WorldWideScience

Sample records for density high strength

  1. Average density and porosity of high-strength lightweight concrete

    Directory of Open Access Journals (Sweden)

    A.S. Inozemtcev

    2014-11-01

    Full Text Available The analysis results of high-strength lightweight concrete (HSLWC structure are presented in this paper. The X-ray tomography, optical microscopy and other methods are used for researching of average density and porosity. It has been revealed that mixtures of HSLWC with density 1300…1500 kg/m3 have a homogeneous structure. The developed concrete has a uniform distribution of the hollow filler and a uniform layer of cement-mineral matrix. The highly saturated gas phase which is divided by denser large particles of quartz sand and products of cement hydration in the contact area allow forming a composite material with low average density, big porosity (up to 40% and high strength (compressive strength is more than 40 MPa. Special modifiers increase adhesion, compacts structure in the contact area, decrease water absorption of high-strength lightweight concrete (up to 1 % and ensure its high water resistance (water resistance coefficient is more than 0.95.

  2. Method for providing a low density high strength polyurethane foam

    Science.gov (United States)

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  3. STUDY ON HIGH WELD STRENGTH OF IMPACT PROPYLENE COPOLYMER/HIGH DENSITY POLYETHYLENE LAMINATES

    Institute of Scientific and Technical Information of China (English)

    Chun-hui Zhang; Rui-fen Chen; Feng Chen; Yong-gang Shangguan; Qiang Zheng; Guo-hua Hu

    2011-01-01

    The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE laminates were examined, and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate. According to the special microstructure of IPC, the co-crystallization of the ethylene segments in ethylene-propylene block copolymer (EbP) component of IPC and the PE chain in HDPE was proposed to explain the highstrength welding. The DSC results indicated that there indeed existed some interaction between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. The scanning electron microscope (SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase, indicating the good miscibility between HDPE and EbP components of IPC. According to the above results, the effect of co-crystallization of the PE components of theIPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.

  4. Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly(vinylidene fluoride) composite films

    Science.gov (United States)

    Zheng, Ming-Sheng; Zha, Jun-Wei; Yang, Yu; Han, Peng; Hu, Chao-He; Wen, Yong-Qiang; Dang, Zhi-Min

    2017-06-01

    A series of composites blending thermoplastic polyurethane (TPU) with poly(vinylidene fluoride) (PVDF) were prepared in this work to realize a high energy storage density. Low loading of TPU (dispersion state in the PVDF matrix. We demonstrate that the incorporation of TPU induces high breakdown strength which results in promoted energy storage performance. In addition, the influence of the different TPU hardnesses (65, 75, and 85) on the breakdown strength of TPU/PVDF composites was also investigated. Finally, a maximum value up to 537.8 MV/m at 3 vol. % TPU with a hardness of 65 was obtained, which led to a high energy density of 10.36 J/cm3.

  5. High-density carbon nanotube wet-laid buckypapers with enhanced strength and conductivity using a high-pressure homogenization process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun; Jang, Si Hoon; Park, No Hyung; Jeong, Won Young; Lim, Dae Young [Human and Culture Convergence Technology Group, Korea Institute of Industrial Technology (KITECH), Ansan (Korea, Republic of); Oh, Jun Young; Yang, Seung Jae [Dept. of Applied Organic Materials Engineering, Inha University, Incheon (Korea, Republic of)

    2017-04-15

    In this work, we prepared homogeneously dispersed carbon nanotubes in water using a high-pressure homogenizer, while high-density carbon nanotube buckypapers were prepared by wet-laid process. The strength and conductivity of the buckypaper were increased dramatically after the high-pressure homogenization because of the increased density and uniformity of the paper. In addition, the buckypapers containing various additives and treated with SOCl{sub 2} exhibited further increase of strength and conductivity resulting from the binding and the p-type doping effect. The buckypapers with high electrical conductivity exhibited superior electromagnetic interference shielding effectiveness that could be applied for structural shielding materials.

  6. Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis

    Science.gov (United States)

    Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.

  7. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    Science.gov (United States)

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  8. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  9. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  10. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  11. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters.

    Science.gov (United States)

    Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu

    2013-02-15

    The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF.

  12. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  13. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride-based dielectric film for high energy density capacitor

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2017-07-01

    Full Text Available It is essential to develop the dielectric energy storage capacitor for the modern electrical and electronic equipment. Here, the all-organic sandwich-structured composite with superior breakdown strength and delayed saturation polarization is presented. Furthermore, the energy storage characteristics of the composite are enhanced by the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene fiber and the redistribution of local electric field. The dielectric permittivity of composite increases to ∼16, and the discharged energy density is high to ∼8.7 J/cm3 at 360 kV/mm, and the breakdown strength is up to ∼408 kV/mm. The excellent performance of the composite broadens the application in the field of power electronics industry.

  14. Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats.

    Science.gov (United States)

    Lau, Beatrice Y; Fajardo, Val Andrew; McMeekin, Lauren; Sacco, Sandra M; Ward, Wendy E; Roy, Brian D; Peters, Sandra J; Leblanc, Paul J

    2010-10-01

    Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p  0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.

  15. FATIGUE STRENGTH OF HIGH-STRENGTH STEEL,

    Science.gov (United States)

    coldhardened by deforming to 83%. It was found that it has low static notch sensitivity (lower than that of heat-treated steels), that static strength ...is raised appreciably by increased cold plastic deformation, and that its fatigue strength is raised substantially by mechanical polishing. (Author)

  16. Aluminum/steel wire composite plates exhibit high tensile strength

    Science.gov (United States)

    1966-01-01

    Composite plate of fine steel wires imbedded in an aluminum alloy matrix results in a lightweight material with high tensile strength. Plates have been prepared having the strength of titanium with only 85 percent of its density.

  17. The intravertebral distribution of bone density: correspondence to intervertebral disc health and implications for vertebral strength

    Science.gov (United States)

    Jackman, T. M.; Morgan, S. R.; Barest, G. D.; Morgan, E. F.

    2015-01-01

    Summary This study's goal was to determine associations among the intravertebral heterogeneity in bone density, bone strength, and intervertebral disc (IVD) health. Results indicated that predictions of vertebral strength can benefit from considering the magnitude of the density heterogeneity and the congruence between the spatial distribution of density and IVD health. Introduction This study aims to determine associations among the intravertebral heterogeneity in bone density, bone strength, and IVD health Methods Regional measurements of bone density were performed throughout 30 L1 vertebral bodies using microcomputed tomography (μCT) and quantitative computed tomography (QCT). The magnitude of the intravertebral heterogeneity in density was defined as the interquartile range and quartile coefficient of variation in regional densities. The spatial distribution of density was quantified using ratios of regional densities representing different anatomical zones (e.g., anterior to posterior regional densities). Cluster analysis was used to identify groups of vertebrae with similar spatial distributions of density. Vertebral strength was measured in compression. IVD health was assessed using two scoring systems. Results QCT- and μCT-based measures of the magnitude of the intravertebral heterogeneity in density were strongly correlated with each other (p<0.005). Accounting for the interquartile range in regional densities improved predictions of vertebral strength as compared to predictions based only on mean density (R2=0.59 vs. 0.43; F-test p-value=0.018). Specifically, after adjustment for mean density, vertebral bodies with greater heterogeneity in density exhibited higher strength. No single spatial distribution of density was associated with high vertebral strength. Analyses of IVD scores suggested that the health of the adjacent IVDs may modulate the effect of a particular spatial distribution of density on vertebral strength. Conclusions Noninvasive

  18. 高强度低密度树脂覆膜陶粒研究%Study on High Strength and Low Density Resin Coated Ceramic Proppants

    Institute of Scientific and Technical Information of China (English)

