WorldWideScience

Sample records for density polyethylene ldpe

  1. Biodegradation of low density polyethylene (LDPE) by a new ...

    African Journals Online (AJOL)

    ... activity was also correlated with a concomitant increase in the protein density of the ... The microbial degradation of LDPE was also analyzed by the change in pH of ... by enzymatic activity and may also involve cell-surface hydrophobicity.

  2. Maleic anhydride-g-low density polyethylene: Modification of LDPE molecular structure by γ-irradiation

    Science.gov (United States)

    Sheeja, Manaf, O.; Sujith, A.

    2017-06-01

    Polymer modification by radiation grafting of monomers onto polymers has received much attention recently. In the current study, γ-irradiation technique was used to achieve graft copolymerization of maleic anhydride (MA) onto low-density polyethylene (LDPE). To optimize, the process was performed at different γ-irradiation doses and MA concentration. The microstructure of grafted polymer film has been characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, field emission-scanning electron microscopy, and atomic force microscopy. The studies performed made possible the selection of experimental protocols adequate for the production of new copolymeric materials with high grafting yield.

  3. Rheological characterization of LDPE{sub Al} (low density polyethylene and aluminum) e HDPE (high density polyethylene); Caracterizacao das propriedades reologicas da mistura LDPE{sub Al} (polietileno de baixa densidade e aluminio) e HDPE (polietileno de alta densidade)

    Energy Technology Data Exchange (ETDEWEB)

    Santa Marinha, Ana Beatriz Abreu; Pacheco, Elen Beatriz Acordi Vasques; Monteiro, Elisabeth Ermel da Costa [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The long life packaging contains paper, polyethylene and aluminum for packaging of food. A few part of total amount produced is recycled and another is discharged in landfills in Brazil. The low density polyethylene and aluminum (LDPE{sub Al}) was obtained from recycling this packaging. The rheological properties of the blends were intermediate to ones of the pure polymers. In a general way, the rheological properties were not modified by the aluminum presence. (author)

  4. Fabrication and characterisation of low density polyethylene (LDPE/multi walled carbon nanotubes (MWCNTs nano-composites

    Directory of Open Access Journals (Sweden)

    Meenakshi Goyal

    2016-09-01

    Full Text Available Carbon nanotubes (CNT have shown extraordinary electrical, mechanical properties as well as many other physical properties. The aim of this study is to explore the scope of CNT/LDPE nano-composites for engineering applications. Nano-composites of LDPE and MWCNT are generally prepared by using the melt blending method but in the present investigation these have been prepared by using solvent mixing method. Xylene has been used as a solvent which can dissolve low density polyethylene (LDPE at about 125 °C. The solution of LDPE in xylene has been ultrasonicated with various percentages of MWCNT (0, 1, 2, 5, 10 wt% of MWCNT composite to form thin film after drying. MWCNT used in this study have been synthesised by electric arc discharge method. Characteristics of these composites have been determined by Raman spectroscopy and scanning electron microscopy (SEM. Raman spectroscopy revealed variation in intensity of CNT's peak with variation in concentration of CNT. The results indicated that intensity of CNT's peak was found to increase with the increase in concentration of CNT which indicated the type of interaction between polymer and CNT. SEM analysis reveals CNT-polymer interfacial adhesion and shows agglomeration of CNT's at some locations and presence of individual tubes at other locations. These investigations show that LDPE/MWCNT composites can be fabricated using simple solvent mixing method. Further investigation on the effect of MWCNT on mechanical, electrical and thermal properties of LDPE based composites are in progress.

  5. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-07-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  6. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  7. Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Science.gov (United States)

    Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh

    2013-01-01

    In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  8. Biodegradation of films of low density polyethylene (LDPE, poly(hydroxibutyrate-co-valerate (PHBV, and LDPE/PHBV (70/30 blend with Paecilomyces variotii

    Directory of Open Access Journals (Sweden)

    Thayse Marques Passos

    2015-02-01

    Full Text Available The increased consumption of plastics in the world has been a subject of great concern and special attention by the scientific community. The aim is to promote development of materials that are biodegradable in a shorter time upon disposal in the environment. The most used synthetic plastics are difficult to biodegrade because they are made of long hydrocarbon chains, such as polyethylene (PE, polypropylene (PP, poly(vinyl chloride (PVC, which are hydrophobic and resistant to the action of microbial enzymes. The use of alternative materials (natural polyesters can minimize the harm to dumps and landfills upon their disposal, because they are susceptible to the action of microorganisms. In this study we evaluated the biodegradation/biodeterioration of PHBV (poly(3-hydroxybutyrate-co-hydroxyvalerate films, LDPE (low density polyethylene and the blend of LDPE/PHBV (70/30 by the fungus Paecilomyces variotii, using different methods: optical microscopy (OM, scanning electronic microscopy (SEM and Fourier Transform Infrared spectroscopy (FTIR.

  9. Migration of BHT and Irganox 1010 from low-density polyethylene (LDPE) to foods and food-simulating liquids.

    Science.gov (United States)

    Schwope, A D; Till, D E; Ehntholt, D J; Sidman, K R; Whelan, R H; Schwartz, P S; Reid, R C

    1987-04-01

    The most widely used food-wrapping material is low-density polyethylene (LDPE). Food-wrap grades contain antioxidants to minimize degradation during processing and, in the final films, such additives are normally present at levels of several hundred ppm. During use, the antioxidants may migrate into food stored in LDPE wraps. Two typical antioxidants, BHT and Irganox 1010, were radiolabelled to allow accurate analytical measurement of the extent of their migration into foods and food-simulating liquids (FSL). The results show that BHT, a much smaller and more volatile molecule than Irganox 1010, migrates more rapidly into foods, but the differences are less for FSL. In most instances, migration appears to be controlled by diffusion of the antioxidant in the polymer, and the quantity lost can be correlated in a linear fashion with the square root of time. With aqueous FSL, and, presumably aqueous-type foods, however, anomalies result; the migration is often erratic, but is more closely related to time than to the square root of time. A tentative model developed to explain these facts assumes that the antioxidants decompose in aqueous media and the net migration rate is controlled largely by the rate of chemical decomposition. It is also shown that dry foods can be surprisingly effective sinks for antioxidants under typical storage conditions.

  10. Sifat elektrik dan termal nanokomposit poly(vinyl chloride (PVC/low density polyethylene (LDPE

    Directory of Open Access Journals (Sweden)

    Arum Yuniari

    2014-06-01

    Full Text Available One of the most serious problems encountered in poly(vinyl chloride (PVC processing is due to low thermal stability of the PVC. The purpose of the study was to determine the effect of LDPE and flame retardant on to the electrical and thermal nanocomposites properties The nanocomposites were prepared using a laboplastomill with (15; 20; 25 and 30 phr LDPE and (30 and 35 phr flame retardant at 215 ºC and 50 rpm rotor speed. The thermal properties of nanocomposite was evaluated by TGA/DTA and DSC, electrical properties was evaluated by volume resistivity. Thermal analysis results revealed that decomposition of nanocomposites occured at 280 ºC. DSC results show that crystalisation temperatur (Tc at 250 ºC, melting temperature (Tm at 260 ºC and glass temperature (Tg at 60 ºC. The IR spectra of nanocomposites showed that there was absorption at 1579 cm-1 formed polyene (C=C. The electrical testing of nanocomposites fullfill the quality requirements of SNI 04-6504-2001 Lampu swaballast untuk pelayanan umum-persyaratan keselamatan ≥ 4 MΩ..

  11. Correlation between Onset Oxidation Temperature (OOT and Fourier Transform Infrared Spectroscopy (FTIR for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE

    Directory of Open Access Journals (Sweden)

    Adhemar Ruvolo-Filho

    2013-01-01

    Full Text Available In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared spectroscopy (FTIR and Onset Oxidation Temperature (OOT. Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained.

  12. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  13. Study of high energy (MeV) N{sup 6+} ion and gamma radiation induced modifications in low density polyethylene (LDPE) polymer

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Ramandeep Kaur [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, Paramjit [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078 (India); Gupta, Sanjeev Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078 (India); Department of Physics, Aggarwal College, Ballabgarh 121004 Faridabad (India); Singh, Surinder [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110078 (India)

    2013-04-15

    The optical and structural response of low density polyethylene (LDPE) under the influence of 80 MeV N{sup 6+} ion at various fluences (5 × 10{sup 11} to 1 × 10{sup 13} ions/cm{sup 2}) and gamma rays at doses 100 and 1000 kGy were studied using UV–Vis spectroscopy and X-ray diffraction (XRD). The optical absorption spectra of N{sup 6+} ion irradiated LDPE showed a shift in the absorption edge towards higher wavelength side, which indicated a significant decrease in the direct and indirect band gaps of the films. The optical data showed decrease in the calculated band gap with increasing gamma dose. The diffraction pattern of pristine sample showed the semi crystalline nature of the polymer. The decrease in peak intensity and hence increase in amorphous nature was observed in N{sup 6+} ion irradiated samples. The opposite behavior is seen in case of gamma ray exposed samples at 100 kGy dose. The crystallite size (L) decreased but the other factors like interchain separation (R), interplanar distance (d), micro strain (ε), dislocation density (δ) and distortion parameters (g) increased for N{sup 6+} ion irradiated samples.

  14. Gamma radiation effects on the polymers used as ion exchange resin imobilizers: Part I - properties of the low density polyethylene (LDPE); Efeito da radiacao gama em polimeros usados como imobilizadores de resinas de troca ionica. Parte 1: Propriedades do PEBD

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Daniel Liu Chun; Riella, Humberto G. [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil); Guedes, Selma M.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1996-04-01

    In this work tests were realized to evaluate properties such as: density, Shore D hardness, tensile strength and rupture elongation of low density polyethylene (LDPE), which is used as resin solidification agent, in function of irradiation dose and ion exchange resin concentration incorporated. It also was observed LDPE color change, due to interaction between polymer and gamma radiation. The results showed the occurrence of phenyl radical formation, deriving from amine aromatic additive, introduced by polymer producer, which is responsible by color change. Up to studied dose of 5 MGy, the aromatic chain presence gave to LDPE the good resistance to radiation. Resin concentration provoked more variation on properties than radiation effect. It was possible to incorporate up to 60% wt of resin, resulting high reduction of final volume. (author) 13 refs., 6 figs.

  15. BIODEGRADABLE PLASTICS FROM A MIXTURE OF LOW DENSITY POLYETHYLENE (LDPE AND CASSAVA STARCH WITH THE ADDITION OF ACRYLIC ACID

    Directory of Open Access Journals (Sweden)

    Susilawati Susilawati

    2013-05-01

    Full Text Available A research of preparation biodegradable plastics, from LDPE and cassava starch mixture with the addition of acrylic acid, had been conducted. This research purpose to  studied compatibility properties of the material and percent weight loss during the biodegradation test. Optimum weight loss (59,26% was showed after 60 days witches LDPE and starch composition ratio 6 : 4 (w/w  while tensile strength  equal to 0,38 Kgf/mm2.  SEM characterization showed that biodegradation has occurred by  formation of hole in the biodegradable plastic surface. DTA test gave Tg = 130 °C, Tm = 230 °C and Td = 370-450 °C while FT-IR analysis showed that the biodegradable plastics have a chemistry interaction.

  16. A modelling implementation of climate change on biodegradation of Low-Density Polyethylene (LDPE by Aspergillus niger in soil

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2015-07-01

    Main conclusions:  Accurately evaluating the impact of landfilling on land use and predicting future climate are vital components for effective long-term planning of waste management. From a social and economic perspective, utilization of our mapped projections to detect suitable regions for establishing landfills in areas highly sustainable for microorganisms like A. niger growth will allow a significant cost reduction and improve the performance of biodegradation of LDPE over a long period of time, through making use of natural climatic and environmental factors.

  17. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties i

  18. Estudo do reprocessamento de polietileno de baixa densidade (PEBD reciclado do processamento de extrusão de filmes tubulares Study of the reprocessing of low density polyethylene (LDPE recycled from extruded blown films

    Directory of Open Access Journals (Sweden)

    Vinicius Pistor

    2010-01-01

    Full Text Available O mercado de reciclagem para os polímeros termoplásticos encontra-se atualmente em acentuada ascensão. Os materiais reciclados são vistos como materiais de propriedades inferiores em relação ao material virgem. O presente trabalho avaliou as características viscoelásticas e térmicas do polietileno de baixa densidade (PEBD reciclado. As amostras foram reprocessadas até dez vezes em condições extremas de processamento (300 °C/80 rpm em uma extrusora monorosca, a fim de avaliar modificações estruturais nas suas propriedades. Foram realizadas análises de reometria oscilatória de placas paralelas e calorimetria exploratória de varredura (DSC. A partir das análises de reometria oscilatória foram calculados espectros de relaxação e retardação pelo programa de regularização não-linear (NLREG e através das análises de DSC no primeiro aquecimento foram calculados os parâmetros cinéticos pelos métodos de Avrami e Freeman-Carroll. Os resultados do estudo reológico demonstraram que as amostras reprocessadas acima de quatro vezes apresentaram aumento da viscosidade complexa e dos módulos de armazenamento e perda, além de fenômenos de relaxação e retardação mais largos. Entretanto, os termogramas de DSC e os parâmetros cinéticos de fusão demonstraram que o PEBD estudado manteve sua estabilidade térmica, independentemente da modificação de suas características viscoelásticas.The recycling market of thermoplastic polymers is currently in a sharp increase. Recycled materials are regarded as having inferior properties compared to the virgin material. Here we investigated the viscoelastic and thermal properties of the recycled low density polyethylene (LDPE. The samples were reprocessed up to ten times under extreme processing conditions (300 °C/80 rpm in a single screw extruder in order to evaluate structural changes in their properties. Analyses were performed in an oscillatory rheometer with parallel plates and in

  19. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).

    Science.gov (United States)

    Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V

    2007-11-19

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.

  20. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles

    Science.gov (United States)

    Seyedehsan Hosseini; Qi Li; Manish Shrivastava; David R. Weise; David R. Cocker; J. Wayne Miller; Heejung S Jung

    2014-01-01

    Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities—activities associated with development and care of forests—dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (

  1. EFFECTS OF COMPATIBILIZERS ON THE MECHANICAL PROPERTIES OF LOW DENSITY POLYETHYLENE/LIGNIN BLENDS

    Institute of Scientific and Technical Information of China (English)

    Feng Luo; Nan-ying Ning; Long Chen; Run Su; Jing Cao; Qin Zhang; Qiang Fu; Shu-gao Zhao

    2009-01-01

    Low density polyethylene (LDPE)/lignin blends were prepared using melt blending. Two kinds of compatibilizers, ethylene-vinylacetate (EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride (PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion. Scanning electron microscope (SEM) was used to investigate the dispersion of lignin in LDPE matrix. The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and lignin. However, the effects of the two compatibilizers on the mechanical properties of LDPE/lignin blends were different. The elongation at break of the blends was obviously increased by adding EVA, while significant improvement of tensile strength was observed by adding PE-g-MA. Several theoretical models have been used to further analyze the experimental data, combined with the morphological observation of tensile fractured surfaces by SEM.

  2. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    Science.gov (United States)

    Pandiyaraj, K. Navaneetha; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Deshmukh, Rajendra. R.; Su, Pi-Guey; Halleluyah Mercy, Jr.; Halim, Ahmad Sukari

    2015-02-01

    With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents, among others.

  3. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore, 641062 (India); Ferraria, Ana Maria; Rego, Ana Maria Botelho do [Centro de Química- Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon (Portugal); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. Mercy; Halim, Ahmad Sukari [Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-02-15

    Highlights: • Acrylic acid (AAc) was grafted on LDPE film by in situ plasma polymerization. • Molecules of PEG and chitosan were immobilized on AAc grafted LDPE films. • Surface modified LDPE exhibits excellent hydrophilic property. • Surface modified LDPE resist the adsorption of protein and adhesion of platelets. - Abstract: With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents

  4. Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lujan-Acosta, R. [Centro de Investigación en Química Aplicada, Blvd Enrique Reyna 140, Saltillo, Coahuila 25294 (Mexico); Sánchez-Valdes, S., E-mail: saul.sanchez@ciqa.edu.mx [Centro de Investigación en Química Aplicada, Blvd Enrique Reyna 140, Saltillo, Coahuila 25294 (Mexico); Ramírez-Vargas, E., E-mail: eduardo.ramirez@ciqa.edu.mx [Centro de Investigación en Química Aplicada, Blvd Enrique Reyna 140, Saltillo, Coahuila 25294 (Mexico); Ramos-DeValle, L.F.; Espinoza-Martinez, A.B.; Rodriguez-Fernandez, O.S. [Centro de Investigación en Química Aplicada, Blvd Enrique Reyna 140, Saltillo, Coahuila 25294 (Mexico); Lozano-Ramirez, T. [Instituto Tecnologico de Cd. Madero, Juventino Rosas Col. Los Mangos, Cd. Madero, Tamaulipas 89440 (Mexico); Lafleur, P.G. [Ecole Polytechnique de Montreal, Chemical Engineering Department, P.O. Box 6079, Stn Centre-Ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-08-01

    The synergistic effect of organo-modified montmorillonite (Nanomer I28E and Cloisite 20A) and metal hydroxides (magnesium hydroxide MH and alumina trihydrate ATH) as flame retardants in LDPE/EVA nanocomposites compatibilized with amino alcohol grafted polyethylene (PEgDMAE) was studied. Morphological characterization of nanocomposites was carried out by means of X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). Flame-retardant properties of nanocomposites were evaluated by the UL-94 horizontal burning and cone calorimeter tests and limiting oxygen index (LOI). Thermal degradation behavior was analyzed with a Fourier transform infrared coupled with the thermogravimetric analyzer (TG-FTIR). The XRD analysis showed a displacement of the d{sub 001} plane characteristic peak of clay to lower angles, which indicates an intercalated–exfoliated morphology. From STEM images it was observed a good dispersion of flame retardants (MH and ATH) throughout the polymer matrix which was reflected in flame-retardant properties. TG-FTIR showed a better thermal stability of nanocomposites and the gases evolved during combustion showed an important reduction. Based on thermal stability and thermal degradation results, the flame-retardant mechanism of LDPE/PEgDMAE/EVA/Clay/MH nanocomposites was proposed. - Highlights: • We evaluated the synergistic effect of MMT clay and nano-metallic hydroxides for wire coating applications. • We analyzed the using of a new type of polymer-inorganic compatibilizer. • We proposed a new flame-retardant mechanism for polymer blends/Clay/MH nanocomposites.

  5. STUDY OF COMPATIBILIZATION AND MODIFICATION BEHAVIOR OF PE-g-MAH ON LOW DENSITY POLYETHYLENE/ACORN SHELL FIBRE COMPOSITES%PE-g-MAH增容改性LDPE/橡实壳纤维复合材料的研究

    Institute of Scientific and Technical Information of China (English)

    李守海; 庄晓伟; 王春鹏; 储富祥

    2010-01-01

    采用熔融挤出法制备了低密度聚乙烯(LDPE)/橡实壳纤维(AS)木塑复合材料.研究了增容剂聚乙烯接枝马来酸酐(PE-g-MAH)对LDPE/AS木塑复合材料的影响.结果表明,PE-g-MAH是一种优良的增容剂,当其质量分数为5%时,LDPE/AS复合材料的拉伸强度比未添加时提高77.6%,弯曲强度提高83.8%,缺口冲击强度基本保持在5.0 kJ/m2.SEM分析表明,PE-g-MAH改善了AS与LDPE基体材料的相容性.DMA和DSC测试表明,PE-g-MAH能有效改善两相之间的界面相容性,并从根本上改善LDPE基体材料的性能.

  6. Degradation assessment of natural weathering on low density polyethylene/thermoplastic soya spent powder blends

    Science.gov (United States)

    Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

    2015-07-01

    Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.

  7. The effect of size and content of jackfruit seed flour on the properties of low density polyethylene

    Science.gov (United States)

    Santhiya, P.; Sam, S. T.; Ragunathan, S.; Noriman, N. Z.; Voon, C. H.

    2015-05-01

    The effect of jackfruit seed flour content on the tensile properties of low density polyethylene (LDPE) was investigated. A polysaccharides-based natural polymer, jackfruit seed flour, was melt blended with low density polyethylene (LDPE). LDPE/ jackfruit seed blends were prepared by using internal mixer (brabender) at 150°C. The jackfruit seed flour content ranged from 0 to 20 wt%. The tensile properties were tested by using a universal testing machine (UTM) according to ASTM D638. The Young's modulus increased with jackfruit seed blends content up to 20 wt% and decreased thereafter.

  8. Low density polyethylene (LDPE) / poli (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake; Misturas de polietileno de baixa densidade (PEBD) e poli(3-hidroxibutirato) (PHB) carregados com torta de mamona (TM)

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.C.G.; Oliveira, C.I.R. de; Sanches, M.C.; Coelho, N.N., E-mail: mrocha@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (IP/UERJ), Rio de Janeiro, RJ (Brazil). Instituto Politecnico

    2014-07-01

    Blends of PHB and LDPE were prepared by melt mixing in a Haake internal mixer. Castor oil pressed cake was used as filler for the blends. In order to improve the interfacial adhesion between the filler and the polymers, a mercerization process with 5% NaOH solution was employed. This process was evaluated by several techniques such as: X-Ray diffraction, infrared spectroscopy and scanning electron microscopy (SEM). The mechanical properties were evaluated by traditional tensile stress-strain tests (ASTM D- 638). The obtained results showed that the mercerization process leads to better adhesion properties. The Young Modulus of the blends presented a tendency to increase with the addition of the castor oil cake.(author)

  9. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  10. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic f

  11. Thermal characterizations of the paraffin wax/low density polyethylene blends as a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soojong; Moon, Heejang; Kim, Jinkon, E-mail: jkkim@kau.ac.kr

    2015-08-10

    Highlights: • Regression rate of blends fuel is higher than polymer fuel. • LDPE is an effective mixing ingredient for the combustion efficiency. • Blends fuel is a uniform mixture with two degradation steps. • LDPE plays a positive role for the low sensitivity to the thermal deformation • Blends with low LDPE content can be an effective fuel for hybrid rocket application. - Abstract: Thermal characterizations of a novel solid fuel for hybrid rocket application, based on the paraffin wax blends with low density polyethylene (LDPE) concentration of 5% (SF-5) and 10% (SF-10) were conducted. Both the increased regression rate in comparison with the polymeric fuel, and the improved combustion efficiency in comparison with the pure paraffin fuel reveal that the blend fuels achieve higher combustion performance. The morphology of the shape stabilized paraffin wax/LDPE blends was characterized by the scanning electron microscopy (SEM). Although the SEM observation indicated the blends have uniform mixtures, they showed two degradation steps confirming the immiscibility of components in the crystalline phase from thermogravimetric analysis (TGA). The differential scanning calorimeter (DSC) results showed that the melting temperature of LDPE in the blends decreased with an increase of paraffin wax content. The decreasing total specific melting enthalpy of blended fuels with decreasing paraffin wax content is in fairly good agreement with the additive rule. In thermomechanical analysis (TMA), the linear coefficient of thermal expansion (LCTE) seems to decrease with an increase of LDPE loading, however, the loaded LDPE do merely affect the LCTE in case of the blends with low LDPE concentration. It was found that a blend of low concentration of LDPE with a relatively high concentration of paraffin wax can lead to a potential novel fuel for rocket application, a contrary case with respect to the field of phase change materials (PCM) where a blend of high concentration

  12. Non-isothermal crystallization kinetics of partially miscible ethylene-vinyl acetate copolymer/low density polyethylene blends

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available The non-isothermal crystallization kinetics of ethylene-vinyl acetate copolymer (EVA, 14 wt% vinyl acetate content, low density polyethylene (LDPE and their binary blends with different blending ratio were investigated via differential scanning calorimetry. Jeziorny theory and Mo’s method were utilized in evaluating the crystallization behavior of both neat materials successfully. In the primary crystallization stage both EVA and LDPE had three-dimensional spherulitic growth mechanism. Apparently the crystallization rate of LDPE was faster than that of EVA at a low cooling rate. Increase in cooling rate limited the spherulites’ growth, which narrowed their rate difference. Influences from blending on the crystallization kinetics of each component in EVA/LDPE mixture were evaluated by Kissinger’s activation energy (∆E and Khanna’s crystallization rate coefficient (CRC. Inter-molecular interaction in the melt increased the ∆E of both EVA and LDPE components at the beginning of cooling. During the primary crystallization stage of LDPE, dilution effect from EVA facilitated the crystal growth in LDPE. Co-crystallization between EVA component and the secondary crystallization stage of LDPE component also increased the CRC of EVA. In blend of EVA/LDPE = 7/3, LDPE obtained the maximal CRC value of 174.2 h–1. Results obtained from various approaches accorded well with each other, which insured the rationality of conclusion.

  13. Recycling of irradiated high-density polyethylene

    Science.gov (United States)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  14. Effects of electron irradiation on LDPE/MWCNT composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianqun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Xingji, E-mail: lxj0218@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, Chaoming; Rui, Erming [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics, Harbin Institute of Technology, Harbin 150001 (China)

    2015-12-15

    In this study, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) in different concentrations (2%, 4% and 8%) using a melt blending process. Structural, thermal stability and tensile property of the unirradiated/irradiated LDPE/MWCNT composites by 110 keV electrons were investigated by means of scanning electron microscopy (SEM), small angle X-ray scattering (SAXS), Raman spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA) and uniaxial tensile techniques. Experimental results show that the addition of MWCNTs obviously increases the ultimate tensile strength of LDPE and decreases the elongation at break, which is attributed to the homogeneous distribution of the MWCNTs in LDPE and intense interaction between MWCNTs and LDPE matrix. Also, the electron irradiation further increases the ultimate tensile strength of LDPE/MWCNT composites, which can be ascribed to the more intense interaction between MWCNTs and LDPE matrix, and the formation of crosslinking sites in LDPE matrix induced by the electron irradiation. The addition of MWCNTs significantly enhances thermal stability of the LDPE due to the hindering effect and the scavenging free radicals, while the electron irradiation decreases thermal stability of the LDPE/MWCNT composites since the structure of the MWCNTs and LDPE matrix damages.

  15. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites.

    Science.gov (United States)

    Tajeddin, Behjat; Rahman, Russly Abdul; Abdulah, Luqman Chuah

    2010-08-01

    Toward the development of biocomposites for packaging applications, the possibility of using kenaf cellulose (KC) was investigated in the production of low-density polyethylene (LDPE)/KC/polyethylene glycol (PEG) biocomposites. First, cellulose was extracted from the cell walls of kenaf-bast fibers. Then, different weights of LDPE, KC, and PEG were blended, and the effects of varying the concentrations of KC and PEG on the synthesis process were evaluated, and the resulting composites were characterized with respect to their mechanical, thermal, biodegradability and water-absorption properties. A scanning electron microscope (SEM) was also used to observe the surface morphology of the samples before and after biodegradation tests. The results showed that the mechanical properties of the biocomposites decreased slightly as the KC content was increased from 0 to 50wt% in the biocomposite formulation; however, there was a good homogeneity between samples with added PEG. The addition of KC improved the thermal resistance of these biocomposites; PEG also had positive role in the thermal behavior of the composites. Based on a soil-burial test, the biodegradability of the composites showed a clear trend of increase degradation with increasing KC content in the formulation. While water-absorption values for the composites were higher than that of pure LDPE polymer, the addition of PEG to the formulation reduced the water absorption of the composites.

  16. Mechanical and Thermal Properties of Muscovite and Density Polyethylene-reinforced and-toughened Polypropylene Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lingyan; WEI Tingting; CHEN Huijie; LAI Weiqiang; BU Junfen

    2009-01-01

    The mechanical and thermal properties of polypropylene(PP)/muscovite/ low-density polyethylene(LDPE)/polypropylenegraftmaleic anhydride(PP-g-MAH)ternary com-posites were investigated.In PP matrix,muscovite,LDPE,and PP-g-MAH were added as strength-ening agent,toughening agent,and compatibilizer,respectively.The effects of dosages of the added materials were analyzed.The experimental results show that the optimum recipe of PP/muscovite/LDPE/PP-g-MAH composites is 100/10/6/20(mass ratio).Compared with the pure PP, the mechanical properties of PP/muscovite/LDPE/PP-g-MAH composites,including notched impact strength,Rockwell hardness and flexural strength,are improved.Although tensile strength is slightly decreased,they have better toughness.Filled with muscovite,the heat-resistance and heat-decompostion of the composites are improved.

  17. Characterization of Mechanical Properties: Low-Density Polyethylene Nanocomposite Using Nanoalumina Particle as Filler

    Directory of Open Access Journals (Sweden)

    Ching Yern Chee

    2012-01-01

    Full Text Available Nanocomposites based on low-density polyethylene (LDPE, containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with silane which acts as coupling agent. The effects of alumina additions to the structure and morphology of LDPE matrix were characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM, respectively. The mechanical behaviour of nanoalumina-reinforced LDPE composite was studied using tensile tests, flexural tests, and impact tests. The interfacial adhesion between nano alumina particle and LDPE matrix was investigated. The result showed that the reinforcement performance of nano alumina to LDPE matrix was attributed to the interfacial adhesion between nanoparticle and polymer matrix. The addition of 1 wt% nano alumina has successfully enhanced the mechanical properties of LDPE material.

  18. Photothermal characterization of low density polyethylene food packages

    Directory of Open Access Journals (Sweden)

    Poley Luiz H.

    2004-01-01

    Full Text Available The present work discuss the applicability of photothermal techniques for determining diffusion coefficients of oxygen and carbon dioxide of commercial low-density polyethylene (LDPE. The methodology involves the monitoring of diffused gas by a photoacoustic analyzer. Diffusion coefficients measured for CO2 and O2 were 2.77 x 10-8 cm²/s and 1.68 x 10-7 cm²/s, respectively. To support the gas diffusion results, thermal properties were studied using photoacoustic spectroscopy and crystallinity was determined using X-ray diffraction. Values obtained for thermal diffusivity and specific heat capacity were 1.65 x 10-3cm²/s and 2.33 J.cm-3K-1, which are in good agreement with values available in the literature for pure LDPE and thus assure reliability of diffusion coefficients values.

  19. Correlative investigation of copper/low-density polyethylene nanocomposite on the endometrial angiogenesis in rats

    Institute of Scientific and Technical Information of China (English)

    LI Jianxiong; LIU Zilong; LI Shuang; XIE Changsheng; DUAN Yonggang; YU Jing; ZHU Changhong

    2007-01-01

    The purpose of this study was to investigate the effects of copper/low-density polyethylene nanocomposite (nano-Cu/LDPE)on the endometrial angiogenesis in rats,and 100 sexual mature female SD rats were randomly divided into five groups:sham-operation groups(SO group,n=20),bulk copper groups(Cu group,n=20),LDPE groups(n=20),nano-Cu/LDPE groups I(n=20)and II(n=20).The levels of angiopoietin-2(Ang-2),its receptor(Tie-2)and CD34 of the rats' endometria in each group were examined by using the S-P method of the immunohistochemistry 30 and 180 days after insertion,respectively.Compared with those in the SO group,the expression of Ang-2 and Tie-2 in all the experimental groups was obviously increased 30 days after insertion,and these parameters in nano-Cu/LDPE groups,except for Ang-2 level in nano-Cu/LDPE group II,were significantly lower in comparison with those in Cu group (P<0.05).On the 180th day after insertion,Ang-2 and Tie-2 levels were still higher in Cu group and LDPE group,but there was no difference of Ang-2 and Tie-2 levels between nano-Cu/LDPE groups and the SO group(P>0.05).Compared with those in the SO group,the significant increases in microvessel density(MVD)were observed on the 30th and the 180th day after the insertion of the bulk copper(P<0.05).There was no significant difference in MVD counts before and after the insertion of nano-Cu/LDPE(P>0.05).The results show that Nano-Cu/LDPE have slighter influence on the endometrial angiogenesis than bulk copper.

  20. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach

    OpenAIRE

    2014-01-01

    Degradation of Petroleum-plastics like Low Density Polyethylene (LDPE) is a budding challenge due to increasing white pollution. The present investigation has focused the aspect through microbial assisted biodegradation. Various indigenous microorganisms were isolated from collected municipal landfill soil. Growth medium enriched with 0.2 g of LDPE powder was used to screen the soil bacteria with biodegradation potential. The screened bacteria were subjected to biodegradation assay in presenc...

  1. Compressed ethylene phase states and their importance for the production of low density polyethylene

    Directory of Open Access Journals (Sweden)

    Stoiljković Dragoslav

    2006-01-01

    Full Text Available In the last three decades the authors have published papers on the concept of the supra-molecular organization and the phase state of compressed ethylene gas and their effects on the mechanism and kinetics of free-radical ethylene polymerization. The effects on the macromolecular structure of low density polyethylene (LDPE were also explained. The importance of the phase state of compressed ethylene on the industrial process of LDPE production are presented in this paper: The start-up of polymerization, the peak in the polymerization rate curve, the stability of the reaction, the structure and properties of LDPE, the separation of unreacted ethylene and polyethylene and ethylene compression are discussed.

  2. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene.

    Science.gov (United States)

    Skariyachan, Sinosh; Manjunatha, Vishal; Sultana, Subiya; Jois, Chandana; Bai, Vidya; Vasist, Kiran S

    2016-09-01

    This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for enhanced degradation of low-density polyethylene (LDPE). The LDPE degrading bacteria were screened and microbiologically characterized. The best isolates were formulated as bacterial consortia, and degradation efficiency was compared with the consortia formulated using known isolates obtained from the Microbial Culture Collection Centre (MTCC). The degradation products were analyzed by FTIR, GC-FID, tensile strength, and SEM. The bacterial consortia were characterized by 16S ribosomal DNA (rDNA) sequencing. The formulated bacterial consortia demonstrated 81 ± 4 and 38 ± 3 % of weight reduction for LDPE strips and LDPE pellets, respectively, over a period of 120 days. However, the consortia formulated by MTCC strains demonstrated 49 ± 4 and 20 ± 2 % of weight reduction for LDPE strips and pellets, respectively, for the same period. Furthermore, the three isolates in its individual application exhibited 70 ± 4, 68 ± 4, and 64 ± 4 % weight reduction for LDPE strips and 21 ± 2, 28 ± 2, 24 ± 2 % weight reduction for LDPE pellets over a period of 120 days (p product analysis showed structural changes and formation of bacterial film on degraded LDPE strips. The 16S rDNA characterization of bacterial consortia revealed that these organisms were novel strains and designated as Enterobacter sp. bengaluru-btdsce01, Enterobacter sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-btdsce03. The current study thus suggests that industrial scale-up of these microbial consortia probably provides better insights for waste management of LDPE and similar types of plastic garbage.

  3. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice.

    Science.gov (United States)

    Van Willige, R W G; Linssen, J P H; Legger-Huysman, A; Voragen, A G J

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic films after dark storage at 20 degrees C. Owing to absorption, the amount of flavour compounds in the model solution exposed to LDPE decreased substantially. From the model flavour solution valencene was almost completely absorbed by LDPE, followed to a lesser extent by decanal, hexyl acetate, octanal and nonanone. Less flavour compounds were absorbed from the model solution by PC and PET. In contrast to LDPE, valencene was absorbed in the lowest amounts and decanal in the highest. Limonene was readily absorbed from orange juice by LDPE, while myrcene, valencene, pinene and decanal were absorbed in smaller quantities. Only three flavour compounds were absorbed from orange juice by PC and PET in very small amounts: limonene, myrcene and decanal. Although the flavour content between controls and polymer-treated samples differed substantially, the loss of flavour compounds due to absorption by LDPE, PC and PET did not influence taste perception of a model solution and orange juice significantly up to 29 days of dark storage at 20 degrees C as determined by triangular taste panel tests.

  4. Radiation effects on LDPE/EVA blends

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Jamaliah; Aziz, S.H.S.A.Sharifah Hanisah Syed Abdul; Hashim, Kamaruddin

    2000-04-01

    The effect of radiation on the properties of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) blends were investigated. The improvement of the measured gel content, thermal elongation, tensile strength, elongation at break and heat deformation of the blends have confirmed the positive effect of electron beam irradiation on the blends.

  5. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

    2016-01-01

    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co......The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU....... With the capability of the filament stretching rheometers, we show that LDPEs with quite different linear viscoelastic properties can have very similar steady extensional viscosity. This points to the potential for independently controlling shear and extensional rheology in certain rate ranges....

  6. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

    2016-01-01

    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co......The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU......-FSR) and a commercial filament stretching rheometer (VADER-1000). We show that the measurements from the EVF are limited by a maximum Hencky strain of 4, while the two filament stretching rheometers are able to probe the nonlinear behavior at larger Hencky strain values where the steady state is reached...

  7. Thermal and radiation resistance of stabilized LDPE

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, T., E-mail: traian_zaharescu@yahoo.co [INCDIE ICPE CA, Department of Radiation Processing, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); Jipa, S. [INCDIE ICPE CA, Department of Radiation Processing, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valahia' University of Targoviste, Faculty of Sciences, Targoviste 130024 (Romania); Henderson, D. [Trinity College, Hartford, CT 06106 (United States); Kappel, W. [INCDIE ICPE CA, Department of Radiation Processing, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); Maris, D.A.; Maris, M. [' Ovidius' University, 7 Ilarie Voronca St, P.O. Box 8700, Constanta (Romania)

    2010-03-15

    The effect of capsaicin on the radiation stability of low density polyethylene was accomplished by applying the chemiluminescence procedure. The neat and modified polymer with 0.25% and 0.50% (w/w) capsaicin were exposed to gamma-irradiation in air receiving 10, 20 and 30 kGy. The synergistic effect due to the presence of metallic selenium was demonstrated. The significant improvement in oxidation induction time was obtained demonstrating the efficient antioxidant activity of capsaicin in LDPE. The simultaneous protection action of metallic selenium in LDPE/capsaicin systems brought about a supplementary enhancement in the oxidation resistance of irradiated samples.

  8. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...... by a factor of five. Charge trapping and space charge formation were modified by the introduction of titanium dioxide...

  9. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.

    Science.gov (United States)

    Fan, Liangliang; Chen, Paul; Zhang, Yaning; Liu, Shiyu; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Ruan, Roger

    2017-02-01

    Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene (LDPE) with HZSM-5 and MgO was investigated. Effects of pyrolysis temperature, lignin to LDPE ratio, MgO to HZSM-5 ratio, and feedstock to catalyst ratio on the products yields and chemical profiles were examined. 500°C was the optimal co-pyrolysis temperature in terms of the maximum bio-oil yield. The proportion of aromatics increased with increasing LDPE content. In addition, with the addition of LDPE (lignin/LDPE=1/2), methoxyl group in the phenols was completely removed. A synergistic effect was found between lignin and LDPE. The proportion of aromatics increased and alkylated phenols decreased with increasing HZSM-5 to MgO ratio. The bio-oil yield increased with the addition of appropriate amount of catalyst and the proportion of alkylated phenols increased with increasing catalyst to feedstock ratio.

  10. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  11. Rheological Behavior of Immiscible PS/LDPE Blends: A Comparative Study of the Palierne Emulsion Model

    Directory of Open Access Journals (Sweden)

    Chatchai KUNYAWUT

    2015-02-01

    Full Text Available The rheological behavior of polystyrene (PS/low density polyethylene (LDPE blends have been investigated. Blends with 10, 20 and 30 wt% LDPE were prepared using a co-rotating twin-screw extruder at a melt mixing temperature of 180°C. SEM micrographs revealed that all blends exhibited droplet-type dispersion morphology. Rheological measurements were performed at the same temperature as the mixing temperature. The complex viscosity of the blends laid between those of the PS and the LDPE and decreased with increasing LDPE concentration. The plots of tand of blends with 10 and 20 wt% LDPE suggested that the elasticity of these blends was comparable to that of the pure PS. By contrast, the elasticity behavior of the blend with 30 wt% LDPE was shown to be similar to that of LDPE. Palierne model predictions were in very good agreement with the experimental data for the blends having 10 and 20 wt% LDPE. For the 30 wt% LDPE blend, agreement with the prediction and the experimental data was not as good. Within the frequency range of the rheological measurements, the second plateau at low frequency which results from an increase of the elasticity was not observed in any of the blends studied. This is expected to be due to the long relaxation times of the relatively large LDPE droplets of these blends.

  12. Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Mastekbayeva, G.A.; Kumar, S. [Asian Inst. of Technology, Energy Program, Pathumthani (Thailand)

    2000-07-01

    The performance of solar systems (thermal or photovoltaic) is influenced by the ability of the glazing to transmit solar radiation to the collection surface, besides other factors, such as, incident radiation, tilt of collector, properties of materials, operating strategy, surroundings, etc. This paper discusses the influence of dust on the transmittance of a 0.2-mm-thick low-density polyethylene (LDPE) glazing used commonly in solar air heaters. The reduction in transmittance due to various dust deposition densities of Bangkok clay (size 53-75 {mu}m) has been measured and a correlation relating the dust deposition density and the transmittance given. Experimental observations of natural dust accumulation on an inclined (15deg) LDPE glazing at a tropical climatic condition during a 30-day period indicates a dust accumulation of 3.72 g/m{sup 2} and is found to reduce the global transmittance of the glazing from about 87.9% to 75.8%. (Author)

  13. Adhesion, growth, and maturation of vascular smooth muscle cells on low-density polyethylene grafted with bioactive substances.

    Science.gov (United States)

    Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Svindrych, Zdenek; Slepicka, Petr; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav

    2013-01-01

    The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  14. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek

    2013-01-01

    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  15. Equipment evaluation for low density polyethylene encapsulated nitrate salt waste at the Rocky Flats Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, W.I.; Faucette, A.M.; Jantzen, R.C.; Logsdon, B.W.; Oldham, J.H.; Saiki, D.M.; Yudnich, R.J.

    1993-08-30

    Mixed wastes at the Rocky Flats Plant (RFP) are subject to regulation by the Resource Conservation and Recovery Act (RCRA). Polymer solidification is being developed as a final treatment technology for several of these mixed wastes, including nitrate salts. Encapsulation nitrate salts with low density polyethylene (LDPE) has been the preliminary focus of the RFP polymer solidification effort. Literature reviews, industry surveys, and lab-scale and pilot-scale tests have been conducted to evaluate several options for encapsulating nitrate salts with LDPE. Most of the effort has focused on identifying compatible drying and extrusion technologies. Other processing options, specifically meltration and non-heated compounding machines, were also investigated. The best approach appears to be pretreatment of the nitrate salt waste brine in either a vertical or horizontal thin film evaporator followed by compounding of the dried waste with LDPE in an intermeshing, co-rotating, twin-screw extruder. Additional pilot-scale tests planned for the fall of 1993 should further support this recommendation. Preliminary evaluation work indicates that meltration is not possible at atmospheric pressure with the LDPE (Chevron PE-1409) provided by RFP. However, meltration should be possible at atmospheric pressure using another LDPE formulation with altered physical and rheological properties: Lower molecular weight and lower viscosity (Epoline C-15). Contract modifications are now in process to allow a follow-on pilot scale demonstration. Questions regarding changed safety and physical properties of the resultant LDPE waste form due to use of the Epoline C-15 will be addressed. No additional work with non-heated mixer compounder machines is planned at this time.

  16. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  17. Potential of Using Recycled Low-Density Polyethylene in Wood Composites Board

    Directory of Open Access Journals (Sweden)

    A. C. Igboanugo

    2011-03-01

    Full Text Available The aim of this study was to investigate the suitability of using recycled low density polyethylene (RLDPE in wood board manufacturing. The composite board was produced by compressive moulding by increasing the percentage LDPE from 30 to 50wt% with interval of 10wt% at a temperatures of 140 and 180oC, pressure of 30-40 Kg/cm2 and pressing time 7-13minutes. The microstructure and mechanical properties: modulus of rupture (MOR, modulus of elasticity (MOE, Tensile strength, impact strength properties of boards were determined. The results showed that high modulus of rupture of 20.31N/mm2and MOE of 1363N/mm2 were obtained from board produced at 140oC, 60/40wt% wood particles/LDPE content. The uniform distribution of the particles and the recycled LDPE in the microstructure of the composites board is the major factor responsible for the improvement in the mechanical properties. The results showed that the MOE, MOR meets the minimum requirements of the European standards, for general purpose. The boards produced had tensile strength that is within the requirement. Hence this LDPE can be used in board production for general purpose applications.

  18. Effect of initiator concentration to low-density polyethylene production in a tubular reactor

    Science.gov (United States)

    Azmi, A.; Aziz, N.

    2016-11-01

    Low-density polyethylene (LDPE) is one of the most widely used polymers in the world, which is produced in high-capacity tubular and autoclave reactors. As the LDPE industry turn into more competitive and its market profit margins become tighter, manufacturers have to develop solutions to debottleneck the reactor output while abiding to the stringent product specification. A single polyolefin plant producing ten to forty grades of LDPE with various melt flow index (MFI), therefore understanding the reaction mechanism, the operating conditions as well as the dynamic behavior of tubular reactor is essential before any improvement can take place. In the present work, a steady state mathematical model representing a tubular reactor for the production of LDPE is simulated using MATLAB R2015a®. The model developed is a function of feed inlet, reactor jacket, single initiator injector and outlet stream. Analysis on the effect of initiator concentration (CI) shows sudden declining trend of initiator's concentration which indicates that all of the initiators are exhausted after polymerization reaction and no further reaction occur from this point onwards. Furthermore, the results demonstrate that the concentration of initiator gives significant impact on reactor temperature's profile and monomer conversion rate, since higher initiator concentration promotes greater polymerization rate, and therefore leads to higher monomer conversion throughput.

  19. Pyrolysis of olive residue/low density polyethylene mixture:Part I Thermogravimetric kinetics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper demonstrates the thermal pyrolysis of olive residue, low density polyethylene (LDPE) and olive residue/LDPE mixture in an inert atmosphere of N2 using thermogravimetric analysis (TGA). Measurements were carried out in the temperature range 300K~973K at heating rates of 2K/min, 10K/min, 20K/min and 50K/min. Based on the results obtained, three temperature regimes were selected for studying the non-isothermal kinetics of olive residue/LDPE mixture. The first two were dominated by the olive residue pyrolysis, while the third was linked to the LDPE pyrolysis, which occurred at much higher temperatures. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperatures of each component in the mixture were higher than those the individual components;thus an increase in thermal stability was expected. The kinetic parameters associated with thermal degradation were determined using Friedman isoconversional method.

  20. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

    Directory of Open Access Journals (Sweden)

    Silvia Jaerger

    2014-12-01

    Full Text Available In this study, polymer composites using low-density polyethylene (LDPE and layered hydroxide salts (LHS were synthesized. The following compositions of LHS were obtained Zn5(OH8(An-2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3- or hydrophobic (A = DDS- - dodecyl sulfate or DBS- - dodecyl benzene sulfonate. Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy. A variable amount of filler was then incorporated into the LDPE via extrusion, which was then injection molded to obtain specimens for evaluating tensile properties (Young's modulus, tensile strength, strain at break and toughness. For comparison, the sodium salts of the surfactants (NaDDS and NaDBS were also used as fillers in LDPE. The X-ray diffraction results indicated that the hydrophobic LHS were exfoliated in the polymer matrix, whereas the hydrophilic LHS was only delaminated. In the LDPE composites, melting and crystallization temperatures were nearly constant, along with the crystallinity indexes. The mechanical properties were mainly varied when the organophilic LHS was used. Overall, fillers based on LHS, especially those containing hydrophobic anions, may be interesting alternatives in the production of reinforced thermoplastics.

  1. Properties of concrete modified with waste Low Density Polyethylene and saw dust ash

    Science.gov (United States)

    Srimanikandan, P.; Sreenath, S.

    2017-07-01

    The increase in industrialization creates need for disposal of large quantity of by-products. To overcome the difficulty of disposal, these by-products can be used as a replacement for raw material. In this concern, non-conventional industrial wastes such as plastic bags, PET bottles, pulverized waste Low Density Polyethylene (LDPE) and biological waste such as saw-dust ash, coconut coir were used as a replacement in concrete. In this project, saw-dust ash and pulverized waste LDPE were introduced as the partial replacement for cement and fine aggregates respectively. 0%, 5%, 10%, 15% and 20% of sand by volume was replaced with LDPE and 0%, 1%, 3%, 5% and 10% of cement by volume was replaced with saw dust ash. Standard cube, cylinder and prism specimens were cast to assess the compressive strength, split tensile strength and flexural strength of modified concrete after 28 days of curing. Optimum percentage of replacement was found by comparing the test results. The mix with 5% of LDPE and 3% of saw dust ash showed a better result among the other mixes.

  2. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

    DEFF Research Database (Denmark)

    Carotenuto, G.; De Nicola, S.; Palomba, M.

    2012-01-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change in the micro......The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change...... in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been...... evaluated by testing nanocomposites made by different manufacturing techniques (compression moulding and blown extrusion). The comparison between the experimental data and the Halpin–Tsai model shows that the orientation of GNPs due to the extrusion process leads to values of tensile modulus higher than...

  3. Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ju

    2014-09-01

    Full Text Available Four kinds of nanosilica particles with different surface modification were employed to fabricate low-density polyethylene (LDPE composites using melt mixing and hot molding methods. The surface chemistry of modified nanosilica was analyzed by X-ray photoelectron spectroscopy. All silica nanoparticles were found to suppress the space charge injection and accumulation, increase the volume resistivity, decrease the permittivity and dielectric loss factor at low frequencies, and decrease the dielectric breakdown strength of the LDPE polymers. The modified nanoparticles, in general, showed better dielectric properties than the unmodified ones. It was found that the carrier mobility, calculated from J–V curves using the Mott-Gurney equation, was much lower for the nanocomposites than for the neat LDPE.

  4. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms.

    Science.gov (United States)

    Harrison, Jesse P; Schratzberger, Michaela; Sapp, Melanie; Osborn, A Mark

    2014-09-23

    Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial

  5. Influence of flavour absorption on oxygen permentation through LDPE, PP, PC and PET plastics food packaging

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Meinders, M.B.J.; Stege, van der H.J.; Voragen, A.G.J.

    2002-01-01

    The effect of flavour absorption on the oxygen permeability of low-density polyethylene (LDPE), polypropylene (PP), polycarbonate (PC) and polyethylene terephthalate (PET) was studied using an isostatic continuous flow system. Polymer samples were exposed to a model solution containing limonene,

  6. Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene

    DEFF Research Database (Denmark)

    Smedes, Foppe; Rusina, Tatsiana P.; Beeltje, Henry

    2017-01-01

    concentrations in other (defined) media, which however requires appropriate polymer to media partition coefficients. We determined thus polymer-lipid partition coefficients (KPL) of various PCB, PAH and organochlorine pesticides by equilibration of two silicones and low density polyethylene (LDPE) with fish oil...... and Triolein at 4 °C and 20 °C. We observed (i) that KPL was largely independent of lipid type and temperature, (ii) that lipid diffusion rates in the polymers were higher compared to predictions based on their molecular volume, (iii) that silicones showed higher lipid diffusion and lower lipid sorption...... compared to LDPE and (iv) that absorbed lipid behaved like a co-solute and did not affect the partitioning of HOC at least for the smaller molecular size HOC. The obtained KPL can convert measured equilibrium concentrations in passive sampling polymers into equilibrium concentrations in lipid, which...

