WorldWideScience

Sample records for density lipoprotein fibrinogen

  1. [Study on the selective removal of plasma low-density lipoprotein and fibrinogen by degraded carrageenan].

    Science.gov (United States)

    Cong, Haixia; Yin, Liang; Fang, Bo; Du, Longbing; Zhao, Hui; Chen, Jingling; You, Chao

    2010-08-01

    The selective removal of low density lipoprotein (LDL) and fibrinogen (Fib) by degraded carrageenan was studied by the present authors. Degraded carrageenan was prepared by acid with carrageenan as the main material. The effects of acid conditions on the molecular weight were investigated, and the proper reaction conditions were ascertained. The results of infrared spectrometry indicated that the degraded carrageenan is a heparin-like polysaccharide. Then the selective removal of LDL/Fibrinogen by degraded carrageenan was studied. When molecular weight was about 10,000, pH was 5.10 and the concentration of degraded carrageenan was 800 mg/L, the average reduction percentages were 60.0% for total cholesterol(TC), 79.4% for LDL and very low-density lipoprotein (VLDL), and 93.8% for fibrinogen. There were no significant changes with relation to the level of high-density lipoprotein (HDL) and total protein (TP). So, degraded carrageenan was shown to be of good selectivity on plasma LDL/Fibrinogen apheresis.

  2. [Study on the selective removal of plasma low-density lipoprotein and fibrinogen by degraded guar sulfate].

    Science.gov (United States)

    Zhu, Ye; Fang, Bo; Huang, Li; Guan, Chen; Yang, Guang

    2008-10-01

    Degraded guar was prepared by acid with guar as the main material, which was then brought into reaction with chlorosulfonic acid under proper conditions, the sulfonated degraded guar was obtained successfully. The effects of sulfonation conditions on the SO4(2-) content were investigated, and the proper reaction conditions were determined. The results of infrared spectrometry showed that this sulfated derivative is a novel heparin-like polysaccharide. At the same time, the selective removal of low density lipoprotein (LDL) and fibrinogen (Fib) by degraded guar gum sulfate was studied. The experimental results showed that degraded guar gum sulfate is a novel LDL/ Fib purifying agent. When pH= 5.15 and the initial concentration of the degraded guar gum sulfate is 2500 mg/L, the reduction percentages were about 60%-66% for total cholesterol, about 76%-89% for LDL and very low-density lipoproteins (VLDL), and almost 100% for fibrinogen. There were no significant changes regarding the level of high-density lipoproteins and total proteins.

  3. Coexistence of High Fibrinogen and Low High-density Lipoprotein Cholesterol Levels Predicts Recurrent Cerebral Venous Thrombosis

    Institute of Scientific and Technical Information of China (English)

    Xin Ma; Xun-Ming Ji; Paul Fu; Yu-Chuan Ding; Qiang Xue; Yue Huang

    2015-01-01

    Background:Cerebral venous thrombosis (CVT) may lead to serious neurological disorders;however,little is known about the risk factors for recurrent CVT.Our aim was to determine the association between elevated fibrinogen and decreased high-density lipoprotein cholesterol (HDL-C) levels with recurrent CVT.Methods:This retrospective cohort study included participants if they had a first episode of objectively defined CVT and were admitted to Xuan Wu Hospital,Capital Medical University from August 2005 to September 2009.Demographic and clinical variables were collected,as well as laboratory parameters,including plasma fibrinogen and HDL-C.Patients with CVT were followed for recurrent symptomatic CVT.Follow-up was through the end of September 2010.Potential predictors of recurrence were analyzed using Cox survival analysis.Results:At the end of the follow-up,95 patients were eligible for the study.Twelve of 95 patients (12.6%) had recurred CVT.The median time of recurrence was 7 months (range:1-39 months).Eight of these 12 (66.7%) experienced recurrence within the first 12 months after their initial CVT.The recurrence rate of CVT was 2.76 per 100 patient-years.Multivariate Cox regression analysis demonstrated that the coexistence of high fibrinogen (>4.00 g/L) and low HDL-C (<1.08 mmol/L) levels at baseline was the only independent predictor for recurrent CVT (hazard ratio:4.69;95% confidence interval:1.10-20.11;P < 0.05).Of the twelve patients with recurrent CVT in our study,7 (58.3%) had high fibrinogen plus low HDL-C levels.All 7 of these patients took warfarin for 3-12 months,and 6 of 7 had recurrent CVT after the discontinuation of anticoagulant treatment.Conclusions:Concomitant high fibrinogen and low HDL-C levels may be associated with recurrence of CVT.The effect of potential risk factors related to atherothrombosis on recurrent CVT should be closely monitored.

  4. Effects of XUEZHIKANG on Oxidized Low Density Lipoprotein,C- Reactive Protein, Fibrinogen in Unstable Angina Pectoris Patients

    Institute of Scientific and Technical Information of China (English)

    姚青海; 崔长琮; 王军奎; 姚晓伟

    2003-01-01

    Objectives To study the effects of XUEZHIKANG on lipid modulating and thelevel of oxidized low density lipoprotein (OX - LDL),C -reactive protein(CRP), fibrinogen(FIB) in serum.Methods XUEZHIKANG was given to patientswith unstable angina pectoris and hyperlipidemia at adose of 0.6 gram bid for 2 months and with half-dose for another 2 months. Vitamin E was given tounstable angina pectoris patients with normal lipid atthe dose of 0.1 gram bid for 4 months respectively.Then compared the level of lipid and OX - LDfL, CRP,FIB in serum at beginning, first -month and second -month. Results XUEZHIKANG can reduce theserum level of total cholesterol, low density lipoproteinin 1 month , and gained better effect in 2 months. Itcan also reduce triglyceride and increase high densitylipoprotein in 2 months. Compared with vitamin EXUEZHIKANG can reduce the level of OX- LDL,CRP, FIB significantly after treatment for 2 months.Conclusions XUEZHIKANG has significant effectin lipid modulating , and it can also inhibit the de-velopment of inflammation in coronary plaque.

  5. Coexistence of High Fibrinogen and Low High-density Lipoprotein Cholesterol Levels Predicts Recurrent Cerebral Venous Thrombosis

    Directory of Open Access Journals (Sweden)

    Xin Ma

    2015-01-01

    Conclusions: Concomitant high fibrinogen and low HDL-C levels may be associated with recurrence of CVT. The effect of potential risk factors related to atherothrombosis on recurrent CVT should be closely monitored.

  6. Lipids, lipoproteins, fibrinogen and fibrinolytic activity in angiographically assessed coronary heart disease.

    Science.gov (United States)

    Lipinska, I; Gurewich, V; Meriam, C M; Kosowsky, B D; Ramaswamy, K; Philbin, E; Losordo, D

    1987-01-01

    Plasma lipids, lipoproteins, fibrinogen and fibrinolytic activity (FA) were measured in 202 consecutive patients undergoing coronary angiography. Twenty-one patients, 13 men and 8 women with a mean age of 52.8 years and 56.7 years respectively, were found to be angiographically free of coronary artery disease (CAD) and served as the principal control group. Since this group contained a disproportionate number of subjects with risk factors such as family history, hypertension and smoking, a second control group of clinically healthy subjects selected for age was also tested. Their laboratory results were not used in the statistical calculations. The group with angiographic CAD consisted of 130 men (mean age 57.6 years) and 51 women (mean age 61.5 years). Abnormal angiograms were graded according to the number of major vessels with more than 50% stenosis involved. The laboratory variables which were significantly (p less than .01-.001) associated with the presence of CAD were: High density lipoprotein (HDL) when determined by polyacrylamide gel electrophoresis (PAGE) and expressed as a percentage of total lipoproteins rather than concentration, presence of Intermediate Density Lipoprotein (IDL), percent of Very Low Density Lipoprotein (VLDL), fibrinogen concentration and FA. The HDL2 subfraction was significantly inversely correlated only in women. The total plasma cholesterol was normal and virtually identical in both groups. Within the CAD group, only two of the laboratory results were significantly correlated with the extent of disease. By univariate analysis, the FA showed the closest association with the score for severity of CAD (p less than .001) followed by the presence of IDL (p less than .01). In conclusion, lipoprotein analysis by a method which measures not only HDL, but also LDL, VLDL and IDL, together with the determination of fibrinogen and FA provides information useful in the identification of individuals at risk for CAD.

  7. Assessment of Diagnostic Efficiency of Lipoprotein (a, Homocysteine, High Sensitive C-Reactive Protein and Fibrinogen in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Ebru Dundar Yenilmez

    2013-08-01

    Full Text Available Backround: To evaluate the diagnostic value of major and other risk factors as lipoprotein (Lp (a, homocysteine (Hcy, high sensitive C-reactive protein (hs-CRP and fibrinogen in CAD patients. Methods: A total of 223 subjects (118 patients and 105 controls were included in the study according to their coronary angiographic results. Lipoprotein (a, Hcy, hs-CRP and fibrinogen levels were measured using immunoturbidometric, florescent polarization immunoassay and nefelometric methods, respectively. Fasting glucose and lipid parameters, except low density lipoprotein cholesterol (LDL-C, are determined by enzymatic colorimetric methods and the LDL-C levels were calculated by the Fridewald formula. Results: Logistic regression analysis showed that when the biochemical variables in placed in a model, the most important variables were Lp (a, Hcy, hs-CRP and fibrinogen. We showed that each unit of Lp (a, Hcy, hs-CRP and fibrinogen increases the risk of CAD 1.029, 1.177, 1.027 and 1.013 fold, respectively. Among these, fibrinogen level was the most sensitive and efficient parameter in prediction of CAD. Conclusion: Although Lp (a, Hcy, hs-CRP and fibrinogen are independent risk factors for CAD, fibrinogen was the most important one. Fibrinogen can be used as a reliable risk factor for CAD in clinical practice. [Cukurova Med J 2013; 38(4.000: 559-566

  8. A fibrinogen-binding lipoprotein contributes to the virulence of Haemophilus ducreyi in humans.

    Science.gov (United States)

    Bauer, Margaret E; Townsend, Carisa A; Doster, Ryan S; Fortney, Kate R; Zwickl, Beth W; Katz, Barry P; Spinola, Stanley M; Janowicz, Diane M

    2009-03-01

    A gene expression study of Haemophilus ducreyi identified the hypothetical lipoprotein HD0192, renamed here "fibrinogen binder A" (FgbA), as being preferentially expressed in vivo. To test the role played by fgbA in virulence, an isogenic fgbA mutant (35000HPfgbA) was constructed using H. ducreyi 35000HP, and 6 volunteers were experimentally infected with 35000HP or 35000HPfgbA. The overall pustule-formation rate was 61.1% at parent sites and 22.2% at mutant sites (P = .019). Papules were significantly smaller at mutant sites than at parent sites (13.3 vs. 37.9 mm(2); P = .002) 24 h after inoculation. Thus, fgbA contributed significantly to the virulence of H. ducreyi in humans. In vitro experiments demonstrated that fgbA encodes a fibrinogen-binding protein; no other fibrinogen-binding proteins were identified in 35000HP. fgbA was conserved among clinical isolates of both class I and II H. ducreyi strains, supporting the finding that fgbA is important for H. ducreyi infection.

  9. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.

    Science.gov (United States)

    Dashty, M; Motazacker, M M; Levels, J; de Vries, M; Mahmoudi, M; Peppelenbosch, M P; Rezaee, F

    2014-03-03

    Apart from transporting lipids through the body, the human plasma lipoproteins very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) are also thought to serve as a modality for intra-organismal protein transfer, shipping proteins with important roles in inflammation and thrombosis from the site of synthesis to effector locations. To better understand the role of VLDL and LDL in the transport of proteins, we applied a combination of LTQ ORBITRAP-XL (nLC-MS/MS) with both in-SDS-PAGE gel and in-solution tryptic digestion of pure and defined VLDL and LDL fractions. We identified the presence of 95 VLDL- and 51 LDL-associated proteins including all known apolipoproteins and lipid transport proteins, and intriguingly a set of coagulation proteins, complement system and anti- microbial proteins. Prothrombin, protein S, fibrinogen γ, PLTP, CETP, CD14 and LBP were present on VLDL but not on LDL. Prenylcysteine oxidase 1, dermcidin, cathelicidin antimicrobial peptide, TFPI-1 and fibrinogen α chain were associated with both VLDL and LDL. Apo A-V is only present on VLDL and not on LDL. Collectively, this study provides a wealth of knowledge on the protein constituents of the human plasma lipoprotein system and strongly supports the notion that protein shuttling through this system is involved in the regulation of biological processes. Human diseases related to proteins carried by VLDL and LDL can be divided in three major categories: 1 - dyslipidaemia, 2 - atherosclerosis and vascular disease, and 3 - coagulation disorders.

  10. Human Low Density Lipoprotein as a Vehicle of Atherosclerosis ...

    African Journals Online (AJOL)

    Human Low Density Lipoprotein as a Vehicle of Atherosclerosis. ... Low-density lipoproteins have been sufficiently established as an important precursor of atherosclerosis. The actual mechanism is still ... Article Metrics. Metrics Loading .

  11. Low-density lipoprotein analysis in microchip capillary electrophoresis systems

    NARCIS (Netherlands)

    Ceriotti, Laura; Shibata, Takayuki; Folmer, Britta; Weiller, Bruce H.; Roberts, Matthew A.; De Rooij, Nico F.; Verpoorte, Elisabeth

    2002-01-01

    Due to the mounting evidence for altered lipoprotein and cholesterol-lipoprotein content in several disease states, there has been an increasing interest in analytical methods for lipoprotein profiling for diagnosis. The separation of low- and high-density lipoproteins (LDL and HDL, respectively)

  12. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    The usefulness of total cholesterol and high density lipoprotein - cholesterol ratio in ... cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. ... Article Metrics.

  13. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V. (Lawrence Livermore Lab., CA); Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  14. Metabolism of high density lipoproteins in liver cancer

    Institute of Scientific and Technical Information of China (English)

    Jing-Ting Jiang; Ning Xu; Chang-Ping Wu

    2007-01-01

    Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.

  15. Nanotechnology for Synthetic High Density Lipoproteins

    Science.gov (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  16. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentia...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is...

  17. Association of lipase lipoprotein polymorphisms with high-density lipoprotein and triglycerides in elderly men

    OpenAIRE

    Araujo,Lara Miguel Quirino; Cendoroglo, Maysa Seabra [UNIFESP; Gigek, Carolina de Oliveira; Chen, Elizabeth Suchi; Smith, Maria de Arruda Cardoso [UNIFESP

    2010-01-01

    Lipoprotein lipase is essential for triglyceride hydrolysis. the polymorphisms S447X in exon 9 and HindIII in intron 8 have been associated with lower triglyceride levels and lower cardiovascular risk in adult men. We examined the association of these lipoprotein lipase polymorphisms with high-density lipoprotein (HDL) and triglyceride levels in elderly men. Blood samples were obtained from 87 elderly men, 48 of whom had cardiovascular disease and 39 (controls) had no history of cardiovascula...

  18. 21 CFR 866.5600 - Low-density lipoprotein immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Low-density lipoprotein immunological test system....5600 Low-density lipoprotein immunological test system. (a) Identification. A low-density lipoprotein... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in...

  19. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    1991-01-01

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between a

  20. Modulation of low-density lipoprotein-induced inhibition of intercellular communication by antioxidants and high-density lipoproteins

    NARCIS (Netherlands)

    Zwijsen, R M; de Haan, L. H. J.; Kuivenhoven, J A; Nusselder, I C

    In order to study the capacity of antioxidants and high-density lipoproteins (HDL) to modulate the effects of low-density lipoprotein (LDL) on intercellular communication, arterial smooth muscle cells and a dye transfer method were used. LDL, in contrast to HDL, inhibited the communication between

  1. Computational lipidology: predicting lipoprotein density profiles in human blood plasma.

    Directory of Open Access Journals (Sweden)

    Katrin Hübner

    2008-05-01

    Full Text Available Monitoring cholesterol levels is strongly recommended to identify patients at risk for myocardial infarction. However, clinical markers beyond "bad" and "good" cholesterol are needed to precisely predict individual lipid disorders. Our work contributes to this aim by bringing together experiment and theory. We developed a novel computer-based model of the human plasma lipoprotein metabolism in order to simulate the blood lipid levels in high resolution. Instead of focusing on a few conventionally used predefined lipoprotein density classes (LDL, HDL, we consider the entire protein and lipid composition spectrum of individual lipoprotein complexes. Subsequently, their distribution over density (which equals the lipoprotein profile is calculated. As our main results, we (i successfully reproduced clinically measured lipoprotein profiles of healthy subjects; (ii assigned lipoproteins to narrow density classes, named high-resolution density sub-fractions (hrDS, revealing heterogeneous lipoprotein distributions within the major lipoprotein classes; and (iii present model-based predictions of changes in the lipoprotein distribution elicited by disorders in underlying molecular processes. In its present state, the model offers a platform for many future applications aimed at understanding the reasons for inter-individual variability, identifying new sub-fractions of potential clinical relevance and a patient-oriented diagnosis of the potential molecular causes for individual dyslipidemia.

  2. Fibrinogen patterns and activity on substrates with tailored hydroxy density.

    Science.gov (United States)

    Rodríguez Hernández, José Carlos; Rico, Patricia; Moratal, David; Monleón Pradas, Manuel; Salmerón-Sánchez, Manuel

    2009-08-11

    The influence of the surface fraction of OH groups on fibrinogen (FG) adsorption is investigated in copolymers of ethyl acrylate and hydroxy ethylacrylate. The amount of adsorbed FG, quantified by western-blotting combined with image analysis of the corresponding bands, decreases as the hydrophilicity of the substrate increases. The influence of substrate wettability on FG conformation and distribution is observed by atomic force microscopy (AFM). The most hydrophobic substrate promotes FG fibrillogenesis, which leads to a fibrin-like appearance in the absence of any thrombin. The degree of FG interconnection was quantified by calculating the fractal dimension of the adsorbed protein from image analysis of the AFM results. The biological activity of the adsorbed FG is correlated to cell adhesion on FG-coated substrates.

  3. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease

    DEFF Research Database (Denmark)

    Wittrup, Hans H; Andersen, Rolf V; Tybjaerg-Hansen, Anne;

    2006-01-01

    Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD).......Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD)....

  4. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease

    DEFF Research Database (Denmark)

    Wittrup, Hans H; Andersen, Rolf V; Tybjaerg-Hansen, Anne

    2006-01-01

    Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD).......Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD)....

  5. Nanobiotechnology applications of reconstituted high density lipoprotein.

    Science.gov (United States)

    Ryan, Robert O

    2010-12-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  6. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  7. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling

    National Research Council Canada - National Science Library

    Riwanto, Meliana; Rohrer, Lucia; Roschitzki, Bernd; Besler, Christian; Mocharla, Pavani; Mueller, Maja; Perisa, Damir; Heinrich, Kathrin; Altwegg, Lukas; von Eckardstein, Arnold; Lüscher, Thomas F; Landmesser, Ulf

    2013-01-01

    ...). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein...

  8. Mendelian Disorders of High-Density Lipoprotein Metabolism

    NARCIS (Netherlands)

    Oldoni, Federico; Sinke, Richard J.; Kuivenhoven, Jan Albert

    2014-01-01

    High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL chol

  9. Inverse correlation between fibrinogen and bone mineral density in women: Preliminary findings.

    Science.gov (United States)

    Chen, Jui-Tung; Kotani, Kazuhiko

    2016-01-01

    Hemostatic factors may be involved in bone health. The present preliminary study investigated the association between plasma fibrinogen and bone mineral density (BMD) in perimenopausal women. A significant inverse correlation between fibrinogen and BMD was observed (correlation coefficient = -0.42, p high level of high-sensitivity C-reactive protein than in that with a low level of high-sensitivity C-reactive protein, and in the subgroup with a high level of diacron reactive oxygen metabolites (an oxidative stress marker) than in that with a low level of diacron reactive oxygen metabolites. Thus, fibrinogen may be a possible marker of BMD in this population. More studies on the associations among hemostasis, inflammation, oxidative stress, and bone metabolism are warranted in the clinical setting.

  10. Pistachio intake increases high density lipoprotein levels and inhibits low-density lipoprotein oxidation in rats.

    Science.gov (United States)

    Aksoy, Nur; Aksoy, Mehmet; Bagci, Cahit; Gergerlioglu, H Serdar; Celik, Hakim; Herken, Emine; Yaman, Abdullah; Tarakcioglu, Mehmet; Soydinc, Serdar; Sari, Ibrahim; Davutoglu, Vedat

    2007-05-01

    There is increasing evidence that nuts have protective effects against coronary artery disease by improving lipid profile and inhibiting lipid oxidation. However, data about pistachio nuts are limited, and to our knowledge, there is no study investigating the effects of pistachio intake on lipid oxidation and serum antioxidant levels. This study, therefore, sought to determine the effects of pistachio intake on serum lipids and determine whether consumption of pistachio would alter serum antioxidant levels. Rats were randomly divided into three groups (n=12 for each): control group fed basic diet for 10 weeks and treated groups fed basic diet plus pistachio which constituted 20% and 40% of daily caloric intake, respectively. Consumption of pistachio as 20% of daily caloric intake increased high-density lipoprotein (HDL) levels and decreased total cholesterol (TC)/HDL ratio, compared with those not taking pistachio. However, TC, low-density lipoprotein (LDL) cholesterol and triglyceride levels were unaffected by pistachio consumption. Consumption of pistachio as 20% of daily caloric intake increased serum paraoxonase activity by 35% and arylesterase activity by 60%, which are known to inhibit LDL cholesterol oxidation, compared with the control group. However, increased antioxidant activity was blunted when pistachio intake was increased to 40% of daily caloric intake. In conclusion, the present results show that consumption of pistachio as 20% of daily caloric intake leads to significant improvement in HDL and TC/HDL ratio and inhibits LDL cholesterol oxidation. These results suggest that pistachio may be beneficial for both prevention and treatment of coronary artery disease.

  11. A Mediterranean-style, low-glycemic-load diet decreases atherogenic lipoproteins and reduces lipoprotein (a) and oxidized low-density lipoprotein in women with metabolic syndrome.

    Science.gov (United States)

    Jones, Jennifer L; Comperatore, Michael; Barona, Jacqueline; Calle, Mariana C; Andersen, Catherine; McIntosh, Mark; Najm, Wadie; Lerman, Robert H; Fernandez, Maria Luz

    2012-03-01

    The objective was to assess the impact of a Mediterranean-style, low-glycemic-load diet (control group, n = 41) and the same diet plus a medical food (MF) containing phytosterols, soy protein, and extracts from hops and Acacia (MF group, n = 42) on lipoprotein atherogenicity in women with metabolic syndrome. Plasma lipids, apolipoproteins (apos), lipoprotein subfractions and particle size, low-density lipoprotein (LDL) oxidation, and lipoprotein (a) were measured at baseline, week 8, and week 12 of the intervention. Three-day dietary records were collected at the same time points to assess compliance. Compared with baseline, women decreased energy intake from carbohydrate (P lipoproteins, large very low-density lipoprotein (P lipoprotein to smaller high-density lipoprotein particles was increased (P lipoprotein (a) (P lipoproteins, oxidized LDL, and apo B. Inclusion of an MF may have an additional effect in reducing apo B. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Homocysteine, fibrinogen, and lipoprotein(a) levels are simultaneously reduced in patients with chronic renal failure treated with folic acid, pyridoxine, and cyanocobalamin.

    Science.gov (United States)

    Naruszewicz, M; Klinke, M; Dziewanowski, K; Staniewicz, A; Bukowska, H

    2001-02-01

    Ischemic heart disease and other complications of atherosclerosis are the usual cause of death in patients with chronic renal failure. Important factors associated with early onset of atherosclerosis in these patients are hyperhomocysteinemia, hyperfibrinogenemia, and elevated levels of lipoprotein(a) (Lp(a)). Folic acid (15 mg/d), pyridoxine (150 mg/d), and cyanocobalamin (1 mg/wk) were administered for 4 weeks in 21 patients receiving dialysis, and a simultaneous, statistically significant reduction in the concentration of homocysteine, fibrinogen, and Lp(a) was found. A positive correlation between decreasing homocysteine and fibrinogen levels was also noted. The parameters studied approached presupplementation values 6 months after vitamins were discontinued. The results suggest that vitamin supplementation has a favorable effect on risk factors of atherosclerosis in patients with renal failure and that interactions may exist between homocysteine, fibrinogen, and Lp(a).

  13. High Density Lipoprotein Metabolism in Man

    Science.gov (United States)

    Blum, Conrad B.; Levy, Robert I.; Eisenberg, Shlomo; Hall, Marshall; Goebel, Robert H.; Berman, Mones

    1977-01-01

    The turnover of 125I-high density lipoprotein (HDL) was examined in a total of 14 studies in eight normal volunteers in an attempt to determine the metabolic relationship between apolipoproteins A-I (apoA-I) and A-II (apoA-II) of HDL and to define further some of the determinants of HDL metabolism. All subjects were first studied under conditions of an isocaloric balanced diet (40% fat, 40% carbohydrate). Four were then studied with an 80% carbohydrate diet, and two were studied while receiving nicotinic acid (1 g three times daily) and ingesting the same isocaloric balanced diet. The decay of autologous 125I-HDL and the appearance of urinary radioactivity were followed for at least 2 wk in each study. ApoA-I and apoA-II were isolated by Sephadex G-200 chromatography from serial plasma samples in each study. The specific activities of these peptides were then measured directly. It was found that the decay of specific activity of apoA-I and apoA-II were parallel to one another in all studies. The mean half-life of the terminal portion of decay was 5.8 days during the studies with a balanced diet. Mathematical modeling of the decay of plasma radioactivity and appearance of urinary radioactivity was most consistent with a two-compartment model. One compartment is within the plasma and exchanges with a nonplasma component. Catabolism occurs from both of these compartments. With a balanced isocaloric diet, the mean synthetic rate for HDL protein was 8.51 mg/kg per day. HDL synthesis was not altered by the high carbohydrate diet and was only slightly decreased by nicotinic acid treatment. These perturbations had effects on HDL catabolic pathways that were reciprocal in many respects. With an 80% carbohydrate diet, the rate of catabolism from the plasma compartment rose by a mean of 39.1%; with nicotinic acid treatment, it fell by 42.2%. Changes in the rate of catabolism from the second compartment were generally opposite those in the rate of catabolism from the plasma

  14. Development of an integrated model for analysis of the kinetics of apolipoprotein B in plasma very low density lipoproteins, intermediate density lipoproteins, and low density lipoproteins.

    Science.gov (United States)

    Beltz, W F; Kesäniemi, Y A; Howard, B V; Grundy, S M

    1985-01-01

    To quantify more precisely the metabolism of apolipoprotein B (apo B) in human beings, an integrated model was developed for the analysis of the isotope kinetics of apo B in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL). The experimental basis for model development was a series of 30 triple-isotope studies in which patients received autologous 131I-VLDL, 125I-IDL, and [3H]glycerol as a precursor of VLDL triglycerides. The currently proposed model contains the following components: (a) a VLDL delipidation cascade that has a variable number of subcompartments, (b) a slowly catabolized pool of VLDL, (c) an IDL compartment consisting of two closely connected subcompartments, one of which is outside the immediate circulation, and (d) a two-compartment subsystem for LDL. Because mass data indicate that not all VLDL were converted to LDL, the model allows for irreversible removal of apo B from VLDL (or IDL) subsystems. It accounts for apparent "direct" input of LDL by postulating an early, rapidly metabolized compartment of VLDL that is converted directly to IDL. The model appears to be consistent with specific activity curves from the current triple-isotope studies and with present concepts of lipoprotein physiology; it also can be used to quantify pathways of lipoprotein apo B transport in normal and abnormal states. PMID:4031063

  15. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches

    National Research Council Canada - National Science Library

    deGoma, Emil M; deGoma, Rolando L; Rader, Daniel J

    2008-01-01

    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression...

  16. Chromatofocusing of human high density lipoproteins and isolation of lipoproteins A and A-I.

    Science.gov (United States)

    Nestruck, A C; Niedmann, P D; Wieland, H; Seidel, D

    1983-08-29

    Using chromatofocusing, a column chromatography method with an internally generated pH gradient and focusing effects, human plasma high density lipoproteins (HDL) were fractionated into six subclasses within an interval of less than 1 pH unit (pH 5.1-4.2). All fractions floated in the ultracentrifuge at density = 1.21 g X ml-1, retained a typical HDL electron micrographic morphology and as a single band, alpha-migration on agarose electrophoresis. Compositional analysis of the subclasses revealed an inverse relationship between cholesterol ester and cholesterol on a molar basis. Distinct differences in the distribution of the apolipoproteins between the fractions were found. Two of the subclasses contained only apolipoprotein A-I and were therefore considered to be two forms of the lipid-combined form of apolipoprotein A-I, i.e., lipoprotein A-I. One subclass contained only apolipoproteins A-I + A-II and was, therefore, lipoprotein A. One subclass contained apolipoproteins A-I + A-II + D, and the two remaining contained additionally apolipoproteins C and E. Lipoprotein A-I was also demonstrated after immunoabsorption of apolipoprotein A-II-containing lipoproteins from whole serum. It is suggested that this method, which allows the fractionation of HDL into subclasses with distinct differences in apolipoprotein composition, offers new avenues for the study of the structural and metabolic heterogeneity of HDL.

  17. Effect of apolipoprotein E variants on lipolysis of very low density lipoproteins by heparan sulphate proteoglycan-bound lipoprotein lipase

    NARCIS (Netherlands)

    Man, F.H.A.F. de; Beer, F. de; Laarse, A. van der; Smelt, A.H.M.; Leuven, J.A.G.; Havekes, L.M.

    1998-01-01

    Lipoprotein lipase (LPL) is bound to heparan sulphate proteoglycans (HSPG) at the luminal surface of endothelium. It is the key enzyme involved in the hydrolysis of very low density lipoproteins (VLDL). Prior to lipolysis by LPL, the lipoproteins are considered to interact with vessel wall HSPG. Apo

  18. Low density lipoproteins mediated nanoplatforms for cancer targeting

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant, E-mail: prashant_pharmacy04@rediffmail.com; Jain, Narendra K., E-mail: jnarendr@yahoo.co.in [Dr. H. S. Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2013-09-15

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

  19. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism

    NARCIS (Netherlands)

    Dashty Rahmatabady, Monireh; Motazacker, Mohammad M.; Levels, Johannes; de Vries, Marcel; Mahmoudi, Morteza; Peppelenbosch, Maikel; Rezaee, Farhad

    2014-01-01

    Apart from transporting lipids through the body, the human plasma lipoproteins very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) are also thought to serve as a modality for intra-organismal protein transfer, shipping proteins with important roles in inflammation and thrombosis fr

  20. Low-density lipoprotein cholesterol and risk of gallstone disease

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Benn, Marianne

    2013-01-01

    Drugs which reduce plasma low-density lipoprotein cholesterol (LDL-C) may protect against gallstone disease. Whether plasma levels of LDL-C per se predict risk of gallstone disease remains unclear. We tested the hypothesis that elevated LDL-C is a causal risk factor for symptomatic gallstone...

  1. Epidemiological reference ranges for low-density lipoprotein ...

    African Journals Online (AJOL)

    1991-04-06

    Apr 6, 1991 ... (LDL-C) and high-density lipoprotein cholesterol (HDL-C) is recommended for subjects .... with this differential precipitation method for LDL-C in non- fasting subjects did not ..... Henderson LO er al. Phase V Preliminary Repor!

  2. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  3. Interaction of low density lipoproteins with rat liver cells

    NARCIS (Netherlands)

    L. Harkes (Leendert)

    1985-01-01

    textabstractThe most marked conclusion is the establishment of the important role of non-parenchymal cells in the catabolism of the low density lipoproteins by the rat liver. Because the liver is responsible for 70-80% of the removal of LDL from blood this conclusion can be extended to total LDL tur

  4. Fibrinogen Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Fibrinogen Share this page: Was this page helpful? Also known as: Factor I; Fibrinogen Activity; Functional Fibrinogen; Fibrinogen Antigen; Plasma Fibrinogen; Hypofibrinogenemia ...

  5. Circulating Oxidized Low-Density Lipoproteins and Antibodies against Oxidized Low-Density Lipoproteins as Potential Biomarkers of Colorectal Cancer

    OpenAIRE

    2015-01-01

    Introduction. The aim of the study was evaluation of the diagnostic utility of serum oxidized low-density lipoproteins (oxLDL), antibodies against oxLDLs (o-LAB), and CEA as risk markers of colorectal cancer (CRC). Material and Methods. The serum levels of study factors were measured in 73 patients with CRC and in 35 healthy controls who were gender- and BMI-matched to the study group. Concentrations of oxLDL, o-LAB, and CEA were detected in ELISA tests. Serum lipids, lipoproteins, and gl...

  6. [Residual risk: The roles of triglycerides and high density lipoproteins].

    Science.gov (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target.

  7. DMPD: Low density lipoprotein oxidation and its pathobiological significance. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9261091 Low density lipoprotein oxidation and its pathobiological significance. Ste...in oxidation and its pathobiological significance. PubmedID 9261091 Title Low density lipoprotein oxidation ...and its pathobiological significance. Authors Steinberg D. Publication J Biol Che

  8. Oxidized low-density lipoprotein in postmenopausal women

    DEFF Research Database (Denmark)

    Jankowski, Vera; Just, Alexander R; Pfeilschifter, Johannes;

    2014-01-01

    of this study was to determine the prevalence of serum oxLDL in postmenopausal women and to identify possible associations of clinical and laboratory features with oxLDL in these patients. METHOD: After clinical examination and completing a clinical questionnaire, an ultrasound examination of both carotid.......10-0.43). Although intima-media thickness did not differ, postmenopausal women with serous oxLDL had more often atherosclerotic plaques compared to women without oxLDL (6/66 vs. 0/467; P high-density lipoprotein, impaired glucose intolerance, and DBP were independently associated...... with the occurrence of oxLDL. If oxLDL was present, higher high-density lipoprotein and glucose intolerance were associated with higher concentrations of oxLDL. In contrast, higher blood urea concentrations were associated with lower concentrations of oxLDL. CONCLUSION: This study presents the prevalence...

  9. Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication

    National Research Council Canada - National Science Library

    Chasman, Daniel I; Pare, Guillaume; Zee, Robert Y.L; Parker, Alex N; Cook, Nancy R; Buring, Julie E; Kwiatkowski, David J; Rose, Lynda M; Smith, Joshua D; Williams, Paul T; Rieder, Mark J; Rotter, Jerome I; Nickerson, Deborah A; Krauss, Ronald M; Miletich, Joseph P; Ridker, Paul M

    2008-01-01

    Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White...

  10. SCARB1 Gene Variants Are Associated With the Phenotype of Combined High High-Density Lipoprotein Cholesterol and High Lipoprotein (a)

    DEFF Research Database (Denmark)

    Yang, Xiaoping; Sethi, Amar A; Yanek, Lisa R

    2016-01-01

    BACKGROUND: SR-B1 (scavenger receptor class B type 1), encoded by the gene SCARB1, is a lipoprotein receptor that binds both high-density lipoprotein (HDL) and low-density lipoprotein. We reported that SR-B1 is also a receptor for lipoprotein (a) (Lp(a)), mediating cellular uptake of Lp(a) in vitro...

  11. Low-Density Lipoprotein Cholesterol, Non-High-Density Lipoprotein Cholesterol, Triglycerides, and Apolipoprotein B and Cardiovascular Risk in Patients With Manifest Arterial Disease

    NARCIS (Netherlands)

    van den Berg, M Johanneke; van der Graaf, Yolanda; de Borst, Gert Jan; Kappelle, L Jaap; Nathoe, Hendrik M; Visseren, Frank L J

    2016-01-01

    Low-density lipoprotein cholesterol (LDL-C) only partly represents the atherogenic lipid burden, and a growing body of evidence suggests that non-high-density lipoprotein cholesterol (non-HDL-C), triglycerides, and apolipoprotein B (apoB) are more accurate in estimating lipid-related cardiovascular

  12. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    Science.gov (United States)

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2014-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  13. Low density lipoproteins as circulating fast temperature sensors.

    Directory of Open Access Journals (Sweden)

    Ruth Prassl

    Full Text Available BACKGROUND: The potential physiological significance of the nanophase transition of neutral lipids in the core of low density lipoprotein (LDL particles is dependent on whether the rate is fast enough to integrate small (+/-2 degrees C temperature changes in the blood circulation. METHODOLOGY/PRINCIPAL FINDINGS: Using sub-second, time-resolved small-angle X-ray scattering technology with synchrotron radiation, we have monitored the dynamics of structural changes within LDL, which were triggered by temperature-jumps and -drops, respectively. Our findings reveal that the melting transition is complete within less than 10 milliseconds. The freezing transition proceeds slowly with a half-time of approximately two seconds. Thus, the time period over which LDL particles reside in cooler regions of the body readily facilitates structural reorientation of the apolar core lipids. CONCLUSIONS/SIGNIFICANCE: Low density lipoproteins, the biological nanoparticles responsible for the transport of cholesterol in blood, are shown to act as intrinsic nano-thermometers, which can follow the periodic temperature changes during blood circulation. Our results demonstrate that the lipid core in LDL changes from a liquid crystalline to an oily state within fractions of seconds. This may, through the coupling to the protein structure of LDL, have important repercussions on current theories of the role of LDL in the pathogenesis of atherosclerosis.

  14. Identification and quantification of regioisomeric cholesteryl linoleate hydroperoxides in oxidized human low density lipoprotein and high density lipoprotein.

    Science.gov (United States)

    Kenar, J A; Havrilla, C M; Porter, N A; Guyton, J R; Brown, S A; Klemp, K F; Selinger, E

    1996-06-01

    Oxidation of human LDL is implicated as an initiator of atherosclerosis. Isolated low density lipoprotein (LDL) and high density lipoprotein (HDL2) were exposed to aqueous radicals generated from the thermolabile azo compound 2,2'-azobis(2-amidinopropane) dihydrochloride. The primary nonpolar lipid products formed from the autoxidation of LDL and HDL were the regioisomeric cholesteryl linoleate hydroperoxides. In LDL oxidations, 9- and 13-hydroperoxides with trans,cis conjugated diene were formed as the major oxidation products if endogenous alpha-tocopheral was present in the LDL. After extended oxidation of LDL, at the time when endogenous alpha-tocopherol was consumed, the two trans,cis conjugated diene hydroperoxides began to disappear and the 9- and 13-hydroperoxides with trans,trans conjugated diene appeared. At very long oxidation times, none of the primary products, the conjugated diene hydroperoxides, were present. In HDL2, which has only very low levels of antioxidants, both the 9- and 13-hydroperoxides with trans,cis conjugated diene and the 9- and 13-hydroperoxides with trans,trans conjugated diene were formed at early stages of oxidation. The corresponding alcohols were also formed in the HDL2 oxidations. A mechanistic hypothesis consistent with these observations is presented.

  15. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus

    2008-01-01

    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold...... of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.......03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic...

  16. SELDI-TOF mass spectrometry of High-Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Rezaee Farhad

    2007-09-01

    Full Text Available Abstract Background High-Density Lipoprotein (HDL, one of the main plasma lipoproteins, serves as a docking station for proteins involved in inflammation, coagulation, and lipid metabolism. Methods To elucidate the protein composition of HDL, we employed SELDI-TOF mass spectrometry as a potential high-throughput proteomic candidate for protein profiling of HDL. HDL derived from normolipemic individuals was captured on PS20 protein-chips using covalently bound antibodies against apo A-I or A-II. Results After optimisation, on-chip capture of HDL particles directly from plasma or from pre-purified HDL resulted in comparable fingerprints confirming specific capture of HDL. Depending on the capture antibody some differences in the fingerprint were observed. The most detailed fingerprint was observed up to 50 kDa; approximately 95 peaks were detected in the 3–50 kDa molecular mass range. Between 50 and 160 kDa, 27 more peaks were detected. Conclusion Based on these results, SELDI-TOF MS may be a suitable high-throughput candidate for HDL protein profiling and marker search. This approach may be used to i investigate the underlying mechanisms that lead to increased atherothrombotic risk and ii to investigate the atherothrombotic state of an individual.

  17. Moderate Exercise Increases Affinity of Large Very Low-Density Lipoproteins for Hydrolysis by Lipoprotein Lipase.

    Science.gov (United States)

    Ghafouri, Khloud; Cooney, Josephine; Bedford, Dorothy K; Wilson, John; Caslake, Muriel J; Gill, Jason M R

    2015-06-01

    Postprandial triglyceride (TG) concentration is independently associated with cardiovascular disease risk. Exercise reduces postprandial TG concentrations, but the mechanisms responsible are unclear. The objective was to determine the effects of exercise on affinity of chylomicrons, large very low-density lipoproteins (VLDL1), and smaller VLDL (VLDL2) for lipoprotein lipase (LPL)-mediated TG hydrolysis. This was designed as a within-participant crossover study. The setting was a university metabolic investigation unit. Participants were 10 overweight/obese men. Participants undertook two oral fat tolerance tests, separated by 7-14 days, in which they had blood taken while fasting and for 4 hours after a high-fat mixed meal. On the afternoon before one test, they performed a 90-minute treadmill walk at 50% maximal oxygen uptake (exercise trial [EX]); no exercise was performed before the control trial (CON). We measured circulating TG-rich lipoprotein concentrations and affinity of chylomicrons, VLDL1, and VLDL2 for LPL-mediated TG hydrolysis. Exercise significantly reduced fasting VLDL1-TG concentration (CON, 0.49 [0.33-0.72] mmol.L(-1); EX, 0.36 [0.22-0.59] mmol.L(-1); geometric means [95% confidence interval]; P = .04). Time-averaged postprandial chylomicron-TG (CON, 0.55 ± 0.10 mmol.L(-1); EX, 0.39 ± 0.08 mmol.L(-1); mean ± SEM; P = .03) and VLDL1-TG (CON, 0.85 ± 0.13 mmol.L(-1); EX, 0.66 ± 0.10 mmol.L(-1); P = .01) concentrations were both lower in EX than CON. Affinity of VLDL1 for LPL-mediated TG hydrolysis increased by 2.2 (1.3-3.7)-fold [geometric mean (95% confidence interval)] (P = .02) in the fasted state and 2.6 (1.8-2.6)-fold (P = .001) postprandially. Affinity of chylomicrons and VLDL2 was not significantly different between trials. Exercise increases affinity of VLDL1 for LPL-mediated TG hydrolysis both fasting and postprandially. This mechanism is likely to contribute to the TG-lowering effect of exercise.

  18. Achieving secondary prevention low-density lipoprotein particle concentration goals using lipoprotein cholesterol-based data.

    Directory of Open Access Journals (Sweden)

    Simon C Mathews

    Full Text Available BACKGROUND: Epidemiologic studies suggest that LDL particle concentration (LDL-P may remain elevated at guideline recommended LDL cholesterol goals, representing a source of residual risk. We examined the following seven separate lipid parameters in achieving the LDL-P goal of <1000 nmol/L goal for very high risk secondary prevention: total cholesterol to HDL cholesterol ratio, TC/HDL, <3; a composite of ATP-III very high risk targets, LDL-C<70 mg/dL, non-HDL-C<100 mg/dL and TG<150 mg/dL; a composite of standard secondary risk targets, LDL-C<100, non-HDL-C<130, TG<150; LDL phenotype; HDL-C ≥ 40; TG<150; and TG/HDL-C<3. METHODS: We measured ApoB, ApoAI, ultracentrifugation lipoprotein cholesterol and NMR lipoprotein particle concentration in 148 unselected primary and secondary prevention patients. RESULTS: TC/HDL-C<3 effectively discriminated subjects by LDL-P goal (F = 84.1, p<10(-6. The ATP-III very high risk composite target (LDL-C<70, nonHDL-C<100, TG<150 was also effective (F = 42.8, p<10(-5. However, the standard secondary prevention composite (LDL-C<100, non-HDL-C<130, TG<150 was also effective but yielded higher LDL-P than the very high risk composite (F = 42.0, p<10(-5 with upper 95% confidence interval of LDL-P less than 1000 nmol/L. TG<150 and TG/HDL-C<3 cutpoints both significantly discriminated subjects but the LDL-P upper 95% confidence intervals fell above goal of 1000 nmol/L (F = 15.8, p = 0.0001 and F = 9.7, p = 0.002 respectively. LDL density phenotype neared significance (F = 2.85, p = 0.094 and the HDL-C cutpoint of 40 mg/dL did not discriminate (F = 0.53, p = 0.47 alone or add discriminatory power to ATP-III targets. CONCLUSIONS: A simple composite of ATP-III very high risk lipoprotein cholesterol based treatment targets or TC/HDL-C ratio <3 most effectively identified subjects meeting the secondary prevention target level of LDL-P<1000 nmol/L, providing a potential alternative to advanced lipid testing in many clinical

  19. [Cholesterol in serum high density lipoprotein fraction (author's transl)].

    Science.gov (United States)

    Schatz, C; Jeanblanc, B; Offner, M

    1980-11-22

    The risk of atheroma can be assessed and valid epidemiological surveys can be carried out by measuring cholesterol in serum high density lipoprotein fraction (HDL) and calculating the HDL cholesterol: VLDL + LDL ratio. This was done in 39 patients free from surgically confirmed atheromatous lesions and in 51 patients presenting with such lesions. Of the four different techniques used for separation in these patients (ultracentrifugation, precipitation with heparin-Mn2+, precipitation with phosphotungstate-Mg2+ and electrophoresis), precipitation with phosphotungstate-Mg/2+ seems to be the most suitable, since there is no degradation of the HDL fraction as during electrophoresis on polyacrylamide gel, and less floculation of the supernatant after separation. Contrary to ultracentrifugation, which requires sophisticated equipment and good technical skill, the technique is easily carried out.

  20. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  1. Distinct Hepatic Receptors for Low Density Lipoprotein and Apolipoprotein E in Humans

    Science.gov (United States)

    Hoeg, Jeffrey M.; Demosky, Stephen J.; Gregg, Richard E.; Schaefer, Ernst J.; Brewer, H. Bryan

    1985-02-01

    Since the liver is a central organ for lipid and lipoprotein synthesis and catabolism, hepatic receptors for specific apolipoproteins on plasma lipoproteins would be expected to modulate lipid and lipoprotein metabolism. The role of hepatic receptors for low density lipoproteins and apolipoprotein E-containing lipoproteins was evaluated in patients with complementary disorders in lipoprotein metabolism: abetalipoproteinemia and homozygous familial hypercholesterolemia. In addition, hepatic membranes from a patient with familial hypercholesterolemia were studied and compared before and after portacaval shunt surgery. The results establish that the human liver has receptors for apolipoproteins B and E. Furthermore, in the human, hepatic receptors for low density lipoproteins and apolipoprotein E are genetically distinct and can undergo independent control.

  2. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice

    Indian Academy of Sciences (India)

    HAILONG OU; QINGHAI ZHANG; JIA ZENG

    2016-06-01

    The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia(FH). In this study, we directly delivered exogenousLdlrgene into the liver of FH model mice (Ldlr − / −) by lentiviral genetransfer system. The results showed that theLdlrgene controlled by hepatocyte-specific human thyroxine-binding globulin(TBG) promoter successfully and exclusively expressed in livers. We found that, although, the content of high density lipopro-tein in serum was not significantly affected by theLdlrgene expression, the serum low density lipoprotein level was reducedby 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjectedLdlr − / −mice. Moreover, the TBG directed expression ofLdlrsignificantly decreased the lipid accumulation in liver andreduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression ofLdlrgene strikinglylowered serum lipid levels and resulted in amelioration of hypercholesterolaemia.

  3. Low-Density Lipoprotein Receptor-Dependent and Low-Density Lipoprotein Receptor-Independent Mechanisms of Cyclosporin A-Induced Dyslipidemia.

    Science.gov (United States)

    Kockx, Maaike; Glaros, Elias; Leung, Betty; Ng, Theodore W; Berbée, Jimmy F P; Deswaerte, Virginie; Nawara, Diana; Quinn, Carmel; Rye, Kerry-Anne; Jessup, Wendy; Rensen, Patrick C N; Meikle, Peter J; Kritharides, Leonard

    2016-07-01

    Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)-mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr(-/-)). Ldlr(-/-) and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr(-/-) but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low-density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography-tandem mass spectrometry suggested a predominant effect of CsA on increased very low-density lipoprotein-IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [(14)C]cholesteryl oleate and glycerol tri[(3)H]oleate-double-labeled very low-density lipoprotein-like particles. Further studies showed that CsA inhibited plasma lipoprotein lipase activity and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. We demonstrate that CsA does not cause hyperlipidemia via direct effects on the LDLr. Rather, LDLr deficiency plays an important permissive role for CsA-induced hyperlipidemia, which is associated with abnormal lipoprotein clearance, decreased lipoprotein lipase activity, and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. Enhancing LDLr and lipoprotein lipase activity and decreasing

  4. 纤维蛋白原载脂蛋白A脂蛋白的测定对冠心病的诊断价值%The Diagnosis Value of Fibrinogen Apolipoprotein A Lipoprotein for Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    容永忠; 李斌

    2012-01-01

    Objective: To study the value of the fibrinogen ( FIB) , various indexes of apolipoprotein A and lipoprotein in diagnosing coronary heart disease ( CHD). Method: Random selection of 50 patients with coronary artery disease and 50 healthy people were divided into CHD group (50 patients) and health group (50 healthy people). HITACHI7180 automatic biochemistry analyzer was measured at apolipoproteinAl (ApoA1) .High density lipoprotein( HDL) and low density lipoprotein( LDL). Serum SDS-PAGE electro-poresis was measured at very low density lipoprotein(VLDL) and chylomicron( CM). Enzyme linked immu-nosorbent assay ( ELISA) was measured at the two groups of apolipoproteinA5 ( ApoA5 ) , Sysmex automatic coagulometer was measured at fibrinogen (FIB). And analyzed the relationship between them and CHD. Result: Compared CHD group and health group , ApoA5 level of CHD group decreased obviously ( P<0.05 ) , FIB, LDL, VLDL and Cmsignificantly increased (P<0. 01 or P<0. 05) , HDL and APOA1 levels were not significant difference ( P>0.05 ). Conclusion;FIB,LDL, VLDL and CM detection can be used as CHD laboratory diagnosis index, It's important for the diagnosis of coronary heart disease.%目的:探讨纤维蛋白原(FIB)、载脂蛋白A、脂蛋白的各项指标在冠心病(CHD)发病中的诊断价值.方法:随机选择冠心病患者50例,健康人50例,分为两组冠心病组50例、健康组50例.用日本HITACHI7180全自动生化分析仪分别测定这两组栽脂蛋白A1( ApoA1)、和高密度脂蛋白(HDL)、低密度脂蛋白(LDL);用血清凝胶电泳法测定极低密度脂蛋白(VLDL)及乳糜微粒(CM);用日本Sysmex公司的全自动血凝仪测定FIB;酶联免疫吸附法测定载脂蛋白A5( ApoA5),并分析它们与CHD的相关性.结果:冠心病组与健康组比较,冠心病组的ApoA5水平明显降低(P<0.05),FIB、CM、LDL、VLDL、均明显升高(P<0.01或P<0.05),而HDL和APOA1水平无显著差异(P>0.05).结论:FIB、LDL、VLDL

  5. High density lipoprotein level is negatively associated with the increase of oxidized low density lipoprotein lipids after a fatty meal.

    Science.gov (United States)

    Tiainen, Sanna; Ahotupa, Markku; Ylinen, Petteri; Vasankari, Tommi

    2014-12-01

    Recent reports show that a fatty meal can substantially increase the concentration of oxidized lipids in low density lipoprotein (LDL). Knowing the LDL-specific antioxidant effects of high density lipoprotein (HDL), we aimed to investigate whether HDL can modify the postprandial oxidative stress after a fatty meal. Subjects of the study (n = 71) consumed a test meal (a standard hamburger meal) rich in lipid peroxides, and blood samples were taken before, 120, 240, and 360 min after the meal. The study subjects were divided into four subgroups according to the pre-meal HDL cholesterol value (HDL subgroup 1, 0.66-0.91; subgroup 2, 0.93-1.13; subgroup 3, 1.16-1.35; subgroup 4, 1.40-2.65 mmol/L). The test meal induced a marked postprandial increase in the concentration of oxidized LDL lipids in all four subgroups. The pre-meal HDL level was associated with the extent of the postprandial rise in oxidized LDL lipids. From baseline to 6 h after the meal, the concentration of ox-LDL increased by 48, 31, 24, and 16% in the HDL subgroup 1, 2, 3, and 4, respectively, and the increase was higher in subgroup 1 compared to subgroup 3 (p = 0.028) and subgroup 4 (p = 0.0081), respectively. The pre-meal HDL correlated with both the amount and the rate of increase of oxidized LDL lipids. Results of the present study show that HDL is associated with the postprandial appearance of lipid peroxides in LDL. It is therefore likely that the sequestration and transport of atherogenic lipid peroxides is another significant mechanism contributing to cardioprotection by HDL.

  6. Should we change our lipid management strategies to focus on non-high-density lipoprotein cholesterol?

    NARCIS (Netherlands)

    J.S. Rana; S.M. Boekholdt

    2010-01-01

    Purpose of review Despite aggressive low-density lipoprotein cholesterol lowering, patients continue to be at significant risk of cardiovascular events. Assessment of non-high-density lipoprotein cholesterol (non-HDL-C) provides a measure of cholesterol contained in all atherogenic particles. In the

  7. Increased transvascular low density lipoprotein transport in insulin dependent diabetes

    DEFF Research Database (Denmark)

    Kornerup, Karen; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2003-01-01

    BACKGROUND: The increased risk of atherosclerosis associated with diabetes cannot be explained by conventional cardiovascular risk factors alone. We hypothesized that transvascular lipoprotein transport may be increased in patients with diabetes, possibly explaining increased intimal lipoprotein ...... be increased in patients with type 1 diabetes. This suggests that lipoprotein flux into the arterial wall is increased in people with type 1 diabetes, possibly explaining accelerated development of atherosclerosis....

  8. Native low density lipoprotein promotes lipid raft formation in macrophages.

    Science.gov (United States)

    Song, Jian; Ping, Ling-Yan; Duong, Duc M; Gao, Xiao-Yan; He, Chun-Yan; Wei, Lei; Wu, Jun-Zhu

    2016-03-01

    Oxidized low‑density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell‑mediated LDL oxidation remain to be elucidated. The present study investigated whether native‑LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl‑β‑cyclodextrin (MβCD), LDL‑stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label‑free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native‑LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native‑LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation.

  9. Stability of serum high-density lipoprotein-microRNAs for preanalytical conditions.

    Science.gov (United States)

    Ishikawa, Hiroaki; Yamada, Hiroya; Taromaru, Nao; Kondo, Kanako; Nagura, Ayuri; Yamazaki, Mirai; Ando, Yoshitaka; Munetsuna, Eiji; Suzuki, Koji; Ohashi, Koji; Teradaira, Ryoji

    2017-01-01

    Background Recently, several studies have shown that microRNAs are present in high-density lipoprotein, and high-density lipoprotein-microRNA may be a promising disease biomarker. We investigated the stability of high-density lipoprotein-microRNAs in different storage conditions as this is an important issue for its application to the field of clinical research. Methods microRNAs were extracted from the high-density lipoprotein fraction that was purified from the serum. miR-135 a and miR-223, which are known to be present in high-density lipoprotein, were quantified by quantitative real-time PCR. The influence of preanalytical parameters on the analysis of high-density lipoprotein-miRNAs was examined by the effect of RNase, storage conditions, and freezing and thawing. Results The concentrations of microRNA in high-density lipoprotein were not altered by RNase A treatment (0-100 U/mL). No significant change in these microRNAs was observed after storing serum at room temperature or 4℃ for 0-24 h, and there was a similar result in the cryopreservation for up to two weeks. Also, high-density lipoprotein-microRNAs were stable for, at least, up to five freeze-thaw cycles. Conclusions These results demonstrated that high-density lipoprotein-microRNAs are relatively resistant to various storage conditions. This study provides new and important information on the stability of high-density lipoprotein-microRNAs.

  10. Hydrolysis of guinea pig nascent very low density lipoproteins catalyzed by lipoprotein lipase: activation by hjman apolipoprotein C-II.

    Science.gov (United States)

    Fitzharris, T J; Quinn, D M; Goh, E H; Johnson, J D; Kashyap, M L; Srivastava, L S; Jackson, R L; Harmony, J A

    1981-08-01

    Very low density lipoproteins isolated from guinea pig liver perfusate (VLDLp) lack the equivalent of human apolipoprotein C-II (apoC-II), the activator of lipoprotein lipase (LpL). These lipoproteins are therefore ideal substrates with which to investigate the mechanism by which apoC-II activates the enzyme. VLDLp binds apoC-II, and apoC-II associated with VLDLp markedly increases the rate of lipoprotein lipase-catalyzed hydrolysis of VLDLp-triglycerides. The activator potency of apoC-II is independent of the method of enrichment of VLDLp with apoC-II: delipidated human apoC-II and apoC-II transferred from human high density lipoproteins activate lipoprotein lipase to equal extents. ApoC-II causes pH-dependent changes in both apparent Km and VmaX of LpL-catalyzed hydrolysis of VLDLp-triglycerides. At pH l7.4--7.5, the major effects of apoC-II is to decrease the apparent Km by 3.3--4.0 fold. The apparent Vmax is increased 1.3-fold. At pH 6.5 and 8.5, the decrease of apparent Km is less marked, 1.6-fold and 1.4-fold, respectively. At pH 6.5, apoC-II increases the apparent Vmax ty 1.3-fold, while at pH 8.5 the primary effect of apoC-II is a 1.6-fold increase of apparent Vmax. Based on a simple kinetic model, the data suggest that apoC-II favors direct interaction between enzyme and triglyceride within the lipoprotein particle, as well as subsequent catalytic turnover.

  11. Amphotericin B toxicity as related to the formation of oxidatively modified low-density lipoproteins.

    Science.gov (United States)

    Barwicz, J; Dumont, I; Ouellet, C; Gruda, I

    1998-01-01

    The effect of amphotericin B on the oxidation and degradation of low- and high-density lipoproteins was investigated by UV-vis spectroscopy, electron microscopy, electrophoresis, and size-exclusion chromatography. Two formulations of the drug were used: the commercial Fungizone and a new, less toxic, liposomal formulation, AmBisome. It was shown that Fungizone strongly enhanced the oxidative deformation of low-density lipoprotein structure while AmBisome did not bind to this lipoprotein fraction and did not affect its oxidation. It was shown that amphotericin B contained in Fungizone extracted cholesterol from low-density lipoproteins which sensitized them to oxidation. Both formulations of amphotericin B studied here did not bind to high-density lipoprotein and did not affect the process of its oxidation.

  12. Stability of discoidal high-density lipoprotein particles

    Science.gov (United States)

    Maleki, Mohsen; Fried, Eliot

    Motivated by experimental and numerical studies revealing that discoidal high-density lipoprotein (HDL) particles may adopt flat elliptical and nonplanar saddle-like configurations, it is hypothesized that these might represent stabilized configurations of initially unstable flat circular particles. A variational description is developed to explore the stability of a flat circular discoidal HDL particle. While the lipid bilayer is modeled as two-dimensional fluid film endowed with surface tension and bending elasticity, the apoA-I belt is modeled as one-dimensional inextensible twist-free chain endowed with bending elasticity. Stability is investigated using the second variation of the underlying energy functional. Various planar and nonplanar instability modes are predicted and corresponding nondimensional critical values of salient dimensionless parameters are obtained. The results predict that the first planar and nonplanar unstable modes occur due to in-plane elliptical and transverse saddle-like perturbations. Based on available data, detailed stability diagrams indicate the range of input parameters for which a flat circular discoidal HDL particle is linearly stable or unstable.

  13. Tiliroside and gnaphaliin inhibit human low density lipoprotein oxidation.

    Science.gov (United States)

    Schinella, Guillermo R; Tournier, Horacio A; Máñez, Salvador; de Buschiazzo, Perla M; Del Carmen Recio, María; Ríos, José Luis

    2007-01-01

    Two flavonoids, gnaphaliin and tiliroside, isolated from Helichrysum italicum, were studied in vitro for their capacity to inhibit Cu(2+)-induced human low density lipoprotein (LDL) and diluted plasma oxidation. LDL oxidation was monitored by conjugated diene, thiobarbituric acid-reactive substances (TBARS) formation and electrophoretic mobility on agarose gel. Gnaphaliin and tiliroside increased the lag-phase for diene conjugate production in a dose-dependent manner. The reduction of TBARS production confirmed the antioxidant activity of gnaphaliin and tiliroside with 50% inhibitory concentration (IC(50)) values of 8.0+/-3.9 microM and 7.0+/-2.6 microM respectively. Furthermore, the flavonoids negated the Cu(2+)-induced increase in electrophoretic mobility of LDL. Antioxidant activity of gnaphaliin and tiliroside was significantly different when diluted plasma was oxidised by adding 1 mM CuSO(4). Although both flavonoids again reduced the TBARS production, tiliroside showed higher activity than gnaphaliin (IC(50)=10.6+/-2.5 microM vs. IC(50)>50 microM). In conclusion, tiliroside and gnaphaliin are antioxidants against in vitro Cu(2+)-induced LDL oxidation in the same order of magnitude compared to that of the reference drug, probucol.