    张伟民; 李宗田; 李庆松; 陈文将; 蒙传幼; 崔彦立

    2013-01-01

    A method of manufacturing high strength and low density resin coated ceramic proppants was developed,and the effects of dosage of phenolic resin and coupling agent,et al,on the sphericity,roundness,acid solubility,turbidity,density,crush resistance and short term flow conductivity of the procured resin coated ceramic were also discussed.The results showed that the apparent density and bulk density of the resin coated ceramic particles (RCCP) decreased by 8.1% and 11.2%,respectively,compared to that of the resin coated quartz sand(RCQZ) ; and the crushing rate of the RCCP and RCQZ under 69 MPa was 1.7% and 8.1%,respectively.The roundness of the RCCP was better than that of the RCQZ; as a result,the short term flow conductivity of the RCCP could be improved more than one time compared to that of the RCQZ.Based on conductivity data,the mechanism that the oil flow conductivity of the RCCP was bigger than the water flow conductivity was proposed.The field test of the RCCP was conducted in 5 wells of Wenmi oil field.It was proved by field construction that the average yield of crude oil per well was increased by 1.35 t and the water cut per well decreased by 7.9%.%本文报道了一种低密度高强度树脂覆膜陶粒支撑剂的制备方法,讨论了酚醛树脂含量和偶联剂含量等及对覆膜低密度陶粒圆球度、密度、酸溶解度、破碎率及导流能力的影响,并采用覆膜低密度陶粒进行了现场试验.结果表明:树脂覆膜低密度陶粒比覆膜石英砂的视密度和体积密度分别降低8.1%和11.2%,69 MPa下二者的破碎率分别为1.7%和8.1%,树脂覆膜低密度陶粒的圆球度更好,短期导流能力能提高一倍以上.依据实验结果提出了树脂覆膜支撑剂对油导流能力高于对水导流能力的机理.采用树脂覆膜低密度陶粒在温米油田进行现场试验5井次,平均单井增油13.5 t/d,含水下降7.9%.

  19. Engineering properties of high strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The strength to weight ratio of high strength lightweight concrete is not its only advantage. The artificial lightweight aggregate combines physically and, to a lesser extent, chemically with the surrounding cement matrix to produce an impermeable and durable concrete. The engineering properties of the concrete are sensitive to the proportions and nature of its constituents, and to its production methods. Supplementary cementing materials and chemical admixtures are used to develop the increased strength and durability. Thermal movements, shrinkage and creep are within workable limits. Fatigue resistance is probably at least as good as that achieved by equivalent strength normal density concretes but there is limited data on this topic. Deleterious effects of admixtures supplied in high dosages have not been identified but neither have they been investigated. The relationship between the tensile strength of the material and its uniaxial compressive strength is not robust. The shear capacity of structural elements is not adequately covered by most existing design codes. In common with all concretes, the stability of high strength lightweight concrete is reduced when water retained within it freezes or vaporises. A satisfactory freeze thaw behaviour can be readily achieved but, under fire conditions, the impermeability of the cement matrix limits the venting of water vapour at the concrete surface. Explosive failures can result. (Author)

  20. High Density Matter

    Directory of Open Access Journals (Sweden)

    Stone J.R.

    2013-12-01

    Full Text Available The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has led to the necessary reliance on theoretical models. There remains great uncertainty in these models which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this contribution latest developments in construction of the Equation of State (EoS of high-density matter at zero and finite temperature assuming different composition of matter will be discussed. Critical comparison of model EoS with available experimental data from heavy ion collisions and observations on neutron stars, including gravitational mass, radii and cooling patterns and data on X-ray burst sources and low mass X-ray binaries are made. Fundamental differences between the EoS of low-density, high temperature matter, such as is created in heavy ion collisions and of high-density, low temperature compact objects is discussed.

  1. High strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  2. Pauling bond strength, bond length and electron density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  3. Effect Of Bulk Density Variation On The Compression Strength Of ...

    African Journals Online (AJOL)

    Effect Of Bulk Density Variation On The Compression Strength Of ... or their mixture (1 wt % each). was added to first, second and third portion respectively. ... namely, the number of sand-grain-to-sand-grain contact and the number of pores in ...

  4. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  5. High Density QCD

    CERN Document Server

    Ducati, M B G

    2001-01-01

    The dynamics of high partonic density QCD is presented considering, in the double logarithm approximation, the parton recombination mechanism built in the AGL formalism, developed including unitarity corrections for the nucleon as well for nucleus. It is shown that these corrections are under theoretical control. The resulting non linear evolution equation is solved in the asymptotic regime, and a comprehensive phenomenology concerning Deep Inelastic Scattering like $F_2$, $F_L$, $F_2^c$. $\\partial F_2/ \\partial \\ln Q^2$, $\\partial F^A_2/ \\partial \\ln Q^2$, etc, is presented. The connection of our formalism with the DGLAP and BFKL dynamics, and with other perturbative (K) and non-perturbative (MV-JKLW) approaches is analised in detail. The phenomena of saturation due to shadowing corrections and the relevance of this effect in ion physics and heavy quark production is emphasized. The implications to e-RHIC, HERA-A, and LHC physics and some open questions are mentioned.

  6. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  7. High-Strength, Superelastic Compounds

    Science.gov (United States)

    Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua

    2013-01-01

    can be used in the heat treatment process, less energy will be consumed, and there will be less dimensional distortion and quench cracking. This results in fewer scrap parts, less material waste from large amounts of material removal, and fewer machining steps to rework parts that are out of specification. This material has a combination of properties that have been previously unobtainable. The material has a Young s modulus of approximately 95 GPa (about half that of conventional steels), moderate density (10 to 15% lower than conventional steels), excellent corrosion resistance, and high hardness (58 to 62 HRC). These properties make this material uniquely suited for advanced bearings.

  8. High density photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  9. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  10. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  11. MECHANICAL STRENGTH OF HIGHLY POROUS CERAMICS

    NARCIS (Netherlands)

    VANDENBORN, IC; SANTEN, A; HOEKSTRA, HD; DEHOSSON, JTM; Born, I.C. van den

    1991-01-01

    This paper reports on the mechanical strength of highly porous ceramics in terms of the Weibull and Duxbury-Leath distributions. More than 1000 side-crushing strength tests on silica-catalyst carriers of various particle sizes have been performed in series. Within a series, preparation conditions we

  12. High-Hot-Strength Ceramic Fibers

    Science.gov (United States)

    Sayir, Ali; Matson, Lawrence E.

    1994-01-01

    Continuous fibers consisting of laminae of alumina and yttrium aluminum garnet offer exceptionally high strength, resistance to creep, and chemical stability at high temperatures. These fibers exceed tensile strength of sapphire fibers. Leading candidates for reinforcement of intermetallic-matrix composites in exhaust nozzles of developmental high-speed civil transport aircraft engines. Other applications are in aerospace, automotive, chemical-process, and power-generation industries.

  13. Cadmium Alternatives for High-Strength Steel

    Science.gov (United States)

    2011-09-22

    191 19b. TELEPHONE NUMBER (include area code) 301 -342-8101 iii Table of Contents Note that original JTP section numbers are preceded by...specified. The focus of this JTP is on high-strength structural alloy steels used for various applications. Alloy AISI 4130 was used for adhesion and...NaCl) solution under constant amplitude loading to determine fatigue life using hourglass specimens prepared from high strength AISI 4340 steel. The

  14. Hydrogen degradation of high strength weldable steels

    OpenAIRE

    J. Ćwiek

    2007-01-01

    Purpose: Purpose of this paper is presentation of hydrogen degradation issue of high strength steels andespecially their welded joints. Establishing of applicable mechanisms of hydrogen-enhanced cracking was theaim of performed research.Design/methodology/approach: High strength quenched and tempered steels grade S690Q were used. Weldedjoints were prepared with typical technology used in shipyards. Susceptibility to hydrogen degradation in seawater under cathodic polarization was evaluated wi...

  15. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  16. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  17. Development of High Specific Strength Envelope Materials

    Science.gov (United States)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  18. Saturation and High Density QCD

    OpenAIRE

    Mueller, A. H.

    2005-01-01

    Recent progress in understanding general properties of high energy scattering near the unitarity limit, where high density gluon components of the wavefunction are dominant, is reviewed. The similarity of the QCD problem and that of reaction-diffusion processes in statistical physics is emphasized. The energy dependence of the saturation momentum and the status of geometric scaling are discussed.

