WorldWideScience

Sample records for density particle size

  1. Application of ferrofluid density separation to particles in the micrometer-size range

    International Nuclear Information System (INIS)

    Strebin, R.S. Jr.; Johnson, J.W.; Robertson, D.M.

    1976-02-01

    A device designed and described by AVCO* as a ''Ferrofluid Density Separator''/sup (1)/ develops an apparent fluid density from nominally 2 to 20 g/cm 3 dependent on the magnitude of an imposed magnetic field gradient. The ferrofluid retains other normal properties of a liquid. One of these devices and a concentration series of ferrofluids were obtained in order to determine the practicality of separating groups of micrometer-size particles into density fractions. Such separations would be of enormous value in the study of various particle burdens because particles of interest are almost always diluted with overwhelming amounts of other particles. The results of a study of separations of micrometer-size particles with the ferrofluid density separator are presented

  2. Effects of Sludge Particle Size and Density on Hanford Waste Processing

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Mahoney, Lenna A.; Daniel, Richard C.; Tingey, Joel M.; Cooley, Scott K.

    2008-01-01

    The U.S. Department of Energy Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site in southeastern Washington State. Piping and pumps have been selected to transport the high-level waste (HLW) slurries in the WTP. Pipeline critical-velocity calculations for these systems require the input of a bounding particle size and density. Various approaches based on statistical analyses have been used in the past to provide an estimate of this bounding size and density. In this paper, representative particle size and density distributions (PSDDs) of Hanford waste insoluble solids have been developed based on a new approach that relates measured particle-size distributions (PSDs) to solid-phase compounds. This work was achieved through extensive review of available Hanford waste PSDs and solid-phase compound data. Composite PSDs representing the waste in up to 19 Hanford waste tanks were developed, and the insoluble solid-phase compounds for the 177 Hanford waste tanks, their relative fractions, crystal densities, and particle size and shape were developed. With such a large combination of particle sizes and particle densities, a Monte Carlo simulation approach was used to model the PSDDs. Further detail was added by including an agglomeration of these compounds where the agglomerate density was modeled with a fractal dimension relation. The Monte Carlo simulations were constrained to hold the following relationships: (1) the composite PSDs are reproduced, (2) the solid-phase compound mass fractions are reproduced, (3) the expected in situ bulk-solids density is qualitatively reproduced, and (4) a representative fraction of the sludge volume comprising agglomerates is qualitatively reproduced to typical Hanford waste values. Four PSDDs were developed and evaluated. These four PSDD scenarios correspond to permutations where the master PSD was sonicated or not

  3. Size scaling effects on the particle density fluctuations in confined plasmas

    International Nuclear Information System (INIS)

    Vazquez, Federico; Markus, Ferenc

    2009-01-01

    In this paper, memory and nonlocal effects on fluctuating mass diffusion are addressed in the context of fusion plasmas. Nonlocal effects are included by considering a diffusivity coefficient depending on the size of the container in the transverse direction to the applied magnetic field. It is obtained by resorting to the general formulation of the extended version of irreversible thermodynamics in terms of the higher order dissipative fluxes. The developed model describes two different types of the particle density time correlation function. Both have been observed in tokamak and nontokamak devices. These two kinds of time correlation function characterize the wave and the diffusive transport mechanisms of particle density perturbations. A transition between them is found, which is controlled by the size of the container. A phase diagram in the (L,2π/k) space describes the relation between the dynamics of particle density fluctuations and the size L of the system together with the oscillating mode k of the correlation function.

  4. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Science.gov (United States)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  5. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  6. The Diurnal Cycle of Particle Sizes, Compositions, and Densities observed in Sacramento, CA during CARES Field Campaign

    Science.gov (United States)

    Beránek, J.; Vaden, T.; Imre, D. G.; Zelenyuk, A.

    2010-12-01

    A central objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) was to characterize unequivocally all aspects related to organics in aerosols. To this end, a range of instruments measured loadings, size distributions, compositions, densities, CCN activities, and optical properties of aerosol sampled in Sacramento, CA over the month of June 2010. We present the results of measurements conducted by our single particle mass spectrometer, SPLAT. SPLAT was used to measure the size, composition, and density of individual particles with diameters between 50 to 2000 nm. SPLAT measured the vacuum aerodynamic diameters (dva) of more than 2 million particles and the compositions of ~350,000 particles, each day. In addition, SPLAT was used in combination with a differential mobility analyzer to measure the density, or effective density of individual particles. These measurements were typically conducted twice per day: in the morning, and mid-afternoon. Preliminary analysis of the data shows that under most conditions, the particles were relatively small (below 200 nm), and the vast majority of them were composed of oxygenated organics mixed with various amounts of sulfates. Analysis of the mass spectra shows that the oxygenated organics in these particles are the oxidized products of biogenic volatile organic precursors. In addition to particles composed of SOA mixed with sulfates, we detected and characterized fresh and processed soot particles, biomass burning aerosol, organic amines, sea salt - fresh and processed - and a small number of dust and other inorganic particles, commonly found in urban environment. SOA mixed with sulfates were the vast majority of particles at all times, while the other particle types exhibited episodic behavior. The data shows a reproducible diurnal pattern in SOA size distributions, number concentrations, and compositions. Early in the morning the particle number concentrations are relatively low, and the particle size

  7. Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust

    Science.gov (United States)

    Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.

    2018-02-01

    The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.

  8. Effective Ice Particle Densities for Cold Anvil Cirrus

    Science.gov (United States)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  9. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    Science.gov (United States)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  10. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    Science.gov (United States)

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  11. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    Science.gov (United States)

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. © 2015 Wiley Periodicals, Inc.

  12. The Analysis of Three-Body Contact Temperature under the Different Third Particle Size, Density, and Value of Friction

    Directory of Open Access Journals (Sweden)

    Horng-Wen Wu

    2017-10-01

    Full Text Available Recently, many studies have investigated the friction, wear, and temperature characteristics of the interface between two relative movements. Such analyses often set the coefficient of friction as a fixed value and are analyzed in cases of two-body contact; however, the interface is often a three-body contact and the coefficient of friction varies depending on the operating conditions. This is a significant error in the analysis of contact characteristics, therefore, in this study, the actual interface and the change of the coefficient of friction were analyzed based on three-body micro-contact theory where the contact temperature was also analyzed and the difference between the generally assumed values were compared. The results showed that under three-body contact, the coefficient of total friction increased with an increase in particle size; and at a different particle size and area density of particles, the surface contact temperature increased with the plasticity index and load increases, and the particle contact temperature increased with the increasing particle size. The surface temperature rise was mainly affected by the ratio of the average temperature between surface 1 and surface 2 to the multiplication between the 100th root of the area density of particles and the square root of the equivalent surface roughness (Ts1s2_ave*/ηa0.01σ0.5 and the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001. Particle temperature was mainly affected by the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001 and the area density of particles ηa. Our study indicated that when the contact of surface with surface and the contact of the particles with the surface, the resulting heat balance was assigned to the particles and the surface in a three-body contact situation. Under this contact behavior, it could avoid

  13. Effect of pulp density and particle size on indirect bioleaching of Pomalaa nickel laterite using metabolic citric acid

    Science.gov (United States)

    Petrus, H. B. T. M.; Wanta, K. C.; Setiawan, H.; Perdana, I.; Astuti, W.

    2018-01-01

    Nickel laterite ore contains oxide of iron, aluminum or both with nickel, cobalt and chromium which can be leached out using hydrometallurgical process. For the purpose of meeting the world’s increasing demand of nickel, there is a need to invent environmentally friendly process to efficiently leach nickel. This experiment used nickel laterite ore obtained from Pomalaa, South Sulawesi. The leaching agent is metabolic citric acid produced by Aspergillus niger under optimum condition. Leaching process was done in three-necked flask in atmospheric temperature and constant stirring speed of 200 rpm. The variable examined in the experiment was pulp density and particle size of nickel laterite ore. Samples were taken at 3, 7, 10, 14, and 17 minutes and then filtered and diluted to be analyzed using ICP-AES. The result of the experiment showed the maximum recovery of metals increase with the decrease of the pulp density. The maximum recovery for varying pulp density were at 5% solid/liquid ratio and the recovery were Ni at 1.63%, Al at 0.47%, Fe at 0.23% and Mg at 1.09%. The effect of particle size on leaching process showed that the leaching process follows the shrinking core model. The maximum recovery of metals at particle size were at 100-120 mesh with Ni at 1.37%, Fe at 0.10%, Al at 0.72% and Mg at 0.62%.

  14. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  15. Effect of short-term low- and high-fat diets on low-density lipoprotein particle size in normolipidemic subjects.

    Science.gov (United States)

    Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick

    2012-01-01

    High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  17. Geometrical separation method for lipoproteins using bioformulated-fiber matrix electrophoresis: size of high-density lipoprotein does not reflect its density.

    Science.gov (United States)

    Tabuchi, Mari; Seo, Makoto; Inoue, Takayuki; Ikeda, Takeshi; Kogure, Akinori; Inoue, Ikuo; Katayama, Shigehiro; Matsunaga, Toshiyuki; Hara, Akira; Komoda, Tsugikazu

    2011-02-01

    The increasing number of patients with metabolic syndrome is a critical global problem. In this study, we describe a novel geometrical electrophoretic separation method using a bioformulated-fiber matrix to analyze high-density lipoprotein (HDL) particles. HDL particles are generally considered to be a beneficial component of the cholesterol fraction. Conventional electrophoresis is widely used but is not necessarily suitable for analyzing HDL particles. Furthermore, a higher HDL density is generally believed to correlate with a smaller particle size. Here, we use a novel geometrical separation technique incorporating recently developed nanotechnology (Nata de Coco) to contradict this belief. A dyslipidemia patient given a 1-month treatment of fenofibrate showed an inverse relationship between HDL density and size. Direct microscopic observation and morphological observation of fractionated HDL particles confirmed a lack of relationship between particle density and size. This new technique may improve diagnostic accuracy and medical treatment for lipid related diseases.

  18. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2013-06-10

    The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.

  19. IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS

    International Nuclear Information System (INIS)

    Hörst, S. M.; Tolbert, M. A

    2013-01-01

    The organic haze produced from complex CH 4 /N 2 chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH 4 concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.

  20. Automatic particle-size analysis of HTGR nuclear fuel microspheres

    International Nuclear Information System (INIS)

    Mack, J.E.

    1977-01-01

    An automatic particle-size analyzer (PSA) has been developed at ORNL for measuring and counting samples of nuclear fuel microspheres in the diameter range of 300 to 1000 μm at rates in excess of 2000 particles per minute, requiring no sample preparation. A light blockage technique is used in conjunction with a particle singularizer. Each particle in the sample is sized, and the information is accumulated by a multi-channel pulse height analyzer. The data are then transferred automatically to a computer for calculation of mean diameter, standard deviation, kurtosis, and skewness of the distribution. Entering the sample weight and pre-coating data permits calculation of particle density and the mean coating thickness and density. Following this nondestructive analysis, the sample is collected and returned to the process line or used for further analysis. The device has potential as an on-line quality control device in processes dealing with spherical or near-spherical particles where rapid analysis is required for process control

  1. The effects of particle size distribution and induced unpinning during grain growth

    International Nuclear Information System (INIS)

    Thompson, G.S.; Rickman, J.M.; Harmer, M.P.; Holm, E.A.

    1996-01-01

    The effect of a second-phase particle size distribution on grain boundary pinning was studied using a Monte Carlo simulation technique. Simulations were run using a constant number density of both whisker and rhombohedral particles, and the effect of size distribution was studied by varying the standard deviation of the distribution around a constant mean particle size. The results of present simulations indicate that, in accordance with the stereological assumption of the topological pinning model, changes in distribution width had no effect on the pinned grain size. The effect of induced unpinning of particles on microstructure was also studied. In contrast to predictions of the topological pinning model, a power law dependence of pinned grain size on particle size was observed at T=0.0. Based on this, a systematic deviation to the stereological predictions of the topological pinning model is observed. The results of simulations at higher temperatures indicate an increasing power law dependence of pinned grain size on particle size, with the slopes of the power law dependencies fitting an Arrhenius relation. The effect of induced unpinning of particles was also studied in order to obtain a correlation between particle/boundary concentration and equilibrium grain size. The results of simulations containing a constant number density of monosized rhombohedral particles suggest a strong power law correlation between the two parameters. copyright 1996 Materials Research Society

  2. Effects of microparticle size and Fc density on macrophage phagocytosis.

    Directory of Open Access Journals (Sweden)

    Patricia Pacheco

    Full Text Available Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

  3. Characterization of size, anisotropy, and density heterogeneity of nanoparticles by sedimentation velocity

    KAUST Repository

    Demeler, Borries; Nguyen, Tich Lam; Gorbet, Gary E.; Schirf, Virgil R.; Brookes, Emre H.; Mulvaney, Paul T.; El-Ballouli, AlA'A O.; Pan, Jun; Bakr, Osman; Demeler, Aysha K.; Hernandez Uribe, Blanca I.; Bhattarai, Nabraj; Whetten, Robert L.

    2014-01-01

    simultaneous heterogeneity in density ρ, molar mass M, and particle diameter d. The density increments ∂ρ/∂d and ∂ρ/∂M of these nanoparticles, if known, can then provide important information about crystal growth and particle size distributions. For most

  4. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  5. Particle size control of detergents in mixed flow spray dryers

    Directory of Open Access Journals (Sweden)

    Mark Jonathan Crosby

    2015-03-01

    Full Text Available Particle size is a key quality parameter of a powder detergent as it determines its performance, the bulk density and the look and feel of the product. Consequently, it is essential that particle size is controlled to ensure the consistency of performance when comparing new formulations. The majority of study reported in the literature relating to particle size control, focuses on the spray produced by the atomisation technique. One approach advocated to achieve particle size control is the manipulation of the ratio of the mass slurry rate and mass flow rate of gas used for atomisation. Within this study, ratio control was compared with an automatic cascade loop approach using online measurements of the powder particle size on a small-scale pilot plant. It was concluded that cascade control of the mean particle size, based on manipulating the mass flow rate of gas, resulted in tighter, more responsive control. The effect of a ratio change varied with different formulations and different slurry rates. Furthermore, changes in slurry rate caused complications, as the impact on particle size growth in the dryer is non-linear and difficult to predict. The cascade loop enables further study into the effect of particle size on detergent performance.

  6. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE composites

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available The influences of filler size and content on the properties (thermal conductivity, impact strength and tensile strength of Al2O3/high density polyethylene (HDPE composites are studied. Thermal conductivity and tensile strength of the composites increase with the decrease of particle size. The dependence of impact strength on the particle size is more complicated. The SEM micrographs of the fracture surface show that Al2O3 with small particle size is generally more efficient for the enhancement of the impact strength, while the 100 nm particles prone to aggregation due to their high surface energy deteriorate the impact strength. Composite filled with Al2O3 of 0.5 µm at content of 25 vol% show the best synthetic properties. It is suggested that the addition of nano-Al2O3 to HDPE would lead to good performance once suitably dispersed.

  7. The effect of SiC particle size on the properties of Cu–SiC composites

    International Nuclear Information System (INIS)

    Celebi Efe, G.; Zeytin, S.; Bindal, C.

    2012-01-01

    Graphical abstract: The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and 97.5% to 95.2% for SiC with 5 μm particle size, microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and 156–182 HVN for SiC having 5 μm particle size and the electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, 87.9% IACS and 65.2%IACS for SiC with 5 μm particle size. It was found that electrical conductivity of composites containing SiC with 5 μm particle size is better than that of Cu–SiC composites containing SiC with particle size of 1 μm. Highlights: ► In this research, the effect of SiC particle size on some properties of Cu–SiC composites were investigated. ► The mechanical properties were improved. ► The electrical properties were obtained at desirable level. -- Abstract: SiC particulate-reinforced copper composites were prepared by powder metallurgy (PM) method and conventional atmospheric sintering. Scanning electron microscope (SEM), X-ray diffraction (XRD) techniques were used to characterize the sintered composites. The effect of SiC content and particle size on the relative density, hardness and electrical conductivity of composites were investigated. The relative densities of Cu–SiC composites sintered at 700 °C for 2 h are ranged from 97.3% to 91.8% for SiC with 1 μm particle size and from 97.5% to 95.2% for SiC with 5 μm particle size. Microhardness of composites ranged from 143 to 167 HV for SiC having 1 μm particle size and from 156 to 182 HV for SiC having 5 μm particle size. The electrical conductivity of composites changed between 85.9% IACS and 55.7% IACS for SiC with 1 μm particle size, between 87.9% IACS and 65.2% IACS for SiC with 5 μm particle size.

  8. Effects of fuel particle size distributions on neutron transport in stochastic media

    International Nuclear Information System (INIS)

    Liang, Chao; Pavlou, Andrew T.; Ji, Wei

    2014-01-01

    Highlights: • Effects of fuel particle size distributions on neutron transport are evaluated. • Neutron channeling is identified as the fundamental reason for the effects. • The effects are noticeable at low packing and low optical thickness systems. • Unit cells of realistic reactor designs are studied for different size particles. • Fuel particle size distribution effects are not negligible in realistic designs. - Abstract: This paper presents a study of the fuel particle size distribution effects on neutron transport in three-dimensional stochastic media. Particle fuel is used in gas-cooled nuclear reactor designs and innovative light water reactor designs loaded with accident tolerant fuel. Due to the design requirements and fuel fabrication limits, the size of fuel particles may not be perfectly constant but instead follows a certain distribution. This brings a fundamental question to the radiation transport computation community: how does the fuel particle size distribution affect the neutron transport in particle fuel systems? To answer this question, size distribution effects and their physical interpretations are investigated by performing a series of neutron transport simulations at different fuel particle size distributions. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. A total of 15 parametric cases are constructed by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k eff ) and the spatial distribution of fission power density along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution shows a noticeable effect on neutron

  9. Effect of Particle Size on Mechanical Properties of Sawdust-High Density Polyethylene Composites under Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Haliza Jaya

    2016-06-01

    Full Text Available There is a need to understand the effect of wood particle size, as it affects the characteristics of wood-based composites. This study considers the effect of wood particle size relative to the dynamic behavior of wood composites. The compression Split Hopkinson Pressure Bar (SHPB was introduced to execute dynamic compression testing at the strain rate of 650 s-1, 900 s-1, and 1100 s-1, whereas a conventional universal testing machine (UTM was used to perform static compression testing at the strain rate of 0.1 s-1, 0.01 s-1, and 0.001 s-1 for four different particle sizes (63 µm, 125 µm, 250 µm, and 500 µm. The results showed that mechanical properties of composites were positively affected by the particle sizes, where the smallest particle size gave the highest values compared to the others. Moreover, the particle size also affected the rate sensitivity and the thermal activation volume of sawdust/HDPE, where smaller particles resulted in lower rate sensitivity. For the post-damage analysis, the applied strain rates influenced deformation behavior differently for all particle sizes of the specimens. In a fractographic analysis under dynamic loading, the composites with large particles experienced severe catastrophic deformation and damages compared to the smaller particles.

  10. Vibro-spring particle size distribution analyser

    International Nuclear Information System (INIS)

    Patel, Ketan Shantilal

    2002-01-01

    feeding of the test powder into the spring, the non-interfering spring extension mechanism and means for measuring the cantilever deflection and hence the sample mass via a non-contact transducer. For an automated operation, a control software is developed which car allow an unattended analysis whilst providing particle size distribution in real-time. Data are reported in conjunction with a variety of powders with different size, density and shape. Typical resolutions in terms of size and mass measurement are better than ±10 μm and ±0.1 g respectively. (author)

  11. Effect of dispersed phase particle size on microstructure of cup fracture

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1978-01-01

    A correlation-regressive analysis has been carried out to reveal the influence of the size and the mean distance between the disperse particles of deposits V(C,N) on the microstructure (size of micropores and cups, density of the cups) of a viscous cup-like fracture of specimens made of 30Kh2NMFA grade steel that has been hardened and annealed. It is shown that micropores develop at relatively large particles of deposits V(C,N) (>=0.04/m). A strong correlation linear connection exists between the size of a disperse particle of deposits V(C,N), the size of micropore and cup. This connection is attributable to the close, pairwise correlative connection between the size of the particle and the micropore, the micropore and the cup

  12. Totally asymmetric exclusion processes with particles of arbitrary size

    International Nuclear Information System (INIS)

    Lakatos, Greg; Chou, Tom

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results

  13. Totally asymmetric exclusion processes with particles of arbitrary size

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)

    2003-02-28

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.

  14. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    Science.gov (United States)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  15. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  16. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  17. The Effect of wheat straw particle size on the mechanical and water absorption properties of wheat straw/low density polyethylene biocomposites for packaging applications

    Directory of Open Access Journals (Sweden)

    Behjat Tajeddin

    2017-08-01

    Full Text Available Natural composites with biodegradability properties can be used as a renewable alternative to replacing conventional plastics. Thus, to reduce the plastics applications in the packaging industry, biocomposites content of wheat straw (with 40, 100, 140 mesh as a natural biodegradable composite and low density polyethylene (LDPE as a common synthetic polymer in the packaging industry were prepared and characterized by the mechanical and water absorption properties. Polyethylene-graft-maleic anhydride was used as a compatibilizer material. Morphology of wheat straw flour was studied by optical microscope to obtain the aspect ratio (L/D. The tensile and flexural tests were applied for determining mechanical properties and scanning electron microscope (SEM was used for particles distribution and sample structures. The water absorption of the samples was calculated by weight difference. The results indicated that the particle size of wheat straw four and the L/D amount are Significantly affected on the tensile strength and water absorption of the samples. However, the effect of wheat sraw particle size on the flexural strength was not significant. Overall conclusions show that by increasing the particle size of the filler (wheat straw, can prepare the biocomposite with better tensile strength and less water absorption compared with smaller particle size.

  18. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  19. Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxen forces

    OpenAIRE

    Calzavarini, Enrico; Volk, Romain; Bourgoin, Mickael; Leveque, Emmanuel; Pinton, Jean-Francois; Toschi, Federico

    2008-01-01

    International audience; The dynamics of particles in turbulence when the particle size is larger than the dissipative scale of the carrier flow are studied. Recent experiments have highlighted signatures of particles' finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times (at increasing the particles size) and an independence of the probability density function of the acceleration once normalized to their variance. These ...

  20. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    Science.gov (United States)

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  1. Influence of particle size on physical and sensory attributes of mango pulp powder

    Science.gov (United States)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  2. Optimation of particle size and composition in fabrication of granite particle composite floortiles

    International Nuclear Information System (INIS)

    Budiarto; Parikin; Mohammad-Dani

    2004-01-01

    Granite particle composite floortile materials, that have epoxy matrix, may be utilized as water resist and ductile materials. The utility of composite materials for industrial households is, however, very important and very promising indeed. Starting from powdering the granite refuges into particles of 100, 140 and 200 in mesh, the powder was mixed by epoxy containing versamid hardener and stirred till highly homogenized. Specimens were mould in glass frame and dried in ambient temperature for 48 hours. The specimens were prepared into certain dimensions, conformed to testing needs: hardness, density, compression and bending. The hardness and density data show clearly the value change of particulate composition (34, 40, 50 and 70) and matrix (66, 60, 50 and 30) as well. From bending and compression tests, the optimum grain size (μm) and composition (%) of granite particles reveal between the number of 120-123 and 55-61 respectively. The accurate point of the values can be determined by using differential method. As conclusion, for the better mechanical properties of granite particles composite floortiles, the grains should be 121 in μm and 57% composition of granite particles

  3. Influence of Particle Size in Talc Suppression by a Galactomannan Depressant

    Directory of Open Access Journals (Sweden)

    Zhixiang Chen

    2018-03-01

    Full Text Available Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and entrainment recovery calculation, laser particle size experiments, adsorption tests, and advancing contact angle measurement as well as scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The maximum recovery increased with particle size increases in the absence of galactomannan FPY (Fenugreek polysaccharide. The obviously suppressed effect was observed for the size fraction of −74 + 38 μm after reacting with FPY, but low efficiency was received for −38 μm and −10 μm, respectively. Laser particle size analysis indicated that the FPY has a certain function for the flocculation of fine particles. It is beneficial for reducing recovery by entrainment. EDS and advancing contact angle test results showed that the difference in contact angles probably is a result of genuine differences in the quantity of O and Mg bearing surface species, while the contact angle varied with particle size fraction in the absence of FPY. Adsorption and SEM test results demonstrated that in the case of −74 + 38 μm, the depressant adsorption density on the mineral surface is higher than the other two size fractions. On the whole, FPY probably is not enough of a depressant for talc suppression.

  4. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  5. Inhalation risk and particle size in dust and mist

    Energy Technology Data Exchange (ETDEWEB)

    Davies, C N

    1949-01-01

    This paper presents a critical overview of particle uptake and retention from literature through 1949. Particles > 6-..mu..m are retained in nose, or by secondary bronchi with mouth breathing. Few > 2-..mu..m particles are exhaled, trapped mostly in bronchioles (some by alveoli) by sedimentation. Maximal deposition is 0.4- to 0.8-..mu..m size in bronchioles and alveoli. Minimim retention is at 0.1 to 0.15 ..mu..m; approx. 80% are exhaled. Brownian settling of smaller particles in alveoli occurs. Particles of low density penetrate farther. Slow breathing enhances retention. Soluble toxins may be absorbed at any point along respiratory tract, so deep penetration percentage is moot in most cases.

  6. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  7. Optimizing the particle size of coal for CWM in view of fluidity. [Biomodal

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Seiji; Nonaka, Michio; Okano, Yasuhiko; Inoue, Toshio

    1987-10-25

    As is well known, the viscosity of CWM is considerably influenced by the distribution of coal particle sizes and has bearing on particle packing density or porosity. A model for representing the viscosity of CWM in terms of particle porosity and specific surface was designed. Also, experimental verification was conducted for the method of optimizing particle size on a two-stage grinding system. The results are as follows: The viscosity of CWM is influenced not only by the porosity of coal particles, but also by the specific surface; also, it is correlated to the distance between suspended particles. At the two-stage grinding experiments, a particle size distribution leading to a low viscosity was obtained by mixing coarse and fine particles at 4:1. This has demonstrated that the use of an agitating mill for fine particles is of help. (11 figs, 2 tabs, 6 refs)

  8. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria

    2013-05-10

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  9. Diffusion of Finite-Size Particles in Confined Geometries

    KAUST Repository

    Bruna, Maria; Chapman, S. Jonathan

    2013-01-01

    The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.

  10. Effect of particle size on the froth floatation of Sokoto phosphate ore

    Directory of Open Access Journals (Sweden)

    U.A. Hassan

    2016-06-01

    Full Text Available Effect of particle size on the froth floatation of Sokoto phosphate ore for its beneficiation has been investigated and established. The research has been conducted using various reagents, pH(s at different sieve size fractions. Bench scale flotation tests were carried out on -250+180μm, -180+106μm, -106+75μm, -75+45μm and -45+38μm particle size fractions after screening in order to determine the optimum flotation feed size distribution using 1 liter Denver flotation cell. The results of the scoping flotation studies using a conditioning Pulp Density of 60%Solids, pH9, 800g/t reagent dosage for AERO704 Promoter (Fatty Acid and flotation pulp density of 28.5% Solids show that +106μm particle size gave the highest assay content of 20.4% P2O5 with a recovery of 76.2% compared to +38μm (19.9%P2O5 and recovery of 43.2% and +180μm (19.4%P2O5 and 24.1% recovery in their floats (concentrates but with no perfect separation as the tailings fraction also contained similar grades with slight differences.

  11. Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment

    DEFF Research Database (Denmark)

    Rissler, Jenny; Nordin, Erik Z; Eriksson, Axel C

    2014-01-01

    -range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate......In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density...... and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long...

  12. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  13. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  14. Particle-size segregation and diffusive remixing in shallow granular avalanches

    Science.gov (United States)

    Gray, J. M. N. T.; Chugunov, V. A.

    2006-12-01

    Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

  15. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    KAUST Repository

    Choi, J. H.

    2015-05-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  16. Effects of DME mixing on number density and size properties of soot particles in counterflow non-premixed ethylene flames

    KAUST Repository

    Choi, J. H.; Choi, B. C.; Lee, S. M.; Chung, Suk-Ho; Jung, K. S.; Jeong, W. L.; Choi, S. K.; Park, S. K.

    2015-01-01

    In order to investigate the effect of DME mixing on the number density and size of soot particles, DME was mixed in a counter flow non-premixed ethylene flame with mixture ratios of 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and mean size of soot particles. The experimental results showed that the highest soot concentrations were observed for flames with mixture ratios of 5% and 14%; however, for a mixture ratio of 30% the soot concentration decreased. Numerical results showed that the concentrations of propargyl radicals (C3H3) at the 5% and 14% ratios were higher than those measured in the ethylene-based flame, and the production of benzene (C6H6) in the 5% and 14% DME mixture flames was also increased. This indicates the crucial role of propargyl in benzene ring formation. These reactions generally become stronger with increased DME mixing, except for A1- + H2 → A1 + H (-R554) and n-C4H5 + C2H2 → A1 + H (R542). Therefore, it is indicated that adding DME to ethylene flames promotes benzene ring formation. Note that although the maximum C6H6 concentration is largest in the 30% DME mixing flame, the soot volume fraction is smaller than those for the 5% and 14% mixture ratios. This is because the local C6H6 concentration decreases in the relatively low temperature region in the fuel side where soot growth occurs. © 2015, The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  17. Numerical sedimentation particle-size analysis using the Discrete Element Method

    Science.gov (United States)

    Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.

    2015-12-01

    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

  18. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  19. Role of Echogenic Amniotic Fluid Particles and Optical Density in ...

    African Journals Online (AJOL)

    This study was aimed to correlate echogenic amniotic fluid particle size (AFPS) in late third trimester to fetal lung maturity and amniotic fluid optical density (AFOD) at labor. AFPS were measured with specified criteria by real time transabdominal USG (3.5MHz) while Amniotic Fluid Index (AFI) was measured during routine ...

