESS, the optimal sizes and types of them and their optimal arrangement, such that the total NPV achieved during the system operational lifetime period is maximized. After introducing the methodology, a case study is presented for illustration.

  17. Seismic behavior of steel storage pallet racking systems

    CERN Document Server

    Castiglioni, Carlo Andrea

    2016-01-01

    This book presents the main outcomes of the first European research project on the seismic behavior of adjustable steel storage pallet racking systems. In particular, it describes a comprehensive and unique set of full-scale tests designed to assess such behavior. The tests performed include cyclic tests of full-scale rack components, namely beam-to-upright connections and column base connections; static and dynamic tests to assess the friction factor between pallets and rack beams; full-scale pushover and pseudodynamic tests of storage racks in down-aisle and cross-aisle directions; and full-scale dynamic tests on two-bay, three-level rack models. The implications of the findings of this extensive testing regime on the seismic behavior of racking systems are discussed in detail, highlighting e.g. the confirmation that under severe dynamic conditions “sliding” is the main factor influencing rack response. This work was conceived during the development of the SEISRACKS project. Its outcomes will contribute...

  18. Researches on the CAES (Compressed Air Energy Storage) system

    Energy Technology Data Exchange (ETDEWEB)

    Shin Hee Soon; Kang, Sang Soo; Kwon, Kwang Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    CAES which is called as a compressed air energy storage was firstly developed at Huntorf, German in 1978. The capacity of that system was 290 MW, and it can be treated as a first commercial power plant. CAES has a lot of merits, such as saving the unit price of power generation, averaging the peak demand, improvement of maintenance, enlarging the benefit of dynamic use. According to the literature survey, the unlined rock cavern should be proposed to be a reasonable storing style as a method of compressed air storage in Korea. In this study, the most important techniques were evaluated through the investigation of the foreign construction case studies, especially on the unlined rock caverns in hard rock mass. We decided the hill of the Korea Institute of Geology, Mining and materials as CAES site. If we construct the underground spaces in this site, the demand for electricity nearby Taejon should be considered. So we could determine the capacity of the power plant as a 350 MW. This capacity needs a underground space of 200,000 m{sup 3}, and we can conclude 4 parallel tunnels through the numerical studies. Design parameters were achieved from 300 m depth boring job and image processing job. Moreover the techniques for determination of joint characteristics from the images could be obtained. Blasting pattern was designed on the underground spaces, and automatic gas control system and thermomechanical characteristics on caverns were also studied. (author). 51 refs., 79 tabs., 114 figs.

  19. Design and Implementation of a Storage Virtualization System Based on SCSI Target Simulator in SAN

    Institute of Scientific and Technical Information of China (English)

    LI Bigang; SHU Jiwu; ZHENG Weimin

    2005-01-01

    The ideal storage virtualization system is compatible with all operating systems in storage area networks (SANs). However, current storage systems on clustered hosts and multiple operating systems are not practical. This paper presents a storage virtualization system based on a SCSI target simulator in a SAN to solve these problems. This storage virtualization system runs in the target hosts of the SAN, dynamically stores the physical information, and uses the mapping table method to modify the SCSI command addresses. The system uses the bitmap technique to manage the free space. The storage virtualization system provides various functions, such as logical volume resizing, data mirroring, and snapshots, and is compatible with clustered hosts and multiple operating systems, such as Windows NT and RedHat.

  20. High Energy Density, High Power Density, High Cycle Life Flywheel Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies (BT), LLC proposes to leverage technologies developed by and resident in BT, The University of Texas Center for Electromechanics (CEM) and...

  1. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn;

    2008-01-01

    densities both gravimetrically and volumetrically. Upon heating, NH3 is released from the salts, and by employing an appropriate catalyst, H-2 can be released corresponding to up to 9.78 wt % H and 0.116 kg H/L for the Ca(NH3)(8)Cl-2 salt. The NH3 release from all four salts is investigated using...

  2. Research Progress on Thermochemical Heat Storage System%热化学蓄热系统研究进展

    Institute of Scientific and Technical Information of China (English)

    王智辉; 漥田光宏; 杨希贤; 刘学成; 何兆红; 大坂侑吾; 黄宏宇

    2015-01-01

    热化学蓄热通过可逆化学反应来储存和释放热量,其蓄热密度高于显热蓄热和相变蓄热,且能够实现能量的长期储存,在未来能源利用领域具有广阔前景.根据热化学蓄热系统的结构,可将其分为开式系统和闭式系统.本文针对开式系统和闭式系统,对蓄热材料、环境气氛条件、反应过程优化以及反应器设计等影响系统性能的重要因素进行概述与讨论,为热化学蓄热系统的发展和实际应用提供参考.%Thermochemical heat storage technology can store and discharge heat energy by reversible chemical reactions. It shows higher heat storage density and better long-term preservation ability than sensible heat storage and phase change heat storage, so that have a bright future in the energy application fields. According to the system configuration, thermochemical heat storage system is suggested to be divided into open and closed system. In terms of open and closed system, the crucial factors impacting on the system performance, such as heat storage materials, ambient atmosphere conditions, reaction progress optimization and reactor design, are discussed and summarized to provide some references for the development and practical applications of thermochemical heat storage system.