  19. Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

    Science.gov (United States)

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the

  20. Development of third generation advanced high strength steels

    Science.gov (United States)

    McGrath, Meghan Colleen

    Lightweight duplex steels with combinations of either bainite, acicular ferrite, and austenite or martensite and austenite were investigated as third generation advanced high strength steels targeted for automotive applications. Large additions of manganese (> 13 wt%) and carbon (Strength and ductility were increased while density was decreased with aluminum additions between 2.4 and 5.5 wt% to the steel. This research addressed the dependence of alloying on microstructures and mechanical behavior for high manganese and aluminum duplex steels that were cast and subsequently hot rolled. Duplex steels with different volume fractions of primary delta-ferrite were used to study the crystallography of austenite fanned during the peritectic reaction. Solute profiles across the peritectic interface showed aluminum segregated near the interface which promoted bainitic ferrite formation. Thermal treatments were used to manipulate the concentration and type of oxides and the ferrite plate density was found to correlate with inclusions of low misfit in steels with austenite grain size of 16.5 microm. A steel with bainite and acicular ferrite produced an ultimate tensile strength of 970 MPa and elongation of 40%. The mechanical prope1iies depended on the strengths and size of the microstructural constituents. Work hardening behavior was examined in a steel exhibiting multiple martensitic transformation induced plasticity (gamma-austenite→epsilon-smartensite→alpha-martensite). A strain hardening exponent as high as 1.4 was observed with ultimate tensile strength and elongation as high as 1,165 MPa and 34%.

  1. Development of high strength high toughness third generation advanced high strength steels

    Science.gov (United States)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  2. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.;

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  3. Impact Strength and Flow Melt Flow Rate of High Density Polyethylene Melts%高密度聚乙烯共混物的抗冲击强度与熔体流动速率

    Institute of Scientific and Technical Information of China (English)

    廖华勇; 陶国良

    2013-01-01

    Four high density polyethylene blends (HDPE 8916/5000S,HDPE 9641/5000S,HDPE 5306/5000S and HDPE 8916/6003T) were prepared.The notch impact strength σin and melt flow rate(MFR) were measured,and their relation was investigated.The results show that the notch impact strength σin drops with the increase of MFR,the σin-MFR curve meets the law of exponential decay.The area of σin-MFR curve surrounded by coordinate axes is the highest for HDPE 5306/HDPE5000S blend,which suggests it is the easiest for HDPE 5306/HDPE5000S blend to meet the notch impact strength and MFR requirement.Then HDPE 5306/HDPE5000S blend was toughened by adding polyolefin elastomer (POE).The results show when the mass ratio of HDPE 5306/ HDPE5000S/POE is 28.5/66.5/5,the notch impact strength σin arrives 42.88 kJ/m2 and the MFR is 2.64 g/10min (230℃,2.16kg),much higher than of HDPE 5306/HDPE5000S (30/70,mass ratio,similarly hereinafter),28.16 kJ/m2 and 2.55 g/10min(230℃,2.16kg),respectively.%制备了4种高密度聚乙烯(HDPE) HDPE 8916/5000S、HDPE 9641/5000S、HDPE 5306/5000S和HDPE 8916/6003T共混物,并测试其缺口冲击强度σin和熔体流动速率(MFR),探讨了两者之间的关系.结果表明,随着MFR的增加,缺口冲击强度逐渐下降,两者之间符合指数衰减规律.而其中HDPE 5306/HDPE5000S的σin-MFR曲线与坐标轴之间包围的面积最大,比其它3种共混物更容易实现同时满足冲击强度和流动性的要求.文中还对HDPE 5306/HDPE5000S共混物用乙烯-辛烯共高聚物(POE)进行增韧改性.结果表明,当HDPE 5306/HDPE5000S/POE的质量比为28.5/66.5/5时,缺口冲击强度达到42.88kJ/m2,高于HDPE 5306/HDPE5000S(30/70,质量比,下同)时的28.16kJ/m2,而POE增韧后共混物的MFR为2.64 g/10min(230℃,2.16kg),比HDPE 5306/HDPE5000S(30/70)时的MFR值2.55g/10min(230℃,2.16kg)高.

  4. High density matter at RHIC

    Indian Academy of Sciences (India)

    Thomas S Ullrich

    2004-02-01

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

  5. Mechanical properties of high-strength concrete

    Science.gov (United States)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  6. Effects of Horizontal Density Distribution on Internal Bond Strength of Flakeboard

    Institute of Scientific and Technical Information of China (English)

    MEIChangtong; DAIChunping; ZHOUDingguo

    2005-01-01

    Horizontal density variation is a structural phenomenon of non-veneer wood composites. The variation and distribution characteristics of horizontal density have impacts on the products properties. In this study, veneer strip simulated flake boards with 4 kinds of density distribution were made using a mat model. The density variation of the modeled mats was discussed, as well as the relationship between sample size and density variation. The effects of density and density distribution of non-veneer composites on the internal bond strength were analyzed. Result shows that the horizontal density of random formed particleboard follows normal distribution. Density has remarkable influence on internal bond strength (IB). Increasing density helps to improve IB at lower density stage, but has negative impacts on IB at higher density stage.Density variation between testing specimens depends on their sizes. Properly increasing specimen size can decrease the variation of the IBs.

  7. High density fluoride glass calorimeter

    Science.gov (United States)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  8. Springback analysis of ultra high strength steel

    Science.gov (United States)

    Tenma, Kenji; Kina, Futoshi; Suzuki, Wataru

    2013-12-01

    It is an inevitable trend in the automotive industry to apply more and more high strength steels and even ultra-high strength steels. Even though these materials are more difficult to process the development time of forming tools must be reduced. In order to keep the development time under control, simulation tools are used to verify the forming process in advance. At Aoi Machine Industry a project has been executed to accurately simulate springback of ultra-high strength steels in order to reduce the tool tryout time. In the first phase of the project the simulation settings were optimized based on B-Pillar model A made of Dual Phase 980. In the second phase, it was verified with B-Pillar model B whether these simulation settings were usable as general setting. Results showed that with the right settings it is very well possible to accurately simulate springback of ultra-high strength steels. In the third phase the project the stamping of a B-Pillar of Dual Phase 1180 was studied.

  9. Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression

    Institute of Scientific and Technical Information of China (English)

    HE Zhen-jun; SONG Yu-pu

    2008-01-01

    Multiaxial compression tests were performed on 100 mm × 100 mm × 100 nun high-strength high-performance concrete (HSHPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gerstle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified.

  10. Echo strength and density structure of Hawaiian mesopelagic boundary community patches

    Science.gov (United States)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.

    2003-10-01

    A broadband sonar system and digital camera with strobe lights were mounted on a vertically profiling frame with a depth sensor. The echo strengths and densities of animals within individual mesopelagic boundary community patches were investigated as a function of depth. Time and distance from shore were also investigated. Simultaneous surface echosounder surveys permitted comparison of density estimates from two techniques. Echo strength values suggest nearshore boundary community animals are primarily myctophid fishes, which was confirmed by preliminary photographic evidence. Echo strength varied significantly as a function of distance from the shoreline and time. These measures of echo strength are important for estimating density from a surface echosounder. Density estimates from these revised echo strengths compare well with those made with echo highlight counting, which is independent of echo strength. These density measures suggest that previous density estimates were too low but do not change the conclusions of these studies. Vertical microstructure in density was apparent but animal size and compositional structure was not evident within a patch. Patch edges were abrupt, with no differences in the density or echo strength from patch interiors. These edges were generally straight, with a sharp drop in density to the background density of zero. Estimates of animal size as a function of time provide information about the diel migration patterns of these mesopelagic animals.