  20. Single-particle energies and density of states in density functional theory

    Science.gov (United States)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  1. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    Science.gov (United States)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  2. Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs

    International Nuclear Information System (INIS)

    Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung

    2008-01-01

    This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges

  3. Method of altering the effective bulk density of solid material and the resulting product: hollow polymeric particles

    International Nuclear Information System (INIS)

    Kool, L.B.; Nolen, R.L.; Solomon, D.E.

    1981-01-01

    Hollow spherical particles are made by spraying a mixture of powdered solid material with a solution of a film-forming polymer in a solvent therefor into a heated chamber where the solvent evaporates. The powder is thereby captured in the wall of the hollow polymer particles formed. Such particles are used to form a suspension in a fluid material. The hollow particles are of such size and wall thickness, in relation to the bulk density of the powdered solid material, that the bulk density of each hollow spherical particle is commensurate with the density of the fluid material. The particles thereby remain in suspension over a substantial period of time with little or no agitation of the fluid. (author)

  4. Influence of shape and size of the particles on jigging separation of plastics mixture.

    Science.gov (United States)

    Pita, Fernando; Castilho, Ana

    2016-02-01

    Plastics are popular for numerous applications due to their high versatility and favourable properties such as endurance, lightness and cheapness. Therefore the generation of plastic waste is constantly increasing, becoming one of the larger categories in municipal solid waste. Almost all plastic materials are recyclable, but for the recycling to be possible it is necessary to separate the different types of plastics. The aim of this research was to evaluate the performance of the jig separation of bi-component plastic mixtures. For this study six granulated plastics had been used: Polystyrene (PS), Polymethyl methacrylate (PMMA), Polyethylene Terephthalate (PET-S, PET-D) and Polyvinyl Chloride (PVC-M, PVC-D). Plastics mixtures were subjected to jigging in a laboratorial Denver mineral jig. The results showed that the quality of the jigging separation varies with the mixture, the density differences and with the size and shape of the particles. In the case of particles with more regular shapes the quality of separation of bi-component plastic mixtures improved with the increase of the particle size. For lamellar particles the influence of particle size was minimal. In general, the beneficiation of plastics with similar densities was not effective, since the separation efficiency was lower than 25%. However, in bi-component plastic mixtures that join a low density plastic (PS) with a high density one (PMMA, PET-S, PET-D, PVC-M and PVC-D), the quality of the jigging separation was greatly improved. The PS grade in the sunk was less than 1% for all the plastic mixtures. Jigging proved to be an effective method for the separation of bi-component plastic mixtures. Jigging separation will be enhanced if the less dense plastic, that overflows, has a lamellar shape and if the denser plastic, that sinks, has a regular one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

    Science.gov (United States)

    Reske, Rulle; Mistry, Hemma; Behafarid, Farzad; Roldan Cuenya, Beatriz; Strasser, Peter

    2014-05-14

    A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

  6. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    Science.gov (United States)

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  7. Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weizong; Li, Lulu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Valdez, James A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Saber, Mostafa [Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97201 (United States); Zhu, Yuntian, E-mail: ytzhu@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-02-15

    Radiation resistance of Fe–14Cr alloys under 200 keV He irradiation at 500 °C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700–1500 He bubbles at the depth of about 150–700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5–4 nm are found most effective for enhancing radiation resistance in the studied alloy systems.

  8. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    International Nuclear Information System (INIS)

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian; Egelhaaf, Stefan U.; Sengupta, Ankush; Sengupta, Surajit

    2016-01-01

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g (1) (r) and an analogue of the Edwards-Anderson order parameter g (2) (r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  9. Effect of exercise and menstrual cycle status on plasma lipids, low density lipoprotein particle size, and apolipoproteins.

    Science.gov (United States)

    Lamon-Fava, S; Fisher, E C; Nelson, M E; Evans, W J; Millar, J S; Ordovas, J M; Schaefer, E J

    1989-01-01

    Habitual physical exercise has been reported to have beneficial effects on plasma lipoproteins. To examine this question in women, plasma cholesterol, triglyceride, and apolipoprotein (apo) A-I and B levels, and low density lipoprotein (LDL) particle size were determined in 25 women runners (9 of whom had exercise-related secondary amenorrhea) and 36 age-matched nonexercising women (controls). The eumenorrheic runners had significantly lower apo B levels and significantly greater mean apo A-I/apo B ratios and LDL particle sizes than did the control women (P less than 0.05). Lower apo B levels were correlated with decreased body mass index, a known exercise effect (P less than 0.0001). In addition, normally menstruating runners had cholesterol and triglyceride levels that were 7.6% and 25.4% lower, respectively, and apo A-I levels that were 6.4% higher than control women (P = NS). In amenorrheic runners all parameters were similar to values in control women, except that apo B levels were 20% lower (P less than 0.05). Amenorrheic runners had lower plasma apo A-I levels (13%) and significantly lower apo A-I/apo B ratios and estradiol levels than eumenorrheic runners, and serum estradiol values in the runners were correlated with apo A-I levels (P less than 0.01). These data indicate that the beneficial effects of strenuous exercise on plasma apo A-I levels and apo A-I/apo B ratios in women runners can be reversed by exercise-induced amenorrhea and decreased serum estradiol levels, and that women runners have lower apo B levels than nonexercising women, regardless of menstrual status.

  10. Particle size for greatest penetration of HEPA filters - and their true efficiency

    International Nuclear Information System (INIS)

    da Roza, R.A.

    1982-01-01

    The particle size that most greatly penetrates a filter is a function of filter media construction, aerosol density, and air velocity. In this paper the published results of several experiments are compared with a modern filtration theory that predicts single-fiber efficiency and the particle size of maximum penetration. For high-efficiency particulate air (HEPA) filters used under design conditions this size is calculated to be 0.21 μm diam. This is in good agreement with the experimental data. The penetration at 0.21 μm is calculated to be seven times greater than at the 0.3 μm used for testing HEPA filters. Several mechanisms by which filters may have a lower efficiency in use than when tested are discussed

  11. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  12. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  13. The Importance of Particle Size in Estimating Downwind Contamination from an RDD

    International Nuclear Information System (INIS)

    Bauer, T.

    2007-01-01

    There is general agreement that realistic quantities of radiological material released from a radiological dispersal device (RDD) will not travel more than hundred meters at toxic levels. Of greater concern in the case of such an incident is the size of the area contaminated with radiological particles. Remediation of contaminated areas will require either removal of the deposited articles or disposal of the contaminated materials. Contours of expected contaminated areas have been presented which extend more than 10 miles downwind of the release location. It would be impossible to remediate such a large area, so the likely response will be to permanently seal most of it off from further use. Not only are these radiation contours below levels of concern, the particle size assumed is unreasonably low, especially when the density of radioactive materials is considered. Using of appropriate RDD characterization and range of particle size, this presentation will show that expected contamination areas should be small enough to make remediation feasible.(author)

  14. Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas

    International Nuclear Information System (INIS)

    Killer, Carsten; Mulsow, Matthias; Melzer, André

    2015-01-01

    An imaging Mie scattering technique has been developed to measure the spatially resolved size distribution of dust particles in extended dust clouds. For large dust clouds of micrometre-sized plastic particles confined in an radio frequency (rf) discharge, a segmentation of the dust cloud into populations of different sizes is observed, even though the size differences are very small. The dust size dispersion inside a population is much smaller than the difference between the populations. Furthermore, the dust size is found to be constantly decreasing over time while the particles are confined in an inert argon plasma. The processes responsible for the shrinking of the dust in the plasma have been addressed by mass spectrometry, ex situ microscopy of the dust size, dust resonance measurements, in situ determination of the dust surface temperature and Fourier transform infrared absorption (FT-IR). It is concluded that both a reduction of dust size and its mass density due to outgassing of water and other volatile constituents as well as chemical etching by oxygen impurities are responsible for the observations. (paper)

  15. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    Science.gov (United States)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  16. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  17. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua

    2017-11-01

    The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  19. Trap-size scaling in confined-particle systems at quantum transitions

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore

    2010-01-01

    We develop a trap-size scaling theory for trapped particle systems at quantum transitions. As a theoretical laboratory, we consider a quantum XY chain in an external transverse field acting as a trap for the spinless fermions of its quadratic Hamiltonian representation. We discuss trap-size scaling at the Mott insulator to superfluid transition in the Bose-Hubbard model. We present exact and accurate numerical results for the XY chain and for the low-density Mott transition in the hard-core limit of the one-dimensional Bose-Hubbard model. Our results are relevant for systems of cold atomic gases in optical lattices.

  20. Acid hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the bonding in glycogen α (composite particles.

    Directory of Open Access Journals (Sweden)

    Prudence O Powell

    Full Text Available Phytoglycogen (from certain mutant plants and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired.

  1. Acid Hydrolysis and Molecular Density of Phytoglycogen and Liver Glycogen Helps Understand the Bonding in Glycogen α (Composite) Particles

    Science.gov (United States)

    Powell, Prudence O.; Sullivan, Mitchell A.; Sheehy, Joshua J.; Schulz, Benjamin L.; Warren, Frederick J.; Gilbert, Robert G.

    2015-01-01

    Phytoglycogen (from certain mutant plants) and animal glycogen are highly branched glucose polymers with similarities in structural features and molecular size range. Both appear to form composite α particles from smaller β particles. The molecular size distribution of liver glycogen is bimodal, with distinct α and β components, while that of phytoglycogen is monomodal. This study aims to enhance our understanding of the nature of the link between liver-glycogen β particles resulting in the formation of large α particles. It examines the time evolution of the size distribution of these molecules during acid hydrolysis, and the size dependence of the molecular density of both glucans. The monomodal distribution of phytoglycogen decreases uniformly in time with hydrolysis, while with glycogen, the large particles degrade significantly more quickly. The size dependence of the molecular density shows qualitatively different shapes for these two types of molecules. The data, combined with a quantitative model for the evolution of the distribution during degradation, suggest that the bonding between β into α particles is different between phytoglycogen and liver glycogen, with the formation of a glycosidic linkage for phytoglycogen and a covalent or strong non-covalent linkage, most probably involving a protein, for glycogen as most likely. This finding is of importance for diabetes, where α-particle structure is impaired. PMID:25799321

  2. Nuclear densities of 1fsub(7/2) nuclei from elastic alpha-particle scattering

    International Nuclear Information System (INIS)

    Friedman, E.; Gils, H.J.; Rebel, H.

    1983-12-01

    The elastic scattering of 104 MeV α particles by sup(40,42,43,44,48)Ca, 50 Ti, 51 V, 52 Cr has been analyzed by phenomenological and semimicroscopic optical potentials in order to get information on isotopic and isotonic differences of the α particle optical potentials and of nuclear matter densities. The phenomenological optical potentials based on a Fourier-Bessel description of the real part reveal different behaviour in size and shape for the isotonic chain as compared to the isotopic chain. Odd-even effects are also indicated to be different for isotones and isotopes. The semi-microscopic analyses use a single-folding model with a density-dependent effective αN-interaction including a realistic local density approximation. The calculated potentials are fully consistent with the phenomenological ones. Isopotic and isotonic differences of the nuclear matter densities obtained from the folding model in general show a similar behavior as the optical potential differences. The results on matter densities are compared to other investigations. (orig.) [de

  3. Effect of size and density on canine gastric emptying of nondigestible solids

    International Nuclear Information System (INIS)

    Meyer, J.H.; Dressman, J.; Fink, A.; Amidon, G.

    1985-01-01

    Previous studies suggested that the food-containing canine stomach retains large, nondigestible spheres until all food has emptied; but it is not known whether there is a threshold size or a gradation of sizes that will empty along with food. Further, nothing is known of the effects of such parameters as density, shape, and surface energy on the emptying of nondigestible particles of any given size. To answer these questions 6 dogs with chronic duodenal fistulas were studied. Radiolabeled food and spheres were collected from the fistulas to compare the rate of gastric emptying of the spheres with that of the food. After a standard test meal of /sup 99m/Tc-labeled liver, steak, and water, diverted chyme was collected over a stack of sieves in 30-min fractions over 5 postcibal hours. The percent of fed spheres and fed /sup 99m/Tc-labeled liver in each collection was counted, and liquid chyme was returned to the distal duodenum. Spheres with a density of 1 emptied progressively faster as sphere diameters were decreased from 5 to 1 mm; but 0.015-mm spheres emptied at about the same rate as those with diameters of 1 mm. Emptying of the spheres became similar to emptying of the /sup 99m/Tc-labeled liver at about 1.6 mm. Spheres with densities less than 1 or greater than 1 emptied more slowly than spheres of the same size with a density of 1, whereas paper squares emptied the same way as spheres of comparable size and density. Surface energy did not affect emptying. The findings indicated that both sphere size and density affect their emptying in the presence of food

  4. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  5. The penetration of fibrous media by aerosols as a function of particle size

    Energy Technology Data Exchange (ETDEWEB)

    Dyment, J.

    1963-11-15

    This paper is concerned with the accurate experimental determination of the penetration of fibrous filter media by aerosols as a function of particle size, a topic about which previous papers give partial and conflicting data. in the present work, a heterogeneous sodium chloride aerosol was sampled before and after passing through the glass fiber filter medium by means of an electrostatic precipitator and the samples were examined under the electron microscope; the relation between particle size and penetration was derives at different gas velocities by comparison of the size distribution of the filtered and unfiltered clouds. As an extension of this work, size analyses have been made of plutonium aerosols occurring in glove boxes and enclosures during typical working operations. This information is considered in relation to the penetration of plutonium and other high density aerosol materials through filters. (auth)

  6. Single-particle density matrix of liquid 4He

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    2008-01-01

    The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru

  7. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  8. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  9. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  10. Particle size distribution instrument. Topical report 13

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  11. Ultraviolet (UV) disinfection of grey water: particle size effects.

    Science.gov (United States)

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  12. Effect of Inoculant Alloy Selection and Particle Size on Efficiency of Isomorphic Inoculation of Ti-Al.

    Science.gov (United States)

    Kennedy, J R; Rouat, B; Daloz, D; Bouzy, E; Zollinger, J

    2018-04-25

    The process of isomorphic inoculation relies on precise selection of inoculant alloys for a given system. Three alloys, Ti-10Al-25Nb, Ti-25Al-10Ta, and Ti-47Ta (at %) were selected as potential isomorphic inoculants for a Ti-46Al alloy. The binary Ti-Ta alloy selected was found to be ineffective as an inoculant due to its large density difference with the melt, causing the particles to settle. Both ternary alloys were successfully implemented as isomorphic inoculants that decreased the equiaxed grain size and increased the equiaxed fraction in their ingots. The degree of grain refinement obtained was found to be dependent on the number of particles introduced to the melt. Also, more new grains were formed than particles added to the melt. The grains/particle efficiency varied from greater than one to nearly twenty as the size of the particle increased. This is attributed to the breaking up of particles into smaller particles by dissolution in the melt. For a given particle size, Ti-Al-Ta and Ti-Al-Nb particles were found to have a roughly similar grain/particle efficiency.

  13. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  14. Characterization of size, anisotropy, and density heterogeneity of nanoparticles by sedimentation velocity

    KAUST Repository

    Demeler, Borries

    2014-08-05

    A critical problem in materials science is the accurate characterization of the size dependent properties of colloidal inorganic nanocrystals. Due to the intrinsic polydispersity present during synthesis, dispersions of such materials exhibit simultaneous heterogeneity in density ρ, molar mass M, and particle diameter d. The density increments ∂ρ/∂d and ∂ρ/∂M of these nanoparticles, if known, can then provide important information about crystal growth and particle size distributions. For most classes of nanocrystals, a mixture of surfactants is added during synthesis to control their shape, size, and optical properties. However, it remains a challenge to accurately determine the amount of passivating ligand bound to the particle surface post synthesis. The presence of the ligand shell hampers an accurate determination of the nanocrystal diameter. Using CdSe and PbS semiconductor nanocrystals, and the ultrastable silver nanoparticle (M4Ag 44(p-MBA)30), as model systems, we describe a Custom Grid method implemented in UltraScan-III for the characterization of nanoparticles and macromolecules using sedimentation velocity analytical ultracentrifugation. We show that multiple parametrizations are possible, and that the Custom Grid method can be generalized to provide high resolution composition information for mixtures of solutes that are heterogeneous in two out of three parameters. For such cases, our method can simultaneously resolve arbitrary two-dimensional distributions of hydrodynamic parameters when a third property can be held constant. For example, this method extracts partial specific volume and molar mass from sedimentation velocity data for cases where the anisotropy can be held constant, or provides anisotropy and partial specific volume if the molar mass is known. © 2014 American Chemical Society.

  15. EFFECTS OF EFFECTS OF PARTICLE SIZE DISTRIBUTION ...

    African Journals Online (AJOL)

    eobe

    The parameters examined were: moisture content, particle size distribution, total isture content, particle size distribution, total hydrocarbon content, soil pH, available nitrogen, available phosphorus, total heterotrophic bacteria and fungi count. The analysis of the soil characteristics throughout the remediation period showed ...

  16. Laboratory evaluation of the particle size effect on the performance of an elastomeric half-mask respirator against ultrafine combustion particles.

    Science.gov (United States)

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; Yermakov, Michael; McKay, Roy; Haruta, Hiroki; Kimura, Kazushi

    2013-08-01

    This study quantified the particle size effect on the performance of elastomeric half-mask respirators, which are widely used by firefighters and first responders exposed to combustion aerosols. One type of elastomeric half-mask respirator equipped with two P-100 filters was donned on a breathing manikin while challenged with three combustion aerosols (originated by burning wood, paper, and plastic). Testing was conducted with respirators that were fully sealed, partially sealed (nose area only), or unsealed to the face of a breathing manikin to simulate different faceseal leakages. Three cyclic flows with mean inspiratory flow (MIF) rates of 30, 85, and 135 L/min were tested for each combination of sealing condition and combustion material. Additional testing was performed with plastic combustion particles at other cyclic and constant flows. Particle penetration was determined by measuring particle number concentrations inside and outside the respirator with size ranges from 20 to 200 nm. Breathing flow rate, particle size, and combustion material all had significant effects on the performance of the respirator. For the partially sealed and unsealed respirators, the penetration through the faceseal leakage reached maximum at particle sizes >100 nm when challenged with plastic aerosol, whereas no clear peaks were observed for wood and paper aerosols. The particles aerosolized by burning plastic penetrated more readily into the unsealed half-mask than those aerosolized by the combustion of wood and paper. The difference may be attributed to the fact that plastic combustion particles differ from wood and paper particles by physical characteristics such as charge, shape, and density. For the partially sealed respirator, the highest penetration values were obtained at MIF = 85 L/min. The unsealed respirator had approximately 10-fold greater penetration than the one partially sealed around the bridge of the nose, which indicates that the nose area was the primary leak

  17. Numerical analysis of wet separation of particles by density differences

    Science.gov (United States)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  18. Downstream lightening and upward heavying, sorting of sediments of uniform grain size but differing in density

    Science.gov (United States)

    Viparelli, E.; Solari, L.; Hill, K. M.

    2014-12-01

    Downstream fining, i.e. the tendency for a gradual decrease in grain size in the downstream direction, has been observed and studied in alluvial rivers and in laboratory flumes. Laboratory experiments and field observations show that the vertical sorting pattern over a small Gilbert delta front is characterized by an upward fining profile, with preferential deposition of coarse particles in the lowermost part of the deposit. The present work is an attempt to answer the following questions. Are there analogous sorting patterns in mixtures of sediment particles having the same grain size but differing density? To investigate this, we performed experiments at the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. During the experiments a Gilbert delta formed and migrated downstream allowing for the study of transport and sorting processes on the surface and within the deposit. The experimental results show 1) preferential deposition of heavy particles in the upstream part of the deposit associated with a pattern of "downstream lightening"; and 2) a vertical sorting pattern over the delta front characterized by a pattern of "upward heavying" with preferential deposition of light particles in the lowermost part of the deposit. The observed downstream lightening is analogous of the downstream fining with preferential deposition of heavy (coarse) particles in the upstream part of the deposit. The observed upward heavying was unexpected because, considering the particle mass alone, the heavy (coarse) particles should have been preferentially deposited in the lowermost part of the deposit. Further, the application of classical fractional bedload transport relations suggests that in the case of mixtures of particles of uniform size and different densities equal mobility is not approached. We hypothesize that granular physics mechanisms traditionally associated with sheared granular flows may be responsible for the observed upward heavying and for the

  19. The effect of concentration of glycerol and electric current on the morphology and particle size of electrodeposited cadmium powder

    Directory of Open Access Journals (Sweden)

    S. G. Viswanath

    2013-06-01

    Full Text Available Cadmium powder was obtained by electrodeposition of cadmium from glycerol and sulphuric acid. The morphology and particle size of these powders were studied. Broken dendrites, intermingled with spongy and irregular particles were observed in the powder. Around 60% of particles were below 100 µm. XRD studies showed that particles with sizes between 212.2 and 303.2 nm were present in the powder. The apparent density of cadmium powder decreased with increase in concentration of glycerol. The stability of the powder and current efficiency were also studied

  20. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  1. Subcooled Liquid Oxygen Cryostat for Magneto-Archimedes Particle Separation by Density

    Science.gov (United States)

    Hilton, D. K.; Celik, D.; Van Sciver, S. W.

    2008-03-01

    An instrument for the separation of particles by density (sorting) is being developed that uses the magneto-archimedes effect in liquid oxygen. With liquid oxygen strongly paramagnetic, the magneto-archimedes effect is an extension of diamagnetic levitation in the sense of increasing the effective buoyancy of a particle. The instrument will be able to separate ensembles of particles from 100 μm to 100 nm in size, and vertically map or mechanically deliver the separated particles. The instrument requires a column of liquid oxygen that is nearly isothermal, free of thermal convection, subcooled to prevent nucleate boiling, and supported against the strong magnetic field used. Thus, the unique cryostat design that meets these requirements is described in the present article. It consists in part of a column of liquid nitrogen below for cooling the liquid oxygen, with the liquid oxygen pressurized by helium gas to prevent nucleate boiling.

  2. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  3. Sintering of Spherical Particles of Equal and Different Size Arranged in a Body Centered Cubic Structure

    DEFF Research Database (Denmark)

    Redanz, Pia; McMeeking, R. M.

    2003-01-01

    Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif......, different dihedral angles and the evolution of relative density and sintering stresses are studied....

  4. Azimuthal asymmetries of the charged particle densities in EAS in the range of KASCADE-Grande

    International Nuclear Information System (INIS)

    Sima, O.; Morariu, C.; Manailescu, C.; Rebel, H.; Haungs, A.

    2009-03-01

    The reconstruction of Extended Air Showers (EAS) observed by ground level particle detectors is based on the characteristics of observables like particle lateral density (PLD), arrival time signals etc. Lateral densities, inferred from detector data, are usually parameterized by applying various lateral distribution functions (LDF). The LDFs are used in turn for evaluating quantities like the total number of particles, the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the particle lateral density from this assumption are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. In this report we discuss the origin of the asymmetry: geometric, attenuation and geomagnetic effects. Geometric effects occur in the case of inclined showers, due to the fact that the observations are made in a plane different from the intrinsic shower plane. Hence the projection procedure from the observational plane to the relevant normal shower plane plays a significant role. Attenuation effects arise from the differences between the distances travelled by particles that reach the ground at the same radial coordinate but with various azimuthal positions in the case of inclined showers. The influence of the geomagnetic field distorts additionally the charged particle distributions in a way specific to the geomagnetic location. Based on dedicated CORSIKA simulations we have evaluated the magnitude of the effects. Focused to geometric and attenuation effects, procedures for minimizing the effects of the azimuthal asymmetry of lateral density in the intrinsic shower plane were developed. The consequences of the reconstruction of the charge particle sizes determined with the Grande array are also discussed and a procedure for practical application of restoring the azimuthal symmetry

  5. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  6. Niacin extended-release/simvastatin combination therapy produces larger favorable changes in high-density lipoprotein particles than atorvastatin monotherapy

    Directory of Open Access Journals (Sweden)

    Toth PP

    2012-01-01

    Full Text Available Peter P Toth1, Kamlesh M Thakker2, Ping Jiang2, Robert J Padley21University of Illinois College of Medicine, Peoria, and CGH Medical Center, Sterling, 2Abbott, Abbott Park, IL, USABackground: The purpose of this research was to compare the effects of niacin extended-release in combination with simvastatin (NER/S versus atorvastatin monotherapy on high-density lipoprotein (HDL particle number and size in patients with hyperlipidemia or dyslipidemia from the SUPREME study.Methods: This was a post hoc analysis of patients (n = 137 who completed the SUPREME study and who had lipid particle number and size measurements at both baseline and at week 12 by nuclear magnetic resonance spectroscopy. Following ≥4 weeks without lipid-modifying therapy (washout period, the patients received NER/S 1000/40 mg/day for 4 weeks followed by NER/S 2000/40 mg/day for 8 weeks, or atorvastatin 40 mg/day for 12 weeks. Median percent changes in HDL particle number and size from baseline to week 12 were compared between the NER/S and atorvastatin treatment groups using the Wilcoxon rank-sum test. Distribution of HDL particle subclasses at week 12 was compared between the treatment groups using the Cochran–Mantel–Haenszel test.Results: Treatment with NER/S resulted in a significantly greater percent reduction in small HDL particle number at week 12 compared with atorvastatin monotherapy (-1.8% versus 4.2%, P = 0.014, and a numerically greater percent increase in large HDL particle number (102.4% versus 39.2%, P = 0.078 compared with atorvastatin monotherapy. A significantly greater percent increase in HDL particle size from baseline at week 12 was observed with NER/S compared with atorvastatin (6.0% versus 1.3%, P < 0.001. NER/S treatment also resulted in a significant shift in HDL particle size from small and medium at baseline to large at week 12 (P < 0.0001.Conclusion: Treatment with NER/S resulted in larger favorable changes in number and size of HDL particle

  7. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    Science.gov (United States)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  8. Suppression of coffee ring: (Particle) size matters

    Science.gov (United States)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  9. EFFECTS OF ULTRASOUND ON THE MORPHOLOGY, PARTICLE SIZE, CRYSTALLINITY, AND CRYSTALLITE SIZE OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    SUMARI SUMARI

    2014-05-01

    Full Text Available The aim of this study is to optimize ultrasound treatment to produce fragment of cellulose that is low in particles size, crystallite size, and crystallinity. Slurry of 1 % (w/v the cellulose was sonicated at different time periods and temperatures. An ultrasonic reactor was operated at 300 Watts and 28 kHz to cut down the polymer into smaller particles. We proved that ultrasound damages and fragments the cellulose particles into shorter fibers. The fiber lengths were reduced from in the range of 80-120 µm to 30-50 µm due to an hour ultrasonication and became 20-30 µm after 5 hours. It was also found some signs of erosion on the surface and stringy. The acoustic cavitation also generated a decrease in particle size, crystallinity, and crystallite size of the cellulose along with increasing sonication time but it did not change d-spacing. However, the highest reduction of particle size, crystallite size, and crystallinity of the cellulose occurred within the first hour of ultrasonication, after which the efficiency was decreased. The particle diameter, crystallite size, and crystallinity were decreased from 19.88 µm to 15.96 µm, 5.81 Å to 2.98 Å, and 77.7% to 73.9% respectively due to an hour ultrasound treatment at 40 °C. The treatment that was conducted at 40 °C or 60 °C did not give a different effect significantly. Cellulose with a smaller particle and crystallite size as well as a more amorphous shape is preferred for further study.

  10. Permeability of different size waste particles

    Directory of Open Access Journals (Sweden)

    Sabina Gavelytė

    2015-10-01

    Full Text Available The world and life style is changing, but the most popular disposal route for waste is landfill globally until now. We have to think about waste prevention and preparing for re-use or recycling firstly, according to the waste disposal hierarchy. Disposed waste to the landfill must be the last opportunity. In a landfill, during waste degradation processes leachate is formed that can potentially cause clogging of bottom drainage layers. To ensure stability of a landfill construction, the physical properties of its components have to be controlled. The hydrology of precipitation, evaporation, runoff and the hydraulic performance of the capping and liner materials are important controls of the moisture content. The water balance depends also on the waste characteristics and waste particle size distribution. The aim of this paper is to determine the hydraulic permeability in a landfill depending on the particle size distribution of municipal solid waste disposed. The lab experiment results were compared with the results calculated with DEGAS model. Samples were taken from a landfill operated for five years. The samples particle sizes are: >100 mm, 80 mm, 60 mm, 40 mm, 20 mm, 0.01 mm and <0.01 mm. The permeability test was conducted using the column test. The paper presents the results of experiment and DEGAS model water permeability with waste particle size.

  11. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  12. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  13. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Distribution Of Natural Radioactivity On Soil Size Particles

    International Nuclear Information System (INIS)

    Tran Van Luyen; Trinh Hoai Vinh; Thai Khac Dinh

    2008-01-01

    This report presents a distribution of natural radioactivity on different soil size particles, taken from one soil profile. On the results shows a range from 52% to 66% of natural radioisotopes such as 238 U, 232 Th, 226 Ra and 40 K concentrated on the soil particles below 40 micrometers in diameter size. The remained of natural radioisotopes were distributed on a soil particles with higher diameter size. The study is available for soil sample collected to natural radioactive analyze by gamma and alpha spectrometer methods. (author)

  15. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  16. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.

    2009-01-01

    Dry deposition of atmospheric particles is critically dependent on particle size and plays a key role in dictating the mass and number distributions of atmospheric particles. However, modeling dry deposition is constrained by a lack of understanding of controlling dependencies and accurate size......-resolved observations. We present size-resolved particle number fluxes for sub-100-nm particle diameters (Dp) over a deciduous forest derived using eddy covariance applied to data from a fast mobility particle sizer. The size-resolved particle number fluxes in 18 diameters between 8 and 100 nm were collected during...... leaf-on and are statistically robust. Particle deposition velocities normalized by friction velocity (v d +) are approximately four times smaller than comparable values for coniferous forests reported elsewhere. Comparison of the data with output from a new one-dimensional mechanistic particle...

  17. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  18. Reactivity of palladium nano-particles supported in hydrogenation: role of particles surface density; Reactivite des nanoparticules de palladium supportees en hydrogenation: role de la densite surfacique de particules

    Energy Technology Data Exchange (ETDEWEB)

    Benkhaled, M.