  3. Dynamic Non-Hierarchical File Systems for Exascale Storage

    Energy Technology Data Exchange (ETDEWEB)

    Long, Darrell E. [PI; Miller, Ethan L [Co PI

    2015-02-24

    This constitutes the final report for “Dynamic Non-Hierarchical File Systems for Exascale Storage”. The ultimate goal of this project was to improve data management in scientific computing and high-end computing (HEC) applications, and to achieve this goal we proposed: to develop the first, HEC-targeted, file system featuring rich metadata and provenance collection, extreme scalability, and future storage hardware integration as core design goals, and to evaluate and develop a flexible non-hierarchical file system interface suitable for providing more powerful and intuitive data management interfaces to HEC and scientific computing users. Data management is swiftly becoming a serious problem in the scientific community – while copious amounts of data are good for obtaining results, finding the right data is often daunting and sometimes impossible. Scientists participating in a Department of Energy workshop noted that most of their time was spent “...finding, processing, organizing, and moving data and it’s going to get much worse”. Scientists should not be forced to become data mining experts in order to retrieve the data they want, nor should they be expected to remember the naming convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating the data you need would be as easy as browsing the web. Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40 year-old technology designed to manage thousands of files, not exabytes of data. Today’s systems do not take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather, including content-based metadata and provenance1 information. As a result, current metadata search approaches are typically ad hoc and often work by providing a parallel management system to the “main” file system, as is done in Linux (the locate utility), personal computers, and enterprise search

  4. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  5. Review of Energy Storage System for Wind Power Integration Support

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Hu, Shuju

    2015-01-01

    -discharging characteristics, Energy Storage System (ESS) is considered as an effective tool to enhance the flexibility and controllability not only of a specific wind farm, but also of the entire grid. This paper reviews the state of the art of the ESS technologies for wind power integration support from different aspects....... Firstly, the modern ESS technologies and their potential applications for wind power integration support are introduced. Secondly, the planning problem in relation to the ESS application for wind power integration is reviewed, including the selection of the ESS type, and the optimal sizing and siting......With the rapid growth of wind energy development and increasing wind power penetration level, it will be a big challenge to operate the power system with high wind power penetration securely and reliably due to the inherent variability and uncertainty of wind power. With the flexible charging...

  6. Theoretical foundations of synchrotron and storage ring RF systems

    CERN Document Server

    Klingbeil, Harald; Lens, Dieter

    2015-01-01

    This course-tested text is an ideal starting point for engineers and physicists entering the field of particle accelerators. The fundamentals are comprehensively introduced, derivations of essential results are provided, and a consistent notation style used throughout the book allows readers to quickly familiarize themselves with the field, providing a solid theoretical basis for further studies.   Emphasis is placed on the essential features of the longitudinal motion of charged particle beams, together with the corresponding RF generation and power amplification devices for synchrotron and storage ring systems. In particular, electrical engineering aspects such as closed-loop control of system components are discussed.   The book also offers a valuable resource for graduate students in physics, electronics engineering, or mathematics looking for an introductory and self-contained text on accelerator physics.

  7. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  8. Flight experiment of thermal energy storage. [for spacecraft power systems

    Science.gov (United States)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.

  9. WEB-GIS Decision Support System for CO2 storage

    Science.gov (United States)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module

  10. Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-10-18

    This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

  11. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  12. An Analysis and Design of the Storage Management System Based on SMI 1.1.0

    Directory of Open Access Journals (Sweden)

    YoonSik Kwak

    2010-06-01

    Full Text Available This paper aims to suggest a Management Model of a storage system in distributed computing environment. Based on the Common Information Model and Web Based Enterprise Management, the SMI-S is a standard to manage a storage system. This specificction defines an interface for the management of a Storage Area Network that is a heterogeneous environment of management applications, storage devices and storage system from different venders. It consist of a Profile, Subprofile and Package. A Profile defines the base set of information and capabilities that allow a Client to manage a particular storage resource. A Subprofile represents additional functionality.Analyzing of the Profile, Subprofile and the Package, it is goal to find the method that we need to manage a storage system in this paper.

  13. Mammographic density measurements are not affected by mammography system.

    Science.gov (United States)

    Damases, Christine N; Brennan, Patrick C; McEntee, Mark F

    2015-01-01

    Mammographic density (MD) is a significant risk factor for breast cancer and has been shown to reduce the sensitivity of mammography screening. Knowledge of a woman's density can be used to predict her risk of developing breast cancer and personalize her imaging pathway. However, measurement of breast density has proven to be troublesome with wide variations in density recorded using radiologists' visual Breast Imaging Reporting and Data System (BIRADS). Several automated methods for assessing breast density have been proposed, each with their own source of measurement error. The use of differing mammographic imaging systems further complicates MD measurement, especially for the same women imaged over time. The purpose of this study was to investigate whether having a mammogram on differing manufacturer's equipment affects a woman's MD measurement. Raw mammographic images were acquired on two mammography imaging systems (General Electric and Hologic) one year apart and processed using VolparaDensity™ to obtain the Volpara Density Grade (VDG) and average volumetric breast density percentage (AvBD%). Visual BIRADS scores were also obtained from 20 expert readers. BIRADS scores for both systems showed strong positive correlation ([Formula: see text]; [Formula: see text]), while the VDG ([Formula: see text]; [Formula: see text]) and AvBD% ([Formula: see text]; [Formula: see text]) showed stronger positive correlations. Substantial agreement was shown between the systems for BIRADS ([Formula: see text]; [Formula: see text]), however, the systems demonstrated an almost perfect agreement for VDG ([Formula: see text]; [Formula: see text]).

  14. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  15. DTU international energy report 2013. Energy storage options for future sustainable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hvidtfeldt Larsen, H.; Soenderberg Petersen, L. (eds.)

    2013-11-01

    One of the great challenges in the transition to a non-fossil energy system with a high share of fluctuating renewable energy sources such as solar and wind is to align consumption and production in an economically satisfactory manner. Energy storage could provide the necessary balancing power to make this possible. This energy report addresses energy storage from a broad perspective: It analyses smaller stores that can be used locally in for example heat storage in the individual home or vehicle, such as electric cars or hydrogen cars. The report also addresses decentralized storage as flywheels and batteries linked to decentralized energy systems. In addition it addresses large central storages as pumped hydro storage and compressed air energy storage and analyse this in connection with international transmission and trading over long distances. The report addresses electrical storage, thermal storage and other forms of energy storage, for example conversion of biomass to liquid fuel and conversion of solar energy directly into hydrogen, as well as storage in transmission, grid storage etc. Finally, the report covers research, innovation and the future prospects and addresses the societal challenges and benefits of the use of energy storage. (Author)

  16. Thermal energy storage system combining mass and PCM

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-01

    The intent of this project was to construct several concrete blocks with PCM (Phase Change Material) encapsulated and to test these blocks as to heat transfer rate with and without a highly conductive matrix cast within the PCM core. The tests were to be conducted on commercially available PCM's being sold for solar applications. Unfortunately, one of the three PCM's was no longer produced commercially for sale and another would not crystallize as claimed by the manufacturer. This left one PCM, paraffin wax (the most critical to this work), to be tested. The testing showed that substantial improvement (18.5%) of heat conduction to the center of the paraffin core was obtainable with only a 2% loss of latent heat storage capacity. This finding may have a significant impact on the container designs for hydrocarbon heat storage system by showing that reduced surface to volume ratios can produce adequate heat transfer rates to the center of the PCM mass, without significant loss of performance.