  7. Nonaffine Network Structural Model for Molten Low-Density Polyethylene and High-Density Polyethylene in Oscillatory Shear%振动剪切作用下LDPE和HDPE熔体的非仿射网络结构模型

    Institute of Scientific and Technical Information of China (English)

    张娟; 瞿金平

    2002-01-01

    We propose molten polymer's entanglement network deformation to be nonaffine and use transient network structural theory with the revised Liu's kinetics rate equation and the revised upper convected Maxwell constitutive equation to establish a nonaffine network structural constitutive model for studying the rheological behavior of molten Low-Density Polyethylene (LDPE) and HighDensity Polyethylene (HDPE) in oscillatory shear. As a result, when the strain amplitude or frequency increases, the shear stress amplitude increases. At the same time, the accuracy of the nonaffine network model is higher than that of affine network model. It is clear that there is a small amount of nonaffine network deformation for LDPE melts which have long-chain branches, and there is a larger amount of nonaffine network deformation in oscillatory shear for HDPE melts which has no long-chain branches. So we had better consider the network deformation nonaffine when we establish the constitutive equations of polymer melts in oscillatory shear.

  8. LDPE/PHB blends filled with castor oil cake

    Science.gov (United States)

    Burlein, Gustavo A.; Rocha, Marisa C. G.

    2015-05-01

    The response surface methodology (RSM) is a collection of mathematical techniques useful for developing, improving and optimizing process. In this study, RSM technique was applied to evaluate the effect of the components proportion on the mechanical properties of low density polyethylene (LDPE)/ poly (3-hydroxy-butyrate) (PHB) blends filled with castor oil cake (CC). The blends were prepared by melt mixing in a twin screw extruder. Low density polyethylene, poly (3-hydroxy-butyrate) and castor oil pressed cake were represented by the input variables designated as LDPE, PHB and CC, respectively. As it was desirable to consider the largest LDPE content in the ternary system, the components of the mixture were subjected to the following constraints: 0.7 ≤ LDPE ≤ 1.0, 0≤ PHB≤0.3 e 0 ≤ CC ≤0.3. The mechanical properties of the different mixtures were determined by conventional ASTM tests and were evaluated through analysis of variance performed by the Minitab software. Some polynomial equations were tested in order to describe the mechanical behavior of the samples. The quadratic model in pseudo components was selected for describing the tensile behavior because it was the most efficient from a statistical point of view (p-value ≤ 0.05; coefficient of determination (r2) close to 1 and variation inflation factor (VIF) values castor oil cake to LDPE. The morphological study of the materials obtained showed that LDPE/PHB blends are immiscible and form morphological structures with well distinguished phase boundaries between dispersed phase and matrix. Biodegradation was evaluated burying the samples in simulated soil for different periods of time. The LDPE/PHB/CC mixtures with higher content of PHB showed more pronounced degradation. Under the experimental conditions studied the LDPE/CC compositions presented no degradation. However, the loss of mass of the LDPE/PHB/CC mixtures was higher than the loss of mass of the corresponding LDPE/PHB binary blend. This

  9. Variation of physical properties of LDPE greenhouse films due to agrochemicals used during cultivation

    OpenAIRE

    Evelia Schettini; Giuliano Vox

    2013-01-01

    During protected cultivation, the use of agrochemicals influence the degradation of the greenhouse plastic films. A research was carried out to evaluate how agrochemicals contamination and solar radiation influence the physical properties of low density polyethylene (LDPE) films. The LDPE films were manufactured on purpose adding different anti-UV stabilizer systems and were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N). Each film ...

  10. LOW DENSITY POLYETHYLENE/CLAY NANOCOMPOSITES MODIFIED BY ETHYLENE COPOLYMERS: EFFECTS OF FUNCTIONALIZED SEGMENTS ON MORPHOLOGY

    Institute of Scientific and Technical Information of China (English)

    Bo Xu; Yi-hu Song; Yong-gang ShangGuan; Qiang Zheng

    2006-01-01

    Melt extrusion was used to prepare binary nanocomposites of ethylene copolymers and organoclay and trinary nanocomposites of low-density polyethylene (LDPE), ethylene copolymer and organoclay. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the structure of the clay phase and the morphology of the nanocomposites. Influences of the comonomer in the copolymer and the content of the copolymer on the morphology of the resulting nanocomposites were discussed. The binary and the trinary composites may form intercalated or exfoliated structures depending on the interaction between the copolymer and the clay layers and the content of the copolymer.

  11. Space-charge trapping and conduction in LDPE, HDPE and XLPE

    Science.gov (United States)

    Montanari, G. C.; Mazzanti, G.; Palmieri, F.; Motori, A.; Perego, G.; Serra, S.

    2001-09-01

    The mechanisms of charge injection, transport and trapping in low-density, high-density and cross-linked polyethylene (LDPE, HDPE and XLPE) are investigated in this paper through charging-discharging current measurements and space-charge observations. The conductivity of LDPE is much larger than that of XLPE and HDPE. The threshold for space-charge accumulation and that for a space-charge-limited current mechanism, coinciding for the same material, are almost identical for LDPE and HDPE, while the threshold of XLPE is higher. However, HDPE accumulates more charge than the other two materials. The depolarization space-charge curves and the conduction current versus field characteristics indicate that the mobility of LDPE is larger than that of XLPE and HDPE, which supports the significant difference in conductivity. The lower mobility, as well as the nature, depth and density of trap sites, can explain the difference in space-charge accumulation and thresholds.

  12. The trapping characteristic of low density polyethylene in the presence of crosslinking by-products

    Science.gov (United States)

    Hussin, Nuriziani; Chen, George

    2009-08-01

    The by-products of dicumyl peroxide (DCP) from the crosslinking process such as acetophenone, cumyl alcohol and α-methylstyrene are said to be the sources of space charge formation in XLPE cable due to deep traps in the chemicals. However, by using space-charge-experimental approach, it appeared that these chemicals show a different trapping nature. This paper is intended to present this approach. Additive-free low density polyethylene (LDPE) was used as base material so that each chemical can be tested individually. Space charge measurement was done using the pulse electroacoustic (PEA) method. All results were compared to the clean LDPE to identify the contribution of the chemicals to the trapping characteristic. The data collected supported that although the chemicals introduce charge in the insulator, the charge decay is extremely fast especially in the presence of α-methylstyrene. It is believed that the chemicals modify the trapping characteristic of LDPE so that more shallow traps are formed in the insulator.

  13. The trapping characteristic of low density polyethylene in the presence of crosslinking by-products

    Energy Technology Data Exchange (ETDEWEB)

    Hussin, Nuriziani; Chen, George, E-mail: nh07r@ecs.soton.ac.u [School of Electronics and Computer Science University Of Southampton, SO16 1BJ (United Kingdom)

    2009-08-01

    The by-products of dicumyl peroxide (DCP) from the crosslinking process such as acetophenone, cumyl alcohol and {alpha}-methylstyrene are said to be the sources of space charge formation in XLPE cable due to deep traps in the chemicals. However, by using space-charge-experimental approach, it appeared that these chemicals show a different trapping nature. This paper is intended to present this approach. Additive-free low density polyethylene (LDPE) was used as base material so that each chemical can be tested individually. Space charge measurement was done using the pulse electroacoustic (PEA) method. All results were compared to the clean LDPE to identify the contribution of the chemicals to the trapping characteristic. The data collected supported that although the chemicals introduce charge in the insulator, the charge decay is extremely fast especially in the presence of {alpha}-methylstyrene. It is believed that the chemicals modify the trapping characteristic of LDPE so that more shallow traps are formed in the insulator.

  14. Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene.

    Science.gov (United States)

    Smedes, Foppe; Rusina, Tatsiana P; Beeltje, Henry; Mayer, Philipp

    2017-08-11

    Polymers are increasingly used for passive sampling of neutral hydrophobic organic substances (HOC) in environmental media including water, air, soil, sediment and even biological tissue. The equilibrium concentration of HOC in the polymer can be measured and then converted into equilibrium concentrations in other (defined) media, which however requires appropriate polymer to media partition coefficients. We determined thus polymer-lipid partition coefficients (KPL) of various PCB, PAH and organochlorine pesticides by equilibration of two silicones and low density polyethylene (LDPE) with fish oil and Triolein at 4 °C and 20 °C. We observed (i) that KPL was largely independent of lipid type and temperature, (ii) that lipid diffusion rates in the polymers were higher compared to predictions based on their molecular volume, (iii) that silicones showed higher lipid diffusion and lower lipid sorption compared to LDPE and (iv) that absorbed lipid behaved like a co-solute and did not affect the partitioning of HOC at least for the smaller molecular size HOC. The obtained KPL can convert measured equilibrium concentrations in passive sampling polymers into equilibrium concentrations in lipid, which then can be used (1) for environmental quality monitoring and assessment, (2) for thermodynamic exposure assessment and (3) for assessing the linkage between passive sampling and the traditionally measured lipid-normalized concentrations in biota. LDPE-lipid partition coefficients may also be of use for a thermodynamically sound risk assessment of HOC contained in microplastics. Copyright © 2017. Published by Elsevier Ltd.

  15. Manufacturing Technology of Composite Made from Low-Density Polyethylene (LDPE) Film and Poplar Veneer Pretreated with SiO2 Solution%SiO2浸渍杨木单板/低密度聚乙烯复合胶合板的制备工艺

    Institute of Scientific and Technical Information of China (English)

    常亮; 王正; 郭文静; 陈勇平; 方露

    2014-01-01

    采用SiO2水性分散液浸渍处理的杨木单板,以低密度聚乙烯(LDPE)薄膜为胶黏剂,制备热塑性树脂胶合板,分析其制备工艺因子对板材性能的影响.结果表明:塑料加入量、热压温度、偶联剂种类等因素对热塑性树脂胶合板的性能有非常显著影响,优化工艺条件制备板材的胶合强度可达到GB/T9846.3-2004中Ⅱ类胶合板的要求,表面硬度比未处理板材有所提高,游离甲醛释放量更低.

  16. Investigating the Degradability of HDPE, LDPE, PE-BIO, and PE-OXO Films under UV-B Radiation

    Directory of Open Access Journals (Sweden)

    A. Martínez-Romo

    2015-01-01

    Full Text Available The changes in structural properties of high density polyethylene films (HDPE, low density polyethylene films (LDPE, biodegradable polyethylene (PE-BIO, and oxodegradable polyethylene (PE-OXO films exposed to UV-B radiation were studied. The carbonyl (ICO and vinyl (IV index, the crystalline phase fraction, and the dichroic ratio were used to evaluate the photooxidation of these polymers. The results obtained show that LDPE and HDPE undergo a major degree of oxidation and an increase in the crystalline phase fraction comparing to PE-BIO and PE-OXO. If the LDPE and HDPE are pretreated by an accurate radiation UV-B dosage before its different commercial uses or in its final disposition, they can become an option for biodegradable material without the necessity of adding organic agents or photosensitizers.

  17. DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2017-06-01

    Full Text Available The exponential increase of plastic production produces 100 million tonnes of waste plastics annually which could be converted into hydrocarbon fuels in a thermal cracking process called pyrolysis. In this research work, a direct current (DC thermal plasma circuit is designed and used for conversion of low density polyethylene (LDPE into diesel oil in a laboratory scale pyrolysis reactor. The experimental setup uses a 270 W DC thermal plasma at operating temperatures in the range of 625 °C to 860 °C for a low density polyethylene (LDPE pyrolysis reaction at pressure = −0.95, temperature = 550 °C with τ = 30 min at a constant heating rate of 7.8 °C/min. The experimental setup consists of a vacuum pump, closed system vessel, direct current (DC plasma circuit, and a k-type thermocouple placed a few millimeters from the reactant sample. The hydrocarbon products are condensed to diesel oil and analyzed using flame ionization detector (FID gas chromatography. The analysis shows 87.5% diesel oil, 1,4-dichlorobenzene (Surr, benzene, ethylbenzene and traces of toluene and xylene. The direct current (DC thermal plasma achieves 56.9 wt. % of diesel range oil (DRO, 37.8 wt. % gaseous products and minimal tar production. The direct current (DC thermal plasma shows reliability, better temperature control, and high thermal performance as well as the ability to work for long operation periods.

  18. Effect of tocopherols incorporation on physical properties of LDPE,PP and blend film of LDPE/PP

    Directory of Open Access Journals (Sweden)

    ZHU Xuntao

    2014-12-01

    Full Text Available The objectives of this study were to investigate the effects of added tocopherols and blending of different polymers on the film physical properties.Tocopherols (3 000 mg/kg were incorporate into low density polyethylene (LDPE,polypropylene (PP and a blend film of LDPE/PP (50/50 by extrusion process.Then films were evaluated to determine tocopherol recovery and physical properties.Results showed that extrusion did not significantly change film thermal properties (Tm,Tc and Tg as compared with synthetic polymer resin pellet (raw material.LDPE and PP did not seem to react with each other to form new polymers under the current extrusion conditions.Addition of tocopherol significantly changed film mechanical properties compared with control.The above results and other data seemed to support that polymer blending is a feasible approach for producing tocopherol containing packaging films.

  19. Effect of environmental conditions on the permeability of low density polyethylene film and totally impermeable film to methyl isothiocyanate fumigant.

    Science.gov (United States)

    Fang, Wensheng; Cao, Aocheng; Yan, Dongdong; Han, Dawei; Li, Jun; Liu, Xiaoman; Li, Yuan; Ouyang, Chanbin; Wang, Qiuxia

    2017-12-01

    Fumigant methyl isothiocyanate (MITC) is a very promising alternative to methyl bromide, providing effective control of soil borne disease. However, there is a significant volatilization of MITC following fumigation because of its high application rates and high vapor pressure. Covering the soil surface with plastic tarps is a common approach used for restricting fumigant emissions to the atmosphere. To minimize atmospheric emissions of MITC by tarping, we determined the effect of temperature, humidity, and fumigant mixtures on the permeability to MITC of low density polyethylene film (LDPE) and totally impermeable film (TIF), using static sealed chambers. The results showed that temperature had the largest impact on the mass transfer coefficient (MTC) of MITC across LDPE film; the permeability increased 8.8 times when temperature was raised from 5°C to 35°C. There was a small increase in tarp permeability with increasing relative humidity below 75%, but it was little difference in MTC values between 75% and 100% relative humidity. The permeability of TIF to MITC is much lower than that of LDPE. TIF is much more sensitive to the ambient conditions; both temperature and humidity can drastically alter the MTC of MITC across TIF. Fumigant mixtures of MITC did not have a significant impact on the MTC across the LDPE film. The results of this study will contribute to establishing guidance on the appropriate environmental conditions for using tarping films to reduce MITC emission and achieve adequate pest control. Copyright © 2017. Published by Elsevier B.V.

  20. Thermal and mechanical properties of blends of LDPE and EVA crosslinked by electron beam radiation

    Science.gov (United States)

    Borhani Zarandi, Mahmoud; Amrollahi Bioki, Hojjat

    2013-08-01

    Low density polyethylene (LDPE) blends with different percentages of ethylene vinyl acetate (EVA) irradiated with 10 MeV electron beam in the range of 50-250 kGy at room temperature. The effect of irradiation and EVA content on the mechanical and thermal properties of LDPE was studied. It was revealed that for all blends increasing the applied dose up to 150 kGy would result in decrease in the specific heat capacity (cp) and thermal conductivity (k) of LDPE and then raised slightly with further increased in radiation doses. The gel content showed that under the irradiation, the crosslinking density at each irradiation dose depends almost on the amorphous portions of the LDPE/EVA. The mechanical properties of LDPE/EVA blends were found to be influenced by the electron beam irradiation and EVA content. It can be deduced that the mechanical properties of LDPE are improved by blending with EVA and irradiated by electron beam. Fourier transform infrared (FTIR) spectroscopy was used to characterize the structure of LDPE. Result indicates small variation in crystalline content, which could be increased or decreased on the formation of important bond groups.

  1. Alterations in the endometrium of rats, rabbits, and Macaca mulatta that received an implantation of copper/low-density polyethylene nanocomposite

    Directory of Open Access Journals (Sweden)

    Hu LX

    2014-02-01

    Full Text Available Li-Xia Hu,1,* Hong Wang,1,* Meng Rao,1,* Xiao-Ling Zhao,1 Jing Yang,1 Shi-Fu Hu,1 Jing He,1,2 Wei Xia,1 Hefang Liu,1 Bo Zhen,1 Haihong Di,1 Changsheng Xie,3 Xianping Xia,3 Changhong Zhu,11Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; 2Central Hospital of Wuhan, Wuhan, People's Republic of China; 3Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China *These authors contributed equally to this work Abstract: A copper/low-density polyethylene nanocomposite (nano-Cu/LDPE, a potential intrauterine device component material, has been developed from our research. A logical extension of our previous work, this study was conducted to investigate the expression of plasminogen activator inhibitor 1 (PAI-1, substance P (SP, and substance P receptor (SP-R in the endometrium of Sprague Dawley rats, New Zealand White rabbits, and Macaca mulatta implanted with nano-Cu/LDPE composite. The influence of the nano-Cu/LDPE composite on the morphology of the endometrium was also investigated. Animals were randomly divided into five groups: the sham-operated control group (SO group, bulk copper group (Cu group, LDPE group, and nano-Cu/LDPE groups I and II. An expression of PAI-1, SP, and SP-R in the endometrial tissues was examined by immunohistochemistry at day 30, 60, 90, and 180 postimplantation. The significant difference for PAI-1, SP, and SP-R between the nano-Cu/LDPE groups and the SO group (P<0.05 was identified when the observation period was terminated, and the changes of nano-Cu/LDPE on these parameters were less remarkable than those of the Cu group (P<0.05. The damage to the endometrial morphology caused by the nano-Cu/LDPE composite was much less than that caused by bulk copper. The nano-Cu/LDPE composite might be a potential substitute for conventional materials for intrauterine

  2. Influence of solvent absorption on the migration of Irganox 1076 from LDPE

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, T.

    2002-01-01

    The effect of solvent absorption on additive migration was studied by relating the diffusion coefficient (D) of Irganox 1076 to the maximum solvent absorption of different solvents in low-density polyethylene (LDPE) film. Solvents tested were ethanol, isopropanol, isooctane, ethylacetate, cyclohexan

  3. Additive diffusion from LDPE slabs into contacting solvents as a function of solvent absorption

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, Th.

    2003-01-01

    This article describes the simultaneous diffusion of a migrant and a solvent in low density polyethylene (LDPE). The migrant (Irganox 1076) moves out of the slab, while the solvent (isooctane, n-heptane or cyclohexane) moves inwards. Solvent absorption was measured separately by following the increa

  4. Additive Diffusion from LDPE Slabs into Contacting Solvents as a Function of Solvent Absorption

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, T.

    2003-01-01

    This article describes the simultaneous diffusion of a migrant and a solvent in low density polyethylene (LDPE). The migrant (Irganox 1076) moves out of the slab, while the solvent (isooctane, n-heptane or cyclohexane) moves inwards. Solvent absorption was measured separately by following the increa

  5. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-09-01

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure.

  6. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  7. Enhanced electrical and optical properties of iodine doped LDPE films

    Science.gov (United States)

    Sreelatha, K.; Predeep, P.

    2015-02-01

    In this study, an attempt has been made to dope Low Density Polyethylene (LDPE) with iodine and to study the effect of iodine doping on the optical band gap of LDPE films. The DC conductivity measurements and UV/Vis spectral studies are employed to characterize the samples. Iodine treatment induces colour change in the polymer film which supports the interaction between iodine molecules and polyethylene chains. I2 molecule links the polymer chains electronically and provides conducting path ways by forming DA complexes. The absorption band of complex films has extended to the visible and near infrared region of the spectrum. Further there are discernible shifts found in the energy gap and band edge towards lower energies on doping with iodine. This is essentially due to the formation of strong DA complexes upon iodine doping which improves the conducting behaviour.

  8. Study of Natural and Accelerated Weathering on Mechanical Properties of Antioxidants Modified Low Density Polyethylene Films for Greenhouse

    Directory of Open Access Journals (Sweden)

    Othman Al Othman

    2014-01-01

    Full Text Available Natural and accelerated weatherings were studied to inspect the effect of antioxidants to protect low-density polyethylene (LDPE films for commercial application as greenhouse covering materials in Saudi Arabia. In this investigation, six different formulations of LDPE film with incorporation of antioxidants were prepared and compared with neat LDPE. The samples were extruded and blown into a film using twin-screw extruder and film blowing machine. The LDPE films were exposed for outdoor weathering in Riyadh during the period of 90 days (mid of June to mid of September while the accelerated tests were performed by Weather-Ometer. The film having 0.2 wt% Alkanox-240 (AN-0.2 stabilizers showed the highest tensile strength among all samples during natural and 100-hour accelerated weathering (10.9 MPa and 21.8 MPa, resp.. The best elongation at break was witnessed in 0.2% Good-rite antioxidants which were 64% in natural weathering; however, 0.5% Good-rite antioxidants showed 232% in accelerated weathering. The film having 0.5 wt% Good-rite 3114 (GR-0.5 antioxidant could withstand 70 days during natural exposure before the tensile strength values were reduced to 2/3rd of the initial. The present study suggested that the addition of antioxidants Good-rite, Anox, and Alkanox can improve the mechanical strength, film’s life, effectiveness, and stability and they are suitable to be incorporated in LDPE for commercial greenhouse films.

  9. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    Science.gov (United States)

    Bee, Soo-Tueen; Ratnam, C. T.; Sin, Lee Tin; Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang; Rahmat, A. R.

    2014-09-01

    The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20-80% LDPE and were exposed to electron beam irradiation dosages of 20-120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young's modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure.

  10. The influence of titanium dioxide additive on the short-term DC breakdown strength of polyethylene

    DEFF Research Database (Denmark)

    Khalil, M. S; Henk, Peter O; Henriksen, Mogens

    1990-01-01

    The effect of the addition of 1% by weight of titanium dioxide fine particles to low-density polyethylene (LDPE) on the short-term DC breakdown strength of the LDPE was investigated using direct and reverse polarity voltages. The samples used were cylinders of both plain and doped materials...

  11. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene

    Science.gov (United States)

    Khonakdar, H. A.; Jafari, S. H.; Wagenknecht, U.; Jehnichen, D.

    2006-01-01

    Low- and high-density polyethylenes (LDPE and HDPE) were cross-linked in solid state by electron beam irradiation. Molar mass between cross-link joints, Mc, and cross-link density, ν, were calculated using rubber elasticity theory and hot set data. The results showed that the ν and creep modulus increased and creep strain and Mc decreased with increasing irradiation dose. As compared to HDPE, the LDPE had higher ν and lower Mc values at a similar irradiation dose. X-ray analysis and differential scanning calorimetry investigation of first heating cycle revealed no changes in crystalline structure of the irradiated samples. This was attributed to immobilization of radicals frozen in the crystalline phase. As a result of hindered mobility of the polymeric chains, these radicals were not able to cross-link the chains in the crystalline region. However, after melting of the crystals and during subsequent re-solidification process, different levels of crystallinity were developed depending on the applied irradiation dose. The irradiated samples with higher dose had lower crystallization and melting temperatures with reduced crystallinities. These confined crystallization behaviors, observed after a series of cooling and heating cycles, could be attributed to the decrease in the Mc values. The length of chain segment needed for usual crystallization by chain folding is decreased due to formation of cross-link joints and hence the crystallization process was hindered.

  12. A new route for chitosan immobilization onto polyethylene surface.

    Science.gov (United States)

    Popelka, Anton; Novák, Igor; Lehocký, Marián; Junkar, Ita; Mozetič, Miran; Kleinová, Angela; Janigová, Ivica; Slouf, Miroslav; Bílek, František; Chodák, Ivan

    2012-11-06

    Low-density polyethylene (LDPE) belongs to commodity polymer materials applied in biomedical applications due to its favorable mechanical and chemical properties. The main disadvantage of LDPE in biomedical applications is low resistance to bacterial infections. An antibacterial modification of LDPE appears to be a solution to this problem. In this paper, the chitosan and chitosan/pectin multilayer was immobilized via polyacrylic acid (PAA) brushes grafted on the LDPE surface. The grafting was initiated by a low-temperature plasma treatment of the LDPE surface. Surface and adhesive properties of the samples prepared were investigated by surface analysis techniques. An antibacterial effect was confirmed by inhibition zone measurements of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The chitosan treatment of LDPE led to the highest and most clear inhibition zones (35 mm(2) for E. coli and 275 mm(2) for S. aureus). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Physical and mechanical properties of LDPE incorporated with different starch sources

    Science.gov (United States)

    Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd

    2017-08-01

    In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.

  14. Biological evaluation of the copper/low-density polyethylene nanocomposite intrauterine device.

    Directory of Open Access Journals (Sweden)

    Li-Xia Hu

    Full Text Available Devices and materials intended for clinical applications as medical and implant devices should be evaluated to determine their biocompatibility in physiological systems. This article presents results from cytotoxicity assay of L929 mouse fibroblasts culture, tests for skin irritation, intracutaneous reactivity and sensitization, and material implantation tests for the novel copper/low-density polyethylene nanocomposite intrauterine device (nano-Cu/LDPE IUD with potential for future clinical utilization. Cytotoxicity test in vitro was conducted to evaluate the change in morphology, growth and proliferation of cultured L929 mouse fibroblasts, which in vivo examination for skin irritation (n = 6 and intracutaneous reactivity (n = 6 were carried out to explore the irritant behavior in New Zealand White rabbits. Skin sensitization was implemented to evaluate the potential skin sensitizing in Hartley guinea pigs (n = 35. The materials were implanted into the spinal muscle of rabbits (n = 9. The cytotoxicity grade of the nano-Cu/LDPE IUD was 0-1, suggested that the composite was nontoxic or mildly cytotoxic; no irritation reaction and skin sensitization were identified in any animals of specific extracts prepared from the material under test; similarly to the control sides, the inflammatory reaction was observed in the rabbits living tissue of the implanted material in intramuscular implantation assay. They indicated that the novel composite intrauterine device presented potential for this type of application because they meet the requirements of the standard practices recommended for evaluating the biological reactivity. The nano-Cu/LDPE IUD has good biocompatibility, which is biologically safe for the clinical research as a novel contraceptive device.

  15. Effect of Ar bombardment on the electrical and optical properties of low-density polyethylene films

    Indian Academy of Sciences (India)

    2016-11-01

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to $1 \\times 10^{15}$ cm$^{−2}$. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using theUV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energyvalues showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbonatoms per cluster was also observed.

  16. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.

    Science.gov (United States)

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M

    2016-01-01

    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  17. Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, D.P.; Aguado, J.; Escola, J.M. [ESCET, Rey Juan Carlos University, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Garagorri, E. [Chemical Engineering Department, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid (Spain)

    2001-04-01

    Thermal and catalytic degradation of low-density polyethylene (LDPE) has been investigated using a screw kiln reactor provided with two zones of reaction temperature. Thermal degradation experiments carried out at different temperatures and screw speeds have shown that this continuous system is suitable for the LDPE degradation, product outputs up to c.a. 100 g/h being obtained. Compared to a conventional batch reactor, the screw kiln system leads to a lower formation of gaseous products, whereas overcracking of the heavy fractions is also reduced. These differences are probably originated by the intimate contact and the same residence times for all the product fractions that exist within the screw reactor, which is in contrast with the selective and fast withdrawal of volatile products taking place in the batch system. In the catalytic experiments, a mesoporous MCM-41 type aluminosilicate has been used as catalyst, being continuously fed to the screw reactor mixed with the raw plastic material. In these conditions, yields up to 80% towards hydrocarbons within the gasoline range (C{sub 5}-C{sub 12}) have been obtained. Moreover, high amounts of C{sub 7} and C{sub 8} hydrocarbons are present in the gasoline fractions, which is assigned to catalytic oligomerization reactions that selectively affect to C{sub 3} and C{sub 4} gaseous hydrocarbons.

  18. Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend

    Science.gov (United States)

    Abdou, Saleh M.; Elnahas, H. H.; El-Zahed, H.; Abdeldaym, A.

    2016-05-01

    The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.

  19. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  20. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay; Caracterizacao preliminar no desenvolvimento de nanocompositos polietileno de baixa densidade/argila atapulgita

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Luanda G.; Rego, Jose K.M.A. do [Universidade Federal do Rio Grande do Norte, Programa de Pos-graduacao em Ciencia e Engenharia de Materiais, PPGCEM/UFRN, Natal, RN (Brazil); Ito, Edson N. [Universidade Federal do Rio Grande do Norte, Depto de Engenharia de Materiais, DEMat/UFRN, Natal, RN(Brazil); Acchar, Wilson [Universidade Federal do Rio Grande do Norte, Depto de Fisica, DF/UFRN, Natal, RN (Brazil)

    2011-07-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  1. Nanoscale mechanical and tribological properties of fluorocarbon films grafted onto plasma-treated low-density polyethylene surfaces

    Science.gov (United States)

    Cheng, Q.; Komvopoulos, K.

    2012-03-01

    Fluorocarbon (FC) films were grafted onto Ar plasma-treated low-density polyethylene (LDPE) surfaces by plasma polymerization and deposition. The evolution of the surface morphology of the grafted FC films was investigated at different scales with an atomic force microscope. Nanoscale sliding experiments performed with a surface force microscope provided insight into the nanotribological properties of Ar plasma-treated LDPE, with and without grafted FC films, in terms of applied normal load and number of sliding cycles. The observed trends are explained in the context of microstructure models accounting for morphological and structure changes at the LDPE surface due to the effects of plasma treatment (e.g., selective etching of amorphous phase, chain crosslinking and FC film grafting) and surface sliding (e.g., crystalline lamellae alignment along the sliding direction). Nanoindentation experiments elucidated the effect of plasma treatment on surface viscoelasticity and global contact stiffness. The results of this study demonstrate that plasma-assisted grafting of FC films is an effective surface modification method for tuning the nanomechanical/tribological properties of polymers.

  2. Effect of Cold-Drawn Fibers on the Self-Reinforcement of PP/LDPE Composites

    Science.gov (United States)

    Zhou, Ying-Guo; Su, Bei; Wu, Hai-Hong

    2017-08-01

    In our previous study, a method to fabricate super-ductile polypropylene/low-density polyethylene (PP/LDPE) blends was proposed, and a fiber-shape structure was shown to be formed, presenting necking propagation during tensile testing. In this study, the mechanical properties and thermal behavior of the necking region of tested super-ductile PP/LDPE samples were carefully investigated and further compared with the melt-stretched, untested, and thermo-mechanical-history-removed samples by differential scanning calorimetry and tensile testing. The results suggest that the tested samples have high mechanical properties and are more thermo-mechanically stable than the common PP/LDPE blends and melt-stretched samples. Additionally, to investigate their structure-property relationship, the necking region of the tested samples was further characterized by scanning electron microscopy and hot-stage polarized light microscopy. It can be concluded that the variation of the microstructure can be attributed to the cold-drawn fibers (CDFs), which were more stable thermally, formed during the tensile test. Furthermore, the CDFs were used for the filler in PP/LDPE blends. The experimental results of the different PP/LDPE composites indicate that the CDFs are a good reinforcement candidate and have the ability to improve the mechanical properties of the PP/LDPE blends.

  3. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  4. Study on Crystal Morphology and Electrical Property of Grafted Blends of LDPE/Siloxane%LDPE/硅氧烷接枝共混物的结晶形态与电性能的研究

    Institute of Scientific and Technical Information of China (English)

    李巧娟; 谢大荣

    2012-01-01

    采用硅氧烷对低密度聚乙烯(LDPE)进行接枝改性,用红外光谱分析了LDPE与硅氧烷的接枝反应过程,用显微镜观察了接枝共混物的结晶形态及电树枝形态.结果表明,接枝聚硅氧烷后,LDPE球晶变小,树枝引发示性电压及电气强度提高,电树枝数量减少.%Siloxane was grafted on the low density polyethylene. Infrared spectroscopy was used to analyze the graft reaction of LDPE and siloxane. And microscope was employed to analyze the crystal morphology and electrical tree of the blend. Result showed that the spherulites of LDPE became smaller and inception voltage of electrical tree and breakdown voltage of low density polyethylene were improved after grafting.

  5. Antibacterial treatment of LDPE with halogen derivatives via cold plasma

    Directory of Open Access Journals (Sweden)

    A. Popelka

    2015-05-01

    Full Text Available The factor limiting the application of low-density polyethylene (LDPE in healthcare is its high susceptibility to bacterial growth. For this reason, we here investigated antibacterial treatments of LDPE foils using appropriate antibacterial agents. Benzalkonium chloride and bronopol were selected because of their satisfactory antibacterial effect, which has been confirmed by their application in the medical and cosmetic industries. The aforementioned substances were immobilized by a multistep approach via the grafting of polyacrylic acid (PAA brushes onto LDPE surfaces pre-treated with low-temperature plasma. Measurements of the surface energy, peel strength of the adhesive joints, X-ray photoelectron spectroscopy (XPS, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR, and atomic force micro scopy (AFM were used to investigate the surface and adhesive properties of the antibacterial-treated LDPE. Moreover, the antibacterial effect was determined via measurements of the inhibition zone of the Staphylococcus aureus (S. aureus bacterial strain. The antibacterial activity of benzalkonium chloride was observed to be more pronounced than that of bronopol. Inhibition-zone measurements of Escherichia coli (E. coli were also conducted, but an antibacterial effect was not observed.

  6. Three-Dimensional Nanometer Features of Direct Current Electrical Trees in Low-Density Polyethylene.

    Science.gov (United States)

    Pallon, Love K H; Nilsson, Fritjof; Yu, Shun; Liu, Dongming; Diaz, Ana; Holler, Mirko; Chen, Xiangrong R; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2017-03-08

    Electrical trees are one reason for the breakdown of insulating materials in electrical power systems. An understanding of the growth of electrical trees plays a crucial role in the development of reliable high voltage direct current (HVDC) power grid systems with transmission voltages up to 1 MV. A section that contained an electrical tree in low-density polyethylene (LDPE) has been visualized in three dimensions (3D) with a resolution of 92 nm by X-ray ptychographic tomography. The 3D imaging revealed prechannel-formations with a lower density with the width of a couple of hundred nanometers formed around the main branch of the electrical tree. The prechannel structures were partially connected with the main tree via paths through material with a lower density, proving that the tree had grown in a step-by-step manner via the prestep structures formed in front of the main channels. All the prechannel structures had a size well below the limit of the Paschen law and were thus not formed by partial discharges. Instead, it is suggested that the prechannel structures were formed by electro-mechanical stress and impact ionization, where the former was confirmed by simulations to be a potential explanation with electro-mechanical stress tensors being almost of the same order of magnitude as the short-term modulus of low-density polyethylene.

  7. Study of LDPE/Al2O3 composite material as substrate for microstrip antenna

    Science.gov (United States)

    Sarmah, Debashis; Bhattacharyya, N. S.; Bhattacharyya, S.; Gogoi, J. P.

    2013-01-01

    Low density polyethylene (LDPE)/Alumina (Al2O3) composite systems have been studied as an alternate substrate for microstrip patch antennas (MPA). Morphological, thermal and microwave characterizations of the composites are carried out for different volume fractions of Al2O3 in the LDPE matrix. The size and the distribution of alumina particles are quite uniform in the composite. Enhancement of thermal and microwave properties of the composite over the parent polymer is observed. Simple rectangular MPA in X-band is fabricated on the composite material to verify its applicability as substrates for MPA. A return loss of ~ -26dB is observed at the design frequency.

  8. TPS/LDPE blends reinforced with lignocellulose fibers; Compositos TPS/LDPE reforcados com fibras lignocelulosicas

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, G.K.; Andrade, C.T., E-mail: kloc@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano

    2010-07-01

    Because of their abundance, availability, low abrasiveness and mechanical properties, cellulose fibers have been frequently chosen as reinforcing fillers in composites. Castor bean cake, the residue from biodiesel production, is rich in lignocellulose fibers and proteins. One of these proteins is ricin, a toxin protein. In this work, ricin was denatured by heat treatment in water at 90 deg C for 4 h. Thermoplastic starch (TPS), low density polyethylene (LDPE), maleated polyethylene (used as the compatibilizing agent), and an organophilic clay were processed in the presence of different contents of heat treated castor bean cake. Processing was carried out in a single-screw extruder, at 400 rpm, with heat zones at 130 deg C, 135 deg C, 135 deg C and 130 deg C (from feed zone to die end). The structural and mechanical properties of the resulting polymeric composites were investigated, and revealed the reinforcing effect of the partially purified cellulose fibers. (author)

  9. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.

    Science.gov (United States)

    Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  10. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    Science.gov (United States)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs ( 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  11. Catalytic Pyrolysis of Low Density Polyethylene Using Cetyltrimethyl Ammonium Encapsulated Monovacant Keggin Units C19H42N4H3(PW11O39 and ZSM-5

    Directory of Open Access Journals (Sweden)

    Madeeha Batool

    2016-01-01

    Full Text Available The effect of the catalysts on the pyrolysis of commercial low density polyethylene (LDPE has been studied in a batch reactor. The thermal catalytic cracking of the LDPE has been done using cetyltrimethyl ammonium encapsulated monovacant keggin units (C19H42N4H3(PW11O39, labeled as CTA-POM and compared with the ZSM-5 catalyst. GC-MS results showed that catalytic cracking of LDPE beads generated oilier fraction over CTA-POM as compared to ZSM-5. Thus, the use of CTA-POM is more significant because it yields more useful fraction. It was also found that the temperature required for the thermal degradation of LDPE was lower when CTA-POM was used as a catalyst while high temperature was required for degradation over ZSM-5 catalyst. Better activity of CTA-POM was due to hydrophobic nature of CTA moiety which helps in catalyst mobility and increases its interaction with hydrocarbons.

  12. LDPE and PP thermal diffusivity in molten state

    Directory of Open Access Journals (Sweden)

    Genhli Yánez

    2012-10-01

    Full Text Available Experimental results are reported for measuring the thermal diffusivity of two polymer species: low density polyethylene (LDPE and polypropylene (PP. Measurements were taken in unsteady state heat flow conditions around the materials' melting temperature, using a device specially constructed for this purpose. The experimental results for the sample's temperature profile (temperature gradient product were adjusted with the theoretical results obtained by solving the heat conduction equation. Diffusivity values were α=6.92×(10^(-7 m^2⁄s for LDPE and α=5.53×(10^(-7 m^2⁄s for PP. This was pioneering work in measuring this property at high temperatures in non-stationary state heat flow conditions and should be useful in the search for improving the conditions for processing these materials.

  13. Modulus and yield stress of drawn LDPE

    Science.gov (United States)

    Thavarungkul, Nandh

    Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.

  14. Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2015-01-01

    Full Text Available This study shows the effect of the incorporation of natural fique fibers in a matrix formed by low-density polyethylene and aluminum (LDPE-Al obtained in the recycling process of long-life Tetra Pak packaging. The reinforcement content was 10, 20, and 30% fibers, manufactured by hot-press compression molding of composite boards (LDPE-Al/fique. From the thermogravimetric analysis (TGA it was determined that the proportions of the LDPE-Al were 75 : 25 w/w. Likewise, it was found that the aluminum particles increased the rigidity of the LDPE-Al, reducing the impact strength compared to LDPE recycled from Tetra Pak without aluminum; besides this, the crystallinity in the LDPE-Al increased with the presence of aluminum, which was observed by differential scanning calorimetry (DSC. The maximum strength and Young’s modulus to tensile and flexural properties increased with the incorporation of the fibers, this increase being a direct function of the amount of reinforcement contained in the material. Finally, a reduction in the density of the compound by the generation of voids at the interface between the LDPE-Al and fique fibers was identified, and there was also a greater water absorption due to weak interphase fiber-matrix and the hydrophilic fibers contained in the material.

  15. Silane crosslinking of polyethylene: the effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, thermal, mechanical and fire retardant properties of silane-crosslinked low-density polyethylene (XLPE containing ethylene-vinylacetate (EVA copolymer, alumina trihydrate (ATH and antimony trioxide (Sb2O3 have been studied. Samples were prepared in a single-screw extruder and the silane type was vinyltrimethoxy silane (VTMOS. Incorporation of ATH and Sb2O3 into polyethylene at sufficiently high loading introduces good fire retardancy expressed by limiting oxygen index (LOI. However, some tensile properties decreased. These limitations could be overcome by silane crosslinking. By incorporation of EVA into XLPE gel content increased and curing time decreased. Differential scanning calorimetric (DSC analysis indicated the existence of two distinct melting endothermic peaks corresponding to two different crystalline phases. Results from mechanical properties showed that mechanical properties of XLPE/EVA blends improve by increasing EVA content up to 15 wt%.

  16. Gamma irradiation effects on the grafting of low-density polyethylene with diethyl maleate

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Y. [Centro de Quimica, Laboratorio de Polimeros, Instituto Venezolano de Investigaciones Cientificas (IVIC) (Venezuela); Albano, C. [Centro de Quimica, Laboratorio de Polimeros, Instituto Venezolano de Investigaciones Cientificas (IVIC) (Venezuela) and Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, P.O. Box 48146, Los Chaguaramos, Caracas 1041 A (Venezuela)]. E-mail: calbano@ivic.ve; Karam, A. [Centro de Quimica, Laboratorio de Polimeros, Instituto Venezolano de Investigaciones Cientificas (IVIC) (Venezuela)]. E-mail: akaram@quimica.ivic.ve; Perera, R. [Departamento de Mecanica, Universidad Simon Bolivar (Venezuela); Silva, P. [Centro de Fisica, Laboratorio de Fisica de la Materia Condensada, Instituto Venezolano de Investigaciones Cientificas (IVIC) (Venezuela); Gonzalez, J. [Departamento de Mecanica, Universidad Simon Bolivar (Venezuela)

    2005-07-01

    In this work, a low-density polyethylene (LDPE) was grafted with diethyl maleate (DEM) using gamma-rays from a Cobalt-60 source at different absorbed doses and monomer concentrations between 5 and 30 wt.%. This process was carried out in a decalin solution at 10 w/v% to obtain a homogeneous dispersion of the monomer into the polyethylene matrix. It was found that the grafting degree increases with the absorbed doses, as a consequence of the increased amount of energy given to the system, which made the grafting process more favorable. The grafting degree also increases with the concentration of DEM, because a higher concentration makes the insertion easier due to the increased availability of the free monomer. The highest grafting degree was obtained at 200 kGy of absorbed dose and with 30 wt.% of DEM. The melt flow index (MFI) values showed a decreasing trend as the absorbed dose was increased. This fact reveals that crosslinking and grafting are taking place simultaneously, this behavior being remarkable at higher irradiation doses. The results from thermogravimetric analysis (TGA) showed that the initial degradation temperatures remained almost unchanged with the absorbed dose.

  17. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    Energy Technology Data Exchange (ETDEWEB)

    Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de; Wagner, Manfred H. [Chair of Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Fasanenstrasse 90, D-10623 Berlin (Germany)

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by the carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.

  18. Charge Transport in LDPE Nanocomposites Part II—Computational Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available A bipolar charge transport model is employed to investigate the remarkable reduction in dc conductivity of low-density polyethylene (LDPE based material filled with uncoated nanofillers (reported in the first part of this work. The effect of temperature on charge transport is considered and the model outcomes are compared with measured conduction currents. The simulations reveal that the contribution of charge carrier recombination to the total transport process becomes more significant at elevated temperatures. Among the effects caused by the presence of nanoparticles, a reduced charge injection at electrodes has been found as the most essential one. Possible mechanisms for charge injection at different temperatures are therefore discussed.

  19. Radiation improvement of PS/LDPE blends with SBS compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Chaisupakitsin, M.; Suwanapayom, S. [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology, Lardkrabang Bangkok (Thailand)

    2000-03-01

    Mechanical properties of PS(polystyrene)/LDPE(low density polyethylene) blends with and without SBS compatibilizer were investigated after {gamma}-irradiation at dose range of 10-240 kGy under air atmospheric pressure. It was found that elongation at break and impact strength of the blends were mainly depended on the amount of the compatibilizer. On the other hand, tensile strength was improved by {gamma}-irradiation, particularly, at dose range of 40-180 kGy. Gel fraction was found to increased with increasing compatibilizer and irradiation dose. (author)

  20. Effect of Ar ion on the surface properties of low density polyethylene

    Science.gov (United States)

    Zaki, M. F.

    2016-04-01

    In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 1015ions/cm2. The optical, chemical and hardness properties have been investigated using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to the formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for the pristine sample to 2.3 eV for that sample irradiated with the highest fluence of the Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing Ar ion fluences. FTIR spectra showed the formation of new bands of the bombarded polymer samples. Furthermore, polar groups were created on the surface of the irradiated samples which refer to the increase of the hydrophilic nature of the surface of the irradiated samples. The Vicker's hardness increased from 4.9 MPa for the pristine sample to 17.9 MPa for those bombarded at the highest fluence. This increase is attributed to the increase in the crosslinking and alterations of the bombarded surface into hydrogenated amorphous carbon, which improves the hardness of the irradiated samples. The bombarded LDPE surfaces may be used in special applications to the field of the micro-electronic devices and shock absorbers.

  1. Characteristics of LDPE and Oriented Montmorillonite Nanocomposites Produced by Electric Field-inducement

    Institute of Scientific and Technical Information of China (English)

    BAI Ge; LIAO Ruijin; YANG Lijun; YUAN Yuan; GU Jia

    2013-01-01

    In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation,altemating voltage is applied to molten LDPE with MMT nanosheets.The effect of electric field on the dispersion of MMT in the solidified LDPE is studied.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses suggest that the MMT nanosheets are aligned with high anisotropy to the electric field direction,which is perpendicular to the LDPE film plane.Differential scanning calorimetry (DSC) results reveal that the crystallization degree of the oriented LDPE/MMT composite increases.Moreover,through a broadband dielectric spectroscopy analyzer,it is found that MMT manifests a significantly influence in the dielectric property of the oriented composite:the dielectric constant and loss tangent of the composite both become larger.Analysis shows that the electric field-induced torque caused by the polarization of MMT flakes is the main force inducing the orientation of the MMT flakes.

  2. Zn2 + Release Performance in Simulated Uterine Solution and Surface Characteristics of ZnO/LDPE Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Zinc oxide/low-density polyethylene ( LDPE ) nanocomposites were prepared for intrauterine devices. The change of Zn2+ release rates of nanocomposites ( doped with various mass fractions of zinc oxide nanoparticles between 5wt% and 65 wt% ) for 264 days in a simulated uterine solution were investigated. The results show that initial burst phases are followed by near zero-order release phases. SEM technique was employed to observe the surface morphology of the 45wt% ZnO/ LDPE composite. Elements and phases on the surface of the nanocomposite after incubation were also analyzed by EDX and XRD respectively. The experimental results show that incrustation formation does not occur after incubation.

  3. The mechanical properties of density graded hemp/polyethylene composites

    Science.gov (United States)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  4. LDPE分子结构对流变行为的影响%Effect of molecular structure on rheological behavior of low density polyethylene

    Institute of Scientific and Technical Information of China (English)

    范吉昌; 彭响方; 米皓阳

    2011-01-01

    采用流动双折射和动态流变实验方法研究了低密度聚乙烯(LDPE)分子结构对其流变行为的影响.熔体在突变收缩口模中流动时的等差线图显示,两种LDPE的流动特性明显不同.由动态流变实验可知,LDPE 1810D在低频剪切时复数黏度比LDPE 2426K大,拟合得到的离散松弛时间谱范围较窄,表明两者的相对分子质量及其分布差别较大;两者的复数黏度随振动频率的变化方式不同,后者复数黏度的变化说明LDPE 2426K分子中含有长支链结构.结果表明,LDPE的相对分子质量及其分布,支链长度对其流变行为有重大影响.%The effect of molecular structure on rheological properties of two kinds of low density polyethylene (LDPE) was studied in flow induced birefringence and dynamic rheological experiment. The isochromatic line of the LDPE melts (grade 1810D and 2426K) when following in the abrupt contraction die shows their remarkably different rheological properties. The dynamic rheological experiment reveals that 1810D has a higher complex viscosity at low frequency and a narrower range of discrete relaxation spectrum compared with 2426K,indicating that they significantly differed in relative molecular mass and its distribution. The complex viscosity of 1810D and 2426K varies with vibration frequency in different ways; the latter's variation in complex viscosity verifies the existence of long chain branches in 2426K. The relative molecular mass and its distribution and the length of the branches have a vital influence on the theological properties of the LDPE melts.

  5. Thermally Sprayable Anti-corrosion Marine Coatings Based on MAH-g-LDPE/UHMWPE Nanocomposites

    Science.gov (United States)

    Jeeva Jothi, K.; Santhoskumar, A. U.; Amanulla, Syed; Palanivelu, K.

    2014-12-01

    Polymer composite coatings based on low-density polyethylene (LDPE) and ultra-high-molecular-weight polyethylene (UHMWPE) blends were prepared for marine coatings. The incorporation of carboxyl moiety in the polymer blends of LDPE/UHMWPE was carried out by grafting with maleic anhydride (MAH) at varying concentrations of 1-8 wt.% using reactive extrusion process. An optimum percentage of grafting of 2.1% was achieved with 5 wt.% of maleic anhydride. Further, the nanocomposites of MAH-grafted-LDPE/UHMWPE blends were prepared by incorporating cloisite 15A nanoclay at varying concentrations of 1-4 wt.%. The polymer nanocomposites were converted into fine powders suitable for thermal spray having ≤200 μ particle size using cryogenic grinding. The effect of the intact coatings applied on grit-blasted mild steel by thermal spray technique was evaluated for abrasion resistance, adhesion strength, and corrosion resistance. The corrosion resistance of the polymer nanocomposites was studied by salt spray technique and Electrochemical Impedance Spectroscopy The abrasion resistance of coatings increases with increasing UHMWPE content in the blends. However, blends with higher concentration of UHMWPE resulted in coarse coatings with poor adhesion. The coatings with 90:10 MAH-grafted-LDPE/UHMWPE having 3 wt.% of nanoclay showed good abrasion resistance, adhesion strength, and better corrosion resistance.

  6. Viscosity overshoot followed by steady state measured in uni-axial elongation of LDPE. Ole Hassager, Henrik Koblitz Rasmussen, Anders Bach and Jens Kromann Nielsen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Bach, Anders

    2004-01-01

    The transient (e.g. start up of) elongational viscosity of three low-density polyethylene (LDPE) melts (BASF Lupolen 1810H, 1840D and 3020D) was measured using a filament stretching rheometer (FSR) capable of measuring at elevated temperatures. The transient uni-axial elongational viscosity showe...

  7. Viscosity overshoot followed by steady state measured in uni-axial elongation of LDPE. Ole Hassager, Henrik Koblitz Rasmussen, Anders Bach and Jens Kromann Nielsen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Bach, Anders

    2004-01-01

    The transient (e.g. start up of) elongational viscosity of three low-density polyethylene (LDPE) melts (BASF Lupolen 1810H, 1840D and 3020D) was measured using a filament stretching rheometer (FSR) capable of measuring at elevated temperatures. The transient uni-axial elongational viscosity showe...