    2004-10-01

    The objective of this work is to investigate the influence of the particle surface density on the hydrogenation of polyunsaturated compounds (buta-1,3-diene, ortho-xylene). Highly dispersed Pd/Al{sub 2}O{sub 3} ({gamma} and {delta}-Al{sub 2}O{sub 3}) catalysts were prepared from Pd(nitrite) complexes (size < 7 angstrom, controlled by TEM, HAADF, EXAFS and CO chemisorption). Increasing the particle surface density from 2240 to 12880 particles/{mu}m{sup 2} leads to a modification of the electronic properties as evidenced by CO-FTIR, XPS and XANES. By contrast, the comparison of the supports at iso-density showed no significant difference of the physico-chemical properties of the supported metal particles. In parallel, the catalytic performances in hydrogenation of butadiene and butenes are very sensitive both to the nature of the support for the same density and to the surface density for the same support. It was shown that the reactions of hydrogenation could be controlled at the same time by the electronic properties of the metal nano-particles but also by the phenomenon of hydrogen diffusion around the particles on a zone of support. In this case, the support can play the part of hydrogen tank. (author)

  19. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551 ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.089, year: 2016

  20. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... and clay). It performed reasonably well for the dry-end (above a pF value of 2.0; pF = log(|Ψ|), where Ψ is the matric potential in cm), but did not do as well closer to saturated conditions. The Xw*-model gives the volumetric water content as a function of volumetric content of particle size fractions...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  1. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  2. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  3. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  4. Association of triglyceride-rich lipoproteins-related markers and low-density lipoprotein heterogeneity with cardiovascular risk: effectiveness of polyacrylamide-gel electrophoresis as a method of determining low-density lipoprotein particle size.

    Science.gov (United States)

    Tani, Shigemasa; Matsumoto, Michiaki; Nagao, Ken; Hirayama, Atsushi

    2014-01-01

    Despite well-controlled low-density lipoprotein cholesterol (LDL-C), hypertriglyceridemia is an independent predictor of coronary events. We investigated the risk of atherosclerotic cardiovascular disease through examining the relation between triglyceride (TG) metabolism and LDL-heterogeneity as assessed by polyacrylamide-gel electrophoresis (PAGE). Estimated LDL-particle size [relative LDL migration (LDL-Rm value)] measured by PAGE with the LipoPhor system (Joko, Tokyo, Japan) was evaluated in 645 consecutive patients with one additional risk factor for atherosclerotic cardiovascular disease.Multivariate regression analysis after adjustments for traditional risk factors revealed an elevated triglyceride-rich lipoproteins (TRLs)-related markers [TG, remnant-like particle cholesterol (RLP-C), very LDL (VLDL) fraction, apolipoprotein (apo) C-II, and apo C-III] level to be an independent predictor of smaller-size LDL-particle size, both in the overall population, and in a subset of patients with serum LDL-C <100 mg/dL. Even among the patients with LDL-C levels <100 mg/dL, the serum levels of atherogenic lipid markers in those with a LDL-Rm value ≥0.40, suggesting the presence of large amounts of small-dense LDL and upper limit (mean+2 standard deviation) in this population, were significantly higher than in those with a LDL-Rm value <0.40. Moreover, the serum levels of TRLs-related markers showed high accurate area under the receiver-operating characteristic curve (TG, 0.896; RLP-C, 0.875; VLDL fraction, 0.803; apo C-II, 0.778; and apo C-III, 0.804, respectively) in terms of evaluation of the indicators of LDL-Rm value ≥0.40. To further reduce the risk of atherosclerotic cardiovascular disease, it may be of particular importance to pay attention not only to the quantitative change in the serum LDL-C, but also TG-metabolism associated with LDL-heterogeneity. Combined evaluation of TRLs-related markers and LDL-Rm value may be useful for assessing the risk of

  5. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  6. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  7. On the sizes and observable effects of dust particles in polar mesospheric winter echoes

    Science.gov (United States)

    Havnes, O.; Kassa, M.

    2009-05-01

    In the present paper, recent radar and heating experiments on the polar mesospheric winter echoes (PMWE) are analyzed with the radar overshoot model. The PMWE dust particles that influence the radar backscatter most likely have sizes around 3 nm. For dust to influence the electrons in the PMWE layers, it must be charged; therefore, we have discussed the charging of nanometer-sized particles and found that the photodetachment effect, where photons of energy less than the work function of the dust material can remove excess electrons, probably is dominant at sunlit conditions. For moderate and low electron densities, very few of the dust smaller than ˜3 nm will be charged. We suggest that the normal requirement that disturbed magnetospheric conditions with ionizing precipitation must be present to create observable PMWE is needed mainly to create sufficiently high electron densities to overcome the photodetachment effect and charge the PMWE dust particles. We have also suggested other possible effects of the photodetachment on the occurrence rate of the PMWE. We attribute the lack of PMWE-like radar scattering layers in the lower mesosphere during the summer not only to a lower level of turbulence than in winter but also to that dust particles are removed from these layers due to the upward wind draught in the summer mesospheric circulation system. It is likely that this last effect will completely shut off the PMWE-like radar layers in the lower parts of the mesosphere.

  8. Particle sizes in slash fire smoke.

    Science.gov (United States)

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  9. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  10. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  11. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  12. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  13. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by 222 Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  14. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  15. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  16. A study of particle size distribution in zirconia-alumina powders

    International Nuclear Information System (INIS)

    Ramakrishnan, K.N.; Venkadesan, S.; Nagarajan, R.

    1996-01-01

    Powder particles, in general are characterized in terms of particle size, size distributions and composition for reasons associated with manufacturing problem based upon product quality, manufacturing convenience, cost and product handling convenience. Particle size analysis or the measurement of particle size distribution is a common effort in any physical, chemical or mechanical processes. This information and processing methods are intricate factors that relate to material behavior and/or physical properties of the fabricated product. The requirements for the formation of a product of particulate solids and its strength varies as the particle size and the size distribution changes. Also the transport properties and the chemical activity are related to the particle size and the size distribution. The choice of a distribution to represent a physical system is generally motivated by an understanding of the nature of underlying phenomenon and is verified by the available data. After a model has been chosen, its parameter must be determined. The reasonableness of a selected model on the basis of given data is especially important when the model is to be used for prediction. Two different approaches in this problem are probability plotting and statistical tests

  17. On the evaluation of semiclassical nuclear many-particle many-hole level densities

    International Nuclear Information System (INIS)

    Blin, A.H.; Hiller, B.; Schuck, P.; Yannouleas, C.

    1985-10-01

    An exact general scheme is described to calculate the m-particle n-hole fermion level densities for an arbitrary single particle Hamiltonian taking into account the Pauli exclusion principle. This technique is applied to obtain level densities of the three dimensional isotropic harmonic oscillator semiclassically in the Thomas-Fermi approach. In addition, we study the l-particle l-hole level density of the Woods-Saxon potential. For the harmonic oscillator we analyze the temperature dependence of the linear response function and the influence of pairing correlations on the l-particle l-hole level density. Finally, a Taylor expansion method of the m-particle n-hole level densities is discussed

  18. Extraction of density distributions and particle locations from hologram images

    International Nuclear Information System (INIS)

    Ikeda, Koh; Okamoto, Koji; Kato, Fumitake; Shimizu, Isao.

    1996-01-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. In the hologram, the interferogram between reference beam and particle scattering were recorded. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the plane wave was reconstructed with the low-pass filter, resulting in the information of the density distributions to be obtained. With the high-pass filter, the particle three-dimensional positions was determined, i.e., the same procedure with the original HPIV technique. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  19. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  20. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory.

    Science.gov (United States)

    Hwang, Geelsu; Ahn, Ik-Sung; Mhin, Byung Jin; Kim, Ju-Young

    2012-09-01

    Due to the increasing production and application of nanoparticles, their release into the environment would be inevitable, which requires a better understanding of their fate in the environment. When considering their toxic behavior or biodegradation as their fate, their adhesion to the cell surface must be the first step to be thoroughly studied. In this study, nano-sized polymeric particles of urethane acrylate with various hydrophobicity and ionic properties were synthesized as model nanoparticles, and their adhesion to Pseudomonas putida strains was monitored. The higher hydrophobicity and positive charge density on the particle surface exhibited the larger adhesion to the bacteria, whereas negative charge density on the particle hindered their adhesion to the bacteria, albeit high hydrophobicity of particle. These observations were successfully explained with the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    Directory of Open Access Journals (Sweden)

    C. Moni

    2012-12-01

    Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of 15N labelled litter.

    Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.

    Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

  2. Vertical pneumatic conveying in dilute and dense-phase flows: experimental study of the influence of particle density and diameter on fluid dynamic behavior

    Directory of Open Access Journals (Sweden)

    Narimatsu C.P.

    2001-01-01

    Full Text Available In this work, the effects of particle size and density on the fluid dynamic behavior of vertical gas-solid transport of Group D particles in a 53.4 mm diameter transport tube were studied. For the conditions tested, the experimental curves of pressure gradient versus air velocity presented a minimum pressure gradient point, which is associated with a change in the flow regime from dense to dilute phase. The increases in particle size from 1.00 to 3.68 mm and in density from 935 to 2500 kg/m³ caused an increase in pressure gradient for the dense-phase transport region, but were not relevant in dilute transport. The transition velocity between dense and dilute flow (Umin also increased with increasing particle density and diameter. An empirical equation was fitted for predicting transition air velocity for the transport of glass spheres. Additional experiments, covering a wider range of conditions and particles properties, are still needed to allow the fitting of a generalized equation for prediction of Umin.

  3. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters

    International Nuclear Information System (INIS)

    Eisenberg, S.

    1985-01-01

    The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [ 3 H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [ 3 H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [ 3 H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles

  4. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  5. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  6. Box-particle probability hypothesis density filtering

    OpenAIRE

    Schikora, M.; Gning, A.; Mihaylova, L.; Cremers, D.; Koch, W.

    2014-01-01

    This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic, and data association uncertainty. The box-PHD filter reduces the number of particles significantly, which improves the runtime considerably. The small number of box-p...

  7. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  8. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  9. Selection Of Suitable Particle Size And Particle Ratio For Japanese Cucumber Cucumis Sativus L. Plants

    Directory of Open Access Journals (Sweden)

    Galahitigama GAH

    2015-08-01

    Full Text Available This study was conducted to select the best particle size of coco peat for cucumber nurseries as well as best particle ratio for optimum plant growth and development of cucumber. The experiment was carried out in International Foodstuff Company and Faculty of Agriculture University of Ruhuna Sri Lanka during 2015 to 2016. Under experiment one three types of different particle sizes were used namely fine amp88040.5mm T2 medium 3mm-0.5mm T3 and coarse 4mm T4 with normal coco peat T1 as treatments. Complete Randomized Design CRD used as experimental design with five replicates. Germination percentage number of leaves per seedling seedling height in frequent day intervals was taken as growth parameters. Analysis of variance procedure was applied to analyze the data at 5 probability level. The results revealed that medium size particle media sieve size 0.5mm -3mm of coco peat was the best particle size for cucumber nursery practice when considered the physical and chemical properties of medium particles of coco peat. In the experiment of selecting of suitable particle ratio for cucumber plants the compressed mixture of coco peat particles that contain 70 ww unsieved coco peat 20 ww coarse particles and 10 ww coconut husk chips 5 12mm has given best results for growth performances compared to other treatments and cucumber grown in this mixture has shown maximum growth and yield performances.

  10. Estimating particle number size distributions from multi-instrument observations with Kalman Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Viskari, T.

    2012-07-01

    Atmospheric aerosol particles have several important effects on the environment and human society. The exact impact of aerosol particles is largely determined by their particle size distributions. However, no single instrument is able to measure the whole range of the particle size distribution. Estimating a particle size distribution from multiple simultaneous measurements remains a challenge in aerosol physical research. Current methods to combine different measurements require assumptions concerning the overlapping measurement ranges and have difficulties in accounting for measurement uncertainties. In this thesis, Extended Kalman Filter (EKF) is presented as a promising method to estimate particle number size distributions from multiple simultaneous measurements. The particle number size distribution estimated by EKF includes information from prior particle number size distributions as propagated by a dynamical model and is based on the reliabilities of the applied information sources. Known physical processes and dynamically evolving error covariances constrain the estimate both over time and particle size. The method was tested with measurements from Differential Mobility Particle Sizer (DMPS), Aerodynamic Particle Sizer (APS) and nephelometer. The particle number concentration was chosen as the state of interest. The initial EKF implementation presented here includes simplifications, yet the results are positive and the estimate successfully incorporated information from the chosen instruments. For particle sizes smaller than 4 micrometers, the estimate fits the available measurements and smooths the particle number size distribution over both time and particle diameter. The estimate has difficulties with particles larger than 4 micrometers due to issues with both measurements and the dynamical model in that particle size range. The EKF implementation appears to reduce the impact of measurement noise on the estimate, but has a delayed reaction to sudden

  11. PDV-based estimation of high-speed ejecta particles density from shock-loaded tin plate

    Science.gov (United States)

    Franzkowiak, Jean-Eloi; Prudhomme, Gabriel; Mercier, Patrick; Lauriot, Séverine; Dubreuil, Estelle; Berthe, Laurent

    2017-06-01

    A machine-grooved metallic tin surface is explosively driven by a detonator with a shock-induced pressure of 25 GPa. The resulting dynamic fragmentation process called micro-jetting is the creation of high-speed jets of matter moving faster than the bulk metallic surface. The resulting fragmentation into micron-sized metallic particles generates a self-expanding cloud of droplets, whose areal mass, velocity and size distributions are unknown. Lithium-Niobate (LN) piezoelectric pin measured areal mass and Photonic Doppler Velocimetry (PDV) was employed to get a time-velocity spectrogram of the cloud. We present both experimental mass and velocity results and relate the integrated areal mass of the cloud to the PDV power spectral density under the assumption of a power law distribution for particle sizes. A model of PDV spectrograms is described, for which speckle fluctuations are averaged out. Finally, we use our model for a Maximum Likelihood Estimation of the cloud's parameters from PDV data. The integrated areal mass deduced from the PDV analysis is in good agreement with piezoelectric results. We underline the relevance of analyzing PDV data and correlating different diagnostics to retrieve the macro-physical properties of ejecta particles.

  12. Effect of particle size on mixing degree in dispensation.

    Science.gov (United States)

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  13. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  14. Use of surfactants to control island size and density

    Science.gov (United States)

    Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.

    2017-08-15

    Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.

  15. Influence of particle size distributions on magnetorheological fluid performances

    International Nuclear Information System (INIS)

    Chiriac, H; Stoian, G

    2010-01-01

    In this paper we investigate the influence that size distributions of the magnetic particles might have on the magnetorheological fluid performances. In our study, several size distributions have been tailored first by sieving a micrometric Fe powder in order to obtain narrow distribution powders and then by recomposing the new size distributions (different from Gaussian). We used spherical Fe particles (mesh -325) commercially available. The powder was sieved by means of a sieve shaker using a series of sieves with the following mesh size: 20, 32, 40, 50, 63, 80 micrometers. All magnetic powders were characterized through Vibrating Sample Magnetometer (VSM) measurements, particle size analysis and also Scanning Electron Microscope (SEM) images were taken. Magnetorheological (MR) fluids based on the resulted magnetic powders were prepared and studied by means of a rheometer with a magnetorheological module. The MR fluids were measured in magnetic field and in zero magnetic field as well. As we noticed in our previous experiments particles size distribution can also influence the MR fluids performances.

  16. Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.

    Science.gov (United States)

    1984-11-01

    34Particle Sizing by Optical , Nonimaging Techniques," Liquid Particle Size _Mjur-mentTechnjgjwi, ASTM publications STP848, ed. by J. MI. Tishkoff, R. D... Optical Nonimaging predictions do not account for nonideal lens effects. Techniques," in Liquid Particle Size Measurement Techniques, J.M.Tishkoff, ed...4S E. Dan Hirleman’ Particle Sizing by Optical , Nonimaging Techniques REFERENCE: Hieleman, E. D., "Particle Sizing by Optical , Nonimaging Tech- niques

  17. Effect of particle size distribution on sintering of tungsten

    International Nuclear Information System (INIS)

    Patterson, B.R.; Griffin, J.A.

    1984-01-01

    To date, very little is known about the effect of the nature of the particle size distribution on sintering. It is reasonable that there should be an effect of size distribution, and theory and prior experimental work examining the effects of variations in bimodal and continuous distributions have shown marked effects on sintering. Most importantly, even with constant mean particle size, variations in distribution width, or standard deviation, have been shown to produce marked variations in microstructure and sintering rate. In the latter work, in which spherical copper powders were blended to produce lognormal distributions of constant geometric mean particle size by weight frequency, blends with larger values of geometric standard deviation, 1nσ, sintered more rapidly. The goals of the present study were to examine in more detail the effects of variations in the width of lognormal particle size distributions of tungsten powder and determine the effects of 1nσ on the microstructural evolution during sintering

  18. Element content and particle size characterization of a mussel candidate reference material

    International Nuclear Information System (INIS)

    Moreira, Edson G.; Vasconcellos, Marina B.A.; Santos, Rafaela G. dos; Martinelli, Jose R.

    2011-01-01

    The use of certified reference materials is an important tool in the quality assurance of analytical measurements. To assure reliability on recently prepared powder reference materials, not only the characterization of the property values of interest and their corresponding uncertainties, but also physical properties such as the particle size distribution must be well evaluated. Narrow particle size distributions are preferable than larger ones; as different size particles may have different analyte content. Due to this fact, the segregation of the coarse and the fine particles in a bottle may lead to inhomogeneity of the reference material, which should be avoided. In this study the element content as well as the particle size distribution of a mussel candidate reference material produced at IPEN-CNEN/SP was investigated. Instrumental Neutron Activation Analysis was applied to the determination of 15 elements in seven fractions of the material with different particle size distributions. Subsamples of the materials were irradiated simultaneously with elemental standards at the IEA-R1 research nuclear reactor and the induced gamma ray energies were measured in a hyperpure germanium detector. Three vials of the candidate reference material and three coarser fractions, collected during the preparation, were analyzed by Laser Diffraction Particle Analysis to determine the particle size distribution. Differences on element content were detected for fractions with different particle size distribution, indicating the importance of particle size control for biological reference materials. From the particle size analysis, Gaussian particle size distribution was observed for the candidate reference material with mean particle size μ = 94.6 ± 0.8 μm. (author)

  19. Rain drop size densities over land and over sea

    Science.gov (United States)

    Bumke, Karl

    2010-05-01

    A detailed knowledge of rain drop size densities is an essential presumption with respect to remote sensing of precipitation. Since maritime and continental aerosol is significantly different yielding to differences in cloud drop size densities, maritime and continental rain drop size densities may be different, too. In fact only a little is known about differences in rain drop size densities between land and sea due to a lack of suitable data over the sea. To fill in this gap measurements were performed during the recent 10 years at different locations in Germany and on board of research vessels over the Baltic Sea, the North Sea, Atlantic, Indian, and Pacific Ocean. Measurements were done by using an optical disdrometer (ODM 470, Großklaus et al., 1998), which is designed especially to perform precipitation measurements on moving ships and under high wind speeds. Temporal resolution of measurements is generally 1 minute, total number of time series is about 220000. To investigate differences in drop size densities over land and over sea measurements have been divided into four classes on the basis of prevailing continental or maritime influence: land measurements, coastal measurements, measurements in areas of semi-enclosed seas, and open sea measurements. In general differences in drop size densities are small between different areas. A Kolmogoroff Smirnoff test does not give any significant difference between drop size densities over land, coastal areas, semi-enclosed, and open seas at an error rate of 5%. Thus, it can be concluded that there are no systematic differences between maritime and continental drop size densities. The best fit of drop size densities is an exponential decay curve, N(D ) = 6510m -3mm -1mm0.14h- 0.14×R-0.14×exp(- 4.4mm0.25h-0.25×R- 0.25×D mm -1), it is estimated by using the method of least squares. N(D) is the drop size density normalized by the resolution of the optical disdrometer, D the diameter of rain drops in mm, and R the

  20. Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds

    Directory of Open Access Journals (Sweden)

    Sebastian Spath

    2015-07-01

    Full Text Available 3D printing is a promising method for the fabrication of scaffolds in the field of bone tissue engineering. To date, the mechanical strength of 3D printed ceramic scaffolds is not sufficient for a variety of applications in the reconstructive surgery. Mechanical strength is directly in relation with the porosity of the 3D printed scaffolds. The porosity is directly influenced by particle size and particle-size distribution of the raw material. To investigate this impact, a hydroxyapatite granule blend with a wide particle size distribution was fractioned by sieving. The specific fractions and bimodal mixtures of the sieved granule blend were used to 3D print specimens. It has been shown that an optimized arrangement of fractions with large and small particles can provide 3D printed specimens with good mechanical strength due to a higher packing density. An increase of mechanical strength can possibly expand the application area of 3D printed hydroxyapatite scaffolds.

  1. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  2. The effects of moisture content, particle size and binding agent content on oil palm shell pellet quality parameters

    Directory of Open Access Journals (Sweden)

    Nelson Arzola

    2012-01-01

    Full Text Available Waste-to-energy represents a challenge for the oil palm industry worldwide. Bio-pellet production is an alternative way of adding value to oil palm biomass. This would mean that a product having major energy density becomes more mechanically stable and achieves better performance during combustion. This paper deals with oil palm shell pelleting; using binding agents having up to 25% mass keeping average particle size less than 1mm and moisture content up to 18.7% (d.b. were evaluated. An experimental factorial design used binding agent mass percentage, milled shell particle size and moisture content as factors. Pellet density response surfaces and durability index were obtained. Pellet performance during thermal-chemical transformation was also evaluated by using thermogravimetry equipment. The results led to technical evaluation of scale-up at industrial production level.

  3. Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

    DEFF Research Database (Denmark)

    Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken

    2009-01-01

    The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content ( ) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density ( b) on Dp and ka for six sandy soils under variably...

  4. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  5. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  6. Sizes of particles formed during municipal wastewater treatment.

    Science.gov (United States)

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  7. Concentration and size distribution of particles in abstracted groundwater

    NARCIS (Netherlands)

    Van Beek, C.G.E.M.; de Zwart, A.H.; Balemans, M.; Kooiman, J.W.; van Rosmalen, C.; Timmer, H.; Vandersluys, J.; Stuijfzand, P.J.

    2010-01-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of

  8. Particle sizing experiments with the laser Doppler velocimeter: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  9. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    Science.gov (United States)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  10. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the

  11. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  12. Experimental investigation of particle size distribution influence on diffusion controlled coarsening

    International Nuclear Information System (INIS)

    Fang, Zhigang; Patterson, B.R.

    1993-01-01

    The influence of initial particle size distribution on coarsening during liquid phase sintering has been experimentally investigated using W-14Ni-6Fe alloy as a model system. It was found that initially wider size distribution particles coarsened more rapidly than those of an initially narrow distribution. The well known linear relationship between the cube of the average particle radius bar r -3 , and time was observed for most of the coarsening process, although the early stage coarsening rate constant changed with time, as expected with concomitant early changes in the tungsten particle size distribution. The instantaneous transient rate constant was shown to be related to the geometric standard deviation, 1nσ, of the instantaneous size distributions, with higher rate constants corresponding to larger 1nσ values. The form of the particle size distributions changed rapidly during early coarsening and reached a quasi-stable state, different from the theoretical asymptotic distribution, after some time. A linear relationship was found between the experimentally observed instantaneous rate constant and that computed from an earlier model incorporating the effect of particle size distribution. The above results compare favorably with those from prior theoretical modeling and computer simulation studies of the effect of particle size distribution on coarsening, based on the DeHoff communicating neighbor model

  13. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  14. Size-based sorting of micro-particles using microbubble streaming

    Science.gov (United States)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2009-11-01

    Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).

  15. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    Science.gov (United States)

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  16. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  17. Extraction of density distributions and particle locations from hologram images

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji; Ikeda, Koh; Madarame, Haruki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the two information could be separated using low-pass and high-pass filter. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  18. Particle size distribution of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Zeng Ke; Wu Wangsuo; Jin Yuren; Shen Maoquan; Han Zhaoyang; Hu Zhiqian; Ma Teqi

    2012-01-01

    Wet classification and γ ray spectroscopy had been applied to study the particle size distribution of Pu in the desert soil of somewhere in Northern China. It was found that nearly 90% of Pu exits in 0.1-10 mm particles. only 10% less in particles under 0.05 mm that still poses notable hazards to biosphere if any resuspension. Providing a decontamination target of 239 Pu <4000 Bq/kg, accident condition. (authors)

  19. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    Science.gov (United States)

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Impact of particle density and initial volume on mathematical compression models

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2000-01-01

    In the calculation of the coefficients of compression models for powders either the initial volume or the particle density is introduced as a normalising factor. The influence of these normalising factors is, however, widely different on coefficients derived from the Kawakita, Walker and Heckel...... equations. The problems are illustrated by investigations on compaction profiles of 17 materials with different molecular structures and particle densities. It is shown that the particle density of materials with covalent bonds in the Heckel model acts as a key parameter with a dominating influence...

  1. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  2. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  3. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: non-uniqueness of density-derived molecular structure.

    Science.gov (United States)

    Ludeña, E V; Echevarría, L; Lopez, X; Ugalde, J M

    2012-02-28

    We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.

  4. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    Science.gov (United States)

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  6. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Jean A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te-particle

  7. Improved soil particle-size analysis by gamma-ray attenuation

    International Nuclear Information System (INIS)

    Oliveira, J.C.M.; Vaz, C.M.P.; Reichardt, K.; Swartzendruber, D.

    1997-01-01

    The size distribution of particles is useful for physical characterization of soil. This study was conducted to determine whether a new method of soil particle-size analysis by gamma-ray attenuation could be further improved by changing the depth and time of measurement of the suspended particle concentration during sedimentation. In addition to the advantage of nondestructive, undisturbed measurement by gamma-ray attenuation, as compared with conventional pipette or hydrometer methods, the modifications here suggested and employed do substantially decrease the total time for analysis, and will also facilitate total automation and generalize the method for other sedimentation studies. Experimental results are presented for three different Brazilian soil materials, and illustrate the nature of the fine detail provided in the cumulative particle-size distribution as given by measurements obtained during the relatively short time period of 28 min

  8. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame

    KAUST Repository

    Lucchesi, Marco

    2017-02-05

    A modeling framework based on Direct Simulation Monte Carlo (DSMC) is employed to simulate the evolution of the soot particle size distribution in turbulent sooting flames. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of a n-heptane turbulent nonpremixed flame. The DSMC method is validated against experimentally measured size distributions in laminar premixed flames and found to reproduce quantitatively the experimental results, including the appearance of the second mode at large aggregate sizes and the presence of a trough at mobility diameters in the range 3–8 nm. The model is then applied to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates lead to a higher peak in number density and to the size distribution attaining its second mode sooner. The ensemble-averaged PSDF in the turbulent flame is computed from individual samples of the PSDF from large sets of Lagrangian trajectories. This statistical measure is equivalent to time-averaged, scanning mobility particle size (SMPS) measurements in turbulent flames. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a long, broad tail, which implies significant polydispersity induced by turbulence. Our results agree very well with SMPS measurements available in the literature. Conditioning on key features of the trajectory, such as mixture fraction or radial locations does not reduce the scatter in the size distributions and the ensemble-averaged PSDF remains broad. The results highlight and explain the important role of turbulence in broadening the size distribution of

  9. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  10. Preparation of gold nanoparticles and determination of their particles size via different methods

    International Nuclear Information System (INIS)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar; Fessi, Hatem; Zine, Nadia; Agusti, Géraldine; Errachid, El-Salhi; Elaissari, Abdelhamid

    2016-01-01

    Graphical abstract: Preparation of gold nanoparticles via NaBH_4 reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH_4 reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH_4) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  11. Particle size-dependent radical generation from wildland fire smoke

    International Nuclear Information System (INIS)

    Leonard, Stephen S.; Castranova, Vince; Chen, Bean T.; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M.

    2007-01-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H 2 O 2 generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more ·OH radicals in the acellular Fenton-like reaction. The

  12. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    Science.gov (United States)

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  13. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  14. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    International Nuclear Information System (INIS)

    Lu Xiaoyan; Jin Tingting; Jin Yachao; Wu Leihong; Hu Bin; Tian Yu; Fan Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury. (paper)

  15. Effects of Laser Energy Density on Size and Morphology of NiO Nanoparticles Prepared by Pulsed Laser Ablation in Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rory; Reddy, M. Amaranatha; Kim, Tae Kyu [Pusan National University, Busan (Korea, Republic of)

    2015-01-15

    Metaloxide nanoparticles are of great importance to a large variety of chemical and material applications ranging from catalysts to electronic devices. Among the metal-oxide nanoparticles, NiO is one of the technologically versatile and important semiconducting materials. It has been extensively investigated because of its myriad applications in catalysts, gas sensors, Li-ion battery materials, electrochromic coatings, active optical fibers, fuel cell electrodes, and so on. The effect of laser ablation at various laser energy densities was investigated. At low energy densities, the produced nanoparticles were of irregular morphology with an average size of 2.4 nm. At higher laser energy densities, the produced nanoparticles were spherical, with a polycrystalline structure and their average size was around 10 nm. More detailed investigations on effects of laser wavelength and energy density as well as the particle size effect on the catalytic activity of synthesized NiO nanoparticles will be investigated in future works.

  16. The effect of particle structure on apparent density of electrolytic copper powder

    Directory of Open Access Journals (Sweden)

    K. I. POPOV

    2001-12-01

    Full Text Available The quantitative microstructural analysis and the sieve analysis of copper powder as well as the scanning electron microscopy analysis of the copper powders particles were performed. It was found that the structure of the copper powder particles determines the apparent density of copper powder. The powder particles from the same fractions of different powders occupy approximately the same volume, but the structure of metallic copper is very different. This causes the difference in apparent densities of copper powder obtained under different conditions. The more dendritic is the structure of powder particles the smaller is the apparent density of copper powder.