  14. Probucol alleviates atherosclerosis and improves high density lipoprotein function

    Directory of Open Access Journals (Sweden)

    Zhong Jian-Kai

    2011-11-01

    Full Text Available Abstract Background Probucol is a unique hypolipidemic agent that decreases high density lipoprotein cholesterol (HDL-C. However, it is not definite that whether probucol hinders the progression of atherosclerosis by improving HDL function. Methods Eighteen New Zealand White rabbits were randomly divided into the control, atherosclerosis and probucol groups. Control group were fed a regular diet; the atherosclerosis group received a high fat diet, and the probucol group received the high fat diet plus probucol. Hepatocytes and peritoneal macrophages were isolated for [3H] labeled cholesterol efflux rates and expression of ABCA1 and SR-B1 at gene and protein levels; venous blood was collected for serum paraoxonase 1, myeloperoxidase activity and lipid analysis. Aorta were prepared for morphologic and immunohistochemical analysis after 12 weeks. Results Compared to the atherosclerosis group, the paraoxonase 1 activity, cholesterol efflux rates, expression of ABCA1 and SR-BI in hepatocytes and peritoneal macrophages, and the level of ABCA1 and SR-BI in aortic lesions were remarkably improved in the probucol group, But the serum HDL cholesterol concentration, myeloperoxidase activity, the IMT and the percentage plaque area of aorta were significantly decreased. Conclusion Probucol alleviated atherosclerosis by improving HDL function. The mechanisms include accelerating the process of reverse cholesterol transport, improving the anti-inflammatory and anti-oxidant functions.

  15. Fast protein chromatofocusing of human very-low-density lipoproteins.

    Science.gov (United States)

    Weisweiler, P; Friedl, C; Schwandt, P

    1986-01-03

    Using fast protein chromatofocusing, a high-efficiency column chromatography method with a self-generated pH gradient and focusing effects, soluble human very-low-density lipoprotein (VLDL) apolipoproteins were fractionated between pH 6.3 and 4.0. In the presence of 6 mol/l urea and with a flow rate of 1 ml/min, one run (up to 10 mg of protein) took 30 min. VLDL apolipoproteins were separated in seven peaks. As revealed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing and double-immunodiffusion against mono-specific antisera, fractions corresponded to the following proteins: apolipoprotein C-I, albumin, apolipoproteins A-I, E, C-II plus C-III0, C-III1 and C-III2, respectively. Apolipoproteins were eluted in sharp, well-resolved peaks. The recovery of proteins was 78% of the starting material. With fast protein chromatofocusing, an efficient isolation of single apolipoproteins is possible from small amounts of VLDL apolipoprotein preparations. This technique is superior to the commonly used, time-consuming methods for apolipoprotein isolation.

  16. Nonpharmacological approaches for reducing serum low-density lipoprotein cholesterol.

    Science.gov (United States)

    Griffin, Bruce A

    2014-07-01

    To reinforce the key role of diet and lifestyle modification as the first-line treatment for the reduction of raised serum low-density lipoprotein cholesterol (LDL-C) and prevention of cardiovascular disease. Also, to counter recent claims that the current dietary guidelines for the treatment of cardiovascular disease have misplaced emphasis on the importance of removing dietary saturated fat instead of sugar. This review provides new insight into the effects of diet and lifestyle factors with established efficacy in lowering serum LDL-C. This includes energy-restricted weight loss and new findings on the effects of alternative day fasting; novel metabolic and molecular effects of replacing palmitic acid with oleic acid; evidence for a dose-response relationship between the intake of dietary stanols and LDL-C; and identification of a unique metabolic pathway for the excretion of cholesterol. The review reports new evidence for the efficacy of alternate day fasting, reassurance that the current dietary guidelines are not misguided by recommending removal of saturated fat, that a high intake of dietary stanols can achieve a reduction in LDL-C of up to 18%, and describes a pathway of cholesterol excretion that may help to explain variation in the response of serum LDL-C to dietary fat and cholesterol.

  17. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    Science.gov (United States)

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  18. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter

    2013-09-01

    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  19. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  20. Low fasting low high-density lipoprotein and postprandial lipemia

    Directory of Open Access Journals (Sweden)

    Sorodila Konstandina

    2004-07-01

    Full Text Available Abstract Background Low levels of high density lipoprotein (HDL cholesterol and disturbed postprandial lipemia are associated with coronary heart disease. In the present study, we evaluated the variation of triglyceride (TG postprandially in respect to serum HDL cholesterol levels. Results Fifty two Greek men were divided into 2 main groups: a the low HDL group (HDL p = 0.002. The low HDL group had significantly higher TG at 4, 6 and 8 h postprandially compared to the controls (p = 0.006, p = 0.002, and p p = 0.017 compared to the matched-control group. ROC analysis showed that fasting TG ≥ 121 mg/dl have 100% sensitivity and 81% specificity for an abnormal TG response (auc = 0.962, p Conclusions The delayed TG clearance postprandially seems to result in low HDL cholesterol even in subjects with low fasting TG. The fasting TG > 121 mg/dl are predictable for abnormal response to fatty meal.

  1. High-density lipoprotein (HDL) metabolism and bone mass.

    Science.gov (United States)

    Papachristou, Nicholaos I; Blair, Harry C; Kypreos, Kyriakos E; Papachristou, Dionysios J

    2017-05-01

    It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL-bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions. © 2017 Society for Endocrinology.

  2. Iatrogenic severe depression of high-density lipoprotein cholesterol.

    Science.gov (United States)

    Mymin, D; Dembinski, T; Friesen, M H

    2009-07-01

    The authors present 5 cases of paradoxical depression of high-density lipoprotein (HDL) cholesterol induced by fibrate drugs. In a 24-month review of all cases seen in one physician's practice at the Winnipeg Health Sciences Centre Lipid Clinic, 492 patients made a total of 1187 visits. Sixty-eight of them were given a fibrate drug (14%). Ten patients had HDL cholesterol levels that were less than 0.5 mmol/L (2%), and of these, 5 cases were due to exposure to fenofibrate (1%). These 5 cases comprised 7.4% of the 68 patients who were given any fibrate drug during that period. Mean levels were as follows: HDL cholesterol on fenofibrate 0.27, off fenofibrate 1.0 mmol/L and apo A1 on fenofibrate 0.41, off fenofibrate 1.17 g/L. A literature review revealed documented cases in 37 patients involving fibrates alone or in combination with other drugs known to cause decreased HDL cholesterol levels. In 13 patients, exposure was to fibrate therapy alone; in those exposed to combinations, the effect was clearly attributable to fibrates in 9; in 14, the nonfibrates (mostly rosiglitazone) were the attributable drugs; and in 1, it was impossible to tell. Thus, fibrate therapy should always be suspected as a cause of profoundly depressed HDL cholesterol.

  3. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans.

    Science.gov (United States)

    Suzuki-Sugihara, Norie; Kishimoto, Yoshimi; Saita, Emi; Taguchi, Chie; Kobayashi, Makoto; Ichitani, Masaki; Ukawa, Yuuichi; Sagesaka, Yuko M; Suzuki, Emiko; Kondo, Kazuo

    2016-01-01

    Green tea is rich in polyphenols, including catechins which have antioxidant activities and are considered to have beneficial effects on cardiovascular health. In the present study, we investigated the effects of green tea catechins on low-density lipoprotein (LDL) oxidation in vitro and in human studies to test the hypothesis that catechins are incorporated into LDL particles and exert antioxidant properties. In a randomized, placebo-controlled, double-blind, crossover trial, 19 healthy men ingested green tea extract (GTE) in the form of capsules at a dose of 1 g total catechin, of which most (>99%) was the gallated type. At 1 hour after ingestion, marked increases of the plasma concentrations of (-)-epigallocatechin gallate and (-)-epicatechin gallate were observed. Accordingly, the plasma total antioxidant capacity was increased, and the LDL oxidizability was significantly reduced by the ingestion of GTE. We found that gallated catechins were incorporated into LDL particles in nonconjugated forms after the incubation of GTE with plasma in vitro. Moreover, the catechin-incorporated LDL was highly resistant to radical-induced oxidation in vitro. An additional human study with 5 healthy women confirmed that GTE intake sufficiently increased the concentration of gallated catechins, mainly in nonconjugated forms in LDL particles, and reduced the oxidizability of LDL. In conclusion, green tea catechins are rapidly incorporated into LDL particles and play a role in reducing LDL oxidation in humans, which suggests that taking green tea catechins is effective in reducing atherosclerosis risk associated with oxidative stress.

  4. A 90 minute soccer match decreases triglyceride and low density lipoprotein but not high-density lipoprotein and cholesterol levels

    Directory of Open Access Journals (Sweden)

    Nader - Rahnama

    2009-11-01

    Full Text Available

    • BACKGROUND: The association between the lipid profiles level and the incidence and severity of coronary heart disease (CHD is very pronounced in epidemiological studies, and an inverse relation between physical fitness and the incidence of coronary heart disease has been observed in many studies. The aim of this study was to investigate the impact of a soccer match on lipid parameters of professional soccer players.
    • METHODS: Twenty two professional soccer players participated in the study. Blood (10ml for determination of lipid profiles was obtained at rest and immediately after a 90 minute soccer match. Lipid parameters were measured using Boehringer Mannheim kits and Clinilab and BioMerieux analyser.
    • RESULTS: The results of this study showed that the triglyceride was significantly higher before the match than afterwards (159.09 ± 58.2 vs. 88.63 ± 34.1 mg/dl, p < 0.001, whereas the low-density lipoprotein (LDL was lower before the match than after it (98.04 ± 28.9 vs. 112.31 ± 30.5 mg/dl. Moreover, there were no significant differences in cholesterol concentration (171.4 ± 30.28 mg/dl vs. 173.18 ± 32.75 mg/dl and high-density lipoprotein (HDL concentration (34.04 ± 5.58 mg/dl vs. 34.4 ± 4.6 mg/dl between before and after the match.
    • CONCLUSIONS: Although the soccer competitive match has no favourable acute effect on lipid

    • Is the oxidation of high-density lipoprotein lipids different than the oxidation of low-density lipoprotein lipids?

      Science.gov (United States)

      Thomas, M J; Chen, Q; Zabalawi, M; Anderson, R; Wilson, M; Weinberg, R; Sorci-Thomas, M G; Rudel, L L

      2001-02-13

      This article gives detailed insight into the kinetics of high-density lipoprotein (HDL) oxidation catalyzed by azobis(2-amidinopropane).dihydrochloride (ABAP) or by copper. ABAP initialized oxidation of human HDL 3-4 times faster than non-human primate HDL with a similar composition. The oxidizability of non-human primate HDL was 1000 times lower than the oxidizability calculated from rate constants derived from liposome oxidation, suggesting that there is a slow step in HDL oxidation not present in liposomes. Saturable binding of copper to HDL was a significant feature of copper-catalyzed oxidation. Binding constants (K(m)) for non-human primate HDL were 2-3-fold lower than those for human HDL. Copper-catalyzed oxidation of non-human primate HDL was slower than that of human HDL, but human HDL(2) and HDL(3) oxidized at about the same rate. Overall, the kinetics describing the oxidation of HDL were mechanistically similar to those reported for LDL, suggesting that HDL lipids were as easily oxidized as LDL lipids and that HDL will be easily oxidized in vivo when exposed to agents that oxidize LDL.

    • High-density lipoprotein cholesterol on a roller coaster: where will the ride end?

      Science.gov (United States)

      Kronenberg, Florian

      2016-04-01

      Bowe et al. report an association between low high-density lipoprotein cholesterol concentrations and various incident chronic kidney disease end points in a cohort of almost 2 million US veterans followed for 9 years. These impressive data should be a starting point for further investigations including genetic epidemiologic investigations as well as post hoc analyses of interventional trials that target high-density lipoprotein cholesterol and, finally, studies that focus on the functionality of high-density lipoprotein particles.

    • High-density lipoprotein proteome dynamics in human endotoxemia

      Directory of Open Access Journals (Sweden)

      Stroes Erik SG

      2011-06-01

      Full Text Available Abstract Background A large variety of proteins involved in inflammation, coagulation, lipid-oxidation and lipid metabolism have been associated with high-density lipoprotein (HDL and it is anticipated that changes in the HDL proteome have implications for the multiple functions of HDL. Here, SELDI-TOF mass spectrometry (MS was used to study the dynamic changes of HDL protein composition in a human experimental low-dose endotoxemia model. Ten healthy men with low HDL cholesterol (0.7+/-0.1 mmol/L and 10 men with high HDL cholesterol levels (1.9+/-0.4 mmol/L were challenged with endotoxin (LPS intravenously (1 ng/kg bodyweight. We previously showed that subjects with low HDL cholesterol are more susceptible to an inflammatory challenge. The current study tested the hypothesis that this discrepancy may be related to differences in the HDL proteome. Results Plasma drawn at 7 time-points over a 24 hour time period after LPS challenge was used for direct capture of HDL using antibodies against apolipoprotein A-I followed by subsequent SELDI-TOF MS profiling. Upon LPS administration, profound changes in 21 markers (adjusted p-value Conclusions This study shows that the semi-quantitative differences in the HDL proteome as assessed by SELDI-TOF MS cannot explain why subjects with low HDL cholesterol are more susceptible to a challenge with LPS than those with high HDL cholesterol. Instead the results indicate that hierarchical clustering could be useful to predict HDL functionality in acute phase responses towards LPS.

    • Aggregation and fusion of modified low density lipoprotein.

      Science.gov (United States)

      Pentikäinen, M O; Lehtonen, E M; Kovanen, P T

      1996-12-01

      In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.

    • High-density lipoprotein and atherosclerosis: Roles of lipid transporters

      Institute of Scientific and Technical Information of China (English)

      Yoshinari; Uehara; Keijiro; Saku

      2014-01-01

      Various previous studies have found a negative cor-relation between the risk of cardiovascular events and serum high-density lipoprotein(HDL) cholesterol levels. The reverse cholesterol transport, a pathway of choles-terol from peripheral tissue to liver which has several potent antiatherogenic properties. For instance, the particles of HDL mediate to transport cholesterol from cells in arterial tissues, particularly from atherosclerotic plaques, to the liver. Both ATP-binding cassette trans-porters(ABC) A1 and ABCG1 are membrane cholesterol transporters and have been implicated in mediating cholesterol effluxes from cells in the presence of HDL and apolipoprotein A-I, a major protein constituent of HDL. Previous studies demonstrated that ABCA1 and ABCG1 or the interaction between ABCA1 and ABCG1 exerted antiatherosclerotic effects. As a therapeutic approach for increasing HDL cholesterol levels, much focus has been placed on increasing HDL cholesterol levels as well as enhancing HDL biochemical functions. HDL therapies that use injections of reconstituted HDL, apoA-I mimetics, or full-length apoA-I have shown dramatic effectiveness. In particular, a novel apoA-I mi-metic peptide, Fukuoka University ApoA-I Mimetic Pep-tide, effectively removes cholesterol via specific ABCA1 and other transporters, such as ABCG1, and has an an-tiatherosclerotic effect by enhancing the biological func-tions of HDL without changing circulating HDL choles-terol levels. Thus, HDL-targeting therapy has significant atheroprotective potential, as it uses lipid transporter-targeting agents, and may prove to be a therapeutic tool for atherosclerotic cardiovascular diseases.

    • Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication.

      Science.gov (United States)

      Rivero, Maria R; Miras, Silvana L; Quiroga, Rodrigo; Rópolo, Andrea S; Touz, Maria C

      2011-03-01

      As Giardia lamblia is unable to synthesize cholesterol de novo, this steroid might be obtained from the host's intestinal milieu by endocytosis of lipoproteins. In this work, we identified a putative Giardia lamblia low-density lipoprotein receptor-related proteins (GlLRP), a type I membrane protein, which shares the substrate N-terminal binding domain and a FXNPXY-type endocytic motif with human LRPs. Expression of tagged GlLRP showed that it was localized predominantly in the endoplasmic reticulum, lysosomal-like peripheral vacuoles and plasma membrane. However, the FXNPXY-deleted GlLRP was retained at the plasma membrane suggesting that it is abnormally transported and processed. The low-density lipoprotein and chylomicrons interacted with GlLRP, with this interaction being necessary for lipoprotein internalization and cell proliferation. Finally, we show that GlLRP binds directly to the medium subunit of Giardia adaptor protein 2, indicating that receptor-mediated internalization occurs through an adaptin mechanism.

    • Effects of atorvastatin and simvastatin on low-density lipoprotein subfraction profile, low-density lipoprotein oxidizability, and antibodies to oxidized low-density lipoprotein in relation to carotid intima media thickness in familial hypercholesterolemia.

      NARCIS (Netherlands)

      Tits, L.J.H. van; Smilde, T.J.; Wissen, S. van; Graaf, J. de; Kastelein, J.J.P.; Stalenhoef, A.F.H.

      2004-01-01

      BACKGROUND: Little is known about the effects of statins on the quality of circulating low-density lipoprotein (LDL) in relation to atherosclerosis progression. METHODS: In a double-blind, randomized trial of 325 patients with familial hypercholesterolemia (FH), we assessed the effects of high-dose

    • Assessing the functional properties of high-density lipoproteins : an emerging concept in cardiovascular research

      NARCIS (Netherlands)

      Triolo, Michela; Annema, Wijtske; Dullaart, Robin P. F.; Tietge, Uwe J. F.

      2013-01-01

      Although plasma concentrations of high-density lipoprotein (HDL) cholesterol correlate inversely with the incidence of atherosclerotic cardiovascular disease, results from recent epidemiological, genetic and pharmacological intervention studies resulted in a shift of concept. Rather than HDL cholest

    • High Density Lipoproteins and Arteriosclerosis: Role of Cholesterol Efflux and Reverse Cholesterol Transport

      National Research Council Canada - National Science Library

      von Eckardstein, Arnold; Nofer, Jerzy Roch; Assmann, Gerd

      2001-01-01

      Abstract—High density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease, and HDL exerts various potentially antiatherogenic properties, including the mediation of reverse transport of cholesterol...

    • Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

      NARCIS (Netherlands)

      Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.

      1998-01-01

      Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels

    • Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

      DEFF Research Database (Denmark)

      Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre

      2011-01-01

      Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipop...

    • Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins.

      Science.gov (United States)

      Adeyo, O; Goulbourne, C N; Bensadoun, A; Beigneux, A P; Fong, L G; Young, S G

      2012-12-01

      Lipoprotein lipase (LPL) is produced by parenchymal cells, mainly adipocytes and myocytes, but is involved in hydrolysing triglycerides in plasma lipoproteins at the capillary lumen. For decades, the mechanism by which LPL reaches its site of action in capillaries was unclear, but this mystery was recently solved. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells, 'picks up' LPL from the interstitial spaces and shuttles it across endothelial cells to the capillary lumen. When GPIHBP1 is absent, LPL is mislocalized to the interstitial spaces, leading to severe hypertriglyceridaemia. Some cases of hypertriglyceridaemia in humans are caused by GPIHBP1 mutations that interfere with the ability of GPIHBP1 to bind to LPL, and some are caused by LPL mutations that impair the ability of LPL to bind to GPIHBP1. Here, we review recent progress in understanding the role of GPIHBP1 in health and disease and discuss some of the remaining unresolved issues regarding the processing of triglyceride-rich lipoproteins. © 2012 The Association for the Publication of the Journal of Internal Medicine.

    • Reliability of Calculated Low-Density Lipoprotein Cholesterol.

      Science.gov (United States)

      Meeusen, Jeffrey W; Snozek, Christine L; Baumann, Nikola A; Jaffe, Allan S; Saenger, Amy K

      2015-08-15

      Aggressive low-density lipoprotein cholesterol (LDL-C)-lowering strategies are recommended for prevention of cardiovascular events in high-risk populations. Guidelines recommend a 30% to 50% reduction in at-risk patients even when LDL-C concentrations are between 70 and 130 mg/dl (1.8 to 3.4 mmol/L). However, calculation of LDL-C by the Friedewald equation is the primary laboratory method for routine LDL-C measurement. We compared the accuracy and reproducibility of calculated LDL-C <130 mg/dl (3.4 mmol/L) to LDL-C measured by β quantification (considered the gold standard method) in 15,917 patients with fasting triglyceride concentrations <400 mg/dl (4.5 mmol/L). Both variation and bias of calculated LDL-C increased at lower values of measured LDL-C. The 95% confidence intervals for a calculated LDL-C of 70 mg/dl (1.8 mmol/L) and 30 mg/dl (0.8 mmol/L) were 60 to 86 mg/dl (1.6 to 2.2 mmol/L) and 24 to 60 mg/dl (0.6 to 1.6 mmol/L), respectively. Previous recommendations have emphasized the requirement for a fasting sample with triglycerides <400 mg/dl (4.5 mmol/L) to calculate LDL-C by the Friedewald equation. However, no recommendations have addressed the appropriate lower reportable limit for calculated LDL-C. In conclusion, calculated LDL-C <30 mg/dl (0.8 mmol/L) should not be reported because of significant deviation from the gold standard measured LDL-C results, and caution is advised when using calculated LDL-CF values <70 mg/dl (1.8 mmol/L) to make treatment decisions.

    • Human endothelial progenitor cells internalize high-density lipoprotein.

      Science.gov (United States)

      Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

      2013-01-01

      Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

    • Human endothelial progenitor cells internalize high-density lipoprotein.

      Directory of Open Access Journals (Sweden)

      Kaemisa Srisen

      Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

    • Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans

      DEFF Research Database (Denmark)

      Nielsen, Morten Schallburg; Brejning, Jeanette; García, R.;

      1997-01-01

      Lipoprotein lipase (LpL) can mediate cellular uptake of chylomicron and VLDL remnants via binding to heparan sulfate proteoglycans (HSPG) and the endocytic alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha2MR/LRP). Whereas it is established that the C-terminal ......Lipoprotein lipase (LpL) can mediate cellular uptake of chylomicron and VLDL remnants via binding to heparan sulfate proteoglycans (HSPG) and the endocytic alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha2MR/LRP). Whereas it is established that the C...

  1. Common Low-Density Lipoprotein Receptor p.G116S Variant Has a Large Effect on Plasma Low-Density Lipoprotein Cholesterol in Circumpolar Inuit Populations

    DEFF Research Database (Denmark)

    Dube, J. B.; Wang, J.; Cao, H.

    2015-01-01

    BACKGROUND: Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p...

  2. Metabolism of a Lipid Nanoemulsion Resembling Low-Density Lipoprotein in Patients with Grade III Obesity

    Science.gov (United States)

    Dantas, Simone Alves; Ficker, Elisabeth Salvatori; Vinagre, Carmen G. C.; Ianni, Barbara Maria; Maranhão, Raul Cavalcante; Mady, Charles

    2010-01-01

    INTRODUCTION: Obesity increases triglyceride levels and decreases high-density lipoprotein concentrations in plasma. Artificial emulsions resembling lipidic plasma lipoprotein structures have been used to evaluate low-density lipoprotein metabolism. In grade III obesity, low density lipoprotein metabolism is poorly understood. OBJECTIVE: To evaluate the kinetics with which a cholesterol-rich emulsion (called a low-density emulsion) binds to low-density lipoprotein receptors in a group of patients with grade III obesity by the fractional clearance rate. METHODS: A low-density emulsion was labeled with [14C]-cholesterol ester and [3H]-triglycerides and injected intravenously into ten normolipidemic non-diabetic patients with grade III obesity [body mass index higher than 40 kg/m2] and into ten non-obese healthy controls. Blood samples were collected over 24 hours to determine the plasma decay curve and to calculate the fractional clearance rate. RESULTS: There was no difference regarding plasma levels of total cholesterol or low-density lipoprotein cholesterol between the two groups. The fractional clearance rate of triglycerides was 0.086 ± 0.044 in the obese group and 0.122 ± 0.026 in the controls (p = 0.040), and the fractional clearance rate of cholesterol ester (h−1) was 0.052 ± 0.021 in the obese subjects and 0.058 ± 0.015 (p = 0.971) in the controls. CONCLUSION: Grade III obese subjects exhibited normal low-density lipoprotein removal from plasma as tested by the nanoemulsion method, but triglyceride removal was slower. PMID:20126342

  3. Softness of atherogenic lipoproteins: a comparison of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) using elastic incoherent neutron scattering (EINS).

    Science.gov (United States)

    Mikl, Christian; Peters, Judith; Trapp, Marcus; Kornmueller, Karin; Schneider, Wolfgang J; Prassl, Ruth

    2011-08-31

    Apolipoprotein B100 (apoB100)-containing plasma lipoproteins (LDL and VLDL) supply tissues and cells with cholesterol and fat. During lipolytic conversion from VLDL to LDL the size and chemical composition of the particles change, but the apoB100 molecule remains bound to the lipids and regulates the receptor mediated uptake. The molecular physical parameters which control lipoprotein remodeling and enable particle stabilization by apoB100 are largely unknown. Here, we have compared the molecular dynamics and elasticities of VLDL and LDL derived by elastic neutron scattering temperature scans. We have determined thermal motions, dynamical transitions, and molecular fluctuations, which reflect the temperature-dependent motional coupling between lipid and protein. Our results revealed that lipoprotein particles are extremely soft and flexible. We found substantial differences in the molecular resiliences of lipoproteins, especially at higher temperatures. These discrepancies not only can be explained in terms of lipid composition and mobility but also suggest that apoB100 displays different dynamics dependent on the lipoprotein it is bound to. Hence, we suppose that the inherent conformational flexibility of apoB100 permits particle stabilization upon lipid exchange, whereas the dynamic coupling between protein and lipids might be a key determinant for lipoprotein conversion and atherogenicity.

  4. Thermal transitions in the low-density lipoprotein and lipids of the egg yolk of hens.

    Science.gov (United States)

    Smith, M B; Back, J F

    1975-05-22

    1. Differential sanning calorimetry and light-scattering have been used to investigate temperature-dependent transitions in low-density lipoprotein and in lipids from hens' egg yolk. Yolks of different fatty acid composition were obtained by varying the dietary lipid and by adding methyl sterculate to the hen's diet. 2. Lipoprotein solutions in 50 percent glycerol/water gave characteristic melting curves between -25 degrees C and 50 degrees C, and on cooling showed increases in light-scattering between 10 degrees C and -20 degrees C. The temperatures at which major changes occurred depended on the proportions of saturated and unsaturated fatty acids. 3. The thermal transitions in the intact lipoprotein in glycerol solution were reversible, but with marked hysteresis. Lipid extracted from the lipoprotein did not show temperature hystersis but the transition heats and melting curves similar to those of the intact lipoprotein. The results support the hypothesis of a "lipid-core" structure for low-density lipoproteins. 4. Scanning calorimetry of egg-yolk lecithins indicated a strong dependence of transition temperature on water content in the rane 3 percent-20 percent water. A rise in the mid-temperature of the liquid-crystalline to gel transition as the water content is lowered on freezing may be the primary event in the irreversible gelation of egg yolk and aggregation of lipoprotein.

  5. Obstructive jaundice leads to accumulation of oxidized low density lipoprotein in human liver tissue

    Institute of Scientific and Technical Information of China (English)

    Mustafa Comert; Yucel Ustundag; Ishak Ozel Tekin; Banu Dogan Gun; Figen Barut

    2006-01-01

    Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice.Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.

  6. Effect of improving glycemic control in patients with type 2 diabetes mellitus on low-density lipoprotein size, electronegative low-density lipoprotein and lipoprotein-associated phospholipase A2 distribution.

    Science.gov (United States)

    Sánchez-Quesada, José L; Vinagre, Irene; de Juan-Franco, Elena; Sánchez-Hernández, Juan; Blanco-Vaca, Francisco; Ordóñez-Llanos, Jordi; Pérez, Antonio

    2012-07-01

    The aim of this study was to determine the effect of intensified hypoglycemic therapy in patients with type 2 diabetes mellitus on the distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity between high-density lipoprotein and low-density lipoprotein (LDL) and its relation with the lipid profile and other qualitative properties of LDL. Forty-two patients with type 2 diabetes on the basis of poor glycemic control and normal or near normal LDL cholesterol were recruited. Lifestyle counseling and pharmacologic hypoglycemic therapy were intensified to improve glycemic control, but lipid-lowering therapy was unchanged. At 4 ± 2 months, glycosylated hemoglobin had decreased by a mean of 2.1%, but the only effect on the lipid profile were statistically significant decreases in nonesterified fatty acids and apolipoprotein B concentration. LDL size increased and the proportion of electronegative LDL decreased significantly. In parallel, total Lp-PLA2 activity decreased significantly, promoting a redistribution of Lp-PLA2 activity toward a higher proportion in high-density lipoprotein. Improvements in glycemic control led to more marked changes in Lp-PLA2 activity and distribution in patients with diabetes who had not received previous lipid-lowering therapy. In conclusion, optimizing glycemic control in patients with type 2 diabetes promotes atheroprotective changes, including larger LDL size, decreased electronegative LDL, and a higher proportion of Lp-PLA2 activity in high-density lipoprotein.

  7. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice.

    Science.gov (United States)

    Sberna, Anne-Laure; Assem, Mahfoud; Xiao, Rui; Ayers, Steve; Gautier, Thomas; Guiu, Boris; Deckert, Valérie; Chevriaux, Angélique; Grober, Jacques; Le Guern, Naig; Pais de Barros, Jean-Paul; Moore, David D; Lagrost, Laurent; Masson, David

    2011-10-01

    The goal of this study was to determine the impact of the nuclear receptor constitutive androstane receptor (CAR) on lipoprotein metabolism and atherosclerosis in hyperlipidemic mice. Low-density lipoprotein receptor-deficient (Ldlr(-/-)) and apolipoprotein E-deficient (ApoE(-/-)) mice fed a Western-type diet were treated weekly with the Car agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or the vehicle only for 8 weeks. In Ldlr(-/-) mice, treatment with TCPOBOP induced a decrease in plasma triglyceride and intermediate-density lipoprotein/low-density lipoprotein cholesterol levels (≈30% decrease in both cases after 2 months, Plipoproteins associated with a decrease in hepatic triglyceride content and the repression of several genes involved in lipogenesis. TCPOBOP treatment also induced a marked increase in the very-low-density lipoprotein receptor in the liver, which probably contributed to the decrease in intermediate-density lipoprotein/low-density lipoprotein levels. Atherosclerotic lesions in the aortic valves of TCPOBOP-treated Ldlr(-/-) mice were also reduced (-60%, Plipoprotein receptor, the effect of TCPOBOP on plasma cholesterol levels and the development of atherosclerotic lesions was markedly attenuated. CAR is a potential target in the prevention and treatment of hypercholesterolemia and atherosclerosis.

  8. One precursor, three apolipoproteins: the relationship between two crustacean lipoproteins, the large discoidal lipoprotein and the high density lipoprotein/β-glucan binding protein.

    Science.gov (United States)

    Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich

    2014-12-01

    The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.

  9. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans

    OpenAIRE

    Kathiresan, Sekar; Melander, Olle; Guiducci, Candace; Surti, Aarti; Burtt, Noël P.; Rieder, Mark J; Cooper, Gregory M.; Roos, Charlotta; Benjamin F Voight; Havulinna, Aki S.; Wahlstrand, Björn; Hedner, Thomas; Corella, Dolores; Tai, E Shyong; Ordovas, Jose M.

    2008-01-01

    Blood concentrations of lipoproteins and lipids are heritable1 risk factors for cardiovascular disease2,3. Using genome-wide association data from three studies (n = 8,816 that included 2,758 individuals from the Diabetes Genetics Initiative specific to the current paper as well as 1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables reported in a companion paper in this issue4) and targeted replication associat...

  10. The multiligand α2-macroglobulin receptor/low density lipoprotein receptor-related protein

    DEFF Research Database (Denmark)

    Gliemann, Jørgen; Nykjær, Anders; Petersen, Claus Munck

    1994-01-01

    The fusion of separate lines of research has greatly helped in elucidating the function of the giant members of the low density lipoprotein (LDL) receptor (LDLR) supergene family. The cDNA encoding a large protein structurally closely related to LDLR, and hence named LDLR-related protein (LRP......), was cloned by Herz et al. in 1988.'Evidence was provided demonstrating that LRP can function as a receptor for chylomicron remnants@-migrating very low density lipoproteins (P-VLDL) rich in apolipoprotein E (apoE)?' The a2-macroglobulin (a2M) receptor (a2MR) was purified from rat livep and human p l a~e n t...

  11. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

    Science.gov (United States)

    Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

    2016-07-27

    Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

  12. Comparison of apoprotein B of low density lipoproteins of human interstitial fluid and plasma.

    Science.gov (United States)

    Hong, J L; Pflug, J; Reichl, D

    1984-08-15

    Virtually all apoprotein B (apoB)-containing lipoproteins of the peripheral interstitial fluid of subjects with primary lymphoedema float in the ultracentrifugal field in the density interval 1.019-1.063 g/ml; in this respect they are similar to plasma low-density lipoproteins (LDL). 2. Virtually all apo-B-containing lipoproteins of interstitial fluid migrate in the electrophoretic field with pre-beta mobility; in this respect they are similar to plasma very-low-density lipoproteins. 3. The apoB of lipoproteins of interstitial fluid does not differ in terms of Mr from apoB-100 of human plasma [Kane, Hardman & Paulus (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2465-2469] as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. Both apoB of interstitial fluid and plasma are heterogenous in terms of their charge as determined by isoelectric focusing of their complexes with the nonionic detergent Nonidet P40. ApoB of plasma LDL focuses between pH5.9 and 6.65, and that of interstitial fluid LDL between pH 5.9 and 6.1. Thus the overall charge of apoB of interstitial fluid is more negative than that of its plasma LDL counterpart.

  13. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients.

    Science.gov (United States)

    Rysz-Górzyńska, Magdalena; Banach, Maciej

    2016-08-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.

  14. Progress of cardioprotective effects of high density lipoprotein: function and mechanism

    Directory of Open Access Journals (Sweden)

    Hai-ge SUN

    2015-01-01

    Full Text Available The high density lipoprotein (HDL in human plasma is a heterogeneous lipoprotein consisting of roughly equal contents of lipid and protein in roughly equal content, and it consists of several subtypes. HDL possesses several well-documented functions, including anti-atherosclerosis by promoting reverse cholesterol transport, inhibiting the oxidative modification of low density lipoproteins (LDLs, inhibiting vascular inflammation, preventing thrombosis and apoptosis, and promoting endothelial repair. Recently, more cardiovascular protective functions of HDL have been found, mainly including the ability of suppressing immune inflammatory reaction, inhibiting the proliferation of hematopoietic stem cells, and regulating the plasma glucose level. It is of great importance to understand how different HDL subtypes contribute to the potentially cardioprotective functions. DOI: 10.11855/j.issn.0577-7402.2014.11.13

  15. Sexual differences in lipoprotein composition in a family with dyslipidemic hypertension with premature atheroschlerosis: deficiency of high-density lipoprotein-L and high-density lipoprotein-M "apolipoprotein-I alone" particle.

    Science.gov (United States)

    Hughes, T A; Moore, M A; Joyce, M; Go, R C; Segrest, J P; Blackwell, T

    1992-01-01

    This article describes a family with a high incidence of premature atherosclerosis and primary hypertriglyceridemia in the women. The lipoprotein composition of this family was investigated with a new methodology that combines gradient ultracentrifugation to isolate lipoprotein subfractions with high-performance liquid chromatography to quantitate apolipoproteins. The major lipoprotein abnormalities that were identified in the hyperlipidemic women in this family were (1) an increased mass of very low density lipoprotein (VLDL) and intermediate density lipoprotein (IDL) with triglyceriderich VLDL but normal IDL composition; (2) triglyceride-rich low-density lipoprotein (LDL) with normal cholesterol and apolipoprotein B concentrations; (3) a relatively normal total mass of high-density lipoprotein (HDL)-L and HDL-M but with a reduction in the apolipoprotein A-I/A-II ratio and a decrease in the cholesterol to triglyceride ratio; (4) an elevation of HDL-D apolipoprotein A-I. The reduction in the apolipoprotein A-I/A-II ratio was also seen in the hyperlipidemic men and in most of nonhyperlipidemic family members and was the most common lipoprotein abnormality that was identified in this family (9 of 11 family members who were not on lipid-lowering medications were affected). The hypertriglyceridemic women appeared to have an increase in the "A-I + A-II" HDL particles in all subfractions and an increase in the "A-I alone" particles in HDL-D. These increases provided the apparently normal total mass of HDL that was observed in these women. These increases in HDL were not seen in the hypertriglyceridemic men. We conclude that a deficiency of the "A-I alone" particle in HDL-L and HDL-M may contribute to the premature atherosclerosis that was seen in this family and that it appears to precede the appearance of hypertriglyceridemia. The increase in the "A-I + A-II" HDL particles did not appear to provide the same protection as would be expected from "A-I alone" HDL.

  16. Expression of scavenger receptor-BI and low-density lipoprotein receptor and differential use of lipoproteins to support early steroidogenesis in luteinizing macaque granulosa cells.

    Science.gov (United States)

    Cherian-Shaw, Mary; Puttabyatappa, Muraly; Greason, Erin; Rodriguez, Annabelle; VandeVoort, Catherine A; Chaffin, Charles L

    2009-02-01

    An ovulatory hCG stimulus to rhesus macaques undergoing controlled ovarian stimulation protocols results in a rapid and sustained increase in progesterone synthesis. The use of lipoproteins as a substrate for progesterone synthesis remains unclear, and the expression of lipoprotein receptors [very-low-density lipoprotein receptor (VLDLR), low-density lipoprotein receptor (LDLR), and scavenger receptor-BI (SR-BI)] soon after human chorionic gonadotropin (hCG) (lipoprotein receptor expression and lipoprotein (VLDL, LDL, and HDL) support of steroidogenesis during luteinization of macaque granulosa cells. Granulosa cells were aspirated from rhesus monkeys undergoing controlled ovarian stimulation before or up to 24 h after an ovulatory hCG stimulus. The expression of VLDLR decreased within 3 h of hCG, whereas LDLR and SR-BI increased at 3 and 12 h, respectively. Granulosa cells isolated before hCG were cultured for 24 h in the presence of FSH or FSH plus hCG with or without VLDL, LDL, or HDL. Progesterone levels increased in the presence of hCG regardless of lipoprotein addition, although LDL, but not HDL, further augmented hCG-induced progesterone. Other cells were cultured with FSH or FSH plus hCG without an exogenous source of lipoprotein for 24 h, followed by an additional 24 h culture with or without lipoproteins. Cells treated with hCG in the absence of any lipoprotein were unable to maintain progesterone levels through 48 h, whereas LDL (but not HDL) sustained progesterone synthesis. These data suggest that an ovulatory stimulus rapidly mobilizes stored cholesterol esters for use as a progesterone substrate and that as these are depleted, new cholesterol esters are obtained through an LDLR- and/or SR-BI-mediated mechanism.

  17. Increased Antioxidant Quality Versus Lower Quantity Of High Density Lipoprotein In Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Aydin Ozgur

    2015-10-01

    Full Text Available Background: Oxidative stress may be involved in the pathogenesis of every human disease. To understand its possible role in benign prostatic hyperplasia (BPH, we measured the overall oxidative status of patients with BPH and the serum activity of the high density lipoprotein (HDL-related antioxidant enzymes paraoxonase 1 (PON1 and arylesterase (ARE.

  18. Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein

    NARCIS (Netherlands)

    Schalkwijk, C.G.; Vermeer, M.A.; Stehouwer, C.D.A.; Koppele, J. te; Princen, H.M.G.; Hinsbergh, V.W.M. van

    1998-01-01

    In patients with diabetes, non-enzymatic glycation of low-density lipoprotein (LDL) has been suggested to be involved in the development of atherosclerosis. α-Dicarbonyl compounds were identified as intermediates in the non-enzymatic glycation and increased levels were reported in patients with diab

  19. Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.

    1998-01-01

    Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels we

  20. High-density lipoprotein attenuates inflammation and coagulation response on endotoxin challenge in humans

    NARCIS (Netherlands)

    Birjmohun, Rakesh S; van Leuven, Sander I; Levels, Johannes H M; van 't Veer, Cornelis; Kuivenhoven, Jan Albert; Meijers, Joost C M; Levi, Marcel; Kastelein, John J P; van der Poll, Tom; Stroes, Erik S G

    2007-01-01

    OBJECTIVE: Low high-density lipoprotein (HDL) cholesterol is a strong independent cardiovascular risk factor, which has been attributed to its role in reverse cholesterol transport. Whereas HDL also has potent antiinflammatory effects, the relevance of this property remains to be established in huma

  1. Lipid oxidation in human low-density lipoprotein induced by metmyoglobin/H2O2

    DEFF Research Database (Denmark)

    Witting, P K; Willhite, C A; Davies, Michael Jonathan

    1999-01-01

    Metmyoglobin (metMb) and H(2)O(2) can oxidize low-density lipoprotein (LDL) in vitro, and oxidized LDL may be atherogenic. The role of alpha-tocopherol (alpha-TOH) in LDL oxidation by peroxidases such as metMb is unclear. Herein, we show that during metMb/H(2)O(2)-induced oxidation of native LDL...

  2. Phenotype of heterozygotes for low-density lipoprotein receptor mutations identified in different background populations

    DEFF Research Database (Denmark)

    Tybjaerg-Hansen, Anne; Jensen, Henrik Kjaerulf; Benn, Marianne

    2005-01-01

    The effect of mutations on phenotype is often overestimated because of ascertainment bias. We determined the effect of background population on cholesterol phenotype associated with specific mutations in the low-density lipoprotein (LDL) receptor and the relative importance of background population...... and type of mutation (LDL receptor [LDLR] or APOB R3500Q) for cholesterol phenotype....

  3. Phenotypes of hypertriglyceridemia caused by excess very-low-density lipoprotein

    NARCIS (Netherlands)

    Sniderman, A.D.; Tremblay, A.; Graaf, J. de; Couture, P.

    2012-01-01

    OBJECTIVE: To characterize the composition of very-low-density lipoprotein (VLDL) particles and the proportion of VLDL to total apolipoprotein B (apoB) particles in patients with hypertriglyceridemia caused by excess VLDL. METHODS: Subjects were selected from 2023 consecutive patients attending the

  4. Phenotype of heterozygotes for low-density lipoprotein receptor mutations identified in different background populations

    DEFF Research Database (Denmark)

    Tybjaerg-Hansen, Anne; Jensen, Henrik Kjaerulf; Benn, Marianne;

    2005-01-01

    The effect of mutations on phenotype is often overestimated because of ascertainment bias. We determined the effect of background population on cholesterol phenotype associated with specific mutations in the low-density lipoprotein (LDL) receptor and the relative importance of background population...

  5. Low density lipoprotein receptor related protein 1 variant interacts with saturated fatty acids in Puerto Ricans

    Science.gov (United States)

    Low density lipoprotein related receptor protein 1 (LRP1) is a multi-functional endocytic receptor that is highly expressed in adipocytes and the hypothalamus. Animal models and in vitro studies support a role for LRP1 in adipocyte metabolism and leptin signaling, but genetic polymorphisms have not ...

  6. How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles?

    DEFF Research Database (Denmark)

    Karilainen, Topi; Vuorela, Timo; Vattulainen, Ilpo

    2015-01-01

    We compare the behavior of unlabeled and BODIPY-labeled cholesteryl ester (CE) in high density lipoprotein by atomistic molecular dynamics simulations. We find through replica exchange umbrella sampling and unbiased molecular dynamics simulations that BODIPY labeling has no significant effect on ...

  7. Direct Low Density Lipoprotein Cholesterol and Glycated Albumin Levels in Type 2 Diabetes Mellitus

    Science.gov (United States)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) have been associated with a decreased risk of these complications. The aim in this st...

  8. Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus

    Science.gov (United States)

    Diabetes mellitus is a major risk factor for coronary heart disease (CHD), renal failure, retinopathy, and neuropathy. Lowering glycosylated hemoglobin (HbA1c) as well as low-density lipoprotein-cholesterol (LDL-C) has been associated with a decreased risk of these complications. We evaluated the ut...

  9. The HDL hypothesis : does high-density lipoprotein protect from atherosclerosis?

    NARCIS (Netherlands)

    Vergeer, Menno; Holleboom, Adriaan G; Kastelein, John J P; Kuivenhoven, Jan Albert

    2010-01-01

    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for

  10. Separation of apolipoproteins of human very low density lipoproteins by chromatofocusing.

    Science.gov (United States)

    März, W; Gross, W

    1983-07-01

    Chromatofocusing represents a new chromatographic procedure for the separation of proteins according to their isoelectric points. We describe the application of this method for the fractionation of the urea-soluble apolipoproteins of very low density lipoproteins. They were separated into five peaks, four of which were homogeneous as judged by polyacrylamide gel electrophoresis in the presence of 7 mol/l urea.

  11. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  12. High-Density Lipoprotein Modulates Glucose Metabolism in Patients With Type 2 Diabetes Mellitus

    NARCIS (Netherlands)

    Drew, Brian G.; Duffy, Stephen J.; Formosa, Melissa F.; Natoli, Alaina K.; Henstridge, Darren C.; Penfold, Sally A.; Thomas, Walter G.; Mukhamedova, Nigora; de Courten, Barbora; Forbes, Josephine M.; Yap, Felicia Y.; Kaye, David M.; van Hall, Gerrit; Febbraio, Mark A.; Kemp, Bruce E.; Sviridov, Dmitri; Steinberg, Gregory R.; Kingwell, Bronwyn A.

    2009-01-01

    Background-Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP-activat

  13. Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein

    NARCIS (Netherlands)

    Schalkwijk, C.G.; Vermeer, M.A.; Stehouwer, C.D.A.; Koppele, J. te; Princen, H.M.G.; Hinsbergh, V.W.M. van

    1998-01-01

    In patients with diabetes, non-enzymatic glycation of low-density lipoprotein (LDL) has been suggested to be involved in the development of atherosclerosis. α-Dicarbonyl compounds were identified as intermediates in the non-enzymatic glycation and increased levels were reported in patients with

  14. Mutation in apolipoprotein B associated with hypobetalipoproteinemia despite decreased binding to the low density lipoprotein receptor

    DEFF Research Database (Denmark)

    Benn, Marianne; Nordestgaard, Børge G; Jensen, Jan Skov;

    2005-01-01

    Mutations in apolipoprotein B (APOB) may reduce binding of low density lipoprotein (LDL) to the LDL receptor and cause hypercholesterolemia. We showed that heterozygotes for a new mutation in APOB have hypobetalipoproteinemia, despite a reduced binding of LDL to the LDL receptor. APOB R3480P hete...

  15. The HDL hypothesis : does high-density lipoprotein protect from atherosclerosis?

    NARCIS (Netherlands)

    Vergeer, Menno; Holleboom, Adriaan G; Kastelein, John J P; Kuivenhoven, Jan Albert

    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for

  16. High-density lipoproteins and coronary artery disease: a single-center cohort study

    NARCIS (Netherlands)

    Schaffer, A.; Verdoia, M.; Barbieri, L.; Aprami, T.M.; Suryapranata, H.; Marino, P.; Luca, G.D.

    2014-01-01

    Our goal was to estimate the role of high-density lipoprotein cholesterol (HDL-C) in predicting the prevalence and extent of coronary artery disease (CAD) in 3280 patients undergoing coronary angiography. Predictors of lower HDL levels (<32 mg/dL) were male gender (P < .001), diabetes mellitus

  17. Low-density lipoprotein-lowering strategies: target versus maximalist versus population percentile.

    NARCIS (Netherlands)

    Sniderman, A.D.; Graaf, J. de; Couture, P.

    2012-01-01

    PURPOSE OF REVIEW: Maximalist low-density lipoprotein (LDL)-lowering strategies such as lowering LDL as much as possible or, alternatively, using the most potent LDL-lowering regimens have become increasingly popular. Almost all attention has focused on the potential advantages of these approaches w

  18. Low density lipoprotein : structure, dynamics, and interactions of apoB-100 with lipids

    NARCIS (Netherlands)

    Murtola, Teemu; Vuorela, Timo A.; Hyvonen, Marja T.; Marrink, Siewert-Jan; Karttunen, Mikko; Vattulainen, Ilpo

    2011-01-01

    Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL's st

  19. Association of low density lipoprotein levels and glycaemic control in type-2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yathish TR.

    2010-01-01

    Full Text Available Earlier diabetes mellitus (DM was thought to be a disease of carbohydrate metabolism. Looking at the effects of insulin deficiency on carbohydrate and lipid metabolism, diabetes mellitus is now being called more a disease of lipid metabolism than carbohydrate metabolism. A cross-sectional study was conducted during March 2005 to March 2006 to study the low-density lipoproteins (LDL levels in diabetes mellitus and its relation to glycaemic control. LDL levels were estimated. Comparison of lipid levels were made between group of diabetic patients with glycated hemoglobin less than 8.0% and a group of diabetic patients with glycated hemoglobin more than 8.0% and the controls. The lipid fractions i.e. total cholesterol (TC, triglycerides (TG, and low-density lipoprotein (LDL levels were higher in the poorly controlled diabetes patients as compared to well controlled diabetic patients and nondiabetic patients. Increased levels of low-density lipoprotein may be a contributory factor to the high risk of atherosclerosis induced coronary artery disease observed in diabetes mellitus patients. Reduction of blood glucose levels is likely to reduce low density lipoprotein levels and the risk of complication, with the lowest risk being in those with glycosylated hemoglobin values in the normal range ie. Less than 8.0%

  20. Genome-wide association studies identified novel loci for non-high-density lipoprotein cholesterol and its postprandial lipemic response

    Science.gov (United States)

    Non-high-density lipoprotein cholesterol (NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) t...

  1. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease

    DEFF Research Database (Denmark)

    Gretarsdottir, Solveig; Helgason, Hannes; Helgadottir, Anna

    2015-01-01

    Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR) that associate with levels of non-high density lipoprotein cholesterol...

  2. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans

    DEFF Research Database (Denmark)

    Nielsen, Morten Schallburg; Brejning, Jeanette; García, R.

    1997-01-01

    Lipoprotein lipase (LpL) can mediate cellular uptake of chylomicron and VLDL remnants via binding to heparan sulfate proteoglycans (HSPG) and the endocytic alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha2MR/LRP). Whereas it is established that the C......L-(347-448) in Escherichia coli. In addition to binding to alpha2MR/LRP, LpL-(313-448) displayed binding to heparin with an affinity similar to that of the LpL monomer, whereas it bound poorly to lipoprotein particles. Moreover, LpL-(313-448) displayed heparin sensitive binding to normal, but not to HSPG...

  3. [The alternative view on diagnostic of hyperlipoproteinemia, cholesterol lipoproteins of low density and effect of statins: a lecture].

    Science.gov (United States)

    Tupoleva, T A; Tikhomirov, D S; Grumbkova, L O; Ignatova, E N; Romanova, T Iu; Filatov, F P; Garanzha, T A

    2015-01-01

    The effect of statins occur in several stages: 1) inhibition in hepatocytes of synthesis of functionally specific pool of spirit cholesterol, polar mono-layer of lipoproteins of very low density; 2) activation of hydrolysis of triglycerides in lipoproteins of very low density, formation of apoE/B-100-ligand and absorption of lipoproteins of very low density by insulin-depended cells; 3) decreasing of content of and spirit cholesterol-lipoproteins of very low density in blood plasma; 4) activation of hydrolysis of triglycerides in lipoproteins of low density, formation of apoB-100-ligand and absorption of lipoproteins of low density by insulin-independent cells; 5) decreasing of level of and increasing of content of lipoproteins of high density. During first weeks of effect of statins occurs decreasing of concentration of triglycerides and unesterified spirit cholesterol-lipoproteins of very low density in blood plasma. Then, slower and more durational decreasing of level of spirit cholesterol-lipoproteins of low density occurs. The value of spirit cholesterol-lipoproteins of low density is primarily determined by content of palmitic saturated fatty acid in food, its endogenous synthesis from glucose and concentration of palmitic triglycerides and lipoproteins of very low density of the same name in blood plasma. The effect of preparations is biologically valid and corresponds to alternative hypolipidemic preparations. All these preparations have an effect following a common algorithm: they activate, using different mechanisms, receptor absorption of lipoproteins of very low density or lipoproteins of low density by cells. The level of spirit cholesterol-lipoproteins of low density in full measure depends on content of triglycerides in blood. The concentration of spirit cholesterol in blood plasma has a reliable diagnostic significance only under physiological content of triglycerides. The main criterion of diagnostic and control of hypolipidemic therapy

  4. Enzymatic Modification of Plasma Low Density Lipoproteins in Rabbits: A Potential Treatment for Hypercholesterolemia

    Science.gov (United States)

    Labeque, Regine; Mullon, Claudy J. P.; Ferreira, Joao Paulo M.; Lees, Robert S.; Langer, Robert

    1993-04-01

    Phospholipase A_2 (EC 3.1.1.4) hydrolyzes certain phospholipids of low density lipoprotein (LDL). Plasma clearance of phospholipase A_2-modified human LDL is up to 17 times faster than that of native human LDL in hypercholesterolemic rabbits. Modification of blood lipoproteins of hypercholesterolemic rabbits was performed by using an extracorporeal circuit containing immobilized phospholipase A_2. After 90-min treatments, nearly 30% decreases in plasma cholesterol concentrations were observed. Erythrocyte, leukocyte, and platelet counts showed no net change after treatment. This technique does not require any fluid replacement or sorbent regeneration and offers a potential approach for lowering serum cholesterol and LDL levels.

  5. Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2)

    DEFF Research Database (Denmark)

    Kornerup, Karen; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo;

    2002-01-01

    accumulation and, thus, atherosclerosis. METHODS AND RESULTS: We developed an in vivo method for measurement of transvascular transport of low density lipoprotein (LDL) and applied it in 16 patients with maturity-onset diabetes (type 2) and 29 healthy control subjects. Autologous 131I-labeled LDL...... plasma insulin levels in diabetic patients. CONCLUSIONS: Transvascular LDL transport may be increased in patients with type 2 diabetes. This suggests that lipoprotein flux into the arterial wall is increased in people with diabetes, possibly explaining the accelerated development of atherosclerosis....... in patients with diabetes and control subjects, respectively (P2.5%/h and 5.3+/-1.6%/h (P

  6. Research Progress on the Relationship of Coronary Heart Disease and D-dimer,Lipoprotein(a),Fibrinogen%D-二聚体、脂蛋白(a)、纤维蛋白原和冠心病关系研究进展

    Institute of Scientific and Technical Information of China (English)

    龚小鹏

    2012-01-01

    冠心病(CHD)与D-二聚体、脂蛋白(a)、纤维蛋白原(FG)有着密切的关联,CHD患者中D-二聚体、脂蛋白(a)、FG较高,但它们之间相互作用的机制仍不明确.近年来的研究显示,D-二聚体、脂蛋白(a)和FG可能参与CHD的发病过程,因此通过测定D-二聚体、脂蛋白(a)和FG在不同危险程度的CHD患者中的含量,评估它们对于CHD的发生、发展具有重要意义.%Coronary heart disease( CHD)is closely associated with D-dimer,lipoprotein( a)and fibrino-gen( FG),CHD patients have higher levels of D-dimer,lipoprotein( a),fibrinogen while the mechanism of the interaction between them remains unclear. In recent years, studies have shown that D-dimer,lipoprotein ( a )and fibrinogen may be involved in the pathogenesis of coronary heart disease, so by measuring D-dimer, lipoprotein( a )and fibrinogen level in patients with coronary heart disease is of great significance for assessing the genesis and development of CHD.

  7. Association between moderately oxidized low-density lipoprotein and high-density lipoprotein particle subclass distribution in hemodialyzed and post-renal transplant patients

    Institute of Scientific and Technical Information of China (English)

    El(z)bieta KIMAK; Magdalena HA(L)ABI(S); Iwona BARANOWICZ-GA SZCZYK; Janusz SOLSKI; Andrzej KSIA(Z)EK

    2011-01-01

    Disturbances in the metabolism of lipoprotein profiles and oxidative stress in hemodialyzed (HD) and post-renal transplant (Tx) patients are proatherogenic, but elevated concentrations of plasma high-density lipoprotein (HDL) reduce the risk of cardiovascular disease. We investigated the concentrations of lipid, lipoprotein, HDL particle,oxidized low-density lipoprotein (ox-LDL) and anti-ox-LDL, and paraoxonase-1 (PON-1) activity in HD (n=33) and Tx (n=71) patients who were non-smokers without active inflammatory disease, liver disease, diabetes, or malignancy.HD patients had moderate hypertriglyceridemia, normocholesterolemia, low HDL-C, apolipoprotein A-Ⅰ (apoA-Ⅰ) and HDL particle concentrations as well as PON-1 activity, and increased ox-LDL and anti-ox-LDL levels. Tx patients had hypertriglyceridemia, hypercholesterolemia, moderately decreased HDL-C and HDL particle concentrations and PON-1 activity, and moderately increased ox-LDL and anti-ox-LDL levels as compared to the reference, but ox-LDL and anti-ox-LDL levels and PON-1 activity were more disturbed in HD patients. However, in both patient groups, lipid and lipoprotein ratios (total cholesterol (TC)/HDL-C, LDL-C/HDL-C, triglyceride (TG)/HDL-C, HDL-C/non-HDL-C,apoA-Ⅰ/apoB, HDL-C/apoA-Ⅰ, TG/HDL) were atherogenic. The Spearman's rank coefficient test showed that the concentration of ox-LDL correlated positively with HDL particle level (R=0.363, P=0.004), and negatively with TC (R=-0.306, P=0.012), LDL-C (R=-0.283, P=0.020), and non-HDL-C (R=-0.263, P=0.030) levels in Tx patients. Multiple stepwise forward regression analysis in Tx patients demonstrated that ox-LDL concentration, as an independent variable, was associated significantly positively with HDL particle level. The results indicated that ox-LDL and decreased PON-1 activity in Tx patients may give rise to more mildly-oxidized HDLs, which are less stable, easily undergo metabolic remodeling, generate a greater number of smaller pre

  8. Association between moderately oxidized low-density lipoprotein and high-density lipoprotein particle subclass distribution in hemodialyzed and post-renal transplant patients.

    Science.gov (United States)

    Kimak, Elżbieta; Hałabiś, Magdalena; Baranowicz-Gąszczyk, Iwona; Solski, Janusz; Książek, Andrzej

    2011-05-01

    Disturbances in the metabolism of lipoprotein profiles and oxidative stress in hemodialyzed (HD) and post-renal transplant (Tx) patients are proatherogenic, but elevated concentrations of plasma high-density lipoprotein (HDL) reduce the risk of cardiovascular disease. We investigated the concentrations of lipid, lipoprotein, HDL particle, oxidized low-density lipoprotein (ox-LDL) and anti-ox-LDL, and paraoxonase-1 (PON-1) activity in HD (n=33) and Tx (n=71) patients who were non-smokers without active inflammatory disease, liver disease, diabetes, or malignancy. HD patients had moderate hypertriglyceridemia, normocholesterolemia, low HDL-C, apolipoprotein A-I (apoA-I) and HDL particle concentrations as well as PON-1 activity, and increased ox-LDL and anti-ox-LDL levels. Tx patients had hypertriglyceridemia, hypercholesterolemia, moderately decreased HDL-C and HDL particle concentrations and PON-1 activity, and moderately increased ox-LDL and anti-ox-LDL levels as compared to the reference, but ox-LDL and anti-ox-LDL levels and PON-1 activity were more disturbed in HD patients. However, in both patient groups, lipid and lipoprotein ratios (total cholesterol (TC)/HDL-C, LDL-C/HDL-C, triglyceride (TG)/HDL-C, HDL-C/non-HDL-C, apoA-I/apoB, HDL-C/apoA-I, TG/HDL) were atherogenic. The Spearman's rank coefficient test showed that the concentration of ox-LDL correlated positively with HDL particle level (R=0.363, P=0.004), and negatively with TC (R=-0.306, P=0.012), LDL-C (R=-0.283, P=0.020), and non-HDL-C (R=-0.263, P=0.030) levels in Tx patients. Multiple stepwise forward regression analysis in Tx patients demonstrated that ox-LDL concentration, as an independent variable, was associated significantly positively with HDL particle level. The results indicated that ox-LDL and decreased PON-1 activity in Tx patients may give rise to more mildly-oxidized HDLs, which are less stable, easily undergo metabolic remodeling, generate a greater number of smaller pre-β-HDL particles

  9. Low-density lipoprotein receptor-related protein-1 facilitates heme scavenging after intracerebral hemorrhage in mice.

    Science.gov (United States)

    Wang, Gaiqing; Manaenko, Anatol; Shao, Anwen; Ou, Yibo; Yang, Peng; Budbazar, Enkhjargal; Nowrangi, Derek; Zhang, John H; Tang, Jiping

    2017-04-01

    Heme-degradation after erythrocyte lysis plays an important role in the pathophysiology of intracerebral hemorrhage. Low-density lipoprotein receptor-related protein-1 is a receptor expressed predominately at the neurovascular interface, which facilitates the clearance of the hemopexin and heme complex. In the present study, we investigated the role of low-density lipoprotein receptor-related protein-1 in heme removal and neuroprotection in a mouse model of intracerebral hemorrhage. Endogenous low-density lipoprotein receptor-related protein-1 and hemopexin were increased in ipsilateral brain after intracerebral hemorrhage, accompanied by increased hemoglobin levels, brain water content, blood-brain barrier permeability and neurological deficits. Exogenous human recombinant low-density lipoprotein receptor-related protein-1 protein reduced hematoma volume, brain water content surrounding hematoma, blood-brain barrier permeability and improved neurological function three days after intracerebral hemorrhage. The expression of malondialdehyde, fluoro-Jade C positive cells and cleaved caspase 3 was increased three days after intracerebral hemorrhage in the ipsilateral brain tissues and decreased with recombinant low-density lipoprotein receptor-related protein-1. Intracerebral hemorrhage decreased and recombinant low-density lipoprotein receptor-related protein-1 increased the levels of superoxide dismutase 1. Low-density lipoprotein receptor-related protein-1 siRNA reduced the effect of human recombinant low-density lipoprotein receptor-related protein-1 on all outcomes measured. Collectively, our findings suggest that low-density lipoprotein receptor-related protein-1 contributed to heme clearance and blood-brain barrier protection after intracerebral hemorrhage. The use of low-density lipoprotein receptor-related protein-1 as supplement provides a novel approach to ameliorating intracerebral hemorrhage brain injury via its pleiotropic neuroprotective effects.