  17. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2009-09-10

    A density functional theory (DFT) is developed in three-dimensional nanoconfined space and applied for H(2) storage in metal-organic frameworks. Two different weighting functions based on the weighted density approximation (WDA) are adopted, respectively, for the repulsive and attractive contributions to the excess free energy. The Carnahan-Starling equation and a modified Benedicit-Webb-Rubin equation are used to calculate the excess free energy of uniform fluid. To compare with DFT predictions, grand canonical Monte Carlo simulations are carried out separately. For H(2) adsorption in MOF-5 and ZIF-8, the isotherms predicted from the DFT agree well with simulation and experiment results, and the DFT is found to be superior to the mean-field-approximation (MFA)-based theory. The adsorption energies and isosteric heats predicted are also in accord with simulation results. From the predicted density contours, the DFT shows that the preferential adsorption sites are the corners of metal clusters in MOF-5 and the top of organic linkers in ZIF-8, consistent with simulation and experimental observations.

  18. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  19. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    Science.gov (United States)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  20. Design of spent-fuel concrete pit dry storage and handling system

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, H.; Natsume, T.; Maruoka, K.; Yokoyama, T. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan)

    1998-07-01

    An advanced dry storage system design with highly improved storage efficiency of spent nuclear fuel has been developed. The new concept 'Concrete Pit Dry Storage System' realizes a safe and economical solution to an increasing demand of storing spent fuel assemblies (SFAs) generated from commercial nuclear power reactors. The system is basically composed of a large mass concrete module which has densely arranged pit boreholes, sealed canisters containing spent fuel assemblies and a canister handling system. The system is characterized by the following advantages compared with the existing concrete module type storage systems: higher storage efficiency can be achieved by the storage module filled with concrete which also gives a high shielding performance; simple handling technology is used for transfer and installation of the canisters at the storage facility as well as the transport cask of the canisters, surface contamination of the canister is prevented; lower radiation around the storage area is provided to reduce radiation exposure during handling and storage; high structural integrity of the facility is maintained by the concrete module with a simple construction ; the ventilation gallery introducing cooling air air to the bit borehole has an enough draft height to improve cooling performance of the system; a result of the design concept, the storage system can store higher burn-up SFAs with a short cooling period. (authors)

  1. The electrical storage systems in energy networks with fuel cells and photovoltaic systems for residential use

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Aki, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Fuel cell systems and photovoltaic systems are expected to penetrate Japan's residential sector as a distributed energy resource. However, in order to connect photovoltaic systems to the electricity grid in Japan, the power conditioner of the photovoltaic system should have a function to restrict output. The purpose of this study was to establish a cooperative operations method for fuel cells, photovoltaic cells and electrical storage devices. In the proposed networks of this study, electricity, hydrogen and hot water were interchanged and the equipment was shared for cooperative operation. The power generated by the photovoltaic system fluctuated widely. The power flow at the connecting point of the energy networks to the electric power distribution system was bidirectional and depended on the balance of the power produced by the photovoltaic system as well as the power consumption. The use of an electrical storage system for the proposed networks ensured the stability of the power system and enabled more flexible operation of fuel cell stacks. The cooperative operational method for fuel cell systems, photovoltaic systems and electrical storage systems involved the combination of an electrical double layer capacitor (EDLC) and a lithium-ion battery for residential dwellings. Simulation results showed that the use of an EDLC reduced the required capacity of electrical storage systems and the fluctuation of output power of fuel cell systems. The construction of an experimental facilities is being planned to evaluate the charge-discharge characteristics of the electric storage devices and auxiliary equipment, such as inverters. 1 ref., 1 tab., 5 figs.

  2. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...

  3. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... (and the the return temperature) would only be a few degrees above room temperature due to the very low heating demand and the large heat transfer surface area. One of the objectives in a newly started IEA Task 32 project is to investigate and develop improved thermal storages for combined solar...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  4. The storage system of PCM based on random access file system

    Science.gov (United States)

    Han, Wenbing; Chen, Xiaogang; Zhou, Mi; Li, Shunfen; Li, Gezi; Song, Zhitang

    2016-10-01

    Emerging memory technologies such as Phase change memory (PCM) tend to offer fast, random access to persistent storage with better scalability. It's a hot topic of academic and industrial research to establish PCM in storage hierarchy to narrow the performance gap. However, the existing file systems do not perform well with the emerging PCM storage, which access storage medium via a slow, block-based interface. In this paper, we propose a novel file system, RAFS, to bring about good performance of PCM, which is built in the embedded platform. We attach PCM chips to the memory bus and build RAFS on the physical address space. In the proposed file system, we simplify traditional system architecture to eliminate block-related operations and layers. Furthermore, we adopt memory mapping and bypassed page cache to reduce copy overhead between the process address space and storage device. XIP mechanisms are also supported in RAFS. To the best of our knowledge, we are among the first to implement file system on real PCM chips. We have analyzed and evaluated its performance with IOZONE benchmark tools. Our experimental results show that the RAFS on PCM outperforms Ext4fs on SDRAM with small record lengths. Based on DRAM, RAFS is significantly faster than Ext4fs by 18% to 250%.

  5. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage

    Science.gov (United States)

    Meyer, C. F.

    1980-01-01

    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  6. Straight-Line: A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C.; Mangan, D.