  17. [Fractal features of soil particle size in the process of desertification in desert grassland of Ningxia, China].

    Science.gov (United States)

    Yan, Xin; An, Hui

    2017-10-01

    The variation of soil properties, the fractal dimension of soil particle size, and the relationships between fractal dimension of soil particle size and soil properties in the process of desertification in desert grassland of Ningxia were discussed. The results showed that the fractal dimension (D) at different desertification stages in desert grassland varied greatly, the value of D was between 1.69 and 2.62. Except for the 10-20 cm soil layer, the value of D gradually declined with increa sing desertification of desert grassland at 0-30 cm soil layer. In the process of desertification in de-sert grassland, the grassland had the highest values of D , the volume percentage of clay and silt, and the lowest values of the volume percentage of very fine sand and fine sand. However, the mobile dunes had the lowest value of D , the volume percentage of clay and silt, and the highest value of the volume percentage of very fine sand and fine sand. There was a significant positive correlation between the soil fractal dimension value and the volume percentage of soil particles 50 μm. The grain size of 50 μm was the critical value for deciding the relationship between the soil particle fractal dimension and the volume percentage. Soil organic matter (SOM) and total nitrogen (TN) decreased gradually with increasing desertification of desert grassland, but soil bulk density increased gradually. Qualitative change from fixed dunes to semi fixed dunes with the rapid decrease of the volume percentage of clay and silt, SOM, TN and the rapid increase of volume percentage of very fine sand and fine sand, soil bulk density. Fractal dimension was significantly correlated to SOM, TN and soil bulk density. Fractal dimension 2.58 was a critical value of fixed dunes and semi fixed dunes. So, the fractal dimension of 2.58 could be taken as the desertification indicator of desert grassland.

  18. Strategy for determination of an efficient Cochleate particle size.

    Science.gov (United States)

    Gil, Danay; Bracho, Gustavo; Zayas, Caridad; del Campo, Judith; Acevedo, Reinaldo; Toledo, Arturo; Lastre, Miriam; Pérez, Oliver

    2006-04-12

    Cochleate structures obtained from the outer membrane of Neisseria meningitidis serotype B have demonstrated to be high immunogenicity when administrated by intramuscular, oral or intranasal routes, and could be used as adjuvant and meningococcal nasal vaccine candidate. Due to the microparticulate nature of Cochleate it is necessary to control the particle size since it capture by cells of the immune system could be affected by this aspect. We combined optic microscopy and immunisation experiments to select the optimum particle size. Six different processes of producing Cochleate obtaining were evaluated and different mechanical stress conditions were carried out to homogenize and modulate the particles size. The more immunogenic particles were selected on the basis of the levels of specific IgA and IgG antibodies induced after intranasal immunisation in mice. The best treatment parameter for mechanical stress of the Cochleate was prolonged treatment with untrasonic low frequency waves.

  19. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  20. Size limits for rounding of volcanic ash particles heated by lightning

    Science.gov (United States)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  1. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  2. Method of measuring a profile of the density of charged particles in a particle beam

    International Nuclear Information System (INIS)

    Hyman, L.G.; Jankowski, D.J.

    1975-01-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam

  3. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  4. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  5. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    Science.gov (United States)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  6. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    International Nuclear Information System (INIS)

    Lee, M.-G.; Nho, Y.C.

    2001-01-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60 Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied

  7. Concentration, size, and density of total suspended particulates at the air exhaust of concentrated animal feeding operations.

    Science.gov (United States)

    Yang, Xufei; Lee, Jongmin; Zhang, Yuanhui; Wang, Xinlei; Yang, Liangcheng

    2015-08-01

    Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m⁻³ (swine gestation in summer) to 10.9 ± 3.9 mg m⁻³ (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm⁻³) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤ 10 and ≤ 2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP's particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

  8. Automatic size analysis of coated fuel particles

    International Nuclear Information System (INIS)

    Wallisch, K.; Koss, P.

    1977-01-01

    The determination of the diameter, coating thickness, and sphericity of coated fuel particles by conventional methods is very time consuming. Therefore, statistical data can only be obtained with limited accuracy. An alternative method is described that avoids these disadvantages by utilizing a fast optical data-collecting system of high accuracy. This system allows the determination of the diameter of particles in the range between 100 and 1500 μm, with an accuracy of better than +-2 μm and with a rate of 100 particles per second. The density and thickness of coating layers can be determined by comparing the data obtained before and after coating, taking into account the relative increase of weight. A special device allows the automatic determination of the sphericity of single particles as well as the distribution in a batch. This device measures 50 to 100 different diameters of each particle per second. An on-line computer stores the measured data and calculates all parameters required, e.g., number of particles measured, particle diameter, standard deviation, diameter limiting values, average particle volume, average particle surface area, and the distribution of sphericity in absolute and percent form

  9. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)

  10. Optimization of binder addition and particle size for densification of coffee husks briquettes using response surface methodology

    Science.gov (United States)

    Raudah; Zulkifli

    2018-03-01

    The present research focuses on establishing the optimum conditions in converting coffee husk into a densified biomass fuel using starch as a binding agent. A Response Surface Methodology (RSM) approach using Box-Behnken experimental design with three levels (-1, 0, and +1) was employed to obtain the optimum level for each parameter. The briquettes wereproduced by compressing the mixture of coffee husk-starch in a piston and die assembly with the pressure of 2000 psi. Furthermore, starch percentage, pyrolysis time, and particle size were the input parameters for the algorithm. Bomb calorimeter was used to determine the heating value (HHV) of the solid fuel. The result of the study indicated that a combination of 34.71 mesh particle size, 110.93 min pyrolysis time, and 8% starch concentration werethe optimum variables.The HHV and density of the fuel were up to 5644.66 calgr-1 and 0.7069 grcm-3,respectively. The study showed that further research should be conducted to improve the briquette density therefore the coffee husk could be convert into commercialsolid fuel to replace the dependent on fossil fuel.

  11. Density matrix of a quantum field in a particle-creating background

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Tomazelli, J.L.

    2008-01-01

    We examine the time evolution of a quantized field in external backgrounds that violate the stability of vacuum (particle-creating backgrounds). Our purpose is to study the exact form of the final quantum state (the density operator at the final instant of time) that has emerged from a given arbitrary initial state (from a given arbitrary density operator at the initial time instant) in the course of evolution. We find a generating functional that allows one to obtain density operators for an arbitrary initial state. Averaging over states of the subsystem of antiparticles (particles), we obtain explicit forms of reduced density operators for the subsystem of particles (antiparticles). Analyzing one-particle correlation functions, we establish a one-to-one correspondence between these functions and the reduced density operators. It is shown that in the general case a presence of bosons (e.g., gluons) in the initial state increases the creation rate of the same type of bosons. We discuss the question (and its relation to the initial stage of quark-gluon plasma formation) whether a thermal form of one-particle distribution can appear even if the final state of the complete system is not in thermal equilibrium. In this respect, we discuss some cases when pair-creation by an electric-like field can mimic the one-particle thermal distribution. We apply our technics to some QFT problems in slowly varying electric-like backgrounds: electric, SU(3) chromoelectric, and metric. In particular, we analyze the time and temperature behavior of the mean numbers of created particles, provided that the effects of switching the external field on and off are negligible. It is demonstrated that at high temperatures and in slowly varying electric fields the rate of particle-creation is essentially time-dependent

  12. Density matrix of a quantum field in a particle-creating background

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05315-970 Sao Paulo, SP (Brazil)], E-mail: gavrilovsergeyp@yahoo.com; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05315-970 Sao Paulo, SP (Brazil)], E-mail: gitman@dfn.if.usp.br; Tomazelli, J.L. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, CEP 05315-970 Sao Paulo, SP (Brazil)], E-mail: tomazelli@fsc.ufsc.br

    2008-06-01

    We examine the time evolution of a quantized field in external backgrounds that violate the stability of vacuum (particle-creating backgrounds). Our purpose is to study the exact form of the final quantum state (the density operator at the final instant of time) that has emerged from a given arbitrary initial state (from a given arbitrary density operator at the initial time instant) in the course of evolution. We find a generating functional that allows one to obtain density operators for an arbitrary initial state. Averaging over states of the subsystem of antiparticles (particles), we obtain explicit forms of reduced density operators for the subsystem of particles (antiparticles). Analyzing one-particle correlation functions, we establish a one-to-one correspondence between these functions and the reduced density operators. It is shown that in the general case a presence of bosons (e.g., gluons) in the initial state increases the creation rate of the same type of bosons. We discuss the question (and its relation to the initial stage of quark-gluon plasma formation) whether a thermal form of one-particle distribution can appear even if the final state of the complete system is not in thermal equilibrium. In this respect, we discuss some cases when pair-creation by an electric-like field can mimic the one-particle thermal distribution. We apply our technics to some QFT problems in slowly varying electric-like backgrounds: electric, SU(3) chromoelectric, and metric. In particular, we analyze the time and temperature behavior of the mean numbers of created particles, provided that the effects of switching the external field on and off are negligible. It is demonstrated that at high temperatures and in slowly varying electric fields the rate of particle-creation is essentially time-dependent.

  13. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  14. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    Directory of Open Access Journals (Sweden)

    Jaime Salazar

    2014-01-01

    Full Text Available Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals.

  15. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  16. Characterization of spherical core–shell particles by static light scattering. Estimation of the core- and particle-size distributions

    International Nuclear Information System (INIS)

    Clementi, Luis A.; Vega, Jorge R.; Gugliotta, Luis M.; Quirantes, Arturo

    2012-01-01

    A numerical method is proposed for the characterization of core–shell spherical particles from static light scattering (SLS) measurements. The method is able to estimate the core size distribution (CSD) and the particle size distribution (PSD), through the following two-step procedure: (i) the estimation of the bivariate core–particle size distribution (C–PSD), by solving a linear ill-conditioned inverse problem through a generalized Tikhonov regularization strategy, and (ii) the calculation of the CSD and the PSD from the estimated C–PSD. First, the method was evaluated on the basis of several simulated examples, with polystyrene–poly(methyl methacrylate) core–shell particles of different CSDs and PSDs. Then, two samples of hematite–Yttrium basic carbonate core–shell particles were successfully characterized. In all analyzed examples, acceptable estimates of the PSD and the average diameter of the CSD were obtained. Based on the single-scattering Mie theory, the proposed method is an effective tool for characterizing core–shell colloidal particles larger than their Rayleigh limits without requiring any a-priori assumption on the shapes of the size distributions. Under such conditions, the PSDs can always be adequately estimated, while acceptable CSD estimates are obtained when the core/shell particles exhibit either a high optical contrast, or a moderate optical contrast but with a high ‘average core diameter’/‘average particle diameter’ ratio. -- Highlights: ► Particles with core–shell morphology are characterized by static light scattering. ► Core size distribution and particle size distribution are successfully estimated. ► Simulated and experimental examples are used to validate the numerical method. ► The positive effect of a large core/shell optical contrast is investigated. ► No a-priori assumption on the shapes of the size distributions is required.

  17. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  18. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  19. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  20. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  1. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    Directory of Open Access Journals (Sweden)

    Daiva Laučytė

    2011-04-01

    Full Text Available The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The composite samples of drained storm water runoff sediments were collected at the sedimentation tanks located in the districts of Verkiai and Karoliniskes on the 2nd of June, 2008. The analyses of grain size distribution were performed according the standard ISO/TS 17892-4:2004. The results showed that the particles with the particle size of 1–2 mm were obtained up to 10 m from the inlet and the particles with the size of 0,01–0,05 mm mainly were obtained close to the outlet of sedimentation tank. It is recommended to divide the sedimentation tank in two parts in order to get proper management of sediments: the particles that size is 1–10 mm could be managed as waste from grit chambers and particles of smaller size could be managed as primary sludge.Article in Lithuanian

  2. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  3. Influence of particle size in silo discharge

    Directory of Open Access Journals (Sweden)

    Gella Diego

    2017-01-01

    Full Text Available Recently Janda et al. [Phys. Rev. Lett. 108, 248001 (2012] reported an experimental study where it was measured the velocity and volume fraction fields of 1 mm diameter stainless steel beads in the exit of a two-dimensional silo. In that work, they proposed a new expression to predict the flow of granular media in silos which does not explicitly include the particle size as a parameter. Here, we study if effectively, there is not such influence of the particle size in the flux equations as well as investigate any possible effect in the velocity and volume fraction fields. To this end, we have performed high speed motion measurements of these magnitudes in a two-dimensional silo filled with 4 mm diameter beads of stainless steel, the same material than the previous works. A developed tracking program has been implemented to obtain at the same time both, the velocity and volume fraction. The final objective of this work has been to extend and generalize the theoretical framework of Janda et al. for all sizes of particles. We have found that the obtained functionalities are the same than in the 1 mm case, but the exponents and other fitting parameters are different.

  4. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  5. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  6. Briquetting of coal fines and sawdust - effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.P.; Taulbee, D.; Parekh, B.K.; Honaker, R. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-07-01

    The coal industry usually discards fine-size (-150 microns) coal because of its high-moisture content and handling problems. One avenue for utilization is to either pelletize or briquette this material. However, industry has not adopted this route due in large part to significant drying and binder costs. In an effort to reduce these costs, compacting and briquetting studies were conducted to determine the effect of combining a coarse (1.18x0.15mm) spiral separator product with a fine coal flotation product (-150microns), with and without adding sawdust. Maximizing the packing density of the coal and wood waste mixture could potentially reduce the binder requirement by minimizing the void space as well as reducing shipping costs. Accordingly, work reported here focused on evaluating the impact of the particle-size distribution of different blends of fine and coarse coal, with and without sawdust and/or binder. The modified Proctor density of compacted blends along with the porosity and compressive strengths of briquettes made from each blend were determined. For the coal-only blends, the packing density was maximized by a relatively high (70% to 80%) coarse coal content. However, the packing density did not correlate with the compressive strength of the briquette that instead maximized with 100% fine flotation coal and continuously decreased as higher proportions of coarse coal were added. Similar compaction and compressive-strength results were obtained with mixtures of sawdust and varying proportions of coarse and fine coal. With the addition of a binder, the highest strengths were no longer obtained with 100% fine coal but instead maximized between 20% and 50% coarse coal addition depending on how long the briquettes were cured.

  7. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  8. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  9. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories

    Science.gov (United States)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-01-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of

  11. Influence of the pulse wave in the stratification of high density particles in a JIG device

    Directory of Open Access Journals (Sweden)

    Manuel A. Ospina-Alarcón

    2016-01-01

    Full Text Available A study of particle motion subjected to four different pulsation profiles on a pulsated fluidized bed jig concentrator was carried out. The profiles used in the simulation were – sinusoidal, triangle, sawtooth-backward and sawtooth-forward. Two-dimensional local velocities of the water flow field were calculated from the continuity and momentum equations by CFD techniques implementing SIMPLE algorithm. The particle motion is modeled by a forces balance applying the Newton’s second law of motion. Liquid-solid interactions forces are calculated by the mathematical Euler-Lagrangian model extended to a particle suspension having a wide size and density distribution. To analyze the particle motion in jig, we derived a trajectory equation for the response time of particle that include virtual mass, gravity, pressure gradient, drag and Basset forces. The study demonstrates significant differences in the particle trajectories for various pulsation profiles applied to the boundary condition at the inlet to the jig chamber.

  12. Multiscale virtual particle based elastic network model (MVP-ENM) for normal mode analysis of large-sized biomolecules.

    Science.gov (United States)

    Xia, Kelin

    2017-12-20

    In this paper, a multiscale virtual particle based elastic network model (MVP-ENM) is proposed for the normal mode analysis of large-sized biomolecules. The multiscale virtual particle (MVP) model is proposed for the discretization of biomolecular density data. With this model, large-sized biomolecular structures can be coarse-grained into virtual particles such that a balance between model accuracy and computational cost can be achieved. An elastic network is constructed by assuming "connections" between virtual particles. The connection is described by a special harmonic potential function, which considers the influence from both the mass distributions and distance relations of the virtual particles. Two independent models, i.e., the multiscale virtual particle based Gaussian network model (MVP-GNM) and the multiscale virtual particle based anisotropic network model (MVP-ANM), are proposed. It has been found that in the Debye-Waller factor (B-factor) prediction, the results from our MVP-GNM with a high resolution are as good as the ones from GNM. Even with low resolutions, our MVP-GNM can still capture the global behavior of the B-factor very well with mismatches predominantly from the regions with large B-factor values. Further, it has been demonstrated that the low-frequency eigenmodes from our MVP-ANM are highly consistent with the ones from ANM even with very low resolutions and a coarse grid. Finally, the great advantage of MVP-ANM model for large-sized biomolecules has been demonstrated by using two poliovirus virus structures. The paper ends with a conclusion.

  13. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions

    DEFF Research Database (Denmark)

    Göke, Katrin; Roese, Elin; Arnold, Andreas

    2016-01-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bl......Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection...... treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones....

  14. Particle number size distributions in urban air before and after volatilisation

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2010-05-01

    Full Text Available Aerosol particle number size distributions (size range 0.003–10 μm in the urban atmosphere of Augsburg (Germany were examined with respect to the governing anthropogenic sources and meteorological factors. The two-year average particle number concentration between November 2004 and November 2006 was 12 200 cm−3, i.e. similar to previous observations in other European cities. A seasonal analysis yielded twice the total particle number concentrations in winter as compared to summer as consequence of more frequent inversion situations and enhanced particulate emissions. The diurnal variations of particle number were shaped by a remarkable maximum in the morning during the peak traffic hours. After a mid-day decrease along with the onset of vertical mixing, an evening concentration maximum could frequently be observed, suggesting a re-stratification of the urban atmosphere. Overall, the mixed layer height turned out to be the most influential meteorological parameter on the particle size distribution. Its influence was even greater than that of the geographical origin of the prevailing synoptic-scale air mass.

    Size distributions below 0.8 μm were also measured downstream of a thermodenuder (temperature: 300 °C, allowing to retrieve the volume concentration of non-volatile compounds. The balance of particle number upstream and downstream of the thermodenuder suggests that practically all particles >12 nm contain a non-volatile core while additional nucleation of particles smaller than 6 nm could be observed after the thermodenuder as an interfering artifact of the method. The good correlation between the non-volatile volume concentration and an independent measurement of the aerosol absorption coefficient (R2=0.9 suggests a close correspondence of the refractory and light-absorbing particle fractions. Using the "summation method", an average diameter ratio of particles before and after volatilisation could

  15. Effects of TiB2 Particle and Short Fiber Sizes on the Microstructure and Properties of TiB2-Reinforced Composite Coatings

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang

    2018-03-01

    In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.

  16. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  17. Effect of neutral particles on density limits in tokamaks

    International Nuclear Information System (INIS)

    Abramov, V.A.; Morozov, D.Kh.; Bachmann, P.; Suender, D.

    1993-01-01

    The global stability and confinement of a tokamak plasma are significantly influenced by the boundary plasma parameters. The onset of density disruptions, which limit the maximum plasma density, is triggered by impurity radiation in the edge plasma and can be connected with the radiative thermal instability. At the density n c the total radiative power P rad is equal to the total input power P in into the plasma (S:=P rad /P in =1). Above n c (S>1) no steady state of the plasma column exists. Contrary to predictions made elsewhere, where neutral particle kinetics is not taken into consideration, experimental results show that disruptions can occur for S R as a function of the plasma temperature T, ξ N :=N/n and ξ i :=n i /n, where N, n i , n are the densities of hydrogen atoms, impurity ions and the plasma, respectively. We investigate the influence of the neutral particles on the critical densities and the stability of the system, taking into account ionization, charge exchange and impurity cooling. (author) 6 refs., 3 figs

  18. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Science.gov (United States)

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  19. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  20. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  1. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  2. Effect of particle size and particle size distribution on physical characteristics, morphology and crystal strucutre of explosively compacted high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kotsis, I.; Enisz, M.; Oravetz, D. [Univ. of Veszprem (Hungary)] [and others

    1994-12-31

    A superconductor, of composition Y(Ba,K,Na){sub 2}Cu{sub 3}O{sub x}/F{sub y} and a composite, of composition Y(Ba,K,Na){sub 2}Cu{sub 3}O{sub x}/F{sub y}+Ag, with changing K, Na and F content, but a constant silver content (Ag=10 mass per cent) was prepared using a single heat treatment. The resulting material was ground in a corundum lined mill, separated to particle size fractions of 0-40 {mu}m, 0-63 {mu}m and 63-900 {mu}m and explosively compacted, using an explosive pressure of 10{sup 4} MPa and a subsequent heat treatment. Best results were obtained with the 63-900 {mu}m fraction of composition Y(Ba{sub 1,95}K{sub 0,01})Cu{sub 3}O{sub x}F{sub 0,05}/Ag: porosity <0.01 cm{sup 3}/g and current density 2800 A/cm{sup 2} at 77 K.

  3. A low-cost, high-magnification imaging system for particle sizing applications

    International Nuclear Information System (INIS)

    Tipnis, Tanmay J; Lawson, Nicholas J; Tatam, Ralph P

    2014-01-01

    A low-cost imaging system for high magnification and high resolution was developed as an alternative to long-working-distance microscope-based systems, primarily for particle sizing applications. The imaging optics, comprising an inverted fixed focus lens coupled to a microscope objective, were able to provide a working distance of approximately 50 mm. The system magnification could be changed by using an appropriate microscope objective. Particle sizing was achieved using shadow-based techniques with the backlight illumination provided by a pulsed light-emitting diode light source. The images were analysed using commercial sizing software which gave the particle sizes and their distribution. A range of particles, from 6 to 8 µm to over 100 µm, was successfully measured with a minimum spatial resolution of approximately 2.5 µm. This system allowed measurement of a wide range of particles at a lower cost and improved operator safety without disturbing the flow. (technical design note)

  4. Determination of particle size distribution of salt crystals in aqueous slurries

    International Nuclear Information System (INIS)

    Miller, A.G.

    1977-10-01

    A method for determining particle size distribution of water-soluble crystals in aqueous slurries is described. The salt slurries, containing sodium salts of predominantly nitrate, but also nitrite, sulfate, phosphate, aluminates, carbonate, and hydroxide, occur in radioactive, concentrated chemical waste from the reprocessing of nuclear fuel elements. The method involves separating the crystals from the aqueous phase, drying them, and then dispersing the crystals in a nonaqueous medium based on nitroethane. Ultrasonic treatment is important in dispersing the sample into its fundamental crystals. The dispersed crystals are sieved into appropriate size ranges for counting with a HIAC brand particle counter. A preponderance of very fine particles in a slurry was found to increase the difficulty of effecting complete dispersion of the crystals because of the tendency to retain traces of aqueous mother liquor. Traces of moisture produce agglomerates of crystals, the extent of agglomeration being dependent on the amount of moisture present. The procedure is applicable to particles within the 2 to 600 μm size range of the HIAC particle counter. The procedure provides an effective means for measuring particle size distribution of crystals in aqueous salt slurries even when most crystals are less than 10 μm in size. 19 figures

  5. Thermal and particle size distribution effects on the ferromagnetic resonance in magnetic fluids

    International Nuclear Information System (INIS)

    Marin, C.N.

    2006-01-01

    Thermal and particle size distribution effects on the ferromagnetic resonance of magnetic fluids were theoretically investigated, assuming negligible interparticle interactions and neglecting the viscosity of the carrier liquid. The model is based on the usual approach for the ferromagnetic resonance description of single-domain magnetic particle systems, which was amended in order to take into account the finite particle size effect, the particle size distribution and the orientation mobility of the particles within the magnetic fluid. Under these circumstances the shape of the resonance line, the resonance field and the line width are found to be strongly affected by the temperature and by the particle size distribution of magnetic fluids

  6. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  7. Simultaneous velocity and particle size measurement in two phase flows by Laser Anemometry

    Science.gov (United States)

    Ungut, A.; Yule, A. J.; Taylor, D. S.; Chigier, N. A.

    1978-01-01

    A technique for particle size measurement by using Laser Doppler Anemometry is discussed. An additional gate photomultiplier has been introduced at right angles to the optical axis in order to select only those particles passing through the central region of the measurement control volume. Particle sizing measurements have been made in sprays of glass particles using the modified Laser Anemometry system. Measurements in fuel sprays are also reported and compared with the results obtained by a photographic technique. The application of the particle sizing technique to opaque particles is investigated and suitable optical arrangements are suggested. Light scattering characteristics of Laser Anemometry systems for different optical geometries are calculated to select the optimum optical arrangement for the particle sizing measurements.

  8. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  9. Discrete element method modeling of the triboelectric charging of polyethylene particles: Can particle size distribution and segregation reduce the charging?

    International Nuclear Information System (INIS)

    Konopka, Ladislav; Kosek, Juraj

    2015-01-01

    Polyethylene particles of various sizes are present in industrial gas-dispersion reactors and downstream processing units. The contact of the particles with a device wall as well as the mutual particle collisions cause electrons on the particle surface to redistribute in the system. The undesirable triboelectric charging results in several operational problems and safety risks in industrial systems, for example in the fluidized-bed polymerization reactor. We studied the charging of polyethylene particles caused by the particle-particle interactions in gas. Our model employs the Discrete Element Method (DEM) describing the particle dynamics and incorporates the ‘Trapped Electron Approach’ as the physical basis for the considered charging mechanism. The model predicts the particle charge distribution for systems with various particle size distributions and various level of segregation. Simulation results are in a qualitative agreement with experimental observations of similar particulate systems specifically in two aspects: 1) Big particles tend to gain positive charge and small particles the negative one. 2) The wider the particle size distribution is, the more pronounced is the charging process. Our results suggest that not only the size distribution, but also the effect of the spatial segregation of the polyethylene particles significantly influence the resulting charge distribution ‘generated’ in the system. The level of particle segregation as well as the particle size distribution of polyethylene particles can be in practice adjusted by the choice of supported catalysts, by the conditions in the fluidized-bed polymerization reactor and by the fluid dynamics. We also attempt to predict how the reactor temperature affects the triboelectric charging of particles. (paper)

  10. Size exclusion chromatography with superficially porous particles.

    Science.gov (United States)

    Schure, Mark R; Moran, Robert E

    2017-01-13

    A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Influence of maize flour particle size on gluten-free breadmaking.

    Science.gov (United States)

    de la Hera, Esther; Talegón, María; Caballero, Pedro; Gómez, Manuel

    2013-03-15

    Maize, one of the suitable grains for coeliac consumption, is, together with rice, the most cultivated cereal in the world. However, the inclusion of maize flour in gluten-free bread is a minority and studies are scarce. This paper analyses the influence of different maize flour types and their particle sizes on the quality of two types of bread without gluten (80% and 110% water in the formulation) obtained from them. We also analysed the microstructure of the dough and its behaviour during the fermentation. Finer flours had a lower dough development during fermentation in all cases. Among the different types of flour, those whose microstructure revealed compact particles were those which had higher specific bread volume, especially when the particle size was greater. Among the formulations, the dough with more water gave breads with higher specific volume, an effect that was more important in more compact flours. The higher volume breads had lower values of hardness and resilience. The type of corn flour and mainly its particle size influence significantly the dough development of gluten-free bread during fermentation and therefore the final volume and texture of the breads obtained. The flours having coarser particle size are the most suitable for making gluten-free maize bread. © 2012 Society of Chemical Industry.

  12. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  13. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  14. The feasibility of using explicit method for linear correction of the particle size variation using NIR Spectroscopy combined with PLS2regression method

    Science.gov (United States)

    Yulia, M.; Suhandy, D.

    2018-03-01

    NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.

  15. Ultrasound Assisted Particle Size Control by Continuous Seed Generation and Batch Growth

    OpenAIRE

    Jordens, Jeroen; Canini, Enio; Gielen, Bjorn; Van Gerven, Tom; Braeken, Leen

    2017-01-01

    Controlling particle size is essential for crystal quality in the chemical and pharmaceutical industry. Several articles illustrate the potential of ultrasound to tune this particle size during the crystallization process. This paper investigates how ultrasound can control the particle size distribution (PSD) of acetaminophen crystals by continuous seed generation in a tubular crystallizer followed by batch growth. It is demonstrated that the supersaturation ratio at which ultrasound starts s...

  16. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions, which is in contrast to other studies showing a preferential recovery of BC in the fine particle size fractions. Possibly, the poor interaction between Py

  17. Neutron activation analysis of size-separated airborne dust particles, (2)

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1976-01-01

    The size distribution of the component element concentration in particle floating matters contained in the atmosphere is related closely to atmospheric pollution. In this paper, the results of the neutron activation analysis and the measurement of size distribution of component element concentration are reported, which were carried out in Minami-ku, Kyoto, in May and November, 1975, by collecting airbone dust with Andersen air samples. The activation of samples was carried out with the research reactor in Kyoto University. The gamma-ray spectra of the samples were measured with a Ge(Li) semiconductor detector. The size distributions of Al, Sc, Th and Ti showed the similar pattern. The concentration of Zn was abnormally high as compared with that in other districts, and it is related to the local industry in this district. The size distribution of airborne dust usually follows the logarithmic normal distribution when it is not affected by atmospheric pollution. Accordingly, the size distribution of the concentration also follows the same distribution. The accumulated percentages of the concentrations of Al, Sc and Th fall on the same straight line, and it means that these elements were contained in the same particles as the components. Also it was decided that the particles of Al, Sc, Th, Fe and Ti were soil particles. (Kako, I.)

  18. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  19. The immersion freezing behavior of size-segregated soot and kaolinite particles

    Science.gov (United States)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  20. Effect of a nano-sized TiC particle addition on the flow-assisted corrosion resistance of SA 106B carbon steel

    Science.gov (United States)

    Park, Jin-Ju; Park, Eun-Kwang; Lee, Gyoung-Ja; Rhee, Chang-Kyu; Lee, Min-Ku

    2017-09-01

    Carbon steel with dispersed nano-sized TiC ceramic particles was fabricated by the ex-situ introduction of the particles into the melt, with the flow-assisted corrosion (FAC) resistance then investigated in the presence and absence of TiC nanoparticles using a once-through type of FAC loop test. From the potentiodynamic polarization curves, the current density at any given anodic potential was decreased and the open-circuit potential was increased by the addition of TiC nanoparticles. In addition, when the nano-sized TiC particles were added, the FAC rate was 1.38 times lower than that of carbon steel without TiC nanoparticles, indicating an improvement of the FAC resistance due to the homogeneous distribution of the TiC reinforcing nanoparticles.