  10. Remnant lipoproteins induced proliferation of human prostate cancer cell, PC-3 but not LNCaP, via low density lipoprotein receptor.

    Science.gov (United States)

    Sekine, Yoshitaka; Koike, Hidekazu; Nakano, Takamitsu; Nakajima, Katsuyuki; Takahashi, Sadao; Suzuki, Kazuhiro

    2009-07-01

    Hypertriglyceridemia has been shown to be one of the risk factors for prostate cancer. In this study, we investigated the effect of remnant lipoproteins on cell growth in prostate cancer cell lines. Remnant lipoproteins were isolated as remnant like particles (RLP) from human plasma. We used RLP for TG-rich lipoproteins and low density lipoproteins (LDL) for cholesterol-rich lipoproteins respectively and examined the effect of lipoproteins on proliferation of PC-3 and LNCaP cells using MTS assays. Moreover, we studied the effect of RLP and LDL treatment on the regulation of lipoprotein receptors in prostate cancer cells to investigate the relationship between lipoprotein-induced cell proliferation and lipoprotein receptor expression using real-time PCR, Western blotting assays and siRNA. RLP effectively induced PC-3 cell proliferation more than LDL, whereas both RLP and LDL could not induce LNCaP cell proliferation except at a higher concentration of RLP. LDL receptor (LDLr) was expressed in both prostate cancer cells but there was a sharp difference of sterol regulation between two cells. In PC-3 cells, LDL decreased the LDLr expression in some degree, but RLP did not. Meanwhile LDLr expression in LNCaP was easily downregulated by RLP and LDL. Blocking LDLr function significantly inhibited both RLP- and LDL-induced PC-3 cell proliferation. This study demonstrated that RLP-induced PC-3 cell proliferation more than LDL; however, both RLP and LDL hardly induced LNCaP cell proliferation. The differences of proliferation by lipoproteins might be involved in the regulation of LDLr expression.

  11. High-density lipoproteins: a novel therapeutic target for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    TS Mohamed Saleem

    2011-01-01

    Full Text Available TS Mohamed Saleem1, PV Sandhya Rani1, K Gauthaman21Department of Pharmacology, Annamacharya College of Pharmacy, New Boyanapalli, Andhrapradesh, India; 2Department of Drug Technology, Faculty of Medical Technology, Derna, LibyaAbstract: Cardiovascular disease has a high rate of mortality in both Western and developing countries. Atherosclerosis and generation of reactive oxygen species through oxidative stress is the major risk factor for cardiovascular disease. Atherothrombosis with low levels of high-density lipoprotein (HDL and high levels of low-density lipoprotein is a major risk factor for atherosclerosis-induced cardiovascular disease. Lipid-lowering drugs like statins, niacin, fibrates, and some newer agents, ie, the apolipoprotein A-I mimetics and the cholesteryl ester transfer protein inhibitors, not only increase HDL levels but are also effective in reducing key atherogenic lipid components, including triglyceride-rich lipoproteins. The aim of this review is to discuss the accumulating evidence suggesting that HDL possesses a diverse range of biological actions, and that increasing HDL levels by drug treatment may be beneficial in the prevention of cardiovascular disease.Keywords: cardiovascular disease, lipoproteins, statins, apolipoprotein, atherosclerosis

  12. Nigerian propolis improves blood glucose, glycated hemoglobin A1c, very low-density lipoprotein, and high-density lipoprotein levels in rat models of diabetes

    Science.gov (United States)

    Oladayo, Mustafa Ibrahim

    2016-01-01

    Objective: According to our previous studies, propolis of Nigerian origin showed some evidence of hypoglycemic and hypolipidemic activities in addition to its ability to ameliorate oxidative-stress-induced organ dysfunction. This study was carried out to determine whether an ethanolic extract of Nigerian propolis (EENP) improves glycated hemoglobin A1c (HbA1c), fasting plasma glucose, very low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) concentrations in rats that have alloxan diabetes. Materials and Methods: Diabetes was induced with alloxan (110 mg/kg). Animals were divided into 5 groups (n = 5); Group 1 was non-diabetic receiving normal saline and Group 2 was diabetic but also received only normal saline. Groups 3, 4, and 5 were diabetic receiving 200 mg/kg propolis, 300 mg/kg propolis, and 150 mg/kg metformin, respectively, for 42 days. Results: Hyperglycemia, elevated serum level of VLDL, elevated plasma level of HbA1c, and decreased levels of HDL were observed in the diabetic untreated animals. Nigerian propolis decreased blood glucose level and serum level of VLDL but elevated HDL level. These changes were significant (P < 0.05). The levels of plasma HbA1c were also reduced in the propolis-treated groups, and the reduction was significant (P < 0.05). Conclusion: Nigerian propolis contains compounds exhibiting hypoglycemic, antihyperlipidemic, and HbA1c reducing activities. PMID:27366348

  13. Apolipoprotein E mediates enhanced plasma high-density lipoprotein cholesterol clearance by low-dose streptococcal serum opacity factor via hepatic low-density lipoprotein receptors in vivo.

    Science.gov (United States)

    Rosales, Corina; Tang, Daming; Gillard, Baiba K; Courtney, Harry S; Pownall, Henry J

    2011-08-01

    Recombinant streptococcal serum opacity factor (rSOF) mediates the in vitro disassembly of human plasma high-density lipoprotein (HDL) into lipid-free apolipoprotein (apo) A-I, a neo-HDL that is cholesterol poor, and a cholesteryl ester-rich microemulsion (CERM) containing apoE. Given the occurrence of apoE on the CERM, we tested the hypothesis that rSOF injection into mice would reduce total plasma cholesterol clearance via apoE-dependent hepatic low-density lipoprotein receptors (LDLR). rSOF (4 μg) injection into wild-type C57BL/6J mice formed neo-HDL, CERM, and lipid-free apoA-I, as observed in vitro, and reduced plasma total cholesterol (-43%, t(1/2)=44±18 minutes) whereas control saline injections had a negligible effect. Similar experiments with apoE(-/-) and LDLR(-/-) mice reduced plasma total cholesterol ≈0% and 20%, respectively. rSOF was potent; injection of 0.18 μg of rSOF produced 50% of maximum reduction of plasma cholesterol 3 hours postinjection, corresponding to a ≈0.5-mg human dose. Most cholesterol was cleared hepatically (>99%), with rSOF treatment increasing clearance by 65%. rSOF injection into mice formed a CERM that was cleared via hepatic LDLR that recognize apoE. This reaction could provide an alternative mechanism for reverse cholesterol transport.

  14. [Elevated Lipoprotein(a) Cncentration and Presence of Subfractions of Small Dense Low Density Lipoproteins as Independent Factors of Risk of Ischemic Heart Disease].

    Science.gov (United States)

    Afanasieva, O I; Utkina, E A; Artemieva, N V; Ezhov, M V; Adamova, I Yu; Pokrovsky, S N

    2016-06-01

    To study relation of lipoproteina - Lp(a) and subfractional composition of apoB containing lipoproteins to the presence of ischemic heart disease (IHD). Manerial and methods. Parameters of lipid spectrum, Lp(a), and subfractions of apoB containing lipoproteins were determined in blood serum of 187 patients with known data of instrumental examination. Lp(a) concentration was not linked to any of risk factors, levels total cholesterol (TC), low and high density lipoprotein CH, and subfractions of lipoproteins. In total group triglyceride (TGG) level correlated with content of small dense LDL (sdLDL) (r=0.445, 2 mg/dl in blood plasma (atherogenic profile B), as well as lowering of concentration of large LDL subfractions significantly increased probability of IHD presence in patients with elevated Lp(a) concentration Lp(a) concentration. Lp(a) is an independent factor of risk of coronary atherosclerosis more significant than shifts in subfractional composition of apoB containing lipoproteins. In patients with Lp(a) concentration less or equal 30 mg/dl subfractions of sdLDL were directly related to TG. Level of sdLDL and large lipoproteins of intermediate density are directly related to the presence of IHD. Large LDL correlates with concentration of HDL DL C and probably is cardioprotective. sdLDL content>2 mg/l or hypertriglyceridemia (TG>1.7 mmol/l) significantly increase chances of detection of confirmed IHD in patients with elevated Lp(a).

  15. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    DEFF Research Database (Denmark)

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre;

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipop......Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high......-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic...... studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated...

  16. Patients with Rheumatoid Arthritis Show Altered Lipoprotein Profiles with Dysfunctional High-Density Lipoproteins that Can Exacerbate Inflammatory and Atherogenic Process.

    Science.gov (United States)

    Kim, Jae-Yong; Lee, Eun-Young; Park, Jin Kyun; Song, Yeong Wook; Kim, Jae-Ryong; Cho, Kyung-Hyun

    2016-01-01

    In order to identify putative biomarkers in lipoprotein, we compared lipid and lipoprotein properties between rheumatoid arthritis (RA) patients and control with similar age. We analyzed four classes of lipoproteins (VLDL, LDL, HDL2, HDL3) from both male (n = 8, 69±4 year-old) and female (n = 25, 53±7 year-old) rheumatoid arthritis (RA) patients as well as controls with similar age (n = 13). Although RA group showed normal levels of total cholesterol (TC), low-density lipoprotein (LDL)-cholesterol, and glucose, however, the RA group showed significantly reduced high-density lipoprotein (HDL)-C level and ratio of HDL-C/TC. The RA group showed significantly elevated levels of blood triglyceride (TG), uric acid, and cholesteryl ester transfer protein (CETP) activity. The RA group also showed elevated levels of advanced glycated end (AGE) products in all lipoproteins and severe aggregation of apoA-I in HDL. As CETP activity and TG contents were 2-fold increased in HDL from RA group, paraoxonase activity was reduced upto 20%. Electron microscopy revealed that RA group showed much less HDL2 particle number than control. LDL from the RA group was severely oxidized and glycated with greater fragmentation of apo-B, especially in female group, it was more atherogenic via phagocytosis. Lipoproteins from the RA patients showed severely altered structure with impaired functionality, which is very similar to that observed in coronary heart patients. These dysfunctional properties in lipoproteins from the RA patients might be associated with high incidence of cardiovascular events in RA patients.

  17. Drugs targeting high-density lipoprotein cholesterol for coronary artery disease management.

    Science.gov (United States)

    Katz, Pamela M; Leiter, Lawrence A

    2012-01-01

    Many patients remain at high risk for future cardiovascular events despite levels of low-density lipoprotein cholesterol (LDL-C) at, or below, target while taking statin therapy. Much effort is therefore being focused on strategies to reduce this residual risk. High-density lipoprotein cholesterol (HDL-C) is a strong, independent, inverse predictor of coronary heart disease risk and is therefore an attractive therapeutic target. Currently available agents that raise HDL-C have only modest effects and there is limited evidence of additional cardiovascular risk reduction on top of background statin therapy associated with their use. It was hoped that the use of cholesteryl ester transfer protein (CETP) inhibitors would provide additional benefit, but the results of clinical outcome studies to date have been disappointing. The results of ongoing trials with other CETP inhibitors that raise HDL-C to a greater degree and also lower LDL-C, as well as with other emerging therapies are awaited.

  18. A green tea catechin extract upregulates the hepatic low-density lipoprotein receptor in rats.

    Science.gov (United States)

    Bursill, Christina A; Roach, Paul D

    2007-07-01

    Green tea extracts have hypocholesterolaemic properties in epidemiological and animal intervention studies. Upregulation of the low-density lipoprotein (LDL) receptor may be one mechanism to explain this as it is the main way cholesterol is removed from the circulation. This study aimed to determine if a green tea extract could upregulate the hepatic LDL receptor in vivo in the rat. A green tea extract (GTE) enriched in its anti-oxidant constituents, the catechins, was fed to rats (n = 6) at concentrations of either 0, 0.5, 1.0 or 2.0% (w/w) mixed in with their normal chow along with 0.25% (w/w) cholesterol for 12 days. Administration of the GTE had no effect on plasma total or LDL cholesterol concentrations but high-density lipoprotein significantly increased (41%; p extract was able to increase the efflux of cholesterol from liver cells.

  19. High density lipoproteins as indicators of endothelial dysfunction in children with diadetes type I

    Directory of Open Access Journals (Sweden)

    Lobanova S.M.

    2011-12-01

    Full Text Available The aim of the investigation was to study the level of blood high density lipoproteins (HDL in the groups of children with different course of diadetes type I in order to find out the dependence of course and complications of diabetes on that level. Materials and methods: Blood high density lipoprotein (HDL levels were investigated in children and adolescents with diadetes type I, depending on the duration of diadetes type I, age, stage of sexual development, the stage of diabetic nephropathy and levels of plasma endothelin-1 (E-1. Results: Decrease in HDL level with increasing duration of diadetes type I in prepubertate patients, higher indices of HDL cholesterol were determined in girls, especially with impaired puberty. HDL cholesterol was higher in diabetic nephropathy at the stage of proteinuria and high level of blood endothelin-1. Conclusion: The revealed changes were considered to cause deregulation of vascular endothelium as a manifestation of the initial stages of endothelial dysfunction

  20. Serum apolipoprotein(a) levels and its effect on the measured values of low density lipoprotein cholesterol.

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Serum low density lipoprotein cholesterl (LDL-C) and lipoprotein(a)[Lp(a)]levels were analyzed in 1032 sequential cases on routine physical check up, with special attention to the effect of Lp(a) on the LDL-C values. Since the determination of LDL-C by various

  1. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    OpenAIRE

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M.

    2009-01-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible ...

  2. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    OpenAIRE

    2009-01-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible ...

  3. Evidence for low high-density lipoprotein cholesterol levels in Australian indigenous peoples: a systematic review

    OpenAIRE

    Lyons, Jasmine G.; O’Dea, Kerin; Karen Z Walker

    2014-01-01

    Background Low plasma high-density lipoprotein cholesterol (HDL-C) levels are a strong, independent, but poorly understood risk factor for cardiovascular disease (CVD). Although this atherogenic lipid abnormality has been widely reported in Australia’s Indigenous peoples, Aboriginal and Torres Strait Islanders, the evidence has not come under systematic review. This review therefore examines published data for Indigenous Australians reporting 1) mean HDL-C levels for both sexes and 2) factors...

  4. A relation between high-density-lipoprotein cholesterol and bile cholesterol saturation.

    OpenAIRE

    Thornton, J R; Heaton, K W; Macfarlane, D.G.

    1981-01-01

    The association of cholesterol gall stones with coronary artery disease is controversial. To investigate this possible relation at the biochemical level, bile cholesterol saturation and the plasma concentrations of triglycerides, total cholesterol, and high-density-lipoprotein cholesterol (HDL cholesterol) were measured in 25 healthy, middle-aged women. Bile cholesterol saturation index was negatively correlated with HDL cholesterol. It was positively correlated with plasma triglycerides and ...

  5. Practical technique to quantify small, dense low-density lipoprotein cholesterol using dynamic light scattering

    Science.gov (United States)

    Trirongjitmoah, Suchin; Iinaga, Kazuya; Sakurai, Toshihiro; Chiba, Hitoshi; Sriyudthsak, Mana; Shimizu, Koichi

    2016-04-01

    Quantification of small, dense low-density lipoprotein (sdLDL) cholesterol is clinically significant. We propose a practical technique to estimate the amount of sdLDL cholesterol using dynamic light scattering (DLS). An analytical solution in a closed form has newly been obtained to estimate the weight fraction of one species of scatterers in the DLS measurement of two species of scatterers. Using this solution, we can quantify the sdLDL cholesterol amount from the amounts of the low-density lipoprotein cholesterol and the high-density lipoprotein (HDL) cholesterol, which are commonly obtained through clinical tests. The accuracy of the proposed technique was confirmed experimentally using latex spheres with known size distributions. The applicability of the proposed technique was examined using samples of human blood serum. The possibility of estimating the sdLDL amount using the HDL data was demonstrated. These results suggest that the quantitative estimation of sdLDL amounts using DLS is feasible for point-of-care testing in clinical practice.

  6. INHIBITION OF HUMAN LOW-DENSITY LIPOPROTEINS OXIDATION BY Hibiscus radiatus CUV. CALYCES EXTRACT

    Directory of Open Access Journals (Sweden)

    Hernawan Hernawan

    2010-06-01

    Full Text Available Hibiscus radiatus Cuv calyces extracts rich in polyphenols was screened for their potential to inhibit oxidation of human low-density lipoproteins-cholesterol (LDL-C in vitro. The inhibition of LDL-C oxidation (antioxidant activity was determined by measuring the formation of conjugated dienes and thiobarbituric acid reagent substances (TBARS. LDL-C oxidation was carried out in the presence of H. radiatus Cuv calyces extract (20 and 50 μM. CuSO4 (10 μM was used as the oxidation initiator and  butylated hydroxytoluene (BHT at 50 μM was used as standard antioxidant. The protective effect of H. radiatus Cuv. calyces extract toward human low-density lipoproteins, complex lipid system was  demonstrated by significant increase lag time (> 103 min, diminished of the propagation rate (44 %, and diminution of conjugated dienes formation 59.42 % (50 μM compared to control.   Keywords: antioxidant, conjugated dienes, Hibiscus radiatus Cuv, low-density lipoproteins-cholesterol

  7. Low-density lipoprotein cholesterol level and statin use among Medicare beneficiaries with diabetes mellitus.

    Science.gov (United States)

    Qualls, Laura G; Hammill, Bradley G; Maciejewski, Matthew L; Curtis, Lesley H; Jones, W Schuyler

    2016-05-01

    At the time of this study, guidelines recommended a primary goal of low-density lipoprotein cholesterol level less than 100 mg/dL for all patients, an optional goal of low-density lipoprotein cholesterol less than 70 mg/dL for patients with overt cardiovascular disease and statins for patients with diabetes and overt cardiovascular disease and patients 40 years and older with diabetes and at least one risk factor for cardiovascular disease. This study examined statin use and achievement of lipid goals among 111,730 Medicare fee-for-service beneficiaries 65 years and older in 2011. Three-quarters of patients met the low-density lipoprotein cholesterol goal of less than 100 mg/dL. Patients with cardiovascular disease were more likely to meet the goal than those without, not controlling for other differences. Patients on a statin were more likely to meet the goal. There is considerable opportunity for improvement in cholesterol management in high-risk patients with diabetes mellitus. © The Author(s) 2016.

  8. Alpha slow-moving high-density-lipoprotein subfraction in serum of a patient with radiation enteritis and peritoneal carcinosis

    Energy Technology Data Exchange (ETDEWEB)

    Peynet, J.; Legrand, A.; Messing, B.; Thuillier, F.; Rousselet, F.

    1989-04-01

    An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized.

  9. Diabetes Mellitus Is Associated With Reduced High-Density Lipoprotein Sphingosine-1-Phosphate Content and Impaired High-Density Lipoprotein Cardiac Cell Protection.

    Science.gov (United States)

    Brinck, Jonas W; Thomas, Aurélien; Lauer, Estelle; Jornayvaz, François R; Brulhart-Meynet, Marie-Claude; Prost, Jean-Christophe; Pataky, Zoltan; Löfgren, Patrik; Hoffstedt, Johan; Eriksson, Mats; Pramfalk, Camilla; Morel, Sandrine; Kwak, Brenda R; van Eck, Miranda; James, Richard W; Frias, Miguel A

    2016-05-01

    The dyslipidemia of type 2 diabetes mellitus has multiple etiologies and impairs lipoprotein functionality, thereby increasing risk for cardiovascular disease. High-density lipoproteins (HDLs) have several beneficial effects, notably protecting the heart from myocardial ischemia. We hypothesized that glycation of HDL could compromise this cardioprotective effect. We used in vitro (cardiomyocytes) and ex vivo (whole heart) models subjected to oxidative stress together with HDL isolated from diabetic patients and nondiabetic HDL glycated in vitro (methylglyoxal). Diabetic and in vitro glycated HDL were less effective (Pdiabetic patients (Pdiabetic HDL were inversely correlated with hemoglobin A1c (Pdiabetic HDL were significantly, positively correlated (both diabetic HDL increased its S1P content and restored its cardioprotective function. Our data demonstrate that glycation can reduce the S1P content of HDL, leading to increased cardiomyocyte cell death because of less effective activation of intracellular survival pathways. It has important implications for the functionality of HDL in diabetes mellitus because HDL-S1P has several beneficial effects on the vasculature. © 2016 American Heart Association, Inc.

  10. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    Directory of Open Access Journals (Sweden)

    Subedi BH

    2014-04-01

    Full Text Available Bishnu H Subedi,1,2 Parag H Joshi,1 Steven R Jones,1 Seth S Martin,1 Michael J Blaha,1 Erin D Michos1 1Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, 2Greater Baltimore Medical Center, Baltimore, MD, USA Abstract: Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD is low high-density lipoprotein cholesterol (HDL-C. Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. Keywords: high-density lipoprotein, lipids, cholesterol, atherosclerosis, cardiovascular disease, therapy

  11. High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol.

    Science.gov (United States)

    Tosheska Trajkovska, Katerina; Topuzovska, Sonja

    2017-08-01

    A key to effective treatment of cardiovascular disease is to understand the body's complex lipoprotein transport system. Reverse cholesterol transport (RCT) is the process of cholesterol movement from the extrahepatic tissues back to the liver. Lipoproteins containing apoA-I [highdensity lipoprotein (HDL)] are key mediators in RCT, whereas non-high-density lipoproteins (non-HDL, lipoproteins containing apoB) are involved in the lipid delivery pathway. HDL particles are heterogeneous; they differ in proportion of proteins and lipids, size, shape, and charge. HDL heterogeneity is the result of the activity of several factors that assemble and remodel HDL particles in plasma: ATP-binding cassette transporter A1 (ABCA1), lecithin cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), hepatic lipase (HL), phospholipid transfer protein (PLTP), endothelial lipase (EL), and scavenger receptor class B type I (SR-BI). The RCT pathway consists of the following steps: 1. Cholesterol efflux from peripheral tissues to plasma, 2. LCAT-mediated esterification of cholesterol and remodeling of HDL particles, 3. direct pathway of HDL cholesterol delivery to the liver, and 4. indirect pathway of HDL cholesterol delivery to the liver via CETP-mediated transfer There are several established strategies for raising HDL cholesterol in humans, such as lifestyle changes; use of drugs including fibrates, statins, and niacin; and new therapeutic approaches. The therapeutic approaches include CETP inhibition, peroxisome proliferator-activated receptor (PPAR) agonists, synthetic farnesoid X receptor agonists, and gene therapy. Results of clinical trials should be awaited before further clinical management of atherosclerotic cardiovascular disease.

  12. Total and High-Density Lipoprotein Cholesterol in Adults: National Health and Nutrition Examination Survey, 2011-2012

    Science.gov (United States)

    ... density Lipoprotein Cholesterol in Adults: National Health and Nutrition Examination Survey, 2011–2012 Recommend on Facebook Tweet ... Associate Director for Science Division of Health and Nutrition Examination Surveys Kathryn S. Porter, M.D., M.S., Director ...

  13. The role of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in comparison with whole egg yolk for sperm cryopreservation in rhesus monkeys.

    Science.gov (United States)

    Dong, Qiao-Xiang; Rodenburg, Sarah E; Hill, Dana; Vandevoort, Catherine A

    2011-05-01

    Low-density lipoprotein (LDL) extracted from hen egg yolk has recently been considered to be superior to whole egg yolk in sperm cryopreservation of various animal species. Meanwhile, there was a notion that high-density lipoprotein (HDL) in egg yolk may have a negative effect on post-thaw survival. The role of LDL and HDL in sperm cryopreservation of rhesus monkeys has not been explored. The present study evaluates their effect in comparison with egg yolk with or without the addition of permeable cryoprotectant (glycerol) on sperm cryopreservation of rhesus macaques. In addition, various additives intended to change the lipid composition of LDL-sperm membrane complex have also been tested for their effectiveness in preserving post-thaw viability. Our findings indicated that LDL is the main component in egg yolk that is responsible for its protective role for sperm cryopreservation in rhesus monkeys. Regardless of the presence or absence of glycerol, the protective role of LDL is similar to that of egg yolk and we did not observe any superiority in post-thaw survival with LDL when compared to egg yolk. Modifying the lipid composition of LDL-sperm membrane complex with the addition of cholesterol, cholesterol loaded cyclodextrin and phosphatidylcholine also did not yield any improvements in post-thaw survival; while addition of methyl-β-cyclodextrin reduced post-thaw motility. HDL plays a neutral role in sperm cryopreservation of rhesus monkeys. The present study suggests that egg yolk may still hold advantages when compared with LDL as effective components in extenders for sperm cryopreservation in rhesus monkeys.

  14. The role of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in comparison with whole egg yolk for sperm cryopreservation in rhesus monkeys

    Institute of Scientific and Technical Information of China (English)

    Qiao-Xiang Dong; Sarah E Rodenburg; Dana Hill; Catherine A VandeVoort

    2011-01-01

    Low-density lipoprotein (LDL) extracted from hen egg yolk has recently been considered to be superior to whole egg yolk in sperm cryopreservation of various animal species. Meanwhile, there was a notion that high-density lipoprotein (HDL) in egg yolk may have a negative effect on post-thaw survival. The role of LDL and HDL in sperm cryopreservation of rhesus monkeys has not been explored. The present study evaluates their effect in comparison with egg yolk with or without the addition of permeable cryoprotectant (glycerol) on sperm cryopreservation of rhesus macaques. In addition, various additives intended to change the lipid composition of LDL-sperm membrane complex have also been tested for their effectiveness in preserving post-thaw viability. Our findings indicated that LDL is the main component in egg yolk that is responsible for its protective role for sperm cryopreservation in rhesus monkeys. Regardless of the presence or absence of glycerol, the protective role of LDL is similar to that of egg yolk and we did not observe any superiority in post-thaw survival with LDL when compared to egg yolk. Modifying the lipid composition of LDL-sperm membrane complex with the addition of cholesterol, cholesterol loaded cyclodextrin and phosphatidylcholine also did not yield any improvements in post-thaw survival; while addition of methyl-β-cyclodextrin reduced post-thaw motility. HDL plays a neutral role in sperm cryopreservation of rhesus monkeys. The present study suggests that egg yolk may still hold advantages when compared with LDL as effective components in extenders for sperm cryopreservation in rhesus monkeys.

  15. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    Pei JIANG; Peng-ke YAN; Jian-xiong CHEN; Bing-yang ZHU; Xiao-yong LEI; Wei-dong YIN; Duan-fang LIAO

    2006-01-01

    Aim: To investigate the protective effect of high density lipoprotein 3 (HDL3) on oxidized low density lipoprotein (ox-LDL)-induced apoptosis in RAW264.7 cells.Methods: RAW264.7 cells were exposed to 50 mg/L ox-LDL for various durations up to 48 h, and apoptosis was detected using Hoechst 33258 staining and flow cytometric analysis. Total cholesterol levels were detected by high performance liquid chromatography, cholesterol efflux was determined by Tritium labeling, and the cellular lipid droplets were assayed by oil red O staining. Results: Treatment with 50 mg/L ox-LDL for 12, 24, and 48 h increased the apoptotic rate of RAW264.7 cells in a time-dependent manner. The peak apoptotic rate (47.7%) was observed after 48 h incubation. HDL3 at various concentrations (50 mg/L, 100 mg/L, and 200mg/L) inhibited the ox-LDL (50 mg/L for 48 h)-mediated apoptosis that was accompanied by an increased rate of intracellular cholesterol efflux, and decreased total cholesterol levels in cells in a concentration-dependent manner. Blockage of cholesterol efflux by brefeldin decreased the protective effect of HDL3 on ox-LDL-induced apoptosis. Increase of the cholesterol efflux effected by another cholesterol acceptor, β-cyclodextrin, led to a dramatic decrease in the apoptotic rate of cells. Conclusion: HDL3 antagonizes ox-LDL-induced apoptosis in RAW264.7cells, through reducing the accumulation of toxic cholesterol.

  16. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    Directory of Open Access Journals (Sweden)

    Shinji Yokoyama

    2015-04-01

    Full Text Available Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP, which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia.

  17. Correlation between the High Density Lipoprotein and its Subtypes in Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Fen Gao

    2016-05-01

    Full Text Available Background/Aims: To detect the changes of high density lipoprotein (HDL and its subtypes in serum of patients with coronary heart disease (CHD. Methods: 337 hospitalized patients were selected from our hospital during August, 2014 - January, 2015, and divided into CHD group (n = 190 and control group (n = 127. Lipoprint lipoprotein analyzer was used to classify low density lipoprotein (LDL particle size and its sub-components, as well as HDL particle size and its sub-components. The changes of the subtypes in patients with CHD were statistically analyzed. The possible mechanism was explored. Results: (1 Compared with the control group, the concentration of HDL in CHD patients reduced, HDLL significantly decreased (P S increased (P L had the most significant decreased; (3 HDL and all HDL subtypes were positively correlated with apolipoprotein A-I (apoA-I, of which, HDLL had the biggest correlation with apoA-I (P M had a maximum correlation with HDL (P Conclusion: HDL maturation disorders existed in the serum of CHD patients, HDLL may be protected factor for CHD, whose decrease was closely related wit the risk increase of CHD. The cardiovascular protection function of HDLL may be related with apoA-I content.

  18. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family

    DEFF Research Database (Denmark)

    Nilsson, Stefan K; Lookene, Aivar; Beckstead, Jennifer A;

    2007-01-01

    Apolipoprotein A-V is a potent modulator of plasma triacylglycerol levels. To investigate the molecular basis for this phenomenon we explored the ability of apolipoprotein A-V, in most experiments complexed to disks of dimyristoylphosphatidylcholine, to interact with two members of the low densit...... to receptor-covered sensor chips. Our results indicate that apolipoprotein A-V may influence plasma lipid homeostasis by enhancing receptor-mediated endocytosis of triacylglycerol-rich lipoproteins. Udgivelsesdato: 2007-Mar-27......Apolipoprotein A-V is a potent modulator of plasma triacylglycerol levels. To investigate the molecular basis for this phenomenon we explored the ability of apolipoprotein A-V, in most experiments complexed to disks of dimyristoylphosphatidylcholine, to interact with two members of the low density...... lipoprotein receptor family, the low density lipoprotein receptor-related protein and the mosaic type-1 receptor, SorLA. Experiments using surface plasmon resonance showed specific binding of both free and lipid-bound apolipoprotein A-V to both receptors. The binding was calcium dependent and was inhibited...

  19. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics.

    Science.gov (United States)

    Kim, YongTae; Fay, Francois; Cormode, David P; Sanchez-Gaytan, Brenda L; Tang, Jun; Hennessy, Elizabeth J; Ma, Mingming; Moore, Kathryn; Farokhzad, Omid C; Fisher, Edward Allen; Mulder, Willem J M; Langer, Robert; Fayad, Zahi A

    2013-11-26

    High-density lipoprotein (HDL) is a natural nanoparticle that transports peripheral cholesterol to the liver. Reconstituted high-density lipoprotein (rHDL) exhibits antiatherothrombotic properties and is being considered as a natural treatment for cardiovascular diseases. Furthermore, HDL nanoparticle platforms have been created for targeted delivery of therapeutic and diagnostic agents. The current methods for HDL reconstitution involve lengthy procedures that are challenging to scale up. A central need in the synthesis of rHDL, and multifunctional nanomaterials in general, is to establish large-scale production of reproducible and homogeneous batches in a simple and efficient fashion. Here, we present a large-scale microfluidics-based manufacturing method for single-step synthesis of HDL-mimicking nanomaterials (μHDL). μHDL is shown to have the same properties (e.g., size, morphology, bioactivity) as conventionally reconstituted HDL and native HDL. In addition, we were able to incorporate simvastatin (a hydrophobic drug) into μHDL, as well as gold, iron oxide, quantum dot nanocrystals or fluorophores to enable its detection by computed tomography (CT), magnetic resonance imaging (MRI), or fluorescence microscopy, respectively. Our approach may contribute to effective development and optimization of lipoprotein-based nanomaterials for medical imaging and drug delivery.

  20. Antibodies toward high-density lipoprotein components inhibit paraoxonase activity in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Batuca, J R; Ames, P R J; Isenberg, D A; Alves, J Delgado

    2007-06-01

    Patients with systemic lupus erythematosus (SLE) have an increased incidence of vascular disease, and oxidative stress is recognized as an important feature in this condition, despite the underlying mechanisms not being fully understood. In these patients, an interaction between lipoproteins and the immune system has been suggested, but most studies have only looked at antibodies against oxidized low-density lipoproteins. This study was undertaken to determine the presence of antibodies directed against high-density lipoproteins (HDL) and to identify a possible association between these antibodies and paraoxonase (PON), an antioxidant enzyme present in HDL. Plasma from 55 patients with SLE was collected and IgG aHDL and antiapolipoprotein A-I (aApo A-I) antibodies were assessed by enzyme-linked immunosorbent assay. Standardization of the method was performed in a control population of 150 healthy subjects. Plasma levels above 5 standard deviations of the mean of the control population were considered positive. PON activity was assessed by quantification of p-nitrophenol formation (micromol/mL/min). Patients with SLE had higher titers of aHDL (P aHDL and aApo A-I antibodies (r = 0.61; P aHDL and aApo A-I antibodies in patients with SLE. These antibodies were associated with reduced PON activity in plasma, and the in vitro inhibition assay confirmed a direct inhibition of the enzyme activity.

  1. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  2. The low-density lipoprotein receptor gene family: a cellular Swiss army knife?

    Science.gov (United States)

    Nykjaer, Anders; Willnow, Thomas E

    2002-06-01

    The low-density lipoprotein receptor gene family is an evolutionarily conserved group of cell-surface receptors produced by mammals and other organisms. Initially thought to be endocytic receptors that mediate the uptake of lipoproteins, recent findings have shown that these receptors have other roles in a range of cellular processes. Among other activities, members of this family act as signal transducers in neuronal migration processes, regulate synaptic plasticity or control vitamin homeostasis. Such multifunctionality is achieved by interaction with diverse cell-surface proteins including glycolipid-anchored receptors, G-protein-coupled receptors and ion channels. Here, we review the molecular interactions of this protein family with other cell-surface proteins that provide specificity and versatility - a versatility that may be reminiscent of a cellular Swiss army knife.

  3. Immunohistochemical detection of a very high density lipoprotein (VHDL) in ovarian follicles of Triatoma infestans.

    Science.gov (United States)

    González, M S; Ronderos, J R; Rimoldi, O J; Brenner, R R

    2001-04-01

    The ability of Triatoma infestans ovarian follicles to synthesize a very high-density lipoprotein (VHDL) has been examined by immunohistochemical methods. This kind of lipoprotein can be envisaged as a storage hexameric protein present in the hemolymph of some insect species. VHDL immunoreactivity is observed in oocytes at different stages of maturation. The antigen is present in the oocyte cytoplasm as well as in the follicular epithelial cells. The immunopositive reaction in the apical surface of follicle cells suggests both a VHDL synthesis and a secretion process. Furthermore, VHDL seems to be stored into oocyte in yolk granules. On the contrary, no immunopositive reaction is observed in the intracellular spaces between follicle cells, suggesting that VHDL is not incorporated from hemolymph into the oocyte.

  4. Genetically elevated apolipoprotein A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Lundegaard, Christiane; Tybjærg-Hansen, Anne; Grande, Peer

    2010-01-01

    Epidemiologically, levels of high-density lipoprotein (HDL) cholesterol and its major protein constituent, apolipoprotein A-I (apoA-I), are inversely related to risk of ischemic heart disease (IHD).......Epidemiologically, levels of high-density lipoprotein (HDL) cholesterol and its major protein constituent, apolipoprotein A-I (apoA-I), are inversely related to risk of ischemic heart disease (IHD)....

  5. Are post-treatment low-density lipoprotein subclass pattern analyses potentially misleading?

    Directory of Open Access Journals (Sweden)

    Hanson Mary E

    2010-11-01

    Full Text Available Abstract Background Some patients administered cholesterol-lowering therapies may experience an increase in the proportion of small LDL particles, which may be misinterpreted as a worsening of atherosclerotic coronary heart disease risk. This study assessed the lipid effects of adding ezetimibe to atorvastatin or doubling the atorvastatin dose on low-density lipoprotein cholesterol (LDL-C levels (and the cholesterol content of LDL subclasses, LDL particle number (approximated by apolipoprotein B, and LDL particle size. This was a multicenter, double-blind, randomized, parallel-group study of hypercholesterolemic, high atherosclerotic coronary heart disease risk patients. After stabilization of atorvastatin 40 mg, 579 patients with LDL-C >70 mg/dL were randomized to 6 weeks of ezetimibe + atorvastatin 40 mg or atorvastatin 80 mg. Efficacy parameters included changes from baseline in LDL-C, apolipoprotein B, non-high-density lipoprotein cholesterol (non-HDL-C, and lipoprotein subclasses (Vertical Auto Profile II and pattern for the overall population, as well as patient subgroups with baseline triglyceride levels Results Both treatments significantly reduced LDL-C (and the cholesterol content of most LDL subfractions [LDL1-4] apolipoprotein B, non-HDL-C levels, but did not reduce the proportion of smaller, more dense LDL particles; in fact, the proportion of Pattern B was numerically increased. Results were generally similar in patients with triglyceride levels Conclusions When assessing the effects of escalating cholesterol-lowering therapy, effects upon Pattern B alone to assess coronary heart disease risk may be misleading when interpreted without considerations of other lipid effects, such as reductions in LDL-C, atherogenic lipoprotein particle concentration, and non-HDL-C levels. Trial Registration (Registered at clinicaltrials.gov: Clinical trial # NCT00276484

  6. Alimentary lipemia: plasma high-density lipoproteins and apolipoproteins CII and CIII in healthy subjects.

    Science.gov (United States)

    Kashyap, M L; Barnhart, R L; Srivastava, L S; Perisutti, G; Allen, C; Hogg, E; Glueck, C J; Jackson, R L

    1983-02-01

    Three healthy male and three female inpatient volunteers consumed isocaloric diets for 4 wk. At weekly intervals, a fatty meal (100 g fat) was consumed by each fasting subject and blood drawn at 2 h intervals for 12 h. Of the four oral fat loads, two contained saturated fat (polyunsaturated/saturated fat ratio = 0.34) and two contained unsaturated fat (polyunsaturated/saturated fat = 2.21). The magnitude of alimentary lipemia, expressed as area under the plasma triglyceride curve, was 3- to 4-fold higher in males than females. Alimentary lipemia was inversely related to the subjects' fasting plasma high-density lipoprotein (HDL)-cholesterol, HDL apolipoprotein (apo) CIII and directly related to plasma triglycerides. The P/S ratios of the daily diet or the fat meal did not significantly influence the plasma triglyceride curve. After fat intake, mean (+/- SEM) plasma total apoCII and CIII fell to 54 +/- 20% and 73 +/- 5% of base-line, respectively, at 12 h in five of six subjects. After oral fat, an initial fall and a subsequent rise in apoCII and CIII in HDL was associated with reciprocal changes in apoC concentrations in very low-density lipoproteins. We speculate from the data that 1) plasma HDL and their apoC concentrations are important determinants of chylomicron clearance and 2) transfer of apoCs from HDL to triglyceride-rich lipoproteins in the early phase of fat absorption does not result in the total recycling of apoCs from these lipoproteins to HDL during the late phase of alimentary lipemia.

  7. High density lipoprotein as a source of cholesterol for adrenal steroidogenesis : A study in individuals with low plasma HDL-C

    NARCIS (Netherlands)

    Bochem, Andrea E.; Holleboom, Adriaan G.; Romijn, Johannes A.; Hoekstra, Menno; Dallinga-Thie, Geesje M.; Motazacker, Mahdi M.; Hovingh, G. Kees; Kuivenhoven, Jan A.; Stroes, Erik S. G.

    2013-01-01

    Few studies have addressed the delivery of lipoprotein-derived cholesterol to the adrenals for steroid production in humans. While there is evidence against a role for low-density lipoprotein (LDL), it is unresolved whether high density lipoprotein (HDL) contributes to adrenal steroidogenesis. To st

  8. Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies

    Directory of Open Access Journals (Sweden)

    Cédric Delporte

    2013-01-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis.

  9. Determination of the alpha-tocopherol inhibition rate constant for peroxidation in low-density lipoprotein.

    Science.gov (United States)

    Culbertson, Sean M; Antunes, Fernando; Havrilla, Christine M; Milne, Ginger L; Porter, Ned A

    2002-06-01

    This work reports an estimate of the inhibition rate constant (k(inh)) for alpha-tocopherol (alpha-TOH) in low-density lipoproteins (LDL) based on cholesteryl linoleate hydroperoxide products formed during autoxidation of intact lipoproteins. The ratio of cis,trans/trans,trans product hydroperoxides was determined during the consumption of the antioxidant. For a reasonable determination of k(inh) in LDL, the pro-oxidant behavior of alpha-TOH was minimized by oxidizing LDL with an unsymmetrical amphiphilic azo initiator which significantly reduces phase-transfer mediated pro-oxidant effects of alpha-TOH. This initiator delivers a more constant flux of initiator radicals into LDL lipid regions and permits determination of alpha-TOH k(inh) in LDL. Development of a tocopherol-mediated peroxidation (TMP) model and analysis of cholesteryl linoleate hydroperoxide cis,trans/trans,trans product ratios provided an estimated value for the inhibition rate constant of alpha-TOH in a lipoprotein of k(inh) = 5.9 +/- 0.5 x 10(5) M(-)(1) s(-)(1)

  10. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection.

    Science.gov (United States)

    Sódar, Barbara W; Kittel, Ágnes; Pálóczi, Krisztina; Vukman, Krisztina V; Osteikoetxea, Xabier; Szabó-Taylor, Katalin; Németh, Andrea; Sperlágh, Beáta; Baranyai, Tamás; Giricz, Zoltán; Wiener, Zoltán; Turiák, Lilla; Drahos, László; Pállinger, Éva; Vékey, Károly; Ferdinandy, Péter; Falus, András; Buzás, Edit Irén

    2016-04-18

    Circulating extracellular vesicles have emerged as potential new biomarkers in a wide variety of diseases. Despite the increasing interest, their isolation and purification from body fluids remains challenging. Here we studied human pre-prandial and 4 hours postprandial platelet-free blood plasma samples as well as human platelet concentrates. Using flow cytometry, we found that the majority of circulating particles within the size range of extracellular vesicles lacked common vesicular markers. We identified most of these particles as lipoproteins (predominantly low-density lipoprotein, LDL) which mimicked the characteristics of extracellular vesicles and also co-purified with them. Based on biophysical properties of LDL this finding was highly unexpected. Current state-of-the-art extracellular vesicle isolation and purification methods did not result in lipoprotein-free vesicle preparations from blood plasma or from platelet concentrates. Furthermore, transmission electron microscopy showed an association of LDL with isolated vesicles upon in vitro mixing. This is the first study to show co-purification and in vitro association of LDL with extracellular vesicles and its interference with vesicle analysis. Our data point to the importance of careful study design and data interpretation in studies using blood-derived extracellular vesicles with special focus on potentially co-purified LDL.

  11. Very low density lipoproteins in intestinal lymph: role in triglyceride and cholesterol transport during fat absorption

    Science.gov (United States)

    Ockner, Robert K.; Hughes, Faith B.; Isselbacher, Kurt J.

    1969-01-01

    The role of nonchylomicron very low density lipoproteins (VLDL, Sf 20-400) in the transport of triglyceride and cholesterol was studied during lipid absorption. Various long chain fatty acids were infused intraduodenally in the form of mixed fatty acid—mono-olein-taurocholate micelles; control animals received saline or taurocholate. As compared with controls, all fatty acids (palmitic, oleic, linoleic) resulted in significant increases in chylomicron (Sf > 400) triglyceride. In addition, palmitic acid resulted in a twofold increase in VLDL triglyceride, whereas with the absorption of oleic or linoleic acid VLDL triglyceride did not change significantly. Differences in triglyceride fatty acid composition between chylomicrons and VLDL were observed during lipid absorption. Although the absolute amount of endogenous cholesterol in intestinal lymph was not significantly affected by lipid absorption under these conditions, its lipoprotein distribution differed substantially among the lipid-infused groups. During palmitate absorption, VLDL cholesterol was similar to that in the taurocholate-infused controls, and was equal to chylomicron cholesterol. In contrast, during oleate and linoleate absorption the VLDL cholesterol fell markedly, and was less than half of the chylomicron cholesterol in these groups. The half-time of plasma survival of VLDL cholesterol-14C was found to be twice that of chylomicron cholesterol-14C. These studies demonstrate that dietary long chain fatty acids differ significantly in their effects upon the transport of triglyceride and cholesterol by lipoproteins of rat intestinal lymph. These findings, together with the observed differences in rates of removal of chylomicrons and VLDL from plasma, suggest that variations in lipoprotein production at the intestinal level may be reflected in differences in the subsequent metabolism of absorbed dietary and endogenous lipids. PMID:5355348

  12. A linoleate-enriched cheese product reduces low-density lipoprotein in moderately hypercholesterolemic adults.

    Science.gov (United States)

    Davis, P A; Platon, J F; Gershwin, M E; Halpern, G M; Keen, C L; DiPaolo, D; Alexander, J; Ziboh, V A

    1993-10-01

    To test the effect of substituting a modified-fat cheese product into the diets of hypercholesterolemic adults. A 4-month, randomized, double-blind, crossover substitution trial. General community outpatient study. Twenty-six healthy adult volunteers (17 men, 9 women) with moderate hypercholesterolemia (total cholesterol > 5.69 mmol/L but < 7.24 mmol/L). Daily substitution of 100 g of cheese, either partial skim-milk mozzarella or modified-fat (vegetable oil) mozzarella cheese product, into participants' normal diets. Participants consumed an assigned cheese for 2 months, at which time they crossed over to consume the other study cheese. Plasma lipid and apolipoprotein levels were measured at baseline and at 2 and 4 months after initiation of the study. Compliance was assessed by body weight and by biweekly dietary records and interviews. No differences in weight or in the amount or type of calories consumed were found during the study. No statistically significant changes in lipid values resulted from consumption of mozzarella cheese. Modified-fat cheese substitution resulted in a decreased low-density lipoprotein cholesterol level when compared with levels at both baseline (-0.28 mmol/L; 95% Cl, -0.14 to -0.42 mmol/L) and during consumption of the skim-milk mozzarella cheese (-0.38 mmol/L; 95% Cl, -0.2 to -0.70 mmol/L). Findings for total cholesterol were similar. High-density lipoprotein cholesterol, plasma triglyceride, and apolipoprotein A-l and B-100 levels were unaltered. Both sexes responded similarly. A linoleate-enriched cheese product, in the absence of any other changes in diet or habits, substituted into the normal diets of hypercholesterolemic adults reduced low-density lipoprotein and plasma cholesterol levels.

  13. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  14. Lipoprotein Lipase and PPAR Alpha Gene Polymorphisms, Increased Very-Low-Density Lipoprotein Levels, and Decreased High-Density Lipoprotein Levels as Risk Markers for the Development of Visceral Leishmaniasis by Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Márcia Dias Teixeira Carvalho

    2014-01-01

    Full Text Available In visceral leishmaniasis (VL endemic areas, a minority of infected individuals progress to disease since most of them develop protective immunity. Therefore, we investigated the risk markers of VL within nonimmune sector. Analyzing infected symptomatic and, asymptomatic, and noninfected individuals, VL patients presented with reduced high-density lipoprotein cholesterol (HDL-C, elevated triacylglycerol (TAG, and elevated very-low-density lipoprotein cholesterol (VLDL-C levels. A polymorphism analysis of the lipoprotein lipase (LPL gene using HindIII restriction digestion (N = 156 samples (H+ = the presence and H− = the absence of mutation revealed an increased adjusted odds ratio (OR of VL versus noninfected individuals when the H+/H+ was compared with the H−/H− genotype (OR = 21.3; 95% CI = 2.32–3335.3; P = 0.003. The H+/H+ genotype and the H+ allele were associated with elevated VLDL-C and TAG levels (P < 0.05 and reduced HDL-C levels (P < 0.05. An analysis of the L162V polymorphism in the peroxisome proliferator-activated receptor alpha (PPARα gene (n = 248 revealed an increased adjusted OR when the Leu/Val was compared with the Leu/Leu genotype (OR = 8.77; 95% CI = 1.41–78.70; P = 0.014. High TAG (P = 0.021 and VLDL-C (P = 0.023 levels were associated with susceptibility to VL, whereas low HDL (P = 0.006 levels with resistance to infection. The mutated LPL and the PPARα Leu/Val genotypes may be considered risk markers for the development of VL.

  15. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  16. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

    OpenAIRE

    2016-01-01

    Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. I...

  17. Health benefits of high-density lipoproteins in preventing cardiovascular diseases.

    Science.gov (United States)

    Berrougui, Hicham; Momo, Claudia N; Khalil, Abdelouahed

    2012-01-01

    Plasma levels of high-density lipoprotein (HDL) are strongly and inversely correlated with atherosclerotic cardiovascular diseases. However, it is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-cholesterol levels. The best known antiatherogenic function of HDL particles relates to their ability to promote reverse cholesterol transport from peripheral cells. However, HDL also possesses antioxidant, anti-inflammatory, and antithrombotic effects. This review focuses on the state of knowledge regarding assays of HDL heterogeneity and function and their relationship to cardiovascular diseases. Copyright © 2012 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  18. A Possible Mechanism Linking Hyperglycemia and Reduced High-density Lipoprotein Cholesterol Levels in Diabetes

    Institute of Scientific and Technical Information of China (English)

    高峰; 严同; 赵艳; 尹凡; 胡翠宁

    2010-01-01

    This study investigated the role of glucose in the biogenesis of high-density lipoprotein cholesterol(HDL-C).Mouse primary peritoneal macrophages were harvested and maintained in Dulbecco's modified Eagle's medium(DMEM) containing glucose of various concentrations.The cells were divided into 3 groups in terms of different glucose concentrations in the cultures:Control group(5.6 mmol/L glucose),high glucose concentration groups(16.7 mmol/L and 30 mmol/L glucose).ATP-binding cassette transporter A1(ABCA1) mRN...

  19. Accelerated decline in renal function after acute myocardial infarction in patients with high low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol ratio.

    Science.gov (United States)

    Okumura, Satoshi; Sakakibara, Masaki; Hayashida, Ryo; Jinno, Yasushi; Tanaka, Akihito; Okada, Koji; Hayashi, Mutsuharu; Ishii, Hideki; Murohara, Toyoaki

    2014-01-01

    High low-density lipoprotein-cholesterol to high-density lipoprotein-cholesterol (L/H) ratio is associated with progressions of coronary arteriosclerosis and chronic kidney disease. On the other hand, renal function markedly declined after acute myocardial infarction (AMI). The aims of the present study were (1) to identify what type of patients with AMI would have high L/H ratio at follow-up and (2) to evaluate whether decline in renal function after AMI had accelerated or not in patients with high L/H ratio. The 190 eligible AMI patients who underwent primary percutaneous coronary intervention (PCI) and received atorvastatin (10 mg) were divided into one of two groups according to the L/H ratio at 6-month follow-up: L/H >2 group (n = 81) or L/H ≤2 group (n = 109). The characteristics on admission in the two groups were examined. Furthermore, changes in serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) during 1- and 6-month follow-up were compared between the two groups. L/H >2 group were significantly younger and had greater body mass index (BMI) and worse lipid profile on admission compared with L/H ≤2 group. Percentage increase in sCr and percentage decrease in eGFR during 1-month follow-up in L/H >2 group tended to be greater than in L/H ≤2 group, and those during 6-month follow-up were significantly greater (16.5 ± 2.77 vs. 9.79 ± 2.23 %, p = 0.03 and 11.8 ± 1.93 vs. 2.75 ± 3.85 %, p = 0.04, respectively). In AMI patients undergoing primary PCI, those who were young and had large BMI and poor lipid profile on admission were likely to have a high L/H ratio at follow-up despite statin therapy. In addition, the decline in renal function after AMI had significantly accelerated in patients with high L/H ratio.

  20. Plasma fasting and nonfasting triglycerides and high-density lipoprotein cholesterol in atherosclerotic stroke: different profiles according to low-density lipoprotein cholesterol.

    Science.gov (United States)

    Kim, Suk Jae; Park, Yun Gyoung; Kim, Ji Hyun; Han, Yun Kyung; Cho, Hong Keun; Bang, Oh Young

    2012-08-01

    Although low-density lipoprotein cholesterol (LDL-C) is the main lipid target for cardiovascular risk reduction, recent studies suggest that other lipid indicies are also associated with vascular events. We hypothesized that the association of triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) with atherosclerotic stroke (AS) differs depending on LDL-C levels. Data prospectively collected on subjects admitted with acute ischemic stroke to a university medical center were analyzed. We divided the patients into AS and non-atherosclerotic stroke (NAS) groups and independent association of lipid parameters and genetic influences of apolipoprotein A5 (ApoA5) polymorphisms with AS were evaluated. Of 268 patients, 160 (59.7%) were classified with AS and 108 (40.3%) were classified with NAS. Vascular risk factors were more prevalent in AS patients than in those with NAS; additionally, AS patients' anthropometric indexes and laboratory findings showed that they were prone to atherosclerosis. AS was independently associated with fasting TG (OR per 10 mg/dL increase, 1.38; 95% CI, 1.16-1.64; OR for highest vs. lowest tertile, 12.85; 95% CI, 3.31-49.85), HDL-C (OR per 10 mg/dL increase, 0.61; 95% CI, 0.42-0.88; OR for lowest vs. highest tertile, 4.28; 95% CI, 1.16-15.86), and nonfasting TG (OR per 10 10 mg/dL increase, 1.25; 95% CI, 1.11-1.42; OR for highest vs. lowest tertile, 8.20; 95% CI, 1.98-33.88) only among patients with LDL <100 mg/dL. No interaction was observed between fasting and nonfasting TG and ApoA5 polymorphisms. In conclusion, fasting and nonfasting TG and HDL-C were associated with AS only when patients had low levels of LDL-C. Non-LDL-C may have an additional role in addition to the LDL-C levels in AS development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Low-Density Lipoprotein Cholesterol, Non-High-Density Lipoprotein Cholesterol, Triglycerides, and Apolipoprotein B and Cardiovascular Risk in Patients With Manifest Arterial Disease.

    Science.gov (United States)

    van den Berg, M Johanneke; van der Graaf, Yolanda; de Borst, Gert Jan; Kappelle, L Jaap; Nathoe, Hendrik M; Visseren, Frank L J

    2016-09-15

    Low-density lipoprotein cholesterol (LDL-C) only partly represents the atherogenic lipid burden, and a growing body of evidence suggests that non-high-density lipoprotein cholesterol (non-HDL-C), triglycerides, and apolipoprotein B (apoB) are more accurate in estimating lipid-related cardiovascular disease risk. Our objective was to compare the relation among LDL-C, non-HDL-C, triglycerides, and apoB and the occurrence of future vascular events and mortality in patients with manifest arterial disease. This is a prospective cohort study of 7,216 patients with clinically manifest arterial disease in the Secondary Manifestations of Arterial Disease Study. Cox proportional hazard models were used to quantify the risk of major cardiovascular events (MACE; i.e., stroke, myocardial infarction, and vascular mortality) and all-cause mortality. Interaction was tested for type of vascular disease at inclusion. MACE occurred in 1,185 subjects during a median follow-up of 6.5 years (interquartile range 3.4 to 9.9 years). Adjusted hazard ratios (HRs) of MACE per 1 SD higher were for LDL-C (HR 1.15, 95% confidence interval [CI] 1.09 to 1.22), for non-HDL-C (HR 1.17, 95% CI 1.11 to 1.23), for log(triglycerides) (HR 1.12, 95% CI 1.06 to 1.19), and for apoB HR (1.12, 95% CI 0.99 to 1.28). The relation among LDL-C, non-HDL-C, and cardiovascular events was comparable in patients with cerebrovascular disease, coronary artery disease, or polyvascular disease and absent in those with aneurysm of abdominal aorta or peripheral artery disease. In conclusion, in patients with a history of cerebrovascular, coronary artery, or polyvascular disease, but not aneurysm of abdominal aorta or peripheral artery disease, higher levels of LDL-C and non-HDL-C are related to increased risk of future MACE and of comparable magnitude. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Low density lipoprotein receptor-related protein-2/megalin is expressed in oligodendrocytes in the mouse spinal cord white matter

    DEFF Research Database (Denmark)

    Wicher, Grzegorz; Larsson, Mårten; Svenningsen, Åsa Fex

    2006-01-01

    Lipoprotein receptor-related protein-2 (LRP2)/megalin is a member of the low density lipoprotein receptor (LDLR) family, and is essential in absorptive epithelia for endocytosis of lipoproteins, low molecular weight proteins, cholesterol and vitamins, as well as in cellular signaling. Previous st...... that spinal cord oligodendrocytes are phenotypically different from those in the brain, and indicate that megalin translocates signals from the cell membrane to the nucleus of oligodendrocytes during the formation and maintenance of myelin of long spinal cord pathways....

  3. Italian multicenter study on low-density lipoprotein apheresis Working Group 2009 survey.

    Science.gov (United States)

    Stefanutti, Claudia; Morozzi, Claudia; Di Giacomo, Serafina

    2013-04-01

    We present results of the second survey of the Italian Multicenter Study on Low-Density Lipoprotein Apheresis (IMSLDLa-WG/2). The study involved 18 centers in 2009, treating 66 males and 35 females, mean age 47 ± 18 years. Mean age for initiation of drug treatment before low-density lipoprotein apheresis (LDLa) was 31 ± 18 years, mean age to the first LDLa was 37 ± 20 years and average duration of treatment was 9 ± 6 years. The techniques used included direct adsorption of lipids, dextran sulfate cellulose adsorption, heparin-mediated low-density lipoprotein (LDL) precipitation, cascade filtration, and plasma exchange. The mean treated plasma/blood volumes/session were 3127 ± 518 mL and 8666 ± 1384 mL, respectively. The average plasma volume substituted was 3500 ± 300 mL. Lipid therapy before LDLa included ezetimibe, statins, ω-3 fatty acids and fenofibrate. Baseline mean LDL cholesterol (LDLC) levels were 386 ± 223 mg/dL. The mean before/after apheresis LDLC level decreased by 67% from 250 ± 108 mg/dL (P = 0.05 vs. baseline) to 83 ± 37 mg/dL (P = 0.001 vs. before). Baseline mean Lipoprotein(a) [Lp(a)] level was 179 ± 136 mg/dL. Mean before/after apheresis Lp(a) level decreased by 71% from 133 ± 120 mg/dL (P = 0.05 vs. baseline) to 39 ± 44 mg/dL (P = 0.001 vs. before). Major and minor side effects occurred in 27 and 62 patients, respectively. Among patients with coronary artery disease (CAD), 62.3% had coronary angiography and 50.4% coronary revascularization before LDLa. Single vessel, double vessel and triple vessel CAD occurred in 19 (30.1%), 15 (23.8%) and 29 (46%) patients, respectively. Both CAD and extra-CAD occurred in 41.5%, 39% had hypertension, 9.9% were smokers, 9.9% consumed alcohol and 42% were physically active. Ischemic cardiovascular events were not observed in any patient over 9 ± 6 years of treatment. Two centers have also treated 34 patients (females: 17/males 17; no. sessions: 36; average plasma volume treated: 3000 mL) for

  4. Reduced adipose tissue lipoprotein lipase responses, postprandial lipemia, and low high-density lipoprotein-2 subspecies levels in older athletes with silent myocardial ischemia.

    Science.gov (United States)

    Katzel, L I; Busby-Whitehead, M J; Rogus, E M; Krauss, R M; Goldberg, A P

    1994-02-01

    Healthy older (64 +/- 1 years, mean +/- SEM) athletic (maximal oxygen consumption [VO2max] > 40 mL/kg/min) normocholesterolemic men with no prior history of coronary artery disease (CAD) were recruited for cardiovascular and metabolic studies. Thirty-three percent had asymptomatic exercise-induced ST segment depression on their exercise electrocardiogram (ECG), consistent with silent myocardial ischemia (SI). We hypothesized that abnormalities in high-density lipoprotein (HDL) and postprandial triglyceride (TG) metabolism may increase their risk for CAD. Compared with 12 nonischemic controls of comparable age, percent body fat, and VO2max, the 13 men with SI had decreased fasting HDL cholesterol ([HDL-C] 41 +/- 2 v 50 +/- 2 mg/dL, P postprandial plasma TG, chylomicron-TG, and very-low-density lipoprotein (VLDL)-TG levels and postprandial areas were higher in men with SI (P < .001).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Targeting PCSK9 as a promising new mechanism for lowering low-density lipoprotein cholesterol.

    Science.gov (United States)

    Della Badia, Laura A; Elshourbagy, Nabil A; Mousa, Shaker A

    2016-08-01

    Statins and other lipid-lowering drugs have dominated the market for many years for achievement of recommended levels of low-density lipoprotein cholesterol (LDL-C). However, a substantial number of high-risk patients are unable to achieve the LDL-C goal. Proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a new, promising key therapeutic target for hypercholesterolemia. PCSK9 is a protease involved in chaperoning the low-density lipoprotein receptor to the process of degradation. PCSK9 inhibitors and statins effectively lower LDL-C. The PCSK9 inhibitors decrease the degradation of the LDL receptors, whereas statins mainly interfere with the synthetic machinery of cholesterol by inhibiting the key rate limiting enzyme, the HMG CoA reductase. PCSK9 inhibitors are currently being developed as monoclonal antibodies for their primary use in lowering LDL-C. They may be especially useful for patients with homozygous familial hypercholesterolemia, who at present receive minimal benefit from traditional statin therapy. The monoclonal antibody PCSK9 inhibitors, recently granted FDA approval, show the most promising safety and efficacy profile compared to other, newer LDL-C lowering therapies. This review will primarily focus on the safety and efficacy of monoclonal antibody PCSK9 inhibitors in comparison to statins. The review will also address new, alternative PCSK9 targeting drug classes such as small molecules, gene silencing agents, apolipoprotein B antisense oligonucleotides, and microsomal triglyceride transfer protein inhibitors.