    1995-07-01

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to: (1) Provide the right sensor information to the right user immediately. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  7. Straight-Line -- A nuclear material storage information management system

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, C. [Sandia National Labs., Livermore, CA (United States); Mangan, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Sandia National Laboratories is developing Straight-Line -- a pilot system to demonstrate comprehensive monitoring of nuclear material in storage. Straight-Line is an integrated system of sensors providing information that will enhance the safety, security, and international accountability of stored nuclear material. The goals of this effort are to (1) Provide the right sensor information to the right user in a timely manner. (2) Reduce the expenses, risks, and frequency of human inspection of the material. (3) Provide trustworthy data to international inspectors to minimize their need to make on site inspections. In pursuit of these goals, Straight-Line unites technology from Sandia`s Authenticated Item Monitoring System (AIMS) and other programs to communicate the authenticated status of the monitored item back to central magazine receivers. Straight-Line, however, incorporates several important features not found in previous systems: (1) Information Security -- the ability to collect and safely disseminate both classified and unclassified sensor data to users on a need-to-know basis. (2) Integrate into a single system the monitoring needs of safety, security, and international accountability. (3) Incorporate the use of sensors providing analog or digital output. This paper will present the overall architecture and status of the Straight-Line project.

  8. Development of power storage system. Advanced battery power storage system. (The development results and research plan in 1988 fiscal year)

    Energy Technology Data Exchange (ETDEWEB)

    Kouda, Atsushi; Yazawa, Tetsuo

    1988-07-01

    The research and trial manufacture of 1kW battery on the electrode and battery construction, development of 10kW battery module, capacity enlarging and trial manufacturing as to four type batteries, that is, Na-S battery, Zn-Cl battery, Zn-Br battery and redox flow type battery were forwarded as the items to be developed in Japan for the advanced battery power storage system. The research and development of system technology was started in 1980 to verify the operating and controlling characteristics and the protection system. The technology of the 60kW class module for 1,000kW class battery system was established in 1987 and the total system research and development is forwarding. The 1,000kW class system test is continued; the 60kW class module batteries of Na-S battery and Zn-Br battery are operated; the fabrication of 1,000kW class pilot plant is initiated; and the reliability and safety of the power system are verified in 1988. (1 fig, 2 tabs)

  9. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperatu...... the storage is in its super cooled phase without activation of the phase change. This paper presents an initial simulation model of a PCM storage for implementation in TRNSYS 15 [1] as well as the first test results achieved with the model....

  10. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Anvari-Moghaddam, Amjad; Hernández, Adriana Carolina Luna

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, both daily photovoltaic (PV) and load profiles together with battery lifetime and performance models are considered in this study. A probabilistic analysis has been performed on some years of real data from the ADREAM experimental PV building of the LAAS-CNRS in Toulouse, FRANCE....

  11. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  12. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life.

    Science.gov (United States)

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J; Goddard, William A; Kang, Jeung Ku

    2015-06-30

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni(2+) of the nanocrystal changes during lithiation-delithiation through Ni(0) and back to Ni(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles.

  13. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  14. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    Science.gov (United States)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management

  15. A technique for unit commitment with energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Senjyu, Tomonobu; Miyagi, Tsukasa; Ahmed Yousuf, Saber; Urasaki, Naomitsu [Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, Riverside Building 36-2, Nihonbashi, Hokozakicho, Chuo-ku, Tokyo 103-8515 (Japan)

    2007-01-15

    This paper introduces the scheduling method for thermal and energy storage system (ESS) unit commitment. The ESS is incorporated to achieve peak load-levelling and reduce the total cost. The thermal scheduling is implemented by the extended priority list (EPL) method. The EPL method consists of two steps, in the first step we get rapidly some initial unit commitment schedules by the priority list (PL) method. In this step, operational constraints are disregarded. In the second step, unit schedules are modified using the problem specific heuristics to fulfill operational constraints and to reduce the total cost. To calculate efficiently, heuristics are only applied to solutions which can be expected improvement. The ramp constraints for thermal unit are considered at the last of EPL method. The ESS scheduling is carried out based on the thermal unit schedule obtained by the EPL method. Several numerical examples demonstrate the effectiveness of the proposed method. (author)

  16. Clone-based Data Index in Cloud Storage Systems

    Directory of Open Access Journals (Sweden)

    He Jing

    2016-01-01

    Full Text Available The storage systems have been challenged by the development of cloud computing. The traditional data index cannot satisfy the requirements of cloud computing because of the huge index volumes and quick response time. Meanwhile, because of the increasing size of data index and its dynamic characteristics, the previous ways, which rebuilding the index or fully backup the index before the data has changed, cannot satisfy the need of today’s big data index. To solve these problems, we propose a double-layer index structure that overcomes the throughput limitation of single point server. Then, a clone based B+ tree structure is proposed to achieve high performance and adapt dynamic environment. The experimental results show that our clone-based solution has high efficiency.

  17. Tradeoffs for reliable quantum information storage in 2D systems

    CERN Document Server

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd^2=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. We show that the analogous tradeoff for the classical information storage is k\\sqrt{d} =O(n).

  18. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  19. A drive system for the Pirouette kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Proud, N.J.; Kelsall, D.R. [International Energy Systems Ltd., Wigan (United Kingdom); Alexander, T.M. [Heenan Drives Ltd., Worcester (United Kingdom)

    1996-12-31

    Pirouette is a heavy cylindrical flywheel of wound carbon-fibre composite rotated at high speeds to store kinetic energy. To transfer energy in and out of the flywheel requires an integrated motor/generator coupled to suitable power electronics. This paper looks at the aspects of the design for a drive system that can operate the machine with the desired performance characteristics over its defined working range. (author)

  20. Lower-Energy Energy Storage System (LEESS) Component Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Cosgrove, J.; Shi, Y.; Saxon, A.; Pesaran, A.