  1. Imaginary time density-density correlations for two-dimensional electron gases at high density

    Energy Technology Data Exchange (ETDEWEB)

    Motta, M.; Galli, D. E. [Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, Via Bonomea 265, 34136 Trieste (Italy); Vitali, E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  2. N-3 polyunsaturated fatty acids improve lipoprotein particle size and concentration in Japanese patients with type 2 diabetes and hypertriglyceridemia: a pilot study.

    Science.gov (United States)

    Ide, Kana; Koshizaka, Masaya; Tokuyama, Hirotake; Tokuyama, Takahiko; Ishikawa, Takahiro; Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2018-03-15

    Patients with type 2 diabetes are at high risk for cardiovascular disease. Although hydroxymethylglutaryl-CoA reductase inhibitors (statins) can reduce cardiovascular events, residual risk remains even after target low-density lipoprotein cholesterol (LDL-C) levels have been achieved. Lipoprotein particle size and fraction changes are thought to contribute to such risks. The purpose of this study was to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid and docosahexaenoic acid, on lipoprotein particle size, concentration, and glycemic control in Japanese patients with type 2 diabetes and hypertriglyceridemia. This was a multicenter, prospective, open-label, single arm study. We enrolled 14 patients with type 2 diabetes and hypertriglyceridemia treated with statins and dipeptidyl peptidase-4 inhibitors with glycated hemoglobin (HbA1c) n-3 PUFAs for 12 weeks. Lipoprotein particle sizes, concentrations, lipoprotein insulin resistance (LPIR) scores, lipid profiles, HbA1c, and fasting plasma glucose (FPG) were measured before and after treatment. Lipoprotein profiles were measured by nuclear magnetic resonance spectroscopy. Data were analyzed using Wilcoxon signed-rank tests. Concentrations of total cholesterol (P n-3 PUFA administration. N-3 PUFAs decreased the size of very low-density lipoprotein (VLDL; P N-3 PUFAs partly improved atherogenic lipoprotein particle size and concentration, and produced less atherogenic lipoprotein subclass ratios in patients that achieved target LDL-C levels and glycemic control. These results suggest that n-3 PUFAs may reduce residual cardiovascular risk factors in statin-treated patients with type 2 diabetes and hypertriglyceridemia. The study was registered at UMIN-ID: UMIN000013776 .

  3. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  4. The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei Abadchi, Majid; Jalali-Arani, Azam, E-mail: ajalali@aut.ac.ir

    2014-02-01

    Highlights: • Vulcanized rubber powders were prepared by spray drying of irradiated rubber latexes. • Influence of absorbed dose on powder structure and characteristics was investigated. • The size of rubber latex particles did not changed by irradiation. • Crosslink density increased by increasing dose and 98% gel was obtained at 150 kGy. • T{sub g} of rubber powder increased with increasing the irradiation dose. -- Abstract: The aim of this work was the preparation and characterization of polybutadiene rubber (BR) powder by irradiating of rubber lattices using {sup 60}Co radiation and spray-drying of them at the appropriate condition. The influences of absorbed dose on the volume swelling ratio, molecular weight between crosslinks, gel fraction, and glass transition temperature of obtained powder were studied. Morphology, size and size distribution of rubber particles were examined by using scanning electron microscopy (SEM) and laser particle size analyzer (LPSA) technique, respectively. Results obtained by LPSA revealed that radiation has no effect on particle size of rubber latex but after drying, adherence properties of rubber particle causes increase in particle size of rubber powder, as shown in SEM photograph. Fourier transform infrared spectroscopy of rubber powders confirmed that with increasing the irradiation dose, characteristic peak corresponds to the >C=C< double bands decreased. Also Charlesby–Pinner equation was used to evaluate radiation yield.

  5. The use of gamma irradiation in preparation of polybutadiene rubber nanopowder; Its effect on particle size, morphology and crosslink structure of the powder

    International Nuclear Information System (INIS)

    Rezaei Abadchi, Majid; Jalali-Arani, Azam

    2014-01-01

    Highlights: • Vulcanized rubber powders were prepared by spray drying of irradiated rubber latexes. • Influence of absorbed dose on powder structure and characteristics was investigated. • The size of rubber latex particles did not changed by irradiation. • Crosslink density increased by increasing dose and 98% gel was obtained at 150 kGy. • T g of rubber powder increased with increasing the irradiation dose. -- Abstract: The aim of this work was the preparation and characterization of polybutadiene rubber (BR) powder by irradiating of rubber lattices using 60 Co radiation and spray-drying of them at the appropriate condition. The influences of absorbed dose on the volume swelling ratio, molecular weight between crosslinks, gel fraction, and glass transition temperature of obtained powder were studied. Morphology, size and size distribution of rubber particles were examined by using scanning electron microscopy (SEM) and laser particle size analyzer (LPSA) technique, respectively. Results obtained by LPSA revealed that radiation has no effect on particle size of rubber latex but after drying, adherence properties of rubber particle causes increase in particle size of rubber powder, as shown in SEM photograph. Fourier transform infrared spectroscopy of rubber powders confirmed that with increasing the irradiation dose, characteristic peak corresponds to the >C=C< double bands decreased. Also Charlesby–Pinner equation was used to evaluate radiation yield

  6. The effect of reducing alfalfa haylage particle size on cows in early lactation.

    Science.gov (United States)

    Kononoff, P J; Heinrichs, A J

    2003-04-01

    The objective of this experiment was to evaluate effects of reducing forage particle size on cows in early lactation based on measurements of the Penn State Particle Separator (PSPS). Eight cannulated, multiparous cows averaging 19 +/- 4 d in milk and 642 +/- 45 kg BW were assigned to one of two 4 x 4 Latin Squares. During each of the 23-d periods, animals were offered one of four diets, which were chemically identical but included alfalfa haylage of different particle size; short (SH), mostly short (MSH), mostly long (MLG), and long (LG). Physically effective neutral detergent fiber (peNDF) was determined by measuring the amount of neutral detergent fiber retained on a 1.18 mm screen and was similar across diets (25.7, 26.2, 26.4, 26.7%) but the amount of particles >19.0 mm significantly decreased with decreasing particle size. Reducing haylage particle size increased dry matter intake linearly (23.3, 22.0, 20.9, 20.8 kg for SH, MSH, MLG, LG, respectively). Milk production and percentage fat did not differ across treatments averaging 35.5 +/- 0.68 kg milk and 3.32 +/- 0.67% fat, while a quadratic effect was observed for percent milk protein, with lowest values being observed for LG. A quadratic effect was observed for mean rumen pH (6.04, 6.15, 6.13, 6.09), while A:P ratio decreased linearly (2.75, 2.86, 2.88, 2.92) with decreasing particle size. Total time ruminating increased quadratically (467, 498, 486, 468 min/d), while time eating decreased linearly (262, 253, 298, 287 min/d) with decreasing particle size. Both eating and ruminating per unit of neutral detergent fiber intake decreased with reducing particle size (35.8, 36.7, 44.9, 45.6 min/kg; 19.9, 23.6, 23.5, 23.5 min/kg). Although chewing activity was closely related to forage particle size, effects on rumen pH were small, indicating factors other than particle size are critical in regulating pH when ration neutral detergent fiber met recommended levels. Feeding alfalfa haylage based rations of reduced

  7. The effect of current density and saccharin addition on the grain size of nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating.

  8. The effect of current density and saccharin addition on the grain size of nickel coatings

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating

  9. Local particle densities and global multiplicities in central heavy ion interactions at 3.7, 14.6, 60 and 200 A GeV

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Aggarwal, M.M.

    1992-03-01

    The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parametrizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200 A GeV incident energy, respectively. σ is found to be independent of the size of the interacting system at fixed energy. A novel way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined. (au)

  10. Local particle densities and global multiplicities in central heavy ion interactions at 3.7, 14.6, 60 and 200 A GeV

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Chernyavsky, M.M.; Gerassimov, S.G.; Larionova, V.G.; Maslennikova, N.V.; Orlova, G.I.; Peresadko, N.G.; Rappoport, V.M.; Salmanova, N.A.; Tretyakova, M.I.; Aggarwal, M.M.; Arora, R.; Bhatia, V.S.; Mittra, I.S.; Andreeva, N.P.; Anson, Z.V.; Bubnov, V.I.; Chasnikov, I.Y.; Eligbaeva, G.Z.; Eremenko, L.E.; Gaitinov, A.S.; Kalyachkina, G.S.; Kanygina, E.K.; Lepetan, V.N.; Shakhova, T.I.; Avetyan, F.A.; Marutyan, N.A.; Sarkisova, L.G.; Sarkisyan, V.R.; Badyal, S.K.; Bhasin, A.; Gupta, V.K.; Kachroo, S.; Kaul, G.L.; Kitroo, S.; Mangotra, L.K.; Rao, N.K.; Basova, E.; Nasrulaeva, H.; Nasyrov, S.H.; Petrov, N.V.; Qarshiev, D.A.; Trofimova, T.P.; Tuleeva, U.; Bhalla, K.B.; Gupta, S.K.; Kumar, V.; Lal, P.; Lokanathan, S.; Mookerjee, S.; Palsania, H.S.; Raniwala, R.; Raniwala, S.; Bogdanaov, V.G.; Plyushchev, V.A.; Solovjeva, Z.I.; Burnett, T.H.; Grote, J.; Lord, J.; Skelding, D.; Wilkes, R.J.; Chernova, L.P.; Gulamov, K.G.; Lukicheva, N.S.; Navotny, V.S.; Saidkhanov, N.; Shpilev, S.N.; Surin, E.L.; Svechnikova, L.N.; Zhochova, S.I.; Ganssauge, E.R.; Rhee, J.T.; Garpman, S.; Jakobsson, B.; Nystrand, J.; Otterlund, I.; Soederstroem, K.; Stenlund, E.; Heckman, H.H.; Cai, X.; Huang, H.; Liu, L.S.; Qian, W.Y.; Wang, H.Q.; Zhou, D.C.; Judek, B.; Just, L.; Tothova, M.; Karabova, M.; Vokal, S.; Krasnov, S.A.; Kulikova, S.; Maksimkina, T.N.; Shabratova, G.S.; Tolstov, K.D.; Luo, S.B.; Qin, Y.M.; Zhang, D.H.; Weng, Z.Q.; Xia, Y.L.; Xu, G.F.; Zheng, P.Y.

    1992-01-01

    The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parameterizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200 A GeV incident energy, respectively, σ is found to be independent of the size of the interacting system at fixed energy. A novel, way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined. (orig.)

  11. Particle size analysis in estimating the significance of airborne contamination

    International Nuclear Information System (INIS)

    1978-01-01

    In this report information on pertinent methods and techniques for analysing particle size distributions is compiled. The principles underlying the measurement methods are described, and the merits of different methods in relation to the information being sought and to their usefulness in the laboratory and in the field are explained. Descriptions on sampling methods, gravitational and inertial particle separation methods, electrostatic sizing devices, diffusion batteries, optical sizing techniques and autoradiography are included. Finally, the report considers sampling for respirable activity and problems related to instrument calibration

  12. Effect of primary particle size on spray formation, morphology and internal structure of alumina granules and elucidation of flowability and compaction behaviour

    Directory of Open Access Journals (Sweden)

    Pandu Ramavath

    2014-06-01

    Full Text Available Three different alumina powders with varying particle sizes were subjected to spray drying under identical conditions and effect of particle size on heat transfer efficiency and mechanism of formation of granules was elucidated. Morphology, internal structure and size distribution of granules were studied and evaluated with respect to their flow behaviour. In order to estimate the elastic interaction of granules, the granules were subjected to compaction under progressive loading followed by periodic unloading. Compaction curves were plotted and compressibility factor was estimated and correlated with predicted and measured green density values.

  13. Effect of particle size of granules on some mechanical properties of ...

    African Journals Online (AJOL)

    Solid dosage forms are invariably multiparticulate systems of heterogenous particle size distribution. The purpose of this study was to investigate the effect of particle size distribution of paracetamol granules on some tablet mechanical properties of paracetamol tablets. Granules were formed by wet massing paracetamol ...

  14. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).

  15. Rutile nanopowders for pigment production: Formation mechanism and particle size prediction

    Science.gov (United States)

    Zhang, Wu; Tang, Hongxin

    2018-01-01

    Formation mechanism and particle size prediction of rutile nanoparticles for pigment production were investigated. Anatase nanoparticles were observed by oriented attachment with parallel lattice fringe spaces of 0.2419 nm. Upon increasing the calcination temperature, the (1 1 0) plane of rutile was gradually observed, suggesting that the anatase (1 0 3) planes undergo internal structural rearrangement of oxygen and titanium ions into rutile phase due to ionic diffusion. Backpropagation neural network was used to predict particle size of rutile nanopowders, the prediction errors were all smaller than 2%, providing an efficient method to control particle size in pigment production.

  16. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  17. Size distribution of interstellar particles. III. Peculiar extinctions and normal infrared extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.; Wallenhorst, S.G.

    1981-01-01

    The effect of changing the upper and lower size limits of a distribution of bare graphite and silicate particles with n(a)αa/sup -q/ is investigated. Mathis, Rumpl, and Nordsieck showed that the normal extinction is matched very well by having the small-size cutoff, a/sub -/, roughly-equal0.005 or 0.01 μm, and the large size a/sub +/, about 0.25 μm, and q = 3.5 for both substances. We consider the progressively peculiar extinctions exhibited by the well-observed stars, sigma Sco, rho Oph, and theta 1 Ori C, with values of R/sub v/[equivalentA/sub v//E(B--V)] of 3.4, 4.4, and 5.5 compared to the normal 3.1. Two (sigma Sco, rho Oph) are in a neutral dense cloud; theta 1 Ori C is in the Orion Nebula. We find that sigma Sco has a normal graphite distribution but has had its small silicate particles removed, so that a/sub -/(sil)roughly-equal0.04 μm if q = 3.5, or q(sil) = 2.6 if the size limits are fixed. However, the upper size limit on silicates remains normal. In rho Oph, the graphite is still normal, but both a/sub -/(sil) and a/sub +/(sil) are increased, to about 0.04 μm and 0.4 or 0.5 μm, respectively, if q = 3.5, or q(sil)roughly-equal1.3 if the size limits are fixed. In theta 1 Ori, the small limit on graphite has increased to about 0.04 μm, or q(gra)roughly-equal3, while the silicates are about like those in rho Oph. The calculated lambda2175 bump is broader than the observed, but normal foreground extinction probably contributes appreciably to the observed bump. The absolute amount of extinction per H atom for rho Oph is not explained. The column density of H is so large that systematic effects might be present. Very large graphite particles (a>3 μm) are required to ''hide'' the graphite without overly affecting the visual extinction, but a normal (small) graphite size distribution is required by the lambda2175 bump. We feel that it is unlikely that such a bimodal distribution exists

  18. Development of an ejecta particle size measurement diagnostic based on Mie scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Martin Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buttler, William Tillman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Frayer, Daniel K. [National Security Tech, Inc., Los Alamos, NM (United States); Grover, Michael [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Monfared, Shabnam Kalighi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Gerald D. [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.; Stone, Benjamin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turley, William Dale [National Security Technologies, Santa Barbara, CA (United States). Special Technologies Lab.

    2017-09-27

    The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived by Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.

  19. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman

    2011-01-01

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  20. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.

    2011-06-07

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  1. Microwave characteristics of low density flaky magnetic particles

    International Nuclear Information System (INIS)

    Wenqiang, Zhang; Deyuan, Zhang; Jun, Cai

    2013-01-01

    Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm 3 ) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber

  2. Microwave characteristics of low density flaky magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Wenqiang, Zhang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); College of Engineering, China Agricultural University, Beijing 100083 (China); Deyuan, Zhang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Jun, Cai, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2013-04-15

    Diatomite coated with thin Fe films were obtained by the Chemical Vapor Deposition process. The resultant Fe-coated flaky diatomite particles had low densities (2.7–4.0 g/cm{sup 3}) and high saturation magnetization (93–157 emu/g). Annealing treatment led to grain growth and an increased saturation magnetization. The high frequency properties of the composites consisting of Fe-coated flaky diatomite particles and wax were investigated. The permittivity and permeability increased with increasing flaky magnetic particles content in the composite and increasing the Fe weight percentage of the particles. The reflection loss of the composite was found dependent on the absorber material thickness, wax:flaky magnetic particles ratios, the Fe content, as well as the annealing treatment. At a thickness of 1 mm, the composite records a minimum reflection loss of −18 dB at 6 GHz. - Highlights: ► We synthesize the flaky magnetic particles with the diatomite as template. ► The flaky magnetic particles coating layers are constituted by α-Fe. ► The flaky magnetic particles have good static magnetic properties. ► The flaky magnetic particles are a kind light weight high performance microwave absorber.

  3. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  4. Drift-Alfven wave mediated particle transport in an elongated density depression

    International Nuclear Information System (INIS)

    Vincena, Stephen; Gekelman, Walter

    2006-01-01

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii ρ s =c s /ω ci . The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k perpendicular ρ s ∼0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles

  5. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  6. Particle-size distribution study: PILEDRIVER event

    Energy Technology Data Exchange (ETDEWEB)

    Rabb, David D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Reentry was made by mining into the chimney of broken rock created by a nuclear detonation in granite at a depth of 1500 feet. The chimney was 160 ft in radius and 890 ft high. An injection of radioactive melt was encountered at 300 ft from shot point. Radiochemical analyses determined that the yield of PILEDRIVER nuclear device was 61 {+-} 10 kt. Two samples of chimney rubble totalling over 5,000 lb were obtained during the postshot exploration. These samples of broken granite underwent screen analysis, a radioactivity-distribution study, and cursory leaching tests. The two samples were separated into 25 different size-fractions. An average of the particle-size data from the two samples showed that 17% of the material is between 20 mesh and I in.; 42% between 1 and 6 in.; and 34% between 6 in. and 3 ft. The distribution of radioactivity varies markedly with the particle size. The minus 100-mesh material comprizes less than 1.5% of the weight but contains almost 20% of the radioactivity. Small-scale batch-leaching tests showed that 25% of the radioactivity could be removed in a few hours by a film-percolation leach with distilled water, and 40% with dilute acid. Brief studies were made of the microfractures in the broken rock and of the radioactivity created by the PILEDRIVER explosion. (author)

  7. Particle-size distribution study: PILEDRIVER event

    International Nuclear Information System (INIS)

    Rabb, David D.

    1970-01-01

    Reentry was made by mining into the chimney of broken rock created by a nuclear detonation in granite at a depth of 1500 feet. The chimney was 160 ft in radius and 890 ft high. An injection of radioactive melt was encountered at 300 ft from shot point. Radiochemical analyses determined that the yield of PILEDRIVER nuclear device was 61 ± 10 kt. Two samples of chimney rubble totalling over 5,000 lb were obtained during the postshot exploration. These samples of broken granite underwent screen analysis, a radioactivity-distribution study, and cursory leaching tests. The two samples were separated into 25 different size-fractions. An average of the particle-size data from the two samples showed that 17% of the material is between 20 mesh and I in.; 42% between 1 and 6 in.; and 34% between 6 in. and 3 ft. The distribution of radioactivity varies markedly with the particle size. The minus 100-mesh material comprizes less than 1.5% of the weight but contains almost 20% of the radioactivity. Small-scale batch-leaching tests showed that 25% of the radioactivity could be removed in a few hours by a film-percolation leach with distilled water, and 40% with dilute acid. Brief studies were made of the microfractures in the broken rock and of the radioactivity created by the PILEDRIVER explosion. (author)

  8. Electromechanical characterization of individual micron-sized metal coated polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Bazilchuk, Molly; Kristiansen, Helge [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Conpart AS, Skjetten 2013 (Norway); Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying, E-mail: jianying.he@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 7491 (Norway)

    2016-06-28

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  9. Electromechanical characterization of individual micron-sized metal coated polymer particles

    International Nuclear Information System (INIS)

    Bazilchuk, Molly; Kristiansen, Helge; Pettersen, Sigurd Rolland; Zhang, Zhiliang; He, Jianying

    2016-01-01

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

  10. Constraints on particle density evolution within a CME at Mercury

    Science.gov (United States)

    Exner, W.; Liuzzo, L.; Heyner, D.; Feyerabend, M.; Motschmann, U. M.; Glassmeier, K. H.; Shiota, D.; Kusano, K.

    2017-12-01

    Mercury (RM=2440) is the closest orbiting planet around the Sun and is embedded in an intensive and highly varying solar wind.Mercury's intrinsic dipole with a southward magnetic moment is aligned with the rotation axis and has a northward offset of 0.2 RM.In-situ data from the MESSENGER spacecraft of the magnetic environment near Mercury indicate that a coronal mass ejection (CME) passed the planet on 8 May 2012. The data constrain the direction and magnitude of the CME magnetic field but no information on its particle density could be determined.We apply the hybrid (kinetic ions, electron fluid) code A.I.K.E.F. to study the interaction of Mercury's magnetosphere with the CME.We use MESSENGER magnetic field observations as well as simulation results to constrain the evolution of the particle density inside the CME.We show that within a 24-hour period the particle density within the CME had to vary between 1-100 cm-3 in order to explain MESSENGER magnetic field observations.

  11. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  12. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  13. Effect of forage inclusion and particle size in diets of neonatal lambs on performance and rumen development.

    Science.gov (United States)

    Norouzian, M A; Valizadeh, R

    2014-12-01

    A slaughter experiment was conducted to determine the effects of alfalfa particle size on rumen morphology and performance of lambs. Twenty-four Balouchi lambs aged 21 days (9.1 ± 1.1 kg) were randomly fed control (diet without alfalfa hay; CON) and mixed rations containing 15% finely ground (FINE; 2 mm) and 15% coarsely chopped alfalfa hay (LONG; 3 to 4 cm). After a 63 days feeding period, nine animals (three per treatment) were slaughtered to obtain ruminal tissue samples for morphological analyses. Alfalfa particle size did not affect (p > 0.05) papillae density, height, width, epithelium depth and surface area. Coarse alfalfa decreased the stratum corneum and increased (p content and nor RNA concentration of rumen tissue was affected by feeding different diets. Forage particle size did not affect the blood concentration of glucose, urea nitrogen (BUN), beta-hydroxybutyric acid (BHBA) and non-esterified fatty acids (NEFA). Dry matter intake and feed conversion ratio were higher for control diet; however, there were no significant differences between treatments for average daily gain. These data suggest that coarse alfalfa significantly reduces the stratum corneum and increases muscularity of rumen wall and tended to better feed conversion ratio. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  14. Particle-bearing currents in uniform density and two-layer fluids

    Science.gov (United States)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  15. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  16. Size-exclusion chromatography using core-shell particles.

    Science.gov (United States)

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Particle size studies in the preparation of AQCS reference materials

    International Nuclear Information System (INIS)

    Fajgelj, A.; Zeisler, R.; Benesch, T.; Dekner, R.

    1994-01-01

    Particle size determination is one of the important steps in the characterization of physical properties of each particulate material. However, particle size distribution effects also a chemical composition of the material in terms of homogeneity and representativeness of the sample, as well as allows or not a possible sub-sampling of the material. All this is of great importance in the preparation of reference materials for which the chemical composition and physical properties have to be extremely well characterized. In the present paper we intend to present same efforts which have been done by Analytical Quality Control Services (AQCS) of the International Atomic Energy Agency (IAEA) in the field of particle size determination in the production of reference materials. The Malvern product MasterSizer X, based on laser light scattering is used for this purpose and the technique is also shortly discussed. (author)

  18. Single particle level density in a finite depth potential well

    International Nuclear Information System (INIS)

    Shlomo, S.; Kolomietz, V.M.; Dejbakhsh, H.

    1997-01-01

    We consider the single particle level density g(ε) of a realistic finite depth potential well, concentrating on the continuum (ε>0) region. We carry out quantum-mechanical calculations of the partial level density g l (ε), associated with a well-defined orbital angular momentum l≤40, using the phase-shift derivative method and the Greens-function method and compare the results with those obtained using the Thomas-Fermi approximation. We also numerically calculate g(ε) as a l sum of g l (ε) up to a certain value of scr(l) max ≤40 and determine the corresponding smooth level densities using the Strutinsky smoothing procedure. We demonstrate, in accordance with Levinson close-quote s theorem, that the partial contribution g l (ε) to the single particle level density from continuum states has positive and negative values. However, g(ε) is nonnegative. We also point out that this is not the case for an energy-dependent potential well. copyright 1997 The American Physical Society

  19. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Sanin, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in the core and T e 1.1±0.14 in the edge. Edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in the edge is close to gyro-Bohm-like in nature. Non-zero V is observed and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity in the core reverses direction from inward to outward as the T e gradient increases. In the edge, convection is inward directed in most cases of the present data set. It shows a modest tendency, being proportional to T e gradient and remaining inward directed. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation spectrum varies with heating power suggesting that it has an influence on particle transport. The value of K sub(perpendicular) ρ i is around 0.1, as expected for gyro-Bohm diffusion. Fluctuations are localized in both positive and negative density gradient regions of the hollow density profiles. The fluctuation power in each region is clearly distinguished having different phase velocity profiles. (author)

  20. Effect of particle size on colloidal zirconia rheology at the isoelectric point

    International Nuclear Information System (INIS)

    Leong, Y.K.; Scales, P.J.; Healy, T.W.; Boger, D.V.

    1995-01-01

    This paper examines the effects of particle concentration and size on the yield stress of ZrO 2 suspensions at a well-defined surface chemistry condition of the isoelectric point (IEP). At the IEP, the relationship between yield stress τ y max and particulate volume fraction φ s , and mean particle size d was evaluated to be τ y max = K φ s 4.0 /d 2.0 . The difference in size distribution of the various ZrO 2 suspensions examined causes some degree of scatter in the data used to establish the τ y max , φ s , and d relation. The use of particle concentration n t based on the fine size fraction instead of volume fraction φ s provided a better correlation, because the fine particles govern the properties of the flocculated network structure

  1. Process R&D for Particle Size Control of Molybdenum Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The primary goal of this study was to produce MoO3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study, effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.

  2. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  3. Particle size distribution in effluent of trickling filters and in humus tanks.

    Science.gov (United States)

    Schubert, W; Günthert, F W

    2001-11-01

    Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.

  4. Performance of japanese quails fed feeds containing different corn and limestone particle sizes

    Directory of Open Access Journals (Sweden)

    DA Berto

    2007-09-01

    Full Text Available This study aimed at evaluating performance and egg quality of Japanese quails fed feeds containing different corn and limestone particle sizes. A total number of 648 birds in the peak of production was distributed in a random complete block experimental design, using a 2x3 factorial arrangement (2 corn particle sizes and 3 limestone particle sizes. Birds were designated to one of two blocks, with six replicates of 18 birds each. Mean geometric diameter (MGD values used were 0.617mm and 0.723mm (corn fine and coarse particle sizes, respectively, and 0.361mm, 0.721mm, and 0.947mm (limestone fine, intermediate and coarse particle sizes, respectively. The following treatments were applied: T1: fine corn feed, with 100% fine limestone; T2: fine corn feed, with 50% fine limestone and 50% intermediate limestone; T3: fine corn feed, with 50% fine limestone and 50% coarse limestone; T4: coarse corn feed, with 100% fine limestone; T5: coarse corn feed, with 50% fine limestone and 50% intermediate limestone; T6: coarse corn feed, with 50% fine limestone and 50% coarse limestone. The experiment lasted 112 days, consisting of 4 cycles of 28 days. No significant interaction was observed among corn and limestone particle sizes for any of the analyzed parameters. There were no significant effects (p>0.05 of the tested corn particle sizes on quail performance or egg quality. There were significant (p<0.05 isolated effects of limestone particle size only on the percentage of cracked eggs, which was reduced when birds fed 50% coarse limestone (0.947mm and 50% fine limestone (0.361mm as compared to those fed 100% fine limestone. Therefore, the inclusion of 50% coarse limestone (0.947mm is recommended for quail egg production.

  5. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  6. Density determination of sintered ceramic nuclear fuel materials

    International Nuclear Information System (INIS)

    Landspersky, H.; Medek, J.

    1980-01-01

    The feasibility was tested of using solids for pycnometric determination of the density of uranium dioxide-based sintered ceramic fuel materials manufactured by the sol-gel method in the shape of spherical particles of 0.7 to 1.0 mm in size and of particles smaller than 200 μm. For fine particles, this is the only usable method of determining their density which is a very important parameter of the fine fraction when it is employed for the manufacture of fuel elements by vibration compacting. The method consists in compacting a mixture of pycnometric material and dispersed particles of uranium dioxide, determining the size and weight of the compact, and in calculating the density of the material measured from the weight of the oxide sample in the mixture. (author)

  7. Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments

    DEFF Research Database (Denmark)

    Posth, Nicole R.; Huelin, Sonia; Konhauser, Kurt O.

    2010-01-01

    Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental...... conditions under which modern photoferrotrophs grow and the kinetics, physiology and mechanism of Fe(II) oxidation, no systematic analyses of the physico-chemical characteristics of those aggregates, such as shape, size, density and chemical composition, have as yet been conducted. Herein, experimental...... results show most aggregates are bulbous or ragged in shape, with an average particle size of 10-40??m, and densities that typically range between 2.0 and 2.4g/cm 3; the cell fraction of the aggregates increased and their density decreased with initial Fe(II) concentration. The mineralogy of the ferric...

  8. Frozen density embedding with non-integer subsystems' particle numbers.

    Science.gov (United States)

    Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio

    2014-03-21

    We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.

  9. Evaluation of instruments used in particle size analysis by using the sedimentation technique

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Abdrahman, A.A.M.; Ahmed, A.Z.