  8. Preparation and space charge accumulation characteristics of acrylate-grafted polyethylenes using reaction extrusion; Hanno oshidashi ni yoru acrylate polyethylene no seizo to kukan denka chikuseki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Okamoto, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Suh, K. [Korea University, Seoul (Korea, Republic of)

    1998-10-01

    Space charge accumulation characteristics of chemically modified polyethylenes which were grafted with acrylates like acrylic acid and n-butylacrylate using reactive extrusion were investigated. In LDPE-g-Acrylic Acid (LDPE-g-AA), it was showed that the heterocharge found in low-density polyethylenes (LDPE) decreased with the increase of acrylic acid graft ratio and changed to the homocharge formation above 0.1 wt% due to the introduction of carbonyls. Conduction currents and charge mobilities of LDPE-g-AA decreased with the increase of AA graft ratio, while the conduction mechanism remains unchanged. However, in the LDPE-g-n-Buthylacrylate (LDPE-g-nBA), the change of space charge accumulation characteristics were not observed and charge mobilities of them not affected by the graft ratio. The differences of space charge formation between two grafted polyethylenes were closely related to the ability of trap site in monomer grafted to LDPE and the chemical structure of it. 18 refs., 11 figs.

  9. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Patricia N.S.; Silva, Leonardo G.A., E-mail: lgasilva@ipen.br, E-mail: patricianegrini@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ciro, Rosemeire, E-mail: rosemeireciro@msn.com [Faculdades Oswaldo Cruz (FOC), Sao Paulo, SP (Brazil); Viana, Hamilton M., E-mail: hmviana@gmail.com [Centro Universitario Fundacao de Santo Andre (FSA/FAENG), Santo Andre, SP (Brazil)

    2013-07-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO{sub 2}), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  10. Layer by layer assembly of a biocatalytic packaging film: lactase covalently bound to low-density polyethylene.

    Science.gov (United States)

    Wong, Dana E; Talbert, Joey N; Goddard, Julie M

    2013-06-01

    Active packaging is utilized to overcome limitations of traditional processing to enhance the health, safety, economics, and shelf life of foods. Active packaging employs active components to interact with food constituents to give a desired effect. Herein we describe the development of an active package in which lactase is covalently attached to low-density polyethylene (LDPE) for in-package production of lactose-free dairy products. The specific goal of this work is to increase the total protein content loading onto LDPE using layer by layer (LbL) deposition, alternating polyethylenimine, glutaraldehyde (GL), and lactase, to enhance the overall activity of covalently attached lactase. The films were successfully oxidized via ultraviolet light, functionalized with polyethylenimine and glutaraldehyde, and layered with immobilized purified lactase. The total protein content increased with each additional layer of conjugated lactase, the 5-layer sample reaching up to 1.3 μg/cm2 . However, the increase in total protein did not lend to an increase in overall lactase activity. Calculated apparent Km indicated the affinity of immobilized lactase to substrate remains unchanged when compared to free lactase. Calculated apparent turnover numbers (kcat ) showed with each layer of attached lactase, a decrease in substrate turnover was experienced when compared to free lactase; with a decrease from 128.43 to 4.76 s(-1) for a 5-layer conjugation. Our results indicate that while LbL attachment of lactase to LDPE successfully increases total protein mass of the bulk material, the adverse impact in enzyme efficiency may limit the application of LbL immobilization chemistry for bioactive packaging use.

  11. Mechanical and morphological investigation of virgin polyethylene and silver nanoparticle-loaded nanocomposites film: comprehensive analysis of kinetic models for non-isothermal crystallization

    Indian Academy of Sciences (India)

    RAJESH KUMAR SAHOO; BISHNU PRASAD PANDA; SANJAY KUMAR NAYAK; SMITA MOHANTY

    2017-04-01

    This research was accomplished to examine the mechanical, morphological and crystallization kinetics study of polyethylene/silver nanoparticles (Ag-NPs) nanocomposite films. In this research, low-density polyethylene (LDPE) nanocomposite films were prepared containing Ag-NPs using maleic-anhydride-grafted low-density polyethylene (LDPE-g-MAH) as a compatibilizer by the melt mixing process. From mechanical property evaluation, it is revealed that the LDPE/LDPE-g-MAH/Ag-NPs nanocomposite films showed decreased tensile strength as compared with virgin LDPE matrix. Thermal characteristics of the prepared virgin LDPE and its nanocomposite films were studied by differential scanning calorimetry (DSC). Comprehensive analysis of different kinetic modelssuch as the Avrami and Mo model on non-isothermal crystallization kinetics was performed in order to correlate the rate of crystallization and its various kinetic parameters. Further, the macrokinetic equation as proposed by Malkinhas been applied to describe the kinetics of crystallization in the light of the Avrami equation. Concerning virgin LDPE and Ag-NP-reinforced LDPE, the former shows primary crystallization, whereas the later exhibits both primaryand secondary crystallization with varying Avrami exponents. Kinetic parameters are recognized, and confirm the influence of Ag-NPs on crystallization kinetics. X-ray diffraction spectroscopy and transmission electron microscopicanalysis of the nanocomposite films were conducted to verify the dispersion of inorganic filler particles in the resulting hybrids.

  12. The effect of EGDMA on tensile and thermal properties of irradiated low density polyethylene/sepiolite nanocomposites

    Science.gov (United States)

    Ghazali, Siti Nadia Aini; Mohamad, Zurina; Majid, Rohah A.; Appadu, Sivanesan

    2017-07-01

    This study presents the influence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through electron beam crosslinking process. Therefore, the effects of EGDMA on irradiated low density polyethylene/sepiolite (LDPE/SEP) nanocomposites on the tensile and thermal properties at 4 part per hundred resin (phr) sepiolite were investigated. The LDPE/SEP nanocomposites were prepared by melt mixing using twin screw extruder at 160 ˚C with a screw speed of 50 rpm. The nanocomposites were then undergone injection moulding process followed by irradiated using 2 MeV electron beam machine at doses ranging from 0 to 200 kGy in the air at ambient temperature. It was found that the tensile strength and Young's modulus were slightly increased with the presence of co-agent. The sample containing 4 phr sepiolite at 200 kGy showed 9% increase in tensile strength when EGDMA was added. However, the result of thermogravimetry analysis (TGA) showed some reduction in thermal stability of nanocomposites on 100 kGy irradiation dose. EGDMA had reduced the optimum irradiation dose without having any adverse effect on tensile and thermal properties.

  13. Comparative studies on physico-mechanical properties of composite materials of low density polyethylene and raw/calcined kaolin

    Directory of Open Access Journals (Sweden)

    Amit Mallik

    2015-06-01

    Full Text Available The paper describes the preparation of the composite materials of low density polyethylene (LDPE as the base mixed separately with raw kaolin and the same calcined at 800 °C under the same variation in weight percentage using single-screw extruder and a mixing machine operated at a temperature between 190 and 200 °C. Some of the mechanical and physical properties such as Young's modulus, elongation at break, shore hardness and water absorption were determined at different weight fractions of filler (0, 2, 7, 10 and 15%. It was found that the addition of filler increases the mechanical properties. Absorption test was done in water at different immersion times for different composites. The degree of water absorption of composite materials was found to decrease with increasing wt% of kaolin filler (0–15% according to Fick's law. Calcined kaolin produces better mechanical properties than raw kaolin.

  14. Advantageous use of SSA technique to observe effects of thickness, antioxidant and oxygen in gamma irradiated low density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.J., E-mail: cjperez@fi.mdp.edu.ar [Research Institute of Material Science and Technology (INTEMA), National Research Council (CONICET), Engineering Faculty, Mar del Plata University, Av. J.B. Justo 4302, 7600 Mar del Plata (Argentina); Failla, M.D. [Planta Piloto de Ingenieria Quimica-PLAPIQUI (UNS-CONICET), Camino ' La Carrindanga' Km 7, 8000 Bahia Blanca (Argentina); Carella, J.M. [Research Institute of Material Science and Technology (INTEMA), National Research Council (CONICET), Engineering Faculty, Mar del Plata University, Av. J.B. Justo 4302, 7600 Mar del Plata (Argentina)

    2012-06-20

    Highlights: Black-Right-Pointing-Pointer Information from successive self-nucleation and annealing technique is analyzed. Black-Right-Pointing-Pointer Oxygen and antioxidants reduce crosslinking efficiency by reaction with free radicals. Black-Right-Pointing-Pointer Recognizable differences are obtained in samples irradiated at different atmospheres. - Abstract: Information obtained from successive self-nucleation and annealing (SSA) technique is analyzed, paying special attention to the observable effects of samples thickness and antioxidant and oxygen concentrations. Molecular structure changes for low density polyethylene (LDPE) samples, irradiated under three different atmospheres for doses between 33 and 222 kGy were analyzed, with emphasis on the changes of longer polymethylene crystallizable lengths. Antioxidant and oxygen concentrations were varied for samples of different thickness to study the effects on degradation. The changes in the molecular structure were followed simultaneously by SSA and Infrared spectroscopy (FTIR) via carbonyl group concentration. Preliminary quantifications of the SSA technique sensitivity are also advanced.

  15. Development of TLSER model and QSAR model for predicting partition coefficients of hydrophobic organic chemicals between low density polyethylene film and water.

    Science.gov (United States)

    Liu, Huihui; Wei, Mengbi; Yang, Xianhai; Yin, Cen; He, Xiao

    2017-01-01

    Partition coefficients are vital parameters for measuring accurately the chemicals concentrations by passive sampling devices. Given the wide use of low density polyethylene (LDPE) film in passive sampling, we developed a theoretical linear solvation energy relationship (TLSER) model and a quantitative structure-activity relationship (QSAR) model for the prediction of the partition coefficient of chemicals between LDPE and water (Kpew). For chemicals with the octanol-water partition coefficient (log Kow) coefficient (R(2)) and cross-validated coefficient (Q(2)). In order to further explore the theoretical mechanisms involved in the partition process, a QSAR model with four descriptors (MLOGP (Moriguchi octanol-water partition coeff.), P_VSA_s_3 (P_VSA-like on I-state, bin 3), Hy (hydrophilic factor) and NssO (number of atoms of type ssO)) was established, and statistical analysis indicated that the model had satisfactory goodness-of-fit, robustness and predictive ability. For chemicals with log KOW>8, a TLSER model with Vx and a QSAR model with MLOGP as descriptor were developed. This is the first paper to explore the models for highly hydrophobic chemicals. The applicability domain of the models, characterized by the Euclidean distance-based method and Williams plot, covered a large number of structurally diverse chemicals, which included nearly all the common hydrophobic organic compounds. Additionally, through mechanism interpretation, we explored the structural features those governing the partition behavior of chemicals between LDPE and water.

  16. Letrozole dispersed on poly (vinyl alcohol) anchored maleic anhydride grafted low density polyethylene: a controlled drug delivery system for treatment of breast cancer.

    Science.gov (United States)

    Siddiqa, Akhtar Jahan; Chaudhury, Koel; Adhikari, Basudam

    2014-04-01

    The present work focuses on the design of a drug delivery system for systemic, controlled release of the poorly soluble breast cancer drug, letrozole. The drug delivery system was prepared in two steps: a low density polyethylene (LDPE) substrate surface was grafted with maleic anhydride (MA) via solution grafting technique. Next, the grafted substrate was used to anchor a hydrophilic polymeric drug release system consisting of poly (vinyl alcohol) (PVA). The PVA anchored MA grafted LDPE (PVA/MA-g-LDPE) drug release system was used for the controlled release of letrozole. This system was characterized using ATR-FTIR spectrophotometry, surface profilometry, and scanning electron microscopy. Biocompatibility studies were also carried out. In vitro release studies of letrozole from the system were performed in distilled water and phosphate buffer saline (PBS) at 37°C. Release of ∼90% letrozole from hydrophilic PVA matrix was observed within a period of 35 days. A high correlation coefficient (R(2)=0.99) was seen between the release of letrozole in distilled water and PBS. Cytotoxicity studies using MTT colorimetric assay suggested that all samples were biocompatible. It is concluded that the letrozole delivery system appears to overcome the limitations associated with letrozole by providing enhanced drug dissolution rate, controlled release and improved bioavailability of the incorporated drug and, therefore, seems to have extended therapeutic effects.

  17. Properties of Wast Rubber Powder/Low Density Polyethylene Composites%胶粉/低密度聚乙烯复合材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    刘丹; 赵艳芳; 廖小雪; 廖双泉

    2014-01-01

    采用全轮胎废胶粉(WRP)/低密度聚乙烯(LDPE)(并用比65/35)制备橡塑复合材料。研究增容剂和交联体系对WRP/LDPE复合材料物理性能的影响。结果表明:乙烯-乙酸乙烯酯对WRP/LDPE复合材料的增容效果较好;交联体系采用过氧化二异丙苯且用量为1份时WRP/LDPE复合材料物理性能较好。%The waste rubber powder (WRP)/low density polyethylene (LDPE) composites were prepared by using the rubber powder from waste tire and the ratio of WRP to LDPE was 65/35. The inlfuence of compatibilizer and crosslinking system on the properties of WRP/LDPE composites was investigated. It was found that ethylene-vinyl acetate copolymer was a good compatibilizer. When 1 phr of dicumyl peroxide was used as a crosslinking agent, the physical properties of the composites were good.

  18. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available This paper deals with plastic-wood composites based on low density polyethylene (LDPE and olive husk flour (OHF. The problem of incompatibility between the hydrophilic wood filler and the LDPE hydrophobic matrix was treated by two methods: a chemical modification of the olive husk flour with maleic anhydride to esterify the free hydroxyl groups of the wood components and the use of a compatibilizer agent, i.e. an ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA terpolymer. The changes in the structure, the morphology, and the properties resulting from these treatments were followed by various techniques, especially FTIR spectroscopy, scanning electron microscopy (SEM, tensile measurements and water absorption. The experimental results indicated that both methods, i.e. the chemical treatment of the olive husk flour with maleic anhydride and the inclusion of EBAGMA terpolymer, improved the interactions between the two composite components and promoted better dispersion of the filler in the matrix. Moreover, ultimate tensile properties were also increased. However, the use of EBAGMA terpolymer as compatibilizer produced better enhancement of the properties of LDPE/OHF composites compared to those treated with maleic anhydride.

  19. Static and Dynamic Properties of Semi-Crystalline Polyethylene

    Directory of Open Access Journals (Sweden)

    Ming-ming Xu

    2016-03-01

    Full Text Available Properties of extruded polymers are strongly affected by molecular structure. For two different semi-crystalline polymers, low-density polyethylene (LDPE and ultra-high molecular weight polyethylene (UHMWPE, this investigation measures the elastic modulus, plastic flow stress and strain-rate dependence of yield stress. Also, it examines the effect of molecular structure on post-necking tensile fracture. The static and dynamic material tests reveal that extruded UHMWPE has a somewhat larger yield stress and much larger strain to failure than LDPE. For both types of polyethylene, the strain at tensile failure decreases with increasing strain-rate. For strain-rates 0.001–3400 s−1, the yield stress variation is accurately represented by the Cowper–Symonds equation. These results indicate that, at high strain rates, UHMWPE is more energy absorbent than LDPE as a result of its long chain molecular structure with few branches.

  20. FTIR investigation of the reaction between pyridine and iodine in a polyethylene host. Formation of N-iodopyridinium polyiodide

    DEFF Research Database (Denmark)

    Karlsen, Eva; Spanget-Larsen, Jens

    2009-01-01

    The reaction between pyridine and I2 in a low-density polyethylene (LDPE) host is investigated by FTIR vibrational spectroscopy in the mid- and far-IR regions. The investigation is supported by linear dichroism measurements on stretched LDPE samples, and by the results of quantum chemical density...... the formation of extended polyiodide chain structures. The spectroscopic analysis indicates that the ionic product is present in the form of a well-defined complex....

  1. Biodegradation of low density polyethylene by micro-organisms from garbage soil

    Directory of Open Access Journals (Sweden)

    Deepika S

    2015-02-01

    Full Text Available Plastics have been widely used as a packing material in the form of low density polyethylene (LDPE. Continuous accumulation of plastic in the environment can cause threat to humanity and environment. In order to stop the accumulation of plastic and to make the surroundings free from plastic, microbes are isolated from Andhra Pradesh and Telangana areas garbage soil. These microbes are screened by clear zone technique using polythene powder to confirm the degradation activity. Biodegradation of polymer granules by the isolated organisms and it makes physical and structural changes over a period of time after microbial adhesion to the granules. To check the efficiency of biodegradation, weight method was performed under laboratory conditions for 2, 4 and 6 months. Experimental data revealed that Streptomyces sps have highest plastic degradation capacity and it degrades up to 46.7%, this degradation was followed by the Aspergillus niger (26.17%, bacterial species Pseudomonas sps (24.22% and A. flavus (16.45% for the period of 6 months. This work revealed that Streptomyces sps plays a vital role in degrading polythene powder and polymer granules

  2. Assessment of the migration potential of nanosilver from nanoparticle-coated low-density polyethylene food packaging into food simulants.

    Science.gov (United States)

    Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda

    2016-01-01

    An experimental nanosilver-coated low-density polyethylene (LDPE) food packaging was incubated with food simulants using a conventional oven and tested for migration according to European Commission Regulation No. 10/2011. The commercial LDPE films were coated using a layer-by-layer (LbL) technique and three levels of silver (Ag) precursor concentration (0.5%, 2% and 5% silver nitrate (AgNO3), respectively) were used to attach antimicrobial Ag. The experimental migration study conditions (time, temperature and food simulant) under conventional oven heating (10 days at 60°C, 2 h at 70°C, 2 h at 60°C or 10 days at 70°C) were chosen to simulate the worst-case storage period of over 6 months. In addition, migration was quantified under microwave heating. The total Ag migrant levels in the food simulants were quantified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Mean migration levels obtained by ICP-AES for oven heating were in the range 0.01-1.75 mg l(-1). Migration observed for microwave heating was found to be significantly higher when compared with oven heating for similar temperatures (100°C) and identical exposure times (2 min). In each of the packaging materials and food simulants tested, the presence of nanoparticles (NPs) was confirmed by scanning electron microscopy (SEM). On inspection of the migration observed under conventional oven heating, an important finding was the significant reduction in migration resulting from the increased Ag precursor concentration used to attach Ag on the LDPE LbL-coated films. This observation merits further investigation into the LbL coating process used, as it suggests potential for process modifications to reduce migration. In turn, any reduction in NP migration below regulatory limits could greatly support the antimicrobial silver nanoparticle (AgNP)-LDPE LbL-coated films being used as a food packaging material.

  3. Functionalization of LDPE and mLLDPE via grafting trans-ethylene-1,2-dicarboxylic acid by reactive extrusion

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available An investigation was made of grafting trans-ethylene-1,2-dicarboxylic acid (TEDA onto metallocene-linear low-density polyethylene (mLLDPE and low-density polyethylene (LDPE in the course of reactive extrusion. The initiator was 1,3-bis-(tert-butyl-peroxyisopropylbenzene. The graft efficiency of TEDA has been shown to increase with increasing initiator concentration, irrespective of polyethylene type. The graft values for LDPE were higher than for mLLDPE over the initiator concentration range (0.05 to 0.4 wt%. The rheological properties of mLLDPE were found to undergo more tangible changes during functionalization than those of LDPE. These changes were caused by side reactions, mainly macromolecular crosslinking. It has been established that some carboxyl groups get transformed to anhydride groups in the grafted product. The concentration of end double bonds reduces, but intramolecular unsaturation in both polyethylenes increases. Data are presented on thermal and stress-strain (mechanical properties of virgin and functionalized polymers, as well as rheological and viscoelastic properties of their melts.

  4. Radiation graft copolymerization of butyl methacrylate and acrylamide onto low density polyethylene and polypropylene films, and its application in wastewater treatment

    Science.gov (United States)

    Abdel Ghaffar, A. M.; El-Arnaouty, M. B.; Aboulfotouh, Maysara E.; Taher, N. H.; Taha, Ahmed A.

    2014-09-01

    Butyl methacrylate and acrylamide (BMA/AAm) comonomers were grafted onto low-density polyethylene (LDPE) and polypropylene (PP) films using the mutual gamma radiation grafting technique. The influences of grafting conditions such as solvent, monomer concentration, monomer composition, and irradiation dose on the grafting yield were determined. It was found that using dimethyl formamide as a solvent enhanced the copolymerization process. The grafting yield increases as the comonomer concentration increases up to 60%. Also it was found that the degree of grafting of BMA/AAm onto both LDPE and PP films increases as the AAm content increases till an optimum value at 50:50 wt%. The grafting yield of the comonomers was found to increase with increase in the radiation dose. It was observed that the degree of grafting of polyethylene films is higher than that of polypropylene (PP) films at the same conditions. Some selected properties of the graft copolymers, such as water uptake and thermal properties, were determined using thermogravimetric analysis. The morphology and structure of the grafted films were investigated using scanning electron microscopy, infra-red, and X-ray diffraction. Improvement in such properties of the prepared copolymers was observed which offers possible uses in some practical applications such as the removal of some heavy metals from wastewater. It was found that the maximum metal uptake by the copolymer followed the order Cu2+>Co2+>Ni2+ ions.

  5. Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions.

    Science.gov (United States)

    Skariyachan, Sinosh; Setlur, Anagha Shamsundar; Naik, Sujay Yashwant; Naik, Ashwini Amaresh; Usharani, Makam; Vasist, Kiran S

    2017-03-01

    The current study aimed to devise eco-friendly, safe, and cost-effective strategies for enhanced degradation of low- and high-density polyethylene (LDPE and HDPE) using newly formulated thermophilic microbial consortia from cow dung and to assess the biodegradation end products. The plastic-degrading bacteria from cow dung samples gathered from highly plastic-acclimated environments were enriched by standard protocols. The degradation ability was comprehended by zone of clearance method, and the percentage of degradation was monitored by weight reduction process. The best isolates were characterized by standard microbiological and molecular biology protocols. The best isolates were employed to form several combinations of microbial consortia, and the degradation end products were analyzed. The stability of 16S ribosomal DNA (rDNA) was predicted by bioinformatics approach. This study identified 75 ± 2, 55 ± 2, 60 ± 3, and 43 ± 3% degradation for LDPE strips, pellets, HDPE strips, and pellets, respectively, for a period of 120 days (p plastic surfaces. These novel isolates were designated as Bacillus vallismortis bt-dsce01, Psuedomonas protegens bt-dsce02, Stenotrophomonas sp. bt-dsce03, and Paenibacillus sp.bt-dsce04 by 16S rDNA sequencing and suggested good gene stability with minimum Gibb's free energy. Therefore, this study imparts substantial information regarding the utilization of these thermophilic microbial consortia from cow dung for rapid polyethylene removal.

  6. LDPE Surface Modifications Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations

    CERN Document Server

    Rich, Sami Abou; Leroy, Perrine; Reniers, François; Nittler, Laurent; Pireaux, Jean-Jacques

    2016-01-01

    Low density polyethylene (LDPE) surfaces have been plasma modified to improve their nanostructural and wettability properties. These modifications can significantly improve the deposition of subsequent layers such as films with specific barrier properties. For this purpose, we compare the treatments induced by two atmospheric plasma torches with different configurations (showerhead vs. linear). The modifications of LDPE films in terms of chemical surface composition and surface morphology are evidenced by X-ray photoelectron spectro-scopy, water contact angles measurements, and atomic force microscopy. A comparison between the two post-discharge treatments is achieved for several torch-to-substrate distances (gaps), treatment times, and oxygen flow rates in terms of etching rate, roughening rate, diffusion of oxygen into the subsur-face and hydrophilicity. By correlating these results with the chemical composition of the post-discharges, we identify and compare the 'species which are responsible for the chemi...

  7. Influence of flavour absorption on oxygen permeation through LDPE, PP, PC and PET plastics food packaging.

    Science.gov (United States)

    van Willige, R W G; Linssen, J P H; Meinders, M B J; van der Stege, H J; Voragen, A G J

    2002-03-01

    The effect of flavour absorption on the oxygen permeability of low-density polyethylene (LDPE), polypropylene (PP), polycarbonate (PC) and polyethylene terephthalate (PET) was studied using an isostatic continuous flow system. Polymer samples were exposed to a model solution containing limonene, hexyl acetate, nonanone and decanal at 40 degrees C. After exposure, one part of each sample was analysed for absorbed flavour compounds using a Large Volume Injection GC Ultrasonic 'in vial' extraction method, and from the other part, oxygen permeability was measured in a permeation cell at 25 degrees C. After 8 h of exposure, LDPE and PP samples showed a significant linear (R2 = 0.82 and 0.99) increase in oxygen permeability of 21 and 130%, respectively. Owing to swelling of the polymer samples resulting from flavour absorption, the structure of the polymeric network changed (i.e. opened) and consequently increased oxygen permeability. The oxygen permeability of exposed PC showed a significant linear (R2 = 0.78) decrease of 11% after 21 days. PC obviously did not swell like LDPE or PP. Therefore, it was suggested that absorbed flavour compounds occupied or blocked 'microcavities' through which normally oxygen is transported. Absorption of flavour compounds by PET did not affect the oxygen permeability of PET significantly.

  8. 适宜共混速度改善低密度聚乙烯/竹粉复合材料力学与流变性能%Proper blending rate improving mechanical and rheological properties of low density polyethylene/bamboo composites

    Institute of Scientific and Technical Information of China (English)

    宋剑斌; 袁全平; 黄彪; 侯俊峰; 杨文斌

    2015-01-01

    该文主要研究共混速度对(low density polyethylene,LDPE)/竹粉木塑复合材料、流变性能和吸水率的影响。采用熔融共混方法制备LDPE/竹粉复合材料,通过旋转流变仪、扫描电镜(scanning electron microscope,SEM)和材料试验机等详细研究了共混速度(40,75和100 r/min)对LDPE/竹粉复合材料的复合材料动态力学性能、形态、吸水率和力学性能的影响。在LDPE/竹粉复合材料,LDPE、增容剂马来酸酐接枝聚乙烯(maleic anhydride grafted polyethylene, MAPE)和竹粉的质量比控制在65∶5∶30。共混温度和时间分别设定为170℃和10 min。结果表明,添加竹粉可有效增强LDPE的力学性能。LDPE/竹粉复合材料的拉伸强度和弯曲强度随着共混速度的增加而呈现下降趋势,但是与纯LDPE相比,LDPE/竹粉复合材料(40 r/min)的拉伸强度和弯曲强度分别增加了28%和115%;弯曲模量从48.45 MPa降低到40.75 MPa。与LDPE相比,LDPE/竹粉复合材料(40 r/min)的弯曲模量最高增加了238%;缺口冲击强度则从12.8 kJ/m2提高到18.27 kJ/m2,但仍低于纯LDPE。在相同频率下(1.0 Hz),随着共混速度的增加,LDPE/竹粉复合材料的储能模量和复数黏度也逐渐下降,加工性能得到了改善;同时复合材料的吸水率也从0.89%(40 r/min)下降至0.59%(100 r/min)。SEM结果表明,竹粉能均匀分布在LDPE中,提高共混速度使得竹粉表面被大量树脂覆盖,改善了界面性能,使得材料断裂面产生大量的塑性形变,提高了材料韧性和冲击强度。试验结果证实共混速度为100 r/min时,LDPE/竹粉复合材料具有较好的冲击强度和较低的吸水率,这为木塑复合材料力学性能和吸水率的改善提供有意借鉴。%In fact, the ultimate properties of wood-plastics composites (WPCs) not only rely on the structure, composition and morphology, but also depend on the

  9. Polypropylene-(high density polyethylene) precipitation from stirred solutions

    OpenAIRE

    Esperidião,Maria Cecília Azevedo; Galembeck,Fernando

    1993-01-01

    Texto completo: acesso restrito. p.993–997 The fast precipitation of mixtures of polypropylene (PP) with high density polyethylene (HDPE) from decalin solutions is affected by the stirring rate of the solutions. With fast stirring, two types of precipitates were obtained viz. globules dispersed in the liquid phase and fibres adhering to the stirrer. Studies by i.r., WAXD, DSC and optical microscopy indicated that the fibrous precipitate is more birefringent, richer in HDPE and richer in th...

  10. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants.

    Science.gov (United States)

    Pintado-Herrera, Marina G; Lara-Martín, Pablo A; González-Mazo, Eduardo; Allan, Ian J

    2016-09-01

    There is a growing interest in assessing the concentration and distribution of new nonregulated organic compounds (emerging contaminants) in the environment. The measurement of freely dissolved concentrations using conventional approaches is challenging because of the low concentrations that may be encountered and their temporally variable emissions. Absorption-based passive sampling enables the estimation of freely dissolved concentrations of hydrophobic contaminants of emerging concern in water. In the present study, calibration was undertaken for 2 polymers, low-density polyethylene (LDPE) and silicone rubber for 11 fragrances, 5 endocrine-disrupting compounds, 7 ultraviolet (UV) filters, and 8 organophosphate flame retardant compounds. Batch experiments were performed to estimate contaminant diffusion coefficients in the polymers (Dp ), which in general decreased with increasing molecular weight. The values for fragrances, endocrine-disrupting compounds, and UV filters were in ranges similar to those previously reported for polycyclic aromatic hydrocarbons, but were 1 order of magnitude lower for organophosphate flame retardant compounds. Silicone rubber had higher Dp values than LDPE and was therefore selected for further experiments to calculate polymer/water partition coefficients (KPW ). The authors observed a positive correlation between log KPW and log octanol/water partition coefficient values. Field testing of silicone rubber passive samplers was undertaken though exposure in the River Alna (Norway) for an exposure time of 21 d to estimate freely dissolved concentration. Some fragrances and UV filters were predominant over other emerging and regulated contaminants, at levels up to 1600 ng L(-1) for galaxolide and 448 ng L(-1) for octocrylene. Environ Toxicol Chem 2016;35:2162-2172. © 2016 SETAC.

  11. Effect of a Novel Ferrocene-containing Polymer on Thermal Degradation Property of Low Density Polyethylene%新型二茂铁基聚合物对低密度聚乙烯热分解性能的影响

    Institute of Scientific and Technical Information of China (English)

    徐启奎; 缪飞; 蔡靖; 张全通; 王鹏吉; 胡小平

    2015-01-01

    以二茂铁基聚合物(PCFEDA)、膨胀型阻燃剂(IFR)和IFR/PCFEDA复合体系对低密度聚乙烯(LDPE)进行改性,通过热重分析( TGA)研究了 PCFEDA, IFR 和 IFR/PCFEDA 对 LDPE 热分解性能的影响. 结果表明,随着PCFEDA添加量的增加,PCFEDA/LDPE复合材料的最大热分解速率不断降低,残炭率越来越高. IFR可有效抑制LDPE的热降解过程,随着PCFEDA的加入,IFR/PCFEDA/LDPE复合材料热分解有一定的推迟. 复合材料在空气中燃烧后残炭的扫描电子显微镜( scanning electron microscope ,SEM)图片显示,PCFEDA/LDPE复合材料形成了非常致密的炭层,IFR/LDPE复合材料的残炭具有明显的发泡现象,而IFR/PCFEDA/LDPE复合材料残炭的发泡现象则不明显,其原因可能是PCFEDA的催化降解作用防止了发泡炭层的生长.%A novel Ferrocene -containing polymer ( PCFEDA ) , Intumescent flame retardant ( IFR ) and IFR/PCFEDA were used to modify low density polyethylene (LDPE).The effects of PCFEDA, IFR and PCFEDA/PE on decomposition property of LDPE were investigated by Thermogravimetric Analysis ( TGA) . The results show that the largest thermal degradation rate of PCFEDA /LDPE composites decreases and more char forming with increase of PCFEDA loading .IFR is effective for inhibition of degradation of LDPE and PCFEDA can delay the decomposition of IFR/PCFEDA/LDPE composites .The scanning electron micro-scope (SEM) micrographs of the char residues of various composites after combustion in air show that a compact structure was formed by PCFEDA/LDPE and a foaming char was observed from IFR/LDPE.How-ever, the char foaming of IFR/PCFEDA/LDPE composite was not obvious .The reason may be due to the catalyzing degradation effect of PCFEDA in earlier stage which prevents the growth of foaming char .

  12. Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE

    Science.gov (United States)

    Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.

    2015-08-01

    High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.

  13. Phase morphological study on SEBS compatibilized PS/LDPE blends

    Directory of Open Access Journals (Sweden)

    Chatchai Kunyawut

    2014-09-01

    Full Text Available The co-continuous phase morphology of polystyrene (PS/low density polyethylene (LDPE blends compatibilized with poly(styrene-block-ethylene/butylene-block-styrene triblock copolymers (SEBS with varying molecular weights has been investigated. The blend samples were prepared in a mini-twin screw extruder. The barrel length and diameter are 224 and 16 mm, respectively. The diameter of the capillary die is 1 mm. The concentration of the blends was 70/30 wt% of PS/LDPE while that of the SEBS used was 5 wt% of the blend. The mixing temperatures used were 180, 250, and 280o C, and a screw speed of 60 rpm. The morphology of the blends was investigated using an AFM technique. Average droplet diameters of the blend samples were determined using an OM technique. The co-continuous morphology has not been obtained in all the blends, although the mixing temperature used is as high as 280o C. The experimental results indicated that the model prediction of the co-continuous morphology proposed by Willemse and co-worker was not applicable to the blend systems studied. Only droplet-type dispersion was observed. This is considered to arise from the processing conditions and the mixing device used. The blend compatibilized with the high molecular weight SEBS had higher dispersed phase size than that of the blend compatibilized with the medium and low molecular weight SEBSs. This behaviour is likely to arise from coalescence during melt processing.

  14. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    . The transvinylene response in air to gamma radiation is linear with dose and has relatively low yield compared with the response to electrons, whereas the response in deaerated polyethylene samples is also linear, but is more sensitive, and has negligible dose-rate dependence in its response to gamma rays...... and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene...

  15. Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2016-01-01

    Full Text Available Accelerated weathering test was performed on blends of linear low density polyethylene (LLDPE and plastic film waste constituting the following percentages of polyolefin polymers (wt.%: LLDPE (46%, low density polyethylene (LDPE, 51%, high density polyethylene (HDPE, 1%, and polypropylene (PP, 2%. Compounded blends were evaluated for their mechanical and physical (optical properties. The impact of photodegradation on the formulated blends was studied, and loss of mechanical integrity was apparent with respect to both the exposure duration to weathering and waste content. The effect of processing conditions, namely, the die head temperature (DHT of the blown-film assembly used, was investigated in this work. It was witnessed that surpassing the melting point of the blends constituting polymers did not always result in a synergistic behaviour between polymers. This was suspected to be due to the loss of amorphous region that polyolefin polymers get subjected to with UV exposure under weathering conditions and the effect of the plastic waste constituents. The total change in colour (ΔE did not change with respect to DHT or waste content due to rapid change degradation on the material’s surface. Haze (% and light transmission (% decreased with the increase in waste content which was attributed to lack of miscibility between constituting polymers.

  16. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications.

    Science.gov (United States)

    Azlin-Hasim, Shafrina; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P; Morris, Michael A

    2016-01-01

    Commercial low-density polyethylene (LDPE) films were UV/ozone treated and coated using a layer-by-layer (LbL) technique by alternating the deposition of polyethyleneimine (PEI) and poly(acrylic acid) (PAA) polymer solutions and antimicrobial silver (Ag). The effects of the initial pH of the PEI/PAA polymer solutions alternating layers (pH 10.5/4 or 9/6.5) on the antimicrobial activity of the developed LbL coatings combined with Ag against Gram-negative and Gram-positive bacteria were investigated. The results from fourier transform infrared spectroscopy and toluidine blue O assay showed that LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 10.5/4 significantly increased the presence of carboxylic acid groups and after Ag attachment the coating had higher antimicrobial activity against both Gram-negative and Gram-positive bacteria compared to the LDPE LbL coated using PEI/PAA polymer solutions with initial pH of 9/6.5. The LDPE LbL coated films using non-modified pH PEI/PAA polymer solutions decreased the water contact-angle indicating an increased hydrophilicity of the film, also increased the tensile strength and roughness of LDPE LbL coated films compared to uncoated LbL samples. The LDPE LbL coated films attached with Ag(+) were UV/ozone treated for 20 min to oxidise Ag(+) to Ag(0). The presence of Ag(0) (Ag nanoparticles (NPs)) on the LDPE LbL coated films was confirmed by XRD, UV-vis spectrophotometer and colour changes. The overall results demonstrated that the LbL technique has the potential to be used as a coating method containing antimicrobial Ag NPs and that the manufactured films could potentially be applied as antimicrobial packaging.

  17. Conversion of Low Density Polyethylene (LDPE) and Polypropylene (PP) Waste Plastics into Liquid Fuel Using Thermal Cracking Process

    OpenAIRE

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Rahman, Md. Sadikur; Molla, Mohammed

    2012-01-01

    In every sector of the world today energy is essential. Energy has many forms such as electricity, transportation fuel and so on. A large amount of energy is produced from crude oil, which is used to produce petroleum and petroleum to produce daily usable plastics. The solution to the above mentioned problems can be solved through the utilization of the new develop technology. This new developed technology will remove these hazardous waste plastics from the environment and convert them into e...

  18. Naphthalene contamination of sterilized milk drinks contained in low-density polyethylene bottles. Part 2. Effect of naphthalene vapour in air.

    Science.gov (United States)

    Lau, O W; Wong, S K; Leung, K S

    1995-04-01

    A survey on naphthalene vapour in air was conducted, revealing that the ambient atmosphere contained concentrations of naphthalene in the range of 0.005-0.100 mg m-3. The level of naphthalene vapour in air increased to 0.35 and 4.00 mg m-3 in places exposed to lacquer paint and naphthalene-based moth-repellent, respectively. The effect of naphthalene vapour in air on milk drinks contained in low-density polyethylene (LDPE) bottles was assessed. A mathematical model was suggested to describe the migration of naphthalene from the atmosphere into milk. The model was proved to be valid for milk drinks exposed to naphthalene-based moth-repellent during storage. Moreover, the extent of migration was found to increase with the fat content of foods, which might be ascribed to an increase in diffusion, in addition to the kinetic factor, that affects naphthalene migration.

  19. Rheological behaviour of polyethylene with peroxide crosslinking agent. Ismaeil Ghasemi, Peter Szabo and Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Ghasemi, Ismaeil; Szabo, Peter

    2003-01-01

    due to a peroxide cross-linking reaction of low-density polyethylene (LDPE) was tracked by a combination of creep tests and differential scanning calorimetry (DSC) tests in isothermal conditions. The peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out...

  20. The effect of temperature cycling on the DC conductivity of polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S.; Henriksen, Mogens; Henk, Peter O

    1992-01-01

    The effect of temperature cycling between 40°C and 80°C during combined temperature and electric field conditioning on the DC conductivity of LDPE (low-density polyethylene) has been studied and compared with DC conductivity results using a constant temperature of 80°C and an identical sample under...

  1. Rheological behaviour of polyethylene with peroxide crosslinking agent. Ismaeil Ghasemi, Peter Szabo and Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Ghasemi, Ismaeil; Szabo, Peter

    2003-01-01

    due to a peroxide cross-linking reaction of low-density polyethylene (LDPE) was tracked by a combination of creep tests and differential scanning calorimetry (DSC) tests in isothermal conditions. The peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out...

  2. Mould-foaming Effects and Crystallization Behavior of PP Modified by Blending with LDPE%LDPE共混改性PP的结晶行为及模压发泡效果

    Institute of Scientific and Technical Information of China (English)

    杨继年; 许爱琴

    2012-01-01

    The foamable granules of polypropylene (PP) blended with low density polyethylene (LDPE) were prepared by single-screw extruder, and then PP foams were obtained via mould-foaming process. The thermal decomposition characteristics of foaming agents and the influences of LDPE contents on the melting and crystallization behaviors, crystalline structures and foaming effects of LDPE/PP blends were investigated. The results show that: the decomposition temperature of compounded foaming agents decreases by 4S癈 compared with pure azodicarbonamide. The crystalline structures of PP has no changes, but the crystallinity of the blends decreases with the addition of LDPE. The foaming effects of LDPE/PP is optimal with 15%~20% LDPE.%采用单螺杆挤出机制备了低密度聚乙烯(LDPE)共混改性聚丙烯(PP)可发性粒料,并通过模压发泡工艺得到改性PP发泡材料;考察了发泡剂的热分解特性以及LDPE的含量对共混体系的熔融/结晶行为、晶体结构和发泡性能的影响.结果表明:与纯偶氮二甲酰胺(AC)相比,复合发泡剂的分解温度下降了45℃;LDPE的引入没有改变PP的晶型结构,但降低了共混体系的结晶度;当LDPE的含量为15%~20%时,LDPE/PP共混体系的发泡效果最佳.

  3. Microtron Irradiation Induced Tuning of Dielectric Properties of LDPE-ZnO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deepu Thomas

    2015-01-01

    Full Text Available Low-density polyethylene (LDPE/ZnO composites were prepared using melt mixing process. ZnO powder with size of 44 nm was used as reinforcing particle. The electron beam irradiation effects on the dielectric behaviour of a polymer nanocomposite dielectric made of low density polyethylene filled with nanoparticles of ZnO were studied. The dielectric constant and dielectric loss values were determined by dielectric spectroscopy over a frequency range of 100 KHz–5 MHz on plane samples of the tested nanodielectrics. The influence of filler concentration, between 2 and 8 wt.%, and the irradiation effects on the dielectric properties are also discussed in the paper.

  4. Study The Properties and Weight Loss Degradation of The Blend LDPE/Cellulose in Soil Environment

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar Abdul Ameer

    2017-05-01

    Full Text Available Wider applications of polyethylene (PE in packaging and agriculture have raised serious issue of waste disposal and pollution. Therefore, it is necessary to raise its biodegradability by additives.In this study, we will add cellulose to low density polyethylene to prepare polymer blend have ability to degradation in soil environment.The samples were prepared by using twin screw extruder.LDPE and CELL have been mixing with different weight proportions, and studied their properties in order to determine its compliance with the required specifications to be able to be used biodegradable polymers. To improve the viability of decomposition PEG has been added to the resulting blend. Several tests were applied to identify those properties such as tensile,hardness, density and creep test. FTIR, digital microscope and SEM test acheved in order to determine the miscibility and blend morphology befor and after degradation.The results show that,the blend weight loss increase with increasing CELL percent.

  5. Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available The influence of a typical prooxidative additive, cobalt stearate, on the thermal stability, degradation kinetics and lifetime of low-density polyethylene (LDPE was investigated using non-isothermal thermogravimetric analysis (TGA in both nitrogen and air atmosphere. The derivative thermogravimetric (DTG curves indicate single stage and multistage decomposition process in nitrogen and air atmosphere respectively. The kinetic parameters of degradation were evaluated using the Flynn–Wall-Ozawa iso-conversion technique. The apparent activation energies for decomposition have been calculated for degradation under nitrogen atmosphere. The lifetime of LDPE (time for 5% mass loss was estimated to be 8.2·1026 min in nitrogen and was found to decrease dramatically with increase in the concentration of cobalt stearate thereby revealing its pro-oxidative ability. Studies indicated that the service/process temperature also has a strong influence on the lifetime of all the formulations investigated. The effect of cobalt stearate on the air oven aging behavior of LDPE at two different temperatures (70°C and 100°C was also investigated to demonstrate the pro-oxidative nature of cobalt stearate.

  6. Fogging Control on LDPE/EVA Coextruded Films: Wettability Behavior and Its Correlation with Electric Performance

    Directory of Open Access Journals (Sweden)

    Miguel A. Waldo-Mendoza

    2017-02-01

    Full Text Available The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE and ethylene-vinyl acetate (EVA was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found.

  7. Radiation initiated graft copolymerization of N-vinylpyrrolidone and acrylamide onto low density polyethylene films by individual and binary system

    Science.gov (United States)

    Taher, N. H.; Dessuoki, A. M.; El-Arnaouty, M. B.

    1998-10-01

    A study has been made for the preparation of membranes by the direct radiation grafting of N-vinyl pyrrolidone (NVP), acrylamide (AAm) and its comonomer onto low density polyethylene (LDPE) films. The factors affecting the grafting process such as solvent, inhibitor, radiation dose, dose rate, monomer and comonomer concentrations on the grafting yield were studied. Dioxane was chosen as a diluent and the addition of any inhibitor failed in this grafting system. The optimum comonomer composition at which the highest grafting yield was obtained, was found to be (20/80 wt% of AAm/NVP) comonomer. The dependence of the grafting rate upon NVP, AAm and its comonomer concentration for comonomer composition (50/50 and 20/80 AAm/NVP) was found to be 1.7, 1.44, 1.9 and 1.7 order, respectively. Some selective properties of the graft copolymers such as, swelling behaviour, electrical and mechanical properties were investigated. On the other hand, the thermal stability of these membranes was measured by using differential scanning calorimetry (DSC). An improvement of these properties was observed which makes possible the use of these membranes in some practical applications such as the removal of some heavy metals from waste water.

  8. An approach to give prospective life-span of the copper/low-density-polyethylene nanocomposite intrauterine device.

    Science.gov (United States)

    Xia, Xianping; Tang, Ying; Xie, Changsheng; Wang, Yun; Cai, Shuizhou; Zhu, Changhong

    2011-07-01

    As a novel copper-containing intrauterine device (IUD), the prospective life-span of the copper/low-density-polyethylene (Cu/LDPE) nanocomposite IUD is very important for the future clinical use and should be given in advance. Here a novel approach, cupric ions accelerated release in diluted nitric acid solution and cupric ions concentration release in various volume of simulated uterine solution (SUS), is reported to verify the type of cupric ions release model of the cylindrical matrix-type nanocomposite IUD, and to obtain the minimal cupric ions release rate that need to ensure contraceptive efficacy and the thickness of copper particles exhausted layer of the cylindrical matrix-type nanocomposite IUD within two difficult immersion durations in experimental volume of SUS, respectively. Using these results, the prospective life-span of the cylindrical matrix-type nanocomposite IUD can be obtained. For instance, the prospective life-span of the novel γ-shape nanocomposite IUD with 25 wt% of copper nanoparticles and 2 mm of diameter and a total weight of 285 mg can be given in advance and it is about 5 years in the future clinical use.

  9. Effect of Grain and Calcinations Kaolin Additives on Some Mechanical and Physical properties on Low DensityPolyethylene Composites

    Directory of Open Access Journals (Sweden)

    Zanaib Y. Shnean

    2008-01-01

    Full Text Available In this work, a composite material was prepared from Low-density polyethylene (LDPE with different weight percent of grain and calcinations kaolin at temperature of (850oC using single screw extruder and a mixing machine operated at a temperature between (190-200oC. Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%. It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength at a break. Absorption test was carried out in water at different immersion times and different composite .The results of absorption show that it obeys Fick’s law and after the addition of kaolin the amount of absorption decrease. Calcinations kaolin filler produces better mechanical properties , than grain kaolin fillers.

  10. IN SITU COMPATIBILIZATION OF LDPE/NYLON-6 BLEND USING LOW MOLECULAR WEIGHT INTERFACIAL AGENT AS A CHEMICAL COMPATIBILIZER

    Institute of Scientific and Technical Information of China (English)

    LI Pei; ZHANG Ruifeng; Chung Long Choy

    1997-01-01

    In situ compatibilization of low density polyethylene (LDPE) (30%) and nylon-6 (70%) blends through one-step reactive extrusion using t-BuOOH as an initiator and low molecular weight interfacial agents as compatibilizers was studied. The compatibilizer contained a long chain hydrocarbon, double bond and two polar functional groups which was capable of reacting with both LDPE and nylon-6 in the presence of initiator to form a copolymer at the interface of the two polymer phases. The extruded blends exhibited significant enhancement in their compatibility based on morphological, thermal analysis and mechanical studies. The effect of the hydrocarbon chain length and structure of the functional group of the compatibilizer was also examined. It was found that blends prepared by using the compatibilizer containing longer hydrocarbon chain and amide group had better mechanical properties.

  11. Properties of Raphia Palm Interspersed Fibre Filled High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Henry C. Obasi

    2013-01-01

    Full Text Available Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF filled high density polyethylene (HDPE have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.

  12. Anti-bacterial Treatment of Polyethylene by Cold Plasma for Medical Purposes

    Directory of Open Access Journals (Sweden)

    František Bílek

    2012-01-01

    Full Text Available Polyethylene (PE is one of the most widely used polymers in many industrial applications. Biomedical uses seem to be attractive, with increasing interest. However, PE it prone to infections and its additional surface treatment is indispensable. An increase in resistance to infections can be achieved by treating PE surfaces with substances containing antibacterial groups such as triclosan (5-Chloro-2-(2,4-dichlorophenoxyphenol and chlorhexidine (1,1'-Hexamethylenebis[5-(4-chlorophenylbiguanide]. This work has examined the impact of selected antibacterial substances immobilized on low-density polyethylene (LDPE via polyacrylic acid (PAA grafted on LDPE by low-temperature barrier discharge plasma. This LDPE surface treatment led to inhibition of Escherichia coli and Staphylococcus aureus adhesion; the first causes intestinal disease, peritonitis, mastitis, pneumonia, septicemia, the latter is the reason for wound and urinary tract infections.

  13. Scoping study. High density polyethylene (HDPE) in salstone service

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  14. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  15. Thermolysis of High-Density Polyethylene to Petroleum Products

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2013-01-01

    Full Text Available Thermal degradation of plastic polymers is becoming an increasingly important method for the conversion of plastic materials into valuable chemicals and oil products. In this work, virgin high-density polyethylene (HDPE was chosen as a material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse virgin HDPE with an objective to optimize the liquid product yield at a temperature range of 400°C to 550°C. The chemical analysis of the HDPE pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The composition of the pyrolytic oil was analyzed using GC-MS, and it was found that the main constituents were n-Octadecane, n-Heptadecane, 1-Pentadecene, Octadecane, Pentadecane, and 1-Nonadecene. The physical properties of the obtained pyrolytic oil were close to those of mixture of petroleum products.

  16. 线形聚丙烯/低密度聚乙烯共混体系的流变行为和发泡行为%Rheology and Foaming Behavior of Linear Polypropylene/Low-Density Polyethylene Blends

    Institute of Scientific and Technical Information of China (English)

    刘伟; 刘本刚; 王向东; 许国志; 张玉霞

    2011-01-01

    通过熔体流动速率测试仪和转矩流变仪对不同比例线形聚丙烯(PP)/低密度聚乙烯(LDPE)共混发泡体系的流变行为进行研究.随后将纯PP和配比为100/20的PP/LDPE共混体系进行超临界CO,的挤出发泡试验,并通过真密度计/开闭孔率测定仪和扫描电子显微镜对两种样品的发泡密度、发泡倍率和泡孔形态进行测试.研究结果表明:加入LDPE后可以明显提高PP的储能模量并降低损耗因子,从而有效地提高其可发性,发泡材料的泡孔密度和发泡倍率得以显著提高.%Linear polypropylene was blended with low-density polyethylene, and the rheology behavior was studied by melt flow rate instrument/torque rheometer. Following, foam density, foam morphology of Pure PP and PP/LDPE ( 100/20 ) blend were tested by using densimeter and SEM. It showed that low-density polyethylene could increase storage modulus and reduce loss factor of polypropylene. As a consequence, adding low-density polyethylene could effectively improve the foamability of polypropylene, and increase the cell density and expansion ratio.

  17. Biodegradation of thermoplastic starch and its blends with poly(lactic acid) and polyethylene: influence of morphology

    Science.gov (United States)

    The room temperature mineralization of thermoplastic starch (TPS) with a high glycerol content and its blends with low-density polyethylene (LDPE) and polylactic acid (PLA) are examined under controlled degradation conditions. These results are correlated with the morphologies and continuity behavio...