    2014-10-01

    Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to traditional battery storage systems. If such lower-energy ESS (LEESS) devices can also be shown to maintain high HEV fuel savings, future HEVs designed with these devices could have an increased value proposition relative to conventional vehicles. NREL's vehicle test platform is helping validate the in-vehicle performance capability of alternative LEESS devices and identify unforeseen issues. NREL created the Ford Fusion Hybrid test platform for in-vehicle evaluation of such alternative LEESS devices, bench testing of the initial LIC pack, integration and testing of the LIC pack in the test vehicle, and bench testing and installation of an EDLC module pack. EDLC pack testing will continue in FY15. The in-vehicle LIC testing results suggest technical viability of LEESS devices to support HEV operation. Several LIC configurations tested demonstrated equivalent fuel economy and acceleration performance as the production nickel-metal-hydride ESS configuration across all tests conducted. The lowest energy LIC scenario demonstrated equivalent performance over several tests, although slightly higher fuel consumption on the US06 cycle and slightly slower acceleration performance. More extensive vehicle-level calibration may be able to reduce or eliminate these performance differences. The overall results indicate that as long as critical attributes such as engine start under worst case conditions can be retained, considerable ESS downsizing may minimally impact HEV fuel savings.

  1. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    Harshal N Deota; N D Chavda; V Potbhare

    2013-12-01

    For a finite boson system, the ensemble-averaged state density has been computed with respect to the body interaction rank . The shape of such a state density changes from Gaussian to semicircle as the body rank of the interaction increases. This state density is expressed as a linear superposition of Gaussian and semicircular states. The nearest-neighbour spacing distribution (NNSD), which is one of the most important spectral properties of a system, is studied. The NNSDs are rather independent of body rank and show a Wigner distribution throughout.

  2. Enabling Large-Scale Storage in Sensor Networks with the Coffee File System

    OpenAIRE

    Tsiftes, Nicolas; Dunkels, Adam; He, Zhitao; Voigt, Thiemo

    2009-01-01

    Persistent storage offers multiple advantages for sensor networks, yet the available storage systems have been unwieldy because of their complexity and device-specific designs. We present the Coffee file system for flash-based sensor devices. Coffee provides a programming interface for building efficient and portable storage abstractions. Unlike previous flash file systems, Coffee uses a small and constant RAM footprint per file, making it scale elegantly with workloads consisting of large fi...

  3. Design and Analysis of a Solar-Powered Compressed Air Energy Storage System

    Science.gov (United States)

    2016-12-01

    ANALYSIS OF A SOLAR-POWERED COMPRESSED AIR ENERGY STORAGE SYSTEM by Thomas H. Prinsen December 2016 Thesis Advisor: Anthony Gannon Co-Advisor...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF A SOLAR-POWERED COMPRESSED AIR ENERGY STORAGE SYSTEM 5...a two-party study that analyzed a compressed air storage system using fundamental thermodynamic principles and designed the compression phase using

  4. Biomass storage, decision support systems, and expert systems in crop production and processing

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.D.

    1985-01-01

    Agricultural production depends on obtaining and efficiently using the necessary resources. Producers must have access to information that will allow them to select among alternative resource inputs and farming practices. This dissertation covers research into the storage of alternative biomass energy crops and the progression into developing integrated, interactive computer based information systems to support agricultural decisions. Biomass could be a significant source of energy and industrial feedstocks. Storing moist biomass between harvest and conversion can lead to degradation and loss of the material. Data on the storage characteristics of corn cobs and corn silage was obtained over two seasons. The results of studies on corn cob storage in outside piles indicated that up to 33% of the available energy and 43% of the available pentosans were lost during 18 months storage. Studies of corn silage preservation showed that 0.5% sulfur dioxide effectively reduced losses of water soluble sugars. The storage research indicated that integrated biomass energy systems with the conversion of silages to ethanol and utilizing crop residues for heat are feasible. The development of decision support systems (DDS) and expert systems (ES) offers great potential for effective transfer of technology from researchers to farmers. A crop planning DSS was constructed on an integrated spreadsheet framework with interactive screen inputs and numerical and graphical outputs.

  5. Intermediate and product storage systems for the JET active gas handling system - inactive commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, R.; Hemmerich, J.L.; Lasser, R.; Laveyry, M.; Lupo, J.; Milverton, P.; Skinner, N.; Perevezentsev, A. [JET Joint Undertaking, Oxfordshire (United Kingdom)

    1995-10-01

    The Product Storage (PS) and Intermediate Storage (IS) systems of the Active Gas Handling System (AGHS) are hydrogen isotope storage facilities. IS will take pure hydrogen mixtures from the Cryogenic Forevacuum (CF) system and store them until the isotope separation systems, Cryogenic Distillation (CD) and Gas Chromatography (GC), are ready to separate the mixtures into pure H{sub 2}, D{sub 2} and T{sub 2}. The purified D{sub 2} and T{sub 2} will be sent to PS for storage, while any protium will be diluted with nitrogen and discharged to atmosphere if the T{sub 2} levels are below 4 x 10{sup -4}Ci/m{sup 3}. PS will then deliver gas via the Gas Introduction (GI) system to the various users. The principal parts of PS and IS are their U-bed assemblies. Each assembly consists of four uranium beds (U-bed) which each store up to 27 moles of hydrogen. The commissioning results, the absorption and desorption characteristics of the U-beds, the sequences for safe operation of the U-beds and transfer of gases to other AGHS systems, the hardwired interlock system and the over/underpressure protection system for the secondary containments will be discussed. 8 refs., 4 figs.

  6. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  7. Surface properties of magnetic rigid disks for high-density data storage

    Science.gov (United States)

    Tsai, Hsiao-chu; Eltoukhy, Atef

    1990-05-01

    The chemical toughened glass is shown to be very safe for the disk-drive application based upon Weibull analyses of spin-to-break test data. Investigations revealed that frictional performance of glass disks can be correlated with two parameters (zero crossing and peak to valley) of the surface profile as measured by phase-shift interferometry. To compare the surface characteristics of glass with a conventional Al disk, the piezoelectrical baseline signals were measured by a glide head while flying steadily over a disk without asperity hits. The results showed that the glass disk caused less disturbance to the slider than the Al disk and can thus provide an intrinsically better surface for low-fly-height, high-density application.