    2007-01-01

    This study is carried out to evaluate the performance of some instruments in which the sedimentation technique is used for the determination of particle size distribution using Stoke's law. A mathematical formula has been developed to calculate the particle size distribution for different cases and the results were compared to the real ones. The results revealed unsatisfactory agreement between the calculated and the measured values. In addition, illogic results were obtained indicating that the instruments in which the sedimentation technique is used are not the proper ones to provide accurate measurements except for mono particle size cases. More above, the results obtained represent the sedimentation rate but not the particle size distribution.

  10. Size-density relations in dark clouds: Non-LTE effects

    Science.gov (United States)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO

  11. Combustion synthesis of micron-sized Sm2Co17 particles via mechanochemical processing

    International Nuclear Information System (INIS)

    Liu, W.; McCormick, P.G.

    1998-01-01

    Full text: The spontaneous formation of Sm 2 Co 17 micron-sized particles via a mechanically induced combustion reaction has been investigated. Sm 2 Co 17 alloy particles of 0.1--2 μm in size embedded in a CaO matrix formed directly via a combustion reaction induced by milling the powder mixture of Sm 2 O 3 , CoO, CaO and Ca over a critical time. The micron-sized Sm 2 Co 17 particles were found to have the TbCu 7 -type structure and characterized by a coercivity value of 7.8 kOe while embedded in the CaO matrix. The effect of subsequent heat treatment on the structure and magnetic properties of as-milled samples was also investigated. Removal of the CaO by a carefully controlled washing process yielded micron-sized Sm 2 Co 17 particles without significant oxidation of the particles. These fine Sm 2 Co 17 particles can be used to produce anisotropic bulk or bonded magnets

  12. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  13. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

    Science.gov (United States)

    Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

    2009-07-01

    Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

  14. Influences of population size and density on birthplace effects.

    Science.gov (United States)

    Hancock, David J; Coutinho, Patrícia; Côté, Jean; Mesquita, Isabel

    2018-01-01

    Contextual influences on talent development (e.g., birthplace effects) have become a topic of interest for sport scientists. Birthplace effects occur when being born in a certain city size leads to participation or performance advantages, typically for those born in smaller or mid-sized cities. The purpose of this study was to investigate birthplace effects in Portuguese volleyball players by analysing city size, as well as population density - an important but infrequently used variable. Participants included 4062 volleyball players (M age  = 33), 53.2% of whom were men. Using Portuguese national census data from 1981, we compared participants (within each sex) across five population categories. In addition, we used ANOVAs to study expertise and population density. Results indicated that men and women athletes born in districts of 200,000-399,999 were 2.4 times more likely to attain elite volleyball status, while all other districts decreased the odds of expert development. For men, being born in high-density areas resulted in less chance of achieving expertise, whereas there were no differences for women. The results suggest that athletes' infrastructure and social structure play an important role in talent development, and that these structures are influenced by total population and population density, respectively.

  15. Real-time measurements of suspended sediment concentration and particle size using five techniques

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  16. Particle-hole state densities for statistical multi-step compound reactions

    International Nuclear Information System (INIS)

    Oblozinsky, P.

    1986-01-01

    An analytical relation is derived for the density of particle-hole bound states applying the equidistant-spacing approximation and the Darwin-Fowler statistical method. The Pauli exclusion principle as well as the finite depth of the potential well are taken into account. The set of densities needed for calculations of multi-step compound reactions is completed by deriving the densities of accessible final states for escape and damping. (orig.)

  17. Quasi-particle energy spectra in local reduced density matrix functional theory.

    Science.gov (United States)

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  18. Particle Transport and Size Sorting in Bubble Microstreaming Flow

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2014-11-01

    Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.

  19. Density Modulation Experiments to Determine Particle Transport Coefficients on HT-7 Tokamak

    International Nuclear Information System (INIS)

    Jie Yinxian; Gao Xiang; Tanaka, K; Sakamoto, R; Toi, K; Liu Haiqing; Gao Li; Asif, M; Liu Jin; Xu Qiang; Tong Xingde; Cheng Yongfei

    2006-01-01

    The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D 2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The density modulation amplitude was 10% of the central chord averaged background density and the modulation frequency was 10 Hz in the experiments. The particle diffusion coefficient (D) and the convection velocity (V) were obtained for different background plasmas with the central chord averaged density e > = 1.5x10 19 m -3 and 3.0x10 19 m -3 respectively. It was observed that the influence of density modulation on the main plasma parameters was very weak. This technology is expected to be useful for the analysis of LHW and IBW heated plasmas on HT-7 tokamak in the near future

  20. Size-density metrics, leaf area, and productivity in eastern white pine

    Science.gov (United States)

    J. C. Innes; M. J. Ducey; J. H. Gove; W. B. Leak; J. P. Barrett

    2005-01-01

    Size-density metrics are used extensively for silvicultural planning; however, they operate on biological assumptions that remain relatively untested. Using data from 12 even-aged stands of eastern white pine (Pinus strobus L.) growing in southern New Hampshire, we compared size-density metrics with stand productivity and its biological components,...

  1. Size-density relations in dark clouds: Non-LTE effects

    International Nuclear Information System (INIS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH 3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T/sub R/*(13CO)/T/sub R/*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths be seriously in error due to sub-thermal excitation of the 13CO molecule

  2. Hydrodynamics of multi-sized particles in stable regime of a swirling bed

    Energy Technology Data Exchange (ETDEWEB)

    Miin, Chin Swee; Sulaiman, Shaharin Anwar; Raghavan, Vijay Raj; Heikal, Morgan Raymond; Naz, Muhammad Yasin [Universiti Teknologi PETRONAS, Perak (Malaysia)

    2015-11-15

    Using particle imaging velocimetry (PIV), we observed particle motion within the stable operating regime of a swirling fluidized bed with an annular blade distributor. This paper presents velocity profiles of particle flow in an effort to determine effects from blade angle, particle size and shape and bed weight on characteristics of a swirling fluidized bed. Generally, particle velocity increased with airflow rate and shallow bed height, but decreased with bed weight. A 3 .deg. increase in blade angle reduced particle velocity by approximately 18%. In addition, particle shape, size and bed weight affected various characteristics of the swirling regime. Swirling began soon after incipience in the form of a supra-linear curve, which is the characteristic of a swirling regime. The relationship between particle and gas velocities enabled us to predict heat and mass transfer rates between gas and particles.

  3. A novel method for determination of particle size distribution in-process

    Science.gov (United States)

    Salaoru, Tiberiu A.; Li, Mingzhong; Wilkinson, Derek

    2009-07-01

    The pharmaceutical and fine chemicals industries are strongly concerned with the manufacture of high value-added speciality products, often in solid form. On-line measurement of solid particle size is vital for reliable control of product properties. The established techniques, such as laser diffraction or spectral extinction, require dilution of the process suspension when measuring from typical manufacturing streams because of their high concentration. Dilution to facilitate measurement can result in changes of both size and form of particles, especially during production processes such as crystallisation. In spectral extinction, the degree of light scattering and absorption by a suspension is measured. However, for concentrated suspensions the interpretation of light extinction measurements is difficult because of multiple scattering and inter-particle interaction effects and at higher concentrations extinction is essentially total so the technique can no longer be applied. At the same time, scattering by a dispersion also causes a change of phase which affects the real component of the suspension's effective refractive index which is a function of particle size and particle and dispersant refractive indices. In this work, a novel prototype instrument has been developed to measure particle size distribution in concentrated suspensions in-process by measuring suspension refractive index at incidence angles near the onset of total internal reflection. Using this technique, the light beam does not pass through the suspension being measured so suspension turbidity does not impair the measurement.

  4. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  6. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  8. Effect of particle size on thermal decomposition of alkali metal picrates

    International Nuclear Information System (INIS)

    Liu, Rui; Zhang, Tonglai; Yang, Li; Zhou, Zunning

    2014-01-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate

  9. Effect of particle size on thermal decomposition of alkali metal picrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Zhang, Tonglai, E-mail: ztlbit@bit.edu.cn; Yang, Li; Zhou, Zunning

    2014-05-01

    Graphical abstract: The smaller-sized picrate has greater gas emission than do its larger counterpart. The small size effect reduces the thermal decomposition activation energy, accelerates the reaction rate, and promotes the reaction activity. - Highlights: • Picrates were prepared into three micron sizes by microemulsion synthesis. • Thermal decomposition kinetics and thermodynamics were studied by DPTA and DSC. • Smaller-sized picrate has higher activity and faster reaction rate. • Particle size effect on thermal decomposition kinetics and thermodynamics was revealed. - Abstract: Three alkali metal picrates, KPA, RbPA and CsPA, were prepared into three micron sizes by microemulsion synthesis, and their thermal decomposition behaviors were investigated by DPTA at different temperatures and by DSC at different heating rates. The smaller-sized picrate has greater gas emission and smaller kinetic and thermodynamic parameters than do its larger counterpart. It can be attributed to the decreasing particle size which leads to the high surface energy, the fast mass and heat transfer, and the increasing active sites on the reaction interface. The small size effect and surface effect cause the autocatalysis which reduces the activation energy and promotes the reaction activity. The particle size does not affect the reaction mechanism. However, the picrates with different central alkali metals exhibit different reaction mechanisms even though they are of the same size. This is because the central metal determines the bond energy and consequently affects the stability of picrate.

  10. Simulation study of effects of initial particle size distribution on dissolution

    International Nuclear Information System (INIS)

    Wang, G.; Xu, D.S.; Ma, N.; Zhou, N.; Payton, E.J.; Yang, R.; Mills, M.J.; Wang, Y.

    2009-01-01

    Dissolution kinetics of γ' particles in binary Ni-Al alloys with different initial particle size distributions (PSD) is studied using a three-dimensional (3D) quantitative phase field model. By linking model inputs directly to thermodynamic and atomic mobility databases, microstructural evolution during dissolution is simulated in real time and length scales. The model is first validated against analytical solution for dissolution of a single γ' particle in 1D and numerical solution in 3D before it is applied to investigate the effects of initial PSD on dissolution kinetics. Four different types of PSD, uniform, normal, log-normal and bimodal, are considered. The simulation results show that the volume fraction of γ' particles decreases exponentially with time, while the temporal evolution of average particle size depends strongly on the initial PSD

  11. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    Science.gov (United States)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  12. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  13. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    International Nuclear Information System (INIS)

    Jamaati, Roohollah; Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad

    2011-01-01

    Research highlights: → Microstructure of MMC with larger particles becomes completely uniform, sooner. → When the number of cycles increased, tensile strength for both samples improved. → Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. → First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 μm were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 μm particle size was more salient compared to the MMCs with 2 μm particle size. Also, the composite strip with 40 μm particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 μm particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 μm particle size was more than the composite strip with 2 μm up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 μm particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 μm particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  14. Particles size distribution effect on 3D packing of nanoparticles in to a bounded region

    International Nuclear Information System (INIS)

    Farzalipour Tabriz, M.; Salehpoor, P.; Esmaielzadeh Kandjani, A.; Vaezi, M. R.; Sadrnezhaad, S. K.

    2007-01-01

    In this paper, the effects of two different Particle Size Distributions on packing behavior of ideal rigid spherical nanoparticles using a novel packing model based on parallel algorithms have been reported. A mersenne twister algorithm was used to generate pseudo random numbers for the particles initial coordinates. Also, for this purpose a nano sized tetragonal confined container with a square floor (300 * 300 nm) were used in this work. The Andreasen and the Lognormal Particle Size Distributions were chosen to investigate the packing behavior in a 3D bounded region. The effects of particle numbers on packing behavior of these two Particle Size Distributions have been investigated. Also the reproducibility and the distribution of packing factor of these Particle Size Distributions were compared

  15. The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Bligaard, Thomas

    2014-01-01

    We present first principle investigation of the influence of platinum nanoparticle shape and size on the oxygen reduction reaction activity. We compare the activities of nanoparticles with specific shapes (tetrahedron, octahedron, cube and truncated octahedron) with that of equilibrium particle s...

  16. Raman spectroscopic identification of size-selected airborne particles for quantitative exposure assessment

    International Nuclear Information System (INIS)

    Steer, Brian; Gorbunov, Boris; Price, Mark C; Podoleanu, Adrian

    2016-01-01

    In this paper we present a method for the quantification of chemically distinguished airborne particulate matter, required for health risk assessment. Rather than simply detecting chemical compounds in a sample, we demonstrate an approach for the quantification of exposure to airborne particles and nanomaterials. In line with increasing concerns over the proliferation of engineered particles we consider detection of synthetically produced ZnO crystals. A multi-stage approach is presented whereby the particles are first aerodynamically size segregated from a lab-generated single component aerosol in an impaction sampler. These size fractionated samples are subsequently analysed by Raman spectroscopy. Imaging analysis is applied to Raman spatial maps to provide chemically specific quantification of airborne exposure against background which is critical for health risk evaluation of exposure to airborne particles. Here we present a first proof-of-concept study of the methodology utilising particles in the 2–4 μm aerodynamic diameter range to allow for validation of the approach by comparison to optical microscopy. The results show that the combination of these techniques provides independent size and chemical discrimination of particles. Thereby a method is provided to allow quantitative and chemically distinguished measurements of aerosol concentrations separated into exposure relevant size fractions. (paper)

  17. How does dietary particle size affect carnivore gastrointestinal transit: A dog model.

    Science.gov (United States)

    De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J

    2018-04-01

    The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.

  18. High-resolution extraction of particle size via Fourier Ptychography

    Science.gov (United States)

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  19. Density functional approach for pairing in finite size systems

    International Nuclear Information System (INIS)

    Hupin, G.

    2011-09-01

    The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)

  20. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  1. The effect of particle size distributions on the microstructural evolution during sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund

    2013-01-01

    Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...

  2. Building predictive models of soil particle-size distribution

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-04-01

    Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.

  3. Determination of the particle size distribution of aerosols by means of a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1978-09-01

    The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles [fr

  4. Separation and chemical characterization of finely-sized fly-ash particles

    International Nuclear Information System (INIS)

    Campbell, J.A.; Laul, J.C.; Nielson, K.K.; Smith, R.D.

    1978-01-01

    The concentrations of 43 major, minor, and trace elements were measured by x-ray fluorescence, atomic absorption, and instrumental neutron activation for nine well-defined size fractions, with mass median diameters of 0.5 μ to 50 μm, of fly ash from a western coal-fired steam plant. There was generally good agreement in concentrations of elements analyzed by more than one technique. Concentration profiles as a function of mean particle size were established for various elements. Based on the concentration profiles, the elements can be divided into three distinct groups. One group consists primarily of the volatile elements or elements partially volatilized during coal combustion (examples include As, Se, Zn, Ga, etc.), and their concentrations decrease with increasing particle size. A second group, which shows a minor or direct dependence on particle size, as in the case of Si, is apparently associated primarily with the fly-ash matrix. The last group of elements, which includes Ca, Sr, Y, and the rare earths, shows small changes in their concentration profiles with a maximum in concentration at approximately 5 μm. 6 tables, 6 figures

  5. Influence of Emulsion Polymerization Techniques to Particle Size of Copoly(styrene/butyl acrylate/methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Tresye Utari

    2008-04-01

    Full Text Available In the majority of applications, particle size and particle size distribution are highly significant factors that determine the properties of a polymer dispersion, such as its flow behavior or its stability. For example, a coating material with small particle size will give smooth coating result, good adhesive strength, good water resistance and latex stability. This article describes influence of various emulsion polymerization techniques to particle size of copoly(styrene/butyl acrylate/methyl methacrylate with mix surfactant SDBS linear chain and nonyl fenol (EO10 and initiator ammonium persulphate. DSC data, solid content and IR spectrum showed that copoly(styrene/butyl acrylate/methyl methacrylate was produced. Batch emulsion polymerization technique gave the highest particle size i.e. 615 nm and also the highest % conversion of monomer i.e. 97%. The more concentration of monomer was seeded to initial charge gave greater particle size and greater poly dispersity index.

  6. Density-dependence as a size-independent regulatory mechanism.

    Science.gov (United States)

    de Vladar, Harold P

    2006-01-21

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

  7. How comparable are size-resolved particle number concentrations from different instruments?

    Science.gov (United States)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  8. Investigation of the low-speed impact behavior of dual particle size metal matrix composites

    International Nuclear Information System (INIS)

    Cerit, Afşın Alper

    2014-01-01

    Highlights: • AA2124 matrix composites reinforced with SiC particles were manufactured. • Low-speed impact behaviors of composites were investigated. • Composites were manufactured with single (SPS) and dual particle sizes (DPS). • Impact behaviors of DPS composites are more favorable than the SPS composites. • Approximately 50–60% of input energy was absorbed by the composite samples. - Abstract: SiC-reinforced aluminum matrix composites were manufactured by powder metallurgy using either single or dual particle sized SiC powders and samples sintered under argon atmosphere. Quasi-static loading, low-speed impact tests and hardness tests were used to investigate mechanical behavior and found that dual particle size composites had improved hardness and impact performance compared to single particle size composites. Sample microstructure, particle distributions, plastic deformations and post-testing damages were examined by scanning electron microscopy and identified microstructure agglomerations in SPS composites. Impact traces were characterized by broken and missing SiC particles and plastically deformed composite areas

  9. Transport of particles, drops, and small organisms in density stratified fluids

    Science.gov (United States)

    Ardekani, Arezoo M.; Doostmohammadi, Amin; Desai, Nikhil

    2017-10-01

    Sedimenting particles and motile organisms are ubiquitously found in oceans and lakes, where density stratification naturally occurs due to temperature or salinity gradients. We explore the effects of stratification on the fundamental hydrodynamics of settling particles, rising drops, and small organisms. The results of our direct numerical simulations of the sedimentation of particles show that the presence of vertical density gradients in the water column can substantially affect the settling dynamics of a particle, interaction between a pair of particles, and settling rates and microstructure of suspension of particles. We show that elongation of particles affects both the settling orientation and the settling rate of particles in stratified fluids, which will have direct consequences on the vertical flux of particulate matter and carbon flux in the ocean. We further demonstrate an unexpected effect of buoyancy, potentially affecting a broad range of processes at pycnoclines in oceans and lakes. In particular, stratification has a major effect on the flow field, energy expenditure, and nutrient uptake of small organisms. In addition, the role of stratification in pattern formation of bioconvection plumes of algal cells and in biogenic mixing is investigated. In particular, the numerical approach allows for considering the effects of background turbulence and hydrodynamic perturbations produced by swimming organisms, shedding light on the contribution of organisms in the mixing process in aqueous environments.

  10. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Finite size scaling and spectral density studies

    International Nuclear Information System (INIS)

    Berg, B.A.

    1991-01-01

    Finite size scaling (FSS) and spectral density (SD) studies are reported for the deconfining phase transition. This talk concentrates on Monte Carlo (MC) results for pure SU(3) gauge theory, obtained in collaboration with Alves and Sanielevici, but the methods are expected to be useful for full QCD as well. (orig.)

  12. Defining the sizes of airborne particles that mediate influenza transmission in ferrets.

    Science.gov (United States)

    Zhou, Jie; Wei, Jianjian; Choy, Ka-Tim; Sia, Sin Fun; Rowlands, Dewi K; Yu, Dan; Wu, Chung-Yi; Lindsley, William G; Cowling, Benjamin J; McDevitt, James; Peiris, Malik; Li, Yuguo; Yen, Hui-Ling

    2018-03-06

    Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency. Copyright © 2018 the Author(s). Published by PNAS.

  13. Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs by the multiple titanium oxide (TiO2 layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency.

  14. Karna Particle Size Dataset for Tables and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains 1) table of bulk Pb-XAS LCF results, 2) table of bulk As-XAS LCF results, 3) figure data of particle size distribution, and 4) figure data for...

  15. Many-body localization from one particle density matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Soumya; Bardarson, Jens [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Schomerus, Henning [Lancaster University, Lancaster (United Kingdom); Heidrich-Meisner, Fabian [Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-07-01

    We show that the one-particle density matrix ρ can be used to characterize the interaction-driven many-body localization transition in isolated fermionic systems. The natural orbitals (the eigenstates) are localized in the many-body localized phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues) reveals the distinctive Fock- space structure of the many-body eigenstates, exhibiting a step-like discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition.

  16. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    Science.gov (United States)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  17. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  18. Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Albers, J.G.; German, A.L.

    1994-01-01

    Polybutadiene (I) latexes prepd. by emulsifier-free emulsion polymn. and having particle diam. 50-300 nm for both unimodal and bimodal particles size distributions were analyzed by the line-start (LIST) method in a Brookhaven disk centrifuge photosedimentometer. A special spin fluid was designed to

  19. Analysis of tecniques for measurement of the size distribution of solid particles

    Directory of Open Access Journals (Sweden)

    F. O. Arouca

    2005-03-01

    Full Text Available Determination of the size distribution of solid particles is fundamental for analysis of the performance several pieces of equipment used for solid-fluid separation. The main objective of this work is to compare the results obtained with two traditional methods for determination of the size grade distribution of powdery solids: the gamma-ray attenuation technique (GRAT and the LADEQ test tube technique. The effect of draining the suspension in the two techniques used was also analyzed. The GRAT can supply the particle size distribution of solids through the monitoring of solid concentration in experiments on batch settling of diluted suspensions. The results show that use of the peristaltic pump in the GRAT and the LADEQ methods produced a significant difference between the values obtained for the parameters of the particle size model.

  20. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  1. Performance of japanese quails fed feeds containing different corn and limestone particle sizes

    OpenAIRE

    Berto,DA; Garcia,EA; Móri,C; Faitarone,ABG; Pelícia,K; Molino,AB

    2007-01-01

    This study aimed at evaluating performance and egg quality of Japanese quails fed feeds containing different corn and limestone particle sizes. A total number of 648 birds in the peak of production was distributed in a random complete block experimental design, using a 2x3 factorial arrangement (2 corn particle sizes and 3 limestone particle sizes). Birds were designated to one of two blocks, with six replicates of 18 birds each. Mean geometric diameter (MGD) values used were 0.617mm and 0.72...

  2. Spatial Variability of CCN Sized Aerosol Particles

    Science.gov (United States)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  3. Effect of milling time on the structure, particle size, and morphology of montmorillonite

    International Nuclear Information System (INIS)

    Abareshi, M.

    2017-01-01

    In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1-60 hours). After that, the structure, particle size and morphology of all samples were investigated by XRD, FTIR, SEM, and transmission electron microscopy. Results showed that the ball milling causes the particle size reduction of clay and separation of the clay layers. Moreover, ball milling increases the overall structural disorder and transforms the crystalline structure into an amorphous phase. Also, the morphology of clay particle changes from layered to aggregates of almost rounded particles after 60 hours of milling.

  4. Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon

    International Nuclear Information System (INIS)

    Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H.

    2007-01-01

    In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al 2 O 3 and water-CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a 'piston-type' calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 deg. C, for water-Al 2 O 3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water-CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina-water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein's formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes

  5. Assessment of particle size distribution in CO 2 accidental releases

    NARCIS (Netherlands)

    Hulsbosch-Dam, C.E.C.; Spruijt, M.P.N.; Necci, A.; Cozzani, V.

    2012-01-01

    A model was developed to calculate the particle size distribution following the release of pressurised supercritical CO 2. The model combines several sub-models for the different stages of jet break-up and specifically addresses the possible formation of solid particles, which is important for CO 2

  6. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  7. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  8. A mass-density model can account for the size-weight illusion

    Science.gov (United States)

    Bergmann Tiest, Wouter M.; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness

  9. A mass-density model can account for the size-weight illusion.

    Science.gov (United States)

    Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.

  10. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  11. The influence of powder particle size on properties of Cu-Al2O3 composites

    Directory of Open Access Journals (Sweden)

    Rajković V.

    2009-01-01

    Full Text Available Inert gas atomized prealloyed copper powder containing 2 wt.% Al (average particle size ≈ 30 μm and a mixture consisting of copper (average particle sizes ≈ 15 μm and 30 μm and 4 wt.% of commercial Al2O3 powder particles (average particle size ≈ 0.75 μm were milled separately in a high-energy planetary ball mill up to 20 h in air. Milling was performed in order to strengthen the copper matrix by grain size refinement and Al2O3 particles. Milling in air of prealloyed copper powder promoted formation of finely dispersed nano-sized Al2O3 particles by internal oxidation. On the other side, composite powders with commercial micro-sized Al2O3 particles were obtained by mechanical alloying. Following milling, powders were treated in hydrogen at 400 0C for 1h in order to eliminate copper oxides formed on their surface during milling. Hot-pressing (800 0C for 3 h in argon at pressure of 35 MPa was used for compaction of milled powders. Hot-pressed composite compacts processed from 5 and 20 h milled powders were additionally subjected to high temperature exposure (800°C for 1 and 5h in argon in order to examine their thermal stability. The results were discussed in terms of the effects of different size of starting powders, the grain size refinement and different size of Al2O3 particles on strengthening, thermal stability and electrical conductivity of copper-based composites.

  12. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  13. Investigation of Composition of Particle Size in Sediments of Stormwater Sedimentation Tank

    OpenAIRE

    Daiva Laučytė; Regimantas Dauknys

    2011-01-01

    The main object for the storm water runoff treatment is to remove suspended solids before the storm water runoff is discharged into surface waters. Therefore the sedimentation tank is the most often used treatment facility. In order to optimise the sedimentation, the tendency of particle size distribution in bottom sediments must be known. Two similar size storm water runoff sedimentation tanks in Vilnius city were selected for the analysis of the particle size distribution in sediments. The ...

  14. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  15. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley; Chowdhury, Snehaunshu; Roberts, William L.

    2017-01-01

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  16. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    Science.gov (United States)

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  17. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    Science.gov (United States)

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  18. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  19. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film

    International Nuclear Information System (INIS)

    Min Zhirong; Ming Qiuzhang; Hai Chunliang; Han Minzeng

    2003-01-01

    Preparation of nano-CdS particles with surface thiol modification by microemulsion method and their influences on the particle size distribution in highly filled polystyrene-based composites were studied. The modified nano-CdS was characterized by X-ray photoelectron spectroscopy (XPS), light absorption and emission measurements to reveal the morphologies of the surface modifier, which are consistent with the surface molecules packing calculation. The morphologies of the surface modifier exerted a great influence not only on the optical performance of the particles themselves, but also on the size distribution of the particle in polystyrene matrix. A monolayer coverage with tightly packed thiol molecules was believed to be most effective in promoting a uniform particle size distribution and eliminating the surface defects that cause radiationless recombination. Control of the particles size distribution in polystyrene can be attained by adjusting surface coverage status of the thiol molecules based on the strong interaction between the surface modifier and the matrix

  20. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Novel Volumetric Size and Velocity Measurement of Particles Using Interferometric Laser Imaging

    Science.gov (United States)

    Gunawardana, R.; Zarzecki, M.; Diez, F. J.

    2008-11-01

    Global Sizing Velocimetry (GSV) is a recently developed technique for characterizing the particle size distribution and flow velocity in a plane and in this research we extend this measurement to a volume through a laser scanning system. In GSV, a LASER sheet is used to illuminate translucent particles in a spray or flow field and the camera image is de-focused a known distance to create interference patterns. The diameters of the particles in the flow field are calculated by measuring the inter-fringe spacing in the resulting interferogram. Particle Imaging Velocimetry (PIV) techniques are used to compute velocity by measuring the particle displacement over a known short time interval. Researchers have recently begun applying GSV techniques to characterize sprays in a plane as it offers a larger area of investigation than other well known techniques such as Phase Doppler Anemometry (PDA). In this paper we extend GSA techniques from the current planar measurements to a volumetric measurement. The approach uses a high speed camera to acquire GSA images by scanning multiple planes in a volume of the flow field within a short period of time and obtain particle size distribution and velocity measurements in the entire volume.

  2. Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes

    Directory of Open Access Journals (Sweden)

    D. Imhof

    2006-01-01

    Full Text Available Measurements of aerosol particle number size distributions (18–700 nm, mass concentrations (PM2.5 and PM10 and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV share of 18% and another 40% of diesel driven light-duty vehicles (LDV semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08×1014 particles km-1 (Plabutsch and (1.26±0.10×1014 particles km-1 (Kingsway, while particle volume emission factors of 0.209±0.008 cm3 km-1 and 0.036±0.004 cm3 km-1, respectively, were obtained. PM1 emission factors of 104±4 mg

  3. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    Science.gov (United States)

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  4. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  5. The role of particle-size soil fractions in the adsorption of heavy metals

    Science.gov (United States)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of

  6. Influence of primary-particle density in the morphology of agglomerates.

    Science.gov (United States)

    Camejo, M D; Espeso, D R; Bonilla, L L

    2014-07-01

    Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental works.

  7. High-density lipoprotein-like particle formation of Synuclein variants.

    Science.gov (United States)

    Eichmann, Cédric; Kumari, Pratibha; Riek, Roland

    2017-01-01

    α-Synuclein (α-Syn) is an intrinsically disordered protein in solution whose fibrillar aggregates are the hallmark of Parkinson's disease (PD). Although the specific function of α-Syn is still unclear, its high structural plasticity is key for the interactions of α-Syn with biological membranes. Recently, it has been observed that α-Syn is able to form high-density lipoprotein-like (HDL-like) particles that are reminiscent of self-assembling phospholipid bilayer nanodiscs. Here, we extended our preparation method for the production of α-Syn lipoprotein particles to the β- and γ-Syn variants, and the PD-related familial α-Syn mutants. We show that all human Syns can form stable and homogeneous populations of HDL-like particles with distinct morphologies. Our results characterize the impact of the individual Syns on the formation capacity of these particles and indicate that Syn HDL-like particles are neither causing toxicity nor a toxicity-related loss of α-Syn in PD. © 2016 Federation of European Biochemical Societies.

  8. Control-oriented modeling of the plasma particle density in tokamaks and application to real-time density profile reconstruction

    NARCIS (Netherlands)

    Blanken, T.C.; Felici, F.; Rapson, C.J.; de Baar, M.R.; Heemels, W.P.M.H.

    2018-01-01

    A model-based approach to real-time reconstruction of the particle density profile in tokamak plasmas is presented, based on a dynamic state estimator. Traditionally, the density profile is reconstructed in real-time by solving an ill-conditioned inversion problem using a measurement at a single

  9. Spray flow-network flow transition of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2010-07-01

    We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.