  11. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  12. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  13. 多孔莫来石基低密度高强度支撑剂的制备及性能%Preparation and Properties of Porous Mullite Base Low-Density High-Strength Proppants

    Institute of Scientific and Technical Information of China (English)

    郭宗艳; 姚晓; 马雪

    2013-01-01

    目前常用的树脂复合型压裂支撑剂多存在圆球度差、抗破碎能力低、树脂用量大、成本高等不足,为解决该问题,研制了多孔莫来石基复合型低密度高强度陶粒支撑剂.通过测试支撑剂用FT酚醛环氧树脂改性前后的性能,确定了制备该支撑剂的最佳树脂质量分数和树脂含量;采用压汞分析和扫描电子显微镜对该支撑剂的显气孔率、气孔孔径分布和微观形貌进行了分析,讨论了该支撑剂的增强作用机制.结果表明:树脂的质量分数为35%时,陶粒浸渍体的体积密度最大(1.18 g/cm3),树脂的充填效果最佳,显气孔率与浸渍前的陶粒相比下降了约62%,树脂与陶粒基体相互穿插构成了网络结构,使其抗破碎能力提高;当陶粒浸渍体包覆树脂含量为5%时,颗粒表面包覆的树脂层可完全封闭陶粒浸渍体,显气孔率降低至1.06%,其视密度为1.90 g/cm3,在52和69 MPa闭合压力下的破碎率分别为2.17%和2.81%,达到行业和企业标准的技术要求.%Commonly used resin compound proppant has some shortages such as poor roundness and sphericity,low crush resistance, large quantity of resin needed, high cost and so on. To solve these problems, compound low-density high-strength proppant had been developed based on porous mullite ceramis-ites. The optimum mass fraction and content of resin had been worked out through evaluation of the unmodified and modified proppant with FT resin. Porosity,pore size distribution and micrograph of proppant had been studied by mercury intrusion porosity and scanning electron microscopy,and the mechanism of enhancement on compound proppant was analyzed. The results showed that when resin mass fraction was 35%,the ceramisites filled effectively with resin had the highest density of 1. 18 g/cm3. The open porosity decreased by 62% compared with porous ceramisites and the crush resistance improved significantly because resin and ceramisites form

  14. Making High-Tensile-Strength Amalgam Components

    Science.gov (United States)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  15. The Bendability of Ultra High strength Steels

    Science.gov (United States)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  16. High Strength Silicon Carbide Foams and Their Deformation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Silicon carbide (SiC) foams with a continuously connected open-cell structure were prepared and characterized for their mechanical performance. The apparent densities of SiC foams were controlled between about 0.4 and 1.3 g/cm3, with corresponding compressive strengths ranging from about 13 to 60 MPa and flexural strengths from about 8 to 30 MPa. Compressive testing of the SiC foams yielded stress-strain curves with only one linear-elastic region, which is different from those reported on ceramic foams in literature. This can possibly be attributed to the existence of filaments with fine, dense and high strength microstructures. The SiC and the filaments respond homogeneously to applied loading.

  17. Hydrogen trapping in high-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.G. [SRI International, Menlo Park, CA (United States). Materials Research Center

    1998-10-09

    Hydrogen trapping in three high-strength steels -- AerMet 100 and AISI 4340 and H11 -- was studied using a potentiostatic pulse technique. Irreversible trapping constants (k) and hydrogen entry fluxes were determined for these alloys in 1 mol/1 acetic acid/1 mol/1 sodium acetate. The order of the k values for the three steels and two 18Ni maraging steels previously studies inversely parallels their threshold stress intensities for stress corrosion cracking (K{sub 1SCC}). Irreversible trapping in AerMet 100 varies with aging temperature and appears to depend on the type of carbide (Fe{sub 3}C or M{sub 2}C) present. For 4340 steel, k can be correlated with K{sub 1SCC} over a range of yield strengths. The change in k is consistent with a change in the principal type of irreversible trap from matrix boundaries to incoherent Fe{sub 3}C. The principal irreversible traps in H11 at high yield strengths are thought to be similar to those in 4340 steel.

  18. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  19. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material

    Science.gov (United States)

    Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad

    2016-06-01

    Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.

  20. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  1. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  2. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  3. Corner strength enhancement of high strength cold-formed steel at normal room and elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ju CHEN; Wei-liang JIN

    2008-01-01

    In this study,the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at norrnal room temperature was investigated.The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen.Based on the experimental results,an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed.The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures.It is shown that the predictions obtained from the proposed model agree well with the test results.Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.

  4. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties.

    Science.gov (United States)

    Bhambure, Rahul; Angelo, James M; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2017-07-14

    The effect of ligand density was studied on protein adsorption and transport behavior in tentacular cation-exchange sorbents at different ionic strengths. Results were obtained for lysozyme, lactoferrin and a monoclonal antibody (mAb) in order to examine the effects of protein size and charge. The combination of ligand density and ionic strength results in extensive variability of the static and dynamic binding capacities, transport rate and binding affinity of the proteins. Uptake and elution experiments were performed to quantify the transport behavior of selected proteins, specifically to estimate intraparticle protein diffusivities. The observed trend of decreasing uptake diffusivities with an increase in ligand density was correlated to structural properties of the ligand-density variants, particularly the accessible porosity. Increasing the ionic strength of the equilibration buffer led to enhanced mass transfer during uptake, independent of the transport model used, and specifically for larger proteins like lactoferrin and mAb, the most significant effects were evident in the sorbent of the highest ligand density. For lysozyme, higher ligand density leads to higher static and dynamic binding capacities whereas for lactoferrin and the mAb, the binding capacity is a complex function of accessible porosity due to ionic strength-dependent changes. Ligand density has a less pronounced effect on the elution rate, presumably due to ionic strength-dependent changes in the pore architecture of the sorbents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Density limits investigation and high density operation in EAST tokamak

    Science.gov (United States)

    Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team

    2016-05-01

    Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H  →  L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H  →  L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.

  6. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  7. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  8. Fatigue strength of welded connections made of very high strength cast and rolled steels

    NARCIS (Netherlands)

    Pijpers, R.J.M.

    2011-01-01

    Although Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years, the use of these steels in the civil engineering industry is still uncommon. The main objective of the research is the determination of the fatigue strength of welded con

  9. Level density of $^{56}$Fe and low-energy enhancement of $\\gamma$-strength function

    CERN Document Server

    Voinov, A V; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T; Mitchell, G E; Rekstad, J; Schiller, A; Siem, S

    2006-01-01

    The $^{55}$Mn$(d,n)^{56}$Fe differential cross section is measured at $E_d=7$ MeV\\@. The $^{56}$Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the $^{57}$Fe$(^3$He,$\\alpha\\gamma)^{56}$Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the $^{56}$Fe $\\gamma$-strength function is also determined from the first-generation $\\gamma$ matrix of the Oslo experiment. The good agreement between the past and present results for the $\\gamma$-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the $\\gamma$ strength below $\\sim 4$ MeV first discovered by the Oslo method in iron and molybdenum isotopes.

  10. Level Densities and Radiative Strength Functions in 56FE and 57FE

    Energy Technology Data Exchange (ETDEWEB)

    Tavukcu, Emel [North Carolina State Univ., Raleigh, NC (United States)

    2002-12-10

    Understanding nuclear level densities and radiative strength functions is important for pure and applied nuclear physics. Recently, the Oslo Cyclotron Group has developed an experimental method to extract level densities and radiative strength functions simultaneously from the primary γ rays after a light-ion reaction. A primary γ-ray spectrum represents the γ-decay probability distribution. The Oslo method is based on the Axel-Brink hypothesis, according to which the primary γ-ray spectrum is proportional to the product of the level density at the final energy and the radiative strength function. The level density and the radiative strength function are fit to the experimental primary γ-ray spectra, and then normalized to known data. The method works well for heavy nuclei. The present measurements extend the Oslo method to the lighter mass nuclei 56Fe and 57Fe. The experimental level densities in 56Fe and 57Fe reveal step structure. This step structure is a signature for nucleon pair breaking. The predicted pairing gap parameter is in good agreement with the step corresponding to the first pair breaking. Thermodynamic quantities for 56Fe and 57Fe are derived within the microcanonical and canonical ensembles using the experimental level densities. Energy-temperature relations are considered using caloric curves and probability density functions. The differences between the thermodynamics of small and large systems are emphasized. The experimental heat capacities are compared with the recent theoretical calculations obtained in the Shell Model Monte Carlo method. Radiative strength functions in 56Fe and 57Fe have surprisingly high values at low γ-ray energies. This behavior has not been observed for heavy nuclei, but has been observed in other light- and medium-mass nuclei. The origin of this low γ-ray energy effect remains unknown.

  11. Shear Reinforcement Requirements for High-Strength Concrete Bridge Girders

    OpenAIRE

    Ramirez, J. A.; Aguilar, Gerardo

    2005-01-01

    A research program was conducted on the shear strength of high-strength concrete members. The objective was to evaluate the shear behavior and strength of concrete bridge members with compressive strengths in the range of 10 000 to 15 000 psi. The goal was to determine if the current minimum amount of shear reinforcement together with maximum spacing limits in the 2004 AASHTO LRFD Specifications, and the upper limit on the nominal shear strength were applicable to concrete compressive strengt...