  6. Lowering low-density lipoprotein cholesterol levels in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Bays HE

    2014-07-01

    Full Text Available Harold E Bays Louisville Metabolic and Atherosclerosis Research Center, Louisville, KY, USA Abstract: Type 2 diabetes mellitus (T2DM is characterized by hyperglycemia, insulin resistance, and/or progressive loss of β-cell function. T2DM patients are at increased risk of micro- and macrovascular disease, and are often considered as representing an atherosclerotic coronary heart disease (CHD risk equivalent. Interventions directed at glucose and lipid level control in T2DM patients may reduce micro- and macrovascular disease. The optimal T2DM agent is one that lowers glucose levels with limited risk for hypoglycemia, and with no clinical trial evidence of worsening CHD risk. Lipid-altering drugs should preferably reduce low-density lipoprotein cholesterol and apolipoprotein B (apo B and have evidence that the mechanism of action reduces CHD risk. Statins reduce low-density lipoprotein cholesterol and apo B and have evidence of improving CHD outcomes, and are thus first-line therapy for the treatment of hypercholesterolemia. In patients who do not achieve optimal lipid levels with statin therapy, or who are intolerant to statin therapy, add-on therapy or alternative therapies may be indicated. Additional available agents to treat hypercholesterolemic patients with T2DM include bile acid sequestrants, fibrates, niacin, and ezetimibe. This review discusses the use of these alternative agents to treat hypercholesterolemia in patients with T2DM, either as monotherapy or in combination with statin therapy. Keywords: dyslipidemia, statin, colesevelam

  7. Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation.

    Science.gov (United States)

    Lin, Xin; Xue, Li-Ying; Wang, Rui; Zhao, Qian-Yu; Chen, Qiang

    2006-03-01

    Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.

  8. Serum Fructosamine, Total Cholesterol, and High-Density Lipoprotein in Children with Asthma during Glucocorticoid Treatment.

    Science.gov (United States)

    Schou, A J; Wolthers, O D

    2011-01-01

    Background/Aims. Glucocorticoids may have adverse effects on carbohydrate and lipid metabolism. The present study was conducted to investigate possible effects on carbohydrate and lipid metabolism of inhaled and oral glucocorticoids in children with asthma. Methods. Two randomised controlled trials with blinded crossover designs were performed. Active treatment was 400  μ g inhaled budesonide or 5 mg prednisolone orally daily during one week. The budesonide trial included 17 and the prednisolone trial 20 school children. Serum fructosamine, total cholesterol and high-density lipoprotein were assessed. Results. Serum fructosamine was increased during active treatment (prednisolone 252.3  μ M versus placebo 247.3  μ M; P = 0.03 and budesonide 228.1  μ M versus no treatment 223.1  μ M; P = 0.02). Total cholesterol and high-density lipoprotein were not statistically significantly increased. Conclusion. Short-term treatment with oral prednisolone and inhaled budesonide may adversely affect mean blood glucose concentration. Possible long-term consequences require further investigations.

  9. High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Navin K Kapur

    2008-02-01

    Full Text Available Navin K Kapur, Dominique Ashen, Roger S BlumenthalDivision of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USAAbstract: Since the pioneering work of John Gofman in the 1950s, our understanding of high density lipoprotein cholesterol (HDL-C and its relationship to coronary heart disease (CHD has grown substantially. Numerous clinical trials since the Framingham Study in 1977 have demonstrated an inverse relationship between HDL-C and one’s risk of developing CHD. Over the past two decades, preclinical research has gained further insight into the nature of HDL-C metabolism, specifically regarding the ability of HDL-C to promote reverse cholesterol transport (RCT. Recent attempts to harness HDL’s ability to enhance RCT have revealed the complexity of HDL-C metabolism. This review provides a detailed update on HDL-C as an evolving therapeutic target in the management of cardiovascular disease.Keywords: high density lipoprotein cholesterol (HDL-C, coronary, atherosclerosis, reverse cholesterol transport

  10. Meta-Analysis of Low Density Lipoprotein Receptor (LDLR rs2228671 Polymorphism and Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Huadan Ye

    2014-01-01

    Full Text Available Low density lipoprotein receptor (LDLR can regulate cholesterol metabolism by removing the excess low density lipoprotein cholesterol (LDL-C in blood. Since cholesterol metabolism is often disrupted in coronary heart disease (CHD, LDLR as a candidate gene of CHD has been intensively studied. The goal of our study is to evaluate the overall contribution of LDLR rs2228671 polymorphism to the risk of CHD by combining the genotyping data from multiple case-control studies. Our meta-analysis is involved with 8 case-control studies among 7588 cases and 9711 controls to test the association between LDLR rs2228671 polymorphism and CHD. In addition, we performed a case-control study of LDLR rs2228671 polymorphism with the risk of CHD in Chinese population. Our meta-analysis showed that rs2228671-T allele was significantly associated with a reduced risk of CHD (P=0.0005, odds ratio (OR = 0.83, and 95% confidence interval (95% CI = 0.75–0.92. However, rs2228671-T allele frequency was rare (1% and was not associated with CHD in Han Chinese (P=0.49, suggesting an ethnic difference of LDLR rs2228671 polymorphism. Meta-analysis has established rs2228671 as a protective factor of CHD in Europeans. The lack of association in Chinese reflects an ethnic difference of this genetic variant between Chinese and European populations.

  11. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit.

    Science.gov (United States)

    Brites, Fernando; Martin, Maximiliano; Guillas, Isabelle; Kontush, Anatol

    2017-12-01

    Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.

  12. High-density lipoprotein apolipoprotein A-I kinetics in obesity.

    Science.gov (United States)

    Ooi, Esther M M; Watts, Gerald F; Farvid, Maryam S; Chan, Dick C; Allen, Michael C; Zilko, Simon R; Barrett, P Hugh R

    2005-06-01

    Low plasma concentrations of high-density lipoprotein (HDL)-cholesterol and apolipoprotein A-I (apoA-I) are independent predictors of coronary artery disease and are often associated with obesity and the metabolic syndrome. However, the underlying kinetic determinants of HDL metabolism are not well understood. We pooled data from 13 stable isotope studies to investigate the kinetic determinants of apoA-I concentrations in lean and overweight-obese individuals. We also examined the associations of HDL kinetics with age, sex, BMI, fasting plasma glucose, fasting insulin, Homeostasis Model Assessment score, and concentrations of apoA-I, triglycerides, HDL-cholesterol and low-density lipoprotein-cholesterol. Compared with lean individuals, overweight-obese individuals had significantly higher HDL apoA-I fractional catabolic rate (0.21+/-0.01 vs. 0.33+/-0.01 pools/d; pModel Assessment score, HDL apoA-I PR was an independent predictor of apoA-I concentration. In overweight-obese subjects, hypercatabolism of apoA-I is paralleled by an increased production of apoA-I, with HDL apoA-I PR being the stronger determinant of apoA-I concentration. This could have therapeutic implications for the management of dyslipidemia in individuals with low plasma HDL-cholesterol.

  13. Functional analysis of low-density lipoprotein receptor in homozygous familial hypercholesterolemia patients with novel 1439 C→T mutation of low-density lipoprotein receptor gene

    Institute of Scientific and Technical Information of China (English)

    LIN Jie; JIANG Zhi-sheng; WANG Lu-ya; LIU Shu; XIA Jun-hui; YONG Qiang; DU Lan-ping; PAN Xiao-dong; XUE Hong; CHEN Bao-sheng

    2008-01-01

    Background Familial hypercholesterolemia (FH), caused by low density lipoprotein (LDL) receptor (LDL-R) gene mutations, is associated with increased risk of premature coronary heart disease. Until now, limited molecular data concerning FH are available in China. The present study described the clinical profiles and cell biological defects of a Chinese FH kindred with novel LDL-R gene mutation.Methods The patient's LDL-R gene coding region was sequenced. The patient's lymphocytes were isolated and the LDL-R expression, binding and up-take functions were observed by immunohistochemistry staining and flow cytometry detection. The patient's heart and the major large vessels were detected by vessel ultrasound examination and myocardial perfusion imaging (MPI).Results The patient's LDL-R expression, LDL binding and up-take functions were significantly lower than normal control (39%, 63% and 76% respectively). A novel homozygous 1439 C→T mutation of the LDL-R gene was detected in the patient and his family. ECG showed atypical angina pectoris. Echocardiogram showed stenosis of the coronary artery and calcification of the aortic valve and its root. Blood vessel ultrasound examination showed the thickness of large vessel intima, and the vessel lumen was narrowed by 71%. MPI showed ischemic changes.Conclusions The LDL-R synthesis dysfunction of FH patients leads to arterial stenosis and calcification, which are the major phenotype of the clinical disorder. The mutation of the LDL-R gene is determined. These data increase the mutational spectrum of FH in China.

  14. Correlation of Friedewald's calculated low-density lipoprotein cholesterol levels with direct low-density lipoprotein cholesterol levels in a tertiary care hospital

    Science.gov (United States)

    Nanda, Sunil Kumar; Bharathy, M; Dinakaran, Asha; Ray, Lopamudra; Ravichandran, K

    2017-01-01

    Background: One of the risk factors for the development of coronary heart disease is high low-density lipoprotein (LDL) cholesterol levels. National Cholesterol Education Program ATP III guidelines suggest drug therapy to be considered at LDL-cholesterol levels >130 mg/dl. This makes accurate reporting of LDL cholesterol crucial in the management of Coronary heart disease. Estimation of LDL cholesterol by direct LDL method is accurate, but it is expensive. Hence, We compared Friedewald's calculated LDL values with direct LDL values. Aim: To evaluate the correlation of Friedewalds calculated LDL with direct LDL method. Materials and Methods: We compared LDL cholesterol measured by Friedewald's formula with direct LDL method in 248 samples between the age group of 20–70 years. Paired t-test was used to test the difference in LDL concentration obtained by a direct method and Friedewald's formula. The level of significance was taken as P values with Friedewald's formula. Results: There was no significant difference between the direct LDL values when compared to calculated LDL by Friedewalds formula (P = 0.140). Pearson correlation showed there exists good correlation between direct LDL versus Friedewalds formula (correlation coefficient = 0.98). The correlation between direct LDL versus Friedewalds calculated LDL was best at triglycerides values between 101 and 200 mg/dl. Conclusion: This study indicates calculated LDL by Friedewalds equation can be used instead of direct LDL in patients who cannot afford direct LDL method.

  15. Dietary modifications of low-density lipoprotein fatty acids in humans: their effect on low-density lipoprotein-fibroblast interactions.

    Science.gov (United States)

    Baudet, M F; Esteva, O; Lasserre, M; Jacotot, B

    1986-01-01

    The chemical composition and metabolism of low-density lipoproteins (LDLs) in a population of Benedictine nuns were studied after 5-month periods during which the predominant dietary fats were sunflower oil, fluid of palm, peanut oil, milk fats, low erucic acid rapeseed (LEAR) oil, corn oil, olive oil, soybean oil. The population was divided into three groups. The control group (C) included 12 subjects selected at random by taking 2 subjects per age pool among those with plasma cholesterol less than 230 mg/dl. Groups H1 and H2 were selected in the same way among those with plasma cholesterol less than 230 mg/dl. Groups H1 and H2 comprised 6 subjects and differed from each other in the amount of plasma cholesteryl esters, i.e., below and above the mean value of group C. Changes in LDL composition, according to the dietary fat, were associated with changes in LDL catabolism studied in fibroblast cultures, but no significant differences were found between the three groups.

  16. Correlation of Friedewald's calculated low-density lipoprotein cholesterol levels with direct low-density lipoprotein cholesterol levels in a tertiary care hospital.

    Science.gov (United States)

    Nanda, Sunil Kumar; Bharathy, M; Dinakaran, Asha; Ray, Lopamudra; Ravichandran, K

    2017-01-01

    One of the risk factors for the development of coronary heart disease is high low-density lipoprotein (LDL) cholesterol levels. National Cholesterol Education Program ATP III guidelines suggest drug therapy to be considered at LDL-cholesterol levels >130 mg/dl. This makes accurate reporting of LDL cholesterol crucial in the management of Coronary heart disease. Estimation of LDL cholesterol by direct LDL method is accurate, but it is expensive. Hence, We compared Friedewald's calculated LDL values with direct LDL values. To evaluate the correlation of Friedewalds calculated LDL with direct LDL method. We compared LDL cholesterol measured by Friedewald's formula with direct LDL method in 248 samples between the age group of 20-70 years. Paired t-test was used to test the difference in LDL concentration obtained by a direct method and Friedewald's formula. The level of significance was taken as P correlation formula was used to test the correlation between direct LDL values with Friedewald's formula. There was no significant difference between the direct LDL values when compared to calculated LDL by Friedewalds formula (P = 0.140). Pearson correlation showed there exists good correlation between direct LDL versus Friedewalds formula (correlation coefficient = 0.98). The correlation between direct LDL versus Friedewalds calculated LDL was best at triglycerides values between 101 and 200 mg/dl. This study indicates calculated LDL by Friedewalds equation can be used instead of direct LDL in patients who cannot afford direct LDL method.

  17. Triglyceride and non-high-density lipoprotein cholesterol as predictors of cardiovascular disease risk factors in Chinese Han children.

    Science.gov (United States)

    Zhu, Wei Fen; Liang, Li; Wang, Chun Lin; Fu, Jun Fen

    2013-04-01

    To investigate the role of serum cholesterol and triglyceride in the assessment of cardiovascular disease risk factors in children and adolescents. Case-control study. Childrens Hospital of Zhejiang University School of Medicine, Hangzhou, China. Children from 6 years to 17 year old. 188 with simple obesity, and 431 with obesity and metabolic abnormalities. 274 age and gender-matched healthy children as controls. Receiver operating characteristic curves were used to analyze the detection of cardiovascular disease risk factors by cholesterol and triglyceride in children and adolescents. The ranges of areas under receiver operating characteristic curves (AUC) for triglyceride and non-high-density lipoprotein cholesterol were 0.798-0.860 and 0.667-0.749, respectively to detect cardiovascular disease risk factors. The ranges of AUC for low-density lipoprotein cholesterol, total cholesterol, and high-density lipoprotein cholesterol were 0.631-0.718, 0.596-0.683, and 0.292-0.376, respectively. Triglyceride and non-high-density lipoprotein cholesterol are better than low-density lipoprotein cholesterol as predictors of cardiovascular disease risk factors in Chinese Han children and adolescents.

  18. Sterol regulatory element-binding protein-1 determines plasma remnant lipoproteins and accelerates atherosclerosis in low-density lipoprotein receptor-deficient mice.

    Science.gov (United States)

    Karasawa, Tadayoshi; Takahashi, Akimitsu; Saito, Ryo; Sekiya, Motohiro; Igarashi, Masaki; Iwasaki, Hitoshi; Miyahara, Shoko; Koyasu, Saori; Nakagawa, Yoshimi; Ishii, Kiyoaki; Matsuzaka, Takashi; Kobayashi, Kazuto; Yahagi, Naoya; Takekoshi, Kazuhiro; Sone, Hirohito; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2011-08-01

    Sterol regulatory element-binding protein-1 (SREBP-1) is nutritionally regulated and is known to be a key transcription factor regulating lipogenic enzymes. The goal of this study was to evaluate the roles of SREBP-1 in dyslipidemia and atherosclerosis. Transgenic mice that overexpress SREBP-1c in the liver and SREBP-1-deficient mice were crossed with low-density lipoprotein receptor (LDLR)-deficient mice, and the plasma lipids and atherosclerosis were analyzed. Hepatic SREBP-1c overexpression in LDLR-deficient mice caused postprandial hypertriglyceridemia, increased very-low-density lipoprotein (VLDL) cholesterol, and decreased high-density lipoprotein cholesterol in plasma, which resulted in accelerated aortic atheroma formation. Conversely, absence of SREBP-1 suppressed Western diet-induced hyperlipidemia in LDLR-deficient mice and ameliorated atherosclerosis. In contrast, bone marrow-specific SREBP-1 deficiency did not alter the development of atherosclerosis. The size of nascent VLDL particles secreted from the liver was increased in SREBP-1c transgenic mice and reduced in SREBP-1-deficient mice, accompanied by upregulation and downregulation of phospholipid transfer protein expression, respectively. Hepatic SREBP-1c determines plasma triglycerides and remnant cholesterol and contributes to atherosclerosis in hyperlipidemic states. Hepatic SREBP-1c also regulates the size of nascent VLDL particles.

  19. Association of triglyceride-rich lipoproteins-related markers and low-density lipoprotein heterogeneity with cardiovascular risk: effectiveness of polyacrylamide-gel electrophoresis as a method of determining low-density lipoprotein particle size.

    Science.gov (United States)

    Tani, Shigemasa; Matsumoto, Michiaki; Nagao, Ken; Hirayama, Atsushi

    2014-01-01

    Despite well-controlled low-density lipoprotein cholesterol (LDL-C), hypertriglyceridemia is an independent predictor of coronary events. We investigated the risk of atherosclerotic cardiovascular disease through examining the relation between triglyceride (TG) metabolism and LDL-heterogeneity as assessed by polyacrylamide-gel electrophoresis (PAGE). Estimated LDL-particle size [relative LDL migration (LDL-Rm value)] measured by PAGE with the LipoPhor system (Joko, Tokyo, Japan) was evaluated in 645 consecutive patients with one additional risk factor for atherosclerotic cardiovascular disease.Multivariate regression analysis after adjustments for traditional risk factors revealed an elevated triglyceride-rich lipoproteins (TRLs)-related markers [TG, remnant-like particle cholesterol (RLP-C), very LDL (VLDL) fraction, apolipoprotein (apo) C-II, and apo C-III] level to be an independent predictor of smaller-size LDL-particle size, both in the overall population, and in a subset of patients with serum LDL-C cardiovascular disease, it may be of particular importance to pay attention not only to the quantitative change in the serum LDL-C, but also TG-metabolism associated with LDL-heterogeneity. Combined evaluation of TRLs-related markers and LDL-Rm value may be useful for assessing the risk of atherosclerotic cardiovascular disease. Copyright © 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  20. Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels

    Science.gov (United States)

    Maximal doses of atorvastatin and rosuvastatin are highly effective in lowering low-density lipoprotein (LDL) cholesterol and triglyceride levels; however, rosuvastatin has been shown to be significantly more effective than atorvastatin in lowering LDL cholesterol and in increasing high-density lipo...

  1. Tissue sites of degradation of high density lipoprotein apolipoprotein A-IV in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dallinga-Thie, G.M.; Van ' t Hooft, F.M.; Van Tol, A.

    1986-05-01

    The in vivo metabolism of high density lipoprotein (HDL), labeled by incorporation of /sup 125/I-apolipoprotein (apo) A-IV, was studied in the rat and compared with the metabolism of HDL labeled with 131I-apo A-I. The /sup 125/I-apo A-IV labeled HDL was obtained by adding small amounts of radioiodinated apo A-IV to rat serum, followed by separation of the different lipoprotein fractions by chromatography on 6% agarose columns in order to avoid stripping of apolipoproteins by ultracentrifugation. Under both in vitro and in vivo conditions, the /sup 125/I-apo A-IV remained an integral component of HDL and was not exchanged to other lipoproteins, including the free apo A-IV fraction. The serum half-life, measured at between 8 and 28 hours after intravenous injection of labeled HDL, was 8.5 +/- 0.5 hours for HDL apo A-IV and 10.2 +/- 0.7 hours for HDL apo A-I. The tissue sites of catabolism of HDL apo A-IV and HDL apo A-I were analyzed in the leupeptin-model. Only the kidneys and liver showed a significant leupeptin-dependent accumulation of radioactivity. At 4 hours after injection of 125I-apo A-IV/131I-apo A-I labeled HDL, 3.5% +/- 1.0% and 8.4% +/- 2.0% of HDL apo A-IV and 4.6% +/- 1.3% and 2.6% +/- 0.6% of the HDL apo A-I were accumulated in a leupeptin-dependent process in the kidneys and liver, respectively. Immunocytochemical studies revealed that the renal localization of apo A-IV was intracellular and confined to the epithelial cells of the proximal tubuli.

  2. Streptococcal Serum Opacity Factor Increases Hepatocyte Uptake of Human Plasma High Density Lipoprotein-Cholesterol1

    Science.gov (United States)

    Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.

    2010-01-01

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789

  3. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    Science.gov (United States)

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-04-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

  4. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery

    Science.gov (United States)

    Sabnis, Sarika; Sabnis, Nirupama A; Raut, Sangram; Lacko, Andras G

    2017-01-01

    Current cancer chemotherapy is frequently associated with short- and long-term side effects, affecting the quality of life of cancer survivors. Because malignant cells are known to overexpress specific surface antigens, including receptors, targeted drug delivery is often utilized to reduce or overcome side effects. The current study involves a novel targeting approach using specifically designed nanoparticles, including encapsulation of the anti-cancer drug valrubicin into superparamagnetic iron oxide nanoparticle (SPION) containing reconstituted high-density lipoprotein (rHDL) nanoparticles. Specifically, rHDL–SPION–valrubicin hybrid nanoparticles were assembled and characterized with respect to their physical and chemical properties, drug entrapment efficiency and receptor-mediated release of the drug valrubicin from the nanoparticles to prostate cancer (PC-3) cells. Prussian blue staining was used to assess nanoparticle movement in a magnetic field. Measurements of cytotoxicity toward PC-3 cells showed that rHDL–SPION–valrubicin nanoparticles were up to 4.6 and 31 times more effective at the respective valrubicin concentrations of 42.4 µg/mL and 85 µg/mL than the drug valrubicin alone. These studies showed, for the first time, that lipoprotein drug delivery enhanced via magnetic targeting could be an effective chemotherapeutic strategy for prostate cancer. PMID:28260891

  5. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Maryam Boshtam

    2013-01-01

    Full Text Available Introduction. Cardioprotective effect of high density lipoprotein (HDL is, in part, dependent on its related enzyme, paraoxonase 1 (PON1. Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA. PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  6. Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics

    Directory of Open Access Journals (Sweden)

    Juan Salazar

    2015-01-01

    Full Text Available High-Density Lipoprotein-Cholesterol (HDL-C is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.

  7. [Cholesterol bound to high density lipoproteins: critical review of the methods of analysis and personal data].

    Science.gov (United States)

    Orso Giacone, G

    1982-01-01

    It is widely known that atherosclerosis through its complication, i.e. heart and brain infarction, is at the present the main cause of death. The atherosclerotic process has been shown in correlation with hyperlipemia especially as far as the plasma lipoprotein cholesterol level is concerned. A preminent role in removing cholesterol from tissues and arterial walls then in preventing atherosclerosis is played by a specific class of plasma lipoproteins, the high density lipoproteins (HDL). Since the HDL-colesterol level seems to have an inverse correlation with the atherosclerotic disease it is of primary importance to define a reliable and reproducible technique to measure it. One of the aims of this paper was to examine the different methods now available for such a determination. This analysis has underlined the discrepancy among the reference values reported in the literature. However, all the authors agree that only the simultaneous measurement of total and HDL-colesterol levels is of prognostic value. Personal studies are here reported on the relationship between total and HDL-colesterol levels and risk factor of cardiovascular diseases. The two mentioned laboratory analyses have been performed on blood samples from 250 between male and female human subjects of different age. The obtained results show that the highest HDL-colesterol concentrations determined by a lipoprotein precipitation procedure with dextran sulphate, are typical in the first ten years of life both in male and in female, while the lowest levels of plasma HDL-cholesterol have been evintiated during the fifth decade of life, when the total cholesterol and the risk of cardiovascular complications rich the highest values. In a following set of investigations, the already examined blood parameters together with the risk factor values have been examined in two groups of subjects, the first one represented by adult healthy persons the second one by patients of similar age from a cardiovascular

  8. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management.

    Science.gov (United States)

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L; Descamps, Olivier S; Fisher, Edward; Kovanen, Petri T; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G; Ray, Kausik K; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F

    2011-06-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥ 1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal.

  9. Magnetic Resonance Imaging Detection of Tumor Cells by Targeting Low-Density Lipoprotein Receptors with Gd-Loaded Low-Density Lipoprotein Particles

    Directory of Open Access Journals (Sweden)

    Simonetta Geninatti Crich

    2007-12-01

    Full Text Available Gd-DO3A-diph and Gd-AAZTAC17 are lipophilic magnetic resonance imaging (MRI agents that display high affinity for low-density lipoprotein (LDL particles. However, on binding to LDL, Gd-DO3A-diph shows a decreased hydration that results in a lower enhancement of water proton relaxation rate. Conversely, GdAAZTAC17 displays a strong relaxation enhancement at the imaging fields. Each LDL particle can load up to 100 and 400 UNITS of Gd-DO3A-diph and Gd-AAZTAC17, respectively. Their LDL adducts are taken up by human hepatoblastoma G2 (HepG2 and melanoma B16 tumor cells when added to the incubation medium. T, measurements of the labeled cells indicate that Gd-AAZTAC17 is significantly more efficient than Gd-DO3A-diph. Furthermore, it has been found that HepG2 hepatoma cells can internalize higher amounts of Gd-AAZTAC17 than B16 cells and the involvement of LDL receptors (LDLRs has been demonstrated in competition assays with free LDL. Gd-AAZTAC17/LDL adduct proved to be an efficient probe in the magnetic resonance (MR visualization of subcutaneous tumors in animal models obtained by injecting B16 melanoma cells into the right flank of mice. Finally, confocal microscopy validation of the distribution of LDL-based probes in the tumor has been obtained by doping the Gd-AAZTAC17/LDL adduct with a fluorescent phospholipid moiety.

  10. Enzymatically Modified Low-Density Lipoprotein Promotes Foam Cell Formation in Smooth Muscle Cells via Macropinocytosis and Enhances Receptor-Mediated Uptake of Oxidized Low-Density Lipoprotein.

    Science.gov (United States)

    Chellan, Bijoy; Reardon, Catherine A; Getz, Godfrey S; Hofmann Bowman, Marion A

    2016-06-01

    Enzyme-modified nonoxidized low-density lipoprotein (ELDL) is present in human atherosclerotic lesions. Our objective is to understand the mechanisms of ELDL uptake and its effects on vascular smooth muscle cells (SMC). Transformation of murine aortic SMCs into foam cells in response to ELDL was analyzed. ELDL, but not acetylated or oxidized LDL, was potent in inducing SMC foam cell formation. Inhibitors of macropinocytosis (LY294002, wortmannin, amiloride) attenuated ELDL uptake. In contrast, inhibitors of receptor-mediated endocytosis (dynasore, sucrose) and inhibitor of caveolae-/lipid raft-mediated endocytosis (filipin) had no effect on ELDL uptake in SMC, suggesting that macropinocytosis is the main mechanism of ELDL uptake by SMC. Receptor for advanced glycation end products (RAGE) is not obligatory for ELDL-induced SMC foam cell formation, but primes SMC for the uptake of oxidized LDL in a RAGE-dependent manner. ELDL increased intracellular reactive oxygen species, cytosolic calcium, and expression of lectin-like oxidized LDL receptor-1 in wild-type SMC but not in RAGE(-/-) SMC. The macropinocytotic uptake of ELDL is regulated predominantly by intracellular calcium because ELDL uptake was completely inhibited by pretreatment with the calcium channel inhibitor lacidipine in wild-type and RAGE(-/-) SMC. This is in contrast to pretreatment with PI3 kinase inhibitors which completely prevented ELDL uptake in RAGE(-/-) SMC, but only partially in wild-type SMC. ELDL is highly potent in inducing foam cells in murine SMC. ELDL endocytosis is mediated by calcium-dependent macropinocytosis. Priming SMC with ELDL enhances the uptake of oxidized LDL. © 2016 American Heart Association, Inc.

  11. Effect of monounsaturated fatty acids on high-density and low-density lipoprotein cholesterol levels and blood pressure in healthy men and women.

    NARCIS (Netherlands)

    Mensink, R.P.

    1990-01-01

    The purpose of the studies described in this thesis was to examine the effect of monounsaturated fatty acids on the distribution of serum cholesterol over high-density and low-density lipoproteins (HDL and LDL) and on blood pressure in healthy men and women. High levels of LDL cholesterol and bl

  12. Effect of monounsaturated fatty acids on high-density and low-density lipoprotein cholesterol levels and blood pressure in healthy men and women

    NARCIS (Netherlands)

    Mensink, R.P.

    1990-01-01

    The purpose of the studies described in this thesis was to examine the effect of monounsaturated fatty acids on the distribution of serum cholesterol over high-density and low-density lipoproteins (HDL and LDL) and on blood pressure in healthy men and women. High levels of LDL cholesterol

  13. Oxidized low-density lipoprotein (Ox-LDL) impacts on erythrocyte viscoelasticity and its molecular mechanism.

    Science.gov (United States)

    Wang, Xiang; Yang, Li; Liu, Yao; Gao, Wei; Peng, Weiyan; Sung, K-L Paul; Sung, Lanping Amy

    2009-10-16

    The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.

  14. 5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein.

    Science.gov (United States)

    Jessup, W; Darley-Usmar, V; O'Leary, V; Bedwell, S

    1991-08-15

    The concentration-dependent effects of a series of lipoxygenase inhibitors and antioxidants on the macrophage-mediated oxidative modification of low-density lipoprotein (LDL) were measured. Their influence on macrophage 5-lipoxygenase pathway activity was also studied over the same concentration range. No correlation between inhibition of 5-lipoxygenase and of macrophage-mediated oxidation of LDL was observed. The capacity of the compounds to prevent cell-mediated modification of LDL could be explained in terms of their activity as either aqueous- or lipid-peroxyl radical scavengers. Two potent 5-lipoxygenase inhibitors (MK 886 and Revlon 5901), which had no radical-scavenging properties, were unable to block LDL modification. It is concluded that 5-lipoxygenase is not essential for LDL oxidation by macrophages.

  15. Glycation of high-density lipoprotein in type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    SUN Jia-teng; SHEN Ying; L(U) An-kang; LU Lin; SHEN Wei-feng

    2013-01-01

    Objective To evaluate whether glycation of high-density lipoprotein (HDL) increases cardiovascular risk in patients with type 2 diabetes mellitus by altering its anti-atherogenic property.Data sources Data cited in this review were obtained mainly from Pubmed and Medline in English from 2000 to 2013,with keywords "glycation","HDL",and "atherosclerosis".Study selection Articles regarding glycation of HDL and its role in atherogenesis in both humans and experimental animal models were identified,retrieved and reviewed.Results Glycation alters the structure of HDL and its associated enzymes,resulting in an impairment of atheroprotective functionality and increased risks for cardiovascular events in type 2 diabetic patients.Conclusion Glycation of HDL exerts a deleterious effect on the development of cardiovascular complications in diabetes.

  16. Effect of splitting simvastatin tablets for control of low-density lipoprotein cholesterol.

    Science.gov (United States)

    Parra, David; Beckey, Nick P; Raval, Harsha S; Schnacky, Kimberly R; Calabrese, Vincent; Coakley, Roy W; Goodhope, Robert C

    2005-06-15

    The efficacy, safety, and economics of a voluntary conversion from whole simvastatin tablets to split tablets in 6 Veterans Affairs medical centers were retrospectively evaluated in 3,787 patients who received a consistent daily dose (5 to 40 mg) of simvastatin in 1999. Baseline and final low-density lipoprotein cholesterol levels and average change from baseline were not significantly different between groups (p >0.05), nor were the incidence of transaminase increases (p >0.05) or measurements of patient compliance (p = 0.07). Widespread implementation of this initiative resulted in a cost avoidance of >$1.2 million in the 6 medical centers and $10.3 million across the Veterans Affairs medical system in 1999, with >$46 million avoided in 2003.

  17. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    Directory of Open Access Journals (Sweden)

    Loic Auderset

    2016-01-01

    Full Text Available The central nervous system (CNS is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.

  18. Low-Density Lipoprotein (LDL-Antioxidant Biflavonoids from Garcinia madruno

    Directory of Open Access Journals (Sweden)

    Jaume Bastida

    2013-05-01

    Full Text Available Six biflavonoids were isolated from G. madruno, one of which, 7''-O-(6''''-acetyl-glucoside of morelloflavone, is a new compound identified on the basis of 1D, 2D NMR (HMQC and HMBC spectroscopic methods and chemical evidence. The antioxidant activity of the biflavonoids against low-density lipoprotein (LDL peroxidation induced with Cu2+, was studied by means of a TBARS assay. The antioxidant potential of a biflavonoid fraction (BF was also evaluated and correlated with its biflavonoid content. The flavanone-(3→8''-flavone biflavonoids displayed antioxidant activity, particularly morelloflavone, which was significantly more potent than quercetin, with a CE50 of 12.36 μg/mL. Lipid peroxidation, was also significantly reduced in the presence of the BF (EC50 = 11.85 μg/mL. These results suggest that the BF is an excellent antioxidant.

  19. Counterpoint: Low-Density Lipoprotein Cholesterol Targets Are Not Needed in Lipid Treatment Guidelines.

    Science.gov (United States)

    Robinson, Jennifer G; Ray, Kausik

    2016-04-01

    On the basis of accumulating evidence, low-density lipoprotein cholesterol (LDL-C) treat-to-goal approaches no longer seem to be the best way to optimize lipid-modifying therapy to prevent atherosclerotic cardiovascular disease (ASCVD). The potential for a net ASCVD risk reduction benefit is a more individualized approach to clinical decision making and may better inform patient preferences. However, risk estimation tools will need to be developed to facilitate more personalized CVD risk estimation in statin-treated patients. In the meantime, LDL-C thresholds rather than targets may aid in determining which patients might benefit from additional LDL-C-lowering therapy beyond statins. © 2016 American Heart Association, Inc.

  20. Transendothelial exchange of low-density lipoprotein is unaffected by the presence of severe atherosclerosis

    DEFF Research Database (Denmark)

    Kornerup, Karen; Nordestgaard, Børge Grønne; Jensen, Trine Krogsgaard

    2004-01-01

    OBJECTIVE: We tested the hypothesis that transendothelial exchange of low-density lipoprotein (LDL) is influenced by the presence of severe atherosclerosis; we previously found this exchange elevated in diabetes patients. METHODS: By an in vivo isotope method, we compared transendothelial LDL...... exchange in 24 patients with angiographically verified coronary atherosclerosis, 11 patients with angiographically verified peripheral atherosclerosis, 60 patients with diabetes, and in 42 controls. Autologous 131-iodinated LDL ((131)I-LDL) and 125-iodinated albumin ((125)I-albumin) were injected...... intravenously (i.v.), and the 1-h fractional escape rates (FER(LDL) and FER(alb)) were taken as indices of transendothelial exchange. RESULTS: Patients with coronary or peripheral atherosclerosis had FER(LDL) similar to that of controls [4.3 (3.5-5.1) and 3.2 (2.3-4.1) versus 4.2 (3.7-4.7)%/h; P>0.05], even...

  1. Low density lipoprotein levels linkage with the periodontal status patients of coronary heart disease

    Science.gov (United States)

    Ahmad, Nafisah Ibrahim; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Studies found an association between periodontitis and coronary heart disease (CHD), but relationship between periodontal status CHD patients with LDL (Low Density Lipoprotein) levels, as risk factors for atherosclerosis, has not been studied. Objective: To analyze relationship between LDL and periodontal status CHD. Methods: Periodontal status of 60 CHD, 40 controls were examined (PBI, PPD, CAL) and their blood was taken to assess levels of LDL. Result: Found significant differences LDL (p=0.005), correlation between LDL with PPD (p=0.003) and CAL CHD (p=0.013), and PPD (p=0.001), CAL (p=0.008) non-CHD, but no significant correlation between LDL with PBI CAD (p=0.689) and PBI non-CHD (p=0.320). Conclusion: There is a correlation between the LDL levels with periodontal status.

  2. Effects of lifestyle interventions on high-density lipoprotein cholesterol levels.

    Science.gov (United States)

    Roussell, Michael A; Kris-Etherton, Penny

    2007-03-01

    This review summarizes intervention studies that evaluated the effects of lifestyle behaviors on high-density lipoprotein-cholesterol (HDL-C) levels. Current diet and lifestyle recommendations beneficially affect HDL-C. Individual lifestyle interventions that increase HDL-C include: a healthful diet that is low (7-10% of calories) in saturated fat and sufficient in unsaturated fat (15-20% of calories), regular physical activity, attaining a healthy weight, with moderate alcohol consumption, and cessation of cigarette smoking. Combining a healthy diet with weight loss and physical activity can increase HDL-C 10% to 13%. When combined with interventions that beneficially affect other cardiovascular disease risk factors, this increase in HDL-C is expected to contribute to a overall reduction in cardiovascular disease risk.

  3. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease

    DEFF Research Database (Denmark)

    Johannsen, Trine Holm; Kamstrup, Pia R; Andersen, Rolf V

    2008-01-01

    CONTEXT: Hepatic lipase influences metabolism of high-density lipoprotein (HDL), a risk factor for ischemic cardiovascular disease (ICD: ischemic heart disease and ischemic cerebrovascular disease). OBJECTIVE: We tested the hypothesis that genetic variation in the hepatic lipase genetic variants V.......91 (95% CI 0.89-0.94), respectively; this calculation assumes that genetically elevated HDL levels confer decreased risk similar to common HDL elevations. In contrast, when all cases and controls were combined, the observed odds ratios for ICD for these three genetic variants vs. noncarriers were 1.19 (0.......76-1.88), 1.04 (0.96-1.13), and 1.08 (0.89-1.30), respectively. Hazard/odds ratios for ICD in carriers vs. noncarriers of the four remaining hepatic lipase genetic variants did not differ consistently from 1.0. CONCLUSION: Hepatic lipase genetic variants with elevated levels of HDL cholesterol did...

  4. Pregnancy in a Woman with Homozygous Familial Hypercholesterolemia Not on Low-Density Lipoprotein Apheresis

    Directory of Open Access Journals (Sweden)

    Akl C. Fahed

    2012-11-01

    Full Text Available Pregnancy in women with homozygous familial hypercholesterolemia (FH has been rarely reported and might pose risks on the mother and her fetus. Although most reported cases remained on low-density lipoprotein (LDL apheresis, there are no clear guidelines regarding the management of this entity. We report the first case of an uncomplicated pregnancy in a 24-year-old homozygous FH woman who was not maintained on LDL apheresis. FH expresses a wide variability in the phenotype, and management of homozygous FH cases who desire to become pregnant should be individualized based on preconceptional assessment with frequent antenatal follow-up. Decisions on management should be made after weighing the risks versus benefits of LDL apheresis.

  5. Oxidative modification of high density lipoprotein induced by cultured human arterial smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    江渝; 刘红; 彭家和; 叶治家; 何凤田; 董燕麟; 刘秉文

    2003-01-01

    Objective: To observe the oxidative modification of high density lipoprotein (HDL) induced by cultured human arterial smooth muscle cells (SMCs). Methods: HDL cocultured with SMCs at 37℃ in 48 h was subjected, and native HDL (N-HDL) served as control. Oxidative modification of HDL was identified by using agarose gel electrophoresis. Absorbances of conjugated diene (CD) and lipid hydroperoxide (LOOH) were measured with ultraviolet spectrophotometry at 234 and 560 nm respectively, and fluorescence intensity of thiobarbuturic acid reaction substance (TBARS) with fluorescence spectrophotometry at 550 nm emission wavelength with excitation at 515 nm. Results: In comparison with N-HDL, the electrophoretic mobility of SMCs-cocultured HDL was increased, and the contents of CD, LOOH and TBARS HDL were very significantly higher than those of the control HDL (P<0.01). Conclusion: Oxidative modification of HDL can be induced by human arterial SMCs.

  6. A disposable electrochemical sensor based on protein G for High-Density Lipoprotein (HDL) detection.

    Science.gov (United States)

    Chammem, H; Hafaid, I; Bohli, N; Garcia, A; Meilhac, O; Abdelghani, A; Mora, L

    2015-11-01

    In this work, two biosensors were developed for the detection of High-Density Lipoproteins (HDL) particles, which are biomarkers inversely correlated with cardiovascular risk and which represent therapeutic targets for atherosclerosis. The electrochemical properties of the grafted antibody on interdigitated gold electrode were achieved by Impedance Spectroscopy (IS). The used deposition method was based on oriented antibody Anti-ApoA1 with an intermediate thin layer of protein G. The developed biosensor was able to detect both native plasma HDL and reconstituted HDL (rHDL) particles respectively with the detection limit of 50n g/mL and 1 ng/mL, respectively. Dynamic contact angle and atomic force microscopy were used. The developed biosensors are able to differentiate the HDL particles according to their differences in size and interactions with the immobilized antibody.

  7. DETECTING LOW DENSITY LIPOPROTEIN RECEPTOR MUTANT GENE OF RABBIT BY PCR

    Institute of Scientific and Technical Information of China (English)

    Liu Enqi; Zhao Sihai; Chen Zhenglan; Yang Penghui

    2006-01-01

    Objective Watanabe Heritable Hyperlipidaemic (WHHL) rabbits with low density lipoprotein receptor (LDLr) gene mutation have provided unprecedented opportunities for the study of human atherosclerosis, in order to confirm LDL receptor gene status in rabbits, we developed a simple PCR technique to detect LDL mutations in rabbits. Methods Rabbits genomic DNA were extracted from ear biopsy, and amplified by PCR to detect 12 bp deletion mutation in WHHL rabbits. PCR products were directly digested with BglⅠ, and then applied to polyacrylamide gel electrophoresis. Results PCR products from homozygous LDLr +/+ rabbits generated 2 bands of 212 and 94 bp after BglⅠ digestion, LDLr +/- rabbits generated 3 bands (294, 212, and 94 bp), LDLr -/- animals, however, generated only 1 product (294 bp). Conclusion This modified PCR method is simple and reliable.

  8. High density lipoprotein – a hero, a mirage or a witness?

    Directory of Open Access Journals (Sweden)

    Dmitri eSviridov

    2014-11-01

    Full Text Available Negative relationship between plasma High Density Lipoprotein (HDL levels and risk of cardiovascular disease is a firmly established medical fact, but attempts to reproduce protective properties of HDL by pharmacologically elevating HDL levels were mostly unsuccessful. This conundrum presents a fundamental question: were the approaches used to raise HDL flawed or the protective effects of HDL are an epiphenomenon. Recent attempts to elevate plasma HDL were universally based on reducing HDL catabolism by blocking reverse cholesterol transport. Here we argue that this mode of HDL elevation may be mechanistically different to natural mechanisms and thus be counterproductive. We further argue that independently of whether HDL is a driving force or a surrogate measure of the rate of reverse cholesterol transport, approaches aimed at increasing HDL supply, rather than reducing its catabolism, would be most beneficial for speeding up reverse cholesterol transport and improving protection against cardiovascular disease.

  9. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

    DEFF Research Database (Denmark)

    Handberg, Aase; Levin, Klaus; Højlund, Kurt

    2006-01-01

    BACKGROUND: Macrophage CD36 scavenges oxidized low-density lipoprotein, leading to foam cell formation, and appears to be a key proatherogenic molecule. Increased expression of CD36 has been attributed to hyperglycemia and to defective macrophage insulin signaling in insulin resistance. Premature...... atherosclerosis is the major cause of morbidity and mortality in type 2 diabetes. Here, we report the identification of a soluble form of CD36 (sCD36) in plasma and hypothesize that sCD36 would be elevated in patients with type 2 diabetes and insulin resistance. METHODS AND RESULTS: sCD36 in plasma...... was demonstrated by immunopurification and Western blotting. We established ELISA assays to determine sCD36 in plasma and measured sCD36 in obese type 2 diabetic patients, obese nondiabetic relatives, and obese and lean control subjects. sCD36 was markedly elevated in type 2 diabetic patients compared with both...

  10. Revealing structural and dynamical properties of high density lipoproteins through molecular simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vattulainen, I.

    2012-01-01

    The structure and function of high density lipoprotein (HDL) particles have intrigued the scientific community for decades because of their crucial preventive role in coronary heart disease. However, it has been a taunting task to reveal the precise molecular structure and dynamics of HDL. Further......, because of the complex composition of HDL, understanding the impact of its structure and dynamics on the function of HDL in reverse cholesterol transport has also been a major issue. Recent progress in molecular simulation methodology and computing power has made a difference, as it has enabled...... essentially atomistic considerations of HDL particles over microsecond time scales, thereby proving substantial added value to experimental research. In this article, we discuss recent highlights concerning the structure and dynamics of HDL particles as revealed by atomistic and coarse-grained molecular...

  11. Effect of Curcumin on the Gene Expression of Low Density Lipoprotein Receptors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. Methods: Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of Dil labeled LDL uptake by flow cytometer. Results: It was found for the first time that 10 μmol/L-50μmol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. Conclusion: One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.

  12. Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids

    DEFF Research Database (Denmark)

    Murtola, T.; Vuorela, T. A.; Hyvonen, M. T.;

    2011-01-01

    Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL......'s structural information makes it more difficult to understand its function. In this work, we have combined experimental and theoretical data to construct LDL models comprised of the apoB-100 protein wrapped around a lipid droplet of about 20 nm in size. The models are considered by near-atomistic multi......-microsecond simulations to unravel structural as well as dynamical properties of LDL, with particular attention paid to lipids and their interactions with the protein. We find that the distribution and the ordering of the lipids in the LDL particle are rather complex. The previously proposed 2- and 3- layer models turn...

  13. Achievement of 2011 European low-density lipoprotein cholesterol (LDL-C) goals of either VOYAGER.

    Science.gov (United States)

    Karlson, Björn W; Nicholls, Stephen J; Lundman, Pia; Palmer, Mike K; Barter, Philip J

    2013-05-01

    Guidelines published in 2011 by the European Atherosclerosis Society and the European Society of Cardiology recommend a goal of either low-density lipoprotein cholesterol (LDL-C) VOYAGER individual patient data meta-analysis treated with rosuvastatin 10-40 mg, atorvastatin 10-80 mg or simvastatin 10-80 mg who achieved this goal. We analysed 25,075 patient exposures from high-risk patients. Paired comparisons were made between each rosuvastatin dose and an equal or higher dose of either atorvastatin or simvastatin, with a series of meta-analyses that included only randomised studies that directly compared rosuvastatin and its comparator treatments. As statin dose increased, higher percentages of patients achieved LDL-C VOYAGER highlight the importance of an effective statin at an appropriate dose to achieve treatment goals for LDL-C in patients with very high cardiovascular risk. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Inhibition of human low-density lipoprotein oxidation in vitro by ginger extracts.

    Science.gov (United States)

    Gunathilake, K D Prasanna P; Rupasinghe, H P Vasantha

    2014-04-01

    Oxidative modification of low-density lipoprotein (LDL) is thought to play a key role in atherosclerotic plaque formation. Currently, there is a renewed interest in ginger because of its antioxidants and cardioprotective properties. The effects of ethanol, methanol, ethyl acetate, and hexane solvent extracts of ginger and pure major ginger constituents on Cu(2+)-induced oxidation of human LDL in vitro were examined. The LDL oxidation inhibition by ethanol, methanol, ethyl acetate, and hexane extracts of ginger was 71%, 76%, 67%, and 67%, respectively, at their optimum extraction conditions. Inhibition of LDL oxidation by water extracts of ginger, which was prepared by ultrasonic-assisted extraction conditions of 52°C for 15 min, was about 43%. Phenolic bioactives of ginger-6-gingerols, 8-gingerols, 10-gingerols, and 6-shogaol-seem to be strong inhibitors of Cu(+2)-induced LDL oxidation. Overall, ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

  15. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity

    Directory of Open Access Journals (Sweden)

    Peng Dao-Quan

    2011-10-01

    Full Text Available Abstract Obesity, a significant risk factor for various chronic diseases, is universally related to dyslipidemia mainly represented by decreasing high-density lipoprotein cholesterol (HDL-C, which plays an indispensible role in development of cardiovascular disease (CVD. However, the mechanisms underlying obesity and low HDL-C have not been fully elucidated. Previous studies have focused on the alteration of HDL catabolism in circulation following elevated triglyceride (TG. But recent findings suggested that liver and fat tissue played pivotal role in obesity related low HDL-C. Some new molecular pathways like microRNA have also been proposed in the regulation of HDL metabolism in obesity. This article will review recent advances in understanding of the potential mechanism of low HDL-C in obesity.

  16. Safety profile of subjects treated to very low low-density lipoprotein cholesterol levels (JUPITER).

    Science.gov (United States)

    Everett, Brendan M; Mora, Samia; Glynn, Robert J; MacFadyen, Jean; Ridker, Paul M

    2014-12-01

    Recent US guidelines expand the indications for high-intensity statin therapy, yet data on the safety of attaining very low-density lipoprotein cholesterol (LDL-C) levels are scarce. Among 16,304 participants in the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) with on-treatment LDL-C levels, we identified 767 who did and 7,387 who did not achieve LDL-C JUPITER, achieving LDL-C levels <30 mg/dl with high-intensity statin therapy appeared to be generally well tolerated but associated with certain adverse events, including more physician-reported diabetes, hematuria, hepatobiliary disorders, and insomnia. These data may guide the monitoring of patients on intensive statin therapy and adverse events in trials of therapies that lead to very low LDL-C levels.

  17. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    Science.gov (United States)

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  18. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection.

    Directory of Open Access Journals (Sweden)

    Marie Samanovic

    2009-01-01

    Full Text Available Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system.

  19. Effect of cocoa bran on low-density lipoprotein oxidation and fecal bulking.

    Science.gov (United States)

    Jenkins, D J; Kendall, C W; Vuksan, V; Vidgen, E; Wong, E; Augustin, L S; Fulgoni, V

    Legumes have reported benefits in terms of reduced risk for coronary heart disease and of colonic health. A novel legume fiber, cocoa bran, also may have favorable health effects on serum lipid levels, low-density lipoprotein (LDL) cholesterol oxidation, and fecal bulk. Twenty-five healthy normolipidemic subjects (13 men and 12 women) (mean +/- SEM age, 37 +/- 2 years; mean +/- SEM body mass index [calculated as weight in kilograms divided by the square of height in meters], 24.6 +/- 0.7) ate cocoa-bran and chocolate-flavored low-fiber breakfast cereals for 2-week periods, with 2-week washout, in a double-blind crossover study. The cocoa-bran cereal provided 25.0 g/d of total dietary fiber (TDF). The low-fiber cereal (5.6 g/d TDF) was of similar appearance and energy value. Fasting blood samples were obtained at the start and end of each period, and 4-day fecal collections were made from days 11 through 14. High-density lipoprotein (HDL) cholesterol level was higher (7.6% +/- 2.9%; P =.02) and the LDL/HDL cholesterol ratio was lower (6.7% +/- 2.3%; P =.007) for cocoa-bran compared with low-fiber cereal at 2 weeks. No effect was seen on LDL cholesterol oxidation. Mean fecal output was significantly higher for cocoa-bran than for low-fiber cereal (56 +/- 14 g/d; Pchocolate-flavored cocoa-bran cereal increased fecal bulk similarly to wheat bran and was associated with a reduction in the LDL/HDL cholesterol ratio. In view of the low-fat, high-fiber nature of the material, these results suggest a possible role for this novel fiber source in the diets of normal, hyperlipidemic, and constipated subjects.

  20. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein

    Science.gov (United States)

    Kon, Valentina; Yang, Haichun; Fazio, Sergio

    2016-01-01

    Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population. PMID:26009251

  1. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD

    Science.gov (United States)

    Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-01-01

    Purpose COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin–low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin®, a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. Patients and methods This is a randomized, double-blind, parallel-group study. Subjects with stages I–II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin® or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. Results There were no differences between the Theracurmin® and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin® group compared with the placebo group. Conclusion Theracurmin® reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects. PMID:27616885

  2. Low-density lipoprotein electronegativity is a novel cardiometabolic risk factor.

    Directory of Open Access Journals (Sweden)

    Jing-Fang Hsu

    Full Text Available BACKGROUND: Low-density lipoprotein (LDL plays a central role in cardiovascular disease (CVD development. In LDL chromatographically resolved according to charge, the most electronegative subfraction-L5-is the only subfraction that induces atherogenic responses in cultured vascular cells. Furthermore, increasing evidence has shown that plasma L5 levels are elevated in individuals with high cardiovascular risk. We hypothesized that LDL electronegativity is a novel index for predicting CVD. METHODS: In 30 asymptomatic individuals with metabolic syndrome (MetS and 27 healthy control subjects, we examined correlations between plasma L5 levels and the number of MetS criteria fulfilled, CVD risk factors, and CVD risk according to the Framingham risk score. RESULTS: L5 levels were significantly higher in MetS subjects than in control subjects (21.9±18.7 mg/dL vs. 11.2±10.7 mg/dL, P:0.01. The Jonckheere trend test revealed that the percent L5 of total LDL (L5% and L5 concentration increased with the number of MetS criteria (P<0.001. L5% correlated with classic CVD risk factors, including waist circumference, body mass index, waist-to-height ratio, smoking status, blood pressure, and levels of fasting plasma glucose, triglyceride, and high-density lipoprotein. Stepwise regression analysis revealed that fasting plasma glucose level and body mass index contributed to 28% of L5% variance. The L5 concentration was associated with CVD risk and contributed to 11% of 30-year general CVD risk variance when controlling the variance of waist circumference. CONCLUSION: Our findings show that LDL electronegativity was associated with multiple CVD risk factors and CVD risk, suggesting that the LDL electronegativity index may have the potential to be a novel index for predicting CVD. Large-scale clinical trials are warranted to test the reliability of this hypothesis and the clinical importance of the LDL electronegativity index.

  3. Effects of an evidence-based computerized virtual clinician on low-density lipoprotein and non-high-density lipoprotein cholesterol in adults without cardiovascular disease: The Interactive Cholesterol Advisory Tool.

    Science.gov (United States)

    Block, Robert C; Abdolahi, Amir; Niemiec, Christopher P; Rigby, C Scott; Williams, Geoffrey C

    2016-12-01

    There is a lack of research on the use of electronic tools that guide patients toward reducing their cardiovascular disease risk. We conducted a 9-month clinical trial in which participants who were at low (n = 100) and moderate (n = 23) cardiovascular disease risk-based on the National Cholesterol Education Program III's 10-year risk estimator-were randomized to usual care or to usual care plus use of an Interactive Cholesterol Advisory Tool during the first 8 weeks of the study. In the moderate-risk category, an interaction between treatment condition and Framingham risk estimate on low-density lipoprotein and non-high-density lipoprotein cholesterol was observed, such that participants in the virtual clinician treatment condition had a larger reduction in low-density lipoprotein and non-high-density lipoprotein cholesterol as their Framingham risk estimate increased. Perceptions of the Interactive Cholesterol Advisory Tool were positive. Evidence-based information about cardiovascular disease risk and its management was accessible to participants without major technical challenges.

  4. Z-Scan Analysis: a New Method to Determine the Oxidative State of Low-Density Lipoprotein and Its Association with Multiple Cardiometabolic Biomarkers

    Science.gov (United States)

    de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira

    2016-04-01

    The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.

  5. Neo High-Density Lipoprotein Produced by the Streptococcal Serum Opacity Factor Activity against Human High-Density Lipoproteins Is Hepatically Removed via Dual Mechanisms.

    Science.gov (United States)

    Rodriguez, Perla J; Gillard, Baiba K; Barosh, Rachel; Gotto, Antonio M; Rosales, Corina; Pownall, Henry J

    2016-10-18

    Injection of streptococcal serum opacity factor (SOF) into mice reduces the plasma cholesterol level by ∼40%. In vitro, SOF converts high-density lipoproteins (HDLs) into multiple products, including a small HDL, neo HDL. In vitro, neo HDL accounts for ∼60% of the protein mass of the SOF reaction products; in vivo, the accumulated mass of neo HDL is <1% of that observed in vitro. To identify the underlying cause of this difference, we determined the fate of neo HDL in plasma in vitro and in vivo. Following incubation with HDL, neo HDL-PC rapidly transfers to HDL, giving a small remnant, which fuses with HDL. An increased level of SR-B1 expression in Huh7 hepatoma cells and a reduced level of LDLR expression in CHO cells had little effect on neo HDL-[(3)H]CE uptake. Thus, the dominant receptors for neo HDL uptake are not LDLR or SR-B1. The in vivo metabolic fates of neo HDL-[(3)H]CE and HDL-[(3)H]CE were different. Thirty minutes after the injection of neo HDL-[(3)H]CE and HDL-[(3)H]CE into mice, plasma [(3)H]CE counts were 40 and 53%, respectively, of injected counts, with 10 times more [(3)H]CE appearing in the livers of neo HDL-[(3)H]CE-injected than in those of HDL-[(3)H]CE-injected mice. These data support a model of neo HDL-[(3)H]CE clearance by two parallel pathways. At early post-neo HDL-[(3)H]CE injection times, some neo HDL is directly removed by the liver; the remainder transfers its PC to HDL, leaving a remnant that fuses with HDL, which is also hepatically removed more slowly. Given that SR-B1 and SOF both remove CE from HDL, this novel mechanism may also underlie the metabolism of remnants released by hepatocytes following selective SR-B1-mediated uptake of HDL-CE.

  6. Risk of coronary heart disease is associated with triglycerides and high-density lipoprotein cholesterol in women and non-high-density lipoprotein cholesterol in men.

    Science.gov (United States)

    Abdel-Maksoud, Madiha F; Eckel, Robert H; Hamman, Richard F; Hokanson, John E

    2012-01-01

    Although the physiologic interrelationships between triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) are not fully understood, studies typically are adjusted for one when one is examining the role of the other. If the mechanism of coronary heart disease (CHD) risk is mediated through the other, then controlling for the second factor may mask the true effect of the first. We investigated the relationship between the combined effect of increased (↑) TG and decreased (↓) HDL-C compared with isolated ↑TG or isolated ↓HDL-C on CHD risk in men and women and compared these TG/HDL-C categories to non-HDL cholesterol (non-HDL-C). Subjects (936 women and 746 men) from the San Luis Valley Study were grouped on the basis of 4 sex-specific NCEP-ATP III cutpoints (↑TG ≥150 mg/dL, and ↓HDL-C, 50 and >40 mg/dL for women and men, respectively). Non-HDL-C was analyzed as a continuous variable. Among women, all groups had greater risk of CHD compared with the ↓TG/↑HDL-C reference in univariate analysis: ↓TG/↓HDL-C HR = 2.82 [95% confidence interval 1.12-7.1], ↑TG/↑HDL-C HR = 3.82 [1.50-9.74], ↑TG/↓HDL-C HR= 4.32 [1.91-9.80]. The risk remained significant in the ↓TG/↓HDL-C group (HR= 3.27 [1.26-8.50] and marginally significant in other groups in multivariable analysis. Neither ↑TG nor ↓HDL-C was related to CHD risk in men. Non-HDL cholesterol was significantly related to CHD in men but not in women. The CHD risk associated with ↓HDL-C in women was >2- to 4-fold elevated depending on TG levels. Non-HDL cholesterol was a significant predictor of CHD in men. Examining the combined effects of risk factors that share physiologic pathways may reveal important associations that can be otherwise obscured. Further dissection of gender specific pathways that affect HDL-C and TG and non-HDL cholesterol are important in understanding CHD risk. Published by Elsevier Inc.

  7. Enhanced susceptibility of low-density lipoproteins to oxidation in coronary bypass patients with progression of atherosclerosis

    NARCIS (Netherlands)

    Rijke, Y.B. de; Verwey, H.F.; Vogelezang, C.J.M.; Velde, E.A. van der; Princen, H.M.G.; Laarse, A. van der; Bruschke, A.V.G.; Berkel, T.J.C. van

    1995-01-01

    Oxidation of low-density lipoprotein (LDL) may play a causal role in atherosclerosis. In this study we analyzed whether the severity of progression of coronary atherosclerosis is related to the susceptibility of LDL to oxidative modification. On the basis of repeated coronary angiography, 28 coronar

  8. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    2011-01-01

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall macrophage-to-fe

  9. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL)

    DEFF Research Database (Denmark)

    Ismael, Fahd O; Proudfoot, Julie M; Brown, Bronwyn E;

    2015-01-01

    Atherosclerosis is characterised by the accumulation of lipids within macrophages in the artery wall. Low-density lipoprotein (LDL) is the source of this lipid, owing to the uptake of oxidised LDL by scavenger receptors. Myeloperoxidase (MPO) released by leukocytes during inflammation produces...

  10. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Nielsen, Nina Skall; Jacobsen, Charlotte;

    2010-01-01

    rutin compounds exhibited decreased reducing power and metal chelating abilities as compared to rutin. Conversely, investigations on the oxidation of human low density lipoprotein (LDL) revealed that rutin laurate was most effective in inhibiting oxidation by prolonging LDL lag time for an in vitro...

  11. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A

    NARCIS (Netherlands)

    Toelle, Markus; Huang, Tao; Schuchardt, Mirjam; Jankowski, Vera; Pruefer, Nicole; Jankowski, Joachim; Tietge, Uwe J. F.; Zidek, Walter; van der Giet, Markus

    2012-01-01

    Aims High-density lipoprotein (HDL) is known to have potent anti-inflammatory properties. Monocyte chemoattractant protein-1 is an important pro-inflammatory cytokine in early atherogenesis. There is evidence that HDL can lose its protective function during inflammatory disease. In patients with end

  12. Carotid intima media thickness is related positively to plasma pre beta-high density lipoproteins in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Perton, Frank G.; van Tol, Arie; Dullaart, Robin P. F.