  10. Spray flow-network flow transition of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime; Yukawa, Satoshi; Ito, Nobuyasu

    2010-01-01

    We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.

  11. Comparing particle-size distributions in modern and ancient sand-bed rivers

    Science.gov (United States)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical

  12. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  13. Juvenile Penaeid Shrimp Density, Spatial Distribution and Size ...

    African Journals Online (AJOL)

    The effects of habitat characteristics (mangrove creek, sandflat, mudflat and seagrass meadow) water salinity, temperature, and depth on the density, spatial distribution and size distribution of juveniles of five commercially important penaied shrimp species (Metapenaus monoceros, M. stebbingi, Fenneropenaeus indicus, ...

  14. Isolation, characterization, and stability of discretely-sized nanolipoprotein particles assembled with apolipophorin-III.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Nanolipoprotein particles (NLPs are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. METHODOLOGY: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4 degrees C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. CONCLUSIONS: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications.

  15. Particle size dependent confinement and lattice strain effects in LiFePO4.

    Science.gov (United States)

    Shahid, Raza; Murugavel, Sevi

    2013-11-21

    We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.

  16. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    Science.gov (United States)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  17. Fabrication and size control of Ag nano particles

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M. R.

    2012-01-01

    The objective of this research was to fabricate Ag nanoparticles and control their sizes. Colloidal Ag nanoparticles with particle size of 30 nm were prepared by dissolving AgNO 3 in ethanol and through the chemical reduction of Ag + in alcohol solution. To control the nanoparticle size, different samples were fabricated by changing the AgNO 3 and stabilizer concentrations and the effects of different factors on the shape and size of nanoparticles were investigated. The samples were characterized using Scanning Electron Microscopy and EDX analysis. The results showed that by increasing the AgNO 3 concentration, the average size of nanoparticles increases and nanoparticles lose their spherical shape. Also, we found that by using the stabilizer, it is possible to produce stable nanoparticles but increasing the stabilizer concentration caused an increase in size of nanoparticles. Fabrication of nanoparticles without using stabilizer was achieved but the results showed the nanoparticles size had a growth of 125 nm/h in the alcoholic media.

  18. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  19. Analysis scheme of density modulation experiments for particle confinements study

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Kawanata, K.; Tokuzawa, T.; Shoji, M.; Toi, K.; Gao, X.; Jie, Y.X.

    2005-01-01

    Density modulation experiments are one of the powerful experimental schemas to study particle confinements. The diffusion coefficients (D) and convection velocity (V), which is impossible to evaluated from particle balance in equilibrium state, can be separately obtained. And the estimated value of D and V are determined independent of absolute value of particle source rate, which is difficult to be obtained experimentally. However sensitivities and interpretation of D and V from modulation experiments should be taken care. In this paper, numerical techniques to solve particle balance equation of modulation components are described. Examples of analysis are shown from the data of LHD. And interpretations of results of modulation experiments are studied. (author)

  20. Change of particle size distribution during Brownian coagulation

    International Nuclear Information System (INIS)

    Lee, K.W.

    1984-01-01

    Change in particle size distribution due to Brownian coagulation in the continuum regime has been stuied analytically. A simple analytic solution for the size distribution of an initially lognormal distribution is obtained based on the assumption that the size distribution during the coagulation process attains or can, at least, be represented by a time dependent lognormal function. The results are found to be in a form that corrects Smoluchowski's solution for both polydispersity and size-dependent kernel. It is further shown that regardless of whether the initial distribution is narrow or broad, the spread of the distribution is characterized by approaching a fixed value of the geometric standard deviation. This result has been compared with the self-preserving distribution obtained by similarity theory. (Author)

  1. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  2. Size-dependent nonlocal effects in plasmonic semiconductor particles

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...

  3. Effect of limestone particle size on egg production and eggshell ...

    African Journals Online (AJOL)

    Different limestone particle sizes had no effect on any of the tested egg production and eggshell quality parameters. These results suggested that larger particles limestone are not necessarily essential to provide sufficient Ca2+ to laying hens for egg production and eggshell quality at end-of-lay, provided that the dietary Ca ...

  4. Density-functional errors in ionization potential with increasing system size

    Energy Technology Data Exchange (ETDEWEB)

    Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-14

    This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.

  5. Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel

    International Nuclear Information System (INIS)

    Morris, V N; Farrell, R A; Sexton, A M; Morris, M A

    2006-01-01

    High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects

  6. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    Science.gov (United States)

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are

  7. Effect on blood lead of airborne lead particles characterized by size.

    Science.gov (United States)

    Park, Dong-Uk; Paik, Nam-Won

    2002-03-01

    Worker exposure to airborne lead particles was evaluated for a total of 117 workers in 12 work-places of four different industrial types in Korea. The particle sizes were measured using 8-stage cascade impactors worn by the workers. Mass median aerodynamic diameters (MMAD) were determined by type of industry and percentage of lead particles as a fraction of airborne lead (PbA) concentration was determined by particle size. Blood lead (PbB) levels of workers who matched airborne lead samples were also examined. A Scheffé's pairwise comparison test showed that MMAD and the fractions of each of respirable particles and lead particles lead particles lead particles (r = 0.82) than that between concentrations of small particles and PbA (r = 0.61). A simple linear regression indicated that PbB correlated better with respirable lead concentration (r2 = 0.35, P = 0.0001) than with PbA concentration and had a higher slope coefficient. Controlling for respirable lead concentration reduced the partial correlation coefficient between PbA concentration and PbB level from 0.56 to 0.20 (P = 0.053). The results indicate that the contribution of respirable lead particles to lead absorption would be greater than that of PbA. This study concludes that the measurement of PbA only may not properly reflect a worker's exposure to lead particles with diverse characteristics. For the evaluation of a worker's exposure to various types of lead particles, it is recommended that respirable lead particles as well as PbA be measured.

  8. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  9. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    Science.gov (United States)

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  10. Effect of particle size on the glass transition.

    Science.gov (United States)

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  11. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Yorke, Harold W.

    2011-01-01

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  12. On the origin of the cobalt particle size effects in Fischer−Tropsch catalysis

    NARCIS (Netherlands)

    den Breejen, J.P.|info:eu-repo/dai/nl/304837318; Radstake, P.B.|info:eu-repo/dai/nl/304829587; Bezemer, G.L.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; Froseth, V.; Holmen, A.; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2009-01-01

    The effects of metal particle size in catalysis are of prime scientific and industrial importance and call for a better understanding. In this paper the origin of the cobalt particle size effects in Fischer−Tropsch (FT) catalysis was studied. Steady-State Isotopic Transient Kinetic Analysis (SSITKA)

  13. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  14. Polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China: Size distribution characteristics and size-resolved gas-particle partitioning

    Science.gov (United States)

    Yu, Huan; Yu, Jian Zhen

    2012-07-01

    Size distributions of thirteen polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and organic carbon (OC) in the range of 0.01-18 μm were measured using a nano Micro-Orifice Uniform Deposit Impactor (nano-MOUDI) in an urban location in Guangzhou, China in July 2006. PAH size distributions were fit with five modes and the respective mass median aerodynamic diameters (MMAD) are: Aitken mode (MMAD: ˜0.05 μm), three accumulation modes AMI, AMII, AMIII (MMAD: 0.13-0.17 μm, 0.4-0.45 μm, and 0.9-1.2 μm, respectively), and coarse mode (MMAD: 4-6 μm). Seven-ring PAH was mainly in AMII and AMIII. Five- and six-ring PAHs were found to be abundant in all the three AM. Three- and four-ring PAHs had a significant presence in the coarse mode in addition to the three AM. Size-resolved gas-particle partition coefficients of PAHs (Kp) were estimated using measured EC and OC data. The Kp values of a given PAH could differ by a factor of up to ˜7 on particles in different size modes, with the highest Kp associated with the AMI particles and the lowest Kp associated with the coarse mode particles. Comparison of calculated overall Kp with measured Kp values in Guangzhou by Yang et al. (2010) shows that adsorption on EC appeared to be the dominant mechanism driving the gas-particle partitioning of three- and four-ring PAHs while absorption in OM played a dominant role for five- and six-ring PAHs. The calculated equilibrium timescales of repartitioning indicate that five- to seven-ring PAHs could not achieve equilibrium partitioning within their typical residence time in urban atmospheres, while three- and four-ring PAHs could readily reach new equilibrium states in particles of all sizes. A partitioning flux is therefore proposed to replace the equilibrium assumption in modeling PAH transport and fate.

  15. Interpretation of aerosol trace metal particle size distributions

    International Nuclear Information System (INIS)

    Johansson, T.B.; Van Grieken, R.E.; Winchester, J.W.

    1974-01-01

    Proton-induced X-ray emission (PIXE) analysis is capable of rapid routine determination of 10--15 elements present in amounts greater than or equal to 1 ng simultaneously in aerosol size fractions as collected by single orifice impactors over short periods of time. This enables detailed study of complex relationships between elements detected. Since absolute elemental concentrations may be strongly influenced by meteorological and topographical conditions, it is useful to normalize to a reference element. Comparison between the ratios of concentrations with aerosol and corresponding values for anticipated sources may lead to the identification of important sources for the elements. Further geochemical insights may be found through linear correlation coefficients, regression analysis, and cluster analysis. By calculating correlations for elemental pairs, an indication of the degree of covariance between the elements is obtained. Preliminary results indicate that correlations may be particle size dependent. A high degree of covariance may be caused either by a common source or may only reflect the conservative nature of the aerosol. In a regression analysis, by plotting elemental pairs and estimating the regression coefficients, we may be able to conclude if there is more than one source operating for a given element in a certain size range. Analysis of clustering of several elements, previously investigated for aerosol filter samples, can be applied to the analysis of aerosol size fractions. Careful statistical treatment of elemental concentrations as a function of aerosol particle size may thus yield significant information on the generation, transport and deposition of trace metals in the atmosphere

  16. Aerosol particle size does not predict pharmacokinetic determined lung dose in children

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Chawes, Bo L K; Vindfeld, Signe

    2013-01-01

    In vitro measures of aerosol particles size, such as the fine particle mass, play a pivotal role for approval of inhaled anti-asthmatic drugs. However, the validity as a measure of dose to the lungs in children lacks evidence. In this study we investigated for the first time the association between...... an in vivo estimate of lung dose of inhaled drug in children and the corresponding particle size segments assessed ex vivo. Lung dose of fluticasone propionate after inhalation from a dry powder inhaler (Diskus®) was studied in 23 children aged 4-7 and 12-15 years with mild asthma. Six-hour pharmacokinetics...... was assessed after single inhalation. The corresponding emitted mass of drug in segments of aerosol particle size was assessed ex vivo by replicating the inhalation flows recorded by transducers built into the Diskus® inhaler and re-playing them in a breathing simulator. There was no correlation between any...

  17. Effect of flour particle size and damaged starch on the quality of cookies.

    Science.gov (United States)

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2014-07-01

    Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.

  18. Effect of limestone particle size on bone quality characteristics of ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of different limestone particle sizes in layer diets on bone quality characteristics at end-of-lay hens. Calcitic limestone (360 g Ca/kg DM) that is extensively used in commercial poultry diets was obtained from a specific South African source. Limestone particles were graded as ...

  19. Development of mesoporosity in scandia-stabilized zirconia: particle size, solvent, and calcination effects.

    Science.gov (United States)

    Cahill, James T; Ruppert, Jesse N; Wallis, Bryce; Liu, Yanming; Graeve, Olivia A

    2014-05-20

    We present the mechanisms of formation of mesoporous scandia-stabilized zirconia using a surfactant-assisted process and the effects of solvent and thermal treatments on the resulting particle size of the powders. We determined that cleaning the powders with water resulted in better formation of a mesoporous structure because higher amounts of surfactant were preserved on the powders after washing. Nonetheless, this resulted in agglomerate sizes that were larger. The water-washed powders had particle sizes of >5 μm in the as-synthesized state. Calcination at 450 and 600 °C reduced the particle size to ∼1-2 and 0.5 μm, respectively. Cleaning with ethanol resulted in a mesoporous morphology that was less well-defined compared to the water-washed powders, but the agglomerate size was smaller and had an average size of ∼250 nm that did not vary with calcination temperature. Our analysis showed that surfactant-assisted formation of mesoporous structures can be a compromise between achieving a stable mesoporous architecture and material purity. We contend that removal of the surfactant in many mesoporous materials presented in the literature is not completely achieved, and the presence of these organics has to be considered during subsequent processing of the powders and/or for their use in industrial applications. The issue of material purity in mesoporous materials is one that has not been fully explored. In addition, knowledge of the particle (agglomerate) size is essential for powder handling during a variety of manufacturing techniques. Thus, the use of dynamic light scattering or any other technique that can elucidate particle size is essential if a full characterization of the powders is needed for achieving postprocessing effectiveness.

  20. Drift-Alfvén wave mediated particle transport in an elongated density depression

    Science.gov (United States)

    Vincena, Stephen; Gekelman, Walter

    2006-06-01

    Cross-field particle transport due to drift-Alfvén waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28ρs=cs/ωci. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k ⊥ρs˜0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.

  1. Effect of particle size on laser-induced breakdown spectroscopy analysis of alumina suspension in liquids

    International Nuclear Information System (INIS)

    Diaz Rosado, José Carlos; L'hermite, Daniel; Levi, Yves

    2012-01-01

    The analysis by Laser Induced Breakdown Spectroscopy (LIBS) was proposed for the detection and the quantification of different elements in water even when the analyte is composed of particles in suspension. We have studied the effect of particle size on the LIBS signal during liquid analysis. In our study we used different particle sizes (from 2 μm to 90 μm) of Al 2 O 3 in suspension in water. The results were compared to the signal obtained in the case of dissolved aluminum. In the case of particles, a linear correlation between the LIBS signal versus concentration was found but a significant decrease in the slope of the calibration curve was found when the particle size increased. Several hypotheses have been tested and only a partial ablation of the particles might explain this decrease in signal intensity. This effect probably does not occur at smaller particle size. We estimated 860 nm/pulse as ablated thickness from the top of the particle. A statistical analysis over all data obtained allowed us to calculate 100 μm as ablated water column depth. - Highlights: ► We have identified a decrease of calibration curve when particle size increases. ► Partial particle ablation has been identified as the origin of this effect. ► The ablation rate on Al 2 O 3 particles in suspension in water has been estimated. ► We can determine the deepness of the interaction volume into the liquid.

  2. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  3. Depositing nanometer-sized particles of metals onto carbon allotropes

    Science.gov (United States)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  4. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  5. Synthesis and electrochemical properties of different sizes of the CuO particles

    International Nuclear Information System (INIS)

    Zhang Xiaojun; Zhang Dongen; Ni Xiaomin; Song Jimei; Zheng Huagui

    2008-01-01

    Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC 2 O 4 precursor at 400 deg. C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes

  6. Simultaneous measurement of particle velocity and size based on gray difference and autocorrelation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The gray of two images of a same particle taken by a digital camera with different exposure times is different too. Based on the gray difference of particle images in a double-exposed photo and autocorrelation processing of digital images,this paper proposes a method for measuring particle velocities and sizes simultaneously. This paper also introduces the theoretical foundation of this method,the process of particle imaging and image processing,and the simultaneous measurement of velocity and size of a low speed flow field with 35 μm and 75 μm standard particles. The graphical measurement results can really reflect the flow characteristics of the flow field. In addition,although the measured velocity and size histograms of these two kinds of standard particles are slightly wider than the theoretical ones,they are all still similar to the normal distribution,and the peak velocities and diameters of the histograms are consistent with the default values. Therefore,this measurement method is capable of providing moderate measurement accuracy,and it can be further developed for high-speed flow field measurements.

  7. Surface particle sizes on armoured gravel streambeds: Effects of supply and hydraulics

    Science.gov (United States)

    Peter J. Whiting; John G. King

    2003-01-01

    Most gravel-bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the...

  8. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, H.P.

    1992-10-01

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  9. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  10. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  11. Particle density determination of pellets and briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, Fabienne; Temmerman, Michaeel [Centre wallon de Recherches agronomiques, Departement de Genie rural, CRA-W, Chaussee de Namur, 146, B 5030 Gembloux (Belgium); Boehm, Thorsten; Hartmann, Hans [Technologie und Foerderzentrum fuer Nachwachsende Rohstoffe, TFZ, Schulgasse 18, D 94315 Straubing (Germany); Daugbjerg Jensen, Peter [Forest and Landscape, The Royal Veterinary and Agricultural University, Rolighedsvej 23, DK 1958 Frederiksberg C (Denmark); Rathbauer, Josef [Bundesanstalt fuer Landtechnik, BLT, Rottenhauer Strasse,1 A 3250 Wieselburg (Austria); Carrasco, Juan; Fernandez, Miguel [Centro de investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Avenida Complutense, 22 E 28040 Madrid (Spain)

    2006-11-15

    Several methods and procedures for the determination of particle density of pellets and briquettes were tested and evaluated. Round robin trials were organized involving five European laboratories, which measured the particle densities of 15 pellet and five briquette types. The test included stereometric methods, methods based on liquid displacement (hydrostatic and buoyancy) applying different procedures and one method based on solid displacement. From the results for both pellets and briquettes, it became clear that the application of a method based on either liquid or solid displacement (only tested on pellet samples) leads to an improved reproducibility compared to a stereometric method. For both, pellets and briquettes, the variability of measurements strongly depends on the fuel type itself. For briquettes, the three methods tested based on liquid displacement lead to similar results. A coating of the samples with paraffin did not improve the repeatability and the reproducibility. Determinations with pellets proved to be most reliable when the buoyancy method was applied using a wetting agent to reduce surface tensions without sample coating. This method gave the best values for repeatability and reproducibility, thus less replications are required to reach a given accuracy level. For wood pellets, the method based on solid displacement gave better values of repeatability, however, this instrument was tested at only one laboratory. (author)

  12. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  13. In situ observations of meteor smoke particles (MSP during the Geminids 2010: constraints on MSP size, work function and composition

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2012-12-01

    Full Text Available We present in situ observations of meteoric smoke particles (MSP obtained during three sounding rocket flights in December 2010 in the frame of the final campaign of the Norwegian-German ECOMA project (ECOMA = Existence and Charge state Of meteoric smoke particles in the Middle Atmosphere. The flights were conducted before, at the maximum activity, and after the decline of the Geminids which is one of the major meteor showers over the year. Measurements with the ECOMA particle detector yield both profiles of naturally charged particles (Faraday cup measurement as well as profiles of photoelectrons emitted by the MSPs due to their irradiation by photons of a xenon-flash lamp. The column density of negatively charged MSPs decreased steadily from flight to flight which is in agreement with a corresponding decrease of the sporadic meteor flux recorded during the same period. This implies that the sporadic meteors are a major source of MSPs while the additional influx due to the shower meteors apparently did not play any significant role. Surprisingly, the profiles of photoelectrons are only partly compatible with this observation: while the photoelectron current profiles obtained during the first and third flight of the campaign showed a qualitatively similar behaviour as the MSP charge density data, the profile from the second flight (i.e., at the peak of the Geminids shows much smaller photoelectron currents. This may tentatively be interpreted as a different MSP composition (and, hence, different photoelectric properties during this second flight, but at this stage we are not in a position to conclude that there is a cause and effect relation between the Geminids and this observation. Finally, the ECOMA particle detector used during the first and third flight employed three instead of only one xenon flash lamp where each of the three lamps used for one flight had a different window material resulting in different cut off wavelengths for these

  14. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  15. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Monika; Hirt, Ann M., E-mail: ann.hirt@erdw.ethz.ch [Department of Earth Sciences, Institute of Geophysics, ETH-Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Widdrat, Marc; Faivre, Damien [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam (Germany); Tompa, Éva; Pósfai, Mihály [Department of Earth and Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprém (Hungary); Uebe, Rene; Schüler, Dirk [Department Biologie I, LMU Munich, Großhaderner Str. 2, D-82152 Martinsried (Germany)

    2014-09-28

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  16. Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves

    International Nuclear Information System (INIS)

    Kumari, Monika; Hirt, Ann M.; Widdrat, Marc; Faivre, Damien; Tompa, Éva; Pósfai, Mihály; Uebe, Rene; Schüler, Dirk

    2014-01-01

    Magnetic nanoparticles encompass a wide range of scientific study and technological applications. The success of using the nanoparticles in various applications demands control over size, dispersibility, and magnetics. Hence, the nanoparticles are often characterized by transmission electron microscopy (TEM), X-ray diffraction, and magnetic hysteresis loops. TEM analysis requires a thin layer of dispersed particles on the grid, which may often lead to particle aggregation thus making size analysis difficult. Magnetic hysteresis loops on the other hand provide information on the bulk property of the material without discriminating size, composition, and interaction effects. First order reversal curves (FORCs), described as an assembly of partial hysteresis loops originating from the major loop are efficient in identifying the domain size, composition, and interaction in a magnetic system. This study presents FORC diagrams on a variety of well-characterized biogenic and synthetic magnetite nanoparticles. It also introduces deconvoluted reversible and irreversible components from FORC as an important method for obtaining a semi-quantitative measure of the effective magnetic particle size. This is particularly important in a system with aggregation and interaction among the particles that often leads to either the differences between physical size and effective magnetic size. We also emphasize the extraction of secondary components by masking dominant coercivity fraction on FORC diagram to explore more detailed characterization of nanoparticle systems.

  17. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    Directory of Open Access Journals (Sweden)

    Yoshiaki Hayashi

    2018-05-01

    Full Text Available The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.

  18. Physical properties and microstructure of Ti(CN)-based cermets with different WC particle size

    International Nuclear Information System (INIS)

    Deng, Ying; Deng, Ling; Xiong, Xiang; Ye, J.W.; Li, P.P.

    2014-01-01

    Ti(CN)-based cermets with different WC particle sizes from 0.2 to 4 μm were prepared at 1450 °C with 2 MPa Air pressure. The microstructure of cermets was investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Transmission electron microscope (TEM). The results showed that all the cermets with different WC particle sizes have a typical “core–rim” structure. With the increase of WC powder sizes, the frequency and portion of Ti(C 0.7 N 0.3 ) cores and rim are somewhat decreased while the portion of white core is increased, due to the relative dissolution rate decreasing. In addition, the fracture mode of Ti(C,N) based cermets is a mixture of trans-granular (primary) and inter-granular (subordinate) fracture. The TRS (about 1850 MPa) of the cermets fluctuate slightly with the WC particle sizes from 0.2 to 1.0 μm, but decrease evidently with WC particle sizes up to 2 μm

  19. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  20. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    2015-12-15

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  1. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    International Nuclear Information System (INIS)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L.

    2015-01-01

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  2. Predicting available water of soil from particle-size distribution and bulk density in an oasis-desert transect in northwestern China

    Science.gov (United States)

    Li, Danfeng; Gao, Guangyao; Shao, Ming'an; Fu, Bojie

    2016-07-01

    A detailed understanding of soil hydraulic properties, particularly the available water content of soil, (AW, cm3 cm-3), is required for optimal water management. Direct measurement of soil hydraulic properties is impractical for large scale application, but routinely available soil particle-size distribution (PSD) and bulk density can be used as proxies to develop various prediction functions. In this study, we compared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at 34 points with experimental SWCC data in an oasis-desert transect (20 × 5 km) in the middle reaches of the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in predicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model agreed better with the experimental values than those derived from the AP model and Rosetta program. The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW values. The MV model has the advantages of having robust physical basis, being independent of database-related parameters, and involving subclasses of texture data. These features make it promising in predicting soil water retention at regional scales, serving for the application of hydrological models and the optimization of soil water management.

  3. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  4. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  5. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  6. Effect of particle size on laser-induced breakdown spectroscopy analysis of alumina suspension in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rosado, Jose Carlos [CEA, DEN, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Univ. Paris Sud, Faculty of Pharmaceutical Sciences, Public Health and Environment UMR 8079, 5 rue J.B. Clement, 92296 Chatenay-Malabry (France); National University of Engineering, Faculty of Science, P.O. Box 31-139, Av. Tupac Amaru 210, Lima (Peru); L' hermite, Daniel, E-mail: daniel.lhermite@cea.fr [CEA, DEN, SEARS, LANIE, 91191 Gif-sur-Yvette (France); Levi, Yves [Univ. Paris Sud, Faculty of Pharmaceutical Sciences, Public Health and Environment UMR 8079, 5 rue J.B. Clement, 92296 Chatenay-Malabry (France)

    2012-08-15

    The analysis by Laser Induced Breakdown Spectroscopy (LIBS) was proposed for the detection and the quantification of different elements in water even when the analyte is composed of particles in suspension. We have studied the effect of particle size on the LIBS signal during liquid analysis. In our study we used different particle sizes (from 2 {mu}m to 90 {mu}m) of Al{sub 2}O{sub 3} in suspension in water. The results were compared to the signal obtained in the case of dissolved aluminum. In the case of particles, a linear correlation between the LIBS signal versus concentration was found but a significant decrease in the slope of the calibration curve was found when the particle size increased. Several hypotheses have been tested and only a partial ablation of the particles might explain this decrease in signal intensity. This effect probably does not occur at smaller particle size. We estimated 860 nm/pulse as ablated thickness from the top of the particle. A statistical analysis over all data obtained allowed us to calculate 100 {mu}m as ablated water column depth. - Highlights: Black-Right-Pointing-Pointer We have identified a decrease of calibration curve when particle size increases. Black-Right-Pointing-Pointer Partial particle ablation has been identified as the origin of this effect. Black-Right-Pointing-Pointer The ablation rate on Al{sub 2}O{sub 3} particles in suspension in water has been estimated. Black-Right-Pointing-Pointer We can determine the deepness of the interaction volume into the liquid.

  7. Effects of tree species and wood particle size on the properties of cement-bonded particleboard manufacturing from tree prunings.

    Science.gov (United States)

    Nasser, Ramadan A; Al-Mefarrej, H A; Abdel-Aal, M A; Alshahrani, T S

    2014-09-01

    This study investigated the possibility of using the prunings of six locally grown tree species in Saudi Arabia for cement-bonded particleboard (CBP) production. Panels were made using four different wood particle sizes and a constant wood/cement ratio (1/3 by weight) and target density (1200 kg/m3). The mechanical properties and dimensional stability of the produced panels were determined. The interfacial area and distribution of the wood particles in cement matrix were also investigated by scanning electron microscopy. The results revealed that the panels produced from these pruning materials at a target density of 1200 kg m(-3) meet the strength and dimensional stability requirements of the commercial CBP panels. The mean moduli of rupture and elasticity (MOR and MOE) ranged from 9.68 to 11.78 N mm2 and from 3952 to 5667 N mm2, respectively. The mean percent water absorption for twenty four hours (WA24) ranged from 12.93% to 23.39%. Thickness swelling values ranged from 0.62% to 1.53%. For CBP panels with high mechanical properties and good dimensional stability, mixed-size or coarse particles should be used. Using the tree prunings for CBPs production may help to solve the problem of getting rid of these residues by reducing their negative effects on environment, which are caused by poor disposal of such materials through direct combustion process and appearance of black cloud and then the impact on human health or the random accumulation and its indirect effects on the environment.

  8. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  9. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles

    Directory of Open Access Journals (Sweden)

    Anil K. Chaubey

    2016-11-01

    Full Text Available The effect of Mg-7.4%Al reinforcement particle size on the microstructure and mechanical properties in pure Al matrix composites was investigated. The samples were prepared by hot consolidation using 10 vol.% reinforcement in different size ranges, D, 0 < D < 20 µm (0–20 µm, 20 ≤ D < 40 µm (20–40 µm, 40 ≤ D < 80 µm (40–80 µm and 80 ≤ D < 100 µm (80–100 µm. The result reveals that particle size has a strong influence on the yield strength, ultimate tensile strength and percentage elongation. As the particle size decreases from 80 ≤ D < 100 µm to 0 < D < 20 µm, both tensile strength and ductility increases from 195 MPa to 295 MPa and 3% to 4% respectively, due to the reduced ligament size and particle fracturing. Wear test results also corroborate the size effect, where accelerated wear is observed in the composite samples reinforced with coarse particles.

  10. Effect of Particle Size on Thermal Conductivity of Nanofluid

    Science.gov (United States)

    Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.

    2008-07-01

    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

  11. Particle size effect of redox reactions for Co species supported on silica

    International Nuclear Information System (INIS)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki; Yamamoto, Yusaku; Yamashita, Shohei; Katayama, Misaki; Inada, Yasuhiro

    2016-01-01

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co 3 O 4 species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particles and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co 3 O 4 was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO 2 -supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.

  12. Synthesis of Uncarbonised Coconut Shell Nanoparticles: Characterisation and Particle Size Determination

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-06-01

    Full Text Available The possibility of using mechanical milling for the synthesis of uncarbonised coconut shell nanoparticles (UCSNPs has been investigated. UCSNPs were synthesized from discarded coconut shells (CSs using top down approach. The sundried CSs were crushed, ground and then sieved using hammer crusher, a two disc grinder and set of sieves with shine shaker respectively. The CS powders retained in the pan below 37 µm sized sieve were milled for 70 hours to obtain UCSNPS. Samples for analysis were taken at 16 and 70 hours. UCSNPs were analyzed using transmission electron microscope (TEM, scanning electron microscope (SEM with attached EDS and Gwyddion software. Samples of UCSNPs obtained at 16 and 70hours show that the deep brown colour of the initial CS powder became fading as the milling hour increased. The size determination from TEM image revealed spherical particles with an average size of 18.23 nm for UCSNPs obtained at 70 hour milling. The EDS spectrographs revealed an increase in the carbon counts with increased milling hours. This is attributable to dryness of the CS powders by the heat generated during the milling process due to absorption of kinetic energy by the CS powders from the milling balls. SEM micrographs revealed UCSNPs in agglomerated networks. The SEM micrograph/Gyweddion particles size determination showed average particles of 170.5 ±3 and 104.9 ±4.1 nm for UCSNPs obtained at 16 and 70 hours respectively. Therefore, production of UCSNPs through mechanical milling using mixture of ceramic balls of different sizes has been established especially when the particles of the sourced/initial CS powders falls below 37 µm.