  12. Strength analysis of laser welded lap joint for ultra high strength steel

    Science.gov (United States)

    Jeong, Young Cheol; Kim, Cheol Hee; Cho, Young Tae; Jung, Yoon Gyo

    2013-12-01

    Several industries including the automotive industry have recently applied the process of welding high strength steel. High strength steel is steel that is harder than normal high strength steel, making it much stronger and stiffer. HSS can be formed in pieces that can be up to 10 to 15 percent thinner than normal steel without sacrificing strength, which enables weight reduction and improved fuel economy. Furthermore, HSS can be formed into complex shapes that can be welded into structural areas. This study is based on previous experiments and is aimed at establishing the stress distribution for laser welded high strength steel. Research on the stress distribution for laser welded high strength steel is conducted by using Solid Works, a program that analyzes the stress of a virtual model. In conclusion, we found that the stress distribution is changed depending on the shape of welded lap joint. In addition, the Influence of the stress distribution on welded high strength steel can be used to standard for high energy welding of high strength steel, and we can also predict the region in welded high strength steel that may cracked.

  13. Application of cold drawn lamellar microstructure for developing ultra-high strength wires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Composite materials having lamellar structure are known to have a good combination of high strength and ductility. They are widely used in the fields of automobiles, civil engineering and construction, machines and many other industries. An application of lamellar microstructure for developing ultra-high strength steel wires was studied and discussed. Based on the experimental results,the relationships between the strength increase and microstructure development during the cold wire drawing were studied to reveal the strengthening mechanism. As cold drawing proceeds, the wire strength extremely increases, the microstructure changes from large single crystal lamellar structure to very fine polycrystalline lamellar one which has nano-sized grains, high dislocation density and amorphous regions. From the results obtained, it is concluded that heavy cold drawing technique is an effective method for lamellar composite to get high strength wires. Furthermore, formation process of the best microstructure for producing the ultra-high strength wires was also discussed.

  14. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength

    DEFF Research Database (Denmark)

    Hansen, Stinus; Jensen, Jens-Erik Beck; Ahrberg, Fabian

    2011-01-01

    The aim of this study was to assess structural indices from high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the human proximal femur along with areal bone mineral density (aBMD) and compare the relationship of these parameters to bone strength in vitro. Thirty......-one human proximal femur specimens (8 men and 23 women, median age 74 years, range 50-89) were examined with HR-pQCT at four regions of interest (femoral head, neck, major and minor trochanter) with 82 μm and in a subgroup (n = 17) with 41 μm resolution. Separate analyses of cortical and trabecular geometry...

  15. High Strength, Weldable Precipitation Aged Steels

    Science.gov (United States)

    Wilson, Alexander D.

    1987-03-01

    The family of plate steels represented by ASTM Specification A7101 is finding increasing applications. These low carbon, Cu-Ni-Cr-Mo-Cb, copper precipitation hardened steels have been identified by a number of designations over the years. During early development in the late 1960's and first commercial production in 1970, the steels were known as IN-787 (trademark of International Nickel Company).2 ASTM specifications were subsequently developed for structural (A710) and pressure vessel (A736) applications over ten years ago. More recent interest and application of this family of steels by the U.S. Navy has lead to development of a military specification MIL-S-24645 (SH),3 also initially known as "HSLA-80." Significant tonnage is being produced for the U.S. Navy as a replacement for HY80 (MIL-S-16216) in cruiser deck, bulkhead and hull applications.4 In these applications, the enhanced weldability and requirement of no preheat at this high strength and toughness level has been the main motivation for its use. Over the past 15 years, A710 type steels have also been used in a variety of applications, including off-shore platforms, pressure vessels, arctic linepipe valves and off-highway mining truck frames.

  16. Level density and gamma-ray strength function in the odd-odd 238Np

    CERN Document Server

    Tornyi, Tamás Gábor; Eriksen, Tomas Kvalheim; Görgen, Andreas; Giacoppo, Francesca; Hagen, Trine Wiborg; Krasznahorkay, Attila; Larsen, Ann-Cecilie; Renstrøm, Therese; Rose, Sunniva Johanne; Siem, Sunniva; Tveten, Gry Merete

    2014-01-01

    The level density and gamma-ray strength function in the quasi-continuum of 238Np has been measured using the Oslo method. The level density function follows closely the constant-temperature level density formula and reaches 43 million levels per MeV at Sn = 5.488 MeV of excitation energy. The gamma-ray strength function displays a two-humped resonance at low-energy as also seen in previous investigations of Th, Pa and U isotopes. The structure is interpreted as the scissors resonance and has an average centroid of wSR = 2.26(5) MeV and a total strength of BSR = 10.8(12)m2N, which is in excellent agreement with sum-rule estimates. The scissors resonance is shown to have an impact on the 237Np(n; g)238Np cross section.

  17. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    Science.gov (United States)

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at Pcontemporary and ballet dancers had lower body fat percentages than controls (Pdance type and more scientific methods of dance training are needed.

  18. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  19. Effects of high and low volume of strength training on muscle strength, muscle volume and lipid profile in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Cleiton Silva Correa

    2014-12-01

    Full Text Available Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD, especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set and high volume of strength training (HVST; n = 11, 3 sets, or control group (n = 12. Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001, maximal dynamic strength (p < 0.001, and muscle volume (p = 0.048. Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047. Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group.

  20. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  1. Nuclear level densities and gamma-ray strength functions of 145,149,151Nd isotopes

    Science.gov (United States)

    Ay, K. O.; Ozgur, M.; Algin, E.; Guttormsen, M.; Bello Garrote, F. L.; Crespo Campo, L.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Klintefjord, M.; Larsen, A. C.; Midtbo, J. E.; Modamio, V.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.

    2016-10-01

    The nuclear level densities and gamma-ray strength functions are the key elements for Hauser-Feshbach statistical model calculations to predict reaction cross sections which have many applications including astrophysics. The nuclear level densities and y-ray strength functions have been determined for 145,149,151Nd isotopes below the neutron separation energies using the Oslo method with the 144,148,150Nd(d,p) reactions. The results from the first measurements as well as planned experiments at OCL will be presented.

  2. Nuclear Level Density and Gamma-Ray Strength Function of 43Sc

    CERN Document Server

    Bürger, A; Hilaire, S; Guttormsen, M; Harissopulos, S; Kmiecik, M; Konstantinopoulos, T; Krticka, M; Lagoyannis, A; Lönnroth, T; Mazurek, K; Norrby, M; Nyhus, H T; Perdikakis, G; Siem, S; Spyrou, A; Syed, N U H; 10.1103/PhysRevC.85.064328

    2012-01-01

    The nuclear level density and the gamma-ray strength function have been determined for 43Sc in the energy range up to 2 MeV below the neutron separation energy using the Oslo method with the 46Ti(p,alpha)43Sc reaction. A comparison to 45Sc shows that the level density of 43Sc is smaller by an approximately constant factor of two. This behaviour is well reproduced in a microscopical/combinatorial model calculation. The gamma-ray strength function is showing an increase at low gamma-ray energies, a feature which has been observed in several nuclei but which still awaits theoretical explanation.

  3. Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    A. Ravichandran

    2009-01-01

    Full Text Available The low tensile strength and limited ductility, the unavoidable deficiency, of concrete can be overcome by the addition of fibres. High strength concrete (HSC of 60 MPa containing hybrid fibres, combination of steel and polyolefin fibres, at different volume fraction of 0.5, 1.0, 1.5 and 2.0% were compared in terms of compressive, splitting tensile strength and flexural properties with HSC containing no fibres. Test results showed that the fibres when used in hybrid form could result in enhanced flexural toughness compared to steel fibre reinforced concrete [HSFRC]. The compressive strength of the fibre-reinforced concrete reached maximum at 1.5% volume fractions and the splitting tensile strength and modulus of rupture improved with increasing volume fraction. Strength models were established to predict the compressive and splitting tensile strength and modulus of rupture of the fibre-reinforced concrete. The models give prediction matching the measurements.

  4. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    Science.gov (United States)

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  5. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  6. Gaseous hydrogen embrittlement of high strength steels

    Science.gov (United States)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  7. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Anrholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...... cherry-pick some elements while leaving fundamental aspects out. The study nevertheless indicates that a lack of coherency and model-fit to Danish industrial relations might hamper the positive effects of the organising strategy....