  18. Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Albano, C.; Davidson, E.; Poleo, R. [Universidad Central de Venezuela, Caracas (Venezuela). Escuela de Quimica; Gonzalez, J.; Ichazo, M. [Universidad Simon Bolivar, Dept. de Mecanica, Caracas (Venezuela); Chipara, M. [Research Institute for Electrotechnics, Bucharest (Romania)

    2001-04-01

    The effect of the gamma-irradiation on the mechanical properties of the composites, Polypropylene (PP), PP+high density Polyethylene (HDPE), PP+ HDPE+wood flour, where HDPE is virgin and recycled, was studied. This paper discusses the behavior of the composites after exposure to various doses of gamma irradiation (1-7 MRads) in the presence of oxygen. The dependence of mechanical properties on the integral dose for a constant dose rate of 0.48 MRads/h confirms the influence of the irradiation. Strong effects on the elongation at break and break strength is noticed. The mathematical analysis suggests for the PP+r-HDPE a bimolecular process of the elongation at break. On the order hand, for the PP+HDPE a complex process is represented for a three exponential equation. (orig.)

  19. Influence of gamma radiation on hindered phenols in LDPE, paraffin oil and paraffin wax

    Science.gov (United States)

    Ahmed, Shamshad; Yasin, Tariq; Ghaffar, Abdul

    2003-12-01

    Extraction and high performance liquid chromatography procedures have been developed for the determination of two hindered phenols—Irganox-1010 and Santonox ®, incorporated in low density polyethylene (LDPE), paraffin oil and paraffin wax at varied concentrations. These blends were gamma irradiated from 25 to 400 kGy and the radiation and thermal stability of the antioxidant under the experimental conditions has been determined. Upon increase in radiation dose from 25 to 400 kGy, a gradual diminution in the extractable level of each antioxidant was observed. The fate of both the antioxidants in various matrices has been compared. It has been shown that both the antioxidants can influence the polyethylene network formation and the radical yield in different ways resulting in retardation in the rate of crosslinking, as determined by gel-content analysis.

  20. On the effect of the structural properties of polyethylene on the DC conductivity in the temperature range from 40° C to -80° C

    DEFF Research Database (Denmark)

    Khalil, M. S; Henk, Peter O; Henriksen, Mogens

    1990-01-01

    Measurements of the flowing current under the effect of DC fields were conducted using relatively thick samples (1.8 mm) of three different materials: plain low density polyethylene (LDPE), crosslinked polyethylene (XLPE), and 1-wt% TiO2 doped LDPE. The measurements were performed over a range...... of temperatures from 40°C to 80°C and at electric fields as high as 3×105 V/cm. Results indicate that the observed DC conductive characteristics are different for the three materials. Those differences are attributed to the differences of the chemical and morphological structures of the materials used. Scanning...

  1. Recycling of Cooking Oil Waste into Reactive Polyurethane for Blending with Thermoplastic Polyethylene

    Directory of Open Access Journals (Sweden)

    Anika Zafiah M. Rus

    2015-01-01

    Full Text Available Driven by the need of growing to a more sustainable and environmentally friendly future, this research is started by mixing in-house produced biorenewable polymers (BP from waste cooking oil with the standard low density polyethylene (LDPE and high density polyethylene (HDPE via melt-mixing at low ratios. These mixtures are then compounded via injection molding to produce tensile samples. By using the quality of individual compounds injected, the parameters obtained for all ratios of LDPE/BP were the same with neat LDPE whereas some adjustments were required for the HDPE/BP compounds. The corresponding mechanical behaviors of each ratio were also examined and the results showed that both tensile strength and strain of the LDPE/BP were better than neat LDPE. On the other hand, increasing the BP content in HDPE/BP will increase the toughness of the compound if compared to neat HDPE. Therefore, not only does the presence of BP provide renewable properties, but it also improves the mechanical properties. Moreover, the processing temperature and composition of BP will both influence the quality and mechanical behavior of the product made. Thus, this study may aid any intention on processing these in-house produced polymers by injection molding.

  2. OLEOPHOBIC AND HYDROPHOBIC FEATURE EXPERIMENTS OF FLUORINATED HIGH DENSITY POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    杨宏伟; 魏贤勇; 费逸伟; 孙世安; 李晓越

    2013-01-01

    The surface performances of directly fluorinated high density polyethylene (HDPE) are studied with Fourier transform infrared (FT-IR) spectra ,scanning electron microscopy (SEM) and contact angle (CA) system . The SEM images show that there is a three-layer structure called the reaction ,virgin and boundary layer structure . The depth of fluorinated layer is 5.75 μm with 1 h fluorination time and 7.86 μm with 2 h . The depths are 5.46 μm and 5.07 μm when fluorine density is 2% and 1% ,respectively .CA indicates that the HDPE surface property becomes more hydrophobic with the increasing water contact angle from 78.5° to 104.5° .Oleophobic and hydrophobic features of HDPE are identified by comparison of mass change experiments .It is shown that the in-crement rate of fluorinated HDPE is much lower than that of un-fluorinated HDPE filled in neither distilled water nor jet fuel .

  3. Calvarial reconstruction using high-density porous polyethylene cranial hemispheres

    Directory of Open Access Journals (Sweden)

    Nitin J Mokal

    2011-01-01

    Full Text Available Aims: Cranial vault reconstruction can be performed with a variety of autologous or alloplastic materials. We describe our experience using high-density porous polyethylene (HDPE cranial hemisphere for cosmetic and functional restoration of skull defects. The porous nature of the implant allows soft tissue ingrowth, which decreases the incidence of infection. Hence, it can be used in proximity to paranasal sinuses and where previous alloplastic cranioplasties have failed due to implant infection. Materials and Methods: We used the HDPE implant in seven patients over a three-year period for reconstruction of moderate to large cranial defects. Two patients had composite defects, which required additional soft tissue in the form of free flap and tissue expansion. Results: In our series, decompressive craniectomy following trauma was the commonest aetiology and all defects were located in the fronto-parieto-temporal region. The defect size was 10 cm on average in the largest diameter. All patients had good post-operative cranial contour and we encountered no infections, implant exposure or implant migration. Conclusions: Our results indicate that the biocompatibility and flexibility of the HDPE cranial hemisphere implant make it an excellent alternative to existing methods of calvarial reconstruction.

  4. Effect of substrates on crystallization of high density polyethylene

    Institute of Scientific and Technical Information of China (English)

    范毓润; 林渊; 阮绵照

    2008-01-01

    The experimental observations about remarkable influence of the substrates on the isothermal crystallization rate of a high density polyethylene(HDPE) were presented.Two methods were used to characterize the crystallization rate:the change of turbidity of the HDPE specimen and the changes of the complex viscosity and storage modulus measured by a rotational rheometer,which gave consistent results showing that the isothermal crystallization rate decreased in sequence as the specimen contacted with aluminum,brass and stainless steel plates,respectively.As to the dominant influence factor,the chemical composition of the substrates can be excluded via insulating the plate by an aluminum foil.Instead,we propose the plate’s ability of removing the latent heat of crystallization from the specimen.Rheological measurement is sensitive to the crystallization process.The colloid like model proposed by BOUTAHAR et al for the crystallization of HDPE gives reasonable predictions of the crystallized fraction from the measured storage modulus.

  5. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  6. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari

    2013-01-01

    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  7. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fillot L.-A.

    2015-02-01

    Full Text Available In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6 and High Density PolyEthylene (HDPE is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85% of ethanol (E85 in the biofuel, permeability of PA6 being 100 times lower than that of HDPE for low ethanol content fuels (E5, E0. The time-lags were also compared, and on the whole range of ethanol contents, HDPE permeation kinetics appears to be much faster than that of PA6, the time lag for a 1 mm thick specimens in presence of E10 being 50 days for PA6 and 0.5 days for HDPE. The compositions of the solvent fluxes were analyzed by FID gas chromatography, and it turned out that the solvent flux was mainly made up of ethanol (minimum 95% in the case of PA6, whereas in the case of HDPE, solvent flux was mainly made up of hydrocarbons. The implication of this difference in the solvent flux composition is discussed in the present article, and a side effect called the “fuel exhaustion process” is presented. The influence of the sample thickness was then studied, and for the different biofuels compositions, the pervaporation kinetics of polyamide 6 appeared to evolve with the square of the thickness, a long transitory regime being highlighted in the case of PA6. This result implies that the time needed to characterize the steady state permeability of thick PA6 parts such as fuel tanks can be very long (one year or more, this duration being far superior to the Euros 5 or Euro 6 standard emission measurements time scale. The influence of temperature on the permeability was finally assessed, and the activation energy that is the signature of the temperature

  8. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  9. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Science.gov (United States)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  10. THE ANALYSIS OF PARTIAL DISCHARGE (PD FROM ELECTRICAL TREEING IN LINEAR LOW DENSITY POLYETHYLENE (LLDPE AND HIGH DENSITY POLYETHYLENE (HDPE

    Directory of Open Access Journals (Sweden)

    Hermawan Hermawan

    2012-02-01

    Full Text Available Recently, the transmission of electric energy has been developed by insulated cable. The suitable materialas an insulated cable is LLDPE and HDPE. In order to understand the quality of insulation system, themeasuring of PD has done. PD could begin completely insulation failure (breakdown. Therefore, it is veryimportant to understand the characteristic of PD and the enclose event on it, because PD is a main factorwhich caused insulation failure.This paper presents the result of PD measurement in the laboratory that used needle-plane electrode. Itwas supported by equipments such as osiloskop Digital GDS 2104 GW Instek, HPF, and RC detector.Polymer sample that used in this research is LLDPE (Linier Low Density Polyethylene and HDPE with 20x 4 x 25 mm3 dimension in each. Needle was made by steel (length 50 mm and diameter 1.15 mm, it wasstick to the polymer material. The distance between needle to the plane is 5 mm. The applied voltage foreach sample was 16 kVrms, 18 kVrms, 20 kVrms and 22 kVrms. The Taking of PD data was done in thefirst minute, 10th minute, 20th and so on until 180th minute.The measurement result shows that the characteristic of PD number and maximum charge as a function oftime and as a function of applied voltage inclined increasing both on LLDPE and HDPE. But, PD intensityin HDPE is higher than LLDPE.

  11. Investigations on vinylene carbonate. IV. Radiation induced graft copolymerization of vinylene carbonate and N-vinyl-N-methylacetamide onto polyethylene films

    NARCIS (Netherlands)

    Chen, Guohua; Does, van der Leen; Bantjes, Adriaan

    1992-01-01

    Graft copolymerization of binary mixtures of vinylene carbonate (VCA) and N-vinyl-N-methylacetamide (VIMA) onto low density polyethylene (LDPE) films was studied by the mutual γ-irradiation technique. Sufficient amounts of functionally active VCA groups could be grafted onto the surface and the hydr

  12. Low-density polyethylene films treated by an atmospheric Ar-O2 post-discharge: functionalization, etching, degradation and partial recovery of the native wettability state

    Science.gov (United States)

    Abou Rich, S.; Dufour, T.; Leroy, P.; Nittler, L.; Pireaux, J. J.; Reniers, F.

    2014-02-01

    To optimize the adhesion of layers presenting strong barrier properties on low-density polyethylene (LDPE) surfaces, we investigated the influence of argon and argon-oxygen atmospheric pressure post-discharges. This study was performed using x-ray photoelectron spectroscopy, atomic force microscopy, optical emission spectroscopy (OES) and dynamic water contact angle (WCA) measurements. After the plasma treatment, a slight increase in the roughness was emphasized, more particularly for the samples treated in a post-discharge supplied in oxygen. Measurements of the surface roughness and of the oxygen surface concentration suggested the competition of two processes playing a role on the surface hydrophilicity and occurring during the post-discharge treatment: the etching and the activation of the surface. The etching rate was estimated to about 2.7 nm s-1 and 5.8 nm s-1 for Ar and Ar-O2 post-discharges, respectively. The mechanisms underlying this etching were investigated through experiments, in which we discuss the influence of the O2 flow rate and the distance (gap) separating the plasma torch from the LDPE surface located downstream. O atoms and NO molecules (emitting in the UV range) detected by OES seem to be good candidates to explain the etching process. An ageing study is also presented to evidence the stability of the treated surfaces over 60 days. After 60 days of storage, we showed that whatever the O2 flow rate, the treated films registered a loss of their hydrophilic state since their WCA increased towards a common threshold of 80°. This ‘hydrophobic recovery’ effect was mostly attributed to the reorientation of induced polar chemical groups into the bulk of the material. Indeed, the relative concentrations of the carbonyl and carboxyl groups at the surface decreased with the storage time and seemed to reach a plateau after 30 days.

  13. Preparation and interface fusion behaviors of functionalized wood powder/low density polyethylene thermal plastic masterbatch%功能化木粉/低密度聚乙烯热塑母料的制备及界面融合性

    Institute of Scientific and Technical Information of China (English)

    孙恩惠; 孙丰文; 刘欢欢; 鹿甫坤; 黄红英; 武国峰

    2016-01-01

    以研究功能化木粉/低密度聚乙烯(LDPE)热塑母料的流变及界面融合性为目的,采用超声波辅助碱预处理制备苄基化杨木粉(Wd-Ar),通过熔融共混挤出造粒制备了 Wd-Ar/LDPE热塑母料。研究 Wd-Ar/LDPE热塑母料界面相容性、熔体流动性、热软化点、热融合特性以及表面自由能的变化。结果表明:SEM显示,与未处理木粉(Wd)相比,塑化母料与 LDPE的界面融合性增强;由 XRD结果分析可知热塑母料结晶度减弱,热软化点有所降低,熔体流动速率提高,总表面自由能下降,非极性分量自由能增加;Wd-Ar 可降低与 LDPE 混合物料的平衡扭矩,有效改善复合材料的熔体加工性能、界面融合性及力学性能。当 LDPE含量为20wt%时,Wd-Ar/LDPE复合材料的拉伸强度、拉伸断裂伸长率及弯曲强度分别提高了2.55、4.55和2.27倍,表明 Wd-Ar 与 LDPE 复合材料间的界面黏结性增强。%With the purpose to study the rheological behavior and interface fusion of functionalized wood powder/low density polyethylene (LDPE)thermal plastic masterbatch,benzylation poplar wood powder(Wd-Ar)was syn-thetized after alkali pretreatment with ultrasonic-assisted,then Wd-Ar/LDPE thermal plastic masterbatch were pre-pared by co-blend and extrusion method.The variations on interfacial compatibility,thermal melt flowability,ther-mal softening point,heating fusion features and changes of surface free energy of Wd-Ar/LDPE thermal plastic mas-terbatch were examined.Results show that,compared with that of untreated wood flour (Wd),SEM shows the en-hanced interface integration of plastic masterbatch and LDPE.XRD result analysis shows that crystallinity of ther-mal plastic masterbatch decreases,thermal softening point decreases,melt flow rate improves,total surface free en-ergy decreases,nonpolar component free energy increases.Wd-Ar is more effective in reducing the balance torque of LDPE combined materials,while improving melt

  14. Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation

    Indian Academy of Sciences (India)

    M Madani

    2010-02-01

    Methyl methacrylate (MMA) monomer was grafted onto low density polyethylene by the direct method of radiation grafting. The effect of cohesive energy density of different organic solvents on the degree of grafting was investigated. It was found that the extent of grafting depends largely on the kind of solvent, in which the highest degree of grafting was achieved in the presence of dioxane, whereas the lowest degree of grafting occurred in the presence of methanol. This behaviour was attributed to the solubility parameters of the solvent, monomer and polymer. The change in structure of the LDPE graft copolymer films was characterized by scanning electron microscopy, X-ray diffraction, UV/vis absorption and thermogravimetric analysis. The X-ray diffraction results showed a decrease in the crystallinity of LDPE graft copolymer matrix at high degree of grafting. Studies were made on the UV-absorption edge, and indirect allowed transitions with their optical energy gaps are determined. At the same time the Urbach energy was evaluated. The activation energy of the thermal decomposition was calculated according to Horowitz and Metzger method.

  15. Diffusion of limonene in polyethylene.

    Science.gov (United States)

    Limm, W; Begley, T H; Lickly, T; Hentges, S G

    2006-07-01

    Diffusion coefficients of limonene in various linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) resins have been determined from sorption data using a thermogravimetric methodology. From these data, one can determine whether polymer synthesis parameters such as the choice of catalytic process or co-monomer result in substantial differences in how much food packaging additives might migrate to food. For example, LLDPE is currently manufactured using either one of two distinct catalytic processes: Ziegler-Natta (ZN) and metallocene, a single-site catalyst. ZN catalysis is a heterogeneous process that has dominated polyolefin synthesis over the last half-century. It involves a transition metal compound containing a metal-carbon bond that can handle repeated insertion of olefin units. In contrast, metallocene catalysis has fewer than 20 years of history, but has generated much interest due to its ability to produce highly stereospecific polymers at a very high yield. In addition to high stereospecificity, metallocene-catalysed polymers are significantly lower in polydispersity than traditional ZN counterparts. Absorption and desorption testing of heat-pressed films made from LLDPE and LDPE resins of varying processing parameters indicates that diffusion coefficients of limonene in these resins do not change substantially.

  16. Modified Low Density Polyethylene by Nano-fills as Insulating Material of DC Cable (Ⅱ)%纳米粒子改性聚乙烯直流电缆绝缘材料研究(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    吴锴; 陈曦; 王霞; 成永红; 屠德民

    2013-01-01

    在电缆聚乙烯材料中添加一种新型纳米粒子可以有效改善材料中的空间电荷积聚,提高其直流击穿强度和体积电阻率.为深入了解此纳米粒子作用机理,基于电声脉冲法(PEA)和充电-放电电流法,分别测量了在不同温度下、不同纳米含量时聚乙烯纳米复合材料的极化/去极化特性.用PEA方法得到不同温度下材料的平均电荷体密度、视在迁移率和陷阱深度,结果表明,20~40℃下,纯聚乙烯及聚乙烯纳米复合材料试样内的陷阱以浅陷阱分布为主;80℃下,当聚乙烯中纳米粒子质量分数>3%时,会增加复合材料陷阱深度.用充电-放电电流法计算得到材料的迁移率,可知在20~60℃内,不同试样迁移率的变化主要由纳米粒子和温度共同作用产生,而在60~80℃内,迁移率的变化则是温度起主要作用.分析认为,电荷输运受到陷阱与温度的影响是导致电阻率变化的主要原因,而在温度梯度场下,聚乙烯纳米复合材料电阻率的正温度系数趋势是抑制材料内空间电荷积聚的主要原因.%Adding a novel nano filler in the insulation of high voltage direct current (HVDC) cable is proved to be capable of restricting space charge accumulation, and enhancing DC breakdown strength and volume resistivity of the low density polyethylene (LDPE). In order to further study the working mechanism of the nano filler, the polarization and depolarization characteristics of pure LDPE and LDPE nanocomposites with different nano fillers under different temperatures were tested based on the pulsed electro-acoustic ( PEA) method and charging / discharging current method, respectively. Parameters, including the mean volume density of space charge, apparent trap-controlled mobility and trap depth distribution, were achieved by the PEA method: shallow traps were dominant in pure LDPE and LDPE nanocomposites under 20~40 ℃; the trap depth increased under 80 ℃ in

  17. Polymer surface modification using UV treatment for attachment of natamycin and the potential applications for conventional food cling wrap (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joongmin, E-mail: shinj@uwstout.edu [Engineering and Technology, University of Wisconsin-Stout, Menomonie, WI, 54751 (United States); Liu, Xiaojing [Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan (China); Chikthimmah, Naveen [Food Science and Technology, University of Wisconsin-Stout, Menomonie, WI, 54751 (United States); Lee, Youn Suk [Department of Packaging, Yonsei University, Gangwon 220-710 (Korea, Republic of)

    2016-11-15

    Highlights: • The study suggests an optimized method for UV-induced antimicrobial agents grafting on LDPE. • The study evaluated the effective of various solvents for acrylic acid and natamycin grafting on LDPE. • The study investigated chemical and mechanical property changes by various times of UV light treatments. • Natamycin grafted film demonstrated antifungal function against mold and yeast. - Abstract: The purpose of this study was to develop an active non-migratory antifungal Low Density Polyethylene (LDPE) polymer for use in food packaged applications. The functional acrylic acid monomer was grafted on the LDPE film surface by photo-initiated graft polymerization using Ultra Violet light irradiation (from 0 to 5 min). Natamycin, an antifungal agent, was applied to the treated film to bind with the pendent functional groups and were evaluated its performance against mold and yeast. The grafted amounts were determined by gravimetric measurement and dye absorbance. Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy, scanning electron microscopy, mechanical strength test was used to characterize film properties. The antifungal efficacy of the film was evaluated with Saccharomyces cerevisiae and Penicillium chrysogenum on growth media and fresh cut cantaloupe. The amounts of the grafted group were increased with the longer ultraviolet exposure time. The amount of the grafted natamycin on the treated film was up to 49.87 μg/cm{sup 2}, and the film inhibited mycelium formation of P. chrysogenum spores by over 60%. Due to the thickness of the film (less than 12.25 μm), long time UV exposure decrease the film’s mechanical strength. The application of such non-migratory active packaging film represents a promising approach to maintaining food quality with reduced additive.

  18. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

  19. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    Science.gov (United States)

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  20. Effect of previous chilling storage on quality loss in frozen (–20 °C sierra (Scomberomorus sierra muscle packed with a low-density polyethylene film containing butylated hydroxytoluene

    Directory of Open Access Journals (Sweden)

    Herlinda Soto-Valdez

    2015-03-01

    Full Text Available Rancidity development during frozen storage (–20 °C of sierra fish (Scomberomorus sierra was studied. Fillets were packed in low-density polyethylene films with and without butylated hydroxytoluene added (BHT-LDPE and LDPE respectively. Fillets stored with no package were used as control. Special attention was given to the effect of previous ice storage (0, 3, 6, 9 and 15 days on the quality of the frozen fish. Physical (pH and texture and chemical (peroxide value, PV and thiobarbituric acid index, TBA-i analyses were carried out. Lipid oxidation increased with ice storage time in fish muscle without film packing, being greater than the film packed muscle (with and without antioxidant. An effect of previous ice storage time was observed on the frozen product (in all treatments. However, fish muscle with film packing containing antioxidant showed less lipid deterioration. Under the conditions applied in this study, the plastic films with antioxidant prevented the lipids oxidation during the cold handling of the sierra muscle.

  1. Gas permeability measurement in polyethylene and its copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)]. E-mail: Musavi@che.sharif.edu; Razavi, J. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, S.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2007-07-01

    In this research, low density polyethylene (LDPE) and poly(ethylene-co-vinyl acetate) (EVA) were used as polymeric materials. The methods used to produce LDPE and EVA was film blowing and thermal-dry phase inversion. The amount of permeability, diffusivity and solubility of O{sub 2} and CO{sub 2} through above polymers were obtained and also the effect of temperature, pressure and film thickness for LDPE was measured. To study film cross-section morphology in EVA, scanning electron microscopy (SEM) was applied. The results showed that the amount of permeability and solubility were decreased by increasing film thickness but diffusivity was increased. However, by increasing temperature, permeability, solubility, and diffusivity were increased. From the results for EVA, adding 28% of vinyl acetate groups to polyethylene chain increased permeability of O{sub 2} and CO{sub 2} through the film. Scanning electron microscopy (SEM) microphotograph for EVA film verified that the film cross-section structure was as dense as for polyethylene.

  2. Variation of physical properties of LDPE greenhouse films due to agrochemicals used during cultivation

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2013-09-01

    Full Text Available During protected cultivation, the use of agrochemicals influence the degradation of the greenhouse plastic films. A research was carried out to evaluate how agrochemicals contamination and solar radiation influence the physical properties of low density polyethylene (LDPE films. The LDPE films were manufactured on purpose adding different anti-UV stabilizer systems and were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N. Each film was tested as covering of two low tunnels: one was sprayed from inside with commercial agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and used as control. Radiometric tests were carried out on the new films and on film samples taken at the end of the trial. Analyses on absorption of the selected contaminants were carried out in laboratory on the samples taken at the end of the exposure in the field in order to compare the relative effectiveness of the stabilizing systems under evaluation. The experimental tests showed that the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and PAR wavelength range. Significant variations were recorded for the stabilised films in the LWIR wavelength range.

  3. Irradiation and flame retardant effect of poly[bis(phenoxyphosphazene)] and magnesium hydroxide in LDPE composites

    Institute of Scientific and Technical Information of China (English)

    李建喜; 张聪; 陈涛; 李林繁; 李景烨

    2015-01-01

    Poly[bis(phenoxyphosphazene)] (PBPP) and magnesium hydroxide (MH) are used as a flame retardant blend with low-density polyethylene (LDPE) for the nuclear cable. This study aims to investigate the effects of PBPP in MH-LDPE blend composites on flame retardance and electron beam irradiation. The structure, morphology, and properties of the blend composites irradiated by an electron beam to different absorbed doses were char-acterized. The results indicated that PBPP provides lubrication during processing. As the PBPP content in the blend increases the melt flow rate at 20 phr MH, meaning the material is easier to process. The higher the PBPP content, the higher the limiting-oxygen index. The elongation at the break of the PBPP containing composites (at 50 phr MH) was evidently higher than the non-PBPP ones at different absorbed doses by electron beam irradiation. The thermogravimetric analysis results indicated that the improved mechanical property, resulting from electron-beam irradiation, could be attributed to the consumption of PBPP.

  4. Evaluation of rheological and thermic properties of neat and modified asphalt with a waste of LDPE

    Directory of Open Access Journals (Sweden)

    William Andrés Castro López

    2016-01-01

    Full Text Available Context: The asphalt technology and modified asphalt mixtures has been widely used and studied, worldwide. Adding polymers to asphalt modifies mechanical, chemical and rheological properties, trying to improve behavior of the mixtures subjected to different environmental and load conditions. The paper report results from rheological and thermal characterization on conventional 60-70 asphalt cement and 60-70 asphalt cement modified by introducing a waste of low density polyethylene (LDPE. Method: Modification of the asphalt was performed by wet way in a proportion of LDPE/CA=5% with respect to the mass. Rheological (using DSR, Thermogravimetry (TGA and Differential Scanning Calorimetry (DSC techniques were performed. Results and Conclusions: The modified asphalt develops a remarkable increase in stiffness and improvement of the performance grade at high temperatures of service. Additionally, the modified asphalt is more resistant to oxidation and aging processes due to heat. However, the asphalt modified showed a decrease in crack resistance at low and intermediate temperatures of service.

  5. INFLUENCE OF ELECTRON BEAM TREATMENT ON THE CRYSTALLIZATION AND THERMAL STABILITY OF LDPE/EPDM BLENDS

    Directory of Open Access Journals (Sweden)

    Bhuwanesh Kumar Sharma

    2014-01-01

    Full Text Available The effect of blend composition and Electron Beam (EB irradiation on the crystallization and thermal behavior of Low Density Polyethylene (LDPE/Ethylene-Propylene-Diene elastomer (EPDM blends had been studied. Melting temperatures were found to remain unchanged upon variation of blend composition as well as irradiation dose. But the degree of crystallinity and Tc (crystallization temperature were decreased with increase in EPDM content and EB dose. On the other hand, thermal stability (in terms of onset temperature and degradation temperature and activation energy were increased with increase in EPDM content and irradiation dose. But the speed of degradation slowed down with increasing EPDM content and EB dose. Interestingly, once Trimethylolpropane Triacrylate (TMPTA and Triallyl Cynuerate (TAC were incorporated into the blends, the degrees of change of these properties were more in same direction upon irradiation. At higher irradiation dose properties were demoted due to chain scission.

  6. Thermal and Tensile Properties of Treated and Untreated Red Balau (Shorea Dipterocarpaceae Filled LDPE Composites

    Directory of Open Access Journals (Sweden)

    Ruth Anayimi Lafia-Araga

    2011-12-01

    Full Text Available Red balau saw dust was heat-treated at 180°C and 200°C for one hour, extrusion compounded with Low Density Polyethylene (LDPE at 20%, 40% and 60% volume fraction loadings and injection moulded. Thermal and tensile properties of the resultant composites were investigated as a function of filler loadings and treatment temperature. Increase in tensile moduli and decrease in tensile stress and strain were observed as filler loading and treatment temperature increased. Thermogravimetric analysis revealed an increase in degradation peak temperature of the composites from heat treated compared to the untreated wood composites. Differential scanning calorimetry revealed a decreasing trend in the degree of crystallinity (Xc of the matrix when heat treated wood was used as filler. However, untreated wood showed an increase in Xc with increasing wood content.

  7. Stress relaxation and reversed flow of low-density polyethylene melts following uniaxial extension

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2012-01-01

    The extensional dynamics of two low-density polyethylene melts Lupolen 3020D and Lupolen 1840D, both showing a stress overshoot in start-up of uniaxial extension [Rasmussen, H. K., J. K. Nielsen, A. Bach, and O.Hassager, 'Viscosity overshoot in the start-up of uniaxial elongation of low density p...

  8. 拉伸状态下LDPE/SiO2改性材料的空间电荷特性研究%Study on Space Charge Behavior in LDPE/SiO2 Nanocomposites Under Tensile Condition

    Institute of Scientific and Technical Information of China (English)

    王灿; 王有元; 凡朋; 廖瑞金

    2016-01-01

    为深入研究低密度聚乙烯(low-density polyethylene, LDPE)/SiO2改性材料内部空间电荷的运动特性,利用纳米粒径分别为15和50 nm的SiO2纳米粒子制备了质量分数5%的LDPE/SiO2改性材料,同时制备了拉伸率为10%的样品,利用电声脉冲(pulsed electroacoustic apparatus,PEA)法装置测量了每种样品的空间电荷分布.结果表明:添加SiO2纳米粒子后,材料中靠近电极处的空间电荷累积由异极性电荷转变为同极性电荷;拉伸后,所有材料内部的空间电荷累积量均出现了增加,并且当拉伸率为10%,质量分数为5%时,LDPE/SiO2改性材料内部出现了空间电荷大量累积的现象,在材料中心位置处形成了两个不同极性的空间电荷包, 15nm粒径改性材料的空间电荷包远小于50nm粒径的改性材料.文中从弧波理论、电荷在改性材料中的受力以及具有不同介电常数材料表面电荷的累积等方面对 LDPE/SiO2改性材料内部的空间电荷包现象进行了详细解释,为深入理解空间电荷在改性材料中的运动特性和分布特性提供参考.%In order to research space charge behavior in low-density polyethylene (LDPE)/SiO2 nanocomposites, this paper prepared LDPE/SiO2 nanocomposites with particle size of 15nm and 50nm, mass fraction of 5% and elongation of 10%. Space charge behavior of each sample was tested by pulsed electroacoustic apparatus (PEA) method. The results show that homocharge accumulation changes to hetercharge accumulation near electrodes in LDPE/SiO2 nanocomposites when nanoparticles were added. The amount of space charge increases under tensile condition. There is a large amount of space charge in nanocomposites with elongation of 10% and nanoparticles'' mass fraction of 5%. At the same time, there are two different polarity packet-like space charges in the center of nanocomposites and the packet-like space charge in nanocomposites with particle size of 50nm is more obvious than that in

  9. Low-density polyethylene films treated by an atmospheric Ar--O2 post-discharge: functionalization, etching, degradation and partial recovery of the native wettability state

    CERN Document Server

    Rich, Sami Abou; Leroy, P; Nittler, Laurent; Pireaux, Jean Jacques; Reniers, F

    2016-01-01

    To optimize the adhesion of layers presenting strong barrier properties on low-density polyethylene (LDPE) surfaces, we investigated the influence of argon and argon-oxygen atmospheric pressure post-discharges. This study was performed using x-ray photoelectron spectroscopy, atomic force microscopy, optical emission spectroscopy (OES) and dynamic water contact angle (WCA) measurements. After the plasma treatment, a slight increase in the roughness was emphasized, more particularly for the samples treated in a post-discharge supplied in oxygen. Measurements of the surface roughness and of the oxygen surface concentration suggested the competition of two processes playing a role on the surface hydrophilicity and occurring during the post-discharge treatment: the etching and the activation of the surface. The etching rate was estimated to about 2.7 nm.s-1 and 5.8 nm.s-1 for Ar and Ar-O2 post-discharges, respectively. The mechanisms underlying this etching were investigated through experiments, in which we discus...

  10. Modeling Low Density Polyethylene with Precisely Placed Butyl Branches

    Science.gov (United States)

    Rojas, Giovanni; Wagener, Kenneth B.

    Polyethylene (PE) is a commodity produced on a massive scale and also is one of the most studied macromolecules. Crystallinity can be controlled by copolymerizing ethylene with α-olefins, producing a wide range of material responses. Physical properties of PE, obtained via α olefin copolymerization, depend on the branch content that is directly related to the comonomer incorporation into the PE backbone. Materials with unknown primary structures are produced via chaingrowth chemistry, because unwanted side reactions generate defects in the main backbone that alter the morphological behavior and thermal response. Acyclic diene metathesis (ADMET) polymerization/hydrogenation methodology produce perfect sequenced copolymers of ethylene with α-olefins. Synthesis and thermal properties of PE with butyl branches precisely placed along the polymer backbone using ADMET chemistry is described within.

  11. Empirical models for end-use properties prediction of LDPE: application in the flexible plastic packaging industry

    Directory of Open Access Journals (Sweden)

    Maria Carolina Burgos Costa

    2008-03-01

    Full Text Available The objective of this work is to develop empirical models to predict end use properties of low density polyethylene (LDPE resins as functions of two intrinsic properties easily measured in the polymers industry. The most important properties for application in the flexible plastic packaging industry were evaluated experimentally for seven commercial polymer grades. Statistical correlation analysis was performed for all variables and used as the basis for proper choice of inputs to each model output. Intrinsic properties selected for resin characterization are fluidity index (FI, which is essentially an indirect measurement of viscosity and weight average molecular weight (MW, and density. In general, models developed are able to reproduce and predict experimental data within experimental accuracy and show that a significant number of end use properties improve as the MW and density increase. Optical properties are mainly determined by the polymer morphology.

  12. Blending of Low-Density Polyethylene and Poly-Lactic Acid with Maleic Anhydride as A Compatibilizer for Better Environmentally Food-Packaging Material

    Science.gov (United States)

    Setiawan, A. H.; Aulia, F.

    2017-05-01

    The common conventional food packaging materialsare using a thin layer plastic or film, which is made of a synthetic polymer, such as Low-Density Poly Ethylene (LDPE). However, the use of these polymers hasan adverse impact on the environment, because the synthetic polymersare difficult to degrade naturally. Poly-Lactic Acid (PLA) is a biodegradable polymer that can be substituted to synthetic polymers. Since LDPE and PLA have a difference in polarity, therefore the first step of research is to graft them with maleic anhydride (MAH) for increasing the properties of its miscibility. The interaction between them is confirmed by FTIR; whereas the environment issueis characterized by the water adsorption and biodegradability. The FTIR spectra indicated that there had been an interaction between LDPE and MAH and LDPE/LDPE-g-MAH/PLA blend. Increasing PLA content in the blend affected to the increasing in their water absorption and biodegradable. Poly-blend with 20% PLA content was the optimum composition for environmentally food packaging.

  13. Diffusion Coefficients of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Polydimethylsiloxane and Low-Density Polylethylene Polymers

    NARCIS (Netherlands)

    Rusina, T.; Smedes, F.; Klanova, J.

    2010-01-01

    Diffusion coefficients (D) of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were determined by film-stacking technique in low-density polyethylene (LDPE) and two types of polydimethylsiloxane (PDMS) (also known as silicone rubber, SR) with the trade names AlteSil (TM)

  14. Cytotoxicity of copolymer PHEMA-g-LDPE obtained for ionizing radiation; Citotoxicidade de copolimero de PEBD-e-PHEMA obtido por radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetti, Solange G.; Camillo, Maria A.P.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Biologia Molecular]. E-mail: solangl@ig.com.br; Queiroz, Alvaro A.A. de [Universidade Federal de Itajuba, MG (Brazil). Dept. de Fisica e Quimica

    2005-07-01

    Polymeric biomaterials are the polymers described in the literature which are employed in medicine and biotechnology. The aim of the work was the preparation of biocompatible polymeric surface for the posterior immobilization of protein compounds using grafted copolymers obtained by ionizing radiation. The copolymers was obtained by gamma irradiation induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto low density polyethylene (LDPE) in different conditions.. The grafting yield ranged from 2% to 50%. The copolymers were analysed by infrared spectroscopy (FTIR). MEV micrographs showed a smooth surface for the virgin LDPE and rough surface for the copolymers due to the grafted PHEMA. The hydrophilic property appeared with the grafting increase of PHEMA onto LDPE. The diffusion coefficient was determined. Cytotoxicity assay was performed for the evaluation of biocompatibility. The method is based on the quantitative assesment of surviving viable cells upon exposure of CHO cells to the material extract and incubation with the supravital dye MTS. The amount of MTS, taken up by the population of cells is directly proportional to the number of viable cells in culture. The grafted polymers were not cytotoxic and will be used for the chemical immobilization of the enzyme phospholipase A2, purified from the rattlesnake venom. (author)

  15. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and

  16. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    1992-01-01

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and de

  17. Mechanical properties of high density polyethylene--pennycress press cake composites

    Science.gov (United States)

    Pennycress press cake (PPC) is evaluated as a bio-based fiber reinforcement. PPC is a by-product of crop seed oil extraction. Composites with a high density polyethylene (HDPE) matrix are created by twin screw compounding of 25% by weight of PPC and either 0% or 5% by weight of maleated polyethyle...

  18. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-04-01

    Full Text Available Polyurethane (PU is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA. The PE-g-MA-grafted PU/high density polyethylene (HDPE composite was prepared by melt-blending at various concentrations (0–10 phr of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR, and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased.

  19. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    Science.gov (United States)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  20. REACTION MECHANISM OF BENZOPHENONE-PHOTOINITIATED CROSSLINKING OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Bao-jun Qu

    2002-01-01

    The radical intermediates, the crosslink microstructures, and the reaction mechanism of benzophenone (BP)-photoinitiated crosslinking of low-density polyethylene (LDPE) and model compounds (MD) have been reviewed in detail.The spin-trapping electron spin resonance (ESR) spectra obtained from the LDPE/BP systems with spin-trap agents showthat two kinds of polymer radical intermediates are mainly formed: tertiary carbon and secondary carbon radicals. The spin-trapping ESR studies of MD/BP systems give further evidence that photocrosslinking reactions of PE predominantly takeplace at sites of tertiary carbon, secondary carbon, and especially allylic carbon when available. The high resolution 13C-NMR spectra obtained from LDPE and MD systems show that the crosslink microstructures have H- and Y-type links andthat their concentrations are of the same order. The fluorescence, ESR, 13C and 1H-NMR spectra from the PE and MDsystems demonstrate that the main photoreduction product of BP (PPB) is benzpinacol formed by the recombination of twodiphenylhydroxymethyl (K*) radical intermediates. Two new PPB products: an isomer of benzpinacol with quinoid structure,1-phenylhydroxymethylene-4-diphenylhydroxymethyl-2,5-cyclohexadiene and three kinds of a-alkyl-benzhydrols have beendetected and identified. These results provide new experimental evidence for elucidating the reaction mechanism in the BP-photoinitiated crosslinking of polyethylene.

  1. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    Science.gov (United States)

    Martínez-Romo, A.; González Mota, R.; Bernal, J. J. Soto; Frausto Reyes, C.; Rosales Candelas, I.

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation.

  2. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    Laser induced pressure pulse space charge measurements were made on 1.5 mm thick plaques of high purity low density polyethylene equipped with vacuum-evaporated aluminium electrodes. Temperature differences up to 20 °C were maintained across the samples, which were subjected to dc fields up to 1.......5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  3. Polymer surface modification using UV treatment for attachment of natamycin and the potential applications for conventional food cling wrap (LDPE)

    Science.gov (United States)

    Shin, Joongmin; Liu, Xiaojing; Chikthimmah, Naveen; Lee, Youn Suk

    2016-11-01

    The purpose of this study was to develop an active non-migratory antifungal Low Density Polyethylene (LDPE) polymer for use in food packaged applications. The functional acrylic acid monomer was grafted on the LDPE film surface by photo-initiated graft polymerization using Ultra Violet light irradiation (from 0 to 5 min). Natamycin, an antifungal agent, was applied to the treated film to bind with the pendent functional groups and were evaluated its performance against mold and yeast. The grafted amounts were determined by gravimetric measurement and dye absorbance. Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy, scanning electron microscopy, mechanical strength test was used to characterize film properties. The antifungal efficacy of the film was evaluated with Saccharomyces cerevisiae and Penicillium chrysogenum on growth media and fresh cut cantaloupe. The amounts of the grafted group were increased with the longer ultraviolet exposure time. The amount of the grafted natamycin on the treated film was up to 49.87 μg/cm2, and the film inhibited mycelium formation of P. chrysogenum spores by over 60%. Due to the thickness of the film (less than 12.25 μm), long time UV exposure decrease the film's mechanical strength. The application of such non-migratory active packaging film represents a promising approach to maintaining food quality with reduced additive.

  4. Catalytic pyrolysis of LDPE using modified vermiculite as a catalyst; Pirolise catalitica do PEBD usando como catalisador a vermiculita modificada

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Franciel Aureliano [Universidade Federal de Uberlandia (UFU), MG (Brazil); Figueiredo, Aneliese Lunguinho; Araujo, Antonio Souza de; Guedes, Ana Paula de Melo Alves, E-mail: anachemistry@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil)

    2016-07-01

    Low density polyethylene (LDPE) is one of the most commonly-used polymers currently, and the great quantity of this polymer produced results in tons of waste that must be treated. We studied the thermocatalytic pyrolysis of LDPE with a modified clay vermiculite catalyst as an alternative for treatment of waste. The clay was treated with a solution of nitric acid at different concentrations and calcined at 400 °C. The materials were characterized by X-ray diffraction, thermogravimetry, nitrogen adsorption, and energy dispersive spectroscopy. Thermal and thermocatalytic pyrolysis were carried out in a microreactor coupled with GC/MS at 500 °C. The aim of the polymeric waste pyrolysis is the obtainment of light hydrocarbons (C<16), which can be used in the chemical and petrochemical industry, through breaks in the polymer chain. The results were satisfactory, with an increase in yield for light hydrocarbons by using catalysts reaching up to 71.4% of products with C<16, whereas thermal pyrolysis resulted in only 25.8%. (author)

  5. Study of the partition coefficients Kp/f of seven model migrants from LDPE polymer in contact with food simulants.

    Science.gov (United States)

    Paseiro-Cerrato, Rafael; Tongchat, Chinawat; Franz, Roland

    2016-05-01

    This study evaluated the influence of parameters such as temperature and type of low-density polyethylene (LDPE) film on the log Kp/f values of seven model migrants in food simulants. Two different types of LDPE films contaminated by extrusion and immersion were placed in contact with three food simulants including 20% ethanol, 50% ethanol and olive oil under several time-temperature conditions. Results suggest that most log Kp/f values are little affected by these parameters in this study. In addition, the relation between log Kp/f and log Po/w was established for each food simulant and regression lines, as well as correlation coefficients, were calculated. Correlations were compared with data from real foodstuffs. Data presented in this study could be valuable in assigning certain foods to particular food simulants as well as predicting the mass transfer of potential migrants into different types of food or food simulants, avoiding tedious and expensive laboratory analysis. The results could be especially useful for regulatory agencies as well as for the food industry.

  6. A complete life cycle assessment of high density polyethylene plastic bottle

    Science.gov (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  7. Study on fracture characteristic of welded high-density polyethylene pipe

    Institute of Scientific and Technical Information of China (English)

    齐芳娟; 霍立兴; 张玉凤; 荆洪阳; 杨新岐

    2002-01-01

    Crack opening displacement(COD) was applied to characterize the fracture initiation of the tough high density polyethylene. Normal single side notched three-point bend specimens and silica rubber replica techniques were used to study the characteristic COD of high-density polyethylene pipe and its butt-fusion joints including the weld fusion zone and heat affected zone at different temperature from -78℃ to 20℃ . Testing results show that the characteristic COD appears to depend on the structural features that are determined by welding process and the testing temperature. As the temperature is lowered, the characteristic COD of all zones studied decreases. Because the welding process significantly changes some structural feature of the material, characteristic COD of the weld fusion zone is the smallest one among those of the three zones. The results can be used for the engineering design and failure analysis of HDPE pipe.

  8. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  9. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    OpenAIRE

    Jaqueline Albano de Morais; Renan Gadioli; Marco-Aurelio De Paoli

    2016-01-01

    Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate), EVA, to recover the impact resistance of high density polyethylene, ...

  10. Diffusion Characteristics of Toluene into Natural Rubber/Linear Low Density Polyethylene Blends

    OpenAIRE

    Obasi, Henry C.; Okoro Ogbobe; Isaac O. Igwe

    2009-01-01

    The sorption and diffusion of toluene through blends of natural rubber (NR) and linear low density polyethylene (LLDPE) of varying compositions were studied at 35, 55, and 65°C by conventional weight-gain experiments. The effects of blend ratio on the diffusion, sorption, and permeation coefficients were determined. The sorption data were used to estimate the activation energies of diffusion and permeation, parameters which were found to show a decrease when the amount of NR or LLDPE was incr...

  11. Compatibility and Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard

    Science.gov (United States)

    2014-05-01

    and taken through the entire decontamination procedure. ***For coupons 11–20, the water temperature was ~65 oC when added. In all subsequent trials...the water temperature was ~ 95 oC. NA, not applicable. 11 Table 3. Decontamination Data–Pretreated Coupons Coupon Name and Number...COMPATIBILITY AND DECONTAMINATION OF HIGH-DENSITY POLYETHYLENE EXPOSED TO SULFUR MUSTARD ECBC-TR-1235

  12. High-density polyethylene-based composites with pressure-treated wood fibers

    OpenAIRE

    Lu Shang; Guangping Han,; Fangzheng Zhu; Jiansheng Ding; Todd Shupe; Qingwen Wang; Qinglin Wu

    2012-01-01

    High-Density Polyethylene (HDPE)-based composites with alkaline copper quaternary (ACQ)- and micronized copper quaternary (MCQ)-treated wood fibers were manufactured through injection molding. The mechanical properties, water absorption, and biological resistance properties of the fabricated composites with different coupling treatments were investigated. Composites with ACQ- and MCQ-treated wood had mechanical properties comparable with those made of untreated wood. The different coupling ag...

  13. High density porous polyethylene material (Medpor) as an unwrapped orbital implant

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-hong; CUI Hong-guang

    2006-01-01

    Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective analysis of a series of 302 patients with anophthalmia who underwent placement of an unwrapped high density porous polyethylene orbital implant. We compared the patients (n=180) who accepted primary implant placement with those (n=122) who accepted secondary implant placement. Parameters evaluated included: age at time of surgery, date of surgery, sex, implant type and size, surgery type, the surgical procedure and technique performed, and complications. Results: The time of follow-up ranged from 2.0 to 58.0 months (mean 32.5 months). A total of 5 of 302 (1.66%) cases had documented postoperative complications. The following problems were noted after surgery: implant exposure, 3 patients (0.99%); implant removed due to orbital infection, 1 patient (0.34%); ptosis, 1 patient (0.34%). There were no significant complications observed in other 297 cases and all implants showed good orbital motility. The clinical effect of primary implant placement is better than that of secondary placement. Conclusion: High density porous polyethylene material can be used successfully as an unwrapped orbital implant in anopthalmic socket surgery with minimal complications. The material is well tolerated, nonantigenic and has low rate of infection and migration.

  14. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability.

    Science.gov (United States)

    Kim, Soon Hee; Ha, Hyun Jung; Ko, Youn Kyung; Yoon, Sun Jung; Rhee, John M; Kim, Moon Suk; Lee, Hai Bang; Khang, Gilson

    2007-01-01

    In order to find a correlation between cell adhesion, growth and biological response with different wettability, NIH/3T3 fibroblast cells were cultured on plasma-treated low-density polyethylene (LDPE) film generated with radio frequency. Different surface wettabilities (water contact angle 90-40 degrees ) were created by varying the duration of plasma treatment between 0 and 15 s, respectively. Growth and proliferation rate of cells on LDPE surfaces was evaluated by MTT assay, and cell morphology, by means of spreading and adhesion, was characterized by scanning electron microscopy (SEM). The expression of particular genes in cells contacted on films with different wettability was analyzed by RT-PCR. Using the MTT assay, we confirmed that the amount of cell adhesion was higher on surface of film with a water contact angle of 60 degrees than with other water contact angle. Also, the proliferation rate of cells was highest with a water contact angle of 60 degrees . It was confirmed by SEM that the morphology of cells adhered with a water contact angle of 50-60 degrees was more flattened and activated than on other surfaces. Furthermore, c-fos mRNA in cells showed maximum expression on the film with contact angle range of 50-60 degrees and c-myc mRNA expressed highly on the film with a contact angle of 50 degrees . Finally, p53 gene expression increased as wettability increase. These results indicate that a water contact angle of the polymer surfaces of 50-60 degrees was suitable for cell adhesion and growth, as well as biological responses, and the surface properties play an important role for the morphology of adhesion, growth and differentiation of cells.

  15. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders

    Science.gov (United States)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.

    2017-09-01

    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  16. Obtainment of crotoxin/phema-g-LDPE and crotoxin/PCL systems;Obtencao dos sistemas bioconjugados crotoxina/PEBD-g-phema e crotoxina/PCL

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetti, Solange Gubbelini

    2006-07-01

    The aim of the work was the obtainment of polymeric matrices immobilized with crotoxin purified from crude venom of rattle snake. A matrix was processed by gamma irradiation by the grafting of a hydrogel onto a polymeric film which resulted in a copolymer for the chemical immobilization of crotoxin. The second matrix was attained by the entrapment of crotoxin in microspheres of epsilon-polycaprolactone. After the purification, the crotoxin proceeding from the snake Crotalus durissus terrificus was evaluated biochemical and biologically. The lethal dose (LD50%) of the toxin was 0.09/kg animal. The test of cytotoxicity not revealed any significant difference between the tumoral cells and the respective normal control cells in culture. Grafting copolymers were used as scaffold for the chemical immobilization of the purified crotoxin. For this purpose the low density polyethylene (LDPE) and the hydrophilic monomer 2-hydroxy-ethyl-methacrylate (HEMA) were copolymerized in a {sup 60}Co source. The copolymers (LDPE-g-PHEMA) showed grafting levels in the range of 2 and 50 %. In the infrared spectroscopy analysis (FTIR-ATR) it was observed in the copolymer, carbonyl groups (C=O) and hydroxyl groups -OH due to the grafting of PHEMA. The MEV micrographs showed a smooth surface for the virgin LDPE and a rough surface for the LDPE-g-PHEMA, owing to the presence of grafted PHEMA. The hydrophilicity was observed by the determination of water content in the copolymer after immersion in water. By the diffusion coefficient it was noted that from 30 % grafting degree, the copolymers become less hydrophilic due to the crosslinking increase among the chains in PHEMA. The biocompatibility of the LDPE-g-PHEMA was proved by the cytotoxicity test. At the end, the immobilized copolymer, the entrapped crotoxin and the free crotoxin was tested 'in vivo'. During 20 days, C3H strain mice were observed in their weight, behavior and motor changes. The results demonstrated that the group

  17. Some exploitation properties of wood plastic composites (WPC), based on high density polyethylene and timber industry waste

    OpenAIRE

    janis kajaks

    2015-01-01

    Abstract: In this study, the influence of wood fiber content (40, 50 and 60 wt.%) and coupling agent concentration (3 and 5 wt.%) on the mechanical properties of wood-plastic composites (WPCs) was investigated. Two types of plastic (high-density-polyethylene (HDPE) and recycled high-density-polyethylene (rHDPE)) were used as polymer matrices for preparing WPC. As reinforcement, prior grinded (fiber length < 0.5 mm) coniferous wood shavings were utilized. Overall trend showed, that by addin...