  8. Critical parameters governing energy density of Li-storage cathode materials unraveled by confirmatory factor analysis

    Science.gov (United States)

    Sohn, Kee-Sun; Han, Su Cheol; Park, Woon Bae; Pyo, Myoungho

    2016-03-01

    Despite extensive effort during the past few decades, a comprehensive understanding of the key variables governing the electrochemical properties of cathode materials in Li-ion batteries is still far from complete. To elucidate the critical parameters affecting energy density (ED) and capacity (Q) retention in layer and spinel cathodes, we data-mine the existing experimental data via confirmatory factor analysis (CFA) based on a structural equation model (SEM), which is a proven, versatile tool in understanding complex problems in the social science. The data sets are composed of 18 and 15 parameters extracted from 38 layer and 33 spinel compounds, respectively. CFA reveals the irrelevance of Q retention to all the parameters we adopt, but it also reveals the sensitive variations of ED with specific parameters. We validate the usefulness of CFA in material science and pinpointed critical parameters for high-ED cathodes, hoping to suggest a new insight in materials design.

  9. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  10. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  11. Power System Flexibility With Electricity Storage Technologies: a Technical-economic Assessment of a Large-scale Storage Facility

    OpenAIRE

    2012-01-01

    This study analyzes power storage as a key option to support wind energy integration. The case study is the French power system, whose characteristics rely on high rates of nuclear power and a strong emerging wind energy market. A dynamic optimization dispatching model is used to simulate the operation of the power system, under two development scenarios of the technology mix by 2030, one scenario documented by European Commission, EC [1], and a second one by French Transmission System Operat...

  12. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  13. The parallel I/O architecture of the high performance storage system (HPSS). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.W. [Lawrence Livermore National Lab., CA (United States); Coyne, R.A. [IBM Government Systems, Houston, TX (United States)

    1995-04-01

    Datasets up to terabyte size and petabyte capacities have created a serious imbalance between I/O and storage system performance and system functionality. One promising approach is the use of parallel data transfer techniques for client access to storage, peripheral-to-peripheral transfers, and remote file transfers. This paper describes the parallel I/O architecture and mechanisms, Parallel Transport Protocol (PTP), parallel FTP, and parallel client Application Programming Interface (API) used by the High Performance Storage System (HPSS). Parallel storage integration issues with a local parallel file system are also discussed.

  14. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  15. Manufacturing and testing of a magnetically suspended composite flywheel energy storage system

    Science.gov (United States)

    Wells, Stephen; Pang, Da-Chen

    1994-01-01

    This paper presents the work performed to develop a multiring composite material flywheel and improvements of a magnetically suspended energy storage system. The flywheel is constructed of filament would graphite/epoxy and is interference assembled for better stress distribution to obtain higher speeds. The stationary stack in the center of the disk supports the flywheel with two magnetic bearings and provides power transfer to the flywheel with a motor/generator. The system operates under a 10(exp -4) torr environment and has been demonstrated to 20,000 rpm with a total stored energy of 15.9 Wh. When this flywheel cycles between its design speeds (45,000 to 90,000 rpm), it will deliver 242 Wh and have a usable specific energy density of 42.6 Wh/kg.

  16. Parametric analysis of a packed bed thermal energy storage system

    Science.gov (United States)

    Ortega-Fernández, Iñigo; Loroño, Iñaki; Faik, Abdessamad; Uriz, Irantzu; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno

    2017-06-01

    Even if the packed bed thermal energy storage concept has been introduced as a promising technology in the concentrated solar power field in the last years, its full deployment in commercial plants presents a clear improvement potential. In order to overcome the under-development of this storage technology, this work attempts to show the great capabilities of packed bed heat storage units after a successful design and operational parametric optimization procedure. The obtained results show that a correct design of this type of facilities together with a successful operation method, allow to increase significantly the storage capacity reaching an overall efficiency higher than 80 %. The design guideline obtained as a result of this work could open new objectives and applications for the packed bed storage technology as it represents a cost-effective and highly performing storage alternative.

  17. An Electrical Energy Storage System Based on Solid Oxide Fuel Cells

    Science.gov (United States)

    Luo, T.; Shao, L.; Qian, J. Q.; Wang, S. R.; Zhan, Z. L.

    2013-07-01

    This work studies a proof-of-concept integrated electrical energy storage system of solid oxide fuel cell (SOFC) by using Fe as original fuel and Ca(OH)2 as additive. The design and operation of this cell are based on a conventional anode-supported tubular SOFC, with Ni-SSZ, SSZ, and SSZ-LSM as anode, electrolyte and cathode, respectively. In this design, Fe reacts with H2O generated from the decomposition of Ca(OH)2 at high temperature, as a result, H2 is produced in situ as SOFC fuel. The charging process is realized by electrolysis of water in the SOEC mode along with the reduction of Fe3O4 by the generated H2. It is demonstrated that the open circuit voltage (OCV) for the Fe-Fe3O4 system is above 1.0V at 1073K. By using such fuel, the maximum power density of 124 mW cm-2 has been achieved. Two stable charge/discharge cycles have been tested. Combined with the advantages of environmental friendliness, sustainability promise and excellent performance, the novel SOFC system will be a new choice of grid-scale energy storage.

  18. Uncoupling File System Components for Bridging Legacy and Modern Storage Architectures

    Science.gov (United States)

    Golpayegani, N.; Halem, M.; Tilmes, C.; Prathapan, S.; Earp, D. N.; Ashkar, J. S.

    2016-12-01

    Long running Earth Science projects can span decades of architectural changes in both processing and storage environments. As storage architecture designs change over decades such projects need to adjust their tools, systems, and expertise to properly integrate such new technologies with their legacy systems. Traditional file systems lack the necessary support to accommodate such hybrid storage infrastructure resulting in more complex tool development to encompass all possible storage architectures used for the project. The MODIS Adaptive Processing System (MODAPS) and the Level 1 and Atmospheres Archive and Distribution System (LAADS) is an example of a project spanning several decades which has evolved into a hybrid storage architecture. MODAPS/LAADS has developed the Lightweight Virtual File System (LVFS) which ensures a seamless integration of all the different storage architectures, including standard block based POSIX compliant storage disks, to object based architectures such as the S3 compliant HGST Active Archive System, and the Seagate Kinetic disks utilizing the Kinetic Protocol. With LVFS, all analysis and processing tools used for the project continue to function unmodified regardless of the underlying storage architecture enabling MODAPS/LAADS to easily integrate any new storage architecture without the costly need to modify existing tools to utilize such new systems. Most file systems are designed as a single application responsible for using metadata to organizing the data into a tree, determine the location for data storage, and a method of data retrieval. We will show how LVFS' unique approach of treating these components in a loosely coupled fashion enables it to merge different storage architectures into a single uniform storage system which bridges the underlying hybrid architecture.