    2012-01-01

    Background: Lipid-poor or lipid-free high density lipoprotein (HDL) particles, designated pre beta-HDL, stimulate removal of cell-derived cholesterol to the extracellular compartment, which is an initial step in the reverse cholesterol transport pathway. Pre beta-HDL levels may be elevated in subjec

  13. Scavenger Receptor BI-mediated Selective Uptake Is Required for the Remodeling of High Density Lipoprotein by Endothelial Lipase

    NARCIS (Netherlands)

    Nijstad, Niels; Wiersma, Harmen; Gautier, Thomas; van der Giet, Markus; Maugeais, Cyrille; Tietge, Uwe J. F.

    2009-01-01

    Endothelial lipase (EL) is a negative regulator of high density lipoprotein (HDL) cholesterol plasma levels, and scavenger receptor BI (SR-BI) is involved in remodeling of HDL. The present study investigates the requirement of SR-BI for the effects of EL- mediated phospholipid hydrolysis on HDL meta

  14. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A

    NARCIS (Netherlands)

    Toelle, Markus; Huang, Tao; Schuchardt, Mirjam; Jankowski, Vera; Pruefer, Nicole; Jankowski, Joachim; Tietge, Uwe J. F.; Zidek, Walter; van der Giet, Markus

    2012-01-01

    Aims High-density lipoprotein (HDL) is known to have potent anti-inflammatory properties. Monocyte chemoattractant protein-1 is an important pro-inflammatory cytokine in early atherogenesis. There is evidence that HDL can lose its protective function during inflammatory disease. In patients with

  15. Fibroblast cholesterol efflux to plasma from metabolic syndrome subjects is not defective despite low high-density lipoprotein cholesterol

    NARCIS (Netherlands)

    R.P.F. Dullaart (Robin); A. Groen (Albert); G.M. Dallinga-Thie (Geesje); R. de Vries (Rindert); W. Sluiter (Wim); A. van Tol (Arie)

    2008-01-01

    textabstractObjective: We tested whether in metabolic syndrome (MetS) subjects the ability of plasma to stimulate cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport pathway, is maintained despite low high-density lipoprotein (HDL) cholesterol. Design: In

  16. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, BG; Carey, AL; Natoli, AK

    2011-01-01

    We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study inve...

  17. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis

    NARCIS (Netherlands)

    T. Naruko; M. Ueda; S. Ehara; A. Itoh; K. Haze; N. Shirai; Y. Ikura; M. Ohsawa; H. Itabe; Y. Kobayashi; H. Yamagishi; M. Yoshiyama; J. Yoshikawa; A.E. Becker

    2006-01-01

    Objective-Recently, elevated levels of plasma oxidized low-density lipoprotein (LDL) have been shown to relate to plaque instability in human atherosclerotic lesions. We investigated prospectively patients admitted with acute myocardial infarction (AMI) who underwent primary coronary stenting to eva

  18. Carotid intima media thickness is related positively to plasma pre beta-high density lipoproteins in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Perton, Frank G.; van Tol, Arie; Dullaart, Robin P. F.

    2012-01-01

    Background: Lipid-poor or lipid-free high density lipoprotein (HDL) particles, designated pre beta-HDL, stimulate removal of cell-derived cholesterol to the extracellular compartment, which is an initial step in the reverse cholesterol transport pathway. Pre beta-HDL levels may be elevated in

  19. Enhanced susceptibility of low-density lipoproteins to oxidation in coronary bypass patients with progression of atherosclerosis

    NARCIS (Netherlands)

    Rijke, Y.B. de; Verwey, H.F.; Vogelezang, C.J.M.; Velde, E.A. van der; Princen, H.M.G.; Laarse, A. van der; Bruschke, A.V.G.; Berkel, T.J.C. van

    1995-01-01

    Oxidation of low-density lipoprotein (LDL) may play a causal role in atherosclerosis. In this study we analyzed whether the severity of progression of coronary atherosclerosis is related to the susceptibility of LDL to oxidative modification. On the basis of repeated coronary angiography, 28 coronar

  20. Identification of Toxic 2,4-Decadienal in Oxidized, Low-Density Lipoprotein by Solid-Phase Microextraction.

    Science.gov (United States)

    Spiteller; Spiteller

    2000-02-01

    The oxidation of low-density lipoprotein (LDL) in vitro was studied by a combination of solid-phase microextraction and GC/MS. 2-trans,4-cis-2,4-Decadienal, which is strongly toxic in vitro, was detected as the early oxidation product. This compound is degraded further to hexanal and (by cyclization of 4-hydroxy-2-nonenal) to 2-pentylfuran.

  1. Association Between Low-Density Lipoprotein Cholesterol-Lowering Genetic Variants and Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Lotta, Luca A; Sharp, Stephen J; Burgess, Stephen;

    2016-01-01

    Importance: Low-density lipoprotein cholesterol (LDL-C)-lowering alleles in or near NPC1L1 or HMGCR, encoding the respective molecular targets of ezetimibe and statins, have previously been used as proxies to study the efficacy of these lipid-lowering drugs. Alleles near HMGCR are associated with...

  2. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver

    NARCIS (Netherlands)

    Mensenkamp, A R; Jong, M C; van Goor, Harry; van Luyn, M J; Bloks, V; Havinga, Rick; Voshol, P J; Hofker, M H; van Dijk, Ko Willems; Havekes, L M; Kuipers, F

    1999-01-01

    ApoE-deficient mice on low fat diet show hepatic triglyceride accumulation and a reduced very low density lipoprotein (VLDL) triglyceride production rate. To establish the role of apoE in the regulation of hepatic VLDL production, the human APOE3 gene was introduced into apoE-deficient mice by

  3. Fenofibrate increases very low density lipoprotein triglyceride production despite reducing plasma triglyceride levels in APOE*3-Leiden.CETP mice

    NARCIS (Netherlands)

    Bijland, S.; Pieterman, E.J.; Maas, A.C.E.; Hoorn, J.W.A. van der; Erk, M.J. van; Klinken, J.B. van; Havekes, L.M.; Dijk, K.W. van; Princen, H.M.G.; Rensen, P.C.N.

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of feno

  4. Enhanced susceptibility of low-density lipoproteins to oxidation in coronary bypass patients with progression of atherosclerosis

    NARCIS (Netherlands)

    Rijke, Y.B. de; Verwey, H.F.; Vogelezang, C.J.M.; Velde, E.A. van der; Princen, H.M.G.; Laarse, A. van der; Bruschke, A.V.G.; Berkel, T.J.C. van

    1995-01-01

    Oxidation of low-density lipoprotein (LDL) may play a causal role in atherosclerosis. In this study we analyzed whether the severity of progression of coronary atherosclerosis is related to the susceptibility of LDL to oxidative modification. On the basis of repeated coronary angiography, 28

  5. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    Science.gov (United States)

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  6. The interaction between human low density lipoproteins and bovine aortic endothelial cells. Measurements of membrane fluidity.

    Science.gov (United States)

    Badea, M G; Sima, A; Jinga, V V; Hörer, O

    1989-01-01

    Bovine aortic endothelial cells in culture have been incubated with human low density lipoproteins (LDL) characterized in their cholesterol content. The incubation was done at different time intervals up to 72 h and various LDL concentrations. It began after endothelial cells had been starved for 24 h in lipoprotein deficient serum. The transfer of some LDL-components to endothelial cells plasmalemma was monitored by measurements of membrane fluidity. Namely, the fluorescent probe trimethylamonio-diphenyl hexatriene was inserted in the cell membrane and fluorescence anisotropy was determined; a higher fluorescence anisotropy means a higher rigidity of the plasmalemma. The results show that the rigidity of the endothelial cell plasmalemma increased progressively with the time of incubation (+11% to +19.5% after 24 h and 72 h, respectively for the concentration of 200 micrograms. LDL-cholesterol/dish) and with the greater amount of cholesterol in LDL (+10.9%) for 200 micrograms LDL-cholesterol/dish to +15% for 800 micrograms LDL-cholesterol/dish after 24 h incubation). In order to see if the LDL material transfer proceeded by receptor-mediated endocytosis of LDL and/or directly through aqueous solution a lysosomal inhibitor, chloroquine, was used at the concentration of 20 microM for preventing the lysosomal hydrolase activity. In the presence of this inhibitor the fluorescence anisotropy in treated endothelial cells increased by a lesser amount, suggesting an approx. 30% participation of intracellular route. Therefore, the transfer of material (probably cholesterol) from LDL to endothelial plasmalemma could take place both by receptor-mediated endocytosis and directly through the aqueous solution.

  7. Isolation of low density lipoprotein (LDL with its modification by Copper ion and Malondialdehyde (MDA

    Directory of Open Access Journals (Sweden)

    Doosty M

    1999-06-01

    Full Text Available Oxidation of low density lipoproteins (LDLs is belived to be an important step in the pathogenesis of atherosclerosis. During oxidation, LDL particle undergoes a large number of structural changes that alters its biological properties, so it becomes atherogenic. To study atherogenic proteins, usually two forms of modified LDLs, including Cu2+-oxidized LDL (ox-LDL and malondialdehyde (MDA modified LDL (mal-LDL are used. In this study, LDL was isolated from 72 ml freshly prepared plasma by sequential Floatation Ultracentrifugation (SFU, which resulted in separation of 12.5 mg LDL protein. LDL oxidation was accomplished in Phosphate Buffered Saline (PBS with 2µM cupric sulfate, and mal-LDL was prepared by incubating LDL in PBS with 0.5 M solution of freshly prepared MDA. These modifications were evaluated by measuring optical density at 234 nm, Thiobarbitoric Acid Reactive Substances (TBARS, and electrophoretic mobility at pH 8.6. The increase of 234 nm absorption reflected initiation of LDL oxidation. TBARS of ox-LDL and mal-LDL was 80 Nm MAD/mg LDL protein and 400 nm MDA/mg LDL protein, respectively. Electrophoretic mobility of ox-LDL and mal-LDL, in respect to native LDL (n-LDL, were increased.

  8. Determinants of the uptake of very low density lipoprotein remnants by the perfused rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Arbeeny, C.M.; Rifici, V.A.; Handley, D.A.; Eder, H.A.

    1987-11-01

    The receptor-mediated uptake of very low density lipoprotein (VLDL) remnants by the rat liver was studied. Livers were perfused with native /sup 125/I-VLDL remnants, radiolabeled apo E-deficient remnants, and radiolabeled remnants that contained reductively methylated apo B and unmodified apo E. The specific uptake of the apo E-deficient remnants was 20% of that for the native remnants, whereas the specific uptake of the remnants containing unreactive apo B was 78% of the control value. This suggests that the apo E of VLDL remnants is the principal ligand for binding to the receptor, and in the absence of apo E, apo B may participate in binding. This conclusion is supported by the finding that dimyristoyl phosphatidylcholine (DMPC)- apo E complexes were effective in competing for the hepatic uptake of /sup 125/I-VLDL remnants. The intracellular distribution of radioactivity was analyzed by Percoll density gradient centrifugation. At five minutes after perfusion, radioactivity was associated with the plasma membrane and lysosomal fractions, and at 30 minutes most of the radioactivity was associated with the lysosomal fraction. Binding and internalization of VLDL remnants was also directly visualized by electron microscopy. Internalization proceeded by coated pit-coated vesicle formation with subsequent delivery to lysosomes. Our findings demonstrate that the apo E of VLDL remnants mediates binding to the hepatic receptor and that the internalization and degradation of VLDL remnants is by a similar pathway to that previously described for LDL.

  9. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    Science.gov (United States)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  10. Characterization of the structure of polydisperse human low-density lipoprotein by neutron scattering.

    Science.gov (United States)

    Meyer, D F; Nealis, A S; Bruckdorfer, K R; Perkins, S J

    1995-09-01

    Low-density lipoproteins (LDL) in plasma are constructed from a single molecule of apolipoprotein B-100 (M(r) 512000) in association with lipid (approximate M(r) 2-3 x 10(6)). The gross structure was studied using an updated pulsed-neutron camera LOQ with an area detector to establish the basis for the interpretation of structural changes seen during dynamic studies of LDL oxidation. Neutron-scattering data for LDL in 100% 2H2O buffers emphasize their external appearance. Guinier analysis on a continuous-flux neutron camera D17 revealed pronounced concentration-dependences in the radius of gyration, RG, and the intensity of forward scattering, I(0) (equivalent to the M(r) of LDL) between 0.5 and 11 mg of LDL protein/ml. LDL preparations from different donors gave different RG values. When extrapolated to zero concentration, RG values ranged between 8.3 and 10.6 nm and were linearly correlated with M(r), which is consistent with a spherical structure. The distance-distribution function P(r) in real space showed a single maximum at 9.1-10.9 nm, which is just under half the observed maximum dimension of 23.1 +/- 1.2 nm expected for a spherical structure. The neutron radial-density function p(r) exhibited a plateau of high and featureless density at the centre of LDL. LDL can be modelled by a polydisperse assembly of spheres with two internal densities and a mean radius close to 10.0 nm in a normal distribution of radii with a standard deviation of 2.0 nm. The data are consistent with recent electron-microscopy and ultracentrifugation data.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    Science.gov (United States)

    Chapman, M. John; Ginsberg, Henry N.; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L.; Descamps, Olivier S.; Fisher, Edward; Kovanen, Petri T.; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G.; Ray, Kausik K.; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F.

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal. PMID:21531743

  12. CORRELATION OF PLASMA FIBRINOGEN WITH BLOOD PRESSURE, BMI, LIPID PROFILE AND GLYCEMIC STATUS IN TYPE II D M

    Directory of Open Access Journals (Sweden)

    Suresh

    2014-12-01

    Full Text Available BACKGROUND: Diabetes is the most common metabolic disorder all over the world3.The incidence of diabetes is showing an alarming rise in developing countries, particularly in India. Type 2 diabetes is the most prevalent form in India and constitutes more than 95% of the cases.9 During the past decade, the potential role of haemostatic factors particularly fibrinogen in various disorders and their complication has gained considerable interest. Plasma fibrinogen is a important marker in type 2 Diabetes, but its correlation with smoking, age, sex, hypertension, obesity, family history lipids, has not been evaluated in large studies. In view of paucity of data from Indian studies, we attempt to correlate plasma fibrinogen with blood pressure, BMI, lipid profile and glycemic status in type 2 diabetes mellitus. METHODS: A total of 100, known and newly detected type-2 diabetic patients with and without associated hypertension of more than 40 years of age belonging to both sexes were included. All these patients were registered cases in Basaveshwar Teaching & General Hospital, Gulbarga as outpatients and in-patients. Type-2 diabetic patients associated with myocardial infarction, stroke, chronic inflammatory diseases, tuberculosis, malignancy, secondary hypertension and pregnancy were excluded from this study. After a detailed clinical examination, the following investigations were done: For diabetes mellitus: Random blood sugar, fasting blood sugar, post-prandial blood sugar and glycosylated haemoglobin (ERBA Kit. Renal profile: Blood urea and serum creatinine. Serum lipids: Cholesterol, triglyceride (TG, high density lipoprotein (HDL and low density lipoprotein (LDL by commercially available kits (ERBA Kit. Routine urine examination: Sugar and albumin. Estimation of plasma fibrinogen: The plasma fibrinogen was estimated by thrombin-clotting method by using FIBROQUANT KIT [Tulip Diagnostics (P Ltd.]. OBJECTIVES: To know the fibrinogen levels in patients

  13. Mass Spectrometry-Based Proteomic Study Makes High-Density Lipoprotein a Biomarker for Atherosclerotic Vascular Disease

    Directory of Open Access Journals (Sweden)

    Chiz-Tzung Chang

    2015-01-01

    Full Text Available High-density lipoprotein (HDL is a lipid and protein complex that consists of apolipoproteins and lower level HDL-associated enzymes. HDL dysfunction is a factor in atherosclerosis and decreases patient survival. Mass spectrometry- (MS- based proteomics provides a high throughput approach for analyzing the composition and modifications of complex HDL proteins in diseases. HDL can be separated according to size, surface charge, electronegativity, or apoprotein composition. MS-based proteomics on subfractionated HDL then allows investigation of lipoprotein roles in diseases. Herein, we review recent developments in MS-based quantitative proteomic techniques, HDL proteomics and lipoprotein modifications in diseases, and HDL subfractionation studies. We also discuss future directions and perspectives in MS-based proteomics on HDL.

  14. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    Science.gov (United States)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  15. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD

    Directory of Open Access Journals (Sweden)

    Funamoto M

    2016-08-01

    Full Text Available Masafumi Funamoto,1,2 Yoichi Sunagawa,1–3 Yasufumi Katanasaka,1–3 Yusuke Miyazaki,1,2 Atsushi Imaizumi,4 Hideaki Kakeya,5 Hajime Yamakage,2 Noriko Satoh-Asahara,2 Maki Komiyama,2 Hiromichi Wada,2 Koji Hasegawa,2 Tatsuya Morimoto1–3 1Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 2Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, 3Shizuoka General Hospital, Shizuoka, 4Theravalues Corporation, Kioicho, Tokyo, 5Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan Purpose: COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin–low-density lipoprotein (AT-LDL complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin®, a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD.Patients and methods: This is a randomized, double-blind, parallel-group study. Subjects with stages I–II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin® or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated.Results: There were no differences between the Theracurmin® and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure

  16. Elevated high-density lipoprotein cholesterol and age-related macular degeneration: the Alienor study.

    Directory of Open Access Journals (Sweden)

    Audrey Cougnard-Grégoire

    Full Text Available BACKGROUND: Lipid metabolism and particularly high-density lipoprotein (HDL may be involved in the pathogenic mechanism of age-related macular degeneration (AMD. However, conflicting results have been reported in the associations of AMD with plasma HDL and other lipids, which may be confounded by the recently reported associations of AMD with HDL-related genes. We explored the association of AMD with plasma lipid levels and lipid-lowering medication use, taking into account most of HDL-related genes associated with AMD. METHODS: The Alienor study is a population-based study on age-related eye diseases performed in 963 elderly residents of Bordeaux (France. AMD was graded from non mydriatic color retinal photographs in three exclusive stages: no AMD (n = 430 subjects, 938 eyes; large soft distinct drusen and/or large soft indistinct drusen and/or reticular drusen and/or pigmentary abnormalities (early AMD, n = 176, 247; late AMD (n = 40, 61. Associations of AMD with plasma lipids (HDL, total cholesterol (TC, Low-density lipoprotein (LDL, and triglycerides (TG were estimated using Generalized Estimating Equation logistic regressions. Statistical analyses included 646 subjects with complete data. RESULTS: After multivariate adjustment for age, sex, educational level, smoking, BMI, lipid-lowering medication use, cardiovascular disease and diabetes, and for all relevant genetic polymorphisms (ApoE2, ApoE4, CFH Y402H, ARMS2 A69S, LIPC rs10468017, LIPC rs493258, LPL rs12678919, ABCA1 rs1883025 and CETP rs3764261, higher HDL was significantly associated with an increased risk of early (OR = 2.45, 95%CI: 1.54-3.90; P = 0.0002 and any AMD (OR = 2.29, 95%CI: 1.46-3.59; P = 0.0003. Association with late AMD was far from statistical significance (OR = 1.58, 95%CI: 0.48-5.17; p = 0.45. No associations were found for any stage of AMD with TC, LDL and TG levels, statin or fibrate drug use. CONCLUSIONS: This study suggests that elderly patients with high HDL

  17. Asupan Gizi dan Kadar Low Density Lipoprotein Kolesterol Darah pada Kalangan Eksekutif

    Directory of Open Access Journals (Sweden)

    Ratna Djuwita

    2013-09-01

    Full Text Available Kemajuan teknologi dan ekonomi akhir-akhir ini memberikan dampak perubahan pola hidup yang menyebabkan pergeseran pola penyakit. Terlihat pada peningkatan penyakit kardiovaskular pada kelompok eksekutif usia produktif. Hiperkolesterolemia adalah satu-satunya faktor risiko yang dapat menyebabkan timbulanya aterosklerosis. Asupan gizi terkait erat dengan hiperkolesterolemia. Tujuan penelitian ini adalah mengetahui hubungan antara asupan gizi serta pola makan dengan hiperkolesterolemia pada kalangan eksekutif di Jakarta. Desain penelitian adalah potong lintang. Populasi penelitian adalah kelompok eksekutif Indonesia dewasa berusia 25-60 tahun. Sampel penelitian terdiri dari 280 responden ber- usia 25-60 tahun yang merupakan kelompok eksekutif dari beberapa perusahaan yang ada di sekitar Jakarta. Kadar low density lipoprotein (LDL kolesterol diperiksa dengan mengumpulkan sampel darah puasa. Asupan gizi dinilai dengan metode 24 hour recall dan pola makan dinilai dengan metode food frequency questionnaire (FFQ. Prevalensi hiperkolesterolemia pada kalangan eksekutif 46,1%. Prevalensi hiperkolesterolemia ini lebih tinggi secara bermakna pada laki-laki (50,9% dibandingkan pada perempuan(29,7%. Prevalensi hiperkolesterolemia cenderung lebih tinggi pada kalangan eksekutif yang berumur di atas 40 tahun, berpendidikan tinggi dan berpenghasilan tinggi. Asupan gizi, khususnya protein hewani serta frekuensi mengonsumsi sapi, memiliki hubungan dengan prevalensi hiperkolesterolemia. Asupan protein nabati, kekerapan mengonsumsi tempe, asupan serat serta kekerapan mengonsumsi sayur dan buah dapat dipertimbangkan sebagai makanan yang protektif atau dapat menurunkan kadar LDL kolesterol dalam darah. Technology and economical development recently poses impact toward changes of lifestyle which cause shifted of the disease pattern. The escalating of cardiovascular appears to be more common among executive productive age group. Hypercholesterolemia is the only risk

  18. Dietary Resistant Starch Supplementation Increases High-Density Lipoprotein Particle Number in Pigs Fed a Western Diet.

    Science.gov (United States)

    Rideout, Todd C; Harding, Scott V; Raslawsky, Amy; Rempel, Curtis B

    2017-05-04

    Resistant starch (RS) has been well characterized for its glycemic control properties; however, there is little consensus regarding the influence of RS on blood lipid concentrations and lipoprotein distribution and size. Therefore, this study aimed to characterize the effect of daily RS supplementation in a controlled capsule delivery on biomarkers of cardiovascular (blood lipids, lipoproteins) and diabetes (glucose, insulin) risk in a pig model. Twelve 8-week-old male Yorkshire pigs were placed on a synthetic Western diet and randomly divided into two groups (n = 6/group) for 30 days: (1) a placebo group supplemented with capsules containing unmodified pre-gelatinized potato starch (0 g/RS/day); and (2) an RS group supplemented with capsules containing resistant potato starch (10 g/RS/day). Serum lipids including total-cholesterol (C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides did not differ (p > 0.05) between the RS and placebo groups. Although the total numbers of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles were similar (p > 0.05) between the two groups, total high-density lipoprotein (HDL) particles were higher (+28%, p < 0.05) in the RS group compared with placebo, resulting from an increase (p < 0.05) in the small HDL subclass particles (+32%). Compared with the placebo group, RS supplementation lowered (p < 0.05) fasting serum glucose (-20%) and improved (p < 0.05) insulin resistance as estimated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) without a change in insulin. Additionally, total serum glucagon-like-peptide 1 (GLP-1) was higher (+141%, p < 0.05) following RS supplementation compared with placebo. This data suggests that in addition to the more well-characterized effect of RS intake in lowering blood glucose and improving insulin sensitivity, the consumption of RS may be beneficial in lipid management strategies by enhancing total

  19. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease.

    Science.gov (United States)

    Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-02-13

    Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.

  20. Preferential adsorption of high density lipoprotein (HDL) in blood plasma/polymer interaction

    NARCIS (Netherlands)

    Bantjes, A.; Breemhaar, W.; Beugeling, T.; Brinkman, E.; Ellens, D.J

    1985-01-01

    A few studies on the adsorption of plasma proteins to polymeric surfaces show that major plasma proteins: albumin (Alb), fibrinogen (Fb) and immunoglobulin (IgG) are adsorbed in much smaller quantities from plasma than from protein solutions (1,2). Present results show that this difference in adsorp

  1. Low normal thyroid function as a determinant of increased large very low density lipoprotein particles

    NARCIS (Netherlands)

    van Tienhoven-Wind, Lynnda; Dullaart, Robin P. F.

    2015-01-01

    Objectives: Low-normal thyroid function may relate to increases in plasma cholesterol and triglycerides, but effects on lipoprotein subfractions are largely unknown. Associations of alterations in lipoprotein metabolism and functionality with low-normal thyroid function could be more pronounced in T

  2. Low normal thyroid function as a determinant of increased large very low density lipoprotein particles

    NARCIS (Netherlands)

    van Tienhoven-Wind, Lynnda; Dullaart, Robin P. F.

    Objectives: Low-normal thyroid function may relate to increases in plasma cholesterol and triglycerides, but effects on lipoprotein subfractions are largely unknown. Associations of alterations in lipoprotein metabolism and functionality with low-normal thyroid function could be more pronounced in

  3. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    Science.gov (United States)

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  4. Association between low density lipoprotein receptor-related protein 2 gene polymorphisms and bone mineral density variation in Chinese population.

    Directory of Open Access Journals (Sweden)

    Chun Wang

    Full Text Available Low density lipoprotein receptor-related protein 2 gene (LRP2 is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH(2D(3. In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591. BMD values at the lumbar spine 1-4 (L1-4 and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population.

  5. Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells.

    Science.gov (United States)

    Brodeur, Mathieu R; Brissette, Louise; Falstrault, Louise; Ouellet, Pascale; Moreau, Robert

    2008-02-15

    Cardiovascular diseases have recently been noted as potential risk factors for osteoporosis development. Although it is poorly understood how these two pathologies are related, it is a known fact that oxidized low-density lipoproteins (OxLDL) constitute potential determinants for both of them. The current study investigated the metabolism of OxLDL by osteoblasts and its effect on osteoblastic viability. The results obtained show that OxLDL are internalized but not degraded by osteoblasts while they can selectively transfer their CE to these cells. It is also demonstrated that OxLDL induce proliferation at low concentrations but cell death at high concentrations. This reduction of osteoblast viability was associated with lysosomal membrane damage caused by OxLDL as demonstrated by acridine orange relocalization. Accordingly, chloroquine, an inhibitor of lysosomal activity, accentuated cell death induced by OxLDL. Finally, we demonstrate that osteoblasts have the capacity to oxidize LDL and thereby potentially increase the local concentration of OxLDL. Overall, the current study confirms the potential role of OxLDL in the development of osteoporosis given its influence on osteoblastic viability.

  6. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy.

    Science.gov (United States)

    Annema, Wijtske; von Eckardstein, Arnold

    2016-07-01

    Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.

  7. Oxidized low-density lipoprotein (Oxidized LDL) and the risk of preeclampsia.

    Science.gov (United States)

    Qiu, C; Phung, T T T; Vadachkoria, S; Muy-Rivera, M; Sanchez, S E; Williams, M A

    2006-01-01

    Oxidative stress plays an important role in the pathophysiology of preeclampsia. In a case-control study of 99 women with preeclampsia and 99 controls, we assessed maternal plasma oxidized low-density lipoprotein (oxidized LDL) in relation to preeclampsia risk. Logistic regression procedures were used to derive odds ratios (OR) and 95 % confidence intervals (CI). Plasma oxidized LDL was determined using enzyme immunoassay. Maternal plasma oxidized LDL was significantly positively correlated with lipids in both cases and controls. After adjusting for nulliparity, pre-pregnancy body mass index, physical inactivity, family history of chronic hypertension and plasma vitamin C concentrations, women who had elevated oxidized LDL concentrations ( > or = 50 U/l) experienced a 2.9-fold increased risk of preeclampsia when compared with women having lower oxidized LDL concentrations (95 % CI 1.4-5.9). The risk of preeclampsia was markedly increased in women who had both elevated oxidized LDL and elevated triglyceride concentrations (OR=8.9, 95 % CI 3.1-26.2). Women with both elevated oxidized LDL and low vitamin C concentrations experienced a 9.8-fold increased risk of preeclampsia (95 % CI 3.0-32.2). Our results confirm the role of oxidative stress in the pathogenesis of preeclampsia. Prospective studies are needed to determine if elevated oxidized LDL concentrations can predict the occurrence of preeclampsia.

  8. Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters.

    Science.gov (United States)

    Lin, Li-Yun; Peng, Chiung-Chi; Liang, Yu-Jing; Yeh, Wan-Ting; Wang, Hui-Er; Yu, Tung-Hsi; Peng, Robert Y

    2008-06-25

    In folkloric plant medicines, Alpinia zerumbet (AZ) has been popularly recognized as an exellent hepatoprotector. To search for a good high-density lipoprotein cholesterol (HDL-C) elevating herbal preparation, we examined AZ for its antioxidant and hypolipidaemic bioactivities, especially its HDL-C elevating activity. AZ seeds contain 0.51% essential oils (SO), which are comprised of monoterpenoids, oxygenated monoterpenoids, sesquiterpenoids, oxygenated sesquiterpenoids, aldehydes, acid, and esters. Gas chromatography/mass spectrometry analysis indicated that most of the monoterpenes and sesquiterpenes were recoverable in pentane eluent, whilst the oxygenated monoterpenoids and sesquiterpenoids remained in ether eluent. The high contents of rutin, quercetin, and polyphenolics in ethanolic extract of AZ seeds exhibit moderate antilipoperoxidative but potent DPPH free radical scavenging bioactivities. Conclusively, both seed powder (SP) and SO are effective hypolipidaemics with amazingly potent HDL-C elevating capabilities. On the basis of hepatoprotectivity, SP is a more feasible hypolipidemic agent as well as a promising HDL-C elevating plant medicine.

  9. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    Science.gov (United States)

    Xu, Zhikun; Céspedes, María Virtudes; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2015-03-01

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood-brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases.

  10. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein

    Science.gov (United States)

    Thakkar, Shraddha; Wang, Xianwei; Khaidakov, Magomed; Dai, Yao; Gokulan, Kuppan; Mehta, Jawahar L.; Varughese, Kottayil I.

    2015-11-01

    Atherosclerosis related cardiovascular diseases continue to be the primary cause of mortality in developed countries. The elevated level of low density lipoprotein (LDL) is generally considered to be the driver of atherosclerosis, but recent years have seen a shift in this perception in that the vascular plaque buildup is mainly caused by oxidized LDL (ox-LDL) rather than native-LDL. The scavenger receptor LOX-1 found in endothelial cells binds and internalizes ox-LDL which leads to the initiation of plaque formation in arteries. Using virtual screening techniques, we identified a few potential small molecule inhibitors of LOX-1 and tested their inhibitory potential using differential scanning fluorimetry and various cellular assays. Two of these molecules significantly reduced the uptake of ox-LDL by human endothelial cells, LOX-1 transcription and the activation of ERK1/2 and p38 MAPKs in human endothelial cells. In addition, these molecules suppressed ox-LDL-induced VCAM-1 expression and monocyte adhesion onto human endothelial cells demonstrating their therapeutic potential.

  11. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    Science.gov (United States)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  12. A Biomimic Reconstituted High Density Lipoprotein Nanosystem for Enhanced VEGF Gene Therapy of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Xiaotian Sun

    2015-01-01

    Full Text Available A biomimic reconstituted high density lipoprotein (rHDL based system, rHDL/Stearic-PEI/VEGF complexes, was fabricated as an advanced nanovector for delivering VEGF plasmid. Here, Stearic-PEI was utilized to effectively condense VEGF plasmid and to incorporate the plasmid into rHDL. The rHDL/Stearic-PEI/VEGF complexes with diameter under 100 nm and neutral surface charge demonstrated enhanced stability under the presence of bovine serum albumin. Moreover, in vitro cytotoxicity and transfection assays on H9C2 cells further revealed their superiority, as they displayed lower cytotoxicity with much higher transfection efficiency when compared to PEI 10K/VEGF and Lipos/Stearic-PEI/VEGF complexes. In addition, in vivo investigation on ischemia/reperfusion rat model implied that rHDL/Stearic-PEI/VEGF complexes possessed high transgene capacity and strong therapeutic activity. These findings indicated that rHDL/Stearic-PEI/VEGF complexes could be an ideal gene delivery system for enhanced VEGF gene therapy of myocardial ischemia, which might be a new promising strategy for effective myocardial ischemia treatment.

  13. [New mutations in low-density lipoprotein receptor gene in familial hypercholesterolemia patients from Petrozavodsk].

    Science.gov (United States)

    Komarova, T Yu; Golovina, A S; Grudinina, N A; Zakharova, F M; Korneva, V A; Lipovetsky, B M; Serebrenitskaya, M P; Konstantinov, V O; Vasilyev, V B; Mandelshtam, M Yu

    2013-06-01

    Using an automated fluorescent single-strand conformation polymorphism (SSCP) analysis of the entire coding region, promoter zone, and exon-intron junctions of the low-density lipoprotein (LDL) receptor gene, we examined 80 DNA samples of patients with familial hypercholesterolemia (FH) from Petrozavodsk. We revealed mutations that might cause FH in five probands, including FH-North Karelia (c.925-931del7) mutation and four previously unknown mutations. These novel mutations included a transversion (c.618T>G (p.S206R), one nucleotide insertion c.195_196insT (p.FsV66:D129X), a complex gene rearrangement c.192del10/ins8 (p.FsS65:D129X), and a single nucleotide deletion c.2191delG (p.FsV731:V736X). Three out of four novel mutations produce an open reading frame shift and the premature termination of translation. An analysis of the cDNA sequence of the LDL receptor showed that this might result in the formation of a transmembrane-domain-deficient receptor that is unable to bind and internalize the ligand. Our results suggest the absence of a strong founder effect associated with FH in the Petrozavodsk population.

  14. Influence of Honey on the Suppression of Human Low Density Lipoprotein (LDL Peroxidation (In Vitro

    Directory of Open Access Journals (Sweden)

    Ahmed G. Hegazi

    2009-01-01

    Full Text Available The antioxidant activity of four honey samples from different floral sources (Acacia, Coriander, Sider and Palm were evaluated with three different assays; DPPH free radical scavenging assay, superoxide anion generated in xanthine–xanthine oxidase (XOD system and low density lipoprotein (LDL peroxidation assay. The dark Palm and Sider honeys had the highest antioxidant activity in the DPPH assay. But all the honey samples exhibited more or less the same highly significant antioxidant activity within the concentration of 1mg honey/1 ml in XOD system and LDL peroxidation assays. The chemical composition of these samples was investigated by GC/MS and HPLC analysis, 11 compounds being new to honey. The GC/MS revealed the presence of 90 compounds, mainly aliphatic acids (37 compounds, which represent 54.73, 8.72, 22.87 and 64.10% and phenolic acids (15 compound 2.3, 1.02, 2.07 and 11.68% for Acacia, Coriander, Sider and Palm honeys. In HPLC analysis, 19 flavonoids were identified. Coriander and Sider honeys were characterized by the presence of large amounts of flavonoids.

  15. [Effect of metal cations on the copper induced peroxidation of the low density lipoproteins].

    Science.gov (United States)

    Dremina, E S; Vlasova, I I; Vakhrusheva, T V; Sharov, V S; Azizova, O A

    1997-01-01

    The effect of metal cations on copper-catalyzed lipid peroxidation (LPO) of low density lipoproteins (LDL) was examined. The presence of metal cations in the incubation media containing LDL (0.8 mg protein/ml) and CuSO4 (0-80 microM) influenced on LPO of LDL as evident by the measurement of TBARS. With the concentrations of CuSO4 less than 10 microM, the metal cations caused an increase in LDL peroxidation. Zn2+ appeared to be the most effective inductor, Mn2+ was less effective, and the influence of Ca2+ and Mg2+ was insignificant. With greater CuSO4 concentrations Mg2+ showed no effect on TBARS formation in LDL while the addition of other nontransition metal cations to the incubation mixture led to the inhibition of LDL peroxidation. The capacity for inhibition decreased in the row Mn2+ > Zn2+ > Ca2+ > Mg2+. The possible mechanism explaining these results may be in the competition of metal ions for copper binding sites on LDL. Our results allow to suggest the existence of two types of copper binding sites on LDL, tight-binding sites which are non-effective in LPO and effective weak-binding sites.

  16. Low-density lipoproteins investigated under high hydrostatic pressure by elastic incoherent neutron scattering.

    Science.gov (United States)

    Peters, J; Martinez, N; Lehofer, B; Prassl, R

    2017-07-01

    Human low-density lipoprotein (LDL) is a highly complex nano-particle built up of various lipid classes and a single large protein moiety (apoB-100) owning essential physiological functions in the human body. Besides its vital role as a supplier of cholesterol and fat for peripheral tissues and cells, it is also a known key player in the formation of atherosclerosis. Due to these important roles in physiology and pathology the elucidation of structural and dynamical details is of great interest. In the current study we drew a broader picture of LDL dynamics using elastic incoherent neutron scattering (EINS) as a function of specified temperature and pressure points. We not only investigated a normolipidemic LDL sample, but also a triglyceride-rich and an oxidized one to mimic pathologic conditions as found under hyperlipidemic conditions or in atherosclerotic plaques, respectively. We could show that pressure has a significant effect on atomic motions in modified forms of LDL, whereas the normolipidemic sample seems to cope much better with high-pressure conditions irrespective of temperature. These findings might be explained by the altered lipid composition, which is either caused through elevated triglyceride content or modifications through lipid peroxidation.

  17. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    Directory of Open Access Journals (Sweden)

    Jesús Osada

    2013-04-01

    Full Text Available High-density lipoprotein (HDL levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat, drugs (statins or diuretics and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.

  18. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    Science.gov (United States)

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  19. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa

    Directory of Open Access Journals (Sweden)

    N. Prapaiwan

    2016-05-01

    Full Text Available Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL has been reported to have a cryoprotective property for sperm cryopreservation. However, the effects of LDL on dog epididymal spermatozoa during cryopreservation have not yet been investigated. This study aimed to investigate the effects of LDL on epididymal spermatozoa quality following cryopreservation and thawing. After routine castration of 12 dogs, caudal epididymides from individuals were separated from the testes and cut into a few pieces in a Tris-buffer. Spermatozoa recovered from each sample were examined at once for sperm quality and divided into six groups of extender: no LDL, 20% egg yolk, 4%, 8%, 16%, and 24% LDL, before cryopreservation. The sperm aliquots were then equilibrated and conventionally frozen. After thawing, sperm motility, morphology, plasma membrane integrity, and acrosome integrity were evaluated. The results revealed that 4% LDL and 20% egg yolk yielded significantly higher sperm motility (57.69% and 52.69%, respectively, p<0.05 than other LDLs. In addition, 4% LDL yielded the significantly highest plasma membrane integrity (70.54%, p<0.05. In conclusion, the supplementation of 4% LDL in Tris-glucose extender could be applied for cryopreservation of canine epididymal spermatozoa.

  20. Low-Density Lipoprotein Uptake Demonstrates a Hepatocyte Phenotype in the Dog, but Is Nonspecific.

    Science.gov (United States)

    Gow, Adam G; Muirhead, Rhona; Hay, David C; Argyle, David J

    2016-01-01

    Low-density lipoprotein (LDL) uptake is one of a number of tests used to demonstrate hepatocyte-like function after stem cell differentiation. Use of two compounds, LDL and acetylated LDL (AcLDL), has been described despite each having different mechanisms of uptake. Three primary hepatocyte cultures and three sets of mesenchymal stromal cell (MSC) cultures, derived from both adipose tissue and bone marrow, were harvested from dogs. Those cells were compared to commercially available human and mouse bone marrow-derived MSCs. LDL receptor expression was demonstrated by gene expression and immunofluorescence in all primary hepatocyte cultures, undifferentiated canine bone marrow MSCs and canine adipose MSCs. Undifferentiated human and mouse bone marrow MSCs also expressed the LDL receptor. In vitro, canine hepatocytes took up labeled LDL, but not AcLDL. All undifferentiated MSCs took up LDL, but not AcLDL. In conclusion, LDL and not AcLDL is a test of canine hepatocyte-like phenotype, but this is not tissue or species specific and, therefore, is not informative assay when testing proof of MSC to hepatocyte differentiation.

  1. [The receptor-mediated endocytosis of influenza viruses and low-density lipoproteins by tissue cells].

    Science.gov (United States)

    Pleskov, V M; Bannikov, A I; Zaĭtsev, Iu V

    1994-01-01

    The experimental data obtained by immunological, immunomorphological, biochemical, and virological methods are presented which substantiate a concept that various strains of influenza virus under study may penetrate tissue cells at sites of high affinity usually meant for low-density lipoproteins (LDLP) providing the cells with cholesterol for construction of outer and inner membranes. A computer analysis of a bank of data on the primary structure of proteins (the package of GENBER programme) revealed significant similarity of amino acid sequences between the area of viral hemagglutinin site attachment to cells and corresponding amino acids comprising apoB LDLP. The presented proofs are a convincing example of virus particles mimicry realized at the molecular level and give new concepts concerning the mechanisms of virus penetration into body cells which are important for the development of a principally new approach to creation of highly effective antiviral compounds. Moreover, the observed phenomenon may serve for explanation of the nature and mechanism of action of the so-called thermostable virus-neutralizing blood serum inhibitor.

  2. Roles oflow-density lipoprotein receptor-related protein 1 intumors

    Institute of Scientific and Technical Information of China (English)

    PeipeiXing; ZhichaoLiao; ZhiwuRen; JunZhao; FengjuSong; GuowenWang; KexinChen; Jilong Yang

    2016-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1, also known as CD91), a multifunctional endocytic and cell signaling receptor, is widely expressed on the surface of multiple cell types such as hepatocytes, ifbroblasts, neu-rons, astrocytes, macrophages, smooth muscle cells, and malignant cells. Emerging invitro and invivo evidence demonstrates that LRP1 is critically involved in many processes that drive tumorigenesis and tumor progression. For example, LRP1 not only promotes tumor cell migration and invasion by regulating matrix metalloproteinase (MMP)-2 and MMP-9 expression and functions but also inhibits cell apoptosis by regulating the insulin receptor, the serine/threonine protein kinase signaling pathway, and the expression of Caspase-3. LRP1-mediated phosphorylation of the extracellular signal-regulated kinase pathway and c-jun N-terminal kinase are also involved in tumor cell proliferation and invasion. In addition, LRP1 has been shown to be down-regulated by microRNA-205 and methylation ofLRP1 CpG islands. Furthermore, a novel fusion gene,LRP1-SNRNP25, promotes osteosarcoma cell invasion and migration. Only by understanding the mechanisms of these effects can we develop novel diagnostic and therapeutic strategies for cancers mediated by LRP1.

  3. High-density lipoprotein-cholesterol and diet in a healthy elderly population.

    Science.gov (United States)

    Hooper, P L; Garry, P J; Goodwin, J S; Hooper, E M; Leonard, A G

    1982-01-01

    This study examined how high-density lipoprotein-cholesterol (HDL-C) correlated with a 3-day food record of fat, protein, carbohydrate, and alcohol consumption in a group of 270 healthy subjects over age 60. HDL-C concentrations correlated with alcohol consumption (expressed as grams/day) (r = + .25, P less than .001), and inversely with total carbohydrate (r = - .18, P less than .01) and refined carbohydrate (r = - .17, P less than .01) ingestion (expressed as a percent of total caloric intake). Subjects consuming diets low in either total carbohydrate or refined carbohydrate had 10 to 20% higher HDL-C levels than did those consuming diets high in these food substances. The relationships between HDL-C levels and alcohol and carbohydrate ingestion were independent of other variables which correlated with HDL-C levels. Dietary fat (total fat, saturated fat, unsaturated fat, and cholesterol) did not correlate with HDL-C. LDL-cholesterol and triglyceride levels did not correlate with any dietary variable measured.

  4. Cryoprotection effectiveness of low concentrations of natural and lyophilized LDL (low density lipoproteins on canine spermatozoa

    Directory of Open Access Journals (Sweden)

    M.M. Neves

    2014-06-01

    Full Text Available The aim of this study was to evaluate the use of low concentrations of natural and lyophilized low density lipoprotein (LDL from hen's egg yolk for cryopreservation of canine semen. Different ammonium sulphate concentrations were tested to extract LDL from egg yolk. The yolk was centrifuged, and LDL was isolated using 10, 20, 40, 45, or 50% ammonium sulphate solution (ASS. The LDL-rich floating fraction was collected for chemical characterization. Dry matter content was lowest (P<0.05 in the LDL extracted with the 50% ASS. The purification of LDL increased in association with increasing ammonium sulphate concentrations. SDS-PAGE showed that the 50% ASS solution yielded a purer fraction of LDL from egg yolk. For semen cryopreservation, TRIS extender was used replacing 20% egg yolk (control by natural or lyophilized LDL using 1, 2, and 3% (w/v. Semen was centrifuged (755Xg for 7 min, diluted with one of the extenders, packed into 0.5mL straws (100x106 sperm/mL, and placed in a programmable cryopreservation machine. Thawed semen (37°C/ 30s was analyzed for sperm motility, morphology, and by the hypoosmotic and epifluorescence tests (CFDA/ PI. Natural LDL extracted with 50% ASS was as effective as whole egg yolk to preserve canine frozen sperm when using low concentrations. The lyophilized LDL, mainly in the two higher concentrations tested (2 and 3%, was unsuitable to maintain the effectiveness of the LDL cryoprotective effect on dog sperm.

  5. Low-density lipoprotein peptide-combined DNA nanocomplex as an efficient anticancer drug delivery vehicle.

    Science.gov (United States)

    Zhang, Nan; Tao, Jun; Hua, Haiying; Sun, Pengchao; Zhao, Yongxing

    2015-08-01

    DNA is a type of potential biomaterials for drug delivery due to its nanoscale geometry, loading capacity of therapeutics, biocompatibility, and biodegradability. Unfortunately, DNA is easily degraded by DNases in the body circulation and has low intracellular uptake. In the present study, we selected three cationic polymers polyethylenimine (PEI), hexadecyl trimethyl ammonium bromide (CTAB), and low-density lipoprotein (LDL) receptor targeted peptide (RLT), to modify DNA and improve the issues. A potent anti-tumor anthracycline-doxorubicin (DOX) was intercalated into DNA non-covalently and the DOX/DNA was then combined with PEI, CTAB, and RLT, respectively. Compact nanocomplexes were formed by electrostatic interaction and could potentially protect DNA from DNases. More importantly, RLT had the potential to enhance intracellular uptake by LDL receptor mediated endocytosis. In a series of in vitro experiments, RLT complexed DNA enhanced intracellular delivery of DOX, increased tumor cell death and intracellular ROS production, and reduced intracellular elimination of DOX. All results suggested that the easily prepared and targeted RLT/DNA nanocomplexes had great potential to be developed into a formulation for doxorubicin with enhanced anti-tumor activity.

  6. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  7. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  8. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery.

    Science.gov (United States)

    Damiano, Marina G; Mutharasan, R Kannan; Tripathy, Sushant; McMahon, Kaylin M; Thaxton, C Shad

    2013-05-01

    High density lipoproteins (HDLs) are dynamic natural nanoparticles best known for their role in cholesterol transport and the inverse correlation that exists between blood HDL levels and the risk of developing coronary heart disease. In addition, enhanced HDL-cholesterol uptake has been demonstrated in several human cancers. As such, the use of HDL as a therapeutic and as a vehicle for systemic delivery of drugs and as imaging agents is increasingly important. HDLs exist on a continuum from the secreted HDL-scaffolding protein, apolipoprotein A-1 (Apo A1), to complex, spherical "mature" HDLs. Aspects of HDL particles including their size, shape, and surface chemical composition are being recognized as critical to their diverse biological functions. Here we review HDL biology; strategies for synthesizing HDLs; data supporting the clinical use and benefit of directly administered HDL; a rationale for developing synthetic methods for spherical, mature HDLs; and, the potential to employ HDLs as therapies, imaging agents, and drug delivery vehicles. Importantly, methods that utilize nanoparticle templates to control synthetic HDL size, shape, and surface chemistry are highlighted. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Antioxidative effect of schisanhenol on human low density lipoprotein and its quantum chemical calculation

    Institute of Scientific and Technical Information of China (English)

    Ling-hong YU; Geng-tao LIU; You-min SUN; Hong-yu ZHANG

    2004-01-01

    AIM: To investigate the effect of schisanhenol (Sal) on copper ion-induced oxidative modulation of human low density lipoprotein (LDL). METHODS: The antioxidative activity of eight schisandrins (DCL) on microsome lipid peroxidation induced by Vit C/NADPH system was first observed, and then, the effect of Sal on Cu2+-induced human LDL oxidation was studied. The generation of malondialdehyde (MDA), lipofuscin, reactive oxygen species (ROS), consumption of α-tocopherol as well as electrophoretic mobility of LDL were determined as criteria of LDL oxidation. Finally, the quantum chemical method was used to calculate the theoretical parameters of eight DCL for elucidating the difference of their antioxidant ability. RESULTS: Sal was shown to be the most active one among eight schizandrins in inhibiting microsome lipid oxidation induced by Vit C/NADPH. Sal 100, 50, and 10 μrnol/L inhibited production of MDA, lipofuscin and ROS as well as the consumption of α-tocopherol in Cu2+-induced oxidation of human LDL in a dose-dependent manner. Sal also reduced electrophoretic mobility of the oxidized human LDL. Further study of quantum chemistry found that Sal was the strongest one among eight DCL to scavenge O-2, R·, RO·, and ROO· radicals. CONCLUSION: Sal has antioxidative effect on human LDL oxidation.The mechanism of Sal against LDL oxidation may be through scavenging free radicals.

  10. Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery.

    Science.gov (United States)

    Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola

    2016-06-14

    In this work, non-Newtonian effects on Low-Density Lipoprotein (LDL) transport across an artery are analyzed with a multi-layer model. Four rheological models (Carreau, Carreau-Yasuda, power-law and Newtonian) are used for the blood flow through the lumen. For the non-Newtonian cases, the arterial wall is modeled with a generalized momentum equation. Convection-diffusion equation is used for the LDL transport through the lumen, while Staverman-Kedem-Katchalsky, combined with porous media equations, are used for the LDL transport through the wall. Results are presented in terms of filtration velocity, Wall Shear Stresses (WSS) and concentration profiles. It is shown that non-Newtonian effects on mass transport are negligible for a healthy intramural pressure value. Non-Newtonian effects increase slightly with intramural pressure, but Newtonian assumption can still be considered reliable. Effects of arterial size are also analyzed, showing that Newtonian assumption can be considered valid for both medium and large arteries, in predicting LDL deposition. Finally, non-Newtonian effects are also analyzed for an aorta-common iliac bifurcation, showing that Newtonian assumption is valid for mass transport at low Reynolds numbers. At a high Reynolds number, it has been shown that a non-Newtonian fluid model can have more impact due to the presence of flow recirculation.

  11. Fast determination of virgin olive oil phenolic metabolites in human high-density lipoproteins.

    Science.gov (United States)

    Fernández-Ávila, C; Montes, R; Castellote, A I; Chisaguano, A M; Fitó, M; Covas, M I; Muñoz-Aguallo, D; Nyyssönen, K; Zunft, H J; López-Sabater, M C

    2015-07-01

    In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra-high-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high-density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20-60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC-MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r(2)  = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection.

  12. The advantages of combining low-density lipoproteins with glutamine for cryopreservation of canine semen.

    Science.gov (United States)

    Bencharif, D; Amirat, L; Pascal, O; Anton, M; Schmitt, E; Desherces, S; Delhomme, G; Langlois, M-L; Barrière, P; Larrat, M; Tainturier, D

    2010-04-01

    Twenty sperm samples from five dogs were frozen in liquid nitrogen at -196 degrees C in 16 different media, two control media containing 20% egg yolk and 6% low-density lipoproteins (LDL); 10 test media containing 6% LDL (the active cryoprotective ingredient of chicken egg yolk) combined with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mmol of glutamine respectively at 4%, 5%, 7%, and 8% LDL. Following thawing, sperm mobility was assessed using an image analyser, HAMILTON THORN CERROS 12. The percentage of mobile spermatozoa was 62.05% in the 6% LDL + 20 mmol glutamine medium compared with 48.90% in the egg yolk-based medium (p < 0.05) or 57.55% for the 6% LDL medium (p < 0.05). Furthermore, in most cases, the motility parameters (average path velocity, curvilinear velocity, straight line velocity) in the 6% LDL + 20 mmol glutamine medium, were superior, to a statistically significant extent, to those in the control media. Finally, the 6% LDL + 20 mmol glutamine combination provides spermatozoa with better protection during freezing than egg yolk or the 6% LDL medium alone in terms of acrosome integrity (fluorescein isothiocyanate--Pisum sativum agglutinin test: p < 0.05), the flagellar plasma membrane (hypo-osmotic test: p < 0.05 for 6% LDL), the DNA (acridine orange test; no significant difference) and the integrity of the acrosome (Spermac test: no significant difference).

  13. Polymorphism of the low-density lipoprotein receptor-related protein 5 gene and fracture risk.

    Science.gov (United States)

    Wang, Chao; Zhang, Gang; Gu, Mingyong; Zhou, Zhenyu; Cao, Xuecheng

    2014-01-01

    Several molecular epidemiological studies have been conducted to examine the association between low-density lipoprotein receptor-related proteins (LRP5) Ala1330Val polymorphism and fracture; however, the conclusions remained controversial. We therefore performed an extensive meta-analysis on 10 published studies with 184479 subjects. Electronic databases, including PubMed, Excerpta Medica Database (EMBASE), Cochrane, Elsevier Science Direct and China National Knowledge Infrastructure (CNKI) databases were searched. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using random-effects models. LRP5 Ala1330Val polymorphism was associated with a significantly increased risk of fracture (OR = 1.10; 95% CI, 1.06-1.14; I(2) = 29%). We also found that this polymorphism increased fracture risk in Caucasians. In the subgroup analysis according to gender, women was significantly associated with risk of fracture. In the subgroup analysis by type of fracture, LRP5 Ala1330Val polymorphism showed increased osteoporotic fracture risk. In conclusion, this meta-analysis suggested that an increased risk of fracture was associated with the LRP5 Ala1330Val polymorphism.

  14. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, Brian G; Duffy, Stephen J; Formosa, Melissa F

    2009-01-01

    kinase kinase and the AMP-activated protein kinase pathway. CONCLUSIONS: rHDL reduced plasma glucose in patients with type 2 diabetes mellitus by increasing plasma insulin and activating AMP-activated protein kinase in skeletal muscle. These findings suggest a role for HDL-raising therapies beyond......BACKGROUND: Low plasma high-density lipoprotein (HDL) is associated with elevated cardiovascular risk and aspects of the metabolic syndrome. We hypothesized that HDL modulates glucose metabolism via elevation of plasma insulin and through activation of the key metabolic regulatory enzyme, AMP...... baseline occurred during rHDL than during placebo (at 4 hours rHDL=-2.6+/-0.4; placebo=-2.1+/-0.3 mmol/L; P=0.018). rHDL increased plasma insulin (at 4 hours rHDL=3.4+/-10.0; placebo= -19.2+/-7.4 pmol/L; P=0.034) and also the homeostasis model assessment beta-cell function index (at 4 hours rHDL=18...

  15. Long term stability of paraoxonase-1 and high-density lipoprotein in human serum

    Directory of Open Access Journals (Sweden)

    Beekhof Piet K

    2012-05-01

    Full Text Available Abstract Background Paraoxonase-1 (PON1 is an enzyme with numerous functions and receives an increasing interest in clinical and epidemiological studies. Sometimes samples are stored for longer periods at a certain temperature. Therefore the stability of PON1 activity must be checked and retained upon storage for longer periods. Results In this study the stability of PON1 activity has been tested in human serum samples during storage up to 12 months at 3 commonly used temperatures, -20°C, -70°C and −196°C. It was found that the stability of the PON1 activity is constant during 12 months of storage at −70°C and −196°C. Storage at −20°C resulted in a small but statistically significant decrease after 6 months to about 94% of its original value. Nonetheless, the rank order between the samples at T = 0 and 12 months remained the same. The same temperature dependence was found for the associated high-density lipoprotein. Conclusions It can be concluded that −70°C is the right temperature for storage to maintain the PON1 activity for at least one year. Storage at a lower temperature in liquid nitrogen (−196°C is not necessary.

  16. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhikun [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Céspedes, María Virtudes [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Unzueta, Ugutz [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Álamo, Patricia [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pesarrodona, Mireia [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Mangues, Ramón [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vázquez, Esther; Villaverde, Antonio, E-mail: antoni.villaverde@uab.cat; Ferrer-Miralles, Neus, E-mail: neus.ferrer@uab.cat [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain)

    2015-03-15

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood–brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases.

  17. Hydroxysafflor yellow A suppresses oxidized low density lipoprotein induced proliferation of vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Lin Sheng

    2012-06-01

    Full Text Available To investigate the relationship between the suppression of Hydroxysafflor yellow A (HSYA on the oxidized low density lipoprotein (ox-LDL induced proliferation of vascular smooth muscle cells (VSMCs and the mRNA and protein expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2 and mitogen activated protein kinase phospholipase-1 (MAKP-1, VSMCs were treated with HSYA at 10 ?mol/L and/or ox-LDL at 35 mg/L for 48 h. MTT assay was done to measure cell survival rate, flow cytometry to detect cell cycle, reverse transcription PCR and Western blot to detect the expression of ERK1/2 and MAKP-1. When compared to cells treated with ox-LDL alone, the survival rate of cells treated with two reagents was reduced and the proportion of cells in G0/G1 phase significantly increased, with increased MKP-1 expression. The study suggests HSYA can inhibit VSMC proliferation via increasing MKP-1 expression, reducing p-ERK1/2 activity and suppressing cell cycle.

  18. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  19. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    Science.gov (United States)

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  20. [ANTIOXIDANT DYSFUNCTIONALITY OF HIGH-DENSITY LIPOPROTEINS (HDL) IN DECOMPENSATED DIABETIC PATIENTS].

    Science.gov (United States)

    Awad, Fernanda; Contreras-Duarte, Susana; Molina, Patricia; Quiñones, Verónica; Serrano, Valentina; Abbott, Eduardo; Maiz, Alberto; Busso, Dolores; Rigotti, Attilio

    2015-09-01

    high density lipoproteins (HDL) have important cardiovascular protective effects mediated by their role in reverse cholesterol transport as well as other functional activities, including significant anti-inflammatory and antioxidant properties. It has been shown that HDL anti-inflammatory and antioxidant functions are defective in metabolically stable diabetic patients; however they have not been evaluated during a hyperglycemic crisis. to determine the antioxidant activity of HDL during a severe diabetic decompensation and to analyze whether this function is restored after resolution of the acute event. the antioxidant activity of HDL was measured in vitro by a fluorescent assay in plasma samples obtained from diabetic patients with acute metabolic decompensation at admission, recovery within the hospital and follow-up in ambulatory care. As a comparison, HDL particles from some healthy subjects were used as controls. the HDL antioxidant function was significantly reduced in patients during an acute diabetic decompensation compared with the control group, and was gradually restored reaching normal values during the ambulatory follow-up. Hyperglycemic crisis also showed low plasma paraoxonase-1 activity, which increased significantly during at follow-up. HDL particles isolated from acute diabetic descompensated patients exhibit a significantly and reversibly low antioxidant capacity, which is probably due to a reduced paraoxonase-1 activity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  1. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction.

    Science.gov (United States)

    Henry, Courtney A; Lyon, Ronald A; Ling, Hua

    2016-01-01

    Multiple categories of medications have been developed to manage lipid profiles and reduce the risk of cardiovascular events in patients with heart disease. However, currently marketed medications have not solved the problems associated with preventing and treating cardiovascular diseases completely. A substantial population of patients cannot take advantage of statin therapy due to statin intolerance, heart failure, or kidney hemodialysis, suggesting a need for additional effective agents to reduce low-density lipoprotein cholesterol (LDL-C) levels. Proprotein convertase subtilisin/kexin type 9 (PCSK9) was discovered in 2003 and subsequently emerged as a novel target for LDL-C-lowering therapy. Evolocumab is a fully human monoclonal immunoglobulin G2 (IgG2) directed against human PCSK9. By inactivating PCSK9, evolocumab upregulates LDL receptors causing increased catabolism of LDL-C and the consequent reduction of LDL-C levels in blood. Overall, evolocumab has had notable efficacy, with LDL-C reduction ranging from 53% to 75% in monotherapy and combination therapies, and is associated with minor adverse effects. However, studies regarding the ability of evolocumab to reduce mortality as well as long-term safety concerns are limited. The fact that the drug was introduced at a cost much higher than the existing medications and shows a low incremental mortality benefit suggests that many payers will consider evolocumab to have an unfavorable cost-benefit ratio.

  2. How Do PCSK9 Inhibitors Stack Up to Statins for Low-Density Lipoprotein Cholesterol Control?

    Science.gov (United States)

    Zimmerman, Marj P.