  18. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour.

  19. Effect on Mechanical Properties of Hybrid Blended Coconut Coir/Paraffin Wax/LDPE

    Directory of Open Access Journals (Sweden)

    Kannan Rassiah

    2011-12-01

    Full Text Available The use of natural fibers as the fillers for plastic has been rapidly expanding, especially wood fibers. This is due to materials of wood offers many advantages as inorganic fillers (such as low price, biodegradability, renewability, recycle-ability, low density and others. In addition, this is also due to the dramatic increasing of interest of using biomass materials as the replacements for glass fiber into reinforced thermoplastic composites. In this study, wood plastic composites used are the filled thermoplastics which primarily consisted of wood fiber and thermoplastic polymer. While, the purpose of this research is to find out the optimum conditions of the wax and coconut coir produced by inducing LDPE. The experiment carried out is by mixing the wax, coconut coir and LDPE into eight new polymer compositions, in which the higher value of the tensile strength and hardness are obtained by mixing between 6 wt. % coconut coir with 4 wt. % wax, rather than to pure LDPE, that is 9.236 MPa and 3HV. Although the strength impact is decreased with value as much as 60.95 % compared to original conditions, the SEM analysis proved that the composition of 90 wt. % LDPE, 4 wt. % wax and 6 wt. % coconut coir is the best weight ratios for mechanical characteristics and bonding between reinforced material and matrix material. Here, the LDPE, wax and coconut coir mixture produces a new hybrid polymer and alters the properties of pure LDPE.

  20. EFFECT OF LDPE RAW MATERIAL ON STRENGTH, CORROSION AND SORPTIVITY OF CONCRETE

    Directory of Open Access Journals (Sweden)

    R. MANIKANDRAN

    2015-04-01

    Full Text Available Many researchers focused on effect of Low Density Poly Ethylene (LDPE on bituminous pavements or concrete to modify the strength and ductility in view of reusing the abundant quantity of non-degradable LDPE material available. It also reduces the use of bituminous materials and disposal problems of such waste material. Developing countries are moving towards construction concrete pavement or converting bituminous pavements into concrete pavements. Hence in this paper an attempt has been made to study the feasibility of using LDPE raw material itself as a modifier in cement concrete with a characteristic compressive strength of 20 MPa. Present study focuses on effect of addition of LDPE raw material (3, 4 and 5% under different temperatures (70°C, 80°C and 90°C and duration of thermal curing (4, 8 and 16 hours on compressive strength, corrosion resistance and sorptivity. It was inferred from the results that, addition of LDPE raw material considerably increases the compressive strength, resistance against corrosion and permeability. Results also revealed that concrete with 3% LDPE modifier for 80°C with 4 hours of thermal curing was found to be optimum.

  1. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  2. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  3. Comparison between decrosslinking of crosslinked high and low density polyethylenes via ultrasonically aided extrusion

    Science.gov (United States)

    Isayev, Avraam I.; Huang, Keyuan

    2016-03-01

    Among various crosslinked plastics, recycling of crosslinked polyethylenes is of a great importance due to the presence of a three-dimensional network. To solve this problem, novel environmentally friendly technologies for decrosslinking of the crosslinked polymers are developed based on ultrasonically assisted single (SSE) and twin screw (TSE) extruders. In particular, decrosslinking of peroxide crosslinked high-density polyethylene (XHDPE) and low-density polyethylene (XLDPE) by means of an ultrasonic SSE and TSE is investigated. Barrel pressure, die pressure and ultrasonic power consumption during extrusion are recorded. Swelling, rheological, thermal analysis and tensile tests are used to elucidate the structure-property relationships of decrosslinked XHDPE and XLDPE. The frequency dependencies of the storage and loss moduli, complex viscosity and tangent loss of XHDPE, XLDPE and their decrosslinked networks are described by the post critical gel model with its parameters correlated with gel fraction and crosslink density. The dynamic, thermal and tensile properties of the decrosslinked XHDPE and XLDPE are greatly affected by the type of preferential bond breakage. It was found that the decrosslinking of XLDPE is more difficult than that of XHDPE. An analysis based on the Horikx function reveals a highly preferential breakage of crosslinks during decrosslinking of XHDPE. In contrast to decrosslinking of XHDPE, the presence of long-chain branching in XLDPE is found to lead to the breakage of its main chains during decrosslinking. An improvement and a reduction in mechanical properties of decrosslinked XHDPE and XLDPE are, respectively, observed in comparison with those of virgin XHDPE and XLDPE.

  4. Dielectric relaxation study of gamma irradiated oriented low-density polyethylene

    CERN Document Server

    Suljovrujic, E; Kostoski, D

    2003-01-01

    The influence of drawing, gamma irradiation and accelerated aging on the dielectric relaxation of low-density polyethylene has been studied using dielectric loss tangent measurements in the temperature range from 25 to 325 K and in the frequency range from 10 sup 3 to 10 sup 6 Hz. The intensity, position and activation energy of the gamma- and beta-dielectric relaxations were found to be strongly dependent upon the changes in the microstructure of the amorphous phase induced by uniaxial orientation, oxidation and crosslinking.

  5. Radiation synthesis of acrylamide/N,N-(dimethylamino) ethyl methacrylate grafted onto low density polyethylene films

    Science.gov (United States)

    Abdel Ghaffar, A. M.

    2011-02-01

    Radiation-induced graft copolymerization of acrylamide/N,N-(dimethylamino) ethyl methacrylate (AAm/DMAEMA) onto low density polyethylene films was carried out. The effect of grafting conditions such as solvent type and comonomer composition were studied. Characterization of the prepared films was investigated by Fourier transform infrared. Some selected properties such as thermal stability and swelling behavior were determined. It was found that grafting efficiency, swelling behavior and thermal stability increased with increasing DMAEMA content. Scanning electron microscopy was used for predicting the change in surface morphology via the grafted films. The improvement in properties of the prepared films make it possible to use them in some practical applications.

  6. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    Science.gov (United States)

    Kazyak, David C.; Zydlewski, Joseph

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  7. EFFECT OF PAN-MILLING STRESS ON CRYSTAL STRUCTURES OF HIGH DENSITY POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Hua Huang

    2000-01-01

    A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.

  8. Interfacial stick–slip transition in hydroxyapatite filled high density polyethylene composite

    Indian Academy of Sciences (India)

    Roy Joseph; M T Martyn; K E Tanner; P D Coates

    2006-02-01

    Effect of filler addition and temperature on the stick–slip transition in high density polyethylene melt was studied. Results showed that shear stresses corresponding to stick–slip transition increases with the addition of filler. Increase in temperature also increases the shear stresses for stick–slip transition. The features of the flow curves of composites and that of unfilled system remain identical. Filler addition lowers the shear rate at which the transition occurs. The composite extrudate did not show characteristic extrudate distortions associated with the unfilled polymer.

  9. Thermal Analyses of Blends of Hyperbranched Linear Low-density Polyethylene (LLDPE with High-density Polyethylene and LLDPE Prepared by Dissolving Method

    Directory of Open Access Journals (Sweden)

    Triinu POLTIMÄE

    2011-09-01

    Full Text Available Blends of high-density polyethylene (HDPE, moderate and hyper-branched LLDPEs (LLDPE and HbPE, respectively have attained widespread commercial applications, though the understanding of the mechanical and melt-flow properties of such blends has been handicapped by the absence of a consensus concerning the degrees of mixing of the components. Moreover, usually the blends are obtained by melt blending, which may not ensure the initial homogeneity of the components. In our work the mixtures were prepared by dissolving the conventional LLDPE having branching content 7.2 wt% with HbPE with comonomer content 17.8 wt% in xylene at 130 °C and stirring for 2 hours. The same procedure was applied for the blending of HDPE with HbPE. After dissolving the mixtures were cooled in liquid nitrogen and after that freeze dried in vacuum line. The ratio of components in the blends was varied. Differential scanning calorimetry has been used to investigate the miscibility and thermal behavior of the blends. For this purpose isothermal and non-isothermal treatment of prepared blends were conducted. By preliminary study the double melting peaks in non-isothermal endotherms have been observed in all the studied blends. The presence of two peaks in DSC scan can be attributed to the formation of separated crystals from both the high density/linear low density and highly branched components. However, certain limited degree of co-crystallization is detected in all the LLDPE/HbPE blends and HDPE/HbPE blend rich in HbPE component.http://dx.doi.org/10.5755/j01.ms.17.3.589

  10. Enhanced flashover strength in polyethylene nanodielectrics by secondary electron emission modification

    Science.gov (United States)

    Wang, Weiwang; Li, Shengtao; Min, Daomin

    2016-04-01

    This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.

  11. Effects of Additives, Photodegradation, and Water-tree Degradation on the Photoluminescence in Polyethylene and Polypropylene

    Science.gov (United States)

    Ito, Toshihide; Fuse, Norikazu; Ohki, Yoshimichi

    Photoluminescence (PL) spectra induced by irradiation of ultraviolet photons are compared among low-density polyethylene (LDPE), crosslinked polyethylene (XLPE), and polypropylene (PP). Three PL bands appear around 4.2, 3.6, and 3.1 eV in LDPE and XLPE, while similar three PL bands are observed at similar energies in PP. The PL spectra and their decay profiles are independent of the presence of additives and are also independent of whether the samples were crosslinked or not. These results indicate that neither the additives nor the crosslinking has any significant effects on the respective three PLs in PE and PP. When the sample was pre-irradiated by the ultraviolet photons under different atmospheres (air, O2, and vacuum), all the PL intensities decrease with the progress of the pre-irradiation regardless of whether the sample is PE or PP. Therefore, all the PLs are considered to result from impurities. In all the pre-irradiated samples, a new PL band appears at 2.9 eV, of which intensity is stronger when the oxygen partial pressure during the pre-irradiation was lower. This PL is considered to be due to photo-induced conjugated double bonds. It has also been confirmed that water-tree degradation in LDPE or in XLPE does not contribute to PL.

  12. Enhanced flashover strength in polyethylene nanodielectrics by secondary electron emission modification

    Directory of Open Access Journals (Sweden)

    Weiwang Wang

    2016-04-01

    Full Text Available This work studies the correlation between secondary electron emission (SEE characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.

  13. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  14. EFFECT OF DISPERSION OF MICA IN MATRIX ON YOUNG'S MODULUS OF MICA FILLED POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    XU Xi; GONG Xiaoyi

    1991-01-01

    The correlation between Young's modulus of mica-filled high density polyethylene (HDPE), low density polyethylene(LDPE) and the state of dispersion of plasma-treated mica in the polymer matrices was studied. The modulus and the number average diameter of mica aggregates in matrix were determined with tensile testing and image analysis respectively. The interface structure of the filler/matrix and the bulk structure of matrix were examined through the dielectric spectrometry,differential scanning calorimetry (DSC) and dynamic viscoelastic spectrometry. The results show that the Young's modulus of the filled polyethylene depends to a great extent upon the state of dispersion of filler in matrix, but it is independent of the interface structure and bulk structure. The better the dispersion, the higher the Young's modulus.

  15. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    Science.gov (United States)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  16. High-Tc superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Science.gov (United States)

    Bhadrakumari, S.; Predeep, P.

    2006-08-01

    A series of composite samples of YBa2Cu3O7-x and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  17. Dependence of the structural parameters and properties of low density polyethylene on the synthesis conditions

    Directory of Open Access Journals (Sweden)

    MILOVAN R. JANKOVIC

    1999-10-01

    Full Text Available In a previous publicaitons from the authors' laboratotry a method was developed to predict the structure and properties of low density polyethylene (PE-LD that could be obtained over a very wide range of polymerization conditions. The method was proved using experimental data from the literature. However, some shortcomings of the method were noticed. The aim of this work was to overcome the shortcomings and to enable the better manipulation of experimental data using a computer. A computer program has been developed to establish the mathematical relationships between ethylene entropy and the structural parameters and density of Pe-LD. All available experimental data (more than 300 experimental points have elaborated and confirmed our mathematical models and our theoretical predictions.

  18. Evaluation of ultraviolet radiation to control microorganisms adhering to low-density polyethylene films Avaliação da radiação ultravioleta no controle de microrganismos aderidos em filmes de polietileno de baixa densidade

    Directory of Open Access Journals (Sweden)

    Cleuber Antonio de Sá Silva

    2003-06-01

    Full Text Available Efficiency of ultraviolet (UV radiation in reducing the cell number of Staphylococcus aureus ATCC 25923 and Escherichia coli K-12 adhered to low-density polyethylene (LDPE films was evaluated. The microorganisms were let to adhere to the surface of LPDE bags for 12h at 18ºC, and then submitted to UV radiation at an intensity 196 µW.cm-2, 254nm, for 2 seconds. Staphylococcus aureus was less resistant to UV radiation than E. coli, and the efficiency increased with the increase of the concentration of microbial suspension. After 1500 hours of use the UV radiation intensity of the lamp was reduced from 288 to 78 µW.cm-2, and the higher decrease occurred in the first 100 hours of use. Also, the efficiency of the UV radiation decreased after 1500 hours of use. The number of mesophilic aerobes on the surface of LDPE films was reduced by 90% after irradiation with 137 µW.cm-2 for 2 seconds. Atomic force microscopy revealed cracks and crevices and protuberances on the LDPE surface, a topography that can protect the cells from UV radiation, reducing the efficiency of the process. The results showed that UV radiation can be a useful technique for reducing the microbiota adhered to LDPE films.A eficiência da radiação ultravioleta (UV na redução do número células de Staphylococcus aureus ATCC 25923 e Escherichia coli k12 aderidas a filmes de polietileno de baixa densidade (PEBD foi avaliada. Os microrganismos em suspensões foram aderidos à superfície de sacos de PEBD a 18ºC durante 12 horas, e, em seguida, submetidos à exposição de raios UV na intensidade de 196 µW.cm-2 a 254 nm, durante 2 segundos. Staphylococcus aureus foi menos resistente do que E. coli à ação da radiação UV. Após 1500 horas de uso, a intensidade da radiação UV reduziu-se de 288 para 78 µW.cm-2, com declínio acentuado nas 100 horas iniciais. A eficiência da radiação UV na inativação dos microrganismos decresceu após 1500h de uso da lâmpada germicida. O

  19. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan); Jan, M. Rasul [University of Malakand, Chakdara, N.W.F.P. (Pakistan); Mabood, Fazal [Department of Chemistry, University of Malakand, Chakdara, N.W.F.P. (Pakistan); Jabeen, Farah [Department of Chemistry, Sarhad University, N.W.F.P. (Pakistan)

    2010-12-15

    Recycling of waste polymers has become a necessity because huge piles of those polymers represent a threat to the environment. Used polymers are also a source of energy and valuable chemicals. Used low density polyethylenes (LDPE) were catalytically pyrolysed in a home assembled batch reactor under atmospheric pressure. For maximum conversion into chemicals which could be used for feedstock recovery optimum conditions like temperature, catalyst weight and reaction time were optimized. A wide range of acidic and basic catalysts like silica, calcium carbide, alumina, magnesium oxide, zinc oxide and homogeneous mixture of silica and alumina were tried for this purpose. Though CaC{sub 2} was better on the basis of reaction time, however the efficiency of conversion into liquid for SiO{sub 2} was found to be maximum at optimum conditions. These two catalysts could be picked up as suitable catalysts for catalytic pyrolysis of polyethylene. The results of the column separation using different solvents indicate that the oxide containing catalyst could be best suited for selective conversion into polar and aromatic products while CaC{sub 2} catalyst could be adopted for selective conversion into aliphatic products. The liquid product obtained from catalytic pyrolysis was also characterized by physical and chemical tests. Among the physical tests density, specific gravity, API gravity, viscosity, kinematic viscosity, aniline point, flash point, Watson characterization constant, freezing point, diesel index, refractive index, gross calorific value, Net calorific value and ASTM Distillation were determined according to IP and ASTM standard methods for fuel values. From the physical tests it was observed that the results for the liquid fractions are comparable with the standard results of physical tests for gasoline, kerosene and diesel fuel oil. From the Bromine water and KMnO{sub 4} tests it was observed that liquid obtained is a mixture of olefin and aromatic hydrocarbons

  20. 基于小白鼠实验的新型膨胀阻燃低密度聚乙烯复合材料烟气毒性研究%Investigation on smoke toxicity of the novel intumescent flame retardant LDPE composites based on the mice experiment

    Institute of Scientific and Technical Information of China (English)

    聂士斌; 周灿; 张驰; 彭超; 彭伟; 胡源

    2015-01-01

    利用小白鼠试验来研究新型阻燃低密度聚乙烯(LDPE )复合材料的烟气毒性,探寻材料烟气毒性最大不至死浓度,根据相关标准判断材料毒性所属级别,并比较研究不同燃烧状况下阻燃LDPE复合材料产烟毒性。从烟气毒性实验可知,有焰燃烧比无焰燃烧具有较小的烟气毒性。同时利用火灾性能指数和火灾发展指数对阻燃LDPE复合材料的火灾安全性进行评价。研究结果有助于优化设计环境友好、综合性能优良的阻燃低密度聚乙烯复合材料。%T he smoke toxicity of the novel flame retardant low‐density polyethylene (LDPE ) composites with good flame retardant properties and excellent water resistance was studied by mice experiments ,and the upper limit of the no death smoke concentration of the smoke was assessed . Furthermore , different heating temperatures were selected to research the smoke toxicity for the flame and flameless combustion .The results show that the smoke toxicity of the flame retardant LDPE composites with flame combustion is much smaller than that with the flameless combustion .Meanwhile ,fire risk assessment of flame retardant LDPE composites is achieved by fire performance index and fire development index . The work provides some experimental data for preparing environment‐friendly flame retardant LDPE composites with excellent properties .

  1. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    Science.gov (United States)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  2. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    Science.gov (United States)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  3. Microstructure and Mechanical Properties of the Butt Joint in High Density Polyethylene Pipe

    Directory of Open Access Journals (Sweden)

    Pashupati Pokharel

    2016-01-01

    Full Text Available The microstructure and mechanical properties of the butt joint in high density polyethylene (HDPE pipes were evaluated by preparing the joints with increasing the cooling time from 10 s to 70 s before pressure created for fusion of the pipes. Here, cold fusion flaws in HDPE butt joint were created with increasing the cooling time around 70 s caused by the close molecular contact followed by insufficient interdiffusion of chain segments back and forth across the wetted interface. The tensile failure mechanism of the welded pipes at different fusion time was projected based on the tensile test of dog-bone shaped, fully notched bar type as well as round U-notched specimens. The mechanical properties of the joints at different fusion time were correlated with the corresponding fracture surface morphology. The weld seam as well as tensile fracture surfaces were etched using strong oxidizing agents. The crystallinity of surface etched weld zone by potassium permanganate based etchant was found higher than unetched sample due to the higher susceptibility of amorphous phase of polyethylene with oxidizing agent. The U-notched tensile test of butt welded HDPE pipe and surface etching of the weldments provided clear delineation about the joint quality.

  4. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  5. On Crystallization in Polypropylene-Polyethylene Blends

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Blends of polypropylene(PP) and low-density polyethylene (LDPE) have beencrystallized to form open structures(“cluster spherulites”) where the droplets of the minorityPP are bridged by PP lamellae which have grown in the LDPE-rich matrix. These are studiedby permanganic etching followed by electron and optical microscopies. Two similar PP typesare compared, one synthesized with Ziegler-Natta catalyst and one with metallocenecatalyst. The metallocene-catalysed material crystallized much more slowly due to thepresence of regio defects in the chains, even though the overall concentration of tacticitydefects in the Ziegler-Natta material is much higher. A mechanism involving reversal ofhelical direction at the regio defect interfering with the regular chain packing in the crystal issuggested. Growth of “cluster spherulites” is faster in regions where low molecular weightmaterial is concentrated. It is slower where droplets are larger, and this is attributed tocompetition between PP lamellar growth in the matrix and diffusion of PP to alreadycrystallized droplets.

  6. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    Directory of Open Access Journals (Sweden)

    Samuel O. Akapo

    2009-01-01

    Full Text Available Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts.

  7. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo, E-mail: jrcardoso@ipen.br, E-mail: lgabriell@gmail.com, E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  8. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE

    Directory of Open Access Journals (Sweden)

    S. S. Cota

    2007-06-01

    Full Text Available This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates.

  9. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Cota, S.S.; Vasconcelos, V.; Senne Junior, M.; Carvalho, L.L.; Rezende, D.B.; Correa, R.F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: sdsc@cdtn.br

    2007-04-15

    This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE) samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates. (author)

  10. Improved SEC-FTIR method for the characterization of multimodal high-density polyethylenes.

    Science.gov (United States)

    Piel, Christian; Albrecht, Andreas; Neubauer, Corinna; Klampfl, Christian W; Reussner, Jens

    2011-06-01

    A size-exclusion chromatography-Fourier transform infrared spectroscopy (SEC-FTIR) method for the analysis of high-density polyethylene copolymers was developed, providing superior resolution for the determination of short-chain branching as a function of time and improved repeatability by hardware adaptation and processing optimization. SEC-FTIR for characterization of polyolefins is a compromising technique. Best resolution in terms of molecular weight and molecular weight distribution requires a very low sample solution concentration in size-exclusion chromatography while best results from online infrared (IR) spectroscopy require as high concentrations as possible. The signal-to-noise ratio at the IR detector could be increased significantly after application of a bandpass filter instead of a steel mesh attenuator and furthermore influences of system instabilities could be decreased by changes in data processing. Reliable short-chain branching information in the high molecular weight section in respect to accuracy and repeatability with better chromatographic resolution could be achieved.

  11. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    Science.gov (United States)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  12. Diffusion Characteristics of Toluene into Natural Rubber/Linear Low Density Polyethylene Blends

    Directory of Open Access Journals (Sweden)

    Henry C. Obasi

    2009-01-01

    Full Text Available The sorption and diffusion of toluene through blends of natural rubber (NR and linear low density polyethylene (LLDPE of varying compositions were studied at 35, 55, and 65°C by conventional weight-gain experiments. The effects of blend ratio on the diffusion, sorption, and permeation coefficients were determined. The sorption data were used to estimate the activation energies of diffusion and permeation, parameters which were found to show a decrease when the amount of NR or LLDPE was increased. The transport of toluene through most of the blends was anomalous, althouh at 35°C, the transport of toluene through the 60/40 blend was Fickian and at 35°C, pseudo-Fickian. The enthalpy of sorption of toluene obtained is positive and suggests a Henry's type sorption.

  13. Kenaf Powder Filled Recycled High Density Polyethylene/Natural Rubber Biocomposites: The Effect of Filler Content

    Directory of Open Access Journals (Sweden)

    Xuan Viet Cao

    2012-09-01

    Full Text Available The performance of kenaf powder (KP as filler for recycled high density polyethylene (rHDPE/natural rubber (NR thermoplastic elastomer (TPE composites was investigated. The composites with different filler loading were prepared in a Haake internal mixer. Increasing KP loading in rHDPE/NR/KP biocomposites reduced the tensile strength, elongation at break but increased the stabilization torque and the tensile modulus. SEM study of fracture surface indicated that fibrillation of rHDPE was reduced and detachment of kenaf powder from polymer matrix was present particularly at high filler loading. These observations were responsible for the deterioration of tensile strength and elongation at break of rHDPE/NR/KP biocomposites. Water absorption study also showed that the water absorption of these biocomposites increased with increasing KP content.

  14. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  15. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  16. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites.

    Science.gov (United States)

    Liu, Tian; Wood, Weston; Zhong, Wei-Hong

    2011-12-01

    We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  17. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Liu Tian

    2011-01-01

    Full Text Available Abstract We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated-reinforced high-density polyethylene (HDPE composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  18. Antioxidant BHT Modelling Migration from Food Packaging of High Density Polyethylene Plastics into the Food Simulant

    Directory of Open Access Journals (Sweden)

    Chi Haitao

    2015-09-01

    Full Text Available Made of High Density Polyethylene (HDPE films containing antioxidant 2, 6-di-tert-butyl-p-cresol (BHT, film samples were manufactured by plastic extrusion equipment, 95% ethanol aqueous solution simulating liquid was used for stimulant, using High Performance Liquid Chromatography (HPLC for the long-term migration test of 4 kinds of HDPE films containing different concentrations of antioxidant BHT. The migration data were processed by using Weibull model and then the migration model was specific under experimental conditions. Migration model was setup using the migrating data by Weibull model to fitting real experimental data. Using empirical formula reported FDA model formula and the diffusion coefficient constant D, calculated by the FDA model. Two kinds of model numerical after compared according to FDA model transfer numerical literature that is far lower than the actual test migration value. According to the actual test migration value, Weibull model numerical and experimental tests that the migration software fitting values are consistent.

  19. EFFECT OF PAN-MILLING ON RHEOLOGICAL PROPERTIES OF HIGH DENSITY POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Hua Huang

    2000-01-01

    The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 singlescrew extruder and Brabender rheometer were used to evaluate the rheological properties ofHDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index.Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.

  20. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  1. Application of schlieren interferometry to temperature measurements during laser welding of high-density polyethylene films.

    Science.gov (United States)

    Coelho, João M P; Abreu, Manuel A; Rodrigues, F Carvalho

    2003-11-01

    Schlieren interferometry is found to be an alternative tool for temperature measurement during thermoplastic laser welding with regard to methods based on thermocouples or optical pyrometers. In fact, these techniques are not easily applied when materials to be processed have reduced thickness, negligible heat conduction, and low emissivity, as is the case of welding high-density polyethylene films with 10.6-microm CO2 laser radiation, even if the method reaches its applicability limit after approximately 1 s of the interaction process. The schlieren method provides the means and the results to probe the thermal variations of the laser-thermoplastic interaction on both the surface and the interface between the sample material and the air.

  2. PHASE SEPARATION IN BIMODAL MOLECULAR WEIGHT HIGH DENSITY POLYETHYLENE WITH DIFFERING BRANCH CONTENTS BY MOLECULAR DYNAMICS AND MESODYN SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Zhi-jie Zhang; Zhong-yuan Lu; Ze-sheng Li

    2009-01-01

    The phase behavior of bimodal molecular weight high density polyethylene (BHDPE) in solid state was investigated. Hildebrand solubility parameters (δ) were calculated for the models of blends of higher molecular weight branch polyethylene (HBPE) with different branch contents and lower molecular weight linear polyethylene (LLPE), by using molecular dynamics (MD) simulations. These δ values were then used to calculate the corresponding Flory-Huggins interaction parameter (χ) between HBPE and LLPE models. In order to better understand the compatibility between LLPE and various HBPE, Mesodyn simulations were used to show the density profiles of the blends of LLPE with various HBPE at different compositions. The results indicated that the phase behavior of BHDPE was influenced by both the global branch content of the system and the local branch content, I.e., the branch content of HBPE.

  3. Bearing Capacity of High Density Polyethylene (HDPE Reinforced Sand Using Plate Load Test

    Directory of Open Access Journals (Sweden)

    Er. Aly K

    2015-06-01

    Full Text Available The work presented here is a study to examine the improvement in bearing capacity of coastal sand of Trivandrum, Kerala, India using high density polyethylene (HDPE /woven fabric as reinforcement in discrete layers. The bearing capacity was evaluated using plate load test. The effect of reinforcement configurations like sheet reinforcement (sanded with adhesive, with adhesive and sheet alone and strip reinforcement (single and grid pattern are investigated. The test parameters chosen for the present study are, depth of topmost layer of reinforcement layer below footing, compacted density and number of layers of reinforcement etc. From the tests, it has been observed that sheet reinforcement is more effective than sheet sanded with adhesive and strip reinforcements. It is found that the synthetic adhesive gives no binding action at the interface of the reinforcement and soil. But it is to be noted that the sheet with adhesive dried has a marked influence on the bearing capacity especially at lower densities. The strip reinforcements in single pattern is considered to be a favorable choice for minimum reinforcement. The strip reinforcement in single or grid pattern gives sufficient improvement in strength.

  4. Influence of the irradiation conditions on the effect of radiation on polyethylene

    Directory of Open Access Journals (Sweden)

    BOJANA SECEROV

    2004-12-01

    Full Text Available Two types of polyethylene, low density (LDPE and high density (HDPE, as well as low density polyethylene containing an antioxidant were subjected to g-irradiation in the presence of air and in water. The irradiated polymers were studied using IR spectrophotometric analysis. The radiation induced oxidative degradation was followed through the formation of oxygen containing groups by the development of bands in the 1850–1650 cm-1 region and double bonds formation by the development of bands in the 1050–850 cm-1 region. The crosslinking efficiency was determined by measuring the gel content by extraction with xylene. The radiation induced changes in the molecular structure, evolution of oxygen containing species and formation, of vinyl double bonds as well as of the crosslinking efficiency are discussed in terms of the properties of the polymers in an electric field of low strength.

  5. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  6. THE EFFECT OF DIAMETER ON THE MECHANICAL-PROPERTIES OF AMORPHOUS-CARBON FIBERS FROM LINEAR LOW-DENSITY POLYETHYLENE

    NARCIS (Netherlands)

    PENNING, JP; LAGCHER, R; PENNINGS, AJ

    1991-01-01

    The mechanical properties of amorphous carbon fibers, derived from linear low density polyethylene strongly depend on the fibre diameter, which may be attributed to the presence of a skin/core structure in these fibres. High strength carbon fibres could thus be prepared by using thin precursor filam

  7. Investigation of antioxidant and electron beam radiation effects on the thermal oxidation stability of low-density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffari, Mehdi [Yazd Radiation Processing Center, P.O. Box 89175-389, Yazd (Iran, Islamic Republic of)], E-mail: md_ghaffari@yahoo.com; Ahmadian, Venus [Yazd Radiation Processing Center, P.O. Box 89175-389, Yazd (Iran, Islamic Republic of)

    2007-11-15

    Effect of various antioxidants on the thermal oxidation stability of LDPE and X-LDPE has been investigated. To achieve this purpose, miscellaneous commercial grade antioxidants such as Irganox 1010, Irganox1076, Irgafos168, Irganox B225, and Chimassorb 944 were selected. Then, formulations based on different content of antioxidant were prepared. The samples were crosslinked by exposure to electron beam irradiation. To assess the thermal oxidation stability of samples, oxidation induction time (OIT) test was accomplished on both the irradiated and unirradiated specimens. Ageing tests were carried out in order to evaluate the thermal oxidation stability of irradiated X-LDPE. The results indicate that Irganox 1010 is the most effective antioxidant amongst the selected ones, concerning thermal oxidation stability of LDPE, before and after aging test.

  8. Investigation of antioxidant and electron beam radiation effects on the thermal oxidation stability of low-density polyethylene

    Science.gov (United States)

    Ghaffari, Mehdi; Ahmadian, Venus

    2007-11-01

    Effect of various antioxidants on the thermal oxidation stability of LDPE and X-LDPE has been investigated. To achieve this purpose, miscellaneous commercial grade antioxidants such as Irganox 1010, Irganox1076, Irgafos168, Irganox B225, and Chimassorb 944 were selected. Then, formulations based on different content of antioxidant were prepared. The samples were crosslinked by exposure to electron beam irradiation. To assess the thermal oxidation stability of samples, oxidation induction time (OIT) test was accomplished on both the irradiated and unirradiated specimens. Ageing tests were carried out in order to evaluate the thermal oxidation stability of irradiated X-LDPE. The results indicate that Irganox 1010 is the most effective antioxidant amongst the selected ones, concerning thermal oxidation stability of LDPE, before and after aging test.

  9. Blendas compatíveis de amido termoplástico e polietileno de baixa densidade compatibilizadas com ácido cítrico Compatible blends of thermoplastic starch and low density polyethylene compatibilized with citric acid

    Directory of Open Access Journals (Sweden)

    Vinícius R. Miranda

    2011-01-01

    Full Text Available Blendas de polietileno de baixa densidade (PEBD e amido termoplástico (TPS modificado foram preparadas via extrusão reativa (REX e caracterizadas por microscopia eletrônica de varredura (MEV, espectroscopia na região do infravermelho com transformada de Fourier (FTIR, absorção de umidade em ambiente com 53% de umidade relativa e difração de raios-X. Em uma primeira etapa, foi preparado o TPS- modificado, via REX a partir de uma mistura de amido de milho, ácido cítrico e glicerol. As blendas TPS-PEBD foram preparadas pelo processamento de uma mistura do TPS modificado e PEBD, ambos em peletes, em uma extrusora de rosca simples. Foi observado um significativo efeito de compatibilização, atribuído especialmente à redução da viscosidade da fase TPS e consequente redução da tensão interfacial entre as fases de TPS e PEBD. Os espectros de FTIR apresentaram deslocamentos de bandas de absorção do amido confirmando o efeito de compatibilização pelo ácido cítrico. Observou-se também significativa alteração da morfologia das blendas, especialmente para as blendas preparadas com adição de 1,0 - 1,5 % de ácido cítrico, que apresentaram estrutura da fase dispersa mais fina e homogênea.Blends of citric acid-modified thermoplastic starch (TPS and low density polyethylene (LDPE were prepared by reactive extrusion (REX and characterized by scanning electron microscopy (SEM of the fragile fracture surfaces, Fourier-transform infrared spectroscopy (FTIR, water absorption in 53% relative humidity environment and by X-ray diffraction. The modified TPS was prepared by the reactive extrusion of a mixture of corn starch, citric acid and glycerol (30%. TPS-LDPE blends were then prepared by the processing of TPS and PEBD both in pellets in a single screw extruder. It was observed an important compatibilization effect, attributed to the reduction of TPS melt viscosity and consequently the reduction of the interfacial tension between TPS and

  10. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  11. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    Science.gov (United States)

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0(#) diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Poly(ethylene glycol)-block-cationic polylactide nanocomplexes of differing charge density for gene delivery.

    Science.gov (United States)

    Chen, Chih-Kuang; Jones, Charles H; Mistriotis, Panagiotis; Yu, Yun; Ma, Xiaoni; Ravikrishnan, Anitha; Jiang, Ming; Andreadis, Stelios T; Pfeifer, Blaine A; Cheng, Chong

    2013-12-01

    Representing a new type of biodegradable cationic block copolymer, well-defined poly(ethylene glycol)-block-cationic polylactides (PEG-b-CPLAs) with tertiary amine-based cationic groups were synthesized by thiol-ene functionalization of an allyl-functionalized diblock precursor. Subsequently the application of PEG-b-CPLAs as biodegradable vectors for the delivery of plasmid DNAs (pDNAs) was investigated. Via the formation of PEG-b-CPLA:pDNA nanocomplexes by spontaneous electrostatic interaction, pDNAs encoding luciferase or enhanced green fluorescent protein were successfully delivered to four physiologically distinct cell lines (including macrophage, fibroblast, epithelial, and stem cell). Formulated nanocomplexes demonstrated high levels of transfection with low levels of cytotoxicity and hemolysis when compared to a positive control. Biophysical characterization of charge densities of nanocomplexes at various polymer:pDNA weight ratios revealed a positive correlation between surface charge and gene delivery. Nanocomplexes with high surface charge densities were utilized in an in vitro serum gene delivery inhibition assay, and effective gene delivery was observed despite high levels of serum. Overall, these results help to elucidate the influence of charge, size, and PEGylation of nanocomplexes upon the delivery of nucleic acids in physiologically relevant conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 聚乙烯的热降解动力学研究%Thermal Degradation Kinetic of Polyethylene by TG Method

    Institute of Scientific and Technical Information of China (English)

    黄钰香; 庞承焕; 吴博; 张云

    2012-01-01

    采用三种不同的动力学分析方法,即Freeman方法、Flynn - Wall - Ozawa以及Kissinger方法对不同类型聚乙烯的热分解动力学进行了探讨.结果表明,Flynn - Wall - Ozawa法Ⅰ、Friedman法的测试结果与三者聚乙烯的结构特征较吻合,不同聚乙烯降解活化能的大小顺序为HDPE> LLDPE> LDPE.%Three analysis methods including the Freeman method,Flynn-Wall-Ozawa method and Kissinger method were used to investigate the thermal degradation kinetics of High-density polyethylene ( HDPE) and Low-density polyethylene (LDPE) and low-density polyethylene ( LLDPE ). The results obtained by the Flynn-Wall-Ozawa I method and Friedman method are close to the structural characteristics of polyethylene and it has been found that the activation energies of HDPE are higher than the value of LLDPE.

  14. Surface Grafting of Phenolic Resole onto LDPE Films

    Institute of Scientific and Technical Information of China (English)

    Jue CHENG; Yi ZHENG; Wan Tai YANG

    2006-01-01

    Low density polyethylene film surface-grafted phenolic resole was prepared by a sequential processes. Firstly, acrylic acid was grafted to the surface of low density polyethylene by photo-grafting. Secondly, the carboxylic groups in poly(acrylic acid) chains were transferred to sulfonic groups by the reaction of carboxylic groups with sulfanilic acid. Finally, a thin layer of phenolic resole was cured onto the surface of low density polyethylene. The grafting process was characterized by FTIR-ATR and gravimetric analysis. A possible model was proposed to interpret the experimental results.

  15. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    Science.gov (United States)

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fe-Sr2Bi2O5光催化降解低密度聚乙烯膜%Photocatalytic degradation of LDPE film with Fe-Sr2Bi2O5 photocatalyst under UV and visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    吴锫; 罗学刚; 李科; 张思钊

    2015-01-01

    A novel Fe-Sr2Bi2O5 photocatalyst was synthesized with the co-precipitation method and added into a low density polyethylene (LDPE) film. The solid-phase photocatalytic degradation behavior of LDPE composite film under UV and visible light irradiation at room temperature was investigated and compared with the pure LDPE film, CaCO3/PE,Sr2Bi2O5/PE and TiO2/PE composite films,and the obtained sample were characterized with contact angle, Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM), including the analyses for the mechanical properties of reserved elongation at break and reserved tensile strength. Fe-Sr2Bi2O5 had a high photocatalytic activity in degrading LDPE under UV light and visible light irradiation. After UV light irradiation for 10 d, reserved elongation at break and reserved tensile strength were lower than 5% and 40%, respectively; while contact angle was reduced by 22.52°. At the same time, carbonyl groups were detected in LDPE composite films and there were holes on the surface of LDPE around Fe-Sr2Bi2O5. Fe-Sr2Bi2O5 made photodegradation of LDPE more effective compared with Sr2Bi2O5 and TiO2 under UV or visible light degradation. In conclusion, LDPE could be degraded obviously by Fe-Sr2Bi2O5 under UV and visible light irradiation at room temperature, and Fe-Sr2Bi2O5 could be a new photocatalyst for photocatalytic degradation of polyethylene film in the future.%采用共沉淀法合成的新型光催化剂(Fe-Sr2Bi2O5)与低密度聚乙烯(LDPE)通过熔融共混制备了一种新型光催化降解复合膜(Fe-Sr2Bi2O5/PE)。通过力学性能、接触角、傅里叶变换红外光谱(FT-IR)和场发射扫描电镜(FESEM)等表征手段研究了该催化剂在室温条件下固相光催化降解 LDPE 复合膜的性能变化。结果表明:Fe-Sr2Bi2O5在紫外光和可见光条件下对LDPE均具有较好的光催化降解能力,其中,紫外灯照射10 d后, Fe-Sr2Bi2O5

  17. On the sensitivity of dimensional stability of high density polyethylene on heating rate

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Although high density polyethylene (HDPE is one of the most widely used industrial polymers, its application compared to its potential has been limited because of its low dimensional stability particularly at high temperature. Dilatometry test is considered as a method for examining thermal dimensional stability (TDS of the material. In spite of the importance of simulation of TDS of HDPE during dilatometry test it has not been paid attention by other investigators. Thus the main goal of this research is concentrated on simulation of TDS of HDPE. Also it has been tried to validate the simulation results and practical experiments. For this purpose the standard dilatometry test was done on the HDPE speci­mens. Secant coefficient of linear thermal expansion was computed from the test. Then by considering boundary conditions and material properties, dilatometry test has been simulated at different heating rates and the thermal strain versus temper­ature was calculated. The results showed that the simulation results and practical experiments were very close together.

  18. HIGH SPEED INJECTION MOLDING OF HIGH DENSITY POLYETHYLENE - EFFECTS OF INJECTION SPEED ON STRUCTURE AND PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Kun Jiang; Feng Chen; Qiang Fu; Fei-long Yu; Run Su; Jing-hui Yang; Tian-nan Zhou; Jian Gao; Hua Deng; Ke Wang; Qin Zhang

    2011-01-01

    Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with differentinjection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young's moduluswas observed with increasing injection speed. In order to investigate the mechanism behind this decrease, the orientation,molecular weight, molecular weight distribution, melt flow rate, crystallinity and crystal morphology of HDPE werecharacterized using two-dimensional wide-angle X-ray diffraction (2D-WAXD), gel permeation chromatography (GPC),capillary rheometry and differential scanning calorimetry (DSC), respectively. It is demonstrated that the orientation,molecular weight, molecular weight distribution, melt flow rate and crystallinity have no obvious change with increasinginjection speed. Nevertheless, the content of extended chain crystals or large folded chain crystals was found to decreasewith increasing injection speed. Therefore, it is concluded that the decrease in tensile properties is mainly contributed by the reduced content of extended chain crystals or large folded chain crystals. This study provides industry with valuableinformation for the application of high speed injection molding.

  19. Influence of Reprocessing in the formation of functional groups during low density polyethylene aging

    Directory of Open Access Journals (Sweden)

    Maurício M. Selonke

    2012-01-01

    Full Text Available In recent years, the interest in polymer recycling has increased. However, in every reprocessing step the material undergoes shear stress and is affected by temperature and oxygen. The aim of this paper is to investigate the influence of multiple extrusion in the generation of functional groups, namely hydroperoxide, carbonyl, and transvinylene. Low density polyethylene was reprocessed three times in a single screw extruder. In each recycling step hot pressed films were prepared. These films were submitted to a heat treatment in an oven with air circulation and renovation to proceed with aging tests at different times and temperatures. The results obtained showed that all functional groups had their concentration increased with the increase in number of reprocessing, the aging time and temperature of the heat treatment. The factorial design was applied to verify the influence of these parameters. All the parameters had significant effects, since their regression coefficients had the same order of magnitude, with the most influential parameter being the aging temperature, followed by the aging time and number of extrusions. Most of the interactions were influential, indicating that the formation of functional groups depends upon their interaction, and not only on their isolated effects.

  20. Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by γ-diethoxyphosphorous ester propyldiethoxymethylsilane,boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 ℃.Phosphorus,silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy.The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis.The results show that linear low density polyethylene (LLDPE) composite,filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers,passes the V-O rating of UL-94 test and shows the limited oxygen index of 34%,and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously;The mechanical properties of MAH can be improved by surface-modification.The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.

  1. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    2016-01-01

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  2. Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available Linear low-density polyethylene (LLDPE based composites were prepared by melt compounding with 1, 2, 3 and 4 vol% of various kinds of amorphous silicon dioxide (SiO2 micro- and nanoparticles. Dynamic rheological tests in parallel plate configuration were conducted in order to detect the role of the filler morphology on the rheological behaviour of the resulting micro- and nanocomposites. A strong dependence of the rheological parameters from the filler surface area was highlighted, with a remarkable enhancement of the storage shear modulus (G′ and of the viscosity (η in fumed silica nanocomposites and in precipitated silica microcomposites, while glass microbeads only marginally affected the rheological properties of the LLDPE matrix. This result was explained considering the formation of a network structure arising from particle-particle interactions due to hydrogen bonding between silanol groups. A detailed analysis of the solid like behaviour for the filled samples at low frequencies was conducted by fitting viscosity data with a new model, based on a modification of the original De Kee-Turcotte expression performed in order to reach a better modelling of the high-frequency region.

  3. Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2015-12-01

    Full Text Available This study proposes melt-blending polypropylene (PP and high density polyethylene (HDPE that have a similar melt flow index (MFI to form PP/HDPE polyblends. The influence of the content of HDPE on the properties and compatibility of polyblends is examined by using a tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, polarized light microscopy (PLM, and X-ray diffraction (XRD. The SEM results show that PP and HDPE are incompatible polymers with PP being a continuous phase and HDPE being a dispersed phase. The FTIR results show that the combination of HDPE does not influence the chemical structure of PP, indicating that the polyblends are made of a physical blending. The DSC and XRD results show that PP and HDPE are not compatible, and the combination of HDPE is not correlated with the crystalline structure and stability of PP. The PLM results show that the combination of HDPE causes stacking and incompatibility between HDPE and PP spherulites, and PP thus has incomplete spherulite morphology and a smaller spherulite size. However, according to mechanical property test results, the combination of HDPE improves the impact strength of PP.

  4. EFFECTS OF MATRIX MOLECULAR WEIGHT ON STRUCTURE AND REINFORCEMENT OF HIGH DENSITY POLYETHYLENE/MICA COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Yu-fang Xiang; Ke Wang; Qin Zhang; Rong-ni Du; Qiang Fu

    2011-01-01

    Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and Iow) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM, 2d-WAXS, DSC, DMA and tensile testing. Various structural factors including orientation, filler dispersion, interfacial interaction between HDPE and mica, etc., which can impact the macroscopic mechanics, were compared in detail among the three HDPE/mica composites. The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence. Obvious transcrystalline structure was found in the composite with Iow molecular weight HDPE, whereas it was hard to be detected in the composites with increased HDPE molecular weight. The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interracial adhesion between matrix and mica filler, which arises from the transerystallization mechanism.

  5. Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite

    Science.gov (United States)

    Shafiq, Muhammad; Yasin, Tariq

    2012-01-01

    Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature ( Tm) and crystallization temperature ( Tc) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation.

  6. [Attenuated Total Reflection Infrared Spectroscopy for Degradation Profile of High Density Polyethylene after Weathering Aging].

    Science.gov (United States)

    Guo, Jun-jun; Yan, Hua; Bao, He-bin; Wang, Xue-mei; Hu, Zhi-de; Yang, Jian-jian

    2015-06-01

    High density polyethylene (HDPE) was widely used as rotational packaging case in the material reserve field. The chemical changes of HDPE, exposed to particular climatic conditions of tropic marine atmosphere for one year-long in Wanning Hainan, were elucidated by the attenuated total reflection infrared spectroscopy (ATR-FTIR). The structural changes were studied qualitatively, mainly from the polymeric chain breaking, branching and oxidation to distinguish the degradation profile. The variations of crystallinity & carbonyl index were also studied quantitatively according to the characteristic peaks intensity & area ratio. Finally, the relationships between structural changes and mechanical properties were investigated. The results showed that the polymeric chain breaking & branching play a leading role before 3 months in the aging progress. Then oxidation phenomena gradually takes place during 3-6 months. The chain branching & oxidation were predominant factors after 6 months. Nine months later, the oxidation was saturated gradually. Furthermore, the aging process is positively correlated to the temperature and irradiation. After 12 months aging, the carbonyl index increased by 112 times and crystallinity was 10% higher than before. The tensile/bending modulus deceased faster than tensile/bending strength of HDPE. The linear degree of tensile modulus and carbonyl index was 0.97. The degree of linearity of tensile strength and crystallinity calculated by feature bands (720-730 cm(-1)) was 0.96. It showed that the mechanical properties of HDPE can be speculated from the structural changes by ATR-FTIR.

  7. STUDY ON HIGH WELD STRENGTH OF IMPACT PROPYLENE COPOLYMER/HIGH DENSITY POLYETHYLENE LAMINATES

    Institute of Scientific and Technical Information of China (English)

    Chun-hui Zhang; Rui-fen Chen; Feng Chen; Yong-gang Shangguan; Qiang Zheng; Guo-hua Hu

    2011-01-01

    The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE laminates were examined, and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate. According to the special microstructure of IPC, the co-crystallization of the ethylene segments in ethylene-propylene block copolymer (EbP) component of IPC and the PE chain in HDPE was proposed to explain the highstrength welding. The DSC results indicated that there indeed existed some interaction between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. The scanning electron microscope (SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase, indicating the good miscibility between HDPE and EbP components of IPC. According to the above results, the effect of co-crystallization of the PE components of theIPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.

  8. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  9. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  10. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  11. Nonlinear conductive properties and scaling behavior of conductive particle filled high-density polyethylene composites

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qiang; SHEN Lie; LI Wenchun; SONG Yihu; YI Xiaosu

    2005-01-01

    The blends prepared by incorporation of carbon black (CB) or graphite powder (GP) inHto high-density polyethylene (HDPE) matrix have been novel and extensively applied polymeric positive temperature coefficient (PTC) composites. A phenomenological model was proposed on the basis of the GEM equation and the dilution effect of filler volume fraction due to the thermal volume expansion of the polymer matrix. Accordingly, the contribution of the thermal expansion of the matrix to the jump-like PTC transition of the composites was quantitatively estimated and a mechanical explanation was given. It was proved that the contribution of the volume expansion to PTC effect decreased for HDPE/CB composites crosslinked through electron-beam irradiation. Furthermore, the influences of the filler content, temperature and crosslinking on the self-heating behavior as well as the nonlinear conduction characteristics at electrical-thermal equilibrium state were examined. Based on the electric-field and initial resistivity dependence of the self-heating temperature and resistance dependence of the critical field, the mechanisms of the self-heating of the polymeric PTC materials were evaluated. The intrinsic relations between macroscopic electrical properties and microscopic percolation network at electrical-thermal equilibrium state were discussed according to the scaling relationship between the self-heating critical parameter and the conductivity of materials.

  12. Reorganizing Neural Network System for Two Spirals and Linear Low-Density Polyethylene Copolymer Problems

    Directory of Open Access Journals (Sweden)

    G. M. Behery

    2009-01-01

    Full Text Available This paper presents an automatic system of neural networks (NNs that has the ability to simulate and predict many of applied problems. The system architectures are automatically reorganized and the experimental process starts again, if the required performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE at 190∘C. The system shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed system has been also designed to simulate other distributions not presented in the training set (predicted and matched them effectively.

  13. Processing and Characterization of High Density Polyethylene/Ethylene Vinyl Acetate Blends with Different VA Contents

    Directory of Open Access Journals (Sweden)

    Othman Y. Alothman

    2012-01-01

    Full Text Available Different series of high density Polyethylene/Ethylene Vinyl Acetate (HDPE/EVA blends were prepared via melt blending in a corotating intermeshing twin screw extruder. The effects of VA percentage and EVA loading ratio on the thermal, rheological viscoelastic, mechanical, and fracture toughness of the blends were analyzed. The results showed that the addition of EVA to HDPE reduces the thermal, elastic, and viscoelastic properties of the blends. The microscopic examination of the fracture surface confirmed the ductile fracture of HDPE/EVA blends for all blend ratios and VA percentages. Increasing the EVA ratio and VA content caused a significant reduction in the blend crystallinity but had no significant effect on melting temperature. The complex viscosity increased with increasing the percentage of EVA due to the restriction of molecular mobility and reduction of free volume, induced by the addition of EVA. The storage modulus decreased with increasing the EVA ratio and temperature, while it increased with increasing the frequency. Young’s modulus, yield strength, and fracture strain decreased with increasing the EVA ratio. Similarly, the fracture toughness decreased proportional to the EVA percentage. Finally the results indicated that the VA content has significant effects on the mechanical, thermal, and dynamic properties of HDPE/EVA blends.