  19. A Network-Attached Storage System Supporting Guaranteed QoS

    Institute of Scientific and Technical Information of China (English)

    KONG Hua-feng; YU Sheng-sheng; LU Hong-wei

    2005-01-01

    We propose a network-attached storage system that can support guaranteed Quality of Service (QoS), called POPNet Storage. The special policy of date access and disk scheduling is enable users to access files quickly and directly with guaranteed QoS in the POPNet Storage. The POPNet Storage implements a measurement-based admission control algorithm (PSMBAC) to determine whether to admit a new data access request stream and admit as many requests as possible while meeting the QoS guarantees to its clients. The data reconstruction algorithms in the POPNet Storage also put more emphasis on data availability and guaranteed QoS, thus it is designed to complete the data recovery as soon as possible and at the same time provide the guaranteed QoS for high-priority data access. The experiment results show that the POPNet Storage can provide more significant performance, reliability, and guaranteed QoS than conventional storage systems.

  20. Evaluation of the Huawei UDS cloud storage system for CERN specific data

    Science.gov (United States)

    Zotes Resines, M.; Heikkila, S. S.; Duellmann, D.; Adde, G.; Toebbicke, R.; Hughes, J.; Wang, L.

    2014-06-01

    Cloud storage is an emerging architecture aiming to provide increased scalability and access performance, compared to more traditional solutions. CERN is evaluating this promise using Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy physics. Both deployed setups implement S3, one of the protocols that are emerging as a standard in the cloud storage market. A set of client machines is used to generate I/O load patterns to evaluate the storage system performance. The presented read and write test results indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud storages are finally demonstrated to function as back-end storage systems to a filesystem, which is used to deliver high energy physics software.

  1. Survey and selection of Energy Storage System for Low Power Embedded System

    OpenAIRE

    Meenu Nair; Chandan Maity

    2012-01-01

    Energy storage for portable low power Embedded System is one of the biggest challenges for a long time operation in present research and application. These systems are designed to operate the lowest possible energy at micro-watt or Milli-Watt range and the power is supplied from a small primary or secondary cell. In this paper an extensive study and latest survey has been shown to estimate and select the right suitable energy storage device in theoretical aspects and also commercially availab...

  2. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-08-24

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Optimum design of flywheel storage system using superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Kim, Jong Soo; Kim, Jung Guen [Ajou University, Suwon (Korea)

    1999-03-01

    The flywheel energy storage system using superconducting magnetic bearings is a device to store electrical energy as rotational kinetic energy by motor and to convert it to electrical energy by generator when it is necessary. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearings that have different characteristics from mechanical and the electric magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function. The loss mechanisms associated with the combined effects of magnetic unbalance and hysteretic damping in the superconducting flywheel system have been modeled under the assumption that dynamic characteristics of the bearing can be approximated by a linear, elastic anisotropic spring with complex stiffness. Theoretical energy loss model effected by unbalance is derived from generalized rotational model including gyroscopic effect and generalized response. The validity of suggested energy loss model is confirmed by comparing experimental deceleration curve. (author). 12 refs., 28 figs., 10 tabs.

  4. Hydrogeophysical methods for analyzing aquifer storage and recovery systems.

    Science.gov (United States)

    Minsley, Burke J; Ajo-Franklin, Jonathan; Mukhopadhyay, Amitabha; Morgan, Frank Dale

    2011-01-01

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ∼500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  5. Hydrogeophysical methods for analyzing aquifer storage and recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D.

    2009-12-01

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity {approx}500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  6. Artificial Modulation of Ferroelectric Thin Films into Antiferroelectric through H+ Implantation for High-Density Charge Storage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Jun; FEI Jin-Wen; TANG Wing-Ao; JIANG An-Quan

    2008-01-01

    Hydrogen ions are implanted into Pb(Zr0.3Ti0.7)O3 thin films at the energy of 40keV with a flux of 5 ×1014 ions/cm2.Pseudo-antiferroelectric behaviour in the implanted thin films is observed,as confirmed by the measurements of polarization versus electric hysteresis loops and capacitance versus voltage curves.X-ray diffraction patterns show the film structures before and after H+ implantation both to be perovskite of a tetragonal symmetry.These findings indicate that hydrogen ions exist as stable dopants within the films.It is believed that the dopants change domain-switching behaviour via the boundary charge compensation.Meanwhile,time dependence of leakage current density after time longer than lOs indicates the enhancement of the leakage current nearly in one order for the implanted film,but the current at time shorter than I s is mostly the same as that of the original film without the ionic implantation.The artificial tailoring of the antiferroelectric behaviour through H+ implantation in ferroelectric thin films is finally proven to be achievable for the device application of high-density charge storage.

  7. Electrochemical storage systems for renewable power supply systems. Workshop; Elektrochemische Speichersysteme fuer regenerative Energieversorgungsanlagen. Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Garche, J.; Hoehe, W. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Ulm (Germany); Stadermann, G. [eds.] [Forschungsverbund Sonnenenergie, Berlin (Germany)

    1999-07-01

    This volume contains 26 contributions on batteries and PV systems. Vol. 1 discusses the following subjects: 1. Evaluation and assessment of the performance of battery systems in existing PV systems; 2. Status and prospects of storage systems; 3. Experience, requirements and markets; 4. Storage battery operation and assessment; 5. Systems engineering and operation of PV systems. [German] Dieser Band enthaelt 26 Beitraege zum aktuellen Stand der Batterien sowie der dazugehoerigen Systeme fuer Photovoltaik-Anlagen. Der Band ist in fuenf Themenbereiche unterteilt: 1. Auswertung und Bewertung des Betriebsverhaltens von Batteriesystemen in bestehenden PV-Anlagen; 2. Stand und Zukunft von Speichersystemen; 3.Erfahrungen, Anforderungen und Maerkte; 4. Speicher-Betriebsfuehrung und -Zustandsbestimmung; und 5. Systemtechnik und Betriebsfuehrung von PV-Systemen.