    2015-01-01

    Despite advances in the approach toward treating hypercholesterolemia and widespread access to statin medications, not all people are able to reach target low-density lipoprotein cholesterol (LDL-C) levels to reduce their cardiovascular risk. Some of the reasons include the inability to tolerate statin therapy, LDL-C levels that remain high even in the presence of statin therapy, and a familial disorder that is characterized by extremely high levels of LDL-C. A new therapeutic class, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, represents a novel and promising approach to reducing LDL-C levels using a mechanism at the LDL receptor level. The recent approval of the first 2 PCSK9 inhibitors and the anticipated approval of the third agent in this class within approximately 1 year may provide clinicians powerful new weapons to lower LDL-C levels in patients who are not satisfactorily managed with statins. However, the results of long-term studies of the ability of these new medications to influence cardiovascular outcomes will not be known for several years. PMID:26702335

  3. Lower low-density lipoprotein cholesterol levels are associated with Parkinson's disease.

    Science.gov (United States)

    Huang, Xuemei; Chen, Honglei; Miller, William C; Mailman, Richard B; Woodard, Jennifer L; Chen, Peter C; Xiang, Dong; Murrow, Richard W; Wang, Yi-Zhe; Poole, Charles

    2007-02-15

    The apolipoprotein E (APOE) epsilon2 allele has been associated with both Parkinson's disease (PD) and lower low-density lipoprotein cholesterol (LDL-C). We tested the hypothesis that lower LDL-C may be associated with PD. This case-control study used fasting lipid profiles obtained from 124 PD cases and 112 controls. The PD cases were recruited from consecutive cases presenting at our tertiary Movement Disorder Clinic, and the controls were recruited from the spouse populations of the same clinic. Multivariate odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from unconditional logistic regressions, adjusting for age, gender, smoking status, and use of cholesterol-lowering agents. Lower LDL-C concentrations were associated with a higher occurrence of PD. Compared with participants with the highest LDL-C (> or =138 mg/dL), the OR was 2.2 (95% CI = 0.9-5.1) for participants with LDL-C of 115 to 137, 3.5 (95% CI = 1.6-8.1) for LDL-C of 93 to 114, and 2.6 (95% CI = 1.1-5.9) for LDL-C of < or = 92. Interestingly, use of either cholesterol-lowering drugs, or statins alone, was related to lower PD occurrence. Thus, our data provide preliminary evidence that low LDL-C may be associated with higher occurrence of PD, and/or that statin use may lower PD occurrence, either of which finding warrants further investigation.

  4. [Nicotinic acid increases cellular transport of high density lipoprotein cholesterol in patients with hypoalphalipoproteinemia].

    Science.gov (United States)

    Figueroa, Catalina; Droppelmann, Katherine; Quiñones, Verónica; Amigo, Ludwig; Mendoza, Camila; Serrano, Valentina; Véjar, Margarita; Maiz, Alberto; Rigotti, Attilio

    2015-09-01

    Plasma high density lipoproteins (HDL) are involved in reverse cholesterol transport mediated by the scavenger receptor class B type I (SR-BI). Nicotinic acid increases HDL cholesterol levels, even though its specific impact on SR-BI dependent-cellular cholesterol transport remains unknown. To determine the effect of nicotinic acid on HDL particle functionality in cholesterol efflux and uptake mediated by SR-BI in cultured cells in hypoalphalipoproteinemic patients. In a pilot study, eight patients with low HDL (≤ 40 mg/dL) were treated with extended release nicotinic acid. HDL cholesterol and phospholipid levels, HDL2 and HDL3 fractions and HDL particle sizes were measured at baseline and post-therapy. Before and after nicotinic acid treatment, HDL particles were used for cholesterol transport studies in cells transfected with SR-BI. Nicotinic acid treatment raised total HDL cholesterol and phospholipids, HDL2 levels as well as HDL particle size. Nicotinic acid significantly increased HDL cholesterol efflux and uptake capacity mediated by SR-BI in cultured cells. Nicotinic acid therapy increases SR-BI-dependent HDL cholesterol transport in cultured cells, establishing a new cellular mechanism by which this lipid-lowering drug appears to modulate HDL metabolism in patients with hypoalphalipoproteinemia.

  5. Effect of Albizia julibrissin water extracts on low-density lipoprotein oxidization.

    Science.gov (United States)

    Vaughn, Katherine; McClain, Colt; Carrier, Danielle Julie; Wallace, Sunny; King, Jerry; Nagarajan, Shanmugam; Clausen, Edgar

    2007-06-13

    High-value phytochemicals could be extracted from biomass prior to the current cellulosic pretreatment technologies (i.e., lime, ammonia, dilute acid, or pressurized hot water treatments) provided that the extraction is performed with a solvent that is compatible with the pretreatment. This work reports on the extraction of flavonoids from Albizia julibrissin biomass. While extracting A. julibrissin foliage with 50 degrees C water, 2.227 mg/g of hyperoside and 8.134 mg/g quercitrin were obtained, which is in the realm of what was obtained with 60% methanol. A. julibrissin foliage, flower, and whole plant extracts were tested in terms of their potential to inhibit low-density lipoprotein (LDL) oxidization. The highest inhibition was obtained with foliage water extracts, which were standardized at 2.5 microM of flavonoids. Also, the 2.5 microM foliage water extract resulted in a reduction from 43% to only 1% of the observed monocyte adherence. To have commercial application, A. julibrissin water extracts should be devoid of toxicity. The A. julibrissin foliage, flower, and whole plant water extracts were not toxic to Vero 76 cells. In summary, A. julibrissin biomass can be extracted with 50 degrees C water to yield an antioxidant stream, showing that it may be possible to couple extraction of valuable phytochemicals to the cellulosic pretreatment step.

  6. High-Density Lipoprotein-Mediated Transcellular Cholesterol Transport in Mouse Aortic Endothelial Cells

    Science.gov (United States)

    Miao, LiXia; Okoro, Emmanuel U.; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-01-01

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCA1 and SR-B1 but not involving PI3K and Akt. PMID:26255968

  7. Adrenal imaging with technetium-99m-labelled low density lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Isaacsohn, J.L.; Lees, A.M.; Lees, R.S.; Strauss, H.W.; Barlai-Kovach, M.; Moore, T.J.

    1986-04-01

    Evaluation of adrenal cortical function by external imaging is currently accomplished by injection of radiolabelled analogs of cholesterol. Although the adrenals do utilized exogenous cholesterol for steroid hormone synthesis, the cholesterol is delivered to the glands not as free cholesterol but through the uptake of low density lipoproteins (LDL), which are subsequently degraded within the adrenal cortical cells to provide cholesterol. Thus, we sought to assess the use of /sup 99m/Tc-labelled LDL injected into rabbits to obtain external images of the adrenal glands. Adrenal images of all nine rabbits tested were obtained within 18 to 21 hours after injection of /sup 99m/Tc-LDL. Seven of the rabbits were subjected to adrenal cortical suppression with dexamethasone and then all nine rabbits were imaged a second time. In the untreated animals, visualization of the adrenal glands was accompanied by normal serum cortisol concentrations and accumulation of radiolabel in the adrenals, whereas in the dexamethasone-treated animals, lack of visualization of the adrenal glands was correlated with low serum cortisols, and greatly decreased accumulation of the radionuclide in the adrenals. These findings demonstrate for the first time that LDL, when labelled with /sup 99m/Tc, can be used to evaluate adrenal cortical function by external imaging.

  8. Relationship between paraoxonase 1 activity and high density lipoprotein concentration during naturally occurring babesiosis in dogs.

    Science.gov (United States)

    Rossi, G; Kuleš, J; Rafaj, R Barić; Mrljak, V; Lauzi, S; Giordano, A; Paltrinieri, S

    2014-10-01

    Paraoxonase 1 (PON1) is a negative acute phase protein bound to high density lipoproteins (HDL) and during the acute phase response (APR) protects HDL from peroxidation. The aim of this study was to assess the relationship between PON1 and HDL in canine babesiosis, a disease characterized by oxidative damages and by an APR. PON1, HDL and C-reactive protein (CRP), were measured in blood collected from 15 controls and 29 dogs with babesiosis sampled at admission, and on days 1 and 7 after treatment. At admission, PON1 and HDL were significantly lower in affected dogs. HDL concentration increased at day 1 while PON1 increased and CRP decreased at day 7. This suggests that the decrease of PON1 at admission is in part due to an increased consumption, the decreased HDL may depend on lipid peroxidation and its rapid increase after treatment may depend on the antioxidant activity of PON1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins.

    Science.gov (United States)

    Hammad, S M; Barth, J L; Knaak, C; Argraves, W S

    2000-04-21

    Cubilin has recently been shown to function as an endocytic receptor for high density lipoproteins (HDL). The lack of apparent transmembrane and cytoplasmic domains in cubilin raises questions as to the means by which it can mediate endocytosis. Since cubilin has been reported to bind the endocytic receptor megalin, we explored the possibility that megalin acts in conjunction with cubilin to mediate HDL endocytosis. While megalin did not bind to HDL, delipidated HDL, or apoA-I, it was found to copurify with cubilin isolated by HDL-Sepharose affinity chromatography. Cubilin and megalin exhibited coincident patterns of mRNA expression in mouse tissues including the kidney, ileum, thymus, placenta, and yolk sac endoderm. The expression of both receptors in yolk sac endoderm-like cells was inducible by retinoic acid treatment but not by conditions of sterol depletion. Suppression of megalin activity or expression by treatment with either megalin antibodies or megalin antisense oligodeoxynucleotides resulted in inhibition of cubilin-mediated endocytosis of HDL. Furthermore, megalin antisense oligodeoxynucleotide treatment resulted in reduced cell surface expression of cubilin. These data demonstrate that megalin acts together with cubilin to mediate HDL endocytosis and further suggest that megalin may play a role in the intracellular trafficking of cubilin.

  10. Comparison of two low-density lipoprotein apheresis systems in patients with homozygous familial hypercholesterolemia.

    Science.gov (United States)

    Drouin-Chartier, Jean-Philippe; Tremblay, André J; Bergeron, Jean; Pelletier, Maude; Laflamme, Nathalie; Lamarche, Benoît; Couture, Patrick

    2016-08-01

    Low-density lipoprotein (LDL) apheresis (LA) is a reliable method to decrease LDL-C concentrations and remains the gold standard therapy in homozygous familial hypercholesterolemia (HoFH). The objective of this study was to compare the efficacy of two LA systems [heparin-induced extracorporeal LDL precipitation (HELP) vs. dextran sulfate adsorption (DS) on the reduction of lipids, inflammatory markers, and adhesion molecules in a sample of genetically defined HoFH subjects (n = 9)]. Fasting blood samples were collected before and after LA. All subjects served as their own control and were first treated with the HELP system then with DS in this single sequence study. Compared with HELP, DS led to significantly greater reductions in total cholesterol (-63.3% vs. -59.9%; P = 0.05), LDL-C (-70.5% vs. -63.0%; P = 0.02), CRP (-75.3% vs. -48.8%; P Apheresis 31:359-367, 2016. © 2015 Wiley Periodicals, Inc.

  11. Pomegranate wine has greater protection capacity than red wine on low-density lipoprotein oxidation.

    Science.gov (United States)

    Sezer, Ebru Demirel; Akçay, Yasemin Delen; Ilanbey, Bilal; Yildirim, Hatice Kalkan; Sözmen, Eser Yildirim

    2007-06-01

    Although there is a large body of evidence on the main role of red wine in protection of low-density lipoprotein (LDL) against oxidation, there are few data on the role of pomegranate juice, which has high phenolic content. We conducted this study considering the possible importance of pomegranate wine as an antioxidant and in order to make a comparison between red and pomegranate wines. The phenol levels of pomegranate and red wines (4,850 mg/L gallic acid equivalents and 815 mg/L gallic acid equivalents, respectively) were in accordance with their total antioxidant activity (39.5% and 33.7%, respectively). Both wines decreased LDL-diene levels following a 30-minute incubation period compared with controls (145 +/- 3.2 micromol/mg of LDL protein). However, pure pomegranate wine demonstrated a greater antioxidant effect (P wine (124 +/- 3.2 micromol/mg of LDL protein). In conclusion, we suggest that pomegranate wine has potential protective effects toward LDL oxidation, and it may be a dietary choice for people who prefer fruit wines.

  12. Mutations in low-density lipoprotein receptor gene as a cause of hypercholesterolemia in Taiwan.

    Science.gov (United States)

    Chiu, Chih-Yang; Wu, Yi-Chi; Jenq, Shwu-Fen; Jap, Tjin-Shing

    2005-08-01

    Familial hypercholesterolemia (FH) is inherited as an autosomal dominant trait that has been associated with more than 920 different mutations in the low-density lipoprotein receptor (LDLR) gene. To characterize LDLR gene mutations in the Chinese of Han descent with FH, we isolated genomic DNA from peripheral blood samples of 20 affected subjects and 50 healthy subjects with no family history of hypercholesterolemia. We used polymerase chain reaction and long polymerase chain reaction to amplify the 18 coding exons and the minimal promoter of the LDLR gene, and subjected amplicons to direct sequence analysis. We identified 6 mutations in LDLR gene, including heterozygous missense mutations I420T (ATC-->ACC), C660W (TGC-->TGG), H562Y (CAC-->TAC), and A606T (GCC-->ACC), and a heterozygous and a homozygous mutation in codon P664L (CCG-->CTG) as well as a homozygous large deletion of exons 6 to 8. The FH homozygotes manifested generalized xanthomatosis. One of the mutations we identified (C660W) was novel. In conclusion, we identified 5 missense mutations and 1 large deletion in LDLR gene, including 1 novel mutation in Han Chinese with FH in Taiwan.

  13. Adsorption/Desorption of Low-density Lipoprotein on a Heparinized Surface of Gold Sensors

    Institute of Scientific and Technical Information of China (English)

    LAN Ping; JI Jing; HUANG Xiao-Jun; GUDURU Deepak; GROTH Thomas; VIENKEN J(o)rg; DING Hui

    2012-01-01

    Heparin has been considered to be a potentially useful ligand for low-density lipoprotein(LDL)detection and analysis in a clinical context.In order to construct an affinity surface for preferential adsorption of LDL,heparin-modified gold surface(GS-Hep)was fabricated by a self-assembling method and hydrophobic-modified gold surfaces(GS-Hydro)was used as a control.The morphologies of the modified gold surfaces were investigated by atomic force microscopy(AFM)and the quantity of heparin bound to gold surface was assayed by the toluidine blue(TB)colorimetric method.Water contact angles were determined to investigate wettability on GS-Hep and GS-Hydro.Surface plasmon resonance(SPR)technique was used subsequently to detect the selective binding of LDL with heparin.And the investigation on the effect of pH on LDL adsorption suggests that lower pH lead to higher quantities of LDL adsorption on GS-Hep.Compared with GS-Hydro,GS-Hep is selective for LDL from both single and binary protein solutions.Moreover,adsorbed LDL on GS-Hep could be washed off by injecting elution solution,such as NaCl solution,for the purpose of the regeneration of GS-Hep for further LDL adsorption.

  14. Whole-cell analysis of low-density lipoprotein uptake by macrophages using STEM tomography.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Baudoin

    Full Text Available Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM, such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters.

  15. Monocyte/high-density lipoprotein ratio predicts the mortality in ischemic stroke patients.

    Science.gov (United States)

    Bolayir, Asli; Gokce, Seyda Figul; Cigdem, Burhanettin; Bolayir, Hasan Ata; Yildiz, Ozlem Kayim; Bolayir, Ertugrul; Topaktas, Suat Ahmet

    2017-08-24

    The inflammatory process is a very important stage in the development and prognosis of acute ischemic stroke (AIS). The monocyte to high-density lipoprotein (HDL) ratio (MHR) is accepted as a novel marker for demonstrating inflammation. However, the role of MHR as a predictor of mortality in patients with AIS remains unclear. We retrospectively enrolled 466 patients who were referred to our clinic within the first 24hours of symptom presentation and who were diagnosed with AIS between January 2008 and June 2016. Four hundred and eight controls of similar age and gender were also included. The patient group was classified into two groups according to 30-day mortality. The groups were compared in terms of monocyte counts, HDL, and MHR values. The patient group had significantly higher monocyte counts and lower HDL levels; therefore, this group had higher values of MHR compared to controls. Additionally, the monocyte count and MHR value were higher, and the HDL level was lower in non-surviving patients (pMHR value was also observed as a significant independent variable of 30-day mortality in patients with AIS (pMHR in predicting the 30-day mortality for patients with AIS was 17.52 (95% CI 0.95-0.98). Our study demonstrated that a high MHR value is an independent predictor of 30-day mortality in patients with AIS. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Targeted Delivery of Small Interfering RNA Using Reconstituted High-Density Lipoprotein Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mian M.K. Shahzad

    2011-04-01

    Full Text Available RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA. To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL particles by overexpressing its receptor: scavenger receptor type B1 (SR-B1. In this study, we exploited this cellular characteristic to achieve efficient siRNA delivery and established a novel formulation of siRNA by incorporating it into reconstituted HDL (rHDL nanoparticles. Here, we demonstrate that rHDL nanoparticles facilitate highly efficient systemic delivery of siRNA in vivo, mediated by the SR-B1. Moreover, in therapeutic proof-of-concept studies, these nanoparticles were effective in silencing the expression of two proteins that are key to cancer growth and metastasis (signal transducer and activator of transcription 3 and focal adhesion kinase in orthotopic mouse models of ovarian and colorectal cancer. These data indicate that an rHDL nanoparticle is a novel and highly efficient siRNA carrier, and therefore, this novel technology could serve as the foundation for new cancer therapeutic approaches.

  17. Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Masisi, Kabo; Le, Khuong; Ghazzawi, Nora; Moghadasian, Mohammed H; Beta, Trust

    2017-01-01

    Accumulating evidence has suggested that intake of whole grains is a protective factor against pathogenesis of coronary artery disease. The exact mechanisms, however, are still not clearly understood. In this study, we hypothesized that adequate intake of corn fractions (aleurone, endosperm and germ) can modify lipid profiles in relation to atherosclerotic lesion development in low-density lipoprotein receptor knockout (LDLr-KO) mice. The purpose of the present study was to investigate the potential cardiovascular benefits of corn fractions in LDLr-KO mice through a number of biomarkers including lipid profile, and morphologic and morphometrical analysis of atherosclerotic lesions in aortic root. Four groups of male LDLr-KO mice were fed with the experimental diets supplemented with (3 treated) or without (control) 5% (wt/wt) of each of corn fractions for 10 weeks. All diets were supplemented with 0.06% (wt/wt) cholesterol. Compared with mice in the control group, atherosclerotic lesions in the aortic roots were significantly reduced (P=.003) in the mice that were fed diet supplemented with aleurone and germ fractions. This effect was associated with significant reductions in plasma total (P=.02) and LDL (P=.03) cholesterol levels, and an increase in fecal cholesterol excretion (P=.04). Furthermore, abdominal fat mass was significantly reduced by consumption of aleurone (P=.03). In summary, the consumption of aleurone and germ may help attenuate atherosclerosis by reducing plasma total and LDL cholesterol levels.

  18. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  19. The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: results from the Mima study.

    Science.gov (United States)

    Tsuzaki, Kokoro; Kotani, Kazuhiko; Sano, Yoshiko; Fujiwara, Shinji; Takahashi, Kaoru; Sakane, Naoki

    2010-10-21

    The clock molecule plays major roles in circadian rhythmicity and regulating lipid and glucose metabolism in peripheral organs. Disruption of the circadian rhythm can lead to cardiometabolic disorders. The existence of small dense low-density lipoprotein (sdLDL) in the circulation, an abnormality of lipid metabolism, in part associated with lifestyle, is also one of risk parameters for cardiometabolic disorders. The 3111 T/C single nucleotide polymorphism (SNP) of the Clock gene has been reported to be associated with lifestyle including morning/evening preference. We investigated whether the Clock 3111 T/C SNP may affect lipids and lipoproteins including sdLDL. In 365 community-dwelling subjects (170 men and 195 women, mean age 63 ± 14 years), the 3111 T/C SNP was genotyped using a fluorescent allele-specific DNA primer assay system. The levels of sdLDL were measured with the electrophoretic separation of lipoproteins employing the Lipoprint system. The frequency of the Clock 3111 C allele was 0.14. The area of sdLDL did not differ between the subjects with obesity and those without. In carriers of T/T homozygotes, the area of sdLDL was significantly higher compared with carriers of the C allele (T/C or C/C) (1.7 ± 3.4 vs. 0.8 ± 1.9%; p < 0.05). A multiple regression analysis showed that the area of sdLDL was significantly and negatively correlated with the Clock 3111 T/C SNP (β = -0.114, p < 0.05), independently of age, sex, body mass index, and exercise habits. Our findings indicated that the Clock 3111 T/C SNP might be associated with the existence of sdLDL.

  20. The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: results from the Mima study

    Directory of Open Access Journals (Sweden)

    Takahashi Kaoru

    2010-10-01

    Full Text Available Abstract Background The clock molecule plays major roles in circadian rhythmicity and regulating lipid and glucose metabolism in peripheral organs. Disruption of the circadian rhythm can lead to cardiometabolic disorders. The existence of small dense low-density lipoprotein (sdLDL in the circulation, an abnormality of lipid metabolism, in part associated with lifestyle, is also one of risk parameters for cardiometabolic disorders. The 3111 T/C single nucleotide polymorphism (SNP of the Clock gene has been reported to be associated with lifestyle including morning/evening preference. We investigated whether the Clock 3111 T/C SNP may affect lipids and lipoproteins including sdLDL. Methods In 365 community-dwelling subjects (170 men and 195 women, mean age 63 ± 14 years, the 3111 T/C SNP was genotyped using a fluorescent allele-specific DNA primer assay system. The levels of sdLDL were measured with the electrophoretic separation of lipoproteins employing the Lipoprint system. Results The frequency of the Clock 3111 C allele was 0.14. The area of sdLDL did not differ between the subjects with obesity and those without. In carriers of T/T homozygotes, the area of sdLDL was significantly higher compared with carriers of the C allele (T/C or C/C (1.7 ± 3.4 vs. 0.8 ± 1.9%; p Clock 3111 T/C SNP (β = -0.114, p Conclusion Our findings indicated that the Clock 3111 T/C SNP might be associated with the existence of sdLDL.

  1. Hepatitis C virus G1b infection decreases the number of small low-density lipoprotein particles.

    Science.gov (United States)

    Kinoshita, Chika; Nagano, Tomohisa; Seki, Nobuyoshi; Tomita, Yoichi; Sugita, Tomonori; Aida, Yuta; Itagaki, Munenori; Satoh, Kenichi; Sutoh, Satoshi; Abe, Hiroshi; Tsubota, Akihito; Aizawa, Yoshio

    2016-08-07

    To investigate how hepatitis C virus (HCV) G1b infection influences the particle number of lipoproteins. The numbers of lipoprotein particles in fasting sera from 173 Japanese subjects, 82 with active HCV G1b infection (active HCV group) and 91 with cleared HCV infection (SVR group), were examined. Serum lipoprotein was fractionated by high-performance liquid chromatography into twenty fractions. The cholesterol and triglyceride concentrations in each fraction were measured using LipoSEARCH. The number of lipoprotein particles in each fraction was calculated using a newly developed algorithm, and the relationship between chronic HCV G1b infection and the lipoprotein particle number was determined by multiple linear regression analysis. The median number of low-density lipoprotein (LDL) particles was significantly lower in the active HCV group [1182 nmol/L, interquartile range (IQR): 444 nmol/L] than in the SVR group (1363 nmol/L, IQR: 472 nmol/L, P lipoprotein (HDL) particles (14168 nmol/L vs 15054 nmol/L, IQR: 4114 nmol/L vs 3385 nmol/L, P = 0.042). The number of very low-density lipoprotein (VLDL) particles was similar between the two groups. Among the four LDL sub-fractions, the number of large LDL particles was similar between the two groups. However, the numbers of medium (median: 533.0 nmol/L, IQR: 214.7 nmol/L vs median: 633.5 nmol/L, IQR: 229.6 nmol/L, P < 0.001), small (median: 190.9 nmol/L, IQR: 152.4 nmol/L vs median: 263.2 nmol/L, IQR: 159.9 nmol/L; P < 0.001), and very small LDL particles (median: 103.5 nmol/L, IQR: 66.8 nmol/L vs median: 139.3 nmol/L, IQR: 67.3 nmol/L, P < 0.001) were significantly lower in the active HCV group than in the SVR group, respectively. Multiple linear regression analysis indicated an association between HCV G1b infection and the decreased numbers of medium, small, and very small LDL particles. However, active HCV infection did not affect the number of large LDL particles or any sub-fractions of VLDL and HDL particles. HCV

  2. High-Density Lipoprotein Function in Exudative Age-Related Macular Degeneration.

    Directory of Open Access Journals (Sweden)

    Laura Pertl

    Full Text Available High-density lipoproteins (HDL have long been implicated in the pathogenesis of age-related macular degeneration (AMD. However, conflicting results have been reported with regard to the associations of AMD with HDL-cholesterol levels. The present study is the first to assess HDL composition and metrics of HDL function in patients with exudative AMD and control patients.Blood samples were collected from 29 patients with exudative AMD and 26 age-matched control patients. Major HDL associated apolipoproteins were determined in apoB-depleted serum by immunoturbidimetry or ELISA, HDL-associated lipids were quantified enzymatically. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function, including cholesterol efflux capacity, anti-oxidative and anti-inflammatory activities using apoB-depleted serum from study participants.In our study, we observed that the HDL associated acute phase protein serum amyloid A (SAA was significantly increased in AMD patients (p<0.01, whereas all other assessed apolipoproteins including ApoA-I, apoA-II, apoC-II, apoC-III and apoE as well as major HDL associated lipids were not altered. HDL efflux capacity, anti-oxidative capacity and arylesterase activity were not different in AMD patients when compared with the control group. The ability of apoB-depleted serum to inhibit monocyte NF-κB expression was significantly improved in AMD patients (mean difference (MD -5.6, p<0.01. Moreover, lipoprotein-associated phospholipase A2 activity, a marker of vascular inflammation, was decreased in AMD subjects (MD -24.1, p<0.01.The investigated metrics of HDL composition and HDL function were not associated with exudative AMD in this study, despite an increased content of HDL associated SAA in AMD patients. Unexpectedly, anti-inflammatory activity of apoB-depleted serum was even increased in our study. Our data suggest that the investigated parameters of serum HDL function showed no

  3. Detection of surface-adsorbed (lipo)proteins by means of a two-step enzyme-immunoassay: a study on the Vroman effect

    NARCIS (Netherlands)

    Poot, A.; Beugeling, T.; Aken, van W.G.; Bantjes, A.

    1990-01-01

    In view of reports on the involvement of high-molecular-weight (HMW) kininogen and high-density lipoprotein (HDL) in the Vroman effect, we studied the adsorption of fibrinogen, HMW kininogen, HDL and several other proteins from pooled human plasma and congenitally HMW kininogen-deficient plasma onto

  4. Carbohydrate composition of circulating multiple-modified low-density lipoprotein

    Science.gov (United States)

    Zakiev, Emile R; Sobenin, Igor A; Sukhorukov, Vasily N; Myasoedova, Veronika A; Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Atherogenic modification of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis, as modified LDL, but not native LDL, induces pronounced accumulation of cholesterol and lipids in the arterial wall. It is likely that LDL particles undergo multiple modifications in human plasma: desialylation, changes in size and density, acquisition of negative electric charge, oxidation, and complex formation. In a total LDL preparation isolated from pooled plasma of patients with coronary atherosclerosis and from healthy subjects, two subfractions of LDL could be identified: desialylated LDL bound by a lectin affinity column and normally sialylated (native) LDL that passed through the column. The desialylated LDL subfraction therefore represents circulating modified LDL. In this work, we performed a careful analysis of LDL particles to reveal changes in the composition of glycoconjugates associated with proteins and lipids. Protein fraction of LDL from atherosclerotic patients contained similar amounts of glucosamine, galactose, and mannose, but a 1.6-fold lower level of sialic acid as compared to healthy donors. Lipid-bound glycoconjugates of total LDL from patients with coronary atherosclerosis contained 1.5–2-fold less neutral monosaccharides than total LDL from healthy donors. Patient-derived LDL also contained significantly less sialic acid. Our results demonstrate that carbohydrate composition of LDL from atherosclerotic patients was altered in comparison to healthy controls. In particular, prominent decrease in the sialic acid content was observed. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression.

  5. Retroendocytosis of high density lipoproteins by the human hepatoma cell line, HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Kambouris, A.M.; Roach, P.D.; Calvert, G.D.; Nestel, P.J. (CSIRO, Division of Human Nutrition, Adelaide (Australia))

    1990-07-01

    When human HepG2 hepatoma cells were pulsed with 125I-labeled high density lipoproteins (HDL) and chased in fresh medium, up to 65% of the radioactivity released was precipitable with trichloroacetic acid. Cell-internalized 125I-HDL contributed to the release of acid-precipitable material; when cells were treated with trypsin before the chase to remove 125I-HDL bound to the outer cell membrane, 50% of the released material was still acid-precipitable. Characterization of the radioactive material resecreted by trypsinized cells revealed the presence of particles that were similar in size and density to mature HDL and contained intact apolipoproteins (apo) A-I and A-II. The release of internalized label occurred at 37 degrees C but not at 4 degrees C. Monensin, which inhibits endosomal recycling of receptors, decreased the binding of 125I-HDL to cells by 75%, inhibited the release of internalized radioactivity as acid-precipitable material by 80%, and increased the release of acid-soluble material by 90%. In contrast, the lysosomal inhibitor chloroquine increased the association of 125I-HDL to cells by 25%, inhibited the release of precipitable material by 10%, and inhibited the release of acid-soluble radioactivity by 80%. Pre-incubation with cholesterol caused a 50% increase in the specific binding, internalization, and resecretion of HDL label. Cholesterol affected the release of acid-precipitable label much more (+90%) than that of acid-soluble material (+20%). Taken together, these findings suggest that HepG2 cells can bind, internalize, and resecrete HDL by a retroendocytotic process. Furthermore, the results with cholesterol and monensin indicate that a regulated, recycling, receptor-like molecule is involved in the binding and intracellular routing of HDL.

  6. Lipid metabolism in subclinical hypothyroidism: plasma kinetics of triglyceride-rich lipoproteins and lipid transfers to high-density lipoprotein before and after levothyroxine treatment.

    Science.gov (United States)

    Sigal, Gilbert A; Medeiros-Neto, Geraldo; Vinagre, Juliana C; Diament, Jayme; Maranhão, Raul C

    2011-04-01

    Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Fractional clearance rates of triglycerides (SCH 0.035 ± 0.016 min⁻¹, controls 0.029 ± 0.013 min⁻¹, p = 0.336) and cholesteryl esters (SCH 0.009 ± 0.007 min⁻¹, controls 0.009 ± 0.009 min⁻¹, p = 0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 ± 0.48%, controls 4.7 ± 0.63%, p = 0.001) and phospholipids (SCH 16.2 ± 3.58%, controls 21.2 ± 3.32%, p = 0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were

  7. The Correlation between the Triglyceride to High Density Lipoprotein Cholesterol Ratio and Computed Tomography-Measured Visceral Fat and Cardiovascular Disease Risk Factors in Local Adult Male Subjects.

    Science.gov (United States)

    Park, Hye-Rin; Shin, Sae-Ron; Han, A Lum; Jeong, Yong Joon

    2015-11-01

    We studied the association between the triglyceride to high-density lipoprotein cholesterol ratio and computed tomography-measured visceral fat as well as cardiovascular risk factors among Korean male adults. We measured triglycerides, high density lipoprotein cholesterol, body mass, waist circumference, fasting plasma glucose, hemoglobin A1c, systolic blood pressure, diastolic blood pressure, visceral fat, and subcutaneous fat among 372 Korean men. The visceral fat and subcutaneous fat areas were measured by computed tomography using a single computed tomography slice at the L4-5 lumbar level. We analyzed the association between the triglyceride to high density lipoprotein cholesterol ratio and visceral fat as well as cardiovascular risk factors. A positive correlation was found between the triglyceride to high density lipoprotein cholesterol ratio and variables such as body mass index, waist circumference, fasting plasma glucose, hemoglobin A1c, visceral fat, and the visceral-subcutaneous fat ratio. However, there was no significant correlation between the triglyceride to high density lipoprotein cholesterol ratio and subcutaneous fat or blood pressure. Multiple logistic regression analyses revealed significant associations between a triglyceride to high density lipoprotein cholesterol ratio ≥3 and diabetes, a body mass index ≥25 kg/m(2), a waist circumference ≥90 cm, and a visceral fat area ≥100 cm(2). The triglyceride to high density lipoprotein cholesterol ratio was not significantly associated with hypertension. There were significant associations between the triglyceride to high density lipoprotein cholesterol ratio and body mass, waist circumference, diabetes, and visceral fat among a clinical sample of Korean men. In the clinical setting, the triglyceride to high density lipoprotein cholesterol ratio may be a simple and useful indicator for visceral obesity and cardiovascular disease.

  8. In vitro studies of PBT Nonwoven Fabrics adsorbent for the removal of low density lipoprotein from hyperlipemia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cao Ye; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong Rui [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Lei Yu [Chengdu Blood Center, Chengdu 610041 (China); Sun Kang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Jiaxin, E-mail: jxliu8122@vip.sina.com [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China)

    2011-06-15

    Polyanion ligands such as acrylic acid (AA) and heparin were grafted on PBT Nonwoven Fabrics (PBTNF) to study their effect on the adsorption of low density lipoprotein (LDL). These modified PBTNFs were characterized by Horizontal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron spectroscopy. The blood compatibilities of the modified PBTNFs were examined using in vitro hemolysis rate (HR), platelet adhesion, total protein (TP) and activated partial thromboplastin time. The results showed that direct immobilized heparin could improve PBTNF-PAA's blood compatibility and decrease the adsorption capability of useful high density lipoprotein, but would possess so low bioactivity that could not further improve the absorption of LDL and TC. Since the PBTNF-PAA55-Heparin adsorbent had quite good adsorption selectivity for these proteins, it can be an excellent candidate for depletion of LDL with good blood compatibility.

  9. Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Blood Pressure as Mediators From Obesity to Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Smith, George Davey

    2015-01-01

    RATIONALE: Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. OBJECTIVE: To test the hypothesis that the increased IHD risk because of obesity is mediated through...... variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood...... obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. CONCLUSIONS: The increased IHD risk because...

  10. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein

    DEFF Research Database (Denmark)

    Knott, Heather M; Baoutina, Anna; Davies, Michael Jonathan

    2002-01-01

    Free radicals damage both lipids and proteins and evidence has accumulated for the presence of both oxidised lipids and proteins in aged tissue samples as well as those from a variety of pathologies including atherosclerosis, diabetes, and Parkinson's disease. Oxidation of the protein and lipid...... moieties of low-density lipoprotein is of particular interest due to its potential role in the unregulated uptake of lipids and cholesterol by macrophages; this may contribute to the initial stage of foam cell formation in atherosclerosis. In the study reported here, we examined the comparative time......-courses of lipid and protein oxidation during copper-ion-mediated oxidation of low-density lipoprotein. We show that there is an early, lipid-mediated loss of 40-50% of the Trp residues of the apoB100 protein. There is no comparable loss over an identical period during the copper-ion-mediated oxidation of lipid...

  11. Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L. F.; Rasmussen, S.E.; Mortensen, Alicja;

    2005-01-01

    Anthocyanin-rich beverages have shown beneficial effects on coronary heart disease in epidemiological and intervention studies. In the present study, we investigated the effect of black currant anthocyanins on atherosclerosis. Watanabe Heritable Hyperlipidemic rabbits (n = 61) were fed either...... a purified anthocyanin fraction front black currants, a black currant juice, probucol or control diet for 16 weeks. Purified anthocyanins significantly increased plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Intake of black currant juice had no effect on total plasma cholesterol......, but lowered very-low-density lipoprotein (VLDL) cholesterol significantly. There were no significant effects of either purified anthocyanins or black currant juice on aortic cholesterol or development of atherosclerosis after 16 weeks. Probucol had no effect on plasma cholesterol but significantly lowered...

  12. Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis.

    Science.gov (United States)

    Hammad, S M; Stefansson, S; Twal, W O; Drake, C J; Fleming, P; Remaley, A; Brewer, H B; Argraves, W S

    1999-08-31

    Receptors that endocytose high-density lipoproteins (HDL) have been elusive. Here yolk-sac endoderm-like cells were used to identify an endocytic receptor for HDL. The receptor was isolated by HDL affinity chromatography and identified as cubilin, the recently described endocytic receptor for intrinsic factor-vitamin B(12). Cubilin antibodies inhibit HDL endocytosis by the endoderm-like cells and in mouse embryo yolk-sac endoderm, a prominent site of cubilin expression. Cubilin-mediated HDL endocytosis is inhibitable by HDL(2), HDL(3), apolipoprotein (apo)A-I, apoA-II, apoE, and RAP, but not by low-density lipoprotein (LDL), oxidized LDL, VLDL, apoC-I, apoC-III, or heparin. These findings, coupled with the fact that cubilin is expressed in kidney proximal tubules, suggest a role for this receptor in embryonic acquisition of maternal HDL and renal catabolism of filterable forms of HDL.

  13. The effects of weight gain after smoking cessation on atherogenic α1-antitrypsin-low-density lipoprotein.

    Science.gov (United States)

    Komiyama, Maki; Wada, Hiromichi; Ura, Shuichi; Yamakage, Hajime; Satoh-Asahara, Noriko; Shimada, Sayaka; Akao, Masaharu; Koyama, Hiroshi; Kono, Koichi; Shimatsu, Akira; Takahashi, Yuko; Hasegawa, Koji

    2015-11-01

    Although cardiovascular risks decrease after quitting smoking, body weight often increases in the early period after smoking cessation. We have previously reported that the serum level of the α1-antitrypsin-low-density lipoprotein complex (AT-LDL)-an oxidatively modified low-density lipoprotein that accelerates atherosclerosis-is high in current smokers, and that the level rapidly decreases after smoking cessation. However, the effects of weight gain after smoking cessation on this cardiovascular marker are unknown. In 183 outpatients (134 males, 49 females) who had successfully quit smoking, serum AT-LDL levels were measured using an enzyme-linked immunosorbent assay. For all persons who had successfully quit smoking, body mass index (BMI) significantly increased 12 weeks after the first examination (p smoking is influenced by weight gain after smoking cessation.

  14. Plasma Nitration of High-Density and Low-Density Lipoproteins in Chronic Kidney Disease Patients Receiving Kidney Transplants

    Directory of Open Access Journals (Sweden)

    Ahmed Bakillah

    2015-01-01

    Full Text Available Background. Functional abnormalities of high-density lipoprotein (HDL could contribute to cardiovascular disease in chronic kidney disease patients. We measured a validated marker of HDL dysfunction, nitrated apolipoprotein A-I, in kidney transplant recipients to test the hypothesis that a functioning kidney transplant reduces serum nitrated apoA-I concentrations. Methods. Concentrations of nitrated apoA-I and apoB were measured using indirect sandwich ELISA assays on sera collected from each transplant subject before transplantation and at 1, 3, and 12 months after transplantation. Patients were excluded if they have history of diabetes, treatment with lipid-lowering medications or HIV protease inhibitors, prednisone dose > 15 mg/day, nephrotic range proteinuria, serum creatinine > 1.5 mg/dL, or active inflammatory disease. Sera from 18 transplanted patients were analyzed. Four subjects were excluded due to insufficient data. Twelve and eight patients had creatinine < 1.5 mg/dL at 3 and 12 months after transplantation, respectively. Results. Nitrated apoA-I was significantly reduced at 12 months after transplantation (p=0.039. The decrease in apoA-I nitration was associated with significant reduction in myeloperoxidase (MPO activity (p=0.047. In contrast to apoA-I, nitrated apoB was not affected after kidney transplantation. Conclusions. Patients with well-functioning grafts had significant reduction in nitrated apoA-I 12 months after kidney transplantation. Further studies are needed in a large cohort to determine if nitrated apoA-I can be used as a valuable marker for cardiovascular risk stratification in chronic kidney disease.

  15. Mechanisms responsible for hepatic very low density lipoprotein-apoB100 overproduction in Otsuka Long-Evans Tokushima fatty rats

    Science.gov (United States)

    Overproduction of hepatic very low-density lipoprotein (VLDL)1 particles is a major abnormality of lipoprotein dysregulation in type 2 diabetes (T2D). We sought to examine the mechanisms linking systemic/hepatic inflammation associated with insulin resistance and apolipoprotein (apo) B100-containing...

  16. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  17. Increased expression of low-density lipoprotein receptors in a Smith-Lemli-Opitz infant with elevated bilirubin levels.

    Science.gov (United States)

    Ness, G C; Lopez, D; Borrego, O; Gilbert-Barness, E

    1997-01-31

    We report on an infant girl with severe RSH or Smith-Lemli-Opitz syndrome with hyperbilirubinemia. The infant died at age 2 months. Sterol analysis of liver and brain tissues showed marked elevations of 7-dehydrocholesterol with decreased levels of cholesterol. Immunocytochemical analysis demonstrated remarkable increases in low-density lipoprotein (LDL) receptors in these tissues, indicative of a deficiency in available cholesterol for tissue needs.

  18. Association of Plasma Adiponectin and Oxidized Low-Density Lipoprotein with Carotid Intima-Media Thickness in Diabetic Nephropathy

    OpenAIRE

    Anna Tavridou; Anastasia Georgoulidou; Athanasios Roumeliotis; Stefanos Roumeliotis; Efstathia Giannakopoulou; Nikolaos Papanas; Ploumis Passadakis; Manolopoulos, Vangelis G; Vassilis Vargemezis

    2015-01-01

    Aims. We sought to determine the association between levels of adiponectin and oxidized low-density lipoprotein (ox-LDL) in patients with diabetic nephropathy as well as their effect on carotid intima-media thickness (cIMT). Methods. Adiponectin and ox-LDL were determined in 25 diabetic patients without nephropathy and 94 patients at different stages of diabetic nephropathy including subjects on hemodialysis. cIMT was measured using real-time B-mode ultrasonography. Results. Plasma adiponecti...

  19. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.

    OpenAIRE

    Cushing, S D; Berliner, J A; Valente, A. J.; Territo, M C; Navab, M; Parhami, F; Gerrity, R; Schwartz, C J; Fogelman, A M

    1990-01-01

    After exposure to low density lipoprotein (LDL) that had been minimally modified by oxidation (MM-LDL), human endothelial cells (EC) and smooth muscle cells (SMC) cultured separately or together produced 2- to 3-fold more monocyte chemotactic activity than did control cells or cells exposed to freshly isolated LDL. This increase in monocyte chemotactic activity was paralleled by increases in mRNA levels for a monocyte chemotactic protein 1 (MCP-1) that is constitutively produced by the human ...

  20. Disruption of low-density lipoprotein receptor pathway induced by inflammation contributes to podocyte injury in diabetic nephropathy

    Institute of Scientific and Technical Information of China (English)

    张洋

    2014-01-01

    Objective To investigate the effects of low density lipoprotein receptor(LDLr)pathway on podocyte injury in diabetic nephropathy(DN)under inflammatory stress.Methods Male db/db mice and db/m mice were randomly divided into four groups(8 mice in each group):db/m group(control),casein injected db/m group(db/m+casein),db/db group(db/db),and casein injected

  1. Control of lipopolysaccharide-high density lipoprotein binding by acute phase protein(s).

    Science.gov (United States)

    Tobias, P S; Ulevitch, R J

    1983-10-01

    When Salmonella minnesota R595 lipopolysaccharide (LPS) is mixed with serum, the LPS eventually forms a complex with high density lipoprotein (HDL). Complex formation is conveniently followed by CsCl equilibrium density gradient centrifugation. When mixing 10 micrograms LPS with normal rabbit serum (NRS) at 37 degrees C in the presence of 20 mM EDTA, the half-life for LPS binding to HDL is typically 2 to 3 min. When the same experiment is performed with the use of acute phase rabbit serum (APRS; collected 24 hr post-induction with silver nitrate), the half-life for LPS binding to HDL is typically 40 to 100 min. Thus LPS binding to HDL occurs some 20- to 40-fold slower in APRS than in NRS. Two other phenomena have been found, the time dependencies of which correlate well with the time dependency of LPS binding to HDL in APRS. If LPS-APRS reaction mixtures are cooled to 4 degrees C shortly after mixing and are dialyzed against 2.5 mM HEPES, 15 mM NaCl, pH 7.4 buffer, LPS is recovered in the washed precipitates ("euglobulin precipitate") if, and only if, the LPS-HDL binding reaction is not complete. The amount of LPS in the precipitate correlates well with the amount of LPS that has not bound to HDL. The second phenomenon we observe is that the LPS-containing euglobulin precipitate prepared from LPS-acute phase serum reaction mixtures shortly after mixing also contains a protein, gp60, the concentration of which in the euglobulin precipitate correlates well with the amount of LPS in the precipitate. Thus three phenomena are kinetically well correlated in APRS: the degree of binding of LPS to HDL, the degree of appearance of LPS in a euglobulin fraction, and the concentration of protein gp60 in the euglobulin fraction. We were unable to precipitate gp60 from APRS in the absence of LPS, from APRS after the LPS has fully bound to HDL, or from normal serum in the presence or absence of LPS. The known properties of gp60 are not reminiscent of any other known acute phase

  2. Relationship between oxidized low-density lipoprotein antibodies and obesity in different glycemic situations

    Directory of Open Access Journals (Sweden)

    Babakr AT

    2014-10-01

    Full Text Available Abdullatif Taha Babakr,1 Osman Mohamed Elsheikh,2 Abdullah A Almarzouki,3 Adel Mohamed Assiri,1 Badr Eldin Elsonni Abdalla,4 Hani Yousif Zaki,5 Samir H Fatani,1 EssamEldin Mohamed NourEldin11Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia; 2Department of Biochemistry, Faculty of Medicine, International University of Africa, Khartoum, Sudan; 3Department of Internal Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, 4Department of Biochemistry, Sciences Faculty for Girls, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 5Department of Biochemistry and Nutrition, Faculty of Medicine, University of Gezira, Sudan Background: Autoantibodies to oxidized low-density lipoprotein (oxLDL are a heterogeneous group of antibodies that are controversially discussed to be either pathogenic or protective. Biochemical and anthropometric measurements correlated with increased levels of these antibodies are also controversial, especially in conditions of impaired glucose tolerance and type 2 diabetes mellitus. The present study was conducted to evaluate levels of oxLDL antibodies and their correlation with obesity in different glycemic situations. Methods: Two hundred and seventy-four adult males were classified into three subgroups: group 1 (n=125, comprising a control group of nondiabetic subjects; group 2 (n=77, comprising subjects with impaired glucose tolerance; and group 3 (n=72, comprising patients with type 2 diabetes mellitus. Body mass index was calculated, and measurement of oxLDL and oxLDL antibodies was performed. Results: Higher mean concentrations of oxLDL were found in the type 2 diabetes mellitus and impaired glucose tolerance groups (143.5±21.9 U/L and 108.7±23.7 U/L, respectively. The mean value for the control group was 73.5±27.5 U/L (P<0.001. Higher mean concentrations of anti-oxLDL antibodies were observed in the type 2 diabetes mellitus and impaired

  3. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  4. Impaired High-Density Lipoprotein Anti-Oxidant Function Predicts Poor Outcome in Critically Ill Patients.

    Directory of Open Access Journals (Sweden)

    Lore Schrutka

    Full Text Available Oxidative stress affects clinical outcome in critically ill patients. Although high-density lipoprotein (HDL particles generally possess anti-oxidant capacities, deleterious properties of HDL have been described in acutely ill patients. The impact of anti-oxidant HDL capacities on clinical outcome in critically ill patients is unknown. We therefore analyzed the predictive value of anti-oxidant HDL function on mortality in an unselected cohort of critically ill patients.We prospectively enrolled 270 consecutive patients admitted to a university-affiliated intensive care unit (ICU and determined anti-oxidant HDL function using the HDL oxidant index (HOI. Based on their HOI, the study population was stratified into patients with impaired anti-oxidant HDL function and the residual study population.During a median follow-up time of 9.8 years (IQR: 9.2 to 10.0, 69% of patients died. Cox regression analysis revealed a significant and independent association between impaired anti-oxidant HDL function and short-term mortality with an adjusted HR of 1.65 (95% CI 1.22-2.24; p = 0.001 as well as 10-year mortality with an adj. HR of 1.19 (95% CI 1.02-1.40; p = 0.032 when compared to the residual study population. Anti-oxidant HDL function correlated with the amount of oxidative stress as determined by Cu/Zn superoxide dismutase (r = 0.38; p<0.001.Impaired anti-oxidant HDL function represents a strong and independent predictor of 30-day mortality as well as long-term mortality in critically ill patients.

  5. Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Gopinath S Palanisamy

    Full Text Available The typical host response to infection of humans and some animals by M. tuberculosis is the accumulation of reactive oxygen species generating inflammatory cells into discrete granulomas, which frequently develop central caseous necrosis. In previous studies we showed that infection of immunologically naïve guinea pigs with M. tuberculosis leads to localized and systemic oxidative stress that results in a significant depletion of serum total antioxidant capacity and the accumulation of malondialdehyde, a bi-product of lipid peroxidation. Here we show that in addition, the generation of excessive reactive oxygen species in vivo resulted in the accumulation of oxidized low density lipoproteins (OxLDL in pulmonary and extrapulmonary granulomas, serum and lung macrophages collected by bronchoalveolar lavage. Macrophages from immunologically naïve guinea pigs infected with M. tuberculosis also had increased surface expression of the type 1 scavenger receptors CD36 and LOX1, which facilitate the uptake of oxidized host macromolecules including OxLDL. Vaccination of guinea pigs with Bacillus Calmette Guerin (BCG prior to aerosol challenge reduced the bacterial burden as well as the intracellular accumulation of OxLDL and the expression of macrophage CD36 and LOX1. In vitro loading of guinea pig lung macrophages with OxLDL resulted in enhanced replication of bacilli compared to macrophages loaded with non-oxidized LDL. Overall, this study provides additional evidence of oxidative stress in M. tuberculosis infected guinea pigs and the potential role OxLDL laden macrophages have in supporting intracellular bacilli survival and persistence.

  6. Nicotine-induced expression of low-density lipoprotein receptor in oral epithelial cells.

    Science.gov (United States)

    Ito, Satoshi; Gojoubori, Takahiro; Tsunoda, Kou; Yamaguchi, Yoko; Asano, Masatake; Goke, Eiji; Koshi, Ryosuke; Sugano, Naoyuki; Yoshinuma, Naoto; Komiyama, Kazuo; Ito, Koichi

    2013-01-01

    Nicotine use is one of the most important risk factors for the development of cardiovascular and periodontal diseases. Numerous reports have suggested the possible contribution of disturbed lipid metabolism for the development of both disease groups. Despite these observations, little is known about the relationship between tobacco smoking and the development of these diseases. Our previous microarray data revealed that nicotine induced low-density lipoprotein receptor (LDLR) expression in oral epithelial cells (OECs). The aim of the present study was to confirm nicotine-mediated LDLR induction and to elucidate the signaling mechanisms leading to the augmented expression of LDLR in OECs. LDLR and nicotinic acetylcholine receptor (nAChR) subunit expression was detected by real-time PCR. The production of LDLR was demonstrated by immunofluorescence staining. nAChR-mediated LDLR induction was examined by pre-incubation of the cells with its specific inhibitor, α-bungarotoxin (α-BTX). The functional importance of transcription factor specific protein 1 (Sp1) was examined by luciferase assay, mithramycin pre-incubation or by small interfering RNA (siRNA) transfection. The specific binding of Sp1 to R3 region of LDLR 5'-untranslated region was demonstrated with electrophoretic mobility shift assay (EMSA) and streptavidin-agarose precipitation assay followed by western blotting. The results confirmed that nicotine induced LDLR expression at the transcriptional level. Nicotine was sensed by nAChR and the signal was transduced by Sp1 which bound to the R3 region of LDLR gene. Augmented production of LDLR in the gingival epithelial cells was further demonstrated by immunofluorescence staining using the gingival tissues obtained from the smoking patients. Taken together, the results suggested that nicotine might contribute to the development of both cardiovascular and periodontal diseases by inducing the LDLR in OECs thereby disturbing lipid metabolism.

  7. Nicotine-induced expression of low-density lipoprotein receptor in oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Satoshi Ito

    Full Text Available BACKGROUND: Nicotine use is one of the most important risk factors for the development of cardiovascular and periodontal diseases. Numerous reports have suggested the possible contribution of disturbed lipid metabolism for the development of both disease groups. Despite these observations, little is known about the relationship between tobacco smoking and the development of these diseases. Our previous microarray data revealed that nicotine induced low-density lipoprotein receptor (LDLR expression in oral epithelial cells (OECs. The aim of the present study was to confirm nicotine-mediated LDLR induction and to elucidate the signaling mechanisms leading to the augmented expression of LDLR in OECs. METHODS AND RESULTS: LDLR and nicotinic acetylcholine receptor (nAChR subunit expression was detected by real-time PCR. The production of LDLR was demonstrated by immunofluorescence staining. nAChR-mediated LDLR induction was examined by pre-incubation of the cells with its specific inhibitor, α-bungarotoxin (α-BTX. The functional importance of transcription factor specific protein 1 (Sp1 was examined by luciferase assay, mithramycin pre-incubation or by small interfering RNA (siRNA transfection. The specific binding of Sp1 to R3 region of LDLR 5'-untranslated region was demonstrated with electrophoretic mobility shift assay (EMSA and streptavidin-agarose precipitation assay followed by western blotting. The results confirmed that nicotine induced LDLR expression at the transcriptional level. Nicotine was sensed by nAChR and the signal was transduced by Sp1 which bound to the R3 region of LDLR gene. Augmented production of LDLR in the gingival epithelial cells was further demonstrated by immunofluorescence staining using the gingival tissues obtained from the smoking patients. CONCLUSIONS: Taken together, the results suggested that nicotine might contribute to the development of both cardiovascular and periodontal diseases by inducing the LDLR in

  8. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells.

    Science.gov (United States)

    Carracedo, Julia; Merino, Ana; Briceño, Carolina; Soriano, Sagrario; Buendía, Paula; Calleros, Laura; Rodriguez, Mariano; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2011-04-01

    Carbamylated low-density lipoprotein (cLDL) plays a role in atherosclerosis. In this study we evaluate the effect of uremia on LDL carbamylation and the effect of cLDL and oxidized LDL (oxLDL; 200 μg/ml) on number, function, and genomic stability of endothelial progenitor cells (EPCs) obtained from healthy volunteers. cLDL was generated after incubation of native LDL (nLDL) with uremic serum from patients with chronic kidney disease (CKD) stages 2-4. Oxidative stress was measured by flow cytometry and fluorescent microscopy, mitochondrial depolarization by flow cytometry, senescence by β-galactosidase activity and telomere length, and DNA damage by phosphorylated histone H2AX (γH2AX). The percentage of cLDL by uremic serum was related to the severity of CKD. Compared with nLDL, cLDL induced an increase in oxidative stress (62±5 vs. 8±3%, P<0.001) and cells with mitochondrial depolarization (73±7 vs. 9±5%, P<0.001), and a decrease in EPC proliferation and angiogenesis. cLDL also induced accelerated senescence (73±16 vs. 12±9%, P<0.001), which was associated with a decrease in the expression of γH2AX (62±9 vs. 5±3%, P<0.001). The degree of injury induced by cLDL was comparable to that observed with oxLDL. This study supports the hypothesis that cLDL triggers genomic damage in EPCs, resulting in premature senescence. We can, therefore, hypothesize that EPCs injury by cLDL contributes to an increase in atherosclerotic disease in CKD.

  9. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    Science.gov (United States)

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  10. Low density lipoprotein receptor related protein 1 and 6 gene variants and ischaemic stroke risk.

    Science.gov (United States)

    Harriott, A M; Heckman, M G; Rayaprolu, S; Soto-Ortolaza, A I; Diehl, N N; Kanekiyo, T; Liu, C-C; Bu, G; Malik, R; Cole, J W; Meschia, J F; Ross, O A

    2015-08-01

    Low density lipoprotein receptor related proteins (LRPs) 1 and 6 have been implicated in cerebral ischaemia. In addition, genetic variation in LRP1 and LRP6 has been linked with various factors that are related to risk of ischaemic stroke. The aim of this study was to examine the association of LRP1 and LRP6 gene variants with risk of ischaemic stroke as part of the Ischemic Stroke Genetics Study (ISGS). A Caucasian series (434 stroke patients, 319 controls) and an African American series (161 stroke patients, 116 controls) were included. Fourteen LRP6 variants and three LRP1 variants were genotyped and assessed for association with ischaemic stroke. In the Caucasian series, significant associations with ischaemic stroke were observed for LRP6 rs2075241 [odds ratio (OR) 0.42, P = 0.023], rs2302685 (OR 0.44, P = 0.049), rs7975614 (OR 0.07, P = 0.017), rs10492120 (OR 0.62, P = 0.036) and rs10743980 (OR 0.66, P = 0.037). Risk of ischaemic stroke was significantly lower for carriers of any of these five protective LRP6 variants (24.0% of subjects) compared to non-carriers (OR 0.57, P = 0.003). The protective association for LRP6 rs2075241 was observed at a similar magnitude across ischaemic stroke subtypes, whilst the effects of rs23022685, rs10492120 and rs10743980 were most apparent for cardioembolic and large vessel stroke. In the African American series, LRP1 rs11172113 was associated with an increased risk of stroke (OR 1.89, P = 0.006). The results of our preliminary study provide evidence that LRP6 and LRP1 variants may be associated with risk of ischaemic stroke. Validation in larger studies is warranted. © 2015 EAN.

  11. Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration.

    Science.gov (United States)

    Zhou, Boda; Zu, Lingyun; Chen, Yong; Zheng, Xilong; Wang, Yuhui; Pan, Bing; Dong, Min; Zhou, Enchen; Zhao, Mingming; Zhang, Youyi; Zheng, Lemin; Gao, Wei

    2017-01-10

    High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO2-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects. Here we determined the effects of NO2-oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model. Our results showed that native HDL promoted SMC proliferation and migration, whereas NO2-oxHDL and Cl-oxHDL inhibited SMC migration and reduced capacity of stimulating SMC proliferation as well as migration, respectively. OxHDL had no significant influence on SMC apoptosis. In addition, we found that ERK1/2-phosphorylation was significantly lower when SMCs were incubated with NO2-oxHDL and Cl-oxHDL. Furthermore, transwell experiments showed that differences between native HDL, NO2-oxHDL and Cl-oxHDL was abolished after PD98059 (MAPK kinase inhibitor) treatment. In aortic SMCs from scavenger receptor BI (SR-BI) deficient mice, differences between migration of native HDL, NO2-oxHDL and Cl-oxHDL treated SMCs vanished, indicating SR-BI's possible role in HDL-associated SMC migration. Importantly, NO2-oxHDL and Cl-oxHDL induced neointima formation and reduced SMC positive staining cells in atherosclerotic plaque, resulting in elevated vulnerable index of atherosclerotic plaque. These findings implicate MPO-catalyzed oxidization of HDL may contribute to atherosclerotic plaque instability by inhibiting SMC proliferation and migration through MAPK-ERK pathway which was dependent on SR-BI.

  12. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-).

    Science.gov (United States)

    Hodis, H N; Kramsch, D M; Avogaro, P; Bittolo-Bon, G; Cazzolato, G; Hwang, J; Peterson, H; Sevanian, A

    1994-04-01

    Using ion exchange high pressure liquid chromatography, total plasma low density lipoprotein (LDL) from 30 hypercholesterolemic and 10 normocholesterolemic cynomolgus monkeys was subfractionated into unmodified LDL (n-LDL) and more negatively charged LDL (LDL-). In hypercholesterolemic monkeys, the absolute LDL-cholesterol level was 16.54 +/- 2.82 mg/dl (mean +/- SE) whereas in normocholesterolemic monkeys it was 2.39 +/- 0.12 mg/dl (P < 0.0001); the percentage of LDL- was 5.2 +/- 0.71% and 4.9 +/- 0.19% of the total LDL for hypercholesterolemic versus normocholesterolemic monkeys, respectively. LDL- averaged 5% and n-LDL 95% of the total plasma LDL cholesterol. To confirm and further elucidate the oxidative nature of LDL-, cholesterol and cholesterol oxide contents of LDL- and n-LDL were determined by capillary gas chromatography; 53.98 +/- 2.24% (mean +/- SE) of the LDL- cholesterol was oxidized whereas in n-LDL only 10.70 +/- 1.06% of the cholesterol was oxidized (P < 0.00001). The spectrum of oxysterols identified, which was similar for LDL- and n-LDL, suggested a free radical-mediated process for cholesterol oxidation. The principal oxysterols identified were: cholest-5-ene-3 beta, 7 alpha-diol, cholesta-3,5-diene-7-one, cholest-5-ene-3 beta, 7 beta-diol, 5,6 beta-epoxy-5 beta-cholestan-3 beta-ol, 5,6 alpha-epoxy-5 alpha-cholestan-3 beta-ol, 5 alpha-cholestan-3 beta,5,6 beta-triol, 3 beta-hydroxycholest-5-ene-7-one, and cholest-5-ene-3 beta,25-diol. To model one of the steps in the possible mechanism of atherogenesis, the cytotoxicity of LDL- was demonstrated to be greater against subconfluent than confluent aortic endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer.

    Science.gov (United States)

    Wan, Fangning; Qin, Xiaojian; Zhang, Guiming; Lu, Xiaolin; Zhu, Yao; Zhang, Hailiang; Dai, Bo; Shi, Guohai; Ye, Dingwei

    2015-05-01

    Clinical and epidemiological data suggest coronary artery disease shares etiology with prostate cancer (PCa). The aim of this work was to assess the effects of several serum markers reported in cardiovascular disease on PCa. Serum markers (oxidized low-density lipoprotein [ox-LDL], apolipoprotein [apo] B100, and apoB48) in peripheral blood samples from 50 patients from Fudan University Shanghai Cancer Center (FUSCC) with localized or lymph node metastatic PCa were investigated in this study. Twenty-five samples from normal individuals were set as controls. We first conducted enzyme-linked immunosorbent assay analysis to select candidate markers that were significantly different between these patients and controls. Then, the clinical relevance between OLR1 (the ox-LDL receptor) expression and PCa was analyzed in The Cancer Genome Atlas (TCGA) cohort. We also investigated the function of ox-LDL in PCa cell lines in vitro. Phosphorylation protein chips were used to analyze cell signaling pathways in ox-LDL-treated PC-3 cells. The ox-LDL level was found to be significantly correlated with N stage of prostate cancer. OLR1 expression was correlated with lymph node metastasis in the TCGA cohort. In vitro, ox-LDL stimulated the proliferation, migration, and invasion of LNCaP and PC-3 in a dose-dependent manner. The results of phosphoprotein microarray illustrated that ox-LDL could influence multiple signaling pathways of PC-3. Activation of proliferation promoting signaling pathways (including β-catenin, cMyc, NF-κB, STAT1, STAT3) as well as apoptosis-associating signaling pathways (including p27, caspase-3) demonstrated that ox-LDL had complicated effects on prostate cancer. Increased serum ox-LDL level and OLR1 expression may indicate advanced-stage PCa and lymph node metastasis. Moreover, ox-LDL could stimulate PCa proliferation, migration, and invasion in vitro.