  8. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  9. Development of a high strength high toughness ausferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Putatunda, Susil K., E-mail: sputa@eng.wayne.edu [Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202 (United States); Singar, Arjun V. [Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202 (United States); Tackett, Ronald; Lawes, Gavin [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States)

    2009-07-15

    A new ausferritic steel with high strength and exceptionally high fracture toughness has been developed. This steel has been synthesized integrating concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of the austempering temperature on the microstructure and mechanical properties of this steel at room temperature and ambient atmosphere has been examined. The effect of microstructure on the plane strain fracture toughness and on the magnetic, electrical, and thermal properties was also investigated. Compact tension and cylindrical tensile specimens prepared from the low alloy medium carbon steel with high silicon content were initially austenitized at 927 deg. C for 2 h and then subsequently austempered at several temperatures between 260 deg. C (500 F) and 400 deg. C (750 F) to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. A combination of exceptionally high yield strength (1336 MPa) and a high fracture of toughness of 116 MPa{radical}m (a value comparable to maraging steel) was obtained in this steel after austempering at 316 deg. C (600 F) for 2 h. Potential applications of this steel include the inexpensive fabrication of armored plates and components requiring high reliability and durability.

  10. Analysis of bone mineral density of human bones for strength evaluation

    Indian Academy of Sciences (India)

    S N Khan; R M Warkhedkar; A K Shyam

    2015-08-01

    The bone density (BMD) is a medical term normally referring to the amount of mineral matter per square centimetre of bones. Twenty-five patients (18 female and 7 male patients with a mean age of 71.3 years) undergoing both lumbar spine DXA scans and computed tomography imaging were evaluated to determine if HU correlates with BMD and T-scores. BMD is used in clinical medicine as an indirect indicator of osteoporosis and fracture risk. This medical bone density is not the true physical ``density'' of the bone, which would be computed as mass per volume. Dual-energy X-ray absorptiometry (DXA, previously DEXA), a means of measuring BMD, is the most widely used and most thoroughly studied bone density measurement technologies. Different types of bone strength are required for various applications, but this strength calculation requires different machines for each strength property or it is done by different software like X-ray, CT scan, DEXA and BIA. The paper includes the design of an experimental setup which performs different types of test like tension, compression, three point bending, four point bending and torsion. The modified correlation between BMD and HU for various strength calculations is found out and validated with the experimental results.

  11. Muscle strength and soccer practice as major determinants of bone mineral density in adolescents

    DEFF Research Database (Denmark)

    Seabra, André; Marques, Elisa; Brito, João

    2012-01-01

    OBJECTIVES: To analyse the relationship between isokinetic strength of the lower limb muscles and bone mineral density and content (BMD, BMC) of adolescent male soccer players and age-matched controls not involved in sport (12-15years). METHODS: A random sample of 151 young males was divided...

  12. Level densities and γ-ray strength functions in Sn isotopes

    Science.gov (United States)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  13. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  14. Density and undrained shear strength of bed sediment from ND-CPT

    Science.gov (United States)

    Jia, Rui; Hino, Takenori; Hamada, Takaharu; Chai, Jinchun; Yoshimura, Mitsugu

    2013-05-01

    The density and the undrained shear strength ( s u) of bed sediments at either side of the Isahaya Bay dike in the Ariake Sea, Japan, were investigated using nuclear density cone penetration tests (ND-CPTs). The nuclear density cone penetrometer (ND-CP) was operated from a boat, conducting 71 ND-CPTs. Furthermore, 26 undisturbed samples were obtained for soil density and s u measurements to calibrate the ND-CPT data. The results show that the density and s u obtained from in situ with the ND-CPTs agree well with those from the laboratory tests on undisturbed samples, and the obtained density profiles show good repeatability. The vertical variation in density and s u of the bed sediment can be obtained from the ND-CPT results. The relations between the density and s u show that s u increases with an increase in density, but that this relation is site specific. The values of s u show an exponentially growing trend and the values of log s u show a linearly increasing trend with density. The vertical distribution of the bed sediments can be described using the density values obtained with the ND-CPT.

  15. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  16. 信息动态%Size Effect on Strength of Ultra-high Strength Concrete RPC

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Reactive Powder Concrete (RPC)is a new kind of ultra-high strength cement based composite with excellent mechanics performance and durability. In order to make RPC used in structural engineering effectively,size effect on strength of the ultra high strength concrete RPC specimen is experimental studied and the mechanism is analyzed in this paper. Test results show that if the 4 cm cube compressive strength is the control strength,conversion coefficients of 10 em cube compressive strength at 150 MPa and 200 MPa grade are 0.81 and 0.76 respectively; conversion coefficients of 10 cm× 10 cm× 30 cm prism compressive strength at 150 MPa and 200 MPa grade are 0.71 and 0. 63 respectively; the size effect conversion coefficient tends to decrease with the increase of control strength, the larger the specimen size, the lower the compressive strength. RPC is a typical brittle material. It extends instability quickly after cracking;damage concentrated in the local area,and therefore appears higher size effect.

  17. High regression rate, high density hybrid fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  18. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  19. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  20. The association between hip muscle cross-sectional area, muscle strength, and bone mineral density.

    Science.gov (United States)

    Ahedi, Harbeer; Aitken, Dawn; Scott, David; Blizzard, Leigh; Cicuttini, Flavia; Jones, Graeme

    2014-07-01

    Studies examining the association between muscle size, muscle strength, and bone mineral density (BMD) are limited. Thus, this study aimed to describe the association between hip muscles cross-sectional area (CSA), muscle strength, and BMD of the hip and spine. A total of 321 subjects from the Tasmanian Older Adult Cohort study with a right hip MRI scan conducted between 2004 and 2006 were included. Hip muscles were measured on MR images by OsiriX (Geneva) software measuring maximum muscle CSA (cm(2)) of gluteus maximus, obturator externus, gemelli, quadratus femoris, piriformis, pectineus, sartorius, and iliopsoas. Dual-energy X-ray absorptiometry measured total hip, femoral neck, and spine BMD, and lower limb muscle strength was assessed by dynamometer. Muscle CSA of the hip flexors (pectineus, sartorius, and iliopsoas) and the hip rotators, obturator externus, and quadratus femoris were associated with both total hip and femoral neck BMD (all p muscles (except gluteus maximus and gemelli) were positively associated with leg strength (p = 0.02 to strength was weakly associated with BMD (p = 0.11-0.007). Hip muscle CSA, and to a lesser extent muscle strength, were positively associated with hip BMD. These data suggest that both higher muscle mass and strength may contribute to the maintenance of bone mass and prevention of disease progression in older adults.

  1. High-strength concrete for Peacekeeper facilities

    Science.gov (United States)

    Saucier, K. L.

    1984-03-01

    An investigation is described which was conducted to determine the processes and techniques required to produce portland-cement concrete with a compressive strength of 15,000 psi or greater using conventional concreting methods and equipment, and to develop physical property data on the mixtures. It was permitted that special materials and admixtures be used, but a requirement was set that the aggregates and cements be selected from those available in the Cheyenne, Wyoming, area. Results indicated that it is feasible to achieve the 15,000-psi compressive strengths but that workability may decrease over a 2-hour period, and this latter development should be studied under job conditions. It is recommended that: (1) all materials and procedures to be used on a specific project be tested in the laboratory for basic property information, and (2) selected mixtures be tested in the field under expected environmental conditions prior to actual job use.

  2. Competitive athletic participation, thigh muscle strength, and bone density in elite senior athletes and controls.

    Science.gov (United States)

    McCrory, Jean L; Salacinski, Amanda J; Hunt Sellhorst, Sarah E; Greenspan, Susan L

    2013-11-01

    The relationship between participation in highly competitive exercise, thigh muscle strength, and regional and total body bone mineral density (BMD) in elite senior athletes and healthy elderly controls was investigated. One hundred and four elite senior athletes (age: 72.6 ± 6.4 years, height: 168.7 ± 8.6 cm, mass: 72.6 ± 13.5 kg, 57 male:47 female) and 79 healthy controls (age: 75.4 ± 5.6 years, height: 170.8 ± 25.5 cm, mass: 79.5 ± 11.7 kg, 46 male:33 female) participated in this cross-sectional study. Vitamin D and calcium intake were assessed via a recall survey. Isometric knee extension and flexion peak torque were measured via a custom strength measurement device. Total body and regional BMD of the hip, radius, and spine were assessed with a dual-energy x-ray absorptiometer. For each BMD site assessed, multivariate linear regression analysis was performed in 4 steps (α = 0.10) to examine the contribution of (a) age, sex, bodyweight, and calcium and vitamin D intake; (b) group (elite senior athlete, control); (c) knee extension peak torque; and (d) knee flexion peak torque on BMD. Sex, age, bodyweight, and calcium and vitamin D intake explained a significant amount of variance in BMD in each site. Group was not significant. Knee extension peak torque explained an additional 3.8% of the variance in hip BMD (p = 0.06). Knee flexion peak torque was not correlated to BMD at any of the sites assessed. In conclusion, participation in highly competitive athletics was not related to total body or regional BMD. Age, sex, bodyweight, and vitamin D and calcium intake were significantly related to BMD at all the sites assessed. Quadriceps strength contributed slightly to hip BMD. Our results imply that participation in highly competitive senior athletics does not have a protective effect on BMD, perhaps because of a lower bodyweight or other confounding factors.