  14. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane.

    Science.gov (United States)

    Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M

    2017-05-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10(-15) m(2)/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.

  15. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  16. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2011-12-01

    Full Text Available Thermal degradation of waste plastics in an inert atmosphere has been regarded as a productive method, because this process can convert waste plastics into hydrocarbons that can be used either as fuels or as a source of chemicals. In this work, waste high-density polyethylene (HDPE plastic was chosen as the material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse waste HDPE with the objective of optimizing the liquid product yield at a temperature range of 400ºC to 550ºC. Results of pyrolysis experiments showed that, at a temperature of 450ºC and below, the major product of the pyrolysis was oily liquid which became a viscous liquid or waxy solid at temperatures above 475ºC. The yield of the liquid fraction obtained increased with the residence time for waste HDPE. The liquid fractions obtained were analyzed for composition using FTIR and GC-MS. The physical properties of the pyrolytic oil show the presence of a mixture of different fuel fractions such as gasoline, kerosene and diesel in the oil.

  17. Leak detection in medium density polyethylene (MDPE) pipe using pressure transient method

    Science.gov (United States)

    Amin, M. M.; Ghazali, M. F.; PiRemli, M. A.; Hamat, A. M. A.; Adnan, N. F.

    2015-12-01

    Water is an essential part of commodity for a daily life usage for an average person, from personal uses such as residential or commercial consumers to industries utilization. This study emphasizes on detection of leaking in medium density polyethylene (MDPE) pipe using pressure transient method. This type of pipe is used to analyze the position of the leakage in the pipeline by using Ensemble Empirical Mode Decomposition Method (EEMD) with signal masking. Water hammer would induce an impulse throughout the pipeline that caused the system turns into a surge of water wave. Thus, solenoid valve is used to create a water hammer through the pipelines. The data from the pressure sensor is collected using DASYLab software. The data analysis of the pressure signal will be decomposed into a series of wave composition using EEMD signal masking method in matrix laboratory (MATLAB) software. The series of decomposition of signals is then carefully selected which reflected intrinsic mode function (IMF). These IMFs will be displayed by using a mathematical algorithm, known as Hilbert transform (HT) spectrum. The IMF signal was analysed to capture the differences. The analyzed data is compared with the actual measurement of the leakage in term of percentage error. The error recorded is below than 1% and it is proved that this method highly reliable and accurate for leak detection.

  18. Wax co-cracking synergism of high density polyethylene to alternative fuels

    Directory of Open Access Journals (Sweden)

    Magdy Motawie

    2015-09-01

    Full Text Available Attempts have been made to understand the thermal degradation of high density polyethylene (HDPE and their combined co-cracking using different ratios of HDPE and petroleum wax under nitrogen atmosphere. We have conducted the experiments using HDPE as the raw material and petroleum wax as co-feed by at 400 and 450 °C reaction temperatures. The product distribution was noted along with reaction time of 0.5–3 h for the degradation. Thermal gravimetric analysis (TGA technique was used to measure the weight change of the feedstock as a function of temperature and time. Differential scanning calorimetry (DSC was used to determine the degradation temperature. Products were characterized using gas chromatography (GC and infrared spectroscopy (FTIR, some other standard physical methods were used to determine the main properties of the liquid products. Results show that the mixed plastic-wax samples could be converted into gases, gasoline, and middle distillate depending upon the composition of feed polymer/wax ratio. It was found that the products mostly consisted of paraffin and olefin compounds, with carbon numbers of C1–C4, C5–C9 and C10–C19 in the case of gases, gasoline and middle distillate respectively.

  19. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  20. High-density polyethylene-based composites with pressure-treated wood fibers

    Directory of Open Access Journals (Sweden)

    Lu Shang

    2012-11-01

    Full Text Available High-Density Polyethylene (HDPE-based composites with alkaline copper quaternary (ACQ- and micronized copper quaternary (MCQ-treated wood fibers were manufactured through injection molding. The mechanical properties, water absorption, and biological resistance properties of the fabricated composites with different coupling treatments were investigated. Composites with ACQ- and MCQ-treated wood had mechanical properties comparable with those made of untreated wood. The different coupling agents worked well for the treated wood materials. Similar water absorption behaviors were observed for the HDPE composites containing treated wood and those containing untreated wood. The results of the termite test showed that the composites containing untreated wood had slightly more weight loss. The decay test revealed that the composites containing treated wood had less decay fungal growth on the surfaces, compared with samples from untreated wood, indicating enhanced decay resistance for the composites from the treated material. The stable mechanical properties and improved biological performances of the composites containing treated wood demonstrated the feasibility of making wood-plastic composites with pressure-treated wood materials, and thus offered a practical way to recycle treated wood into value-added composites.

  1. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Feihong Liu

    2015-01-01

    Full Text Available Temperature and relative humidity (RH are two major external factors, which affect equilibrium moisture content (EMC of wood-plastic composites (WPCs. In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP-high density polyethylene (HDPE composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB. The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  2. Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2012-11-01

    Full Text Available Wood-plastic composites (WPC have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  3. Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate

    Science.gov (United States)

    Genna, S.; Leone, C.; Tagliaferri, V.

    2017-02-01

    Infrared (IR) light propagation in semicrystalline polymers involves mechanisms such as reflection, transmission, absorption and internal scattering. These different rates determine either the interaction mechanism, either the temperatures reached in the IR heating processes. Consequently, the knowledge of these rates is fundamental in the development of IR heating processes in order to avoid the polymer's damage and to increase the process energy efficiency. Aim of this work is to assess a simple procedure to determine the rates of absorbed, reflected, transmitted and scattered energy in the case of an unfilled High Density Polyethylene (HDPE) plate. Experimental tests were performed by exposing a HDPE plate, 3 mm in thickness, to a diode laser source, working at the fundamental wavelength of 975 nm. The transmitted power was measured by power meter, the reflected one by applying the Beer-Lambert law to sample of different thickness. IR thermal images were adopted to measure the absorbed ratio. The scattered ratio was measured by energetic balance, as difference between the incoming power and the other ratios. Finally, IR thermal images were adopted to measure the scattered ratio and to validate the procedure.

  4. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  5. Radiation damage of polyethylene exposed in the stratosphere at an altitude of 40 km

    CERN Document Server

    Kondyurin, Alexey; Bilek, Marcela

    2011-01-01

    Low Density Polyethylene (LDPE) films were exposed at an altitude of 40 km over a 3 day NASA stratospheric balloon mission from Alice Springs, Australia. The radiation damage, oxidation and nitration in the LDPE films exposed in stratosphere were measured using ESR, FTIR and XPS spectroscopy. The results were compared with those from samples stored on the ground and exposed in a laboratory plasma. The types of free radicals, unsaturated hydrocarbon groups, oxygen-containing and nitrogen-containing groups in LDPE film exposed in the stratosphere and at the Earth's surface are different. The radiation damage in films exposed in the stratosphere are observed in the entire film due to the penetration of high energy cosmic rays through their thickness, while the radiation damage in films exposed on the ground is caused by sunlight penetrating into only a thin surface layer. A similarly thin layer of the film is damaged by exposure to plasma due to the low energy of the plasma particles. The intensity of oxidation ...

  6. Determination of Partition Coefficients of Selected Model Migrants between Polyethylene and Polypropylene and Nanocomposite Polypropylene

    Directory of Open Access Journals (Sweden)

    Pablo Otero-Pazos

    2016-01-01

    Full Text Available Studies on nanoparticles have focused the attention of the researchers because they can produce nanocomposites that exhibit unexpected hybrid properties. Polymeric materials are commonly used in food packaging, but from the standpoint of food safety, one of the main concerns on the use of these materials is the potential migration of low molecular substances from the packaging into the food. The key parameters of this phenomenon are the diffusion and partition coefficients. Studies on migration from food packaging with nanomaterials are very scarce. This study is focused on the determination of partition coefficients of different model migrants between the low-density polyethylene (LDPE and polypropylene (PP and between LDPE and nanocomposite polypropylene (naPP. The results show that the incorporation of nanoparticles in polypropylene increases the mass transport of model migrants from LDPE to naPP. This quantity of migrants absorbed into PP and naPP depends partially on the nature of the polymer and slightly on the chemical features of the migrant. Relation (RPP/naPP between partition coefficient KLDPE/PP and partition coefficient KLDPE/naPP at 60°C and 80°C shows that only BHT at 60°C has a RPP/naPP less than 1. On the other hand, bisphenol A has the highest RPP/naPP with approximately 50 times more.

  7. Adhesion and Growth of Vascular Smooth Muscle Cells on Nanostructured and Biofunctionalized Polyethylene

    Directory of Open Access Journals (Sweden)

    Vaclav Svorcik

    2013-04-01

    Full Text Available Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE were therefore activated with Ar+ plasma and grafted with fibronectin (Fn or bovine serum albumin (BSA. The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50–300 s. The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS, and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium.

  8. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    Science.gov (United States)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  9. 不同厚度 LDPE 膜对平菇保鲜效果的影响%Effects of Different Shickness LDPE Film on Pleurotus ostreatus Fresh-keeping

    Institute of Scientific and Technical Information of China (English)

    李文香; 樊铭聪; 赵淑芳; 孙亚男; 胡欣蕾

    2015-01-01

    为比较不同厚度的低密度聚乙烯(LDPE)膜对平菇保鲜效果的影响,分别以0.015mm、0.030mm和0.045 mm 3种不同厚度的 LDPE 膜为包装材料,在模拟超市冷鲜货架温湿度条件(温度约14±1℃,贮藏环境相对湿度约85%)下,探讨了不同厚度 LDPE 膜对平菇保鲜效果的影响。结果表明:与0.015mm 膜和0.030mm 膜相比,0.045 mm LDPE 膜虽能显著提高平菇的失重率,保持包装内的较高的 CO2体积分数和较低 O2的体积分数(P <0.05);但在贮藏的第4天后,0.045mm LDPE 膜对抑制平菇呼吸强度、维持细胞膜透性,提高平菇感官分值的效果显著低于0.030mm LDPE 膜(P <0.05)。3种不同厚度的保鲜膜以0.030mmLDPE 膜对平菇的保鲜效果最佳。%In order to compare the effect of different shickness LDPE film on Pleurotus ostreatus fresh-keeping,Pleurotus ostreatus packaged by 0.01 5mm、0.030mmand 0.045 mm shickness of low density polyeth-ylene(LDPE)film as experimental material,in the condition of simulated cold fresh supermarket shelf temper-ature and humidity (temperature around 1 4 ±1 ℃,storage environment relative humidity around 85%),stud-ying the effect of three different shickness LDPE film for Pleurotus ostreatus fresh-keeping.The results show that compared with 0.01 5mm and 0.030 mm LDPE film,0.045mm LDPE film can significant reduce the postharvest Pleurotus ostreatus weight loss,maintaining the high CO2 volume fraction and low O2 volume frac-tion in packing(P <0.05);But after 4d storage,Pleurotus ostreatus packaged by 0.045mm LDPE film the sensory score significantly lower than Pleurotus ostreatus packaged by 0.030mm LDPE film and the respiration intensity and cell membrane permeability was also significantly higher than Pleurotus ostreatus packaged by 0.030mm LDPE film (P <0.05).Under the condition of Pleurotus ostreatus packaged by 0.030mm LDPE film,the fresh-keeping effect was more

  10. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  11. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    Science.gov (United States)

    Basfar, A. A.

    2002-03-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation.

  12. Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene.

    Science.gov (United States)

    Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming

    2016-06-01

    Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface.

  13. Thermal Decomposition Behavior and Kinetics of Composites from Coal and Polyethylene

    Institute of Scientific and Technical Information of China (English)

    YANG Fu-sheng; QU Jian-lin; YANG Zhi-yuan; ZHOU An-ning

    2007-01-01

    A thermogravimetric analysis (TG) was conducted to study the thermal decomposition behavior and kinetics of composites from coal and high density polyethylene (HDPE), linear low density polyethylene (LLDPE) or low density polyethylene (LDPE). The results show that coal facilitates melting of the polyethylene before temperatures reach 700 K in nitrogen due to the exothermic effect of coal. Above 700 K, adding coal into the polyethylene will result in smaller maximum rates of mass loss and higher initial mass loss temperatures of the composites. Hence, some chemical interactions, occurring between liquid compounds released in the pyrolysis of the coal and polymer, depend on several factors, such as coal rank and the molecular structure of polymers. Synergetic effects in coal and polymers were also found. Both chemical interactions and synergetic effects control the entire thermal decomposition behavior of composites. The larger the amount of coal in the composites, the greater the decomposition temperature spans and the higher the maximum decomposition temperature, the smaller the devolatilization rates. The effect of coal on the thermal stability of composites lies in the hydrogen acceptor effect of the coals. Thermal decomposition of the coals, the polymers and related composites can be modelled via first order parallel reactions between 563 K and 763 K.

  14. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  15. Development of nanocomposites employing high-density polyethylene and organo clay;Desenvolvimento de nanocompositos empregando polietileno de alta densidade e argila organofilica

    Energy Technology Data Exchange (ETDEWEB)

    Lessa, Tathiane C. Rodrigues F.; Tavares, Maria Ines B.; Pita, Vitor J.R.R., E-mail: tathianecr@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano

    2009-07-01

    The purpose of this study was to prepare nanocomposites of high-density polyethylene and montmorillonite organoclay by polymer melt intercalation, employing different processing parameters. Effective clay incorporation into polyethylene matrix was observed. The nanocomposites were structurally characterized. Intercalated nanocomposites were obtained from different process parameters, employing polyethylene resin and montmorillonite organoclays. The XRD results and other analysis showed that the processing parameters affect the organoclay delamination. The polyethylene nanocomposite presented the better performance using twin screw extruder, at 90 rpm. The purpose of characterization of polyethylene/organoclay nanocomposite by low-field NMR showed that this technique was important to understand changes in the molecular mobility of polyethylene when organoclay was incorporated. (author)

  16. Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite

    Energy Technology Data Exchange (ETDEWEB)

    Shafiq, Muhammad [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, PO Box 45650, Islamabad (Pakistan); Yasin, Tariq, E-mail: yasintariq@yahoo.com [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, PO Box 45650, Islamabad (Pakistan)

    2012-01-15

    Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses ({<=}75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature (T{sub m}) and crystallization temperature (T{sub c}) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation. - Highlights: > We have studied the effect of {gamma} radiation on LLDPE containing Mg(OH){sub 2} and sepiolite. > IR spectra of the irradiated composites show reduction in the intensity of O-H band. > Reduction in OH band show a distinct structural change in Mg(OH){sub 2} at higher doses. > TGA results show two steps weight loss at low doses and one step at higher doses. > These results confirm that MH gradually loses its OH functionality with irradiation.

  17. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    Energy Technology Data Exchange (ETDEWEB)

    AlMaadeed, M.A., E-mail: m.alali@qu.edu.qa [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Labidi, Sami [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Krupa, Igor [QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Karkri, Mustapha [Université Paris-Est CERTES, 61 avenue du Général de Gaulle, 94010 Créteil (France)

    2015-01-20

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  18. Recycled High-Density Polyethylene and Rice Husk as a Wetted Pad in Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Nitipong Soponpongpipat

    2011-01-01

    Full Text Available Problem statement: The low cost and easy-to-find materials, for being used as wetted pad of evaporative cooling system, are necessary for agriculture. This study, thus, studied the evaporative cooling efficiency and pressure drop of recycled High-Density Polyethylene (HDPE and rice husk as a wetted pad in evaporative cooling system. Approach: The study was done by establishing the tested wetted pad with 25.4 and 50.8 mm of thickness. The velocity air flow through wetted pad was controlled at 1, 2 and 3 m sec−1 respectively. In addition, the dry bulb and wet bulb temperatures of inlet air were controlled at 30.1 ± 1.0°C and 23.2 ± 1.1°C, respectively. The commercial wetted pad was also tested in order to compare results with rice husk and recycled HDPE. Results: It was found that rice husk wetted pad gave the average saturation efficiency of 55.9 %, while HDPE gave the average saturation efficiency of 29.1%. However, the pressure drop across wetted pad of rice husk and recycled HDPE was significantly higher than that of commercial wetted pad. For the effect of air velocity on saturation efficiency and pressure drop, it was found that higher air velocity decreased saturation efficiency and increased pressure drop across wetted pad. Conclusion: Finally, the rice husk has a potential as wetted pad material. However, further study about optimum point between operation cost and materials cost of using rice husk wetted pad is needed.

  19. 纳米银/低密度聚乙烯复合食品包装薄膜的表征及性能%Characterizations and properties of nano-silver/low density polyethylene composite film for food packaging

    Institute of Scientific and Technical Information of China (English)

    艾茜; 胡长鹰; 林勤保; 王志伟; 李河

    2014-01-01

    将纳米银(Ag)或助剂(光稳定剂783、抗氧剂B900)通过熔融共混的方法添加到低密度聚乙烯(low density polyethylene,LDPE)基材中,再通过挤出机造粒,吹膜机吹塑成薄膜,即制得纳米Ag/LDPE复合食品包装薄膜.借助扫描电子显微镜(Scanning Electron Microscope,SEM)分析了薄膜中纳米银的粒径分布情况;借助原子力显微镜(Atomic Force Microscope,AFM)分析了薄膜的表面微观形貌;对薄膜的力学拉伸性能、透湿性能、透光性、颜色做了相关的测试分析.结果表明,添加纳米银或光稳定剂783、抗氧剂B900会增加LDPE膜的粗糙度,降低LDPE膜的透光性;添加纳米银降低薄膜的断裂伸长率,增加LDPE膜的粗糙度,且使材料颜色偏暗偏黄;所添加的助剂对材料的颜色无影响,但会增加膜的粗糙度.

  20. 微胶囊化改性氢氧化镁及其在低密度聚乙烯中的阻燃性能研究%Microencapsulation of ultrafine magnesium hydroxide and its application as a fiame-retardant with low-density polyethylene

    Institute of Scientific and Technical Information of China (English)

    李培培; 陈建铭; 宋云华

    2011-01-01

    采用一步法合成了三聚氰胺树脂和脲醛树脂.分别对氢氧化镁阻燃剂进行微胶囊化改性,通过对其FT-IR、SEM、TEM、TG-DSC、XRD,以及添加至高聚物中后进行复合材料常规力学性能测试和极限氧指数(LOI)的测定,研究微胶囊化改性超细氢氧化镁的改性效果.结果表明,三聚氰胺树脂和脲醛树脂被成功包覆在氢氧化镁表面,并且改性后氢氧化镁热稳定性良好,粉体与聚合物基体之间的界面粘结性得到提高,与未改性氢氧化镁相比机械性能有较大提高,其极限氧指数较低密度聚乙烯有很大提升.其中,以反应温度70℃、包覆量15%的微胶囊化改性效果最好.%Microencapsulation technology has been used to modify ultrafine magnesium hydroxide (MH), a widely used flame retardant. Melamine resin (MF) and urea-formaldehyde resin (UF) were synthesized in one step in an alkaline environment. The microencapsulation effect of MF and UF on MH surfaces was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis-differential scanning calorimetry (TG-DSC), and X-ray diffraction (XRD).The MF and UF were successfully microencapsulated on MH. After adding the modified MH to low-density polyethylene (LDPE) (with mass ratio mMH:mLDPE = 40: 60) , the resulting composites were characterized by conventional mechanical property tests and limiting oxygen index (LOI) measurements. The modified MH showed good thermal stability and had good compatibility with the polymer. Compared with the composite formed from unmodified MH and, LDPE, the composites with modified MH showed better mechanical properties and higher LOI. MH gave composites with the best mechanical properties and LOI when modified with a microencapsulation volume of 15% at a temperature of 70 ℃.

  1. Acoustic study of a linear low-density polyethylene film after modification of the crystalline structure by heating.

    Science.gov (United States)

    Tohmyoh, Hironori; Sakamoto, Yuhei

    2014-02-01

    We report on a hybrid microscopy technique that enables us to measure the acoustic properties of a thin polymer film together with an optical microscope image of the corresponding area. Linear low-density polyethylene films are heated to various temperatures and examined by the technique. Density of the film is increased by heating and its sound velocity is decreased compared with a film without heating. Also, spherulites can clearly be seen in the optical microscope image, supporting the thermal shrinkage of the film which can be detected by the present technique.

  2. Evaluation of the transfer of Listeria monocytogenes from stainless steel and high-density polyethylene to Bologna and American cheese.

    Science.gov (United States)

    Rodríguez, Andrés; McLandsborough, Lynne A

    2007-03-01

    The objective of this study was to determine the factors involved in the transfer of Listeria monocytogenes from surfaces to foods. We evaluated the influence of surface type (stainless steel and high-density polyethylene), inoculation method (biofilm growth and attached cells), hydration level (visibly dry and wet), and food type (bologna and American cheese). Each experiment included all 16 combinations and was repeated 11 times. A four-strain cocktail of L. monocytogenes was used to inoculate stainless steel and high-density polyethylene either as growing biofilms or attached cells. Slides were placed on a universal testing machine and brought into contact with food at a constant pressure (45 kPa) and time (30 s). Food slices were blended, the number of transferred cells was determined by plating, and the efficiency of transfer (EOT) was calculated. The results strongly suggest that stainless steel surfaces transferred more L. monocytogenes to foods than did polyethylene (P = 0.05). Independent of the surface, biofilms tended to transfer more L. monocytogenes to foods (EOT = 0.57) than did attached cells (EOT = 0.16). Among foods, L. monocytogenes was transferred to bologna more easily than to cheese (P 0.05). We hypothesize that drying weakens cell-to-cell interactions in biofilms and cell-to-surface interactions of biofilms and thus allows increased transfer of cells to food products.

  3. Finding an Optimum Period of Oxidative Heat Treatment on SS 316 Catalyst for Nanocarbon Production from LDPE Plastic Waste

    Directory of Open Access Journals (Sweden)

    Praswasti P.D.K. Wulan

    2017-04-01

    Full Text Available Plastic waste accumulation has become a major health and environmental problems in many parts of the world. Many efforts have been taken to reduce the accumulation, one of which is to convert it into a more useful products, such as CNT. CNT have been used for several products to enhance its properties. In this work, Low Density Polyethylene (LDPE plastic waste was used as a feed to produce CNT with the help of wired mesh stainless steel type 316 serving as the catalyst. The stainless steel was pretreated by applying heat under oxidative environment at 800oC. The time of the pretreatment was varied from 0, 1, 5, 10, and 20 minutes to determine the relationship between the period of the pretreatment and the produced CNT quality. The collected nanocarbons were characterized by using XRD, SEM-EDX, TEM, and TGA. It was discovered that CNT was formed from the pretreated catalyst. The best result was obtained from the 10 minutes pretreatment shown by formation of buckling and continuous growth CNT having an evenly spread carbon with a mean CNT diameter of 7.70 nm, carbon percentage up to 93.3%, and oxidation temperature up to 530oC.

  4. A bio-material: mechanical behaviour of LDPE-Al2O3-TiO2

    Science.gov (United States)

    Dhabale, R.; Jatti, V. S.

    2016-09-01

    Polymer composites are prominent candidate for polymeric bio-composites due to its low cost, high strength and ease of manufacturing. However, they suffer from low mechanical properties such as high wear rate and low hardness. In view of this, present study focuses on the synthesis of hybrid bio polymer matrix composites using low density polyethylene as matrix material with reinforcing material namely, alumina and titanium oxide. The samples were fabricated as per ASTM standard by varying the percentage of reinforcing particles using injection moulding machine. Various tests namely, tensile, flexural, impact, hardness, wear, SEM and corrosion were conducted on the prepared samples. On the basis of the experimental results, it can be concluded that injection moulding process can fabricate defect free cast samples. Polymer matrix composites of 70%LDPE +10% TiO2 +20% Al2O3 composition is biocompatible and a good candidate for biomaterial. Thus based on the inference of this study the above polymer matrix composite is suitable for orthopaedic applications and can be applied on hard and soft tissues of implantable materials in a human body.

  5. Property Study on Synergistic Flame Retardant of EG/APP on LDPE%可膨胀石墨/聚磷酸铵协同阻燃低密度聚乙烯的性能研究

    Institute of Scientific and Technical Information of China (English)

    葛兰兰; 段宏基; 康海泉; 唐建华; 张卫勤; 李忠明

    2012-01-01

    A new intumescent flame retardant (1FR) system consisting of expandable graphite (EG) and ammonium polyphosphate (APP) was applied in low-density polyethylene (LDPE). When the total loading of flame retardant was at 15 wt% , the limited oxygen index (LOI) could reach 29% at a mass ratio of 3:1 for EG and APP. While LOI values of EG-and APP-filled LDPE were only 27% and 21% at the same loading, respectively which indicated the two had well synergistic flame retardant effect. The synergistic mechanism of APP and EG in solid and gas phase was inferred by TG, SEM and FT1R tests.%以可膨胀石墨(EG)与聚磷酸铵(APP)复配组成新型膨胀型阻燃剂(IFR),并将其应用于低密度聚乙烯( LDPE)中,当总添加量(质量分数)为15%,EG/APP质量比为3∶1时,复合材料氧指数达到29%,而单独加入EG或者APP时只有27%和21%.表明二者具有良好的协同阻燃效果,并通过热失重测试(TG)、扫描电镜分析(SEM)、傅里叶红外分析(FTIR)阐明了APP和EG在固相和气相中的协同机理.

  6. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    Science.gov (United States)

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-01

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  7. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  8. Controlled Emissivity Coatings to Delay Ignition of Polyethylene.

    Science.gov (United States)

    Sonnier, Rodolphe; Ferry, Laurent; Gallard, Benjamin; Boudenne, Abderrahim; Lavaud, François

    2015-10-12

    Semi-opaque to opaque films containing small amounts of various aluminium particles to decrease emissivity were easily prepared and coated onto low-density polyethylene (LDPE) sheets. The thermal-radiative properties (reflectivity, transmissivity and absorptivity) of the films were measured and related to the aluminum particles' content, size and nature. Time-to-ignition of samples was assessed using a cone calorimeter at different heat flux values (35, 50 and 75 kW/m²). The coatings allowed significant ignition delay and, in some cases, changed the material behaviour from thermally thin to thick behaviour. These effects are related both to their emissivity and transmissivity. A lower emissivity, which decreases during the degradation, and a lower transmissivity are the key points to ensure an optimal reaction-to-fire.

  9. Controlled Emissivity Coatings to Delay Ignition of Polyethylene

    Directory of Open Access Journals (Sweden)

    Rodolphe Sonnier

    2015-10-01

    Full Text Available Semi-opaque to opaque films containing small amounts of various aluminium particles to decrease emissivity were easily prepared and coated onto low-density polyethylene (LDPE sheets. The thermal-radiative properties (reflectivity, transmissivity and absorptivity of the films were measured and related to the aluminum particles’ content, size and nature. Time-to-ignition of samples was assessed using a cone calorimeter at different heat flux values (35, 50 and 75 kW/m2. The coatings allowed significant ignition delay and, in some cases, changed the material behaviour from thermally thin to thick behaviour. These effects are related both to their emissivity and transmissivity. A lower emissivity, which decreases during the degradation, and a lower transmissivity are the key points to ensure an optimal reaction-to-fire.

  10. Preparation and Antibacterial Performance of Modified Nano TiO 2/LDPE Composite Membrane%改性纳米 TiO2/LDPE 复合膜的制备及其抗菌性能

    Institute of Scientific and Technical Information of China (English)

    刘慧玲; 李国明; 石光; 王泽忠; 刘聪; 何浩鹏

    2014-01-01

    Based on tetra-n-butyl titanate as raw material,nanometer TiO2 was prepared by the solvent gel(Sol-Gel)method. Modified powder surface morphology and structure were inspected by SEM. Nanometer powder sur-face was modified with silane coupling agent(KH550,KH570 or A171). The surface structure and qualitative change of modified powder were observed by SEM,XRD and FTIR. Besides the oil-wet change degree and disper-sing situation in water,toluene and petroleum were detected. Using toluene as solvent,the modified powder and Low Density Polyethylene(LDPE)resin were mixed and then achieved antibacterial polyethylene composite film membrane through the way of flow delay. The antibacterial performance of modified nano TiO2 antibacterial agent/LDPE compound film was measured with SEM and digital camera. The results showed that the best dispersion in toluene was KH570 modified powder. When 3% antibacterial powder was added,the antibacterial properties of composite film were the best and its antibacterial rate reached 99. 9% .%以钛酸丁酯为原料,用溶胶-凝胶法制备纳米 TiO2,利用 SEM 观察粉体表面形貌和结构.分别用硅烷偶联剂(KH550、KH570和 A171)对纳米粉体进行表面改性,利用 SEM、XRD 和 FTIR,考察改性粉体的表面结构和性质变化.同时测定改性粉体的亲油化度和在水、甲苯和石油醚中的分散情况;采用甲苯作溶剂,将改性粉体与低密度聚乙烯(LDPE)混合,经流延得到抗菌聚乙烯复合薄膜.利用 SEM 和数码相机,观察改性纳米 TiO2抗菌剂/ LDPE 复合薄膜的抗菌性能.结果表明,KH570改性粉体在甲苯中的分散性最好,当抗菌粉体的添加量为3.0%时,制得复合薄膜的抗菌性能最好,抗菌率达到99.99%,即具有最好的抗菌效果.

  11. EVALUATION AND APPLICATION OF THE INVASIVE WEED MIKANIA MICRANTHA AS AN ALTERNATIVE REINFORCEMENT IN RECYCLED HIGH DENSITY POLYETHYLENE

    Directory of Open Access Journals (Sweden)

    Yong-Long Chen,

    2012-04-01

    Full Text Available In this study Mikania micrantha particle (MP and fiber (MF were added to recycled high density polyethylene (rHDPE for producing natural fiber (or particle reinforced plastic composites (NFRPC by the flat-platen pressing process. The results showed that the flexural strength and stiffness of NFRPC were significantly improved through incorporating M. micrantha particle and fiber. Higher aspect ratio of reinforcement displayed stronger mechanical properties. The vertical density profile in composites significantly influenced the mechanical properties of NFRPC. A conventional V-shaped profile and a uniform vertical density profile (homo-profile were observed in MP and MF based NFRPC, respectively. Additionally, with increasing lignocellulose content, a more uniform vertical density profile and higher wood screw holding strength were observed. These results indicate M. micrantha particle and fiber are excellent reinforcements for NFRPC applications.

  12. Compatibilization of low-density polyethylene/polystyrene blends by segmented EB(PS-block-EB)(n) block copolymers

    NARCIS (Netherlands)

    Kroeze, E; ten Brinke, G.; Hadziioannou, G

    1997-01-01

    Hydrogenated segmented poly[butadiene-block-(styrene-block-butadiene)(n)] block copolymers, which were developed by use of a polymeric iniferter technique, were tested on their compatibilizing effectiveness for (10/90) LDPE/PS blends. They were found to be effective compatibilizers for this mixture,

  13. MORPHOLOGY AND PROPERTIES OF LINEAR LOW-DENSITY POLYETHYLENE HIGHLY LOADED WITH ALUMINUM HYDROXIDE

    Institute of Scientific and Technical Information of China (English)

    Gen-lin Wang; Ping-kai Jiang; Zi-kang Zhu; Jie Yin

    2002-01-01

    An experimental study was carried out to investigate the effects of isopropoxy tri(dioctyl pyrophosphoryl) titanate coupling agent on the mechanical performance, rheological property and microstructures of polyethylene highly loaded with aluminum hydroxide (Al(OH)a) composite. It was found that the addition of coupling agent results in reduced tensile strength and increased percentage elongation of the filled systems. Silane crosslinkable polyethylene substituting for polyethylene as matrix improves the tensile strength of the composite, while the percentage elongation of the composite still remains at a desired level. Melt viscosity of the composite will be improved by addition of titanate coupling agent. Microstructures of the composites were also studied by means of the scanning electron microscopy (SEM) technique. SEM micrographs reveal that finer dispersion of Al(OH)3 will be obtained upon treatment of titanate and a transition from brittle to tough fracture takes place before and after silane crosslinking structure is introduced into polyethylene highly filled with Al(OH)3 composite.

  14. Plasma Treatment of Agave Fiber Powder and Its Effect on the Mechanical and Thermal Properties of Composites Based on Polyethylene

    Directory of Open Access Journals (Sweden)

    Florentino Soriano Corral

    2016-01-01

    Full Text Available Composites based on low-density polyethylene (LDPE were prepared with Agave fiber powder (AFP that was coated by plasma polymerization process using ethylene gas. Treated and pristine AFP were analyzed by infrared spectroscopy, scanning electron microscopy, and contact water angle for the assessment of surface properties. The polymer composites were prepared by melt mixing using 0, 5, 10, and 20 wt% of AFP and their mechanical and thermal properties were measured. Dispersion evaluation in water confirmed that the AFP treated changed from hydrophilic to hydrophobic behavior and it was also corroborated with water contact angle tests. The addition of treated and untreated AFP (200 mesh at 20 wt% promotes an increase of Young’s modulus of the composites of up to 60% and 32%, respectively, in relation to the neat matrix. Also, an increase of crystallinity of LDPE was observed by the addition of treated and untreated AFP; however no significant effect on the crystallization temperature was observed in LDPE containing AFP.

  15. Biodegradation of low density polyethylene by the action of a microbial consortium isolated from a landfill, Lima, Peru

    Directory of Open Access Journals (Sweden)

    Diego Uribe

    2011-05-01

    Full Text Available In this paper, we describe the isolation and biodegradation activity of microorganisms on low density polyethylene. The microorganisms were collected from plastic materials with evidence of deterioration from a landfill. The samples were filtered and selected in a mineral salts medium at pH 5.5 and 7 for bacteria and fungi respectively. Six strains were isolated, identified as Pseudomonas sp. Hyalodendron sp., Penicillium sp. and Rhodotorula sp. Microbial activity was evidenced by changes in the infrared spectrum of polyethylene with respect to the polymer without treatment. Reduction of carbonyl index (83.89% at pH 7 and 4.08% at pH 5.5 and double bonds index (19.77% at pH 7 and 6.47% at pH 5.5 were observed. Finally we determined the percentage of weight lost by the polyethylene subjected to activity of the strains, with a decrease of 5.4% at pH 7 and 4.8% at pH5, 5.

  16. Effects of Boron Compounds on the Mechanical and Fire Properties of Wood-chitosan and High-density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Guo-Fu Wu

    2014-05-01

    Full Text Available Wood-plastic composites (WPCs represent a growing class of durable, low-maintenance construction materials whose use can decrease dependence on petroleum. High-density polyethylene (HDPE, chitosan (CS, wood flour (WF, boric acid (BA, and borax (BX, as well as maleic anhydride grafted polyethylene (MAPE and polyethylene wax (PE wax, were used to develop a durable wood-plastic composite (WPC using the extrusion method. The effects of boron compounds (3%, 6%, 9%, or 12% by weight BA/BX on the mechanical and fire properties of the WPCs were investigated. Mechanical testing indicated that as the percentage weight of boron compounds increased, the flexural modulus, flexural strength, and tensile strength significantly decreased. Cone calorimeter tests were used to characterize the fire performance of the WPCs, and these results suggested that adding BA/BX compounds to WPCs modestly improved the fire performance. As the percentage weight of BA/BX increased from 3% to 9%, the time to ignition (TTI, heat release rate (HRR, total heat release rate (HRR-Total, smoke production rate (SPR, and specific extinction area (SEA of the WPCs were all reduced.

  17. Engineering functional nanothin multilayers on food packaging: ice-nucleating polyethylene films.

    Science.gov (United States)

    Gezgin, Zafer; Lee, Tung-Ching; Huang, Qingrong

    2013-05-29

    Polyethylene is the most prevalent plastic and is commonly used as a packaging material. Despite its common use, there are not many studies on imparting functionalities to those films which can make them more desirable for frozen food packaging. Here, commercial low-density polyethylene (LDPE) films were oxidized by UV-ozone (UVO) treatment to obtain a negatively charged hydrophilic surface to allow fabrication of functional multilayers. An increase in hydrophilicity was observed when films were exposed to UVO for 4 min and longer. Thin multilayers were formed by dipping the UVO-treated films into biopolymer solutions, and extracellular ice nucleators (ECINs) were immobilized onto the film surface to form a functional top layer. Polyelectrolyte adsorption was studied and confirmed on silicon wafers by measuring the water contact angles of the layers and investigating the surface morphology via atomic force microscopy. An up to 4-5 °C increase in ice nucleation temperatures and an up to 10 min decrease in freezing times were observed with high-purity deionized water samples frozen in ECIN-coated LDPE films. Films retained their ice nucleation activity up to 50 freeze-thaw cycles. Our results demonstrate the potential of using ECIN-coated polymer films for frozen food application.

  18. Antioxidant content of and migration from commercial polyethylene, polypropylene, and polyvinyl chloride packages.

    Science.gov (United States)

    Dopico-García, M S; López-Vilariñó, J M; Gonzalez-Rodríguez, M V

    2007-04-18

    Antioxidants commonly used in polyolefins were studied in commercial food packages made of low- and high-density polyethylene (LDPE and HDPE), polypropylene (PP), polyvinylchloride (PVC), and polyethylene terephtalate (PET) and in a LDPE film extruded at the laboratory. The phenolic antioxidants BHA, BHT, AO 2246, AO 425, Ethanox 330, Irganox 1010, and Irganox 1076 were studied together with the phosphite Irgafos 168 and their two degradation products, phosphate and DBP. Antioxidants were extracted from polyolefins using microwave energy and analyzed using high-performance liquid chromatography (HPLC) to determine the antioxidant content in the diverse commercial films. Irganox 1010 and Irganox 1076 were found in the majority of the samples generally together with the phosphite Irgafos 168 and its oxidized product (phosphate). Specific migration levels of each antioxidant were determined by HPLC after pretreatment with solid-phase extraction (SPE) in aqueous food simulants and after their dilution with tetrahydrofuran (THF) in fatty food simulant. These levels were much lower than limits allowed by legislation.

  19. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  20. NONLINEAR J-E CHARACTERISTICS IN THE ELECTRIC-THERMAL EQUILIBRIUM STATE FOR HIGH DENSITY POLYETHYLENE CONDUCTIVE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Yi-hu Song; Xiao-su Yi

    2001-01-01

    The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.

  1. Wear, bone density, functional outcome and survival in vitamin E-incorporated polyethylene cups in reversed hybrid total hip arthroplasty: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van der Veen Hugo C

    2012-09-01

    Full Text Available Abstract Background Aseptic loosening of total hip arthroplasties is generally caused by periprosthetic bone resorption due to tissue reactions on polyethylene wear particles. In vitro testing of polyethylene cups incorporated with vitamin E shows increased wear resistance. The objective of this study is to compare vitamin E-stabilized highly cross-linked polyethylene with conventional cross-linked polyethylene in “reversed hybrid” total hip arthroplasties (cemented all-polyethylene cups combined with uncemented femoral stems. We hypothesize that the adjunction of vitamin E leads to a decrease in polyethylene wear in the long-term. We also expect changes in bone mineral density, less osteolysis, equal functional scores and increased implant survival in polyethylene cemented cups incorporated with vitamin E in the long-term. Design A double-blinded randomized controlled trial will be conducted. Patients to be included are aged under 70, suffer from non-inflammatory degenerative joint disease of the hip and are scheduled for a primary total hip arthroplasty. The study group will receive a reversed hybrid total hip arthroplasty with a vitamin E-stabilized highly cross-linked polyethylene cemented cup. The control group will receive a reversed hybrid total hip arthroplasty with a conventional cross-linked polyethylene cemented cup. Radiological follow-up will be assessed at 6 weeks and at 1, 3, 5, 7 and 10 years postoperatively, to determine polyethylene wear and osteolysis. Patient-reported functional status (HOOS, physician-reported functional status (Harris Hip Score and patients’ physical activity behavior (SQUASH will also be assessed at these intervals. Acetabular bone mineral density will be assessed by dual energy X-ray absorptiometry (DEXA at 6 weeks and at 1 year and 2 years postoperatively. Implant survival will be determined at 10 years postoperatively. Discussion In vitro results of vitamin E-stabilized polyethylene are promising

  2. Durability of LDPE Nanocomposites with Clay, Silica, and Zinc Oxide—Part I: Mechanical Properties of the Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Halim Hamid Redhwi

    2013-01-01

    Full Text Available Three types of LDPE-based nanocomposites with montmorillonite clay, silica, and zinc oxide were prepared by melt blending the nanofiller with the resin. As a prelude to studying their durability, the extent of reinforcement of the LDPE matrix by the nanofillers was investigated using mechanical, thermal, and microscopic studies of the composites. No significant chemical modification of the polyethylene matrix was observed as a result of the processing of the composite compound. While reinforcement was obtained in all cases, the efficiency of reinforcement appears to be qualitatively influenced by surface functionalization, filler interactions, and the extent of dispersion of the filler in the matrix as well as the specific surface area of the nanoparticle fillers.

  3. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces.

    Science.gov (United States)

    Chollet, Celine; Chanseau, Christel; Remy, Murielle; Guignandon, Alain; Bareille, Reine; Labrugère, Christine; Bordenave, Laurence; Durrieu, Marie-C

    2009-02-01

    Hybrid materials combining polyethylene terephthalate and different types of cells (endothelial and osteoblastic cells) have been developed thanks to the covalent grafting of different densities of RGD containing peptides onto the polymer surface. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions, coupling agent grafting and the immobilization of the RGDC peptides. High resolution mu-imager was used to evaluate RGD densities (varying between 0.6 and 2.4 pmol/mm(2)) and has exhibited the stability of the surface grafted peptides when treated in harsh conditions. The efficiency of this route for biomimetic modification of a PET surface was demonstrated by measuring the adhesion of MC3T3 and HSVEC cells and by focal adhesion observation. Results obtained prove that a minimal RGDC density of 1 pmol/mm(2) is required to improve MC3T3 and HSVEC cells responses. Indeed, cells seeded onto a RGDC-modified PET with a density higher than 1 pmol/mm(2) were able to establish focal adhesion as visualized by fluorescence microscope compared to cells immobilized onto unmodified PET and RGDC-modified PET with densities lower than 1 pmol/mm(2). Moreover, the number of focal contacts was enhanced by the increase of RGDC peptide densities grafted onto the material surface. With this study we proved that the density of peptides immobilized on the surface is a very important parameter influencing osteoblast or endothelial cell adhesion and focal contact formation.

  4. Effect of Nano Filler Mixture on the Visual Aspect of Treeing Degradation in LDPE Based Composite%Effect of Nano Filler Mixture on the Visual Aspect of Treeing Degradation in LDPE Based Composite

    Institute of Scientific and Technical Information of China (English)

    Rudi Kurnianto; Z. Nawawi; H. Ahmad; N. Hozumi; M. Nagao

    2011-01-01

    This paper deals with a digest on electrical treeing degradation in nanocomposite of magnesium oxide (MgO) added to a low-density polyethylene (LDPE). The objective is to elucidate the "visual" aspects of runaway stage of fi- nal treeing breakdown mechanisms, and to ensure that the existence of MgO filler itself is responsible for this aspect instead of voltage application changes. The "visual" aspect of treeing breakdown was investigated by applying ac ramp voltage with continuous rising speed of 0.5 kV/s. As soon as tree had been incepted, the voltage was kept constant to observe the tree propagation until breakdown. The tree propagations were also described by their fractal dimension. To ensure the responsibility of MgO filler on the "visual" aspect results, the experiment was repeated using the same rate of ac ramp voltage. However, as soon as tree had been incepted, the voltage was either increased or decreased to a constant value of mean tree inception voltage obtained from the preceding results to observe its propagation to breakdown. As a result, the tree inception voltage was increased with the filler concentration in LDPE. The filler is considered not only acted as a physical obstacle for tree to propagate, but also as a chemical obstacle in which the free electron might be trapped to cause difficulties for electron avalanche occurrence. This consideration could also be valid for tree propagation up to breakdown. During propagation, due to the filler, the tree structure is accompanied by more branches. Since the branches are closely placed each other, the tree tips become relatively uniform field compares to pure LDPE. This would produce the higher local breakdown strength at the tree tips, leads to the suppression of propagation. The "visual" aspect of breakdown could be achieved by applying voltage exactly at the inception level. After bridging the tree would not breakdown until a short period of time lag. Within this period, the

  5. HEAT SHRINKING BEHAVIOUR OF γ-RADIATION CROSSLINKED POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    QI Yuchen; JIA Lianda; SONG Yongxian; WU Suyun; LI Lixia; CHEN Donglin

    1988-01-01

    Heat shrinking material of γ-radiation crosslinked polyethylene is widely used for various application in industry. In this study, DSC, TMA, WAXD and density measurement techniques were used to investigate the influence of MI and thermal history of LDPE on the effectiveness of network formation. Based on the results of heat stretching and heat shrinkage tests, it is found that the formation of a network as perfect as possible is indispensable to the irradiated material if good heat shrinkage property is desired. To this end, quenching technique and polyethylene with appropriate MI must be used so that an effective radiation effect will be obtained with a minimum amount of radiation dose. In spite of that the mechanical property of the irradiated polyethylene in the rubbery state is basically in agreement with the classical expression of the theory of high elasticity, only about90% shrinkage can be reached. Besides, the heat shrinkage temperature Ts and the % shrinkage S are both related to the radiation dose.

  6. Some exploitation properties of wood plastic composites (WPC, based on high density polyethylene and timber industry waste

    Directory of Open Access Journals (Sweden)

    janis kajaks

    2015-09-01

    Full Text Available Abstract: In this study, the influence of wood fiber content (40, 50 and 60 wt.% and coupling agent concentration (3 and 5 wt.% on the mechanical properties of wood-plastic composites (WPCs was investigated. Two types of plastic (high-density-polyethylene (HDPE and recycled high-density-polyethylene (rHDPE were used as polymer matrices for preparing WPC. As reinforcement, prior grinded (fiber length < 0.5 mm coniferous wood shavings were utilized. Overall trend showed, that by adding a wood fiber, flexural properties and microhardness of the composites significantly were enhanced. However, impact strength, water resistance, and fluidity of polymer melts decreased with increase in fiber content. The virgin HDPE-based composites as well as recycled HDPE-based composites, reinforced with fibers from coniferous wood, showed good mechanical properties. Based on the findings in this work, it appears that WPCs based on virgin HDPE, as well as on recycled HDPE, can be used to manufacture value-added panels. Optimal content of wood fibres were 50-60 wt.%.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7283

  7. Study on Preparation Process and Properties of LDPE/Wood Plastic Composites%LDPE基木塑复合材料制备工艺及性能研究

    Institute of Scientific and Technical Information of China (English)

    宋艳江; 王宝云; 羊海棠; 朱凤娥

    2012-01-01

    以马来酸酐(MAH)和(或)过氧化二异丙苯(DCP)复合处理木粉(Wood)或预先将MAH和DCP与低密度聚乙烯( LDPE)进行熔融接枝反应,采用挤出混炼和注射成型的方法制备了LDPE基木塑复合材料.考察了MAH、DCP含量及制备工艺等对复合材料加工性能、力学性能及动态热机械性能的影响;并借助扫描电子显微镜分析了其作用机理.结果显示:与先制备的MAH-g-PE相比,直接用MAH和DCP复合处理木粉所制备木粉/LDPE复合材料(木粉质量分数40%)具有更优的力学性能,其冲击强度提高了40%左右,而且加工平衡扭矩仅为前者的1/3;SEM分析表明:前者中木粉存在明显的团聚现象;此外,MAH和DCP均有相对最佳用量,分别为木粉的0.5%和LDPE的0.3% ~0.5%.%Low density polyethylene(LDPE) based wood-plastic composites(WPCs) were prepared by mixing extruding and injection molding in which the wood flour were modified by maleic anhydride(MAH) and (or) dicumyl peroxide(DCP) ,or the resin matrix was melt grafted with MAH with DCP as the initiator.The effects of MAH,DCP,wood flour contents and preparation process on the processibility,mechanical properties and dynamic thermo-mechanical behavior of the composites were investigated.And the effect mechanism was analyzed by SEM.The results showed: compared with the WPC made from MAH-g-LDPE,the composite (wood flour mass fraction: 40 wt%)made from MAH and DCP modified wood flour had the better mechanical properties,the impact strength improved by 40% ,and the balance torque was only 1/3 to the formerone.The SEM results indicated wood-flour was aggregated in the former.The results also showed the MAH and DCP had optimum dosage which were 0.5 wt% to wood flour and 0.3 - 0.5 wt% to LDPE respectively.

  8. Characteristics on radiation crosslinking of low density polyethylene/magnesium dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Lee, C.; Kim, P. J.; Kim, J. A. [KAERI, Taejon (Korea, Republic of); Ryu, B. H. [Dongguk University, Gyeongju (Korea, Republic of)

    2004-07-01

    This study has investigated the flame retardant properties of polyethylene with addition of flame retardant and gaseous conditions. It is sample that PE was blended with magnesium dihydrate to 10, 20, 30phr. The samples were irradiated using a Co{sup 60} {gamma}-ray in nitrogen, oxygen and air atmosphere. Elongation at break of PE was made up of various gaseous conditions, decreased by magnesium dihydrate content increase. And we measured LOI(limited oxygen index) for flame retardant property, LOI increased by magnesium dihydrate content increase. The flame retardant property was improved.

  9. High-T{sub c} superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhadrakumari, S [Department of Physics, St. Berchman' s College, Changanassery, Kerala (India); Predeep, P [Condensed Matter Physics Laboratory, Department of Physics, Sree Narayana College, Kollam 691 001, Kerala (India)

    2006-08-15

    A series of composite samples of YBa{sub 2}Cu{sub 3}O{sub 7-x} and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  10. Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres

    Science.gov (United States)

    Baris Yalcin; Steve E Amos; Andrew S D Souza; Craig M Clemons; I Sedat Gunes; Troy K Ista

    2012-01-01

    Hollow glass microspheres were introduced into wood flour/high density polyethylene composites by melt compounding in a twin-screw extruder. The prepared composites were subsequently converted to extruded profiles in order to obtain composite sheeting. The presence of hollow glass microspheres highly reduced the density of the extruded sheets down to 0.9 g/cc, while...

  11. Qualidade de melões (Cucumis melo L. var. cantalupensis Naud., híbrido Torreon, produzidos em hidroponia e armazenados em embalagens de polietileno Quality of Torreon hybrid melon fruits (Cucumis melo L. var. cantalupensis Naud. grown in hydroponic system and stored in polyethylene packaging

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2006-08-01

    within polyethylene packages were evaluated. Evaluated treatments were: (1 cold storage (control; packaging with (2 low-density polyethylene (LDPE of 40µm; (3 LDPE of 60µm; (4 LDPE of 90µm; (5 medium-density polyethylene (MDPE of 40µm; (6 MDPE of 60µm. Fruits were stored during 25 days at 3.8±0.2°C plus two days of shelf-life at 20°C. LDPE of 60 and 90µm and MDPE of 60µm had lower CO2-permeability, allowing the higher CO2 concentrations inside the packages. LDPE of 90µm had the lowest O2-permeability. Lower ethylene concentration was observed in 40µm-LDPE bags. Packaging decreased drastically fruit weight loss, when compared with non-packaged fruits. Flesh firmness was higher in fruits stored in 40µm-LDPE, but was not different from 40µm-MDPE-stored fruits. Rot incidence in turn was significantly lower in fruits stored in 60µm-LDPE. In general, packaging of ‘Torreon’ melon fruit, grown in a hydroponic system, with the evaluated polyethylene films allowed similar physical and chemical quality.