  8. Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    IANNUCCI, JOE; EYER, JIM; BUTLER, PAUL C.

    2003-02-01

    This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.

  9. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    Science.gov (United States)

    Kota, Krishna M.

    , the proposed conceptual design could have a vapor-to-condenser temperature difference of less than 10°C with a volume storage density of 97 MJ/m 3 and a mass storage density of 0.122 MJ/kg. The effectiveness of this heat sink depends on the rapidness of the heat storage facility in the design during the pulse heat generation period of the duty cycle. Heat storage in this heat sink involves transient simultaneous laminar film condensation of vapor and melting of an encapsulated phase change material in graphite foam. Therefore, this conjugate heat transfer problem including the wall inertia effect is numerically analyzed and the effectiveness of the heat storage mechanism of the heat sink is verified. An effective heat capacity formulation is employed for modeling the phase change problem and is solved using finite element method. The results of the developed model showed that the concept is effective in preventing undue temperature rise of the heat source. Experiments are performed to investigate the fabrication and implementation feasibility and heat transfer performance for validating the objectives of the design, i.e., to show that the VCTES heat sink is practicable and using PCM helps in arresting the vapor temperature rise in the heat sink. For this purpose, a prototype version of the VCTES heat sink is fabricated and tested for thermal performance. The volume foot-print of the vapor chamber is about 6"X5"X2.5". A custom fabricated thermal energy storage setup is incorporated inside this vapor chamber. A heat flux of 40 W/cm2 is applied at the source as a pulse and convection cooling is used on the condenser surface. Experiments are done with and without using PCM in the thermal energy storage setup. It is found that using PCM as a second latent system in the setup helps in lowering the undue temperature rise of the heat sink system. It is also found that the thermal resistance between the vapor chamber and the thermal energy storage setup, the pool boiling

  10. Modeling, hybridization, and optimal charging of electrical energy storage systems

    Science.gov (United States)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems

  11. Study of composite thin films for applications in high density data storage

    Science.gov (United States)

    Yuan, Hua

    Granular Co-alloy + oxide thin films are currently used as the magnetic recording layer of perpendicular media in hard disk drives. The microstructure of these films is composed mainly of fine (7--10 nm) magnetic grains physically surrounded by oxide phases, which produce magnetic isolation of the grains. As a result, the magnetic switching volume is maintained as small as the physical grain size. Consequently, ample number of magnetic switching units can be obtained in one recording bit, in other words, higher signal to noise ratios (SNR) can be achieved. Therefore, a good understanding and control of the microstructure of the films is very important for high areal density magnetic recording media. Interlayers and seedlayers play important roles in controlling the microstructure in terms of grain size, grain size distribution, oxide segregation and orientation dispersion of the crystallographic texture. Developing novel interlayers or seedlayers with smaller grain size is a key approach to produce smaller grain size in the recording layer. This study focuses on how to achieve smaller grain sizes in the recording layer through novel interlayer/seedlayer materials and processes. It also discusses the resulting microstructure in smaller-grain-size thin films. Metal + oxide (e.g. Ru + SiO2) composite thin films were chosen as interlayer and seedlayer materials due to their unique segregated microstructure. Such layers can be grown epitaxially on top of fcc metal seedlayers with good orientation. It can also provide an epitaxial growth template for the subsequent magnetic layer (recording layer). The metal and oxide phases in the composite thin films are immiscible. The final microstructure of the interlayer depends on factors, such as, sputtering pressure, oxide species, oxide volume fraction, thickness, alloy composition, temperature etc. Moreover, it has been found that the microstructure of the composite thin films is affected mostly by two important factors

  12. The redshift number density evolution of Mg Ⅱ absorption systems

    Institute of Scientific and Technical Information of China (English)

    Zhi-Fu Chen

    2013-01-01

    We make use of the recent large sample of 17 042 Mg Ⅱ absorption systems from Quider et al.to analyze the evolution of the redshift number density.Regardless of the strength of the absorption line,we find that the evolution of the redshift number density can be clearly distinguished into three different phases.In the intermediate redshift epoch (0.6 ≤ z ≤ 1.6),the evolution of the redshift number density is consistent with the non-evolution curve,however,the non-evolution curve over-predicts the values of the redshift number density in the early (z ≤ 0.6) and late (z ≥ 1.6) epochs.Based on the invariant cross-section of the absorber,the lack of evolution in the redshift number density compared to the non-evolution curve implies the galaxy number density does not evolve during the middle epoch.The fiat evolution of the redshift number density tends to correspond to a shallow evolution in the galaxy merger rate during the late epoch,and the steep decrease of the redshift number density might be ascribed to the small mass of halos during the early epoch.

  13. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    Science.gov (United States)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  14. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  15. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  16. The benchmark of gutzwiller density functional theory in hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2012-02-23

    We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.

  17. The Benchmark of Gutzwiller Density Functional Theory in Hydrogen Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2011-01-13

    We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

  18. Stationary density matrix of a pumped polariton system.

    Science.gov (United States)

    Vera, Carlos Andrés; Cabo, Alejandro; González, Augusto

    2009-03-27

    The density matrix rho of a model polariton system is obtained numerically from a master equation which takes account of pumping and losses. In the stationary limit, the coherences between eigenstates of the Hamiltonian are 3 orders of magnitude smaller than the occupations, meaning that the stationary density matrix is approximately diagonal in the energy representation. A weakly distorted grand canonical Gibbs distribution fits well the occupations.

  19. The Cost and Benefit of Bulk Energy Storage in the Arizona Power Transmission System

    Science.gov (United States)

    Ruggiero, John

    This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

  20. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.