  3. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  4. Fuzzy sets predict flexural strength and density of silicon nitride ceramics

    Science.gov (United States)

    Cios, Krzysztof J.; Sztandera, Leszek M.; Baaklini, George Y.; Vary, Alex

    1993-01-01

    In this work, we utilize fuzzy sets theory to evaluate and make predictions of flexural strength and density of NASA 6Y silicon nitride ceramic. Processing variables of milling time, sintering time, and sintering nitrogen pressure are used as an input to the fuzzy system. Flexural strength and density are the output parameters of the system. Data from 273 Si3N4 modulus of rupture bars tested at room temperature and 135 bars tested at 1370 C are used in this study. Generalized mean operator and Hamming distance are utilized to build the fuzzy predictive model. The maximum test error for density does not exceed 3.3 percent, and for flexural strength 7.1 percent, as compared with the errors of 1.72 percent and 11.34 percent obtained by using neural networks, respectively. These results demonstrate that fuzzy sets theory can be incorporated into the process of designing materials, such as ceramics, especially for assessing more complex relationships between the processing variables and parameters, like strength, which are governed by randomness of manufacturing processes.

  5. Muscular strength measurements indicate bone mineral density loss in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2013-10-01

    Full Text Available Zhixiong Zhou,1,2 Lu Zheng,3 Dengyun Wei,4 Ming Ye,3 Xun Li2 1School of Physical Education and Coaching Science, Capital University of Physical Education and Sports, Beijing, People’s Republic of China; 2Graduate School, Beijing Sport University, Beijing, People’s Republic of China; 3School of Kinesiology and Health Education, Capital University of Physical Education and Sports, Beijing, People’s Republic of China; 4Department of Physical Education, Anhui Normal University, Anhui, People’s Republic of China Background: The literature is inconsistent and inconclusive on the relationship between bone mineral density (BMD and muscular strength in postmenopausal women. Objective: To evaluate the relationship between isokinetically and isometrically determined muscle strength and BMD in postmenopausal women of different age groups. Methods: Healthy postmenopausal women (n = 293; mean age, 54.22 ± 3.85 years were enrolled in this study. They were grouped by age according to World Health Organization life expectancy: 45–50 years, 51–53 years, 54–56 years, 57–59 years, and 60–64 years. Total BMD, L2–4 BMD, and femoral neck BMD were measured by dual-energy X-ray bone densitometry; isokinetic and isometric muscle strength of the right hip and trunk muscles were measured during contractile exercise. Stepwise regression analysis was used to examine the relationships between BMD and strength measures, controlling for subject age and years since menopause. Results: Results of stepwise regression showed that hip extensor and flexor strength at 120°/second and back extend strength at 30°/second accounted for 26% total BMD variance among menopausal subjects, 19% L2–4 BMD variance, and 15% femoral neck BMD variance; in postmenopausal women of different age groups, hip extensor and flexor strength at 120°/second and back extend strength at 30°/second accounted for 25%–35% total BMD variance. Conclusion: Different optimal strength

  6. Density Estimation Trees in High Energy Physics

    CERN Document Server

    Anderlini, Lucio

    2015-01-01

    Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

  7. Relationship between tensile strength and porosity for high porosity metals

    Institute of Scientific and Technical Information of China (English)

    刘培生; 付超; 李铁藩; 师昌绪

    1999-01-01

    An analysis model has been established according to the structure feature of high porosity metals, and the mathematical relationship between the tensile strength and porosity for this material has been derived from the model. Moreover, the corresponding theoretical formula has been proved good to reflect the variation law of tensile strength with porosity for high porosity metals by the example experiment on nickel foam.

  8. Fatigue-induced damage of high-strength steels

    Science.gov (United States)

    Shetulov, D. I.; Myl'nikov, V. V.

    2014-03-01

    The issues on the estimation of the surface damage of the products produced from high-strength alloys are considered. Mathematical relationships for a numerical calculation of the surface damage are given. The peculiarities of the evaluation of the surface damage are investigated, as applied to high-strength alloys.

  9. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  10. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  11. Random Matrix Theory for Transition Strength Densities in Finite Quantum Systems: Results from Embedded Unitary Ensembles

    CERN Document Server

    Kota, V K B

    2015-01-01

    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. For the simplest spinless systems, with say $m$ particles in $N$ single particle states and interacting via $k$-body interactions, we have EGUE($k$) and the embedding algebra is $U(N)$. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (same initial and final systems), nuclear beta and double beta decay (different initial and final systems), particle addition to/removal from a given system and so on. Towards developing a complete statistical theory for transition strength densities, we have derived formulas for lower order bivariate moments of the strength densities generated by a variety of transition operators. For a spinless fermion system, using EGUE($k$) representation for Hamiltonian and an independent EGUE($...

  12. Increased consumer density reduces the strength of neighborhood effects in a model system.

    Science.gov (United States)

    Merwin, Andrew C; Underwood, Nora; Inouye, Brian D

    2017-09-04

    An individual's susceptibility to attack can be influenced by conspecific and heterospecifics neighbors. Predicting how these neighborhood effects contribute to population-level processes such as competition and evolution requires an understanding of how the strength of neighborhood effects is modified by changes in the abundances of both consumers and neighboring resource species. We show for the first time that consumer density can interact with the density and frequency of neighboring organisms to determine the magnitude of neighborhood effects. We used the bean beetle, Callosobruchus maculatus, and two of its host beans, Vigna unguiculata and V. radiata, to perform a response-surface experiment with a range of resource densities and three consumer densities. At low beetle density, damage to beans was reduced with increasing conspecific density (i.e. resource dilution) and damage to the less preferred host, V. unguiculata, was reduced with increasing V. radiata frequency (i.e. frequency-dependent associational resistance). As beetle density increased, however, neighborhood effects were reduced; at the highest beetle densities neither focal nor neighboring resource density nor frequency influenced damage. These findings illustrate the importance of consumer density in mediating indirect effects among resources, and suggest that accounting for consumer density may improve our ability to predict population-level outcomes of neighborhood effects and to use them in applications such as mixed-crop pest management. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  14. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  15. Influences of Short Discrete Fibers in High Strength Concrete with Very Coarse Sand

    Directory of Open Access Journals (Sweden)

    Mahyuddin Ramli

    2010-01-01

    Full Text Available Problem statement: High Strength Concrete (HSC normally content high cementitous amount and low water binder ratio. However, these would cause substantial volume changes to the concrete and therefore affected the strength development. In addition, the brittleness of HSC was increased when silica fume used as partial cement replacement to achieve high strength. Approach: This study discussed the effects of incorporated short discrete Coconut Fibers (CF, Barchip Fibers (BF and Glass Fibers (GF into HSC to enhance the performance of concrete while kept the binder content at moderate level. Additional specialty to this HSC was casted with very coarse sand with fineness modulus of 3.98. A total of thirteen mixes were casted and tested for slump, density, compressive strength, flexural strength and ultrasonic pulse velocity in accordance with British Standards. Results: The slump was slightly reduced by the short discrete fibers. All of the fibrous specimens had lower density than control. However, the compressive strength of the HSC had increased from 71.8-79.0 MPa using 1.8% of BF, while flexural strength had increased from 5.21-6.50 MPa. All specimens showed that ultrasonic velocity higher than 4.28 km sec-1. Conclusion/Recommendations: In short, combination of incorporated short discrete fibers and applied very coarse sand to produce HSC showed very satisfying results and improvements. Further assessment on durability and impact resistivity will be verified in the coming research.