  12. The Use of Polyethylene in Hot Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Mohammad T. Awwad

    2007-01-01

    Full Text Available The increase in road traffic during the last two decades in combination with an insufficient degree of maintenance due to shortage in funds has caused an accelerated and continuous deterioration of the road network in Jordan. To alleviate this process, several types of measures may be effective, e.g., securing funds for maintenance, improved roadway design, use of better quality of materials and the use of more effective construction methods. The use of polymer in asphalt mixture as a modifier started in the 80s of the last century and has been tested in a number of countries around the World. In this research, polyethylene as one sort of polymers is used to investigate the potential prospects to enhance asphalt mixture properties. The objectives also include determining the best type of polyethylene to be used and its proportion. Two types of polyethylene were added to coat the aggregate [High Density Polyethylene (HDPE and Low Density Polyethylene (LDPE]. The polymers were introduced to the mixture in two states (Grinded and not Grinded. Marshall mix design was used, first to determine the optimum bitumen binder content and then further to test the modified mixture properties. In total, 105 samples were prepared (21 samples were used to determine the binder content and the remaining samples were used to investigate the effect of modifying the asphalt mixtures. The optimum asphalt content was 5.4%. Seven proportions of polyethylene of each type and state by weight of the optimum binder content were selected to be tested (6, 8, 10, 12, 14, 16 and 18%. The tests include the determination of bulk density, stability and flow. Marshall mix design requires the determination of the percentages of air voids and air voids of mineral aggregate. The results indicated that grinded HDPE polyethylene modifier provides better engineering properties. The recommended proportion of the modifier is 12% by the weight of bitumen content. It is found to increase the

  13. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  14. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Science.gov (United States)

    Ferreto, H. F. R.; Oliveira, A. C. F.; Gaia, R.; Parra, D. F.; Lugão, A. B.

    2014-05-01

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of 60Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  15. Preparation of a high-density polyethylene (HDPE) film with a nucleating agent during a stretching process

    Science.gov (United States)

    Park, Jong-Seok; Cho, In-Hee; Gwon, Sung-Jin; Lim, Youn-Mook; Nho, Young-Chang

    2009-07-01

    The effects of the crystallinity and a radiation crosslinking on the high-density polyethylene (HDPE) with a nucleating agent were investigated. We found the optimum conditions for the stretching process according to the addition of various quantities of a nucleating agent (Millad3988). The pores of a HDPE membrane were affected by the crystallinity of the polymer, and the crystallinity of the polymer was changed with an increase thermal ageing temperature. Thermal ageing treatment of the HDPE film was conducted in an oven at 110-135 °C for 5-60 min. When the conditions for the annealing were fixed at 125 °C and 40 min, we obtained the highest crystallinity. Also, the resulting mechanical properties of the irradiated HDPE separators were analyzed.

  16. Preparation of a high-density polyethylene (HDPE) film with a nucleating agent during a stretching process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Seok [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong Jeongeup-si, Jellabuk-do 580-185 (Korea, Republic of)], E-mail: jspark75@kaeri.re.kr; Cho, In-Hee [School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Gwon, Sung-Jin; Lim, Youn-Mook [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong Jeongeup-si, Jellabuk-do 580-185 (Korea, Republic of); Nho, Young-Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong Jeongeup-si, Jellabuk-do 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2009-07-15

    The effects of the crystallinity and a radiation crosslinking on the high-density polyethylene (HDPE) with a nucleating agent were investigated. We found the optimum conditions for the stretching process according to the addition of various quantities of a nucleating agent (Millad3988). The pores of a HDPE membrane were affected by the crystallinity of the polymer, and the crystallinity of the polymer was changed with an increase thermal ageing temperature. Thermal ageing treatment of the HDPE film was conducted in an oven at 110-135 deg. C for 5-60 min. When the conditions for the annealing were fixed at 125 deg. C and 40 min, we obtained the highest crystallinity. Also, the resulting mechanical properties of the irradiated HDPE separators were analyzed.

  17. Viscoelastic behaviour and fracture toughness of linear-low-density polyethylene reinforced with synthetic boehmite alumina nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2013-08-01

    Full Text Available Aim of the present study is to investigate how synthetic boehmite alumina (BA nanoparticles modify the viscoleastic and fracture behaviour of linear low-density polyethylene. Nanocomposites containing up to 8 wt% of untreated and octyl silane-functionalized BA nanoparticles, were prepared by melt compounding and hot pressing. The BA nanoparticles were finely and unformly dispersed within the matrix according to scanning electron microscopy inspection. The results of quasi-static tensile tests indicated that nanoparticles can provide a remarkable stiffening effect at a rather low filler content. Short term creep tests showed that creep stability was significatively improved by nanofiller incorporation. Concurrently, both storage and loss moduli were enhanced in all nanocomposites, showing better result for surface treated nanoparticles. The plane-stress fracture toughness, evaluated by the essential work of fracture approach, manifested a dramatic increase (up to 64% with the BA content, with no significant differences among the various types of BA nanoparticles.

  18. Investigation of nano-talc as a filling material and a reinforcing agent in high density polyethylene (HDPE)

    Institute of Scientific and Technical Information of China (English)

    CHEN Nanchun; MA Lei; ZHANG Tao

    2006-01-01

    An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite.

  19. The effect of UV light on the thermooxidative stability of linear low density polyethylene films crosslinked by ionizing radiation

    Science.gov (United States)

    Sen, M.; Basfar, A. A.

    1998-06-01

    The effect of ultraviolet (UV) light on the thermooxidative stability of Linear Low Density Polyethylene(LLDPE) films was studied. LLDPE was stabilized with phenolic type antioxidant known as Irganox 1010, hindered amine light stabilizer known as Chimmasorb 944 and phenolic type gamma stabilizer. The influence of these additives on the thermooxidative stability of gamma and UV irradiated LLDPE were investigated by isothermal Differential Scanning Calorimeter (DSC). The oxidation induction time (OIT) experiments indicate that antirad free LLDPE films which contains antioxidant and UV stabilizer are more sensitive to gamma and UV radiation. On the other hand, films which contain antirad and irradiated to different doses of γ-radiation demonstrated improved thermooxidative stability.

  20. The effect of UV light on the thermooxidative stability of linear low density polyethylene films crosslinked by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, M.; Basfar, A. A

    1998-06-01

    The effect of ultraviolet (UV) light on the thermooxidative stability of Linear Low Density Polyethylene(LLDPE) films was studied. LLDPE was stabilized with phenolic type antioxidant known as Irganox 1010, hindered amine light stabilizer known as Chimmasorb 944 and phenolic type gamma stabilizer. The influence of these additives on the thermooxidative stability of gamma and UV irradiated LLDPE were investigated by isothermal Differential Scanning Calorimeter (DSC). The oxidation induction time (OIT) experiments indicate that antirad free LLDPE films which contains antioxidant and UV stabilizer are more sensitive to gamma and UV radiation. On the other hand, films which contain antirad and irradiated to different doses of {gamma}-radiation demonstrated improved thermooxidative stability.

  1. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    Science.gov (United States)

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers.

  2. IMPROVED PROPERTIES OF METALLOCENE-CATALYZED LINEAR LOW-DENSITY POLYETHYLENE/POLYPROPYLENE BLENDS DURING ULTRASONIC EXTRUSION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Metallocene-catalyzed linear low-density polyethylene/polypropylene (mLLDPE/PP) blends were prepared by ultrasonic extrusion in this work. Their extrusion processing behaviors were estimated by online measured data, such as the die pressure and flow rate. Crystallization and mechanical properties of the blends were also investigated. The results show that the addition of PP improves the processing behaviors of mLLDPE, but has little effect on its mechanical properties. On the other hand, the addition of mLLDPE improves the impact strength of PP, but has little effect on its processing behavior. The processing behaviors and mechanical properties of mLLDPE/PP blends get further improved due to the presence of ultrasonic oscillation during extrusion. Compared with PP-rich blends, the apparent viscosity drop of mLLDPE-rich blends is more sensitive to ultrasonic oscillation. The ultrasonic oscillation affects the crystal nucleation, while barely the other crystalline behaviors of the blends.

  3. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  4. Medium osmolarity and pericellular matrix development improves chondrocyte survival when photoencapsulated in poly(ethylene glycol) hydrogels at low densities.

    Science.gov (United States)

    Villanueva, Idalis; Bishop, Nikki L; Bryant, Stephanie J

    2009-10-01

    The ability to encapsulate cells over a range of cell densities is important toward mimicking cell densities of native tissues and rationally designing strategies where cell source and/or cell numbers are clinically limited. Our preliminary findings demonstrate that survival of freshly isolated adult bovine chondrocytes dramatically decreases when photoencapsulated in poly(ethylene glycol) hydrogels at low densities (4 million cells/mL). During enzymatic digestion of cartilage, chondrocytes undergo a harsh change in their microenvironment. We hypothesize that the absence of exogenous antioxidants, the hyposmotic environment, and the loss of a protective pericellular matrix (PCM) increase chondrocytes' susceptibility to free radical damage during photoencapsulation. Incorporation of antioxidants and serum into the encapsulation medium improved cell survival twofold compared to phosphate-buffered saline. Increasing medium osmolarity from 330 to 400 mOsm (physiological) improved cell survival by 40% and resulted in approximately 2-fold increase in adenosine triphosphate (ATP) production 24 h postencapsulation. However, cell survival was only temporary. Allowing cells to reproduce some PCM before photoencapsulation in 400 mOsm medium resulted in superior cell survival during and postencapsulation for up to 15 days. In summary, the combination of antioxidants, physiological osmolarity, and the development of some PCM result in an improved robustness against free radical damage during photoencapsulation.

  5. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fainleib, A.; Grigoryeva, O. [Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kiev 02160 (Ukraine); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: fainleib@i.kiev.ua

    2009-07-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation ({gamma} rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  6. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.D.

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or ps

  7. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 {approx} 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic.

  8. Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups.

    Science.gov (United States)

    Passaglia, Elisa; Bertoldo, Monica; Ceriegi, Silvia; Sulcis, Roberta; Narducci, Piero; Conzatti, Lucia

    2008-04-01

    LDPE, EPM and their derivatives containing a moderate amount (0.08-1.8 by mol) of diethylsuccinate or succinic anhydryde groups were used as matrices in blending with different amount of organophilic montmorillonites and the resulting composite morphology and structure (by XRD, SEM, TEM microscopy, DSC analysis and selective solvent extraction) were studied with reference to the polar groups/MMT ratio. Exfoliated, intercalated and mixed morphologies were achieved. High concentrations of polar groups grafted to the polyolefin and montmorillonite loading not larger than 5% wt were favourable for obtaining high exfoliation degree. Particularly in the exfoliated MMT composite LDPE had lower crystallinity degree, while EPM showed increased glass transition temperature and reduced solubility in hot toluene. Moreover, oxygen and water vapor barrier property improvement was observed in films where MMT exhibits either exfoliated or intercalated morphologies. Strong interactions with the montmorillonite particle surface through the polar groups grafted to the polyolefin seems to be the basic effect responsible for the morphology and peculiar properties. A model based on the reduced mobility of the polymer located near the particle surface or inside the MMT gallery (confined phase) was proposed to explain the observed oxygen permeability reduction, the T(g) increase and solubility of poly(ethylene-ran-propylene)/MMT nanocomposites.

  9. Optical Properties of Ldpe Films with different Additives Mixtures Propiedades ópticas de peliculas Ldep con diferentes mezclas de aditivos.

    Directory of Open Access Journals (Sweden)

    A E Delgado

    2011-12-01

    Full Text Available In this paper were processed dierent linear low density polyethylene (LDPEformulations, mixed it with ve kind of dierent additives whose objectivewas analyzing the additives eects in the optical properties of LDPE lms ongreenhouse cover structure in protected cultivation for tropical environments.The results of ultra violet and visible region showed that the light transmissionfrom the reference lm was higher than additives lms mixtures in thevisible region, eect of some elements and synergistic action from additivescontributing to decrease the light transmission in the ultra violet and visibleregion.En el presente artículo se procesaron diferentes formulaciones de polietileno lineal de baja densidad (PEBD mezclado con 5 tipos de aditivos diferentes, cuyo objetivo es analizar el efecto de los aditivos en las propiedades ópticas de películas de PEBD de protección de cultivo dirigida fundamentalmente para construcciones de invernaderos adecuados para el desempeño en medios tropicales. Los resultados de la transmisión de la región ultra violeta y visible muestran que la transmisión de luz de las películas de referencia es mayor en la zona visible que en las películas fabricadas con mezclas de aditivos, debido al efecto difusivo de algunos elementos y a la acción sinérgica de los aditivos disminuyendo la transmisión de luz en la zona ultra violeta y visible.

  10. Open Source Laser Polymer Welding System: Design and Characterization of Linear Low-Density Polyethylene Multilayer Welds

    Directory of Open Access Journals (Sweden)

    John J. Laureto

    2016-07-01

    Full Text Available The use of lasers to weld polymer sheets provides a means of highly-adaptive and custom additive manufacturing for a wide array of industrial, medical, and end user/consumer applications. This paper provides an open source design for a laser polymer welding system, which can be fabricated with low-cost fused filament fabrication and off-the-shelf mechanical and electrical parts. The system is controlled with free and open source software and firmware. The operation of the machine is validated and the performance of the system is quantified for the mechanical properties (peak load and weld width of linear low density polyethylene (LLDPE lap welds manufactured with the system as a function of linear energy density. The results provide incident laser power and machine parameters that enable both dual (two layers and multilayer (three layers while welding only two sheets polymer welded systems. The application of these parameter sets provides users of the open source laser polymer welder with the fundamental requirements to produce mechanically stable LLDPE multi-layer welded products, such as heat exchangers.

  11. Dielectrical properties of composites LDPE+CB

    Directory of Open Access Journals (Sweden)

    Škipina Blanka

    2010-01-01

    Full Text Available There is currently great interest in the technological properties of conductive polymer composites because their cost-performance balance. They have a wide range of industrial applications -in anti-static materials, self regulating heaters, current overload and overheating protection devices, and materials for electromagnetic radiation shielding. Measurements of the electrical properties of polymer composites are one of the most convenient and sensitive methods for studying polymer structure. A polymer composite differs substantially from a free polymer in a wide range of properties. The presence of filler affects both the electrical, as well as mechanical properties. One of the most important characteristics of conductive polymer composites is that their electrical conductivity increases nonlinearly with the increase of the concentration of filler particles. When the concentration of filler particles reaches a certain critical value, a drastic transition from an electrical insulator to a conductor is exhibited. This conductivity behavior resulting in a sudden insulator-conductor transition is ascribed to a percolation process, and the critical filler concentration at which the conductivity jump occurs is called ‘percolation threshold’. In the past few years, a lot of studies have been carried out to analyze the percolation phenomenon and mechanisms of the conductive behavior in conductive polymer composites. It has been established that the electrical conductivity of conductive polymer composites uncommonly depends on the temperature. Some of such composites show a sharp increase and/or decrease in electrical conductivity at specific temperatures. The conductive temperature coefficient (CTC of conductive polymer composites has been widely investigated. In these work we investigated how concentration of the CB affects the dielectrical properties of the composite LDPE+CB. The ac electrical conductivity, σac, for such composites was measured

  12. Surface Modification of Polyethylene Film by RF-Ar Plasma Treatment%RF-Ar等离子体对聚乙烯薄膜的表面改性

    Institute of Scientific and Technical Information of China (English)

    解林坤; 黄元波; 代沁伶; 梁艳君; 柴希娟

    2012-01-01

    The surfaces of the low density polyethylene (LDPE) sheet were modified by RF argon glow discharge plasma.The impacts of the surface modification conditions, including the pressure, plasma power, and modification time, on the surface morphologies and properties of the LDPE films were studied. The surfaces of the LDPE films, before and after the plasma treatment,were characterized with X-ray photoelectron spectroscopy,atomic force microscopy,static contact angle measurement,and differential scanning calorimetry. The results show that the plasma treatment time significantly affects the surface microstructures and properties. For instance, the plasma treatment for 20 s markedly improves the wetta-bilty of the LDPE surface;but a treatment time longer than 20 s little influences the contact angle. We suggest that the existence of a high density of oxygen-containing and a low density of nitrogen-containing functional groups in the surfaces of the plasma modified LDPE films, may account for the slow the aging evolution of the surface contact angle.%采用射频辉光放电氩等离子体,在工作压力为20Pa、功率为30W的条件下对低密度聚乙烯薄膜进行了不同时间的表面处理.借助静态接触角、X射线光电子能谱仪、原子力显微镜、差示扫描量热仪对薄膜改性前后的性能进行了表征及分析.研究结果表明:氩等离子体短时间(20s)处理便可以有效改善薄膜表面的亲水性,处理时间大于20s后接触角的变化并不明显;处理后的薄膜表面引人了大量的含氧及少量的含氮官能团;薄膜表面所形成的交联层阻挡了极性基团的翻转,有效延长了接触角的时效性;薄膜的表面形貌和结晶度发生了变化.

  13. Parametric and mechanical characterization of linear low density polyethylene (LLDPE) using rotational moulding technology

    Indian Academy of Sciences (India)

    P L Ramkumar; D M Kulkarni; V V Chaudhari

    2014-06-01

    In this research work, extensive literature review of the rotational moulding process using linear low density polythene (LLDPE) has been carried out to summarize the present status of the characterization in order to maintain quality and reliability of the products.The present characterization of rotomoulded products using LLDPE is based on the mechanical properties which are being altered by changing process parameters. However, it is observed that in the majority of applications of the products made of LLDPE using rotational moulding technology are prone to cracking failure due to manufacturing defects at room temperature. Therefore, study of fracture characterization of the material is equally important in relation to quality and reliability. In this article, the present characterization of the rotational moulded products using different polymers is summarized in the form of review and the importance of evaluation of the fracture behaviour of rotomoulded products is emphasized.

  14. Incorporation of Copper Enhances the Anti-Ageing Property of Flame-Sprayed High-Density Polyethylene Coatings

    Science.gov (United States)

    Jia, Zhengmei; Huang, Jing; Gong, Yongfeng; Jin, Peipeng; Suo, Xinkun; Li, Hua

    2017-02-01

    High-density polyethylene (HDPE)-copper (Cu) composite coatings were prepared through depositing HDPE-Cu core-shell particles by flame spraying. The HDPE-Cu composite coatings and the HDPE coatings were aged in xenon lamp ageing testing chamber. The variations of chemical compositions and surface morphology of the coatings before and after the ageing testing were analyzed using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and ultraviolet-visible spectrophotometer. Results show that there is no chemical composition variation in the HDPE-Cu coatings. Cracks were found on the surfaces of the HDPE coatings, while the HDPE-Cu coating shows almost intact surface morphology. These results suggest that the HDPE-Cu coatings present better anti-ageing performances than the HDPE coatings. Further assessment of the function of Cu shells on the anti-ageing property reveals that Cu shells not only enhanced the absorption of the coatings to ultraviolet, but also increased their reflectivity to visible light. Additionally, the Cu shells enhanced the decomposition temperature and thermal stability of HDPE in the composite coatings. These results give bright insight into potential anti-ageing applications of the polymer-based structures.

  15. An Facile High-Density Polyethylene - Exfoliated Graphite - Aluminium Hydroxide Composite: Manufacture, Morphology, Structure, Antistatic and Fireproof Properties

    Directory of Open Access Journals (Sweden)

    Jihui LI

    2014-09-01

    Full Text Available Graphite intercalation compounds (GIC and exfoliated graphite (EG as raw materials were prepared with flake graphite, concentrated sulphuric acid (H2SO4, potassium bichromate (K2Cr2O7 and peracetic acid (CH3CO3H and characterized. Then, high-density polyethylene-exfoliated graphite (HDPE-EG composites were fabricated with HDPE and EG via in situ synthesis technique in the different mass ratio, and their resistivity values (ohms/sq were measured. Based on the resistivity values, it was discovered that HDPE-EG composite with the antistatic property could be fabricated while the mass ratio was 5.00 : 0.30. Last, HDPE-EG-aluminium hydroxide (HDPE-EG-Al(OH3 composites were manufactured with HDPE, GIC and Al(OH3 via the in situ synthesis-thermal expansion technique, and their resistivity values and limiting oxygen index (LOI values were measured. Based on the resistivity values and LOI values, it was discovered that HDPE-EG-Al(OH3 composite with the antistatic and fireproof property could be manufactured while HDPE, GICs and Al(OH3 of mass ratio was 5.00 : 0.30 : 1.00. Otherwise, the petal-like morphology and structure of HDPE-EG-Al(OH3 composite were characterized, which consisted of EG, HDPE and Al(OH3. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4275

  16. Influence of triallyl cyanurate as co-agent on gamma irradiation cured high density polyethylene/reclaimed tire rubber blend

    Science.gov (United States)

    Mali, Manoj N.; Arakh, Amar A.; Dubey, K. A.; Mhaske, S. T.

    2017-02-01

    Utilization of waste from tire industry as reclaimed tire rubber (RTR) by formation of blends with high density polyethylene (HDPE) is great area to be focused. Enhancement of properties by the addition of triallyl cyanurate (TAC) as a co-agent with 1%, 3% and 5% to blend of HDPE 50 wt% and RTR 50 wt% in presence of gamma irradiation curing were investigated. Specifically, mechanical and thermal properties were studied as a function of amount of TAC and gamma irradiation dose in range of 50-200 kGy. The resultant blends were evaluated for the values of impact strength, gel content, thermal stability, tensile properties, rheological properties and morphological properties with increasing irradiation dosage and TAC loading. The mechanical properties tensile strength, hardness, impact strength of blend containing 3% of TAC were substantially increased with increasing irradiation dosage up to 150 KGy. Rheological analysis has shown increase in viscosity with increase in TAC loading up to 3% and 150 KGy irradiation dosages. 3% loading of TAC lead to better set of properties with150 KGy gamma irradiation dosage.

  17. A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity

    Directory of Open Access Journals (Sweden)

    Kadir Ozaltin

    2016-06-01

    Full Text Available Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot, which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT, activated partial thromboplastin time (aPTT, and thrombin time (TT.

  18. INVESTIGATION OF MICROSTRUCTURE AND CONDUCTIVE MECHANISM OF HIGH DENSITY POLYETHYLENE/CARBON BLACK PARTICLE COMPOSITE BY POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Yang-mei Fan; Xian-fenga Zhang; Bang-jiao Ye; Xian-yi Zhou; Hui-min Weng; Jiang-feng Du; Rong-dian Han; Shao-jin Jia; Zhi-cheng Zhang

    2002-01-01

    The microstmcture and conductive mechanism of high density polyethylene/carbon black (HDPE/CB) composite were investigated by positron annihilation lifetime spectroscopy (PALS). The PALS were measured in two series of samples,one with various CB contents in the composites and the other with various γ-irradiation doses in HDPE/CB composite containing 20 wt% CB. It was found that CB particles distribute in the amorphous regions, the CB critical content value in HDPE/CB composite is about 16.7 wt% and the suitable γ-irradiation dose for improving the conductive behavior of HDPE/CB composite is about 20 Mrad. The result observed for the second set of samples suggests that γ-irradiation causes not only cross-linking in amorphous regions but also destruction of the partial crystalline structure. Therefore, a suitable irradiation dose, about 20 Mrad, can induce sufficient cross-linking in the amorphous regions without enhancing the decomposition of crystalline structure, so that the positive temperature coefficient (PTC) effect remains while the negative temperature coefficient (NTC) effect is suppressed. A new interpretation of the conductive mechanism, which might provide a more detailed explanation of the PTC effect and the NTC effect has been proposed.

  19. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation.

    Science.gov (United States)

    Kowalczyk, Anna; Chyc, Marek; Ryszka, Przemysław; Latowski, Dariusz

    2016-06-01

    This study presents results of research on isolation new bacteria strain Achromobacter xylosoxidans able to effect on the structure of high-density polyethylene (HDPE), polymer resistant to degradation in environment. New strain of A. xylosoxidans PE-1 was isolated from the soil and identified by analysis of the 16S ribosome subunit coding sequences. The substance to be degraded was HDPE in the form of thin foil films. The foil samples were analyzed with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) as well as scanning electron microscope (SEM), and the results revealed degradation of chemical structure of HDPE. About 9 % loss of weight was also detected as a result of A. xylosoxidans PE-1 effect on HDPE foil. On the basis of comparative spectral analysis of the raw material before the bacteria treatment and the spectrum from a spectra database, it was assumed that the HDPE was the only source of carbon and energy for the microorganisms. No fillers or other additives used in the plastic processing were observed in HDPE before experiments. This is the first communication showing that A. xylosoxidans is able to modify chemical structure of HDPE, what was observed both on FTIR, in mass reduction of HDPE and SEM analysis. We also observed quite good growth of the bacteria also when the HDPE was the sole carbon source in the medium. These results prove that A. xylosoxidans is an organism worth applying in future HDPE biodegradation studies.

  20. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend.

    Science.gov (United States)

    Nguyen, D M; Vu, T T; Grillet, Anne-Cécile; Ha Thuc, H; Ha Thuc, C N

    2016-01-20

    Linear low density polyethylene (LLDPE)/thermal plastic starch (TPS) blend was studied to prepare the biobased nanocomposite material using organoclay nanofil15 (N15) modified by alkilammonium as the reinforced phase. The LLDPE/TPS blend and its nanocomposites were elaborated by melt mixing method at 160 °C for 7 min. And the compounded sample was filmed by blowing method at three different zones of temperature profile which are 160-170-165 °C. The good dispersion of clay in the polymer blend matrix is showed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM), and a semi-exfoliated structure was obtained. The thermal and mechanical properties of materials are enhanced when N15 is added to the mixture. The effect of N15 on morphology and particles size of TPS phase is also investigated. The biodegradation test shows that more than 60% in weight of LLDPE/TPS film is degraded into CO2, H2O, methane and biomass after 5 months in compost soil.

  2. Radiation-grafted polymers for biomaterial applications. I. 2-hydroxyethyl methacrylate: ethyl methacrylate grafting onto low density polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D.; Hoffman, A.S.; Ratner, B.D.

    1984-08-01

    Studies were conducted on the radiation grafting of 2-hydroxyethyl methacrylate (HEMA) and ethyl methacrylate (EMA) by the mutual irradation technique onto low density polyethylene. Four different solution concentrations were used, and radiation doses ranged from 0.03 to 0.50 Mrad. Four copolymer compositions having different HEMA:EMA ratios were also studied using two total monomer concentrations. The kinetics of the grafting process demonstrated by the two monomers were basically different. While EMA showed a typical diffusion-controlled kinetic pattern, HEMA exhibited a more complex behavior, the main features of which were an induction period, a slight autoacceleration and a significant drop in graft level after a maximum is reached. The difference in behavior was interpreted in terms of partitioning of monomers into the polyethlene substrate. The surface topography of the grafted films was studied by means of scanning electron microscopy. A mechanism based on osmotic cell formation was suggested for the HEMA graft system. The copolymer systems investigated showed that the graft reaction is faster in the initial stages for higher percentages of EMA in the monomer mixtures; as grafting proceeds the trend is reversed. 24 references, 16 figures, 2 tables.

  3. Effect of stearic acid-grafted starch compatibilizer on properties of linear low density polyethylene/thermoplastic starch blown film.

    Science.gov (United States)

    Khanoonkon, Nattaporn; Yoksan, Rangrong; Ogale, Amod A

    2016-02-10

    The present work aims to investigate the effect of stearic acid-grafted starch (ST-SA) on the rheological, thermal, optical, dynamic mechanical thermal, and tensile properties of linear low density polyethylene/thermoplastic starch (LLDPE/TPS) blends, as well as on their water vapor and oxygen barrier properties. Blends consisting of LLDPE and TPS in a weight ratio of 60:40 and ST-SA at different concentrations, i.e. 1, 3 and 5%, were prepared using a twin-screw extruder. The obtained resins were subsequently converted into films via blown film extrusion. Incorporation of ST-SA resulted in a decreased degree of shear thinning, reduced ambient temperature elasticity, and improved tensile strength, secant modulus, extensibility, and UV absorption, as well as diminished water vapor and oxygen permeabilities of the LLDPE/TPS blend. These effects are attributed to the enhanced interfacial adhesion between LLDPE and TPS phases through the compatibilizing effect induced by ST-SA, and the good dispersion of the TPS phase in the LLDPE matrix. The results confirmed that ST-SA could potentially be used as a compatibilizer for the LLDPE/TPS blend system.

  4. One step graft copolymerization of acrylic acid and sodium styrene sulfonate onto high-density polyethylene film by preirradiation method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr's salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr's salt concentration, but increases at low temperature when Mohr's salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.

  5. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    Science.gov (United States)

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus.

  6. A NOVEL FIRE RETARDANT AFFECTS FIRE PERFORMANCE AND MECHANICAL PROPERTIES OF WOOD FLOUR-HIGH DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Mingzhu Pan,

    2012-02-01

    Full Text Available Wood flour-high density polyethylene (HDPE composites were prepared to investigate the effects of ammonium polyphosphate based fire retardant content (2, 4, 6, 8, and 10-wt%, on the flammability, mechanical, and morphological properties of the wood flour-HDPE composites in this study. Cone calorimetry analysis showed that the addition of fire retardant could decrease the heat release rate (HRR and total smoke release of wood flour-HDPE composites, while it had no obviously effects on effective heat of combustion. Most of the decrease of the HRR occurred with the concentration of the fire retardant up to 4-wt%. With addition of fire retardant, the composites showed a decrease in tensile elongation at break and impact strength, and had no obvious effect on tensile and flexural strength. The scanning electron microscopy observation on the fracture surface of the composites indicated that fire retardant had a uniform dispersion in the wood flour-HDPE composites. However, interfacial bonding would be suggested to improve in wood flour-HDPE composites with ammonium polyphosphate based fire retardant.

  7. Thermal and mechanical properties of e-beam irradiated butt-fusion joint in high-density polyethylene pipes

    Science.gov (United States)

    Vijayan, Vipin; Pokharel, Pashupati; Kang, Min Kwan; Choi, Sunwoong

    2016-05-01

    The effects of electron beam irradiation on the thermal and mechanical properties of a butt-fusion joint in high density polyethylene (HDPE) pipes were investigated. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infra-red spectroscopy of welded samples revealed the changes of crystallinity due to the cross linking effect of electron beam irradiation. The suppression of the degree of crystallinity with increasing the irradiation dose from 0 kGy to 500 kGy indicated that the e-beam radiation induced cross-links among the polymer chains at the weld zone. The cross-link junction at the joint of HDPE pipe prevented chain folding and reorganization leading to the formation of imperfect crystallites with smaller size and also less in content. Tensile test of the welded samples with different dose of e-beam irradiation showed the increased values of the yield stress and Young's modulus as a function of irradiation dose. On the other hand, the elongation at break diminished clearly with increasing the irradiation doses.

  8. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    Science.gov (United States)

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments.

  9. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong; Harkin-Jones, Eileen [School of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 5AH (United Kingdom); Linton, David [School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT9 5AH (United Kingdom)

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  10. Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2014-01-01

    Full Text Available Blends of linear low density polyethylene (LLDPE ethylene-1-octene copolymers (EOC, with different 1-octene (OC content, and ground rubber tire (GRT were prepared by melt mixing in a twin screw extruder. Five different compositions of LLDPE/EOC/GRT blends were processed in the extruder to evaluate the effect of EOC addition to the LLDPE/GRT blends. The addition of EOC to LLDPE/GRT blends improves the mechanical properties. Besides, the replacement of 5% of GRT by EOC grades (OC = 20 or 30 wt % in the 50/50 LLDPE/GRT blend, leads to a significant increase of ultimate tensile properties. The EOC comonomer content affects the properties of LLDPE/EOC and LLDPE/EOC/GRT blends. Dynamical-mechanical analyses showed that, with the addition of EOC to LLDPE/GRT blends, the Tg of GRT and the Tg of EOC are closer. This effect is more pronounced when the EOC with the highest content of comonomer (30 wt % is added to LLDPE/GRT blend. In this case, only one peak related to the Tg of the rubber phase can be visualized in the amorphous region. These findings indicate that EOC may act as compatibilizer agent for LLDPE/GRT blends.

  11. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat.

    Science.gov (United States)

    Weinstein, John E; Crocker, Brittany K; Gray, Austin D

    2016-07-01

    As part of the degradation process, it is believed that most plastic debris becomes brittle over time, fragmenting into progressively smaller particles. The smallest of these particles, known as microplastics, have been receiving increased attention because of the hazards they present to wildlife. To understand the process of plastic degradation in an intertidal salt marsh habitat, strips (15.2 cm × 2.5 cm) of high-density polyethylene, polypropylene, and extruded polystyrene were field-deployed in June 2014 and monitored for biological succession, weight, surface area, ultraviolet (UV) transmittance, and fragmentation. Subsets of strips were collected after 4 wk, 8 wk, 16 wk, and 32 wk. After 4 wk, biofilm had developed on all 3 polymers with evidence of grazing periwinkles (Littoraria irrorata). The accreting biofilm resulted in an increased weight of the polypropylene and polystyrene strips at 32 wk by 33.5% and 167.0%, respectively, with a concomitant decrease in UV transmittance by approximately 99%. Beginning at 8 wk, microplastic fragments and fibers were produced from strips of all 3 polymers, and scanning electron microscopy revealed surface erosion of the strips characterized by extensive cracking and pitting. The results suggest that the degradation of plastic debris proceeds relatively quickly in salt marshes and that surface delamination is the primary mechanism by which microplastic particles are produced in the early stages of degradation. Environ Toxicol Chem 2016;35:1632-1640. © 2016 SETAC.

  12. Linear Low Density Polyethylene (LLDPE) as Flexible Substrate for Wrist and Arm Antennas in C-Band

    Science.gov (United States)

    Gogoi, Pragyan Jyoti; Bhattacharyya, Satyajib; Bhattacharyya, Nidhi S.

    2015-04-01

    This paper focuses on the development and study of linear low density polyethylene as a flexible substrate for conformal antennas for body-worn applications. Thermal stability, tensile strength and elongation at break of the substrate were studied. The permittivity of the substrate was 2.2 and tan δ was found to be 0.0003 at 6 GHz. Since the antenna is being developed for wrist and arm wearing in C-band, the performance of the antenna, such as the S 11 parameter and radiation pattern, were studied with different bending axes and with bending curvature approximating that of the arm and wrist. The performance of a 6 GHz rectangular patch antenna with bending was found to be consistent with the flat profile antenna at the same frequency. A maximum shift in the resonant frequency of ˜20 MHz was observed. The -10 dB bandwidth and directivity of the antenna did not change much with bending. The maximum bending radius in the present study is 10 mm, and S 11 was found to be -17.53 dB at 5.94 GHz and -14.02 dB at 6.06 GHz for a bending axis parallel to the radiating and non-radiating edge, respectively.

  13. A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity

    Science.gov (United States)

    Ozaltin, Kadir; Lehocký, Marián; Humpolíček, Petr; Pelková, Jana; Sáha, Petr

    2016-01-01

    Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT). PMID:27294915

  14. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  15. High density polyethylene (HDPE)/poly(ethylene terephthalate) (PET) polymer blend studies related to recycling co-mingled plastics

    Science.gov (United States)

    Tsai, Pang-Yen

    Polymer blends of virgin high density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) were studied as an attempt to relate the microstructure to the mechanical properties of the blends. The virgin blends were prepared by extrusion and then injection molded into specimens for characterization. Two of the virgin blends were tested for possible compatibilization using a styrene-ethylene-butylene-styrene (SEBS) block copolymer. In addition, six blends of post-consumer resins (PCRs) of HDPE and PET were included in this work for comparison. The moduli of the virgin blends showed positive deviation from those expected from the rule of mixtures. The synergism of the composite moduli can be explained partly by a Poisson's effect. Yield strengths of the blends molded at low injection chamber temperatures (200sp°, 230sp°, and 250sp°C) followed the rule of mixtures well, because PET filaments found in the composites had very high length to diameter ratios. When the injection chamber temperature was above the PET melting point (˜254sp°C), PET filaments were found to break down into particles, and the yield strengths of the blends coincided with the values expected from the inverse rule of mixtures. Impact strengths of the virgin blends were much less than that of a HDPE homopolymer due to poor interfacial bonding between HDPE and PET. Compatibilization appeared to be advantageous since it dramatically improved the impact strength of the virgin blends. SEM micrographs of impact fractured surfaces revealed that the improved adhesion from compatibilization and the presence of numerous uniaxially aligned PET filaments in the HDPE substrate can account for the significant increases in fracture resistance of the compatibilized blends. Mechanical performance of the PCRs was inferior to that of the virgin blends. Aside from polymer degradation and contamination due to repeated processing and handling, absence of PET filaments and interfacial bonding could be

  16. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo.

    Science.gov (United States)

    Du, Xiao-Jiao; Wang, Ji-Long; Liu, Wei-Wei; Yang, Jin-Xian; Sun, Chun-Yang; Sun, Rong; Li, Hong-Jun; Shen, Song; Luo, Ying-Li; Ye, Xiao-Dong; Zhu, Yan-Hua; Yang, Xian-Zhu; Wang, Jun

    2015-11-01

    Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel.

  17. Structural changes in the low-density polyethylene/natural rubber composites in the aqueous and soil media

    Science.gov (United States)

    Mastalygina, Elena E.; Varyan, Ivetta A.; Kolesnikova, Natalya N.; Popov, Anatoly A.

    2016-05-01

    The novel biodegradable materials based on polyethylene with different content of natural rubber have been developed. In this paper the regularities of changes in structure and properties of the composites under the influence of biological and non-biological factors have been investigated. High levels of biodegradability and satisfied mechanical properties of biocomposites, as well as the significant modification of the polyethylene crystalline phase in the composites affected by moisture and environmental factors have been determined.

  18. Environmental risk assessment of low density polyethylene unit using the method of failure mode and effect analysis

    Directory of Open Access Journals (Sweden)

    Salati Parinaz

    2012-01-01

    Full Text Available The ninth olefin plan of Arya Sasol Petrochemical Company (A.S.P.C. is regarded the largest gas Olefin Unit located on Pars Special Economic Energy Zone (P.S.E.E.Z. Considering the importance of the petrochemical unit, its environmental assessment seems necessary to identify and reduce potential hazards. For this purpose, after determining the scope of the study area, identification and measurement of the environmental parameters, environmental risk assessment of the unit was carried out using Environment Failure Mode and Effect Analysis (EFMEA. Using the noted method, sources causing environmental risks were identified, rated and prioritized. Beside, the impacts of the environmental aspects derived from the unit activities as well as their consequences were also analyzed. Furthermore, the identified impacts were prioritized based on Risk Priority Number (RPN and severity level of the consequences imposed on the affected environment. After performing statistical calculations, it was found that the environmental aspects owing the risk priority number higher than 15 have a high level of risk. Results obtained from Low Density Polyethylene Unit revealed that the highest risk belongs to the emergency vent system with risk priority number equal to 48. It is occurred due to imperfect performance of the reactor safety system leading to the emissions of ethylene gas, particles, and radioactive steam as well as air and noise pollutions. Results derived from secondary assessment of the environmental aspects, through difference in calculated RPN and activities risk levels showed that employing modern methods and risk assessment are have remarkably reduced the severity of risk and consequently detracted the damages and losses incurred on the environment.

  19. Structure development during isothermal crystallisation of high-density polyethylene: Synchrotron small-angle X-ray scattering study

    Science.gov (United States)

    Ślusarczyk, Czesław

    2013-12-01

    Isothermal melt crystallisation in high-density polyethylene (HDPE) was studied using the time-resolved SAXS method with synchrotron radiation over a wide range of crystallisation temperatures. The SAXS profile was analysed by an interface distribution function, g1(r), which is a superposition of three contributions associated with the size distributions of crystalline (LC) and amorphous (LA) layers and a distribution of long period (LP). The morphological parameters extracted from the g1(r) functions show that the lamellar thickness increases with time, obeying a logarithmic time dependence. The time evolution of LC observed for the sample crystallised at 122 °C leads to the conclusion that crystallisation proceeds according to the mechanism of thickening growth. For samples crystallised at lower temperatures (116 °C and 118 °C), the lamellar thickening mechanism has been observed. The rate of lamellar thickening in these cases is much lower than that at 122 °C. At 40 °C, thickening of the crystalline layer does not occur. The interface distribution functions were deconvoluted, and the relative standard deviation σC/LC obtained in this way is an additional parameter that is varied during crystallisation and can be used for analysis of this process. Time-dependent changes in the σC/LC at large supercooling (TC=40 °C) indicates that LC presents a broad distribution in which the relative standard deviation increases with time. At lower supercooling (TC=122 °C), LC shows a much sharper distribution. In this case, the relative standard deviation decreases with time.

  20. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  1. 紫外辐射改性聚乙烯膜的亲水性研究%Investigation of hydrophilic modified polyethylene membrane induced by UV-irradiation grafting

    Institute of Scientific and Technical Information of China (English)

    王磊; 魏俊富; 赵孔银; 张环; 王晓磊

    2011-01-01

    A LDPE-g-AA hydrophilic membrane with different grafting degree is prepared by UV-irradiation grafting of acrylic acid (AA) on the low-density polyethylene (LDPE) membrane. The hydrophilic membrane is characterized by attenuated total reflectance Fourier transform infrared spectroscopy (FT IR-ATR) and scanning electronic microscope (SEM). The hydrophilicity is determined by contact angle of water, settling time and water absorption. The infrared spectrum shows that the carboxylic groups are introduced into the membrane and increase with grafting degrec. SEM images reveal that the graft polymer chains grow into regular spheroidal particles on the LDPE surface. When the grafting degree of LDPE-g-AA is above of 22%,the contact angle of water on LDPE-g-AA membrane decreases from 89° to 30°, settling time decreases from infinite to 11 s. And the contact angle of water and settling time are tended to be stable. Finally, the result of water absorption shows that water absorption increases with grafting degree of LDPE-g-AA.%以低密度聚乙烯(LDPE)膜为基体,通过紫外辐射方法接枝丙烯酸(AA),制得不同接枝率的LDPE-g-AA亲水膜;利用红外光谱和扫描电子显微镜分析膜接枝前后组成和形貌的变化,并通过测试与水接触角、沉降时间和吸水率研究接枝后聚乙烯膜的亲水性.红外谱图表明,辐射接枝后的聚乙烯膜表面引入了大量羧基,并且羧基的量随着接枝率的增大而增加.扫描电镜照片显示,接枝后膜表面出现明显的颗粒状物质,证明AA接枝到了聚乙烯膜表面.当LDPE-g-AA接枝率大于10%时接枝聚乙烯膜表面与水接触角由原来的89°降低到30°,沉降时间由原来的无穷大降低到11s,并且随着接枝率的继续增大,接触角与沉降时间趋于稳定;随着接枝率的增大,接枝后聚乙烯薄膜的吸水率增大.

  2. Radiation-induced graft polymerization of acrylamide: Reverse osmosis properties of polyethylene-g-poly(acrylamide) membrane

    Science.gov (United States)

    Dessouki, Ahmed M.; Hegazy, El-Sayed A.; El-Assy, Nasef B.; El-Boohy, Hussein A.

    A study has been made of some properties of the graft copolymer obtained by direct radiation grafting of acrylamide (AAm) onto low density polyethylene (LDPE) films. The swelling behaviour was investigated for the grafted and alkali-treated graft copolymer and it was found that this depends mainly on the amount of hydrophilic groups and also on the type of electrolytes (K- or Nasalts). salts). Some other properties of the graft copolymer films such as dimensional change wet and dry, electrical conductivity, and mechanical properties were studied. A trial has been made of such membrane for reverse osmosis desalination of saline water. The effect of operating time, degree of grafting, applied pressure and feed concentration on the water flux and salt rejection was determined.

  3. Electrical Properties of n-Butyl Acrylate-Grafted Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.R.; Oh, W.J.; Suh, K.S. [Korea University (Korea, Republic of)

    1997-04-01

    The electrical properties of n-butyl acrylate-grafted polyethylene (PE-g-nBA) were investigated. In PE-g-nBA, hetero charge founded in LDPE slightly increased due to the nBA grafting. Conduction currents decreased with the increase of nBA graft ratio. AC breakdown strength increased and water treeing length decreased with the increase of graft ratio in PE-g-nBA. (author). 4 refs., 6 figs.

  4. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh. [Kazan State Technological University, Kazan (Russian Federation); Abdulagatov, I.M., E-mail: ilmutdin@boulder.nist.gov [Geothermal Research Institute of the Dagestan Scientific Center of the Russian Academy of Sciences, Makhachkala, Dagestan (Russian Federation)

    2011-12-15

    Highlights: > Viscosity and density of polyethylene glycols. > Combined experimental apparatus for density and viscosity measurements. > Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  5. Scanning Electron Microscopy and Kinetic Studies of Ketene-Acetylated Wood/Cellulose High-Density Polyethylene Blends

    Directory of Open Access Journals (Sweden)

    Yakubu Azeh

    2012-01-01

    Full Text Available Acetylated cellulose and wood cellulose as well as untreated cellulose polyethylene blends were subjected to kinetic studies using water, 0.5 M NaOH, and 0.5 M HCl solutions in order to investigate their absorbent properties at 0.5/1.0 cellulose/wood cellulose/polyethylene matrix. The results of the absorption studies showed that the untreated cellulose and wood cellulose blends absorbed water and the acid and alkali solutions higher than the treated samples, which showed a reduction in acid, alkali, and water uptake. In this work, the effects of acetylation on the morphological studies of the polyethylene blends were obvious. The presence of acetyl groups improved the interfacial bonding between the polymer matrix and cellulose as well as the wood cellulose fibers, as evidenced by scanning electron microscopy (SEM.

  6. Different fibrovascularization rate between coralline hydroxyapatite and high density porous polyethylene (Medpore) measured by 99mTc-MDP bone scintigraphy 6 months after intraorbital implantation.

    Science.gov (United States)

    Pan, M-H; Wu, Y-W; Yen, R-F; Tzen, K-Y; Liao, S-L; Kao, C-H

    2003-12-01

    Many materials and types of implant have been used to achieve a cosmetic effect and prosthesis motility in the anophthalmic socket. Hydroxyapatite remains the implant material of choice for producing the most natural prosthesis motility while porous polyethylene shows promising characteristics as another useful material. The aim of this study was to compare the fibrovascular ingrowth rates of orbital implants between coralline hydroxyapatite and high density porous polyethylene (Medpore). The fibrovascularization rate is determined by bone imaging using 99mTc methylene diphosphonate (99mTc-MDP) 6 months after implantation. Our study included 29 patients with coralline, and nine patients with Medpore implants. Our results showed that groups with coralline implants appearing to achieve complete fibrovascularization at a much more rapid rate than those with Medpore. The differences in rate were statistically significant.

  7. Study on the rheological behavior of ultra-high molecular weight polyethylene/liner low density polyethylene/hyper-branched polyester-amide blends%UHMWPE/LLDPE/HBP共混体系流变行为研究

    Institute of Scientific and Technical Information of China (English)

    王亓超; 于俊荣; 张天; 陈蕾; 胡祖明; 诸静

    2012-01-01

    In order to improve the processing properties of ultra-high molecular weight polyethylene, blends of ultra-high molecular weight polyethylene/liner low density polyethylene/hyper-branched polyester-amide were prepared. The rheological behavior of UHMWPE/LLDPE/HBP blends was researched in this paper. The results indicated the apparent viscosity of the blends first deceases and then increases with increasing of HBP content. The blends are shear-thinning fluid and the non-Newtonian index less than 1. The viscous flow activation energy of the blends is lowest when the shear rate is 10 s~. The structural viscosity index of blends was decreased with the HBP content increased and increase with the viscosity average relative molecular weight of UHMWPE increased.%为改善超高相对分子质量聚乙烯(UHMWPE)的加工流变性,将超支化聚酯酰胺(HBP)和线性低密度聚乙烯(LLDPE)与UHMWPE共混,研究了不同比例UHMwPE/LLDPE/HBP共混体系的流变行为。结果表明:UHMWPE/LLDPE/HBP共混体系熔体表观粘度随HBP质量分数的增加而减小;共混体系非牛顿指数〈1,为典型的切力变稀流体;当剪切速率为10s。时,共混体系的粘流活化能较小;结构粘度指数随HBP质量分数增加而下降,随UHMWPE粘均相对分子质量增加而增大。

  8. Compatibilization of blends of low density polyethylene and poly(vinyl chloride) by segmented EB(SAN-block-EB)n block copolymers

    NARCIS (Netherlands)

    Kroeze, E.; Brinke, G. ten; Hadziioannou, G.

    1997-01-01

    Hydrogenated segmented poly[butadiene-block-((styrene-co-acrylonitrile)-block-butadiene)n] block copolymers, which were developed by use of the polymeric iniferter technique, were tested for their compatibilizing capacities for (10/90) LDPE/PVC blends. The acrylonitrile content of the SAN blocks of

  9. Compatibilization of blends of low density polyethylene and poly(vinyl chloride) by segmented EB(SAN-block-EB)(n) block copolymers

    NARCIS (Netherlands)

    Kroeze, E; ten Brinke, G.; Hadziioannou, G

    1997-01-01

    Hydrogenated segmented poly[butadiene-block-((styrene-co-acrylonitrile)-block-butadiene)(n)] block copolymers, which were developed by use of the polymeric iniferter technique, were tested for their compatibilizing capacities for (10/90) LDPE/PVC blends. The acrylonitrile content of the SAN blocks o

  10. Thermal degradation of Lewis acid complexed LDPE films

    Science.gov (United States)

    Sreelatha, K.; Predeep, P.

    2017-06-01

    The study highlights the thermal behavior of the semiconducting LDPE films synthesized by SbCl5 doping. The structural peculiarities and the responses of the structure to energetic modifications are studied. TGA and DTG curves are used to determine the thermal stability of the material. Degradation kinetics is elucidated. Activation energy and the entropy of activation for the degradation of the samples are calculated using Coats-Redfern plots and the samples show appreciable thermal stability.

  11. In vitro and in vivo characteristics of core–shell type nanogel particles: Optimization of core cross-linking density and surface poly(ethylene glycol) density in PEGylated nanogels

    OpenAIRE

    Tamura, Masato; Ichinohe, Satoshi; Tamura, Atsushi; Ikeda, Yutaka; Nagasaki, Yukio

    2011-01-01

    The biocompatibility and body distribution of PEGylated polyamine nanogels composed of chemically cross-linked poly(2-N,N-(diethylamino)ethyl methacrylate) (PEAMA) gel cores surrounded by poly(ethylene glycol) (PEG) chains were investigated to evaluate their feasibility as drug nanocarriers for systemic administration. PEGylated nanogels with different cross-linking densities (1, 2, and 5 mol.%) were prepared to evaluate their biocompatibilities by in vitro cytotoxicity assay, hemolysis assay...

  12. EVALUATION OF ULTRASONIC PHASED-ARRAY FOR DETECTION OF PLANAR FLAWS IN HIGH-DENSITY POLYETHYLENE (HDPE) BUTT-FUSION JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Prowant, Matthew S.; Denslow, Kayte M.; Moran, Traci L.; Jacob, Rick E.; Hartman, Trenton S.; Crawford, Susan L.; Mathews, Royce; Neill, Kevin J.; Cinson, Anthony D.