  14. Identification of transition bias in oxidized low density lipoprotein receptor 1 gene in buffalo

    Directory of Open Access Journals (Sweden)

    N. Shabir

    2014-03-01

    Full Text Available Aim: Though transition bias has been previously demonstrated in cattle, however, there has not been any study that has explored transition bias in buffalo nuclear genome. The aim of the present study was to evaluate the nucleotide substitution pattern in the Intron I of Oxidised Low Density Lipoprotein Receptor 1 (OLR1 gene in four breeds of Indian buffalo using 24 different nucleotide substitution models and evaluate their association with DNA methylation. Materials and Methods: Transition/transversion bias (R was estimated by 24 different nucleotide substitution models available in MEGA 5.0. The transition/transversion bias (R was estimated under the Kimura 2-parameter model. Substitution patterns and the transitions/transversions rates (r were then estimated by Tamura-Nei-I and Tamura-Nei-II models. The CpG Island search was done by using CpG Plot Island online Software available at European Bioinformatics Institute (EBI website. Results: The frequency of transition was found to be 3.5 times higher than that of the transversion mutation frequency. Out of 9 nucleotide substitutions, 7 transitions and 2 transversions were found. Among all the nucleotide substitutions, thymine to cytosine substitutions was observed to be very high. CpG Island search tool revealed that IntronI of OLR1 genes is a CpG rich region, thus prone to methylation. Conclusions: Higher transition frequency was found in the intronI of OLR1 gene, however due to the richness of methylated CpGs in the evaluated stretch of genome, the higher T↔C transitions could likely be a result of frequent deaminations of the methylated cytosines into thymines during the evolution of four buffalo breeds.

  15. Size is a major determinant of dissociation and denaturation behaviour of reconstituted high-density lipoproteins.

    Science.gov (United States)

    Gianazza, Elisabetta; Eberini, Ivano; Sirtori, Cesare R; Franceschini, Guido; Calabresi, Laura

    2002-08-15

    Lipid-free apolipoprotein A-I (apoA-I) and A-I(Milano) (A-I(M)) were compared for their denaturation behaviour by running across transverse gradients of a chaotrope, urea, and of a ionic detergent, SDS. For both apo A-I and monomeric apoA-I(M) in the presence of increasing concentrations of urea the transition from high to low mobility had a sigmoidal course, whereas for dimeric A-I(M)/A-I(M) a non-sigmoidal shape was observed. The co-operativity of the unfolding process was lower for dimeric A-I(M)/A-I(M) than for apoA-I or for monomeric apoA-I(M). A slightly higher susceptibility to denaturation was observed for dimeric A-I(M)/A-I(M) than for monomeric apoA-I(M). A similar behaviour of A-I(M)/A-IM versus apoA-I(M) was observed in CD experiments. Large- (12.7/12.5 nm) and small- (7.8 nm) sized reconstituted high-density lipoproteins (rHDL) containing either apoA-I or A-I(M)/A-I(M) were compared with respect to their protein-lipid dissociation behaviour by subjecting them to electrophoresis in the presence of urea, of SDS and of a non-ionic detergent, Nonidet P40. A higher susceptibility to dissociation of small-sized versus large-sized rHDL, regardless of the apolipoprotein component, was observed in all three instances. Our data demonstrate that the differential plasticity of the various classes of rHDL is a function of their size; the higher stability of 12.5/12.7 nm rHDL is likely connected to the higher number of protein-lipid and lipid-lipid interactions in larger as compared with smaller rHDL.

  16. Systematic review: association of low-density lipoprotein subfractions with cardiovascular outcomes.

    Science.gov (United States)

    Ip, Stanley; Lichtenstein, Alice H; Chung, Mei; Lau, Joseph; Balk, Ethan M

    2009-04-07

    Measures of low-density lipoprotein (LDL) subfractions have been proposed as an independent risk factor for cardiovascular disease. To review published studies that reported relationships between LDL subfractions and cardiovascular outcomes. MEDLINE (1950 to 5 January 2009), CAB Abstracts (1973 to 30 June 2008), and Cochrane Central Register of Controlled Trials (2nd quarter of 2008), limited to English-language studies. 3 reviewers selected longitudinal studies with 10 or more participants that reported an association between LDL subfractions and incidence or severity of cardiovascular disease and in which plasma samples were collected before outcome determination. Data were extracted from 24 studies. The 10 studies that used analytical methods available for clinical use (all of which used nuclear magnetic resonance) had full data extraction, including quality assessment (good, fair, or poor). All studies were extracted by 1 researcher and verified by another. All 24 studies, and the subset of 10 nuclear magnetic resonance studies, were heterogeneous in terms of the specific tests analyzed, analytical methods used, participants investigated, and outcomes measured. Higher LDL particle number was consistently associated with increased risk for cardiovascular disease, independent of other lipid measurements. Other LDL subfractions were generally not associated with cardiovascular disease after adjustment for cholesterol concentrations. No study evaluated the incremental value of LDL subfractions beyond traditional cardiovascular risk factors or their test performance. Publication bias was a possibility. Higher LDL particle number has been associated with cardiovascular disease incidence, but studies have not determined whether any measures of LDL subfractions add incremental benefit to traditional risk factor assessment. Routine use of clinically available LDL subfraction tests to estimate cardiovascular disease risk is premature.

  17. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction

    Directory of Open Access Journals (Sweden)

    Henry CA

    2016-04-01

    Full Text Available Courtney A Henry, Ronald A Lyon, Hua Ling Department of Pharmacy Practice, School of Pharmacy, Hampton University, Hampton, VA, USA Abstract: Multiple categories of medications have been developed to manage lipid profiles and reduce the risk of cardiovascular events in patients with heart disease. However, currently marketed medications have not solved the problems associated with preventing and treating cardiovascular diseases completely. A substantial population of patients cannot take advantage of statin therapy due to statin intolerance, heart failure, or kidney hemodialysis, suggesting a need for additional effective agents to reduce low-density lipoprotein cholesterol (LDL-C levels. Proprotein convertase subtilisin/kexin type 9 (PCSK9 was discovered in 2003 and subsequently emerged as a novel target for LDL-C-lowering therapy. Evolocumab is a fully human monoclonal immunoglobulin G2 (IgG2 directed against human PCSK9. By inactivating PCSK9, evolocumab upregulates LDL receptors causing increased catabolism of LDL-C and the consequent reduction of LDL-C levels in blood. Overall, evolocumab has had notable efficacy, with LDL-C reduction ranging from 53% to 75% in monotherapy and combination therapies, and is associated with minor adverse effects. However, studies regarding the ability of evolocumab to reduce mortality as well as long-term safety concerns are limited. The fact that the drug was introduced at a cost much higher than the existing medications and shows a low incremental mortality benefit suggests that many payers will consider evolocumab to have an unfavorable cost–benefit ratio. Keywords: PCSK9, hyperlipidemia, evolocumab, LDL-C, familial hypercholesterolemia

  18. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice.

    Science.gov (United States)

    Lehti, Maarit; Donelan, Elizabeth; Abplanalp, William; Al-Massadi, Omar; Habegger, Kirk M; Weber, Jon; Ress, Chandler; Mansfeld, Johannes; Somvanshi, Sonal; Trivedi, Chitrang; Keuper, Michaela; Ograjsek, Teja; Striese, Cynthia; Cucuruz, Sebastian; Pfluger, Paul T; Krishna, Radhakrishna; Gordon, Scott M; Silva, R A Gangani D; Luquet, Serge; Castel, Julien; Martinez, Sarah; D'Alessio, David; Davidson, W Sean; Hofmann, Susanna M

    2013-11-26

    Abnormal glucose metabolism is a central feature of disorders with increased rates of cardiovascular disease. Low levels of high-density lipoprotein (HDL) are a key predictor for cardiovascular disease. We used genetic mouse models with increased HDL levels (apolipoprotein A-I transgenic [apoA-I tg]) and reduced HDL levels (apoA-I-deficient [apoA-I ko]) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test compared with wild-type mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved glucose tolerance test, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of endurance capacity compared with wild-type mice. Circulating levels of fibroblast growth factor 21, a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high-fat diet-induced impairment of glucose homeostasis. In view of impaired mitochondrial function and decreased HDL levels in type 2 diabetes mellitus, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of type 2 diabetes mellitus beyond cardiovascular disease.

  19. Cholesteryl Ester Hydroperoxides Are Biologically Active Components of Minimally Oxidized Low Density Lipoprotein*S⃞

    Science.gov (United States)

    Harkewicz, Richard; Hartvigsen, Karsten; Almazan, Felicidad; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2008-01-01

    Oxidation of low density lipoprotein (LDL) occurs in vivo and significantly contributes to the development of atherosclerosis. An important mechanism of LDL oxidation in vivo is its modification with 12/15-lipoxygenase (LO). We have developed a model of minimally oxidized LDL (mmLDL) in which native LDL is modified by cells expressing 12/15LO. This mmLDL activates macrophages inducing membrane ruffling and cell spreading, activation of ERK1/2 and Akt signaling, and secretion of proinflammatory cytokines. In this study, we found that many of the biological activities of mmLDL were associated with cholesteryl ester (CE) hydroperoxides and were diminished by ebselen, a reducing agent. Liquid chromatography coupled with mass spectroscopy demonstrated the presence of many mono- and polyoxygenated CE species in mmLDL but not in native LDL. Nonpolar lipid extracts of mmLDL activated macrophages, although to a lesser degree than intact mmLDL. The macrophage responses were also induced by LDL directly modified with immobilized 12/15LO, and the nonpolar lipids extracted from 12/15LO-modified LDL contained a similar set of oxidized CE. Cholesteryl arachidonate modified with 12/15LO also activated macrophages and contained a similar collection of oxidized CE molecules. Remarkably, many of these oxidized CE were found in the extracts of atherosclerotic lesions isolated from hyperlipidemic apoE–/– mice. These results suggest that CE hydroperoxides constitute a class of biologically active components of mmLDL that may be relevant to proinflammatory activation of macrophages in atherosclerotic lesions. PMID:18263582

  20. Oxidized low density lipoproteins--do we know enough about them?

    Science.gov (United States)

    Jiang, Xueting; Yang, Zhaohui; Chandrakala, Aluganti Narasimhulu; Pressley, Dawn; Parthasarathy, Sampath

    2011-10-01

    Since the discovery of oxidized low density lipoprotein (Ox-LDL), over 5,000 articles have appeared on the topic with over 400 articles appearing every year during the past decade. LDL contains esterified polyunsaturated fatty acid containing lipids, such as, phosphatidylcholine (PtdCho) and cholesterol esters (CE). Peroxidation of polyunsaturated fatty acid (PUFA) containing lipids has been known for a long time. Numerous studies have documented that peroxidized lipids as well as products derived from their decomposition, particularly aldehydes, have deleterious biological properties. This concept has been exemplified in the study of atherosclerosis. A plethora of in vitro and animal studies, as well as human epidemiological and correlatory studies, have supported the notion that oxidative processes and the formation of Ox-LDL might contribute to atherosclerosis. Yet the negative outcomes of human clinical trials with α-tocopherol and other antioxidants have convinced even staunch supporters of the hypothesis to take a step backwards and reconsider reasons of their failure and suggest alternative approaches. Ox-LDL is a complex mixture of numerous chemical entities, many of them are yet uncharacterized. Why and how it is formed or its nature in vivo is poorly understood. It is recognized by numerous cell surface receptors, which are ubiquitously expressed in many different cell types. These receptors might perform a variety of functions. In addition, components of Ox-LDL might also have favorable effects that are difficult to dissociate from its pathological effects. In this review, the nature of Ox-LDL and potential problems in inhibiting its formation are discussed.

  1. Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia.

    Science.gov (United States)

    van Himbergen, Thomas M; Roest, Mark; de Graaf, Jacqueline; Jansen, Eugène H J M; Hattori, Hiroaki; Kastelein, John J P; Voorbij, Hieronymus A M; Stalenhoef, Anton F H; van Tits, Lambertus J H

    2005-03-01

    HDL-associated paraoxonase type 1 (PON1) can protect LDL and HDL against oxidative modification in vitro and therefore may protect against cardiovascular disease. We investigated the effects of PON1 levels, activity, and genetic variation on high density lipoprotein-cholesterol (HDL-C) levels, circulating oxidized LDL (OxLDL), subclinical inflammation [high-sensitive C-reactive protein (Hs-CRP)], and carotid atherosclerosis. PON1 genotypes (L55M, Q192R, -107C/T, -162A/G, -824G/A, and -907G/C) were determined in 302 patients with familial hypercholesterolemia. PON1 activity was monitored by the hydrolysis rate of paraoxon, diazoxon, and phenyl acetate. PON1 levels, OxLDL, and Hs-CRP were determined using an immunoassay. The genetic variants of PON1 that were associated with high levels and activity of the enzyme were associated with higher HDL-C levels (P values for trend: 0.008, 0.020, 0.042, and 0.037 for L55M, Q192R, -107C/T, and -907G/C, respectively). In addition to the PON1 genotype, there was also a positive correlation between PON1 levels and activity and HDL-C (PON1 levels: r = 0.37, P < 0.001; paraoxonase activity: r = 0.23, P = 0.01; diazoxonase activity: r = 0.29, P < 0.001; arylesterase activity: r = 0.19, P = 0.03). Our observations support the hypothesis that both PON1 levels and activity preserve HDL-C in plasma.

  2. Alcohol intake and triglycerides/high-density lipoprotein cholesterol ratio in men with hypertension.

    Science.gov (United States)

    Wakabayashi, Ichiro

    2013-07-01

    The triglycerides/high-density lipoprotein cholesterol (TG/HDL-C) ratio has been proposed to be a good predictor of cardiovascular disease. The relationship between alcohol consumption and TG/HDL-C ratio in patients with hypertension is unknown. Subjects were normotensive and hypertensive men aged 35-60 years who were divided by daily ethanol intake into non-, light (<22g/day), heavy (≥22 but <44g/day), and very heavy (≥44g/day) drinkers. The TG/HDL-C ratio was significantly higher in the hypertensive group than in the normotensive group. Both in the normotensive and hypertensive groups, TG/HDL-C ratio was significantly lower in light, heavy, and very heavy drinkers than in nondrinkers and was lowest in light drinkers. In the hypertensive group, odds ratios (ORs) for high TG/HDL-C ratio (≥3.75) in light, heavy, and very heavy drinkers vs. nondrinkers were significantly lower (P < 0.01) than a reference level of 1.00 (light drinkers: OR = 0.49, 95% confidence interval (CI) = 0.40-0.59; heavy drinkers: OR = 0.59, 95% CI = 0.52-0.67; very heavy drinkers: OR = 0.70, 95% CI = 0.61-0.80) and were significantly lower than the corresponding ORs in the normotensive group. The ORs for hypertension in subjects with vs. subjects without high TG/HDL-C ratio were significantly higher than the reference level in all the alcohol groups and were significantly lower in light, heavy, and very heavy drinkers than in nondrinkers. The results suggest that there is an inverted J-shaped relationship between alcohol and TG/HDL-C ratio in individuals with hypertension and that alcohol weakens the positive association between TG/HDL-C ratio and hypertension.

  3. Distribution and correlates of non-high-density lipoprotein cholesterol and triglycerides in Lebanese school children.

    Science.gov (United States)

    Gannagé-Yared, Marie-Hélène; Farah, Vanessa; Chahine, Elise; Balech, Nicole; Ibrahim, Toni; Asmar, Nadia; Barakett-Hamadé, Vanda; Jambart, Selim

    2016-01-01

    The prevalence of dyslipidelmia in pediatric Middle-Eastern populations is unknown. Our study aims to investigate the distribution and correlates of non-high-density lipoprotein cholesterol (non-HDL-C) and triglycerides among Lebanese school children. A total of 969 subjects aged 8-18 years were included in the study (505 boys and 464 girls). Recruitment was done from 10 schools located in the Great Beirut and Mount-Lebanon areas. Non-fasting total cholesterol, triglycerides, and HDL-cholesterol (HDL-C) were measured. Non-HDL-C was calculated. Schools were categorized into 3 socioeconomic statuses (SESs; low, middle, and high). In the overall population, the prevalence of high non-HDL-C (>3.8 mmol/L), very high non-HDL-C (>4.9 mmol/L), and high triglycerides (>1.5 mmol/l) are respectively 9.2%, 1.24%, and 26.6%. There is no significant gender difference for non-HDL-C or triglycerides. Non-HDL-C and triglycerides are inversely correlated with age in girls (P triglycerides are higher in children from lower SES schools. After adjustment for age and body mass index (BMI), testosterone is inversely associated with triglycerides in boys (P triglycerides are independently associated with BMI and schools' SES in both girls and boys. This study confirms, in our population, the association between obesity and both high non-HDL-C and triglycerides, and between high triglycerides and low SES. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  4. The Relationship of Plasma miR-29a and Oxidized Low Density Lipoprotein with Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Yu-Qing Huang

    2016-12-01

    Full Text Available Background/Aims: Atherosclerosis is a chronic inflammatory condition associated with a variety of vascular diseases. Previous studies showed that both miR-29a and oxidized low density lipoprotein (ox-LDL were vital in the development of atherosclerosis. However, the relationship between miR-29a and ox-LDL remains unknown. This study was designed to investigate the association of miR-29a and ox-LDL and to test whether circulating miR-29a and ox-LDL levels could predict atherosclerosis. Methods: In 170 participants, plasma levels of miR-29a were assessed by quantitative real-time polymerase chain reaction (qRT-PCR while plasma ox-LDL levels were determined using enzyme-linked immunosorbent assay (ELISA kits. The relationship between miR-29a level and ox-LDL and carotid intima-media thickness (cIMT was assessed using the Spearman correlation coefficient and multiple liner regression. Results: Compared with the normal cIMT group, the increased cIMT group had higher levels of ox-LDL (0.47 ± 0.08 vs 0.29 ± 0.06 ng/ml, p = 0.003 and miR-29a (32.93 ± 4.26 vs 26.37 ± 1.04, p p p Conclusion: Increased miR-29a and ox-LDL levels were associated with an early stage of atherosclerosis, and the combination of miR-29a and ox-LDL offered better predictive values for atherosclerosis than either alone.

  5. High density lipoprotein (HDL promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells.

    Directory of Open Access Journals (Sweden)

    Qichun Zhang

    Full Text Available BACKGROUND: High density lipoprotein (HDL was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3 phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.

  6. Role of leptin on the expression of low density lipoprotein receptor

    Directory of Open Access Journals (Sweden)

    Naval Kishor Yadav

    2014-01-01

    Full Text Available Background & objectives: Leptin resistance oriented hyperleptinaemia is a common problem in obese subjects in association with hypercholesterolaemia. The most common target for hypercholesterolaemia is impaired low density lipoprotein receptor (LDLR. This study was carried out to investigate whether any alteration in LDLR expression could explain the occurrence of hypercholesterolaemia in the event of hyperleptinaemia. Methods: Expression of LDLR and SREBP2 (sterol regulatory element binding protein 2 were examined in HepG2 cells by RT-PCR and Western blotting. JAK2 inhibitor II was used to verify the effect of JAK-STAT (Janus Kinase-Signal Transducer and Activator of Transcription pathway (common mediator for cytokine signaling. Co-localization of LDLR and insulin receptor (IR was examined by confocal microscopy. Results: Leptin was found to reduce the expression of LDLR and its transcription factor SREBP2. On the other hand, a weak signal for stimulation of LDLR by leptin was noted to be mediated by JAK2 pathway. But the joint effect of the two signaling pathways kept LDLR only in depressed mode in presence of leptin. Confocal microscopy showed that LDLR made an intensively co-localized complex with insulin receptor in presence of leptin. Interpretation & conclusions: Our results show that though leptin stimulates LDLR expression very weakly through JAK-STAT signaling pathway, it mainly imposes inhibition on LDLR expression by inhibiting transcription factor SREBP2. The inter-association between LDLR and IR may be a reason to render LDLR functionally inactive in presence of leptin.

  7. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  8. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Adam R. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Atkinson, Rachel L. [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Reddy, Jay P. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Debeb, Bisrat G.; Larson, Richard; Li, Li [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Masuda, Hiroko; Brewer, Takae [Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Atkinson, Bradley J. [Department of Clinical Pharmacy Services, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Brewster, Abeena [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ueno, Naoto T. [Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-04-01

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  9. Discordance of Low-Density Lipoprotein and High-Density Lipoprotein Cholesterol Particle Versus Cholesterol Concentration for the Prediction of Cardiovascular Disease in Patients With Metabolic Syndrome and Diabetes Mellitus (from the Multi-Ethnic Study of Atherosclerosis [MESA]).

    Science.gov (United States)

    Tehrani, David M; Zhao, Yanglu; Blaha, Michael J; Mora, Samia; Mackey, Rachel H; Michos, Erin D; Budoff, Matthew J; Cromwell, William; Otvos, James D; Rosenblit, Paul D; Wong, Nathan D

    2016-06-15

    A stronger association for low-density lipoprotein particle (LDL-P) and high-density lipoprotein particle (HDL-P) versus cholesterol concentrations (LDL-C and HDL-C) in predicting coronary heart disease (CHD) has been noted. We evaluate the role of these factors and extent of particle-cholesterol discordance in those with diabetes mellitus (DM) and metabolic syndrome (MetS) for event prediction. In the Multi-Ethnic Study of Atherosclerosis, we examined discordance of LDL and HDL (defined as a subject's difference between baseline particle and cholesterol percentiles), LDL-C, LDL-P, HDL-C, and HDL-P in relation to incident CHD and cardiovascular disease (CVD) events in subjects with DM, MetS (without DM), or neither condition using Cox regression. Of the 6,417 subjects with 10-year follow-up, those with MetS (n = 1,596) and DM (n = 838) had significantly greater LDL and HDL discordance compared with those without these conditions. In discordance models, only LDL discordance (per SD) within the MetS group was positively associated with CHD events (adjusted hazard ratio [HR] = 1.22, 95% confidence interval [CI] 1.01 to 1.48, p lipoprotein particles and discordances in those with MetS and DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Application of a Modified d-ROMs Test for Measurement of Oxidative Stress and Oxidized High-Density Lipoprotein

    Science.gov (United States)

    Ito, Fumiaki; Ito, Tomoyuki; Suzuki, Chinatsu; Yahata, Tomoyo; Ikeda, Kazuyuki; Hamaoka, Kenji

    2017-01-01

    Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg2+ precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg2+ precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity. PMID:28230785

  11. The Application of a Modified d-ROMs Test for Measurement of Oxidative Stress and Oxidized High-Density Lipoprotein.

    Science.gov (United States)

    Ito, Fumiaki; Ito, Tomoyuki; Suzuki, Chinatsu; Yahata, Tomoyo; Ikeda, Kazuyuki; Hamaoka, Kenji

    2017-02-21

    Reactive oxygen species (ROS) are involved in the initiation and progression of atherosclerosis. ROS-derived hydroperoxides, as an indicator of ROS production, have been measured by using the diacron reactive oxygen metabolites (d-ROMs) test, which requires iron-containing transferrin in the reaction mixture. In this study we developed a modified d-ROMs test, termed the Fe-ROMs test, where iron ions were exogenously added to the reaction mixture. This modification is expected to exclude the assay variation that comes from different blood iron levels in individuals. In addition, this Fe-ROMs test was helpful for determining the class of plasma lipoproteins that are hydroperoxidized. Low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and high-density lipoprotein (HDL) were purified by use of an LDL/VLDL purification kit and the dextran sulfate-Mg(2+) precipitation method, respectively; their hydroperoxide contents were assessed by performing the Fe-ROMs test. The majority of the hydroperoxides were detected only in the HDL fraction, not in the LDL/VLDL. Further detailed analysis of HDLs by size-exclusion high-performance liquid chromatography revealed that the hydroperoxide-containing molecules were small-sized HDLs. Because HDL was shown to be the principal vehicle for the plasma hydroperoxides, this Fe-ROMs test is a beneficial method for the assessment of oxidized-HDL levels. Indeed, Fe-ROMs levels were strongly associated with the levels of oxidized HDL, which were determined by performing the malondialdehyde-modified HDL enzyme immunoassay. In conclusion, the Fe-ROMs test using plasma itself or the HDL fraction after dextran sulfate-Mg(2+) precipitation is useful to assess the functionality of HDL, because the oxidation of HDL impairs its antiatherogenic capacity.

  12. Effects of oxidized low density lipoprotein on the growth of human artery smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gao-feng; SENG Jing-jing; ZHANG Hua; SHE Ming-peng

    2005-01-01

    Background Studies have shown that oxidized low density lipoprotein (ox-LDL) promotes the pathogenesis and development of atherosclerosis (AS), and that the proliferation, migration and phenotype alteration of vascular smooth muscle cells (vSMCs) into foam cells are critical changes in AS. It is proposed that ox-LDL might play a novel role in the pathologic process of vSMCs. The present study was performed ex vivo to investigate the effects of ox-LDL on the growth of cultured human vSMCs.Methods Using NaBr density gradient centrifugation, LDL from human plasma was isolated and purified. ox-LDL was produced from LDL after being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (25 μg/ml, 50 μg/ml, 75 μg/ml, 100 μg/ml, 125 μg/ml, and 150 μg/ml) for 7 days. The influence of ox-LDL on vSMC growth was observed from several aspects as growth curve, mitosis index, lipid staining, and in situ determination of apoptosis. The digital results were analyzed with SPSS 10.0.Results The ox-LDL produced ex vivo had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque. ox-LDL at a concentration of 25 μg/ml demonstrated the strongest proliferation. At the concentration of 125 μg/ml, ox-LDL suppressed the growth of vSMCs. At concentrations of 25 μg/ml and 50 μg/ml, ox-LDL presented powerful mitotic trigger. When the concentration of ox-LDL increased, the mitotic index of vSMCs decreased gradually. ox-LDL induced more foam cells from vSMCs with rich intracellular lipid accumulation at concentrations of 25 μg/ml and 50 μg/ml. ox-LDL at higher concentrations induced more apoptotic vSMCs.Conclusions ox-LDL at lower concentrations may trigger proliferation and phenotype alteration into foam cells of vSMCs, and at higher concentrations it may induce apoptosis in vSMCs. ox-LDL plays an important role in the pathogenesis and development of atherosclerosis by its effect on v

  13. Apolipoprotein C-III and the Metabolic Basis for Hypertriglyceridemia and the Dense Low-Density Lipoprotein Phenotype

    Science.gov (United States)

    Zheng, Chunyu; Khoo, Christina; Furtado, Jeremy; Sacks, Frank M.

    2011-01-01

    Background Here, we aim to identify defects of apolipoprotein (apo) B lipoprotein metabolism that characterize hypertriglyceridemia, focusing on apoC-III and apoE. Methods and Results We studied the transport of plasma apoB within 21 distinct subfractions as separated by anti–apoC-III and anti–apoE immunoaffinity chromatography and ultracentrifugation in 9 patients with moderate hypertriglyceridemia and 12 normotriglyceridemic control subjects. Hypertriglyceridemia was characterized by a 3-fold higher liver secretion of very low-density lipoprotein (VLDL) that had apoC-III but not apoE and a 50% lower secretion of VLDL with both apoC-III and apoE (both Phypertriglyceridemia, associated with increased apoC-III contents of these particles. LDL distribution shifted from light and medium LDL to dense LDL in hypertriglyceridemia through a quartet of kinetic perturbations: increased flux from apoC-III–containing triglyceride-rich lipoproteins, a shift in liver LDL secretion pattern from light to dense LDL, an increased conversion rate from light and medium LDL to dense LDL, and retarded catabolism of dense LDL. Conclusions These results support a central role for apoC-III in metabolic defects leading to hypertriglyceridemia. Triglyceride-rich lipoprotein metabolism shifts from an apoE-dominated system in normotriglyceridemic participants characterized by rapid clearance from circulation of VLDL to an apoC-III–dominated system in hypertriglyceridemic patients characterized by reduced clearance of triglyceride-rich lipoproteins and the formation of the dense LDL phenotype. PMID:20368524

  14. Elevated Remnant Cholesterol Causes Both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease Without Inflammation

    DEFF Research Database (Denmark)

    Varbo, Anette; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2013-01-01

    Elevated nonfasting remnant cholesterol and low-density lipoprotein (LDL) cholesterol are causally associated with ischemic heart disease (IHD), but whether elevated nonfasting remnant cholesterol and LDL cholesterol both cause low-grade inflammation is currently unknown....

  15. Impaired suppression of plasma free fatty acids and triglycerides by acute hyperglycaemia-induced hyperinsulinaemia and alterations in high density lipoproteins in essential hypertension

    NARCIS (Netherlands)

    Ligtenberg, JJM; vanTol, A; vanHaeften, TW; Sluiter, WJ; Dullaart, RPF

    1996-01-01

    Objectives. Essential hypertension may be associated with abnormalities in free fatty acids (FFA) and triglyceride metabolism, which could lead to alterations in high density lipoproteins (HDL). Lecithin: cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) are key factor

  16. Impaired suppression of plasma free fatty acids and triglycerides by acute hyperglycaemia-induced hyperinsulinaemia and alterations in high density lipoproteins in essential hypertension

    NARCIS (Netherlands)

    Ligtenberg, JJM; vanTol, A; vanHaeften, TW; Sluiter, WJ; Dullaart, RPF

    1996-01-01

    Objectives. Essential hypertension may be associated with abnormalities in free fatty acids (FFA) and triglyceride metabolism, which could lead to alterations in high density lipoproteins (HDL). Lecithin: cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) are key

  17. Low-density lipoprotein apheresis by membrane differential filtration (cascade filtration) via arteriovenous fistula performed in children with familial hypercholesterolemia.

    Science.gov (United States)

    Gülle, Saniye; Bak, Mustafa; Serdaroglu, Erkin; Can, Demet; Karabay, Ozalp

    2010-02-01

    Membrane differential filtration (cascade filtration) is an apheresis technique by which atherogenic lipoproteins can be eliminated from plasma on the basis of particle size. In this study, we aim to discuss the efficacy of low-density lipoprotein (LDL) apheresis performed by providing alternative vascular routes in two siblings with familial hypercholesterolemia who did not respond to medical treatment and diet. Of the two siblings, one was nine years old and the other one was three-and-a-half years old. Of the total of 78 apheresis processes performed, 24 were done via a permanent subclavian catheter, 36 were done via a subsequently provided arteriovenous fistula, and 18 were done via an arteriovenous graft. We observed a mean reduction in the plasma levels of total cholesterol (61.6%), LDL cholesterol (65.5%), and high-density lipoprotein cholesterol (38.6%). We noted that cascade filtration apheresis was effective in decreasing the LDL cholesterol in plasma, and no serious complications were noted. The success of the apheresis program depends on well-functioning blood access. An arteriovenous fistula may be the best route for the long-term treatment of familial hypercholesterolemia, which requires complication-free apheresis treatments.

  18. High density lipoprotein suppresses lipoprotein associated phospholipase A2 in human monocytes-derived macrophages through peroxisome proliferator-activated receptor-γ pathway

    Institute of Scientific and Technical Information of China (English)

    HAN Guan-ping; REN Jing-yi; QIN Li; SONG Jun-xian; WANG Lan; CHEN Hong

    2012-01-01

    Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) is mainly secreted by macrophages,serving as a specific marker of atherosclerotic plaque and exerting pro-atherogenic effects.It is known that high-density lipoprotein (HDL) plays an important role against atherosclerosis by inhibiting pro-inflammatory factors,however,the relationship between HDL and Lp-PLA2 remains elusive.Methods In this study,reverse transcription-polymerase chain reaction (RT-PCR),Western blotting,and a platelet-activating factor (PAF) acetylhydrolase assay were performed to determine the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages upon HDL treatment of different concentrations and durations.To investigate the underlying mechanism of HDL-induced Lp-PLA2 action,pioglitazone,a peroxisome proliferator-activated receptor-y (PPARy) ligand,was introduced to human monocyte-derived macrophages and mRNA and protein levels of Lp-PLA2,as well as its activity,were determined.Results Lp-PLA2 mRNA levels,protein expression and activity were significantly inhibited in response to HDL treatment in a dose and time dependent manner in human monocyte-derived macrophages.Pioglitazone treatment (1-10 ng/ml) upregulated the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages,while the effects were markedly reversed by HDL.In addition,pioglitazone resulted in a significant increase in PPARY phosphorylation in human monocyte-derived macrophages,which could be inhibited by HDL.Conclusion These findings indicate that HDL suppresses the expression and activity of Lp-PLA2 in human monocyte-derived macrophages,and the underlying mechanisms may be mediated through the PPARY pathway.

  19. Evaluation of biodistribution and imaging of atherosclerotic lesions using [sup 111]In-labeled low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashina, Hisayo (Toho Univ., Tokyo (Japan). School of Medicine)

    1993-07-01

    [sup 111]In-labeled low-density lipoprotein (LDL) was administered to Watanabe heritable hyperlipidemic rabbits (WHHL group) and control rabbits (control group) to evaluate its biodistribution and scintigraphic images by [gamma]-camera and radioactivity of each organ. With external imaging, the heart, liver, kidney, bone and spleen of each rabbit were observed. By setting the region of interest, the liver/heart ratio of the WHHL group was significantly lower than that of the control group (p<0.05), the plasma half life of LDL was longer and radioactivity in blood, heart and aorta was higher in the WHHL group. Each aorta was autoradiographed and significant accumulation of [sup 111]In-labeled-LDL was recognized in the aortic arch, bifurcation of intercostal and celiac artery in the WHHL group. By the use of labeled LDL with the combination of [gamma]-camera, it is capable of detecting the regulation of lipoprotein metabolism and imaging atherosclerotic lesions externally. (author).

  20. Fractionation of apolipoproteins from human serum very low density lipoproteins by chromatofocusing.

    Science.gov (United States)

    Jauhiainen, M

    1982-01-01

    1. A pooled serum from several pregnant women was used as a source of VLDL 2. VLDL and if needed other lipoproteins were fractionated by sequential flotation. 3. Lipoproteins were delipidated and lipid-free VLDL apolipoproteins were fractionated by a new chromatofocusing technique. 4. Chromatofocusing column run yielded 7 peak protein fractions and the corresponding pI values were: 6.8, 6.6, 5.7, 5.5, 5.2, 4.8 and 4.4. 5. Polyacrylamide slab gel electrophoresis of the chromatofocusing protein peaks indicated that they are different having dissimilar Rf values in urea-SDS containing slabs.

  1. PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses

    DEFF Research Database (Denmark)

    Benn, Marianne; Nordestgaard, Børge G; Grande, Peer

    2010-01-01

    The aim of this study was to examine the effect of PCSK9 R46L on low-density lipoprotein cholesterol (LDL-C), risk of ischemic heart disease (IHD), and mortality.......The aim of this study was to examine the effect of PCSK9 R46L on low-density lipoprotein cholesterol (LDL-C), risk of ischemic heart disease (IHD), and mortality....

  2. On-treatment non-high-density lipoprotein cholesterol, apolipoprotein B, triglycerides, and lipid ratios in relation to residual vascular risk after treatment with potent statin therapy

    DEFF Research Database (Denmark)

    Mora, Samia; Glynn, Robert J; Boekholdt, S Matthijs;

    2012-01-01

    The goal of this study was to determine whether residual risk after high-dose statin therapy for primary prevention individuals with reduced levels of low-density lipoprotein cholesterol (LDL-C) is related to on-treatment apolipoprotein B, non-high-density lipoprotein cholesterol (non-HDL......-C), trigylcerides, or lipid ratios, and how they compare with on-treatment LDL-C....

  3. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects.

    NARCIS (Netherlands)

    Mensink, R.P.; Katan, M.B.

    1990-01-01

    BACKGROUND. Fatty acids that contain a trans double bond are consumed in large amounts as hydrogenated oils, but their effects on serum lipoprotein levels are unknown. METHODS. We placed 34 women (mean age, 26 years) and 25 men (mean age, 25 years) on three mixed natural diets of identical nutrient

  4. Macroporous poly(vinyl alcohol) microspheres bearing phosphate groups as a new adsorbent for low-density lipoprotein apheresis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weichao; Xie Hui; Ou Lailiang; Wang Lianyong; Yu Yaoting; Kong Deling [Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071 (China); Sun Lisha, E-mail: wly@nankai.edu.c, E-mail: kongdeling@nankai.edu.c [General Hospital, Tianjin Medical University, Tianjin 300052 (China)

    2009-12-15

    A new low-density lipoprotein (LDL) adsorbent with phosphate groups as the ligand was prepared in this study. Macroporous poly(vinyl acetate-co-triallyl isocyanurate) microspheres were prepared using a free-radical suspension polymerization method. A hydrolysis reaction in sodium hydroxide/methanol changed the materials into poly(vinyl alcohol) (PVA) microspheres. Further reaction with phosphorus oxychloride in anhydrous DMF led to the LDL adsorbent PVA-phosphate microspheres. The preparation conditions such as reaction time, temperature and the amount of phosphorus oxychloride were optimized. The adsorption of plasma lipoproteins was examined by in vitro adsorption assays. The influence of adsorption time, plasma volume and ionic strength on the adsorption capacity was investigated. The circulation adsorption showed that the pathogenic lipoproteins in the plasma such as total cholesterol (TC), LDL and triglyceride (TG) could be removed markedly, in which the removal percentages were 42.9%, 45.0% and 44.74%, respectively. However, the reduction of high-density lipoprotein (HDL) and other normal plasma components was very slight. For in vivo experiment, rabbits were fed with high-cholesterol food to develop a hyperlipidemia model and treated by extracorporeal blood perfusion using the PVA-phosphate columns. Eight hyperlipidemia rabbits were treated with the PVA-phosphate adsorbent, and the removal of TC, LDL and TG was 45.03 +- 6.64%, 48.97 +- 9.92% and 35.42 +- 14.17%, respectively. The sterilization and storage tests showed that the adsorbent was chemically and functionally stable. It could be easily sterilized by a common method and stored for months without loss of adsorption capacity. Therefore, this new PVA-phosphate-based LDL adsorbent may have potential for application in LDL apheresis.

  5. Systemic Inflammatory Markers Are Closely Associated with Atherogenic Lipoprotein Subfractions in Patients Undergoing Coronary Angiography

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-01-01

    Full Text Available Objective. To investigate the relationship between inflammatory markers and atherogenic lipoprotein subfractions. Methods. We studied 520 eligible subjects who were not receiving any lipid-lowering therapy. The inflammatory markers including white blood cell (WBC count, high-sensitivity C-reactive protein (hs-CRP, fibrinogen, erythrocyte sedimentation rate (ESR, and D-dimer were measured. A multimarker inflammatory index was developed. Low-density lipoprotein (LDL and high-density lipoprotein (HDL separation processes were performed using Lipoprint System. Results. In age- and sex-adjusted analysis, several inflammatory markers (WBC count, hs-CRP, fibrinogen, and ESR were positively related to circulating non-HDL cholesterol and remnant cholesterol (p<0.05, all. Among lipoprotein subfractions, we observed a positive association of inflammatory markers with very low-density lipoprotein cholesterol, small LDL cholesterol, and LDL score (p<0.05, all. Meanwhile, a negative association was detected between inflammatory markers and mean LDL particle size (p<0.05 or large HDL cholesterol (p<0.05. Moreover, we found that the relationships between multimarker index quartiles and small LDL cholesterol, LDL score, and mean LDL particle size were slightly stronger in patients with CAD. Conclusions. Systemic inflammatory markers are positively correlated with small LDL cholesterol and LDL score while being negatively linked with mean LDL particle size and large HDL cholesterol, highlighting the potential contribution to increased cardiovascular risk.

  6. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease: cross-sectional, prospective, and case-control studies from the Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Wittrup, HH; Andersen, RV; Tybjærg-Hansen, A

    2006-01-01

    CONTEXT: Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD). OBJECTIVE: The objective of this study was to investigate the influence of T(-93)G, G(-53)C, Asp9Asn, Gly188Glu, Asn291Ser, and Ser447Ter lipoprotein...... in plasma triglycerides greater than 1 mmol/liter and differences in HDL cholesterol greater than 0.5 mmol/liter. A 1.6-fold risk of IHD in 9Asn (with -93G) heterozygotes and homozygotes combined is influenced by apolipoprotein E genotype.......CONTEXT: Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD). OBJECTIVE: The objective of this study was to investigate the influence of T(-93)G, G(-53)C, Asp9Asn, Gly188Glu, Asn291Ser, and Ser447Ter lipoprotein...... lipase genotypes on triglycerides, HDL, and IHD. DESIGN: The cross-sectional study involved 9004 adults. The prospective study consisted of 8817 adults developing 1001 IHD events over 23 yr. The case-control study involved 7818 non-IHD individuals vs. cohorts of 915 and 1062 IHD patients, respectively...

  7. Synthesis and Characterization of Biomimetic High Density Lipoprotein Nanoparticles To Treat Lymphoma

    Science.gov (United States)

    Damiano, Marina Giacoma

    High density lipoproteins (HDLs), natural nanoparticles that function as vehicles for cholesterol transport, have enhanced uptake by several human cancers. This uptake is mediated, in part, by the high affinity HDL receptor, scavenger receptor B-1 (SR-B1). More specifically, studies show that the rate of cellular proliferation of lymphoma, a cancer of the lymphocytes, is directly proportional to the amount of HDL-cholesterol available. Thus, targeting of HDL-cholesterol uptake by these cells could be an effective therapeutic approach that may have lower toxicity to healthy cells compared to conventional therapies. Biomimetic HDL can be synthesized using a gold nanoparticle template (HDL-AuNPs), which provides control over size, shape, and surface chemistry. Like their natural counterparts, HDL-AuNPs sequester cholesterol. However, since the gold nanoparticle replaces the cholesterol core of natural HDL, HDL-AuNPs inherently deliver less cholesterol. We show that HDL-AuNPs are able to induce dose dependent apoptosis in B cell lymphoma cell lines and reduce tumor volume following systemic administration to mice bearing B cell lymphoma tumors. Furthermore, HDL-AuNPs are neither toxic to healthy human lymphocytes (SR-B1-), nor to hepatocytes and macrophages (SR-B1+), which are cells naturally encountered by HDLs. Manipulation of cholesterol flux and targeting of SR-B1 are responsible for the efficacy of HDL-AuNPs against B cell lymphoma. HDL-AuNPs could be used to treat B cell lymphomas and other diseases that involve pathologic accumulation of cholesterol. Titanium dioxide nanoparticle (TiO2 NP) core HDLs (HDL-TiO 2 NPs) have been synthesized for high resolution cellular localization studies and for future use as a therapeutic and imaging agent. In initial studies, HDL-TiO(2 NPs display maximum uptake in B cell lymphoma cell lines. X-ray fluorescence microscopy studies show interaction between HDL-TiO2 NPs and cells 10 minutes after treatment and internalization after

  8. Low-density lipoprotein concentration in the normal left coronary artery tree

    Directory of Open Access Journals (Sweden)

    Louridas George E

    2008-10-01

    Full Text Available Abstract Background The blood flow and transportation of molecules in the cardiovascular system plays a crucial role in the genesis and progression of atherosclerosis. This computational study elucidates the Low Density Lipoprotein (LDL site concentration in the entire normal human 3D tree of the LCA. Methods A 3D geometry model of the normal human LCA tree is constructed. Angiographic data used for geometry construction correspond to end-diastole. The resulted model includes the LMCA, LAD, LCxA and their main branches. The numerical simulation couples the flow equations with the transport equation applying realistic boundary conditions at the wall. Results High concentration of LDL values appears at bifurcation opposite to the flow dividers in the proximal regions of the Left Coronary Artery (LCA tree, where atherosclerosis frequently occurs. The area-averaged normalized luminal surface LDL concentrations over the entire LCA tree are, 1.0348, 1.054 and 1.23, for the low, median and high water infiltration velocities, respectively. For the high, median and low molecular diffusivities, the peak values of the normalized LDL luminal surface concentration at the LMCA bifurcation reach 1.065, 1.080 and 1.205, respectively. LCA tree walls are exposed to a cholesterolemic environment although the applied mass and flow conditions refer to normal human geometry and normal mass-flow conditions. Conclusion The relationship between WSS and luminal surface concentration of LDL indicates that LDL is elevated at locations where WSS is low. Concave sides of the LCA tree exhibit higher concentration of LDL than the convex sides. Decreased molecular diffusivity increases the LDL concentration. Increased water infiltration velocity increases the LDL concentration. The regional area of high luminal surface concentration is increased with increasing water infiltration velocity. Regions of high LDL luminal surface concentration do not necessarily co-locate to the

  9. The Potential Protective Effects of Phenolic Compounds against Low-density Lipoprotein Oxidation.

    Science.gov (United States)

    Amarowicz, Ryszard; Pegg, Ronald B

    2017-01-01

    The exact mechanism(s) of atherosclerosis in humans remains elusive, but one theory hypothesizes that this deleterious process results from the oxidative modification of low-density lipoprotein (LDL). Research suggests that foods rich in dietary phenolic compounds with antioxidant activity can mitigate the extent of LDL oxidation in vivo. With regard to the different classes of flavonoids, there appears to be a structurefunction relationship between the various moieties/constituents attached to the flavonoids' three ring system and their impact at retarding LDL oxidation. This article summarizes the findings to date of both in vitro and in vivo studies using foods or phenolic extracts isolated from foodstuffs at inhibiting the incidence of LDL oxidation. Three bases: SCOPUS, Web Science, and PubMed were used for search. An often used method for the determination of antioxidant properties of natural phenolic compounds is the LDL oxidation assay. LDLs are isolated from human plasma and their oxidation is induced by Cu2+ ions or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The sample is incubated with a phenolic extract or individual/isolated phenolic compounds. LDL oxidation is then monitored by various chemical methods (e.g., measurement of the generation of conjugated dienes and trienes). This technique confirmed the antioxidant properties of several extracts as obtained from plant material (e.g., grapes, berries, orange, grapefruit, coffee, tea, chocolate, olives, nuts) as well as the individual phenolic compounds (e.g., luteolinidin, apigenidin, caffeic acid, chlorogenic acid, catechin, quercetin, rutin). Several studies in vivo confirmed protective effects of phenolic compounds against LDL oxidation. They covered the healthy subjects with hyperlipidaemia, overweight, obesity, metabolic syndrome, heavy smokers, patients receiving haemodialysis, patients with peripheral vascular disease, and subjects at high cardiovascular risk. The studies comprise

  10. Low-Density Lipoprotein and Intracerebral Hematoma Expansion in Daily Alcohol Users

    Directory of Open Access Journals (Sweden)

    Gayle R. Pletsch

    2014-01-01

    Full Text Available Background: Epidemiological studies suggest that the intracerebral hemorrhage (ICH rate correlates with alcohol consumption. Alcohol leads to elevated blood pressure (BP and inhibition of platelet aggregation. These factors could promote excessive bleeding. To our knowledge, in the setting of normal liver function tests, there are no studies that have systematically evaluated the relationship between daily alcohol use and hematoma expansion. The aim of this study is to compare the baseline ICH characteristics, frequency of hematoma expansion, and outcomes in patients with ICH who are daily alcohol users with those who are not daily alcohol users. Methods: A retrospective chart review was performed on consecutive patients who presented from July 2008 to July 2013 to the Tulane University Hospital in New Orleans, La., USA, with a spontaneous ICH. Ninety-nine patients who met these criteria were admitted. Patients who underwent hematoma evacuation were excluded. Hemorrhage volumes were calculated based on the ABC/2 method. Low-density lipoprotein (LDL was dichotomized into low (2 and nonparametric equivalents where appropriate. ICH growth in 24 h and LDL were evaluated using linear regression. Results: Of the 226 patients who met inclusion criteria, 20.4% had a history of daily alcohol use. The average age was 61 years (range 19-94, 55.6% of the patients were males, and 67.1% were of African American origin. Daily alcohol use was associated with male gender, lower rate of home antihypertensive, higher presenting BP, and lower platelet counts, but there was no difference in ICH characteristics, ICH growth, or clinical outcome. Daily alcohol use in patients with a low LDL level was associated with supratentorial location and trends for lower baseline Glasgow Coma Scale score, higher ICH score, and follow-up ICH volume, but no significant difference in significant hematoma expansion or clinical outcome except for a trend for higher mortality was found

  11. Oxidized low-density lipoprotein and β-glycerophosphate synergistically induce endothelial progenitor cell ossification

    Institute of Scientific and Technical Information of China (English)

    Li LIU; Zhi-zhong LIU; Hui CHEN; Guo-jun ZHANG; Yu-hua KONG; Xi-xiong KANG

    2011-01-01

    To investigate the ability of ox-LDL to induce ossification of endothelial progenitor cells (EPCs) in vitro and explored whether oxidative stress,especially hypoxia inducible factor-1α (HIF-1α) and reactive oxygen species (ROS),participate in the ossific process.Methods:Rat bone marrow-derived endothelial progenitor cells (BMEPCs) were cultured in endothelial growth medium supplemented with VEGF (40 ng/mL) and bFGF (10 ng/mL).The cells were treated with oxidized low-density lipoprotein (ox-LDL,5 μg/mL) and/or β-glycerophosphate (β-GP,10 mmol/L).Calcium content and Von Kossa staining were used as the measures of calcium deposition.Ossific gene expression was determined using RT-PCR.The expression of osteocalcin (OCN) was detected with immunofluorescence.Alkaline phosphatase (ALP) activity was analyzed using colorimetric assay.Intercellular reactive oxygen species (ROS) were measured with flow cytometry.Results:BMEPCs exhibited a spindle-like shape.The percentage of cells that expressed the cell markers of EPCs CD34,CD133,and kinase insert domain-containing receptor (KDR) were 46.2%+5.8%,23.5%+4.0%,and 74.3%+8.8%,respectively.Among the total cells,78.3%+4.2% were stained with endothelial-specific fluorescence.Treatment of BMEPCs with ox-LDL significantly promoted calcium deposition,which was further significantly enhanced by co-treatment with β-GP.The same treatments significantly increased the gene expression of core-binding factor a-1 (cbfa-1) and OCN,while decreased the gene expression of osteoprotegerin (OPG).The treatments also significantly enhanced the activity of ALP,but did not affect the number of OCN+ cells.Furthermore,the treatments significantly increased ROS and activated the hypoxia inducible factor-1α (HIF-1α).In all these effects,ox-LDL acted synergistically with β-GP.Conclusion:Ox-LDL and β-GP synergistically induce ossification of BMEPCs,in which an oxidizing mechanism is involved.

  12. Low-density lipoprotein cholesterol and survival in pulmonary arterial hypertension

    Science.gov (United States)

    Kopeć, Grzegorz; Waligóra, Marcin; Tyrka, Anna; Jonas, Kamil; Pencina, Michael J.; Zdrojewski, Tomasz; Moertl, Deddo; Stokwiszewski, Jakub; Zagożdżon, Paweł; Podolec, Piotr

    2017-01-01

    Low-density lipoprotein cholesterol(LDL-C) is a well established metabolic marker of cardiovascular risk, however, its role in pulmonary arterial hypertension (PAH) has not been determined. Therefore we assessed whether LDL-C levels are altered in PAH patients, if they are associated with survival in this group and whether pulmonary hypertension (PH) reversal can influence LDL-C levels. Consecutive 46 PAH males and 94 females were age matched with a representative sample of 1168 males and 1245 females, respectively. Cox regression models were used to assess the association between LDL-C and mortality. The effect of PH reversal on LDL-C levels was assessed in 34 patients with chronic thromboembolic pulmonary hypertension (CTEPH) undergoing invasive treatment. LDL-C was lower in both PAH (2.6 ± 0.8 mmol/l) and CTEPH (2.7 ± 0.7 mmol/l) patients when compared to controls (3.2 ± 1.1 mmol/l, p < 0.001). In PAH patients lower LDL-C significantly predicted death (HR:0.44/1 mmol/l, 95%CI:0.26–0.74, p = 0.002) after a median follow-up time of 33(21–36) months. In the CTEPH group, LDL-C increased (from 2.6[2.1–3.2] to 4.0[2.8–4.9]mmol/l, p = 0.01) in patients with PH reversal but remained unchanged in other patients (2.4[2.2–2.7] vs 2.3[2.1–2.5]mmol/l, p = 0.51). We concluded that LDL-C level is low in patients with PAH and is associated with an increased risk of death. Reversal of PH increases LDL-C levels. PMID:28198422

  13. Detrimental Effect of Hypercholesterolemia on High-Density Lipoprotein Particle Remodeling in Pigs.

    Science.gov (United States)

    Padró, Teresa; Cubedo, Judit; Camino, Sandra; Béjar, Maria Teresa; Ben-Aicha, Soumaya; Mendieta, Guiomar; Escolà-Gil, Joan Carles; Escate, Rafael; Gutiérrez, Manuel; Casani, Laura; Badimon, Lina; Vilahur, Gemma

    2017-07-11

    Beneficial effects of high-density lipoproteins (HDL) seem altered in patients with symptomatic cardiovascular disease. We recently demonstrated in a swine model of ischemia-reperfusion (IR) that hypercholesterolemia abolishes HDL-related cardioprotection. This study sought to investigate, using the same animal model, whether the reported impairment of HDL cardioprotective function was associated with alterations in HDL remodeling and functionality. Pigs were fed a normocholesterolemic (NC) or hypercholesterolemic (HL) diet for 10 days, reaching non-HDL cholesterol concentrations of 38.2 ± 3.5 mg/dl and 218.6 ± 27.6 mg/dl, respectively (p < 0.0001). HDLs were isolated, and lipidomics and differential proteomics tests were performed to determine HDL molecular changes. HDL functionality and particle size were determined. Using principal component analysis, we identified 255 molecular lipid species differentially clustered in NC-HDL and HL-HDL. Ninety lipid metabolites were differentially expressed, and 50 showed at least 1.5-fold variation (false discovery rate adjustment q value <0.05). HL-HDLs presented a core enriched in cholesteryl esters and a surface depleted of phosphatidylcholine species containing polyunsaturated and long-chain fatty acids, indicating the presence of mature HDL particles with low surface fluidity. Hypercholesterolemia induced an important change in HDL-transported proteins (576 spots in HL-HDL vs. 621 spots in NC-HDL). HL-HDLs showed a reduced content of lipocalin retinol binding protein 4 and apolipoprotein M and in the retinoic acid-transporter cellular retinoic acid binding protein 1 (p < 0.05 vs. NC-HDL). No changes were observed in apolipoprotein A-I content and profile. Functionally, HL-HDL showed lower antioxidant activity (-35%) and a reduced capacity to efflux cholesterol (-60%) compared to NC-HDL (p < 0.05). Hypercholesterolemia induced larger HDL particles. We demonstrate that hypercholesterolemia induces HDL lipidomic

  14. Apparent protective effect of high density lipoprotein against coronary heart disease in the elderly

    Institute of Scientific and Technical Information of China (English)

    李健斋; 陈曼丽; 王抒; 董军; 曾平; 侯鲁维

    2004-01-01

    Background This study was designed to evaluate the relationship between high-density lipoprotein cholesterol (HDL-C) level and acute myocardial infarction (AMI) and coronary heart disease (CHD)death and to explore the protective effect of HDL against CHD in the elderly Chinese.Methods Started from 1986, 1211 retirees (92% males) were enrolled consecutively and studied prospectively. The average starting age was 70 ±9 years, and that at the end of the study was 80 ±9years. During the follow-up study, all the participants received yearly physical examination and blood chemistry survey from 1986 -2000. The average duration of the follow up study was 11.2 years. The end point of this study was either attacks of AMI or death due to CHD and other causes. CHD risk factors were screened by logistic regression analysis. According to their HDL-C levels, cases were divided into Iow (<1.03 mmol/L), medium (or normal, 1.03 - 1.56 mmol/L) and high(>1.56mmol/L) level groups, the differences in incidence of AMI and CHD death in each group were analyzed.Results The cumulative attacks of acute coronary syndrome (mostly AMI) were 214 cases,including 89 cases of coronary death and 308 death caused by other diseases during the follow up study. AMI occurrence and CHD death in normal HDL-C group were lower than those in the low HDLC group by 40% and 53%; and those in the high HDL-C group were lower than in the normal group by 56% and 50%, respectively. Statistical analysis on normal lipid cases (411 cases, total cholesterol<5. 17mmol/L, triglyceride<1.69 mmol/L) revealed that the cases at low HDL-C level had similar rates of AMI events and CHD mortality as those of the entire group (including hyperlipidemia);however, AMI attacks and CHD deaths decreased significantly at the normal and high HDL-C levels.The results demonstrated that the protective effect of HDL against coronary artery disease is more prominent in people with low lipid level.Conclusion Low HDL is an important

  15. Serum low-density lipoprotein levels, statin use, and cognition in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Rej S

    2016-11-01

    Full Text Available Soham Rej,1 Mahwesh Saleem,2,3 Nathan Herrmann,1,3 Anthi Stefatos,4 Allison Rau,3 Krista L Lanctôt1–3 1Department of Psychiatry, 2Department of Pharmacology and Toxicology, University of Toronto, 3Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, Toronto, ON, 4Faculty of Medicine, Université de Montréal, Montréal, QC, Canada Aim: Statins have been associated with decreased cognition due to the effects of low concentrations of low-density lipoprotein (LDL on brain function. This has remained controversial and is particularly relevant to patients with coronary artery disease (CAD, who have an increased risk of cognitive decline and are frequently prescribed statins. This study hypothesized that low concentration of LDL is associated with poor cognition in CAD patients using statins. It also explored the association between high-dose versus low-dose statins on cognition in this population. Patients and methods: Baseline cross-sectional data from a longitudinal study of 120 statin-using CAD patients were examined (mean statin duration 25±43 months. The main outcomes were measures of global cognition and cognitive domains, with poor cognition defined as cognitive performance ≤1 standard deviation below the population age and education adjusted means. A battery of cognitive tests was used to assess verbal memory, executive function, speed of processing, visuospatial memory, and global cognition. Adjusting for age, sex, education, and other covariates, multivariable logistic regression analyses assessed associations between low LDL levels (<1.5 mmol/L, statin use, and poor cognition. Results: LDL levels were not associated with global cognition or individual cognitive domains. High-dose statin use was associated with higher visuospatial memory (odds ratio, OR [95% confidence interval, CI] =0.12 [0.02–0.66], P=0.01 and executive functioning (OR =0.25 [0.06–0.99], P=0.05. This effect was independent of covariates

  16. Oxidized Low Density Lipoprotein Among the Elderly in Qinghai-Tibet Plateau.

    Science.gov (United States)

    Sakamoto, Ryota; Okumiya, Kiyohito; Wang, Hongxin; Dai, Qingxiang; Fujisawa, Michiko; Wada, Taizo; Imai, Hissei; Kimura, Yumi; Ishimoto, Yasuko; Fukutomi, Eriko; Chen, Wingling; Sasiwongsaroj, Kwanchit; Kato, Emiko; Ge, Ri-Li; Matsubayashi, Kozo

    2015-09-01

    Several environmental factors including hypoxia have been reported to contribute to oxidative stress in individuals living in the highlands. However, little is known about the role of oxidized low-density lipoprotein (ox-LDL) among community-dwelling elderly in the Qinghai-Tibet plateau. The study population comprised 168 community-dwelling elderly subjects aged 60 years or older (male to female ratio, 70:98; mean age, 65.8 years) living in Haiyan County, located 3000 to 3200 m above sea level, 30 km northwest of Xining, Qinghai. The subjects were volunteers who joined a Comprehensive Geriatric Assessment. Plasma ox-LDL was measured in 168 community-dwelling elderly subjects aged 60 years or older (23 Tibetans and 145 Hans) with a monoclonal antibody-based enzyme-linked immunosorbent assay. Mean ox-LDL level was higher among Tibetan elderly than Han elderly (Tibetan, 79.0 ± 29.6 U/L; Han, 62.8 ± 23.5 U/L; P = .003). Tibetan ethnicity was significantly associated with ox-LDL levels after adjusting for LDL cholesterol levels. In addition, high ox-LDL levels (≥70 U/L) were significantly associated with a homeostasis model assessment insulin resistance index of at least 1.6 (odds ratio [OR], 2.82; 95% confidence interval [95% CI], 1.11 to 7.15; P = .029) and ankle brachial pressure index of less than 1.0 (OR, 4.85; 95% CI, 1.14 to 10.00; P = .028), after adjusting for age, sex, and ethnicity. Our findings support the hypothesis that ox-LDL levels are higher among Tibetan elderly highlanders compared with those among Han elderly. As ox-LDL levels can affect insulin resistance and arteriosclerosis, further research is needed to determine how oxidative stress influences the health situation among elderly individuals at high altitudes. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Genetic Analysis of long-lived families reveals novel variants influencing high density-lipoprotein cholesterol

    Directory of Open Access Journals (Sweden)

    Mary F Feitosa

    2014-06-01

    Full Text Available The plasma levels of high-density lipoprotein cholesterol (HDL have an inverse relationship to the risks of atherosclerosis and cardiovascular disease, and have also been associated with longevity. We sought to identify novel loci for HDL that could potentially provide new insights into biological regulation of HDL metabolism in healthy-longevous subjects. We performed a genome-wide association scan on HDL using a mixed model approach to account for family structure using kinship coefficients. A total of 4,114 subjects of European descent (480 families were genotyped at ~2.3 million SNPs and ~38 million SNPs were imputed using the 1000 Genome Cosmopolitan reference panel in MACH. We identified novel variants near-NLRP1 (17p13 associated with an increase of HDL levels at genome-wide significant level (p< 5.0E-08. Additionally, several CETP (16q21 and ZNF259-APOA5-A4-C3-A1 (11q23.3 variants associated with HDL were found, replicating those previously reported in the literature. A possible regulatory variant upstream of NLRP1 that is associated with HDL in these elderly LLFS subjects may also contribute to their longevity and health. Our NLRP1 intergenic SNPs show a potential regulatory function in ENCODE; however, it is not clear whether they regulate NLRP1 or other more remote gene. NLRP1 plays an important role in the induction of apoptosis, and its inflammasome is critical for mediating innate immune responses. Nlrp1a (a mouse ortholog of human NLRP1 interacts with SREBP-1a (17p11 which has a fundamental role in lipid concentration and composition, and is involved in innate immune response in macrophages. The NLRP1 region is conserved in mammals, but also has evolved adaptively showing signals of positive selection in European populations that might confer an advantage. NLRP1 intergenic SNPs have also been associated with immunity/inflammasome disorders which highlights the biological importance of this chromosomal region.