  13. The significance of relative density for particle damage in loaded and sheared gravels

    Directory of Open Access Journals (Sweden)

    Fityus Stephen

    2017-01-01

    Full Text Available For granular assemblages of strong particles, an increase in the relative density usually leads to a significant increase in shear strength, which is evident as a peak strength, accompanied by significant dilation as the peak strength is attained. This paper describes an experimental study of shearing in assemblages of weak particles, where particle breakage offsets dilation for all but the lowest of confining stresses. In such materials, prone to particle breakage, the shear strengths of loose and dense assemblages rapidly converge to similar values as confining stress increases, and any benefit of greater relative density is lost. This is attributed to the densification effect associated with the loading under a high stress prior to shearing, which is characterised by widespread particle breakage and the formation of smaller particles to occupy space between coarser ones. Interestingly, under both low and high stresses, there was a tendency for greater particle breakage in the loose samples, as a result of both shearing and compression. This result suggests that, despite the denser assemblage having its particles more rigidly constrained and less able to rearrange to avoid direct loading, the influence of greater load-spreading capacity afforded by an increased number of particle contacts in a denser sample, is more dominant in controlling breakage.

  14. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK

    Science.gov (United States)

    Walling; Owens; Waterfall; Leeks; Wass

    2000-05-05

    This paper presents information on the absolute (chemically-dispersed) particle size characteristics of the suspended sediment transported by rivers in the Humber and Tweed basins during the period 1994-1998. For most of the rivers, > 95% of the suspended sediment load at the time of sampling was 63 microm (i.e. sand-sized material). The sediment transported in the two basins were similar. There were, however, noticeable spatial variations in the particle size composition of suspended sediment within the study basins, which reflected the particle size of the sediment sources and their spatial variation, and the selectivity of the sediment mobilization and delivery processes. When particle size parameters were plotted against discharge, there were no significant relationships, although there was some evidence of trends varying between sites. The lack of significant relationships with discharge reflects the fact that sediment particle size is largely supply-controlled, rather than a function of flow and hydraulics. When particle size variations were examined during individual storm events, there was evidence of a pulse of coarse sediment on the rising limb of the hydrograph. This may reflect the remobilization of coarse channel bed sediment as flow velocity and shear stress increase. Finer sediment was transported subsequently during the hydrograph peak and on the falling limb. The findings reported have important implications for understanding and modelling suspended sediment, and associated contaminant, dynamics in river basins.

  15. Fundamental study on laser manipulation of contamination particles with determining shape, size and species

    International Nuclear Information System (INIS)

    Shimizu, Isao; Fujii, Taketsugu

    1995-01-01

    It has been desired to eliminate or collect the contamination particles of radioisotope in each sort of species or shape and size non-invasively. The shape and size of particle can be determined from the shape and distribution of diffraction pattern of particle in the parallel laser beam, the species of particle can be discriminated by the fluorescence from resonance of laser beam, or by the laser Raman scattering, and the particle suspended in the air or falling down in a vacuum can be levitated against the gravity and trapped by the radiation force and the trapping force of the focussed laser beam in the atmosphere or in a vacuum. For the purpose of the non-invasive manipulation of contamination particles, the laser manipulation technique, image processing technique with Multiplexed Matched Spatial Filter and the determination technique of laser Raman scattering or fluorescence from resonance of laser light were combined in the experiments. The shape, size and species of particles trapped in the focal plane of focused Ar laser beam can be determined simultaneously and instantaneously from the shape and intensity distributions of diffraction patterns of the particles in the irradiation of parallel coherent beam of He-Ne laser, and fluorescence from the resonance of YAG laser beam with variable wave length. In this research, a new technique is proposed to manipulate non-invasively the contamination particles determined with the shape, size and species in the atmosphere or in a vacuum, by laser beam. (author)

  16. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  17. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  18. Method and apparatus for the separation of solid particles having different densities

    NARCIS (Netherlands)

    Rem, P.C.; Berkhout, S.P.M.

    2011-01-01

    A method and apparatus for separating solid particles of different densities, using a magnetic process fluid. The solid particles are thoroughly mixed in a small partial flow of the process fluid. The small turbulent partial flow is added to a large laminar partial flow of the process fluid, after

  19. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  20. Enzymatic Degradation of Dynasan 114 SLN - Effect of Surfactants and Particle Size

    International Nuclear Information System (INIS)

    Olbrich, Carsten; Kayser, Oliver; Mueller, Rainer Helmut

    2002-01-01

    The degradation velocity of solid lipid nanoparticles (SLN) is - apart from drug diffusion - an important parameter determining drug release in vivo. To assess the effect of stabilizers systematically, Dynasan 114 SLN were produced with ionic surfactants (e.g. cholic acid sodium salt (NaCh), sodium dodecyl sulfate (SDS), cetylpyridiniumchloride (CPC)) and steric stabilizers (Tween 80, Poloxamer 188, 407 and Poloxamine 908) including a mixture of cholic acid sodium salt and Poloxamer 407. In addition, the size effects were investigated. The degradation velocity was measured using an in vitro lipase assay. SLN stabilized with lecithin and NaCh showed the fastest, Tween 80 the intermediate and the high molecular weight Poloxamer 407 the slowest degradation. Size effects were less pronounced for fast degrading particles (e.g. those stabilized with NaCh). No difference in the size range of 180-300-nm was observed, but a distinctly slower degradation of 800-nm SLN could be detected. For slowly degrading particles, more pronounced size effects were found. Size effects are more difficult to assess when the PCS diameters are similar, but small fractions of micrometer particles are present, besides the nanometer bulk population. The measured FFA formation is then a superposition of particles degrading at different speeds due to differences in the shape of the size distribution. Admixing of Poloxamer to NaCh had no delaying effect on the degradation of the Dynasan 114 SLN, indicating an influence of the nature of the lipid matrix that is affecting the stabilizers affinity to and anchoring onto the SLN surface

  1. Selective particle trapping using an oscillating microbubble.

    Science.gov (United States)

    Rogers, Priscilla; Neild, Adrian

    2011-11-07

    The ability to isolate and sort analytes within complex microfluidic volumes is essential to the success of lab-on-a-chip (LOC) devices. In this study, acoustically-excited oscillating bubbles are used to selectively trap particles, with the selectivity being a function of both particle size and density. The operating principle is based on the interplay between the strong microstreaming-induced drag force and the attractive secondary Bjerknes force. Depending upon the size of the bubble, and thus its resonant frequency, it is possible to cause one force to dominate over the other, resulting in either particle attraction or repulsion. A theoretical analysis reveals the extent of the contribution of each force for a given particle size; in close agreement with experimental findings. Density-based trapping is also demonstrated, highlighting that denser particles experience a larger secondary Bjerknes force resulting in their attraction. This study showcases the excellent applicability and versatility of using oscillating bubbles as a trapping and sorting mechanism within LOC devices. This journal is © The Royal Society of Chemistry 2011

  2. Evaluation and modelling of the size fractionated aerosol particle number concentration measurements nearby a major road in Helsinki - Part I: Modelling results within the LIPIKA project

    Science.gov (United States)

    Pohjola, M. A.; Pirjola, L.; Karppinen, A.; Härkönen, J.; Korhonen, H.; Hussein, T.; Ketzel, M.; Kukkonen, J.

    2007-08-01

    A field measurement campaign was conducted near a major road "Itäväylä" in an urban area in Helsinki in 17-20 February 2003. Aerosol measurements were conducted using a mobile laboratory "Sniffer" at various distances from the road, and at an urban background location. Measurements included particle size distribution in the size range of 7 nm-10 μm (aerodynamic diameter) by the Electrical Low Pressure Impactor (ELPI) and in the size range of 3-50 nm (mobility diameter) by Scanning Mobility Particle Sizer (SMPS), total number concentration of particles larger than 3 nm detected by an ultrafine condensation particle counter (UCPC), temperature, relative humidity, wind speed and direction, driving route of the mobile laboratory, and traffic density on the studied road. In this study, we have compared measured concentration data with the predictions of the road network dispersion model CAR-FMI used in combination with an aerosol process model MONO32. For model comparison purposes, one of the cases was additionally computed using the aerosol process model UHMA, combined with the CAR-FMI model. The vehicular exhaust emissions, and atmospheric dispersion and transformation of fine and ultrafine particles was evaluated within the distance scale of 200 m (corresponding to a time scale of a couple of minutes). We computed the temporal evolution of the number concentrations, size distributions and chemical compositions of various particle size classes. The atmospheric dilution rate of particles is obtained from the roadside dispersion model CAR-FMI. Considering the evolution of total number concentration, dilution was shown to be the most important process. The influence of coagulation and condensation on the number concentrations of particle size modes was found to be negligible on this distance scale. Condensation was found to affect the evolution of particle diameter in the two smallest particle modes. The assumed value of the concentration of condensable organic

  3. Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions

    Science.gov (United States)

    Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul

    2018-05-01

    We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.

  4. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments

    Science.gov (United States)

    LIN, Chih-Chung; CHEN, Mei-Ru; CHANG, Sheng-Lang; LIAO, Wei-Heng; CHEN, Hsiu-Ling

    2014-01-01

    The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various work areas of a fitness equipment manufacturing industry. Observed particle concentrations are presented by area and in terms of relative magnitude: painting (15.58 mg/m3) > automatic welding (0.66 mg/m3) > manual welding (0.53 mg/m3) > punching (0.18 mg/m3) > cutting (0.16 mg/m3). The concentrations in each of the five work areas were Cinh>Cthor>Cresp. In all areas except the painting area, extra-fine particles produced by welding at high temperatures, and further those coagulated to form larger particles. This study observed bimodal distribution in the size of welding fume in the ranges of 0.7–1 µm and 15–21 µm. Meanwhile, the mass concentrations of particles with different sizes were not consistent across work areas. In the painting area, the mass concentration was higher in Chead>Cth>Calv, but in welding areas, it was found that Calv>Chead>Cth. Particles smaller than 1µm were primarily produced by welding. PMID:25327301

  5. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-05-04

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiC x /Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiC x /Cu composite had higher ultimate compression strength (σ UCS ), yield strength (σ 0.2 ), and electric conductivity, compared with those of spherical-TiC x /Cu composite. The σ UCS , σ 0.2 , and electrical conductivity of cubic-TiC x /Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiC x /Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiC x /Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiC x /Cu composite with 46 nm in size. The σ UCS , σ 0.2 , and electrical conductivity of spherical-TiC x /Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiC x /Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiC x particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiC x particles with small size led to the compression strength reduction of the composites.

  6. NDA PDP Program PuO2 increased particle size specification and design

    International Nuclear Information System (INIS)

    Marshall, R.S.; Taggart, D.P.; Becker, G.K.; Woon, W.Y.

    1996-01-01

    Provisions in the National TRU Program Quality Assurance Program Plan require an assessment of performance for nondestructive waste assay (NDA) systems employed in the program. This requirement is in part fulfilled through the use of Performance Demonstration programs. In order to optimize the quality and quantity of information acquired during a given Performance Demonstration Program cycle, the assessment employed is to be carefully specified and designed. The assessment must yield measurement system performance data meaningful with respect to NDA system capability to accommodate attributes of interest known to occur in actual waste forms. The design and specification of the increased particle size PuO 2 PDP working reference materials (WRMs) is directed at providing a straightforward mechanism to assess waste NDA system capability to account for biases introduced by large PuO 2 particles. The increased particle size PuO 2 PDP WRM design addresses actual waste form attributes associated with PuO 2 particle size and distributions thereof, the issue of a known and stable WRM configuration and equally important appropriate certification and tractability considerations

  7. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  8. Investigation of the particle size distribution and particle density characteristics of Douglas fir hogged fuel fly ash collected under known combustion conditions. Technical Progress Report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A.J.; Junge, D.C.

    1978-12-01

    The increased interest in wood as a fuel source, coupled with the increasing demand to control the emission generated by wood combustion, has created a need for information characterizing the emissions that occur for given combustion conditions. This investigation characterizes the carbon char and inorganic fly ash size and density distribution for each of thirty-eight Douglas fir bark samples collected under known conditions of combustion.

  9. Particle size and radionuclide levels in some west Cumbrian soils

    International Nuclear Information System (INIS)

    Livens, F.R.

    1988-01-01

    Four west Cumbrian soils of contrasting types, together with an estuarine silt sample, were separated into different particle size fractions by a combination of sieving and settling techniques. These sub-samples were analysed by quantitative gamma-ray spectrometry for several nuclides, principally 137 Cs, 106 Ru and 241 Am, followed by chemical separation and alpha spectrometric determination of 238,239,240 Pu. A simple empirical method of correction for differing sample sizes, and hence counting geometries, was developed for gamma spectrometry and found to give good results. The radionuclides were concentrated into the finer size fractions, with clay-sized ( 137 Cs from 3 to 35 times. The enhancement was greatest for all radionuclides in a sandy soil with a very low clay content (0.2% by weight) and it was found that, as the abundance of fine particles increased, so the concentration effect decreased. No evidence was found for a simple relationship between organic content and radionuclide activity, although the organic matter does have some effect. 17 refs.; 3 figs.; 6 tabs

  10. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  11. Mean size among the particles of short-lived radon daughter products in the atmosphere

    International Nuclear Information System (INIS)

    Nakatani, S.

    1980-01-01

    The diffusion-battery method is used to classify the radioactive particles according to their sizes. The diffusion coefficient is determined from the fractional penetration of the particles through the battery. Particle radii are derived from the diffusion coefficients with the Stokes-Cunningham-Millikan formula. At the exit and entrance of the battery, individual concentrations of radon daughter products 218 Po, 214 Pb, 214 Bi are determined. Thus the mean sizes of individual radon daughters can be obtained from the fractional penetration of individual nuclides through the diffusion battery. Despite large statistical fluctuations the mean size of 214 Bi is always shifted toward the larger size region as compared with those of other radionuclides

  12. Magnetic field power density spectra during 'scatter-free' solar particle events

    Science.gov (United States)

    Tan, L. C.; Mason, G. M.

    1993-01-01

    We have examined interplanetary magnetic field power spectral density during four previously identified 3He-rich flare periods when the about 1 MeV nucleon-1 particles exhibited nearly scatter-free transport from the sun to 1 AU. Since the scattering mean free path A was large, it might be expected that interplanetary turbulence was low, yet the spectral density value was low only for one of the four periods. For the other three, however, the spectral index q of the power density spectrum was near 2.0, a value at which quasi-linear theories predict an increase in the scattering mean free path. Comparing the lambda values from the energetic particles with that computed from a recent quasi-linear theory which includes helicity and the propagation direction of waves, we find lambda(QLT)/lambda(SEP) = 0.08 +/- 0.03 for the four events. Thus, the theory fits the q-dependence of lambda; however, as found for previous quasi-linear theories, the absolute value is low.

  13. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.

    2012-02-01

    An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data

  14. Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame

    International Nuclear Information System (INIS)

    Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.

    2001-01-01

    Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution

  15. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  16. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  17. Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

    KAUST Repository

    Lisanti, Joel

    2015-03-30

    To evaluate the current state of the art in LII particle sizing, a comprehensive model for predicting the temporal incandescent response of combustion-generated soot to absorption of a pulsed laser is presented. The model incorporates particle heating through laser absorption, thermal annealing, and oxidation at the surface as well as cooling through sublimation and photodesorption, radiation, conduction and thermionic emission. Thermodynamic properties and the thermal accommodation coefficient utilized in the model are temperature dependent. In addition, where appropriate properties are also phase dependent, thereby accounting for annealing effects during laser heating and particle cooling.

  18. Standard Practice for Continuous Sizing and Counting of Airborne Particles in Dust-Controlled Areas and Clean Rooms Using Instruments Capable of Detecting Single Sub-Micrometre and Larger Particles

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the determination of the particle concentration, by number, and the size distribution of airborne particles in dust-controlled areas and clean rooms, for particles in the size range of approximately 0.01 to 5.0 m. Particle concentrations not exceeding 3.5 106 particles/m3 (100 000/ft 3) are covered for all particles equal to and larger than the minimum size measured. 1.2 This practice uses an airborne single particle counting device (SPC) whose operation is based on measuring the signal produced by an individual particle passing through the sensing zone. The signal must be directly or indirectly related to particle size. Note 1The SPC type is not specified here. The SPC can be a conventional optical particle counter (OPC), an aerodynamic particle sizer, a condensation nucleus counter (CNC) operating in conjunction with a diffusion battery or differential mobility analyzer, or any other device capable of counting and sizing single particles in the size range of concern and of sampling...

  19. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru

    2014-12-15

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.

  20. Influence of moisture content, particle size and forming temperature on productivity and quality of rice straw pellets

    International Nuclear Information System (INIS)

    Ishii, Kazuei; Furuichi, Toru

    2014-01-01

    Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability

  1. Experimental measurement of unsteady drag on shock accelerated micro-particles

    Science.gov (United States)

    Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine

    2016-11-01

    The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.

  2. Particle size - An important factor in environmental consequence modeling

    International Nuclear Information System (INIS)

    Yuan, Y.C.; MacFarlane, D.

    1991-01-01

    Most available environmental transport and dosimetry codes for radiological consequence analysis are designed primarily for estimating dose and health consequences to specific off-site individuals as well as the population as a whole from nuclear facilities operating under either normal or accident conditions. Models developed for these types of analyses are generally based on assumptions that the receptors are at great distances (several kilometers), and the releases are prolonged and filtered. This allows the use of simplified approaches such as averaged meteorological conditions and the use of a single (small) particle size for atmospheric transport and dosimetry analysis. Source depletion from particle settling, settle-out, and deposition is often ignored. This paper estimates the effects of large particles on the resulting dose consequences from an atmospheric release. The computer program AI-RISK has been developed to perform multiparticle-sized atmospheric transport, dose, and pathway analyses for estimating potential human health consequences from the accidental release of radioactive materials. The program was originally developed to facilitate comprehensive analyses of health consequences, ground contamination, and cleanup associated with possible energetic chemical reactions in high-level radioactive waste (HLW) tanks at a US Department of Energy site

  3. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy

    DEFF Research Database (Denmark)

    Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo

    2016-01-01

    Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed...

  4. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    Science.gov (United States)

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  5. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    Science.gov (United States)

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  6. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    Science.gov (United States)

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    Science.gov (United States)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized

  8. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis

    NARCIS (Netherlands)

    Rejman, J; Oberle, [No Value; Zuhorn, IS; Hoekstra, D

    2004-01-01

    Non-phagocytic eukaryotic cells can internalize particles <1 mum in size, encompassing pathogens, liposomes for drug delivery or lipoplexes applied in gene delivery. In the present study, we have investigated the effect of particle size on the pathway of entry and subsequent intracellular fate in

  9. Modeling of finite-size droplets and particles in multiphase flows

    Directory of Open Access Journals (Sweden)

    Prashant Khare

    2015-08-01

    Full Text Available The conventional point-particle approach for treating the dispersed phase in a continuous flowfield is extended by taking into account the effect of finite particle size, using a Gaussian interpolation from Lagrangian points to the Eulerian field. The inter-phase exchange terms in the conservation equations are distributed over the volume encompassing the particle size, as opposed to the Dirac delta function generally used in the point-particle approach. The proposed approach is benchmarked against three different flow configurations in a numerical framework based on large eddy simulation (LES turbulence closure. First, the flow over a circular cylinder is simulated for a Reynolds number of 3900 at 1 atm pressure. Results show good agreement with experimental data for the mean streamwise velocity and the vortex shedding frequency in the wake region. The calculated flowfield exhibits correct physics, which the conventional point-particle approach fails to capture. The second case deals with diesel jet injection in quiescent environment over a pressure range of 1.1–5.0 MPa. The calculated jet penetration depth closely matches measurements. It decreases with increasing chamber pressure, due to enhanced drag force in a denser fluid environment. Finally, water and acetone jet injection normal to air crossflow is studied at 1 atm. The calculated jet penetration and Sauter mean diameter of liquid droplets compare very well with measurements.

  10. Phenomenological theory of size effects in ultrafine ferroelectric particles (PbTiO3-type)

    International Nuclear Information System (INIS)

    Jiang, B.; Bursill, L.A.

    1998-01-01

    A new phenomenological model is proposed and discussed to study the size effects on phase transitions in PbTiO 3 -type ferroelectric particles. This model, by taking size effects on the phenomenological Landau-Ginzburg-Devonshire coefficients into consideration, can successfully explain the size effects on Curie temperature, c/a ratio, thermal and dielectric properties of lead-titanate-type ferroelectric particles. Theoretical and experimental results for PbTiO 3 fine particles are also compared and discussed. The relationship between the current model and the model of Zhong et al (Phys. Rev. B 50, 698 (1994)) is also presented. (authors)

  11. Particle-Size-Exclusion Clogging Regimes in Porous Media

    Science.gov (United States)

    Gerber, G.; Rodts, S.; Aimedieu, P.; Faure, P.; Coussot, P.

    2018-04-01

    From observations of the progressive deposition of noncolloidal particles by geometrical exclusion effects inside a 3D model porous medium, we get a complete dynamic view of particle deposits over a full range of regimes from transport over a long distance to clogging and caking. We show that clogging essentially occurs in the form of an accumulation of elements in pore size clusters, which ultimately constitute regions avoided by the flow. The clusters are dispersed in the medium, and their concentration (number per volume) decreases with the distance from the entrance; caking is associated with the final stage of this effect (for a critical cluster concentration at the entrance). A simple probabilistic model, taking into account the impact of clogging on particle transport, allows us to quantitatively predict all these trends up to a large cluster concentration, based on a single parameter: the clogging probability, which is a function of the confinement ratio. This opens the route towards a unification of the different fields of particle transport, clogging, caking, and filtration.

  12. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design.

    Science.gov (United States)

    Rao, M R P; Bajaj, A

    2014-12-01

    Telmisartan, an orally active nonpeptide angiotensin II receptor antagonist is a BCS Class II drug having aqueous solubility of 9.9 µg/ml and hence oral bioavailability of 40%. The present study involved preparation of nanosuspensions by evaporative antisolvent precipitation technique to improve the saturation solubility and dissolution rate of telmisartan. Various stabilizers such as TPGS, PVPK 30, PEG 6000 were investigated of which TPGS was found to provide maximum decrease in particle size and accord greater stability to the nanosuspensions. Box-Behnken design was used to investigate the effect of independent variables like stabilizer concentration, time and speed of stirring on particle size of nanosuspensions. Pharmacodynamic studies using Goldblatt technique were undertaken to evaluate the effect of nano-sizing on the hypotensive effect of the drug. Concentration of TPGS and speed of rotation were found to play an important role in particle size of the nanosuspensions whereas time of stirring displayed an exponential relationship with particle size. Freeze dried nanocrystals obtained from nanosuspension of least particle size were found to have increased saturation solubility of telmisartan in different dissolution media. The reconstituted nanosuspension was found to reduce both systolic and diastolic blood pressure without affecting pulse pressure and heart rate. Statistical tools can be used to identify key process and formulation parameters which play a significant role in controlling the particle size in nanosuspensions. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Tiller size/density compensation in grazed Tifton 85 bermudagrass swards

    Directory of Open Access Journals (Sweden)

    Sbrissia André Fischer

    2003-01-01

    Full Text Available The objective of this study was to evaluate the occurrence of the tiller size/density compensation mechanism in Tifton 85 bermudagrass swards grazed by sheep under continuous stocking. Treatments corresponded to four sward steady state conditions (5, 10, 15, and 20 cm of sward surface height, maintained by sheep grazing. The experimental design was a complete randomized block with four replicates. Pasture responses evaluated include: tiller population density, tiller mass, leaf mass and leaf area per tiller, and herbage mass. Tiller volume, leaf area index, tiller leaf/stem ratio, and tiller leaf area/volume ratio were calculated and simple regression analyses between tiller population density and tiller mass were performed. Measurements were made in December, 1998, and January, April, and July, 1999. The swards showed a tiller size/density compensation mechanism in which high tiller population densities were associated with small tillers and vice-versa, except in July, 1999. Regression analyses revealed that linear coefficients were steeper than the theoretical expectation of -3/2. Increments in herbage mass were attributable to increases in tiller mass in December and January. Leaf area/volume ratio values of Tifton 85 tillers were much lower than those commonly found for temperate grass species.

  14. In-situ detection of micron-sized dust particles in near-Earth space

    Science.gov (United States)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  15. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  16. Differences in particle size distributions collected by two wood dust samplers: preliminary findings

    International Nuclear Information System (INIS)

    Campopiano, A.; Olori, A.; Basili, F.; Ramires, D.; Zakrzewska, A.M.

    2008-01-01

    The International Agency for Research on Cancer (IARC) classification of wood dust as carcinogenic to humans, and the threshold limit value (TLV) of 5 mg/m 3 weighted over an 8-hour work day as defined by Italian legislation, have raised the issue of dust risk assessments in all woodworking environments. The aim is to characterize the particle size distribution for wood particles collected by two samplers used for collecting the inhalable fraction: the IOM sampler (Institute of Occupational Medicine, Edinburgh, Scotland) and the conical sampler also known in Italy as conetto. These two sampling heads were chosen mainly because the Italian conical sampler, used in the past for total dust sampling, is the most widely used by the Italian Prevention Services and analysis laboratories in general, whereas the IOM sampler was specifically designed to collect the inhalable fraction of airborne particles. The devices were placed side by side within the worker's breathing zone. In addition, another IOM sampler not connected to the personal sampling pump was placed on the same worker, thus functioning as a passive sampler capable of collecting projectile particles normally produced during processing. A Scanning Electron Microscope (SEM) coupled with energy dispersive X-ray spectrometry (EDAX) was used to count the number of particles collected on the sampling filters. The size of each particle identified by the SEM was determined by measuring its mean diameter. The SEM analysis revealed that the average size of the largest particles collected by the conetto sampler did not exceed 150 μm, whereas the size of particles collected by the IOM sampler was up to 350 μm. Indeed, the analysis of the filters of the passive IOM samplers showed that particles with mean diameters larger than 100 μm were collected, although the calculated percentage was very low (on average, approximately 1%). This does not mean that their gravimetric contribution is negligible; indeed, the weight of

  17. Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu

    Directory of Open Access Journals (Sweden)

    LI Zhi-chao

    2017-12-01

    Full Text Available The precipitation behavior and distribution of second phase particles in conventional grain-oriented silicon steel during manufacturing process were observed by field emission scanning electron microscopy, and the average particle size, the areal particle density, and the Zener factor were statistically analyzed. The results show that the samples mainly contain two kinds of precipitates:A class is the (Cu,MnS composite precipitates with the average size of 1μm; B class is the Cu2S precipitates with the size of 10-30nm, the key inhibition effect is produced by Cu2S. Hot rolling leads to a large amount of fine second phase particles precipitation, which has the minimum average particle size and the highest areal density; in the manufacturing process before high temperature annealing, the average particle size is increasing and the areal density is decreasing; in the process of high temperature annealing, with the decrease of volume fraction of precipitates, the inhibition ability exhibits reducing trend,obvious aggregation occurs at 960℃,secondary recrystallization will happen when Zener factor A decreases below the critical value of 0.19nm-1, and the residual particles will not produce valid inhibition effect.

  18. The effects of density dependent resource limitation on size of wild reindeer.

    Science.gov (United States)

    Skogland, Terje

    1983-11-01

    A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.A decrement in the size of does as a result of gross density was found. This size decrement was further analysed in relation to the habitat densities in winter (R 2 =0.85) and in summer (R 2 =0.75) separately, in order to estimate the relative effects of each factor. For herds with adequate food in winter (no signs of overgrazing of lichens) density in relation to summer habitat and mires yielded the highest predictive power in a multiple regression. For herds with adequate summer pastures, densities per winter habitat and lichen volumes showed likewise a highly significant correlation. The inclusion of the lichen volume data in the regression increased its predictive power. The major effect of resource limitation was to delay the time of calving because a maternal carry-over effect allowed the calf a shorter period of growth to be completed during its first summer. Neonate size at birth was highly correlated with maternal size regardless of the mean calving date although the latter was significantly delayed for small-sized does in food resource-limited herds. Likewise the postnatal growth rate of all calves were not significantly different during 50 days postpartum regardless of maternal conditions in winter feeding. The summer growth rates of bucks ≧1 year did not vary significantly between herds. The age of maturity of food resource-limited does was delayed by one year and growth ceased after the initiation of reproduction. This shows that under conditions of limited resources the does with delayed births of calves allocated less energy to body growth simply because they had less time to replenish body

  19. The influence of particle size on intermediate and final stages of molybdenum sintering

    International Nuclear Information System (INIS)

    Uskokovic, D.; Novakovic, B.; Petrovic, V.; Ristic, M.M.

    1982-01-01

    The influence of initial particle size on kinetics of molybdenum sintering was investigated. Three fractions of monodispersed molybdenum powder (2, 5 and 10 μm) were used as well as a polydispersed powder with mean particle size of 12 μm. Decrease in particle size accelerates to a great extent densification and grain growth processes. During sintering of 10 μm powder and to a smaller extent in the case of polydispersed powder, Zeners's relation was confirmed. Quantitative equations for the intermediate sintering stages could not be fitted to the investigated particulate systems, even though the grain growth process could be described by cubic law and though the volume diffusion coefficient and the surface energy were known with great reliability. (Auth.)

  20. Topological defect and quasi-particle dynamics in charge density waves

    International Nuclear Information System (INIS)

    Hayashi, Masahiko; Ebisawa, Hiromichi

    2010-01-01

    The dynamics of topological defects (dislocations) in charge density waves (CDW's) is largely affected by the quasi-particle dynamics in the cores of the dislocations. The dislocations mediate the conversion of the electron number between condensate and quasi-particle sub-systems. This is especially important in the sliding conduction of CDW. In this work we propose a simple model, which is obtained by extending the Ginzburg-Landau theory partially taking into account the quasi-particle dynamics in the sense of two-fluid model. We perform the numerical simulation of sliding conduction of CDW based on our model. Using this model we may clarify the detailed process of dislocation nucleation and annihilation near the contacts.