    2016-09-21

    The desire to use high-density polyethylene (HDPE) piping in buried Class 3 service and cooling water systems in nuclear power plants is primarily motivated by the material’s high resistance to corrosion relative to that of steel and metal alloys. The rules for construction of Class 3 HDPE pressure piping systems were originally published in Code Case N-755 and were recently incorporated into the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME BPVC) Section III as Mandatory Appendix XXVI (2015 Edition). The requirements for HDPE examination are guided by criteria developed for metal pipe and are based on industry-led HDPE research or conservative calculations.

  13. Characterization of composite high density polyethylene and layered zirconium phosphate; Caracterizacao de composito de polietileno de alta densidade (HDPE) e fosfato de zirconio lamelar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Zirconium phosphate (ZrP) (2 w%), synthesized by direct precipitation method, was used in the preparation of composite with high density polyethylene (HDPE), through extrusion processing in the molten state. Wide angle x-ray diffraction (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM) techniques were used for ZrP, neat polymer and composite mechanical and morphologic characterization. Although there was a slight increase in the Young modulus, WAXD and SEM analysis showed that the intercalation of the HDPE matrix in the filler galleries did not occur, probably due to the insufficient lamellae spacing to intercalate the polymer chains. Then, a microcomposite was achieved. (author)

  14. Analysis of Imported Linear Low Density Polyethylene in China%我国线性低密度聚乙烯进口情况分析

    Institute of Scientific and Technical Information of China (English)

    曾宝忠

    2015-01-01

    分析了我国近几年线性低密度聚乙烯(LLDPE)的进口情况和变化趋势,介绍了我国从不同国家和地区进口LLDPE的主要类别和牌号,对国内 LLDPE 生产企业提出了相关建议。%The situation and trends of imported linear low density polyethylene (LLDPE)in China were analyzed.The main types and grades of imported LLDPE from several countries are introduced, and some suggestions are given for domestic LLDPE plants.

  15. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  16. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Puig, C.C., E-mail: cpuig@usb.v [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Albano, C., E-mail: calbano@ivic.v [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, Laboratorio de Polimeros, Caracas (Venezuela, Bolivarian Republic of); Laredo, E. [Universidad Simon Bolivar, Departamento de Fisica, Grupo de Fisica de Materiales Amorfos y Cristalinos, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Quero, E. [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Karam, A. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2010-05-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 deg. C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  17. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using γ-rays

    Science.gov (United States)

    Puig, C. C.; Albano, C.; Laredo, E.; Quero, E.; Karam, A.

    2010-05-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 °C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  18. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined. PMID:28051105

  19. Preparation of Waste Clay/Walnut Shell Powder/LDPE Composite%废白土/核桃壳粉/低密度聚乙烯复合材料的制备

    Institute of Scientific and Technical Information of China (English)

    高留意; 闫丰

    2012-01-01

    用钛酸酯偶联剂改性核桃壳粉,与废白土、低密度聚乙烯制备复合材料,研究废白土用量对复合材料力学性能及加工流动性能的影响,并用扫描电镜观察核桃壳粉及复合材料表面微观形态.结果表明:随着废白土用量的增加,复合材料的力学性能、熔体指数呈先升后降趋势;核桃壳粉、废白土与低密度聚乙烯树脂的界面结合情况会影响复合材料的力学性能.%The composite was prepared using walnut shell powder modified by titanate coupling agent,waste clay and low density polyethylene. The influence of addition of waste clay on the mechanical property and the processing flowability of the composite were investigated. The microstructures of walnut shell powder and the composite were analyzed by SEM. The results showed that the mechanical properties and melt index of the composite increased before decreasing significantly with the increase of waste clay content. The mechanical properties of the composite were influenced by the interfacial bonding among the walnut shell powder,waste clay and LDPE resin.

  20. The migration of Irganox 1010 antioxidant from high-density polyethylene and polypropylene into a series of potential fatty-food simulants.

    Science.gov (United States)

    Lickly, T D; Bell, C D; Lehr, K M

    1990-01-01

    Alternatives to highly-volatile ethanol or analytically complex cooking oil were examined as potential fatty-food simulants which would undergo high-temperature exposures to food-packaging polymers in food-packaging evaluation studies. The alternatives consisted of alcohols containing four to eight carbons. As test cases, the migration of Irganox 1010 antioxidant from high-density polyethylene and polypropylene into the higher alcohols was compared to the migration of Irganox 1010 into aqueous ethanol solutions and cooking oil, the US Food and Drug Administration's currently recommended fatty-food simulants. The data obtained showed slightly greater migration of the antioxidant into 95% ethanol than into cooking oil, and slightly less migration into 50% ethanol than into cooking oil. The migration of the antioxidant into the alcohols consisting of four or more carbons was much greater than the migration observed in cooking oil. In many experiments the polymers became depleted of the antioxidant prior to the end of the short, high-temperature exposure period (i.e. 2 h at 250 degrees F) to the higher alcohols. Also, for all experiments run under the same time/temperature/simulant conditions, migration of the antioxidant was greater from polypropylene than from high-density polyethylene. Diffusion coefficients generated for 95% ethanol and corn oil from these data compare closely with data from the literature.

  1. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE Addition

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2013-06-01

    Full Text Available This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs. The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  2. Effect of Conductive Inorganic Fillers on Space Charge Accumulation Characteristics in Cross-linked Polyethylene

    Science.gov (United States)

    Harada, Hiroshi; Hayashi, Nobuya; Tanaka, Yasuhiro; Maeno, Takashi; Mizuno, Takehiko; Takahashi, Tohru

    We have observed space charge profiles in cross-linked polyethylene (XLPE) under dc high electric field using the PEA (pulsed electro-acoustic) system to study the relationship between space charge behavior and dielectric breakdown. In our previous research work, we have found that a large amount of, so called, packet-like charge generates in low density polyethylene (LDPE) under high dc electric field of more than 100 kV/mm. The packet-like charge enhances the electric field locally in bulk of the sample, and then finally it leads a breakdown. On the other hand, a new type of XLPE which was made through adding conductive inorganic fillers, shows a good dc dielectric breakdown characteristic and high volume resistivity under dc stress. In this report, we tried to observe the space charge behavior under high dc electric field in this material. From the results, it is found that the charge injection is effectively suppressed by adding only a small amount of conductive inorganic fillers to XLPE.

  3. Use of a Dynamic Headspace GC-MS Method for the Study of Volatile Organic Compounds in Polyethylene Packaging. An Undergraduate Experiment in Polymer Analysis

    Science.gov (United States)

    Hodgson, Steven C.; Casey, R. John; Orbell, John D.; Bigger, Stephen W.

    2000-12-01

    A novel experiment is described for introducing senior undergraduate physical chemistry and food science students to a technique commonly used to identify volatile organic compounds (VOCs) that are emitted from polymers at ambient temperatures. The VOCs in food-grade low-density polyethylene (LDPE) pellets are purged with nitrogen and trapped at ambient temperature on a Tenax-GC (2,6-diphenyl-p-phenylene oxide polymer) sorbent. The VOCs are liberated using dynamic headspace desorption and are separated and identified using the technique of gas chromatography-mass spectrometry (GC-MS). The relationship between the chromatographic peak area of a given VOC and the temperature of desorption, as well as the relationship between the total chromatographic area and the temperature of desorption, are quantitatively modeled using a modified form of the van't Hoff isochore.

  4. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  5. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    National Research Council Canada - National Science Library

    Muksing, N; Magaraphan, R; Coiai, S; Passaglia, E

    2011-01-01

    Low density polyethylene/layered double hydroxide (LDH) composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer...

  6. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  7. Study of effects gamma radiation linear low density polyethylene (LLDPE) injected; Estudo dos efeitos da radiacao gama no polietileno linear de baixa densidade (PEBLD) injetado

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Claudia Feitoza de

    2014-09-01

    The use of package sterilization through gamma radiation aim to reduce the microbiological contamination. The linear low density polyethylene (LLDPE) can be obtained by a process in solution, suspension or gaseous phase, depending on the type of the catalyzer used, that can be heterogeneous, or homogeneous, or metallocenes Ziegler-Natta. According to the literature, the gamma radiation presents a high penetration at polymeric materials causing the appearing of scissions, reticulation, and degradation when oxygen presence. This paper were irradiated with {sup 60}Co with 2000 kCi of activity, in presence of air, samples of LLDPE injected. Utilized doses of 5, 10, 20, 50 or 100 kGy, and about 5 kGy.h{sup -1} dose rates, at room temperature. After irradiation, the samples were heated for 60 min at 100 deg C to promote recombination and annihilation of residual radicals. For characterization of PEBLD were used methods; Melt flow index, swelling, gel fraction, Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (DRX), Thermogravimetric Analysis (TG), Dynamic Mechanical Analysis (DMA), rheological measurements, Scanning Electronic Microscopy and mechanical tests to identify the effects or gamma radiation in polyethylene. (author)

  8. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy; Etude du comportement du polyethylene haute densite sous irradiation ultraviolette ou sollicitation mecanique par spectroscopie de fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Douminge, L.

    2010-05-15

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  9. Comparative study of different initiation methods in the functionalization of low-density polyethylene with diethyl maleate: Gamma radiation and ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Albano, C. [Centro de Quimica, Laboratorio de Polimeros, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas (Venezuela); Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, Caracas (Venezuela)], E-mail: calbano@ivic.ve; Perera, R. [Departamento de Mecanica, Universidad Simon Bolivar, Caracas (Venezuela)], E-mail: rperera@usb.ve; Sanchez, Y.; Karam, A. [Centro de Quimica, Laboratorio de Polimeros, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas (Venezuela); Silva, P. [Centro de Fisica, Laboratorio de la Materia Condensada, Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2007-12-15

    This work unfolds a comparative study of the grafting of a low-density polyethylene with diethyl maleate (DEM) using gamma irradiation and ultrasound as means of initiating the grafting reactions. The grafting degree was determined by FTIR using a reported calibration curve. The efficiency of both functionalization methodologies was calculated and the polymers were characterized by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). The results showed that the grafting degree increases with the radiation dose when the monomer is inserted by gamma radiation. When the ultrasound methodology was used, an additional initiator such as dicumyl peroxide had to be used in order for the grafting to take place. In this last case, changing the time of exposure to the ultrasound source did not induce significant changes in the obtained grafted degree. The use of ultrasonic radiation plus dicumyl peroxide as grafting initiators promoted more insertion than that when gamma radiation was employed.

  10. Surface treatment of high density polyethylene (HDPE film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Joshi Ujjwal Man

    2015-03-01

    Full Text Available Thin films of high density polyethylene (HDPE are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. HDPE samples before and after the treatment are studied using contact angle measurements, surface free energy calculations and atomic force microscopy (AFM. Distilled water (H2O, glycerol (C3H8O3 and diiodomethane (CH2I2 are used as test liquids. The contact angle measurements between test liquids and HDPE samples are used to determine total surface free energy using sessile drop technique. HDPE films show a remarkable increase in surface free energy after plasma treatment. AFM analysis of the plasma-treated HDPE films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  11. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    CERN Document Server

    Sinha, S Dutta; Maity, P K; Tarafdar, S; Moulik, S P

    2014-01-01

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on implant infection will be very useful in understanding the chemistry of the biomaterial surfaces, which can deter the formation of biofilms. It is observed that the adsorption of BSA on the biomaterial surfaces increases with time and concentration, irrespective of their type and the nature of the EPS matrix of the bacterial biofilm is dependent on the amount of protein adsorbed on the biomaterial surface. The adsorption of protein (BSA) on the biomaterials, polypropylene (PP) and high density polyethylene (HDPE) has been stu...

  12. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE composites

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available The influences of filler size and content on the properties (thermal conductivity, impact strength and tensile strength of Al2O3/high density polyethylene (HDPE composites are studied. Thermal conductivity and tensile strength of the composites increase with the decrease of particle size. The dependence of impact strength on the particle size is more complicated. The SEM micrographs of the fracture surface show that Al2O3 with small particle size is generally more efficient for the enhancement of the impact strength, while the 100 nm particles prone to aggregation due to their high surface energy deteriorate the impact strength. Composite filled with Al2O3 of 0.5 µm at content of 25 vol% show the best synthetic properties. It is suggested that the addition of nano-Al2O3 to HDPE would lead to good performance once suitably dispersed.

  13. 反相气相色谱法表征HDPE的表面性质%Characterization of surface properties of high density polyethylene by inverse gas chromatography

    Institute of Scientific and Technical Information of China (English)

    田华; 张正方; 刘睿婷; 唐军; 王强

    2011-01-01

    采用反相气相色谱技术,分别测定不同分子探针在不同温度下通过高密度聚乙烯(H DPE)的保留时间,计算HDPE表面色散自由能与表面Lewis酸碱常数.HDPE表面色散自由能随温度的升高呈线性降低,且为弱碱性的Lewis两性聚合物材料.%The retention time of different molecular probes through high-density polyethylene(HDPE) were determined by inverse gas chromatography technology at different temperatures. The surface free energy and Lewis number of HDPE were figured out. The surface free energy decreased linearly with the increase in temperature, and HDPE was an alkalescent Lewis amphoteric polymer.

  14. Three-dimensional observation of the phase structure of high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend by laser scanning confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChengGui; DONG Xia; WANG DuJin; HAN Charles C

    2007-01-01

    In this paper, high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend (50/50 wt%) was prepared through solution blending and then compression molding, and subsequently examined by laser scanning confocal microscopy (LSCM). The PEB used in this experiment was labeled with a small quantity of a fluorescein derivative to render fluorescence. The initial films showed uniform dye distribution and no indication of phase separation within the resolution of optical microscopy. Sample films annealing at 140℃ followed by rapid cooling to room temperature showed obvious phase separation and bicontinuous structure. The present work indicates that by labeling one component with fluorescein derivative, LSCM can efficiently perform in situ depth profiling of polymer blends.

  15. Effect of pulse repetition rate and number of pulses in the analysis of polypropylene and high density polyethylene by nanosecond infrared laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Flavio O. [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Godoi, Quienly [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Kiyataka, Paulo H.M. [Centro de Tecnologia de Embalagens, Instituto de Tecnologia de Alimentos, Av. Brasil 2880, 13070-178 Campinas, SP (Brazil); Santos, Dario [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Agnelli, Jose A.M. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); and others

    2012-02-01

    Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO{sub 4}. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm{sup -2}), 2 {mu}s delay time and 6 {mu}s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.

  16. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    Science.gov (United States)

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample.

  17. Dielectric properties: A gateway to antibacterial assay-A case study of low-density polyethylene/chitosan composite films.

    Digital Repository Service at National Institute of Oceanography (India)

    Sunilkumar, M.; Gafoor, A.A; Anas, A; Haseena, A; Sujith, A

    The dielectric properties of low-density polyethylene–chitosan composite films were correlated with their antibacterial properties in this work. Films were designed on the molecular level using palm oil as a plasticizer in an internal mixer. Maleic...

  18. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available This work presents results of bulk conductivity and surface potential decay measurements on low-density polyethylene and its nanocomposites filled with uncoated MgO and Al2O3, with the aim to highlight the effect of the nanofillers on charge transport processes. Material samples at various filler contents, up to 9 wt %, were prepared in the form of thin films. The performed measurements show a significant impact of the nanofillers on reduction of material’s direct current (dc conductivity. The investigations thus focused on the nanocomposites having the lowest dc conductivity. Various mechanisms of charge generation and transport in solids, including space charge limited current, Poole-Frenkel effect and Schottky injection, were utilized for examining the experimental results. The mobilities of charge carriers were deduced from the measured surface potential decay characteristics and were found to be at least two times lower for the nanocomposites. The temperature dependencies of the mobilities were compared for different materials.

  19. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  20. Evaluation of photodegradation in LDPE/modified starch blends

    Directory of Open Access Journals (Sweden)

    Flávia G. D. Ferreira

    2009-01-01

    Full Text Available Photodegradation of LDPE/modified starch blends 80/20 m/m has been examined by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and X ray diffraction (DRX before and after exposure to ultraviolet radiation (UV. Samples were exposed to UV in the laboratory for periods of 6, 24, 48 and 60 hours. The main alteration in the polymeric material after exposure to the radiation was a decrease in the mechanical properties, tensile strength and elongation. There were also changes in the chemical structure of the blend with an increase in the carbonyl and vinyl indices, 65.58 and 53.29%, respectively. The analysis of the blend crystallinity pointed to the formation of a new crystalline symmetry that did not exist before the irradiation.

  1. Time-dependent viscoelastic behavior of an LDPE melt

    Institute of Scientific and Technical Information of China (English)

    Shuxin Huang; Chuanjing Lu; Yurun Fan

    2006-01-01

    Two differential constitutive equations,i.e.Giesekus model and Johnson-Segalman model were employed here to predict the time-dependent viscoelastic behavior of an LDPE melt in thixotropy-loop experiments and step shear rate experiment. Multiple relaxation modes were adopted, and the parameters used to describe the nonlinear viscoelasticity in the two models were obtained by fitting the shear-thinning viscosity. The predictions on those transient shear characteristics by the two models are found in qualitative agreement with our previous experiments. Johnson-Segalman model predicts oscillation behavior in the thixotropy-loop and step shear rate experiments, whereas Giesekus model does not. Both models predict higher shear stresses than the experimental data in the case of long time shearing, implying that both models are not able to completely characterize the time-dependent shear stress of the-melt at high shear rate.

  2. Preparation of MgO/LDPE Nanocomposites and Its Space Charge Property%MgO/LDPE纳米复合材料制备及其空间电荷特性

    Institute of Scientific and Technical Information of China (English)

    徐明忠; 赵洪; 吉超; 杨佳明; 张文龙

    2012-01-01

    为了降低低密度聚乙烯中的空间电荷积累,在自制纳米MgO粉体的基础上,采用熔融共混法,制备了氧化镁/低密度聚乙烯(MgO/LDPE)纳米复合材料,并通过扫描电镜(SEM)观察了MgO/LDPE纳米复合材料中的MgO粒径大小和分散情况,采用差热扫描量热法(DSC)确定了不同MgO质量分数纳米复合材料的结晶度,采用电声脉冲法(PEA)测量了不同MgO质量分数纳米复合材料的空间电荷分布,测量了不同MgO质量分数纳米复合材料的拉伸性能。试验结果表明,MgO/LDPE纳米复合材料体系中,MgO粒径约为50nm,且分散均匀;不同MgO质量分数纳米复合材料的弹性模量和抗张强度均高于纯LDPE的,且MgO质量分数为2%时达到最大值;不同MgO质量分数纳米复合材料的结晶度均高于纯LDPE的;纳米MgO能抑制空间电荷的注入和其在材料体内的迁移,质量分数为3%时,MgO/LDPE纳米复合材料中的空间电荷得到了良好的抑制。%To decrease the accumulation of space charge in low density polyethylene(LDPE),we prepared magnesium oxide(MgO)/ LDPE nanocomposites by mixing melted LDPE and MgO nano-powder.The dispersion and particle size of MgO in MgO/LDPE nanocomposites were characterized by scanning electron microscope(SEM),the crystallinity of MgO/LDPE nanocomposites with different contents of MgO was determined by using differential scanning calorimetry(DSC),the space charge distribution of MgO/LDPE nanocomposites with different content of MgO was measured by using pulse electro-acoustic(PEA),and the tensile properties were measured.The experimental results reveal MgO particles with diameters of about 50 nm are well dispersed in MgO/LDPE nanocomposites.The elastic modulus and tensile strength of LDPE/MgO nanocomposites with different content of MgO are higher than those of pure LDPE,and reach the maximum at the MgO loading of 2%.The crystallinity of MgO/LDPE nanocomposites with

  3. Transmissividade a radiação solar do polietileno de baixa densidade utilizado em estufas Solar radiation transmissivity through low density polyethylene used in greenhouses

    Directory of Open Access Journals (Sweden)

    Galileo Adeli Buriol

    1995-01-01

    Full Text Available Determinou-se a transmissividade à radiação solar do polietileno de baixa densidade utilizado em estufas. O experimento foi conduzido em uma estufa tipo Capela com dimensões de 10m x 25m, coberta com polietileno transparente de baixa densidade, com espessura de 100µm e aditivado com anti-UV, instalada no Departamento de Fitotecnia da Universidade Federal de Santa Maria, RS - Brasil. A radiação solar global diária incidente no interior e exterior da estufa foi medida no período de julho de 1991 a janeiro de 1992 e também a fração difusa da radiação solar em dias com diferentes condições atmosféricas e de condensação no filme plástico durante o período de maio a julho de 1993. A transmissividade média da radiação solar global foi de 56,2% nas primeiras horas do dia e de 81,3% nas horas próximas ao meio-dia. A fração difusa da radiação solar global foi mais elevada no interior da estufa do que no exterior, evidenciando o efeito dispersante do plástico e da condensação do vapor d'água na superfície interna do filme.The transmissivity of the solar radiation by polyethylene cover used in plastic greenhouses was evaluated in the Central Region of the Rio Grande do Sul State, Brazil. The study was carried out inside a 10m x 25m greenhouse covered with low density transparent polyethylene with 100µm thickness, located at Federal University of Santa Maria. Incoming global solar radiation inside and outside was measured daily dunng July, 1991 to January, 1992. The effect of polyethylene cover on diffuse solar radiation was determined dunng 1993 year. The average transmissivity of global solar radiation was 56.2% early in the moming and 81.3% at near noonday. Diffuse solar radiation proportion was higher inside than outside the greenhouse and enhanced when water condenses on the inner surface of the film.

  4. The Effect of Modification Methods on the Performance Characteristics of Composites Based on a Linear Low-Density Polyethylene and Natural Hemp Fibers

    Science.gov (United States)

    Kajaks, J.; Zelca, Z.; Kukle, S.

    2015-11-01

    Influence of the content of hemp fibers (harvested in 2012) and their modification methods (treatment with boiling water, sodium hydroxide, and acetic anhydride) and addition of an interfacial modifier, maleated polyethylene (MAPE), on the performance characteristics (tensile strength, modulus, elongation at break, microhardness, and water resistance) of composites based on a linear low-density polyethylene (LLDPE) was investigated. The results obtained are compared with data found earlier for the same type of hemp fibers, but harvested in 2011. It is shown that optimum content of untreated hemp fibers in the LLDPE matrix is 30 wt.% and optimum length of the fibers is less than 1 mm. An increase in the content of hemp fibers (to 30 wt.%) raised the tensile strength and modulus of the composites, but reduced their elasticity and deformation ability. Simultaneously, the microhardness of the composite materials grew. Pretreating the fibers with sodium hydroxide improved the mechanical properties of the composites only slightly, but treating with acetic anhydride allowed us to elevate the content of the fibers up to 40 and 50 wt.%. The best results were achieved by addition of 50 wt.% MAPE, when the tensile modulus increased by about 47% and the tensile strength by 27% as compared with those of composites with fibers pretreated by other methods. To estimate the processing possibilities of the composites, the melt flow index (MFI) was determined. It is established that the pretreatment of the fibers significantly affects the numerical values of MFI. For example, upon treatment with acetic anhydride, a sufficiently high fluidity of the composites was retained even at a 50 wt.% content of fibers. The lowest fluidity was observed for composites with alkali-pretreated hemp fibers. The surface microhardness decreased upon their chemical pretreatment. The highest microhardness showed composites with 30 wt.% untreated fibers. The chemical pretreatment considerably raised the

  5. LDPE/HDPE/Clay Nanocomposites: Effects of Compatibilizer on the Structure and Dielectric Response

    Directory of Open Access Journals (Sweden)

    B. Zazoum

    2013-01-01

    Full Text Available PE/clay nanocomposites were prepared by mixing a commercially available premixed polyethylene/O-MMT masterbatch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nanoclay and compatibilizer on the structure and dielectric response of PE/clay nanocomposites has been investigated. The microstructure of PE/clay nanocomposites was characterized using wide-angle X-ray diffraction (WAXD and a scanning electron microscope (SEM. Thermal properties were examined using differential scanning calorimetry (DSC. The dielectric response of neat PE was compared with that of PE/clay nanocomposite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nanocomposite with the PE-MA compatibilizer was better dispersed. In the nanocomposite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate fmax of Maxwell-Wagner-Sillars was found and discussed.

  6. The Effects of CaCO3 Coated Wood Free Paper Usage as Filler on Water Absorption, Mechanical and Thermal Properties of Cellulose-High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Emrah PEŞMAN

    2016-11-01

    Full Text Available In this study some physical, mechanical and thermal characteristics of high density polyethylene (HDPE and CaCO3 coated/pigmented wood free paper fiber composites were investigated. The fillers used in this study were uncoated cellulose, 5.8 %, 11.5 %, 16.5 % and 23.1 % CaCO3 coated wood free paper fibers. Each filler type was mixed with HDPE at 40% by weight fiber loading. In this case, the ratio of CaCO3 in plastic composites were calculated as 0 %, 2.3 %, 4.6 %, 6.6 % and 9.2 % respectively. Increased CaCO3 ratio improved the moisture resistant, flexural and tensile strength of cellulose-HDPE composites. However, the density of the cellulose-HDPE composites increased with CaCO3 addition. Energy Dispersive Spectroscopy on Scanning Electron Microscope analysis demonstrated the uniform distribution of CaCO3 and cellulose fiber in plastic matrix. In addition, the thermal properties of fiber plastic composites were investigated. The results of Differential scanning calorimetry analysis revealed that the crystallinity of the samples decreased with increasing CaCO3 content. Consequently, this work showed that CaCO3 coated waste paper fibers could be used as reinforcing filler against water absorption in thermoplastic matrix.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.14222

  7. Electrical Properties of n-Butylacrylate Grafted Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang R. [CRIEPI Post-Doc. (Japan); Oh, Woo J.; Suh, Kwang S. [Korea University (Korea, Republic of); Kim, Ok [Taekwang Research Center (Korea, Republic of)

    1998-01-01

    Electrical properties such as space charge accumulation, conduction, dielectric breakdown and water treeing of n-butylacrylate-grafted polyethylene ( PE-g-nBA ) were investigated. Heterocharge accumulates in PE-g-nBA and their amount is larger than that in LDPE. Conduction currents and charge mobilities of PE-g-nBAs decreased with the increase of nBA graft ratio, while their conduction mechanisms remain unchanged. Dielectric breakdown strength increased and water treeing length decreased with the increase of graft ratio in PE-g-nBA. (author). 20 refs., 9 figs., 1 tab.

  8. In vitro and in vivo characteristics of core-shell type nanogel particles: optimization of core cross-linking density and surface poly(ethylene glycol) density in PEGylated nanogels.

    Science.gov (United States)

    Tamura, Masato; Ichinohe, Satoshi; Tamura, Atsushi; Ikeda, Yutaka; Nagasaki, Yukio

    2011-09-01

    The biocompatibility and body distribution of PEGylated polyamine nanogels composed of chemically cross-linked poly(2-N,N-(diethylamino)ethyl methacrylate) (PEAMA) gel cores surrounded by poly(ethylene glycol) (PEG) chains were investigated to evaluate their feasibility as drug nanocarriers for systemic administration. PEGylated nanogels with different cross-linking densities (1, 2, and 5mol.%) were prepared to evaluate their biocompatibilities by in vitro cytotoxicity assay, hemolysis assay, and in vivo acute toxicity assay. The toxic effect of the PEGylated nanogels derived from polyamine gel cores was significantly reduced when the cross-linking density was increased, and those with a cross-linking density of 5mol.% showed a remarkably high median lethal dose (LD(50)) value >200mgkg(-1),despite the abundance of amino groups in the core. One hour after intravenous injection the PEGylated nanogels were found to have been eliminated from the systemic circulation, and less than 1% of the injected dose (ID) remained in the bloodstream. To improve the blood circulation time by increasing the surface PEG density of the PEGylated nanogels post-PEGylation of the PEGylated nanogels (via the Menschutkin reaction between tertiary amines of the PEAMA gel core and bromobenzyl-terminated short PEG) was carried out. A biodistribution study of these post-PEGylated nanogels revealed that the blood circulation time of the nanogels was definitely prolonged as the PEG content was increased. Therefore, the precise design of PEGylated nanogels with increased cross-linking densities in their polyamine gel cores and increased surface PEG densities seems promising for systemic applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Sound Transmission Properties of Mineral-filled High-Density Polyethylene (HDPE and Wood-HDPE Composites

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2014-11-01

    Full Text Available Wood plastic composites (WPCs offer various advantages and potential as a competitive alternative to conventional noise barriers. For this purpose, the influence of composite formulation on the sound transmission loss (TL of WPCs needs to be fully understood. In TL testing, stiffness and surface density are major factors influencing the sound insulation property of filled plastics and WPCs. Experimental TL values decreased as sound frequency increased; and the TL values increased after passing a certain frequency level. The comparison of experimental TL curves among filled composites showed that the addition of fillers led to an increase in resonance frequency and TL values. However, at high filling levels, the stiffness decrease led to TL reductions. The experimental TL curves of filled composites, composed of mass law and stiffness law predictions, were well approximated with their combined TL predictions.

  10. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  11. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    Directory of Open Access Journals (Sweden)

    Xun Gao

    2016-10-01

    Full Text Available The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  12. Hybrid Elastin-like Polypeptide–Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density

    Science.gov (United States)

    2015-01-01

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP’s lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell–matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics. PMID:25111283

  13. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters.

    Science.gov (United States)

    Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu

    2013-02-15

    The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF.

  14. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications:Effect of Accelerated Ageing

    Institute of Scientific and Technical Information of China (English)

    H.Fouad; R.Elleithy; Othman Y.Alothman

    2013-01-01

    The objective of this work is to demonstrate how the viscoelastic,thermal,rheological,hardness,wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles.Also the effects of accelerated thermal ageing on the composite properties have been investigated.Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder.The fracture toughness results showed a remarkable decrease in proportion to the HAP content.The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix.The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility.The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa).Finally,the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles.The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its hang composites crystallinity increased while the fracture toughness,hardness,wear resistance,storage and loss modulus decreased.

  15. Influence of low-density polyethylene on the thermal characteristics and crystallinity of high melting point macro- and micro-crystalline waxes

    Energy Technology Data Exchange (ETDEWEB)

    Zaky, Magdy T., E-mail: magdytadrous@hotmail.com [Petroleum Refining Division, Egyptian Petroleum Research Institute (EPRI), 1-Ahmed El-Zomor Street, Hai Al-Zehour, Nasr City, P.O. Box 11727, Cairo (Egypt); Mohamed, Nermen H. [Petroleum Refining Division, Egyptian Petroleum Research Institute (EPRI), 1-Ahmed El-Zomor Street, Hai Al-Zehour, Nasr City, P.O. Box 11727, Cairo (Egypt)

    2010-02-20

    The influence of low-density polyethylene on the thermal characteristics and the crystallinity of high melting point macro- and micro-crystalline waxes were investigated. The samples were prepared through melt blending using mechanical stirrer. The thermal characteristics of the blended samples were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The crystallinity of the samples was obtained using X-ray diffraction analyzer (XRD). The observations are discussed in terms of possible changes when the polymer is mixed with two types of waxes. The wax-polymer miscibility differed with the type of the wax and the amount of polymer mixed into the wax. Also, the crystallinity and congealing point of the waxes differed with the amount of polymer mixed into the wax. Moreover, the resulting data indicate that, blending of polymer with high melting point micro-crystalline wax elevates its melting point to reach the limits of high melting point ceresin waxes which can be used in different industrial applications.

  16. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    Science.gov (United States)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  17. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation

    Directory of Open Access Journals (Sweden)

    Yongkun Wang

    2016-11-01

    Full Text Available Magnetically sensitive shape memory poly(styrene-b-butadiene-b-styrene copolymer (SBS/liner low density polyethylene (LLDPE composites filled with various contents of Fe3O4 nanoparticles were prepared. The influence of the Fe3O4 nanoparticles content on the thermal properties, mechanical properties, fracture morphology, magnetic behavior, and shape memory effect of SBS/LLDPE/Fe3O4 composites was systematically studied in this paper. The results indicated that homogeneously dispersed Fe3O4 nanoparticles ensured the uniform heat generation and transfer in the alternating magnetic field, and endowed the SBS/LLDPE/Fe3O4 composites with an excellent magnetically responsive shape memory effect. When the shape memory composites were in the alternating magnetic field (f = 60 kHz, H = 21.21 kA·m−1, the best shape recovery ratio reached 99%, the shape retention ratio reached 99.4%, and the shape recovery speed increased significantly with the increment of Fe3O4 nanoparticles. It is anticipated that tagging products with this novel shape memory composite is helpful for the purpose of an intravascular delivery system in Micro-Electro-Mechanical System (MEMS devices.

  18. Oxidized wax as compatibilizer in linear low-density polyethylene-clay nanocomposites: x-ray diffraction and dynamic mechanical analysis.

    Science.gov (United States)

    Geethamma, V G; Luyt, Adriaan S

    2008-04-01

    Oxidized paraffin wax was used as a compatibilizer in composites of linear low-density polyethylene and layered nano silicate clays. X-ray diffraction analyses were carried out to investigate the crystalline morphology of five types of clays, oxidized wax, and their composites with LLDPE. The composites exhibited different X-ray diffraction and dynamic mechanical behaviour in the presence of different clays. Generally, the composites retained the partially crystalline behaviour of LLDPE, and no exfoliation was observed. Increased amount of wax did not change the morphology in most cases. The incorporation of clay resulted in an observable increase in the storage modulus of LLDPE. These values also increased with the addition of oxidized wax for most of the composites. The loss modulus increased with the amount of clay, irrespective of its nature. In most cases these values also increased with the incorporation of wax. The composites with 10% clay and 10% oxidized wax showed the highest storage and loss moduli, irrespective of the nature of the clay. The tan delta values did not change considerably with the addition of clay or wax.

  19. 影响低密度聚乙烯光接枝的因素%Factors affecting photo-grafting on low-density polyethylene

    Institute of Scientific and Technical Information of China (English)

    申屠宝卿; 赵黎; 翁志学

    2002-01-01

    研究了空气气氛中以二苯甲酮为光敏剂时影响低密度聚乙烯(LDPE)光接枝的工艺因素.结果表明:随光照时间的延长、反应温度的升高、紫外光光强的增加,LDPE的有效接枝率增加;与丙烯酰胺单体相比,LDPE接枝丙烯酸的有效接枝率高,当单体浓度为2 mol/L时,有效接枝率达极大值.光接枝LDPE对水的接触角随有效接枝率的增加而降低,当接枝率达一定值时,接触角不再随接枝率的变化而变化.

  20. The Influence of Pre-conditioning on Space Charge Formation in LDPE

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Holbøll, Joachim T.; Fleming, R.J.

    1998-01-01

    The effect of thermal conditioning, at reduced pressure, on space charge accumulation in planar LDPE samples under DC stress has been investigated. The samples were 1.8 mm thick, including two 0.1 mm thick semicon electrodes, and they were conditioned prior to voltage application by being held...... at 80oC for 48 hrs in short-circuit at rotary pump pressure. Some were then cooled to 20oC, over a 6 hr period, still under rotary pump pressure and in short circuit, while others were cooled to 20oC in less than 5 minutes, in the laboratory air (still in short circuit). DC fields of 20 kV/mm were...... then applied at room temperature, and space charge accumulation was monitored as a function of time, using the pulsed-electro-acoustic (PEA) method (Denmark) and the laser-induced-pressure-pulse (LIPP) method (Australia). The space charge density was calibrated from measurements at fields up to 5 kV/mm, where...

  1. Plasma Treated High-Density Polyethylene (HDPE Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jin-Su Lim

    2014-01-01

    Full Text Available We investigate the bone generation capacity of recombinant human bone morphogenetic protein-2 (rhBMP-2 immobilized Medpor surface through acrylic acid plasma-polymerization. Plasma-polymerization was carried out at a 20 W at an acrylic acid flow rate of 7 sccm for 5 min. The plasma-polymerized Medpor surface showed hydrophilic properties and possessed a high density of carboxyl groups. The rhBMP-2 was immobilized with covalently attached carboxyl groups using 1-ethyl-3-(3-dimethylaminopropyl carbodiimide and N-hydroxysuccinimide. Carboxyl groups and rhBMP-2 immobilization on the Medpor surface were identified by Fourier transform infrared spectroscopy. The activity of Medpor with rhBMP-2 immobilized was examined using an alkaline phosphatase assay on MC3T3-E1 cultured Medpor. These results showed that the rhBMP-2 immobilized Medpor increased the level of MC3T3-E1 cell differentiation. These results demonstrated that plasma surface modification has the potential to immobilize rhBMP-2 on polymer implant such as Medpor and can be used for the binding of bioactive nanomolecules in bone tissue engineering.

  2. Density Polyethylene (HDPE) by In-Situ Chlorinating Graft Copolymerization%制备氯引发PE接枝苯乙烯/顺丁烯二酸酐

    Institute of Scientific and Technical Information of China (English)

    赵志强; 王双双; 王娜; 闫志佩; 赵季若; 冯莺

    2011-01-01

    Attempts to enhance the grafting degree (GD) of maleric anhydride (MAH) onto high density polyethylene (HDPE) in the presence of styrene (St) by in-situ chlorinating graft copolymerization (ISCGC) were made. The product composed of MAH/St copolymer as grafted chains and polyethylene as backbone (only containing trace chlorine) was named as PE-cg-(MAH/St). The feasibility of preparing PE-cg-(MAH/St) was identified by both FTIR and 'H-NMR spectrum. The structure of the graft copolymer was characterized by FTIR,'H-NMR, DSC and GPC. The gel content (GC) close to zero showed that there was no cross-link reaction in MAH/St grafted onto PE by ISCGC. The effects of reaction temperature,mass ratio,total monomer concentration,chlorine flow rate on the GD of MAH were also investigated, and the experimental results showed that the addition of the second monomer St could significantly increased the GD of MAH. In the case of setting the reaction temperature was 80 ~ 90℃, the mass ratio of MAH and St was about 9:7, the total monomer was 16 parts per hundreds of resin,and chlorine flow 29 mmol/min.GD was up to 3.56 % .%为提高氯化原位接枝过程中聚乙烯(PE)接枝顺丁烯二酸酐(MAH)的接枝率,加入了第二单体苯乙烯(St).以FTIR,1H-NMR、GPC及凝胶含量研究PE氯化原位接枝MAH/St接枝共聚物(PE-cg-(MAH/St)的结构.实验结果表明:第二单体St的加入可以明显提高MAH的接枝率,同时没有交联结构的产生.研究了反应温度、单体配比、单体总质量分数、氯气流速等对接枝产物PE-cg-(MAH/St)接枝率的影响,并对接枝物的热性能进行了探索.当反应温度控制在80~90℃,MAH/St单体比例为9:7,单体总量16份,氯气流速29 mmol/min,MAH的接枝率可达3.56%.

  3. A New Selective Neural Network Ensemble Method Based on Error Vectorization and Its Application in High-density Polyethylene (HDPE) Cascade Reaction Process%A New Selective Neural Network Ensemble Method Based on Error Vectorization and Its Application in High-density Polyethylene (HDPE) Cascade Reaction Process

    Institute of Scientific and Technical Information of China (English)

    朱群雄; 赵乃伟; 徐圆

    2012-01-01

    Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.

  4. Electron beam irradiation conditions and foam seat properties in polypropylene-polyethylene blends

    Science.gov (United States)

    Tokuda, S.; Kemmotsu, T.

    1995-02-01

    High expansion polypropylene foam (20-100kg/m 3) is industrially produced by blending polypropylene with thermal decomposition foaming agent, which is then irradiated with electron beam to induce crosslinking, and is finally heated, causing the foaming agent to decompose and generate foams. Here, crosslinking stage also serves to increase the melt viscosity of the mixture so that an appropriate value is obtained for foaming. In order to obtain desirable final product, the important factors in the above process are the material properties of the polypropylene and the appropriate control of crosslinking, which is governed by the selection of crosslinking-promoter and the irradiation conditions. We have used polypropylene random copolymer (R-PP) with low ethylene content and performed studies on the relation between the amount of electron beam irradiation and the degree of crosslinking and also on the effect of the multifunctional monomers as crosslinking-promoter. We have also produced foams using blends of this R-PP and linear low density polyethylene (L-LDPE) and evaluated their mechanical properties and their heat resistance.

  5. Method for assessing lead, cadmium, mercury and arsenic in high-density polyethylene packaging and study of the migration into yoghurt and simulant.

    Science.gov (United States)

    Kiyataka, Paulo Henrique M; Dantas, Sílvia T; Pallone, Juliana Azevedo Lima

    2014-01-01

    The purpose of this paper was to assess the concentration of lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) in high-density polyethylene (HDPE) packaging intended for contact with yoghurt and the migration of these elements using the food itself and 3% acetic acid as a food simulant in accordance to ANVISA, the Brazilian Health Surveillance Agency. In order to perform this study, it was necessary to develop and validate a method by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. For method validation, the parameters linearity, limits of detection (LODs) and quantification (LOQs), accuracy and precision were determined. Fifteen commercial samples of yoghurt, marketed in Campinas - São Paulo (Brazil), were used for the analysis. The packaging and yoghurt were digested in high-pressure ashing equipment (HPA) and the migration of the elements into simulant were determined directly in the solution. The validated method proved adequate and the results obtained showed that all the packaging had levels of Hg and Cd below the LOQ, corresponding to 1.0 and 1.5 μg l(-1), respectively. The highest levels of As and Pb were 0.87 and 462.3 mg kg(-1), respectively. The migration of these elements to the yoghurt after 45 days of contact at 4ºC was below the LOQ for all the samples assessed. The results of specific migration into 3% acetic acid simulant showed the concentrations of Cd, Hg and As below 5, 5 and 10 µg kg(-1), respectively, which are the maximum limits set by ANVISA. However, for three samples the packaging lid showed migration of Pb into simulant ranging from 30.6 to 40.2 μg kg(-1), exceeding the limit set by ANVISA of 10 μg kg(-1).

  6. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shichao; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2014-12-25

    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.

  7. Crosslinking of high density polyethylene under electron beam radiation%高密度聚乙烯电子束辐射交联的研究

    Institute of Scientific and Technical Information of China (English)

    孟伟涛; 苑会林

    2011-01-01

    The authors studied the radiation crosslinking of high density polyethylene(HDPE) containing sensitizer pentaerythritol triacrylate(PETA) and antioxidant 4,4'-thiobis(6-tert-butyl-m-cresol) under high energy electron beam. The influences of radiation dose and mass contents of the sensitizer and antioxidant on the crosslinked HDPE were determined through testing crosslinking degree, tensile strength and tangential breaking strength of the samples. The crystallizability and heat stability of the crosslinked HDPE was analyzed by differential scanning calorimetry(DSC) and thermogravimetry(TG). PETA and radiation dose played key roles in increasing the crosslinking degree of HDPE, which could reach 63% with a rather low radiation dose like 13 kGy under the action of PETA.%用高能电子束辐射技术研究了添加敏化剂季戊四醇三丙烯酸酯(PETA)和抗氧剂300的高密度聚乙烯(HDPE)体系的辐射交联效应.通过测定试样辐射后交联度、拉伸强度、直角撕裂强度等性能,考察了辐射剂量、w(PETA)和 w(300)对 HDPE辐射交联的影响;并用差示扫描量热法和热重分析研究了HDPE辐射后的结晶性和热稳定性.PETA和辐射剂量对提高HDPE辐射交联度起关键作用.在PETA作用下,13 kGy的低辐射剂量可使HDPE的交联度达63%.

  8. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles.

    Science.gov (United States)

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca3(PO4)2) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface.

  9. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourdanesh, Fereydoun [Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 8916733754 (Iran, Islamic Republic of); Jebali, Ali, E-mail: alijebal2011@gmail.com [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hekmatimoghaddam, Seyedhossein [Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of); Allaveisie, Azra [Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of)

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca{sub 3}(PO{sub 4}){sub 2}, hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property.

  10. Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel.

    Science.gov (United States)

    Villanueva, Idalis; Klement, Brenda J; von Deutsch, Daniel; Bryant, Stephanie J

    2009-03-01

    In designing a tissue engineering strategy for cartilage repair, selection of both the bioreactor, and scaffold is important to the development of a mechanically functional tissue. The hydrodynamic environment associated with many bioreactors enhances nutrient transport, but also introduces fluid shear stress, which may influence cellular response. This study examined the combined effects of hydrogel cross-linking and the hydrodynamic environment on early chondrocyte response. Specifically, chondrocytes were encapsulated in poly(ethylene glycol) (PEG) hydrogels having two different cross-linked structures, corresponding to a low and high cross-linking density. Both cross-linked gels yielded high water contents (92% and 79%, respectively) and mesh sizes of 150 and 60 A respectively. Cell-laden PEG hydrogels were cultured in rotating wall vessels (RWV) or under static cultures for up to 5 days. Rotating cultures yielded low fluid shear stresses (production, and matrix deposition for glycosaminoglycans (GAG). In static cultures, gel cross-linking had no effect on DNA content, NO production, or GAG production; although GAG production increased with culture time for both cross-linked gels. In rotating cultures, DNA content increased, NO production decreased, and overall GAG production decreased when compared to static controls for the low cross-linked gels. For the high cross-linked gels, the hydrodynamic environment had no effect on DNA content, but exhibited similar results to the low cross-linked gel for NO production, and matrix production. Our findings demonstrated that at early culture times, when there is limited matrix production, the hydrodynamic environment dramatically influences cell response in a manner dependent on the gel cross-linking, which may impact long-term tissue development.

  11. Utilization of α-olefins obtained by pyrolysis of waste high density polyethylene to synthesize α-olefin-succinic-anhydride based cold flow improvers

    Institute of Scientific and Technical Information of China (English)

    Norbert MISKOLCZI; Richard SAGI; László BARTHA; Lívia FORCEK

    2009-01-01

    A new route of utilization of α-olefin rich hydrocarbon fractions obtained by waste polymer pyrolysis was investigated. α-olefin-succinic-anhydride intermediate-based pour point depressant additives for diesel fuel were synthesized, in which reactions needed α-olefins were obtained by pyrolysis of waste high-density polyethylene (HDPE). Fraction of α-olefins was produced by the de-polymerization of plastic waste in a tube reactor at 500℃ in the absence of catalysts and air. C17~22 range of mixtures of olefins and paraffins were separated for synthesis and then, these hydrocarbons were reacted with maleic-anhydride (MA) for formation of α-olefin-succinic-anhydride intermediates. The olefin-rich hydrocarbon fraction contained approximately 60% of olefins, including 90%~95% α-olefins. Other intermediates were produced in the same way by using commercial C20 α-olefin instead of C17~22 olefin mixture. The two different experimental intermediates with number average molecular weights of 1850g/mol and 1760g/mol were reacted with different alcohols: 1-butanol, 1-hexanol, 1-octanol, i-butanol, and c-hexanol to produce their ester derivatives. The synthesized ten experimental pour point depressants were added in different concentrations to conventional diesel fuel, which had no other additive content before. The structure and efficiency of experimental additives were followed by different standardized and non-standardized methods. Results showed that the experimental additives on the basis of the product of waste pyrolysis were able to decrease not only the pour but also the cloud point and cold filter plugging point (CFPP) of diesel fuel, whose effects could be observed even if the concentration of additives was low. Furthermore, all additives had anti-wear and anti-friction effects in diesel fuel.

  12. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  13. Effect of curing by products coating on localized heat generation and dielectric breakdown in low-density polyethylene film; Teimitsudo poriechiren firumu no kyokusho hatsunetsu to zetsuen hakai ni oyobosu kakyozai bunkai zansa tofu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tsurimoto, T.; Nagao, M.; Kosaki, M. [Toyohashi Univ. of Technology, Aici (Japan); Mizuno, Y. [Nagoya Inst. of Technology, Nagoya (Japan)

    1996-08-20

    Polyethylene is used widely as electrical insulating materials for electric power cables, while the heat-resistance and mechanical properties of low-density polyethylene are problematic since the crystal melting point thereof is around 105 to 110{degree}C. In this paper, curing by-products such as acetophenone are coated on the surface of low-density polyethylene film specimens to make the same diffusing into said specimen, and the effects thereof on localized heat generation and dielectric breakdown are examined. The following matters are clarified by the results of this study. Under dc voltage application, the increasing of temperature is observable in lower electrical field and more remarkable localized heat generation can be found simultaneously with the decrease of breakdown strength in said specimens compared with an un-coated specimen. Especially in acetophenone-coated specimen, dielectric breakdown strength is decreased to about half. Under ac voltage application, localized heat generation is increased and breakdown strength is decreased somewhat. 14 refs., 10 figs., 1 tab.

  14. Polyethylene Glycol 3350

    Science.gov (United States)

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications called ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. It ...

  15. Criticality Evaluation of Plutonium-239 Moderated by High-Density Polyethylene in Stainless Steel and Aluminum Containers Suitable for Non-Exclusive Use Transport

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T T

    2007-08-10

    Research is conducted at the Joint Actinide Shock Physics Experimental Facility (JASPER) on the effects of high pressure and temperature environments on plutonium-239, in support of the stockpile stewardship program. Once an experiment has been completed, it is necessary to transport the end products for interim storage or final disposition. Federal shipping regulations for nonexclusive use transportation require that no more than 180 grams of fissile material are present in at least 360 kilograms of contiguous non-fissile material. To evaluate the conservatism of these regulatory requirements, a worst-case scenario of 180g {sup 239}Pu and a more realistic scenario of 100g {sup 239}Pu were modeled using one of Lawrence Livermore National Laboratory's Monte Carlo transport codes known as COG 10. The geometry consisted of {sup 239}Pu spheres homogeneously mixed with high-density polyethylene surrounded by a cube of either stainless steel 304 or aluminum. An optimized geometry for both cube materials and hydrogen-to-fissile isotope (H/X) ratio were determined for a single unit. Infinite and finite 3D arrays of these optimized units were then simulated to determine if the systems would exceed criticality. Completion of these simulations showed that the optimal H/X ratio for the most reactive units ranged from 800 to 1600. A single unit of either cube type for either scenario would not reach criticality. An infinite array was determined to reach criticality only for the 180g case. The offsetting of spheres in their respective cubes was also considered and showed a considerable decrease in the number of close-packed units needed to reach criticality. These results call into question the current regulations for fissile material transport, which under certain circumstances may not be sufficient in preventing the development of a critical system. However, a conservative, theoretical approach was taken in all assumptions and such idealized configurations may not be

  16. Clinical and histologic response of subcutaneous expanded polytetrafluoroethylene (Gore-Tex) and porous high-density polyethylene (Medpor) implants to acute and early infection.

    Science.gov (United States)

    Sclafani, A P; Thomas, J R; Cox, A J; Cooper, M H

    1997-03-01

    To examine the responses of subcutaneously implanted expanded polytetrafluoroethylene (e-PTFE, Gore-Tex) and porous high-density polyethylene (PHDPE, Medpor) to experimentally induced infection. Sprague-Dawley rats were implanted subcutaneously with either e-PTFE or PHDPE implants. Inocula of Staphylococcus aureus were injected directly over the implants and the wounds were observed for clinical signs of infection. After the animals were killed, the implants were harvested and underwent Histologic examination. Twenty-eight adult male Sprague-Dawley rats weighing 200 to 250 g. A 8-mm diameter, 1-mm-thick implant of either e-PTFE or PHDPE was placed in a subcutaneous pocket over each animal's dorsum. Either at the time of implantation or 14 days afterward, an inoculum of 10(9) colony-forming units of S aureus was injected transcutaneously directly over each implant. The animals were observed for 7 days before being killed. The implants were harvested and examined by both conventional li