  18. Allele-specific expression of the low density lipoprotein receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, A.; Lussier-Cacan, S.; Roy, M. [Clincial Research Institute of Montreal, Quebec (Canada)

    1994-09-01

    Approximately 60% of familial hypercholesterolemia (FH) in French Canadians is due to a > 10 kb deletion of the promoter region of the gene encoding the low density lipoprotein (LDL) receptor (LDL-R), allowing determination of the influence of a single LDL-R allele on phenotypic expression of FH. Normal allele haplotypes of approximately 250 heterozygotes were determined with 7 RFLPs. In vitro maximal LDL-R activity of blood lymphocytes from a subset of approximately 150 heterozygotes, measured by immunocytofluorometry, was significantly higher (20 to 30%) in subjects with LDL-R normal allele haplotype G (n=11), and O (n=7) compared to the most frequent haplotype F (n=43), while no differences were observed among F, E (n=11), and the 2 other most prevalent haplotypes (n=43). LDL-R mRNA in these lymphocytes was significantly elevated 2.3-, 1.7-, and 1.8- fold, in G, O, and E, respectively, compared to F, while no significant differences were apparent between F and the other two most frequent haplotyes. Large interindividual variability in lymphocyte LDL-R mRNA levels and activity was observed even among subjects with the same LDL-R normal allele haplotype. However, maximally induced lymphocyte LDL-R mRNA levels correlated poorly with levels measured in freshly isolated cells (n=14). Relative to haplotype F (n=47 women (W), 39 men (M)), mean plasma LDL cholesterol levels adjusted for age and apolipoprotein E genotype were 5-10% lower in men and women with haplotypes G (n=16 W, 12 M) and O (n=8 W, 6 M), and 20% lower in 7 W with haplotype E. These results suggest that (1) normal LDL-R allele haplotype G and O may contain sequence variations which confer relatively high gene expression and (2) environmental and genetic influences other than the LDL-R gene contribute substantially to variability in LDL-R expression and plasma LDL cholesterol levels in French Canadian FH heterozygotes.

  19. Cholesterol efflux and metabolic abnormalities associated with low high-density-lipoprotein-cholesterol and high triglycerides in statin-treated coronary men with low-density lipoprotein-cholesterol <70 mg/dl.

    Science.gov (United States)

    Posadas-Sánchez, Rosalinda; Posadas-Romero, Carlos; Mendoza-Pérez, Enrique; Caracas-Portilla, Nacú Aureo; Cardoso-Saldaña, Guillermo; Medina-Urrutia, Aída; Jorge-Galarza, Esteban; Juárez-Rojas, Juan Gabriel

    2012-03-01

    In 69 statin-treated male coronary patients with low-density lipoprotein cholesterol at goal levels (cholesterol (triglyceride (>150 mg/dl) are associated with dysfunctional HDL particles and abnormal insulin, adiponectin, C-reactive protein serum levels. Thirty-four patients with low HDL cholesterol and high triglyceride (dyslipidemia) and 35 patients with low-density lipoprotein cholesterol, HDL cholesterol, and triglyceride at target levels (normolipidemia) were studied. Twenty healthy men were also studied. High-sensitivity C-reactive protein was measured using immunonephelometry, insulin using a radioimmunometric assay, and total adiponectin by enzyme-linked immunosorbent assay. Cell cholesterol efflux to serum and total isolated HDL was assayed using rat hepatoma Fu5AH cells for scavenger receptor class B type 1-mediated efflux. Compared to the normolipidemia and healthy groups, and after adjustment for age and waist circumference, patients with dyslipidemia showed higher fasting insulin (14, 9.9, and 8.5 μU/ml, respectively), homeostasis model assessment of insulin resistance values (3.4, 2.3, and 1.8, respectively), lower adiponectin concentrations (5.1, 8.1, and 11 μg/ml, respectively), and reduced cholesterol efflux to serum (14%, 15%, and 19%, respectively) and to HDL fractions (4.4%, 4.6%, and 5.6%, respectively) (p cholesterol efflux. In conclusion, the decreased cholesterol efflux and metabolic abnormalities found in the dyslipidemia group may contribute to the residual risk observed in the large statin trials and the higher morbidity and mortality in statin-treated coronary patients with low HDL cholesterol even when attaining low-density lipoprotein cholesterol <70 mg/dl. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Extended-Release Niacin Versus Fenofibrate in HIV-Infected Participants With Low High-Density Lipoprotein Cholesterol: Effects on Endothelial Function, Lipoproteins, and Inflammation.

    Science.gov (United States)

    Dubé, Michael P; Komarow, Lauren; Fichtenbaum, Carl J; Cadden, Joseph J; Overton, Edgar T; Hodis, Howard N; Currier, Judith S; Stein, James H

    2015-09-01

    Low levels of high-density lipoprotein cholesterol (HDL-C) are common in individuals with human immunodeficiency virus (HIV) infection, persist during antiretroviral therapy (ART), and are associated with increased cardiovascular disease (CVD) risk. Virologically controlled participants without CVD on stable ART with low HDL-C (men 150 mg/dL were randomized to receive open-label extended-release niacin 1500 mg/day with aspirin 325 mg/day or fenofibrate 200 mg/day for 24 weeks. The primary endpoint was the week 24 within-arm change in brachial artery flow-mediated dilation (FMD) in participants with complete follow-up scans. Of 99 participants, 74 had complete data (35 niacin, 39 fenofibrate). Median age was 45 years, 77% were male, median CD4(+) count was 561 cells/µL, and brachial FMD was 4.2%. Median HDL-C was 32 mg/dL for men and 38 mg/dL for women, low-density lipoprotein cholesterol was 103 mg/dL, and triglycerides were 232 mg/dL. In men, HDL-C increased a median of 3 mg/dL with niacin and 6.5 mg/dL with fenofibrate (P < .001 for both). In women, HDL-C increased a median of 16 mg/dL with niacin and 8 mg/dL with fenofibrate (P = .08 for both). After 24 weeks, there was no significant change in FMD in either arm; the median (interquartile range) change was +0.6% (-1.6 to 2.3) with niacin (P = .28) and +0.5% (-1.0 to 3.0) with fenofibrate (P = .19). Neither treatment significantly affected C-reactive protein, interleukin 6, or D-dimer levels. Despite improvements in lipids, niacin or fenofibrate treatment for 24 weeks did not improve endothelial function or inflammatory markers in participants with well-controlled HIV infection and low HDL-C. NCT01426438. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Exercise attenuates the increase in plasma monounsaturated fatty acids and high-density lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women.

    Science.gov (United States)

    Gilmore, L Anne; Crouse, Stephen F; Carbuhn, Aaron; Klooster, Jennifer; Calles, José Antonio Elias; Meade, Thomas; Smith, Stephen B

    2013-12-01

    We hypothesized that dietary monounsaturated fatty acids (MUFA) and exercise increase high-density lipoprotein cholesterol (HDL-C) by independent mechanisms, so there would be additive effects between a single, intensive session of exercise and high-MUFA ground beef on HDL-C and blood risk factors for cardiovascular disease. Seventeen postmenopausal women completed a 2-way crossover design in which they consumed five 114-g ground beef patties per week for two 6-week periods separated by a 4-week washout (habitual diet) period. The ground beef patties contained 21% total fat with either 9.97 (low-MUFA) or 12.72 (high-MUFA) g total MUFA. Blood was taken at entry, at the end of each 6-week diet period, after the 4-week washout period, and 24 hours after aerobic exercise sessions (75% VO₂peak, 2.07 MJ). After the ground beef intervention, the high-MUFA ground beef increased plasma palmitoleic acid and oleic acid, low-density lipoprotein (LDL) particle density, HDL-C, and HDL2b-C (all P density. After the washout (habitual diet) period, the single exercise session increased serum LDL cholesterol, HDL-C, and HDL2a and decreased TAG and oleic acid. After the low-MUFA ground beef diet, exercise increased LDL size and HDL density and decreased LDL density and very low-density lipoprotein cholesterol, but had no effect on HDL-C fractions. After the high-MUFA ground beef intervention, exercise decreased palmitioleic acid, oleic acid, HDL-C, and HDL2a-C, but not HDL2b-C. Contrary to our hypothesis, the effects of exercise and a high-MUFA diet were not additive; instead, exercise attenuated the effects of the high-MUFA ground beef on HDL-C and plasma MUFAs. The differential effects of high-MUFA ground beef and exercise on HDL2a-C and HDL2b-C indicate that diet and exercise affect HDL-C by different mechanisms.

  2. The influence of lipoprotein(a on fibrinolytic activity

    Directory of Open Access Journals (Sweden)

    Rahajuningsih D. Setiabudy

    2004-09-01

    Full Text Available Lipoprotein(a is a plasma lipoprotein whose structure and composition are similar with low density lipoprotein (LDL with an addition of apo(a that is bound to apo B100. The structure of apo(a is similar with plasminogen, a proenzym in fibrinolytic system. Due to this similarity, it is assumed that Lp(a can inhibit plasminogen activity and decreases fibrinolytic activity. The purpose of this study is to prove that addition of Lp(a to normal plasma can inhibit fibrinolytic activity. Four healthy people whose fibrinogen levels, plasminogen activities and euglobulin clot lysis time were within normal range were enrolled in this study. Fibrinolytic activity were assessed by euglobulin clot lysis time (ECLT. In the first experiment, the addition of Lp(a was done before centrifugation to obtain euglobulin precipitates, while in the second experiment, Lp(a was added to the euglobulin precipitates. As a control, ECLT was performed in the plasma with the addition of NaCl 0.9% in the same volume with Lp(a. The results of the study showed that in the first experiment, there was no clot formation. It is assumed that Lp(a can bind fibrinogen and both of them floated in the supernatant, so there was no fibrinogen in the euglobulin precipitate that can be clotted by thrombin. In the second experiment, the clot did not dissolve until the fourth day. In conclusion, the addition of Lp(a to normal plasma can inhibit the activity of fibrinolytic system. (Med J Indones 2004; 13: 135-9 Keywords: plasminogen, fibrinogen, apo(a, euglobulin clot lysis time (ECLT

  3. Effect of alirocumab on specific lipoprotein non-high-density lipoprotein cholesterol and subfractions as measured by the vertical auto profile method: analysis of 3 randomized trials versus placebo.

    Science.gov (United States)

    Toth, Peter P; Hamon, Sara C; Jones, Steven R; Martin, Seth S; Joshi, Parag H; Kulkarni, Krishnaji R; Banerjee, Poulabi; Hanotin, Corinne; Roth, Eli M; McKenney, James M

    2016-02-13

    The effect of alirocumab on potentially atherogenic lipoprotein subfractions was assessed in a post hoc analysis using the vertical auto profile (VAP) method. Patients from three Phase II studies with low-density lipoprotein cholesterol (LDL-C) ≥ 2.59 mmol/L (100 mg/dL) at baseline on stable statin therapy were randomised to receive subcutaneous alirocumab 50-150 mg every 2 weeks (Q2W) or 150-300 mg every 4 weeks (according to study) or placebo for 8-12 weeks. Samples from patients treated with alirocumab 150 mg Q2W (n = 74; dose common to all three trials) or placebo (n = 71) were analysed by VAP. Percent change in lipoprotein subfractions with alirocumab vs. placebo was analysed at Weeks 6, 8 or 12 using analysis of covariance. Alirocumab significantly reduced LDL-C and the cholesterol content of subfractions LDL1, LDL2 and LDL3+4. Significant reductions were also observed in triglycerides, apolipoproteins CII and CIII and the cholesterol content of very low-density, intermediate-density, and remnant lipoproteins. Alirocumab achieved reductions across a spectrum of atherogenic lipoproteins in patients receiving background statin therapy. Clinicaltrials.gov identifiers: NCT01288443, NCT01288469, NCT01266876.

  4. High-density lipoprotein cholesterol associated with change in coronary plaque lipid burden assessed by near infrared spectroscopy.

    Science.gov (United States)

    Honda, Satoshi; Sidharta, Samuel L; Shishikura, Daisuke; Takata, Kohei; Di Giovanni, Giuseppe A; Nguyen, Tracy; Janssan, Alex; Kim, Susan W; Andrews, Jordan; Psaltis, Peter J; Worthley, Matthew I; Nicholls, Stephen J

    2017-08-31

    Little is known about the relation between serum lipid parameters and serial change in plaque composition using in vivo coronary imaging. The aim of this study was to examine the association between serum lipids and change in coronary plaque lipid burden assessed by near-infrared spectroscopy (NIRS). We performed serial NIRS-intravascular ultrasound studies in 49 patients who underwent coronary angiography for an acute coronary syndrome (ACS) or stable ischemic symptoms. Univariable and multivariable linear regression analyses were applied to evaluate the relationship between serum lipid parameters and change in lipid core burden index at the 4-mm maximal segment (max LCBI4mm). Mean patient age was 61 ± 9 y, 29% were women, 35% had an ACS clinical presentation, 78% received statin therapy at baseline, and median low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), total cholesterol and triglyceride levels were 101, 43, 174 and 133 mg/dL, respectively. During a median follow-up period of 13 months, max LCBI4mm significantly decreased from 277 to 194 (p = 0.001). On univariable analysis, the percent change in HDL-C negatively associated with the change in max LCBI4mm (β = -3.19, p = 0.004). There were no significant associations between the other lipid parameters and change in max LCBI4mm. On multivariable analysis, percent change in HDL-C remained significantly associated with the change in max LCBI4mm (p = 0.002). Change in HDL-C, but not other lipids parameters, associated with changes in coronary plaque lipid burden assessed by NIRS. These findings highlight the potential therapeutic importance of high-density lipoprotein on serial change in plaque composition. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparative study of non-high density lipoproteins cholesterol level and lipid profile in pre-diabetic and diabetic patients.

    Science.gov (United States)

    Banu, Shaheena; Jabir, Nasimudeen R; Manjunath, Nanjappa C; Firoz, C K; Kamal, Mohammad A; Khan, Mohammad S; Tabrez, Shams

    2014-04-01

    The present study compares the role and significance of non-high density lipoproteins (non-HDL) cholesterol level in pre-diabetic and diabetic patients. This study also compares non-HDL cholesterol level between males and females and with different age groups as well. An observational study was conducted among 3830 randomly selected individuals to envisage the association of non-HDL cholesterol and other lipid parameters with age, gender, and diabetic status. On the basis of health status, the subjects were classified as diabetic, pre-diabetic and normal. Fasting blood samples were collected and analyzed on Roche p-800 modular system. Total cholesterol, high density lipoproteins (HDL), low density lipoproteins (LDL) and fasting triglycerides were also measured. From the above mentioned parameters, the level of non-HDL cholesterol level was also calculated. Significant association was observed with non-HDL cholesterol level and all other studied lipid parameters (total cholesterol, HDL, LDL and triglycerides) compared with age and gender of the subjects studied. Moreover, the calculated non-HDL level, total cholesterol and triglycerides were found to be significantly co-related with diabetic status of the patients involved in the study. However, HDL and LDL values did not show any significant association with diabetic status of the patients. In this study, we found that age and gender of the studied subjects are associated with non-HDL cholesterol. Moreover, our data clearly indicates the positive association of non-HDL cholesterol level with pre-diabetic and diabetic status of the patients. Based on our study, we recommend estimation of non-HDL level in routine clinical practice to differentiate pre-diabetic and diabetic patients.

  6. Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia.

    Science.gov (United States)

    Al-Khateeb, Alyaa; Zahri, Mohd K; Mohamed, Mohd S; Sasongko, Teguh H; Ibrahim, Suhairi; Yusof, Zurkurnai; Zilfalil, Bin A

    2011-03-19

    Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements. A total of 29 gene sequence variants were reported in 117(76.0%) of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation), and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45). The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants. Twenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.

  7. Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Yusof Zurkurnai

    2011-03-01

    Full Text Available Abstract Background Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown. We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan. The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements. Results A total of 29 gene sequence variants were reported in 117(76.0% of the studied subjects. Eight different mutations (1 large rearrangement, 1 short deletion, 5 missense mutations, and 1 splice site mutation, and 21 variants. Eight gene sequence variants were reported for the first time and they were noticed in familial hypercholesterolemic patients, but not in controls (p.Asp100Asp, p.Asp139His, p.Arg471Gly, c.1705+117 T>G, c.1186+41T>A, 1705+112C>G, Dup exon 12 and p.Trp666ProfsX45. The incidence of the p.Arg471Gly variant was 11%. Patients with pathogenic mutations were younger, had significantly higher incidences of cardiovascular disease, xanthomas, and family history of hyperlipidemia, together with significantly higher total cholesterol and low density lipoprotein levels than patients with non-pathogenic variants. Conclusions Twenty-nine gene sequence variants occurred among FH patients; those with predicted pathogenicity were associated with higher incidences of cardiovascular diseases, tendon xanthomas, and higher total and low density lipoprotein levels compared to the rest. These results provide preliminary information on the mutation spectrum of this gene among patients with FH in Malaysia.

  8. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy.

    Science.gov (United States)

    Wang, S-H; Yuan, S-G; Peng, D-Q; Zhao, S-P

    2010-05-01

    Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.

  9. Effect of hypertension on low-density lipoprotein transport within a multi-layered arterial wall: modelling consistent with experiments

    CERN Document Server

    Jesionek, Katarzyna; Kostur, Marcin

    2016-01-01

    The influence of hypertension on low-density lipoproteins intake into the arterial wall is an important factor for understanding mechanisms of atherosclerosis. It has been experimentally observed that the increased pressure leads to the higher level of the LDL inside the wall. In this paper we attempt to construct a model of the LDL transport which reproduces quantitatively experimental outcomes. We supplement the well known four-layer arterial wall model to include two pressure induced effects: the compression of the intima tissue and the increase of the fraction of leaky junctions. We demonstrate that such model can reach the very good agreement with experimental data.

  10. The effect of oxidized low-density lipoprotein combined with adriamycin on the proliferation of Eca-109 cell line

    OpenAIRE

    2011-01-01

    Abstract Background The purpose of this study was to identify the affect on the proliferation Eca-109 cells treated with oxidized low-density lipoprotein (ox-LDL) combined with adriamycin (ADM). Methods Eca-109 cell were cultured in the presence of oxLDL/ADM, and cell proliferation tested by MTT and cell apoptosis was monitored by the proportion of apoptosis and cell cycle by flow cytomester. We simultaneously evaluated the level of associated- apoptosis Bcl-2, Bax, and Caspase-3 gene mRNA an...

  11. Low-density lipoprotein cholesterol is associated with fracture risk in diabetes patients - a nested case-control study

    DEFF Research Database (Denmark)

    Starup-Linde, Jakob; Gregersen, Søren; Vestergaard, Peter

    2014-01-01

    available for an analysis of patient characteristics, co-morbidities, biochemical parameters and drug usage. Results: Patient age at the time of diabetes diagnosis, a diagnosis of previous fracture, an alcohol related diagnosis, total cholesterol level, and the usage of antidepressants, antiepileptics...... and insulin all increased the odds of fracture. Low-density lipoprotein cholesterol (LDL) levels decreased the odds of fracture, where the level of 3.04-5.96 mmol/l was optimal with regard to fracture risk. Conclusion: LDL may add to the understanding of fractures in diabetes patients and it may be added...

  12. Properties of the Products Formed by the Activity of Serum Opacity Factor against Human Plasma High Density Lipoproteins

    OpenAIRE

    Pownall, Henry J.; Courtney, Harry S.; Gillard, Baiba K.; Massey, John B.

    2008-01-01

    Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of ~100,000 plasma high density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Althou...

  13. Assessment of monocyte to high density lipoprotein cholesterol ratio and lymphocyte-to-monocyte ratio in patients with metabolic syndrome.

    Science.gov (United States)

    Vahit, Demir; Mehmet, Kadri Akboga; Samet, Yilmaz; Hüseyin, Ede

    2017-07-01

    We aimed to investigate the relationships between metabolic syndrome (MS) and monocyte to high density lipoprotein cholesterol ratio (MHR) and lymphocyte-to-monocyte ratio (LMR). 762 patients (n = 371 MS present and n = 391 MS absent) were enrolled. MHR was significantly higher [13.9 (10.5-18.1) vs 11.1 (8.0-14.8); p MHR [OR: 1.052 (95% CI: 1.018-1.088); p = 0.003] and C-reactive protein [OR: 1.048 (95% CI: 1.032-1.065); p MHR may be novel and useful indicators of MS.

  14. An Inulin-Enriched Soy Drink and Its Lowering Effect on Oxidized Low Density Lipoproteins in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Liutkevičius Algirdas

    2016-03-01

    Full Text Available Due to selection of appropriate ingredients and parameters, a microbiologically-safe drink enriched with soy protein isolate (SPI and prebiotic dietary fiber inulin with high scores of acceptability was produced. The results of medical nutrition survey showed that on the 21 day of using drink the level of oxidized low density lipoproteins (LDL significantly decreased while the other biochemical parameters of blood of healthy patients as compared to the control tests remained unchanged. As well there was no apparent impact on the intestinal microflora balance of recipients established.

  15. Fatty liver in men is associated with high serum levels of small, dense low-density lipoprotein cholesterol

    Directory of Open Access Journals (Sweden)

    Hosoyamada Kaori

    2012-07-01

    Full Text Available Abstract Aims Our study addressed potential associations between fatty liver and small, dense low-density lipoprotein cholesterol (sd-LDL-C levels using a cross-sectional analysis. Methods We enrolled 476 male subjects. Serum sd-LDL-C concentrations were determined using precipitation assays. Results Subjects were divided into four groups based on triglyceride (TG and LDL-C levels: A, TG  Conclusions Fatty liver is a significant determinant of serum sd-LDL-C levels independent of the presence of obesity or hyperglycemia. Fatty liver may alter hepatic metabolism of TG and LDL-C, resulting in increased sd-LDL-C levels.

  16. Role of sphingosine 1-phosphate in anti-atherogenic actions of high-density lipoprotein

    Institute of Scientific and Technical Information of China (English)

    Koichi; Sato; Fumikazu; Okajima

    2010-01-01

    The reverse cholesterol transport mediated by highdensity lipoprotein(HDL)is an important mechanism for maintaining body cholesterol,and hence,the crucial anti-atherogenic action of the lipoprotein.Recent studies,however,have shown that HDL exerts a variety of anti-inflammatory and anti-atherogenic actions independently of cholesterol metabolism.The present review provides an overview of the roles of sphingosine 1-phosphate(S1P)/S1P receptor and apolipoprotein A-I/ scavenger receptor class B typeⅠsystems in the antiatherogenic HDL actions.In addition,the physiological significance of the existence of S1P in the HDL particles is discussed.

  17. DETECTING LOW DENSITY LIPOPROTEIN RECEPTOR MUTANT GENE OF RABBIT BY PCR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Many factors playi mportant roles inthe devel-opment of human atherosclerotic lesions,the lead-ing risk factor for atherosclerosis is familial hyper-cholesterolaemia(FH)[1-2].FHis a genetic diseasecharacterized by a deficiency of receptors for lowdensity lipoprotein(LDL)on the plas malemma ofendothelial cells,a high level of serum LDL,andearly development of atherosclerosis[3].WatanabeHeritable Hyperlipidaemic(WHHL)rabbits withunprovoked hypercholesterolaemia,increased bloodlevel of LDL,pronounced atheroscl...

  18. Relation Between Cigarette Smoking, Body Fat Distribution and Density of Lipoprotein Cholesterol in Women.

    Science.gov (United States)

    1992-08-01

    cardiovascular response to exercise . Since the male pattern of response to exercise has been studied more extensively, it is generally accepted as...may be directly atherogenic and 2) metabolic consequences of hypertriglyceridemia such as elevated postprandial lipoproteins, large VLDL particles...differences in the normal cardiac response to upright exercise . Circulation, 70(3), 357-366. Hjermann, I. (1985). Primary prevention of coronary heart

  19. Low high-density lipoprotein cholesterol is a residual risk factor associated with long-term clinical outcomes in diabetic patients with stable coronary artery disease who achieve optimal control of low-density lipoprotein cholesterol.

    Science.gov (United States)

    Ogita, Manabu; Miyauchi, Katsumi; Miyazaki, Tadashi; Naito, Ryo; Konishi, Hirokazu; Tsuboi, Shuta; Dohi, Tomotaka; Kasai, Takatoshi; Yokoyama, Takayuki; Okazaki, Shinya; Kurata, Takeshi; Daida, Hiroyuki

    2014-01-01

    Diabetes mellitus is recognized an independent risk factor for coronary artery disease (CAD) and mortality. Clinical trials have shown that statins significantly reduce cardiovascular events in diabetic patients. However, residual cardiovascular risk persists despite the achievement of target low-density lipoprotein cholesterol (LDL-C) levels with statin. High-density lipoprotein cholesterol (HDL-C) is an established coronary risk factor that is independent of LDL-C levels. We evaluated the impact of HDL-C on long-term mortality in diabetic patients with stable CAD who achieved optimal LDL-C. We enrolled 438 consecutive diabetic patients who were scheduled for percutaneous coronary intervention between 2004 and 2007 at our institution. We identified 165 patients who achieved target LDL-C diabetic patients with low-HDL-C who achieved optimal LDL-C (6.9 vs 17.9 %, log-rank P = 0.030). Multivariate Cox regression analysis showed that HDL-C is significantly associated with clinical outcomes (adjusted hazard ratio for MACE 1.33, 95 % confidence interval 1.01-1.75, P = 0.042). Low HDL-C is a residual risk factor that is significantly associated with long-term clinical outcomes among diabetic patients with stable CAD who achieve optimal LDL-C levels.

  20. Expression of very low density lipoprotein receptor in the vascular wall. Analysis of human tissues by in situ hybridization and immunohistochemistry

    DEFF Research Database (Denmark)

    Multhaupt, H A; Gåfvels, M E; Kariko, K

    1996-01-01

    for the uptake and transport of triglyceride-rich lipoproteins, and perhaps facilitate the development of atherosclerosis in hypertriglyceridemic individuals, we used in situ hybridization and immunohistochemistry to determine whether VLDL receptor mRNA and protein was expressed in human vascular tissue. We......The recently cloned very low density lipoprotein (VLDL) receptor binds triglyceride-rich, apolipoprotein-E-containing lipoproteins with high affinity. The observation that VLDL receptor mRNA is abundantly expressed in extracts of tissues such as skeletal muscle and heart, but not liver, has led...... tissue suggests a potentially important role for this receptor in normal and pathophysiological vascular processes....

  1. Cholesteryl ester transfer protein, low density lipoprotein particle size and intima media thickness in patients with coronary heart disease.

    Science.gov (United States)

    Tosheska, Katerina; Labudovic, Danica; Jovanova, Silvana; Jaglikovski, Branko; Alabakovska, Sonja

    2011-08-01

    Cholesteryl ester transfer protein (CETP) plays a key role in reverse cholesterol transport and high density lipoprotein (HDL) metabolism. Predominance of small, dense LDL particles is associated with an increased risk of atherosclerosis and coronary heart disease (CHD).The aim of the study was to determine the potential relationship between the CETP concentration and low density lipoprotein (LDL) particle size and their association with intima media thickness (IMT) in patients with CHD. Lipid parameters, CETP concentration and LDL particle size were determined in 100 healthy subjects (control group) and in 100 patients with CHD, aged 43 to 77 years. Plasma CETP concentrations were measured by an enzyme-linked immuno-sorbent assay with two different monoclonal antibodies. LDL subclasses were separated by nondenaturing polyacrilamide 3-31% gradient gel electrophoresis. CETP concentration was higher in patients compared to controls (2.02 ± 0.75 mg/ml vs. 1.74 ± 0.63 mg/ml, p<0.01). Mean LDL particle size (nm) was significantly smaller in patients than in controls (24.5 ± 1.1 vs. 26.1 ± 0.9; p<0.001). There was no relation between LDL particle size and CETP concentration (r=-0.1807, p=0.072). Age, diastolic blood pressure, CETP concentration and LDL particle size were independent factors for determing IMT by multiple linear regression analysis. They accounted for 35.2 % of the observed variability in IMT. CETP is not an independent contributor of LDL particle size. CETP might play a role in determining lipoprotein distributions, but did not seem to be the sole factor in the formation of small LDL particles.

  2. Low level of low-density lipoprotein cholesterol increases hemorrhagic transformation in large artery atherothrombosis but not in cardioembolism.

    Science.gov (United States)

    Kim, Beom Joon; Lee, Seung-Hoon; Ryu, Wi-Sun; Kang, Bong Su; Kim, Chi Kyung; Yoon, Byung-Woo

    2009-05-01

    Low cholesterol level is known to be associated with increased cerebral hemorrhage. However, the associations of hemorrhagic transformation (HTf) after acute ischemic stroke and the low levels of total cholesterol (TC) or low-density lipoprotein cholesterol (LDLC) are largely undiscovered. Of the 1034 patients with acute ischemic stroke who were consecutively admitted to our hospital, 377 patients with stroke attributable to large artery atherothrombosis (LAA; n=210) or cardioembolism (n=167) were selected for this study. Demographic and clinical information was collected and HTf was evaluated through follow-up T2*-weighted gradient-echo MRI performed usually within 1 week after stroke. Measurement of lipid parameters included TC, LDLC, high-density lipoprotein cholesterol, and triglyceride. Of the 377 patients, HTf was noted in 74 patients (19.6%). When patients were divided into 4 groups according to their TC and LDLC levels, the incidence of HTf was significantly elevated in the lowest quartile of each TC (PHTf in LAA, but not in cardioembolism. There was no significant association between low levels of TC (OR, 0.63 per 1 mmol/L-increase; 95% CI, 0.35-1.15) and HTf in LAA. Low levels of LDLC, and possibly TC, are associated with greater risk of hemorrhagic transformation after acute ischemic stroke attributable to LAA.

  3. Plasma matrix metalloproteinases, low density lipoprotein oxidisability and soluble adhesion molecules after a glucose load in Type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Brown Jackie

    2004-06-01

    Full Text Available Abstract Background Acute hyperglycaemia is an independent cardiovascular risk factor in Type 2 diabetes which may be mediated through increased oxidative damage to plasma low density lipoprotein, and in vitro, high glucose concentrations promote proatherogenic adhesion molecule expression and matrix metalloproteinase expression. Methods We examined these atherogenic risk markers in 21 subjects with Type 2 diabetes and 20 controls during an oral 75 g glucose tolerance test. Plasma soluble adhesion molecule concentrations [E-selectin, VCAM-1 and ICAM-1], plasma matrix metalloproteinases [MMP-3 and 9] and plasma LDL oxidisability were measured at 30 minute intervals. Results In the diabetes group, the concentrations of all plasma soluble adhesion molecules fell promptly [all p Conclusions A glucose load leads to a rapid fall in plasma soluble adhesion molecule concentrations in Type 2 diabetes and controls, perhaps reflecting reduced generation of soluble from membrane forms during enhanced leukocyte – endothelial adhesion or increased hepatic clearance, without changes in plasma matrix metalloproteinase concentrations or low density lipoprotein oxidisability. These in vivo findings are in contrast with in vitro data.

  4. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Yinyuan Ding

    2016-05-01

    Full Text Available Low-density lipoprotein receptor-related protein-1 (LRP1 is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2 translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL triglyceride secretion.

  5. The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A.

    Science.gov (United States)

    Kounnas, M Z; Morris, R E; Thompson, M R; FitzGerald, D J; Strickland, D K; Saelinger, C B

    1992-06-25

    The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2 MR/LRP) is a large cell-surface glycoprotein consisting of a 515-kDa and an 85-kDa polypeptide; this receptor is thought to be responsible for the binding and endocytosis of activated alpha 2-macroglobulin and apoE-enriched beta-very low density lipoprotein. A similar high molecular weight glycoprotein has been identified as a potential receptor for Pseudomonas exotoxin A (PE). We demonstrate that the alpha 2 MR/LRP and the PE-binding glycoprotein have a similar mobility upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are immunologically indistinguishable. Furthermore, affinity-purified alpha 2 MR/LRP binds specifically to PE but not to a mutant toxin defective in its ability to bind cells. The 39-kDa receptor-associated protein, which blocks binding of ligands to alpha 2 MR/LRP, also prevents binding and subsequent toxicity of PE for mouse fibroblasts. The concentration of receptor-associated protein that was required to reduce binding and toxicity to 50% was approximately 14 nM, a value virtually identical to the KD measured for the interaction of receptor-associated protein with the purified receptor. Overall, the studies strongly suggest that the alpha 2 MR/LRP is responsible for internalizing PE.

  6. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  7. Modulation of β-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family

    Directory of Open Access Journals (Sweden)

    Cam Judy A

    2006-08-01

    Full Text Available Abstract Amyloid-β peptide (Aβ accumulation in the brain is an early, toxic event in the pathogenesis of Alzheimer's disease (AD. Aβ is produced by proteolytic processing of a transmembrane protein, β-amyloid precursor protein (APP, by β- and γ-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Aβ. Recent studies have shown that members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apolipoprotein E (apoE receptor 2, interact with APP and regulate its endocytic trafficking. Another common feature of these receptors is their ability to bind apoE, which exists in three isoforms in humans and the presence of the ε4 allele represents a genetic risk factor for AD. In this review, we summarize the current understanding of the function of these apoE receptors with a focus on their role in APP trafficking and processing. Knowledge of the interactions between these distinct low-density lipoprotein receptor family members and APP may ultimately influence future therapies for AD.

  8. Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia

    Energy Technology Data Exchange (ETDEWEB)

    Bredie, S.J.H.; Demacker, P.N.M.; Stalenhoef, A.F.H. [Univ. of Nijmegen (Netherlands)

    1996-04-01

    Familial combined hyperlipidemia (FCH) is a heritable lipid disorder, in which dense low-density lipoprotein (LDL) subfraction profiles due to a predominance of small dense LDL particles are frequently observed. These small dense LDL particles are associated with cardiovascular disease. Using segregation analysis, we investigated to what extent these LDL subfraction profiles are genetically determined; also, the mode of inheritance was studied. Individual LDL subfraction profiles were determined by density gradient ultracentrifugation in 623 individuals of 40 well-defined Dutch FCH families. The individual LDL subfraction profile was defined as a quantitative trait by the continuous variable K, a reliable estimate of the relative contribution of each LDL subfraction to the overall profile. Variation in parameter K due to age, sex, and hormonal status was taken into account by introducing liability classes. Segregation analysis was performed by fitting a series of class D regressive models were compared using log-likelihoot ratio tests. Our data show that 60% of the variability of parameter K could be explained by lipid and lipoprotein levels and that a major autosomal locus, recessively inherited, with a population frequency of .42 {+-} .07, and an additional polygenic component of .25 best explained the clustering of atherogenic dense LDL subfraction profiles in these FCH families. Therefore, dense LDL subfraction profiles, associated with elevated lipid levels, appear to have a genetic basis in FCH.

  9. Anti-inflammatory and antioxidant functions of high-density lipoprotein subclasses in patients with acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Ying TAN

    2013-02-01

    Full Text Available Objective  To assess the anti-inflammatory and antioxidant functions of high-density lipoprotein (HDL subclasses (HDL2 and HDL3 in patients with acute coronary syndrome (ACS, and to elucidate whether incapacitation of HDL subclasses occurred in ACS patients. Methods  Forty ACS patients hospitalized in Nanfang Hospital from Jan. 2011 to Jan. 2012 (ACS group, and 40 subjects simultaneously receiving health examination (control group were enrolled in present study. Plasma lipid and hypersensitive C reactive protein (hs-CRP levels, HDL subclasses inflammatory index (HII, paraoxonase-1 (PON1 activity and lipid hydroperoxide (LOOH levels in both groups were measured. Results  The low-density lipoprotein cholesterol (LDL-C and hs-CRP levels were higher in ACS group than in control group (P0.05. Conclusions  The incapacitation of HDL subclasses may occur in ACS patients, with an attenuated antioxidant ability and accentuated proinflammatory function. Mature HDL2 possesses better anti-inflammatory and antioxidant function than HDL3, thus playing a better cardioprotective effect.

  10. The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer.

    Science.gov (United States)

    Li, Xing; Tang, Hailin; Wang, Jin; Xie, Xinhua; Liu, Peng; Kong, Yanan; Ye, Feng; Shuang, Zeyu; Xie, Zeming; Xie, Xiaoming

    2017-04-01

    Although dyslipidemia has been documented to be associated with several types of cancer including breast cancer, it remains uncertainty the prognostic value of serum lipid in breast cancer. The purpose of this study is to evaluate the association between the preoperative plasma lipid profile and the prognostic of breast cancer patients. The levels of preoperative serum lipid profile (including cholesterol [CHO], Triglycerides [TG], high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], apolipoprotein A-I [ApoAI], and apolipoprotein B [ApoB]) and the clinical data were retrospectively collected and reviewed in 1044 breast cancer patients undergoing operation. Kaplan-Meier method and the Cox proportional hazards regression model were used in analyzing the overall survival [OS] and disease-free survival [DFS]. Combining the receiver-operating characteristic and Kaplan-Meier analysis, we found that preoperative lower TG and HDL-C level were risk factors of breast cancer patients. In multivariate analyses, a decreased HDL-C level showed significant association with worse OS (HR: 0.528; 95% CI: 0.302-0.923; P = 0.025), whereas a decreased TG level showed significant association with worse DFS (HR: 0.569; 95% CI: 0.370-0.873; P = 0.010). Preoperative serum levels of TG and HDL-C may be independent factor to predict outcome in breast cancer patient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Both poor cardiorespiratory and weak muscle fitness are related to a high concentration of oxidized low-density lipoprotein lipids.

    Science.gov (United States)

    Kosola, J; Ahotupa, M; Kyröläinen, H; Santtila, M; Vasankari, T

    2012-12-01

    Good physical fitness is associated with favorable serum lipids. Oxidized low-density lipoprotein (ox-LDL) could be even more atherogenic than serum lipids. We studied the association of ox-LDL and serum lipids with physical fitness. Healthy young (mean age 25 years) men (n=846) underwent maximal oxygen uptake (VO(2max)) and muscle fitness index (MFI) tests and completed a leisure-time physical activity (LTPA) questionnaire. Age (ANCOVA1), age+waist circumference+systolic blood pressure+fasting blood glucose+smoking (ANCOVA3) were used as covariates. The groups with the lowest VO(2max), MFI and LTPA had 23%, 16% and 8% higher concentrations of ox-LDL than the groups with the highest VO(2max) (PLDL/high-density lipoprotein (HDL)-cholesterol, total cholesterol, LDL-cholesterol, triglycerides and a low level of HDL-cholesterol (ANCOVA1, in all, PLDL/HDL-cholesterol and triglycerides, and with a low level of HDL-cholesterol (ANCOVA3, in all, PLDL/HDL-cholesterol (ANCOVA1, P=0.001). In conclusion, both poor fitness (both low VO(2max) and low MFI) and low LTPA are associated with a higher concentration of ox-LDL lipids and serum lipids, which may indicate a higher risk for atherosclerosis.

  12. Origin of the Nonadhesive Properties of Fibrinogen Matrices Probed by Force Spectroscopy

    OpenAIRE

    Yermolenko, Ivan S.; Fuhrmann, Alexander; Magonov, Sergei N.; Lishko, Valeryi K.; Oshkadyerov, Stanislav P.; Ros, Robert; Ugarova, Tatiana P.

    2010-01-01

    The deposition of a multilayered fibrinogen matrix on various surfaces results in a dramatic reduction of integrin-mediated cell adhesion and outside-in signaling in platelets and leukocytes. The conversion of a highly adhesive, low density fibrinogen substrate into the nonadhesive high density fibrinogen matrix occurs within a very narrow range of fibrinogen coating concentrations. The molecular events responsible for this transition are not well understood. Herein, single-cell and molecular...

  13. Congenital fibrinogen deficiency

    Science.gov (United States)

    ... brain (very rare) Bleeding in the joints Heavy bleeding after injury or surgery Nosebleeds that do not stop easily People with a reduced level of fibrinogen bleed less often and the bleeding is not as severe. Those with a problem ...

  14. Development of a New High-throughput Screening Model for Human High Density Lipoprotein Receptor (CLA-1) Agonists

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To develop a new high-throughput screening model for human high-density lipoprotein (HDL) receptor (CD36 and LIMPII analogous-1, CLA-1) agonists using CLA-1-expressing insect cells. Methods With the total RNA of human hepatoma cells BEL-7402 as template, the complementary DNA (cDNA) of CLA-1 was amplified by reverse transcription-polymerase chain reaction (RT-PCR). Bac-to-Bac baculovirus expression system was used to express CLA-1 in insect cells. CLA-1 cDNA was cloned downstream of polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV) into donor vector pFastBac1 and recombinant pFastBac1-CLA-1 was transformed into E. coli DH10Bac to transpose CLA-1 cDNA to bacmid DNA. Recombinant bacmid-CLA-1 was transfected into Spodoptera frugiperda Sf9 insect cells to produce recombinant baculovirus particles. Recombinant CLA-1 was expressed on the membrane of Sf9 cells infected with the recombinant baculoviruses. A series of parameters of DiI-lipoprotein binding assays of CLA-1-expressing Sf9 cells in 96-well plates were optimized. Results Western blot analysis and DiI-lipoprotein binding assays confirmed that CLA-1 expressed in insect cells had similar immunoreactivity and ligand binding activity as its native counterpart. A reliable and sensitive in vitro cell-based assay was established to assess the activity of CLA-1 and used to screen agonists from different sample libraries. Conclusion Human HDL receptor CLA-1 was successfully expressed in Sf9 insect cells and a novel high-throughput screening model for CLA-1 agonists was developed. Utilization of this model allows us to identify potent and selective CLA-1 agonists which might possibly be used as therapeutics for atherosclerosis.

  15. Streptococcal serum opacity factor increases the rate of hepatocyte uptake of human plasma high-density lipoprotein cholesterol.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Pillai, Biju K; Lin, Hu Yu; Courtney, Harry S; Pownall, Henry J

    2010-11-16

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ∼400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.

  16. Fenofibrate increases very low density lipoprotein triglyceride production despite reducing plasma triglyceride levels in APOE*3-Leiden.CETP mice.

    Science.gov (United States)

    Bijland, Silvia; Pieterman, Elsbet J; Maas, Annemarie C E; van der Hoorn, José W A; van Erk, Marjan J; van Klinken, Jan B; Havekes, Louis M; van Dijk, Ko Willems; Princen, Hans M G; Rensen, Patrick C N

    2010-08-13

    The peroxisome proliferator-activated receptor alpha (PPARalpha) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (-38%) and TG (-60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles (-68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [(3)H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.

  17. Anion exchange HPLC isolation of high-density lipoprotein (HDL and on-line estimation of proinflammatory HDL.

    Directory of Open Access Journals (Sweden)

    Xiang Ji

    Full Text Available Proinflammatory high-density lipoprotein (p-HDL is a biomarker of cardiovascular disease. Sickle cell disease (SCD is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH. Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf hemoglobin (Hb and xanthine oxidase (XO. HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL.

  18. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism.

  19. Anion Exchange HPLC Isolation of High-Density Lipoprotein (HDL) and On-Line Estimation of Proinflammatory HDL

    Science.gov (United States)

    Ji, Xiang; Xu, Hao; Zhang, Hao; Hillery, Cheryl A.; Gao, Hai-qing; Pritchard, Kirkwood A.

    2014-01-01

    Proinflammatory high-density lipoprotein (p-HDL) is a biomarker of cardiovascular disease. Sickle cell disease (SCD) is characterized by chronic states of oxidative stress that many consider to play a role in forming p-HDL. To measure p-HDL, apolipoprotein (apo) B containing lipoproteins are precipitated. Supernatant HDL is incubated with an oxidant/LDL or an oxidant alone and rates of HDL oxidation monitored with dichlorofluorescein (DCFH). Although apoB precipitation is convenient for isolating HDL, the resulting supernatant matrix likely influences HDL oxidation. To determine effects of supernatants on p-HDL measurements we purified HDL from plasma from SCD subjects by anion exchange (AE) chromatography, determined its rate of oxidation relative to supernatant HDL. SCD decreased total cholesterol but not triglycerides or HDL and increased cell-free (cf) hemoglobin (Hb) and xanthine oxidase (XO). HDL isolated by AE-HPLC had lower p-HDL levels than HDL in supernatants after apoB precipitation. XO+xanthine (X) and cf Hb accelerated purified HDL oxidation. Although the plate and AE-HPLC assays both showed p-HDL directly correlated with cf-Hb in SCD plasma, the plate assay yielded p-HDL data that was influenced more by cf-Hb than AE-HPLC generated p-HDL data. The AE-HPLC p-HDL assay reduces the influence of the supernatants and shows that SCD increases p-HDL. PMID:24609013

  20. Piperine Induces Hepatic Low-Density Lipoprotein Receptor Expression through Proteolytic Activation of Sterol Regulatory Element-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Ayasa Ochiai

    Full Text Available Elevated plasma low-density lipoprotein (LDL cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD-15 cells, which lack insulin-induced gene-1 (Insig-1 and Insig-2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.

  1. Piperine Induces Hepatic Low-Density Lipoprotein Receptor Expression through Proteolytic Activation of Sterol Regulatory Element-Binding Proteins.

    Science.gov (United States)

    Ochiai, Ayasa; Miyata, Shingo; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD-15 cells, which lack insulin-induced gene-1 (Insig-1) and Insig-2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.

  2. High density lipoproteins and prevention of experimental atherosclerosis with special reference to tree shrews.

    Science.gov (United States)

    She, M P; Xia, R Y; Ran, B F; Wong, Z L

    1990-01-01

    According to data obtained from epidemiological and experimental survey, serum HDL level is known to be correlated conversely with the incidence of atherosclerosis. Experimental data collected in this article explained part of its mechanism, which is described in four parts as follows: 1. The result of 3 successive experiments on experimental atherosclerosis in tree shrews (total of 96 animals available including 40 as the controls) showed that the serum HDL level had been kept persistantly to 69-88% of the total serum lipoproteins even after a high cholesterol intake for 32 weeks. The incidence of atheromatous lesions developed was only 0-9%, but the incidence of gall stone was very high, 48-84% by gross examination by the end of these experiments. 2. HDL are also capable of (1) promotion of monocyte migration activity; (2) enhancement of cholesterol clearance rate of aortic smooth muscle cells originally isolated from either rabbits or tree shrews; (3) inhibition of 20% of LDL degradation but with no inhibitory effect obtained on Ac-LDL degradation in the endothelial cells; (4) presence of specific binding sites for apo E free HDL on the surface of aortic smooth muscle cells from either rabbits or tree shrews which recognizes apo A1 as a ligand. 3. Data from 2 successive experiments in rabbits showed that HDL lipoproteins (mainly apo A1) possess an inhibitory effect on the development of atheromatous plaques, but not a very strong one. 4. The colesterol clearance effect of smooth muscle cells was markedly enhanced by apo A1/phospholipid liposomes (the apo A1 used was isolated from either rabbit's or tree shrew's serum) in vitro.

  3. Clinical expression in heterozygotes of two frequent low density lipoprotein receptor gene mutations in the French Canadian population

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.; Minnich, A.; Davignon, J. [Clinical Research Institute of Montreal, Quebec (Canada)

    1994-09-01

    Five mutations in the low density lipoprotein (LDL) receptor (R) gene account for approximately 83% of cases of heterozygous familial hypercholesterolemia (hFH) in French Canadians in Quebec. The two most prevalent mutations are a >10kb deletion (10kb) of the promoter region resulting in a null allele (60.5% of cases) and a trp{sub 66}{r_arrow}gly missense mutation in exon 3 (ex3) resulting in a binding-defective R (11.7%). We have compared the phenotypic expression of these two mutations in 427 10kb hFH patients, 239 women (age 37.5 {plus_minus} 14.2 years) and 188 men (33.7 {plus_minus} 11.7) and 69 ex3 hFH patients, 42 women (40.6 {plus_minus} 14.3) and 27 men (36.8 {plus_minus}13.2). All data were analyzed separately for women and men. Tendon xanthomas were more prevalent in the 10kb (women 63%, men 68%) than in the ex3 patients (48%,48%). Total and LDL cholesterol were significantly higher in the 10kb patients with than without xanthomas but similar in ex3 patients. There were no significant differences in plasma lipoprotein concentrations between 10kb and ex3 patients with coronary artery disease (CAD) or between 10kb and ex3 patients without CAD. Among men with CAD, those with 10kb were significantly younger than those with ex3 (39.6 {plus_minus} 9.8, n=93 and 46.4 {plus_minus} 7.0, n=9, respectively). In both sexes, high plasma lipoprotein concentrations conferred an increased risk of CAD in 10kb but not in ex3 patients. Thus, as in homozygotes (previous study), the >10kb deletion is associated with more severe expression of FH than is the exon 3 mutation, although the plasma lipoprotein concentrations are not significantly different between the 10kb and ex3 heterozygotes. Since in homozygotes plasma cholesterol levels in 10kb are 60% higher than in ex3 patients, these observations suggest that the expression of the normal LDL-R allele compensates for the lack of a second allele in 10kb heterozygotes.

  4. Ethanol extract of propolis protects endothelial cells from oxidized low density lipoprotein-induced injury by inhibiting lectin-like oxidized low density lipoprotein receptor-1-mediated oxidative stress.

    Science.gov (United States)

    Fang, Yongqi; Li, Jinguo; Ding, Mingde; Xu, Xiaoyan; Zhang, Jiajun; Jiao, Peng; Han, Ping; Wang, Jiafu; Yao, Shutong

    2014-12-01

    Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), as the primary oxidized low-density lipoprotein (ox-LDL) receptor on endothelial cells, plays a crucial role in endothelial injury, which is a driving force in the initiation and development of atherosclerosis. Our previous studies have shown that ethanol extract of propolis (EEP) promotes reverse cholesterol transport and inhibits atherosclerotic lesion development. However, the protective effects of EEP against ox-LDL-induced injury in endothelial cells and the underlying mechanisms are still unknown. This study was designed to test the hypothesis that EEP attenuates ox-LDL-induced endothelial oxidative injury via modulation of LOX-1-mediated oxidative stress. Our results showed that exposure of human umbilical vein endothelial cells (HUVECs) to ox-LDL (100 mg/L) led to the decrease in cell viability and increase in lactate dehydrogenase (LDH) release, caspase-3 activation, and apoptosis, whereas pretreatment with EEP (7.5, 15 and 30 mg/L) protected against such damages in a dose-dependent manner. In addition, EEP mitigated ox-LDL uptake by HUVECs and attenuated ox-LDL-upregulated LOX-1 expression both at the mRNA and protein levels. Moreover, EEP suppressed the ox-LDL-induced oxidative stress as assessed by decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, reactive oxygen species (ROS), and malondialdehyde (MDA) generation as well as increased antioxidant enzyme activities. Similar results were observed in the anti-LOX-1 antibody or diphenyleneiodonium (DPI)-pretreated HUVECs. These data indicate that EEP may protect HUVECs from ox-LDL-induced injury and that the mechanism at least partially involves its ability to inhibit endothelial LOX-1 upregulation and subsequent oxidative stress. © 2014 by the Society for Experimental Biology and Medicine.

  5. Apolipoprotein C-III and High-Density Lipoprotein Subspecies Defined by Apolipoprotein C-III in Relation to Diabetes Risk

    DEFF Research Database (Denmark)

    Aroner, Sarah A; Yang, Jin-Ming; Li, Junlong

    2017-01-01

    Apolipoprotein C-III (apoC-III) is a potential novel biomarker that may play an important role in the pathogenesis of diabetes, particularly when present on high-density lipoprotein (HDL). In a case-cohort design among 3,101 non-cases and 434 incident diabetes cases occurring before 2007 in the D......Apolipoprotein C-III (apoC-III) is a potential novel biomarker that may play an important role in the pathogenesis of diabetes, particularly when present on high-density lipoprotein (HDL). In a case-cohort design among 3,101 non-cases and 434 incident diabetes cases occurring before 2007...

  6. The mushroom Pleurotus ostreatus reduces secretion and accelerates the fractional turnover rate of very-low-density lipoproteins in the rat.

    Science.gov (United States)

    Bobek, P; Kuniak, L; Ozdín, L

    1993-01-01

    In male rats fed a diet containing 1.5% cholesterol and 5% of dried mushroom (Pleurotus ostreatus) a significantly reduced accumulation of cholesterol in serum (by 45%) and the liver (by 15%) was observed at the end of the 12th week of the experiment. The decrease in serum cholesterol level by more than 90% is a consequence of the decreased cholesterol concentration of very-low-density lipoproteins (VLDL) and of low-density lipoproteins. Consumption of P. ostreatus reduces the total VLDL entry into the circulation by 19% and accelerates (by 49%) fractional turnover rate of VLDL.

  7. Antiapoptotic effects of propolis extract and propol on human macrophages exposed to minimally modified low density lipoprotein.

    Science.gov (United States)

    Claus, R; Kinscherf, R; Gehrke, C; Bonaterra, G; Basnet, P; Metz, J; Deigner, H P

    2000-04-01

    An aqueous extract of propolis and the phenolic component of propolis, propol, were assayed for antioxidative and antiapoptotic properties. Both additions inhibited Cu(2+)-initiated low density lipoprotein (LDL) oxidation as characterized by a reduction of the lag time, reduced the increase of relative electrophoretic mobility during oxidation and markedly diminished apoptosis of human macrophages exposed to minimally modified (mmLDL). Moreover, aqueous propolis extract and propol blocked the mmLDL-induced decrease of glutathione (GSH) and the activation of the transcription factor NF-kappa B in these cells. The potent phenolic antioxidant propol thus expands the capability of cells to neutralize oxidative stress and to prevent apoptosis and is therefore suggested to significantly contribute to the antiinflammatory and antioxidative effects of propolis.

  8. Effects of flow on LOX-1 and oxidized low-density lipoprotein interactions in brain endothelial cell cultures.

    Science.gov (United States)

    Mao, Xiaoou; Xie, Lin; Greenberg, David A

    2015-12-01

    Fluid shear stress and uptake of oxidized low-density lipoprotein (ox-LDL) into the vessel wall both contribute to atherosclerosis, but the relationship between shear stress and ox-LDL uptake is unclear. We examined the effects of flow, induced by orbital rotation of bEnd.3 brain endothelial cell cultures for 1 wk, on ox-LDL receptor (LOX-1) protein expression, ox-LDL uptake and ox-LDL toxicity. Orbitally rotated cultures showed no changes in LOX-1 protein expression, ox-LDL uptake or ox-LDL toxicity, compared to stationary cultures. Flow alone does not modify ox-LDL/LOX-1 signaling in bEnd.3 brain endothelial cells in vitro, suggesting that susceptibility of atheroprone vascular sites to lipid accumulation is not due solely to effects of altered flow on endothelium.

  9. A biosensor of high-density lipoprotein of human serum on a liquid crystal and polymer composite film

    Science.gov (United States)

    Lin, Yi-Hsin; Chang, Kai-Han; Chu, Wei-Lin; Tsou, Yu-Shih; Wu, Li-Ching; Li, Chien-Feng

    2013-10-01

    A biosensor for the concentration of high-density lipoprotein (HDL) in human serum on a liquid crystal and polymer composite film (LCPCF) is demonstrated. The sensing mechanism is based on a polar-polar interaction between orientation of LC directors and HDL in human serum. The concentration of polar HDL in human serum affects the orientations of LC directors at the interface between LCPCF and the human serum. In addition, the surface free energy of LCPCF changes with the applied voltage due to the electrically tunable orientations of LC directors anchored among the polymer grains of LCPCF. As a result, the droplet motion of human serum on LCPCF under applied voltages can sense the concentration of HDL in human serum.

  10. The role of cholesteryl ester transfer protein and phospholipid transfer protein in the remodeling of plasma high-density lipoproteins.

    Science.gov (United States)

    Lagrost, L

    1997-08-01

    Recent studies demonstrated that alterations in the size distribution of high-density lipoproteins (HDLs) constitute reliable markers for the risk of coronary artery disease. These observations suggested that the determination of the size distribution of HDL subpopulations by using polyacrylamide gradient gel electrophoresis might constitute an effective tool in clinical practice for the detection of patients with elevated risk. During the last decade, concordant observations revealed that all the HDL subpopulations are metabolically interrelated, and their relative abundances are dependent on the activity of several plasma factors, among them the cholesteryl ester transfer protein (CETP) and the phospholipid transfer protein (PLTP). As reviewed in the present article, although both CETP and PLTP can promote the size redistribution or conversion of HDL, the two plasma lipid transfer proteins can alter differently the plasma HDL distribution profile through distinct mechanisms. (Trends Cardiovasc Med 1997;7:218-224). © 1997, Elsevier Science Inc.

  11. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Drew, BG; Carey, AL; Natoli, AK

    2011-01-01

    investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured...... of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing......We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study...

  12. ASSOCIATION BETWEEN LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN GENE, BUTYRYLCHOLINESTERASE GENE AND ALZHEIMER'S DISEASE IN CHINESE

    Institute of Scientific and Technical Information of China (English)

    毕胜; 张昱; 吴江; 王德生; 赵庆杰

    2001-01-01

    Objective. To research the relations between low-density lipoprotein receptor-related protein gene (LRP)polymorphism, butyrylcholinesterase gene (BchE) polymorphism and Alzheimer's disease (AD) in Chinese. Methods. The gene polymorphisms of LRP and BchE were genotyped in 38 AD eases and 40 controls withpolymerase chain reaction-restrictian fragment length polymorphism (PCR-RFLP) methods. AD groups were classi-fled according to the LRP C/C genotype and compared with matched controls. Resu/ts. AD group had higher frequencies ofC/C homozygote (81.6% vs 60. 0%, P <0. 05) and of C allele (89.5% vs 76. 3%, P < 0. 05), with no significant difference between any of these LRP genotypes classi-fied AD groups and their respective control groups. Conclusions. A positive correlation was found between LRP gene polymorphism and AD, but not betweenBchE gene polymorphism and AD in Chinese AD cases.

  13. ASSOCIATION BETWEEN LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN GENE, BUTYRYLCHOLINESTERASE GENE AND ALZHEIMER'S DISEASE IN CHINESE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective. To research the relations between low-density lipoprotein receptor-related protein gene (LRP) polymorphism, butyrylcholinesterase gene (BchE) polymorphism and Alzheimer's disease (AD) in Chinese. Methods. The gene polymorphisms of LRP and BchE were genotyped in 38 AD cases and 40 controls with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. AD groups were classified according to the LRP C/C genotype and compared with matched controls. Results. AD group had higher frequencies of C/C homozygote (81.6% vs 60.0% , P<0.05) and of C allele (89.5% vs 76.3% , P< 0.05),with no significant difference between any of these LRP genotypes classified AD groups and their respective control groups.? Conclusions. A positive correlation was found between LRP gene polymorphism and AD, but not between BchE gene polymorphism and AD in Chinese AD cases.

  14. Plasma clearance of human low-density lipoprotein in human apolipoprotein B transgenic mice is related to particle diameter.

    Science.gov (United States)

    Berneis, Kaspar; Shames, David M; Blanche, Patricia J; La Belle, Michael; Rizzo, Manfredi; Krauss, Ronald M

    2004-04-01

    To test for intrinsic differences in metabolic properties of low-density lipoprotein (LDL) as a function of particle size, we examined the kinetic behavior of 6 human LDL fractions ranging in size from 251 to 265 A injected intravenously into human apolipoprotein (apo) B transgenic mice. A multicompartmental model was formulated and fitted to the data by standard nonlinear regression using the Simulation, Analysis and Modeling (SAAM II) program. Smaller sized LDL particles (251 to 257 A) demonstrated a significantly slower fractional catabolic rate (FCR) (0.050 +/- 0.045 h(-1)) compared with particles of larger size (262 to 265 A) (0.134 +/- -0.015 h(-1), P particles are cleared more slowly from plasma than larger LDL and are exchanged more slowly with the extravascular space. This might be due to compositional or structural features of smaller LDL that lead to retarded clearance.

  15. Properties of the Products Formed by the Activity of Serum Opacity Factor against Human Plasma High Density Lipoproteins

    Science.gov (United States)

    Pownall, Henry J.; Courtney, Harry S.; Gillard, Baiba K.; Massey, John B.

    2010-01-01

    Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of ~100,000 plasma high density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver. PMID:18838065

  16. Properties of the products formed by the activity of serum opacity factor against human plasma high-density lipoproteins.

    Science.gov (United States)

    Pownall, Henry J; Courtney, Harry S; Gillard, Baiba K; Massey, John B

    2008-11-01

    Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of approximately 100,000 plasma high-density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver.

  17. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the alpha 2-macroglobulin receptor

    DEFF Research Database (Denmark)

    Kristensen, T; Moestrup, Søren Kragh; Gliemann, Jørgen;

    1990-01-01

    thes