  16. Investigation of the plastic fracture of high strength steels

    Science.gov (United States)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  17. Confined High Strength Concrete Columns: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Jagannathan Saravanan

    2010-01-01

    Full Text Available Problem statement: An experimental study on GFRP confined high strength concrete columns has been carried out with a view to evaluate its performances under uni-axial compression in terms of load and deformation capacity. Approach: High strength concrete columns strengthened with different configuration and stiffness of GFRP wraps were tested under axial compression until failure. Their response evaluated at different load levels. Results: The test results clearly indicated GFRP wrapped high strength concrete columns exhibit enhances performance. Conclusion: The study concluded that the three GFRP materials attempted UDC GFRP provided the maximum benefit with respect to load and deformation.

  18. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model......, to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from...

  19. Autogenous Shrinkage of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    DING Qingjun; TIAN Yaogang; WANG Fazhou; ZHANG Feng; HU Shuguang

    2005-01-01

    The characteristic of autogenous shrinkage ( AS ) and its effect on high strength lightweight aggregate concrete (HSLAC) were studied. The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably. At the early stage the AS of HSLAC is lower than that of high strength normal concrete, but it has a large growth at the later stage. The AS of high strength normal concrete becomes stable at 90d age, but HSLAC still has a high AS growth. It is found that adjusting the volume rate of lightweight aggregate, mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.

  20. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    Energy Technology Data Exchange (ETDEWEB)

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-08-30

    The neutron spectrum from the {sup 55}Mn(d,n){sup 56}Fe reaction has been measured at E{sub d} = 7 MeV. The level density of {sup 56}Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type {sup 57}Fe({sup 3}He, a{gamma}){sup 56}Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the {gamma}-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy.

  1. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  2. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  3. The high density Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    McCall, G.H.

    1988-01-01

    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  4. Review on permeability of high-strength concrete subjected to high temperature

    Science.gov (United States)

    Zhao, Dongfu; Han, Xiao; Liu, Yuchen

    2017-08-01

    In this paper, the research results of permeability of high-strength concrete subjected to high temperature were comprehensively reviewed, the research status of permeability of high-strength concrete at elevated temperature were discussed, and existing problems were analyzed, finally, main research directions of permeability of high-strength concrete subjected to high temperature were forecasted.

  5. Fatigue strength of truss girders made of very high strength steel

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.

    2010-01-01

    An effective application of Very High Strength Steel (VHSS) in civil engineering structures is expected in stiff, truss like structures, typically made of Circular Hollow Sections (CHS). Use of castings in combination with CHS could be promising for the design of highly fatigue resistant joints. Cas

  6. High strength alumina produced by direct coagulation casting

    Energy Technology Data Exchange (ETDEWEB)

    Baader, F.H.; Will, J.; Tieche, D. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    1995-09-01

    Direct Coagulation Casting is a new colloidal forming technique. Double layer stabilized, concentrated alumina suspensions are solidified by shifting the suspensions pH from 4 towards the isoelectric point at 9 using the in situ enzyme-catalyzed decomposition of urea. This reaction minimizes the repulsive forces between the suspended particles. The remaining, attractive Van der Waals forces form a stiff particle network. Suspensions with low viscosities (0.3 Pa*s, 59 vol%) were prepared at pH 4. Deagglomeration of the suspensions by ball milling reduced the agglomerate size below 5 pm. The coagulation kinetics could be influenced either by the urease concentration or by the suspension temperature. Process variables were established, providing long idle times, which allowed additional filtration and degassing steps. Coagulation was followed by drying and sintering, whereby densities of more than 3.97 g/cm{sup 3}, a 4-point bending strength of 685 MPa (HIPed) and a high reliablility (m = 40) for high purity alumina were achieved. DCC has the potential to improve the reliability of alumina components of complex shape, as well as to avoid expensive molding.

  7. High-strength braze joints between copper and steel

    Science.gov (United States)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  8. Retention of ductility in high-strength steels

    Science.gov (United States)

    Parker, E. R.; Zackay, V. F.

    1969-01-01

    To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.

  9. Behaviour of high strength steel moment joints

    NARCIS (Netherlands)

    Girão Coelho, A.M.; Bijlaard, F.S.K.

    2010-01-01

    The design of joints to European standard EN 1993 within the semi-continuous/partially restrained philosophy is restricted to steel grades up to S460. With the recent development of high performance steels, the need for these restrictions should be revisited. The semicontinuous joint modelling can b

  10. Damage characterization of high-strength multiphase steels

    Science.gov (United States)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2016-11-01

    High-strength steels show an entirely different material behavior than conventional deep-drawing steels. This fact is caused among others by the multiphase nature of their structure. The Forming Limit Diagram as the classic failure criterion in forming simulation is only partially suitable for this class of steels. An improvement of the failure prediction can be obtained by using damage mechanics. Therefore, an exact knowledge of the material-specific damage is essential for the application of various damage models. In this paper the results of microstructure analysis of a dual-phase steel and a complex-phase steel with a tensile strength of 1000 MPa are shown comparatively at various stress conditions. The objective is to characterize the basic damage mechanisms and based on this to assess the crack sensitivity of both steels. First a structural analysis with regard to non-metallic inclusions, the microstructural morphology, phase identification and the difference in microhardness between the structural phases is carried out. Subsequently, the development of the microstructure at different stress states between uniaxial and biaxial tension is examined. The damage behavior is characterized and quantified by the increase in void density, void size and the quantity of voids. The dominant damage mechanism of the dual-phase steel is the void initiation at phase boundaries, within harder structural phases and at inclusions. In contrast the complex-phase steel shows a significant growth of a smaller amount of voids which initiate only at inclusions. To quantify the damage tolerance and the susceptibility of cracking the criterion of the fracture forming limit line (FFL) is used. The respective statements are supported by results of investigations regarding the edge-crack sensitivity.

  11. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...

  12. High Density Metamaterials for Visible Light

    Science.gov (United States)

    2016-11-28

    Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum,” Adv. Opt. Mater., vol. 2, no. 3, pp. 280–285...AFRL-AFOSR-JP-TR-2016-0097 High density metamaterials for visible light Dao Hua Zhang NANYANG TECHNOLOGICAL UNIVERSITY Final Report 11/28/2016...COVERED (From - To)  16 Jul 2014 to 15 Jul 2016 4. TITLE AND SUBTITLE High density metamaterials for visible light 5a.  CONTRACT NUMBER 5b.  GRANT

  13. A quarksonic matter at high isospin density

    CERN Document Server

    Cao, Gaoqing; Huang, Xu-Guang

    2016-01-01

    Analogous to the quarkyonic matter at high baryon density in which the quark Fermi seas and the baryonic excitations coexist, it is argued that a "quarksonic matter" phase appears at high isospin density where the quark (antiquark) Fermi seas and the mesonic excitations coexist. We explore this phase in detail in both large $N_c$ and asymptotically free limits: In large $N_c$ limit, we sketch a phase diagram for the quarksonic matter. In the asymptotically free limit, we study the pion superfluidity and thermodynamics of the quarksonic matter by using both perturbative calculations and effective model.

  14. Influence of the Matrix Grain Size on the Apparent Density and Bending Strength of Sand Cores

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2017-03-01

    Full Text Available The results of investigations of the influence of the matrix grain sizes on properties of cores made by the blowing method are presented in the hereby paper. Five kinds of matrices, differing in grain size compositions, determined by the laser diffraction method in the Analysette 22NanoTec device, were applied in investigations. Individual kinds of matrices were used for making core sands in the Cordis technology. From these sands the shaped elements, for determining the apparent density of compacted sands and their bending strength, were made by the blowing method. The shaped elements (cores were made at shooting pressures being 3, 4 and 5 atn. The bending strength of samples were determined directly after their preparation and after the storing time of 1 hour.

  15. High energy density in multisoliton collisions

    Science.gov (United States)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  16. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations

    Science.gov (United States)

    Cornwell, Charles F.; Welch, Charles R.

    2011-05-01

    The mechanical properties of carbon nanotubes such as low density, high stiffness, and exceptional strength make them ideal candidates for reinforcement material in a wide range of high-performance composites. Molecular dynamics simulations are used to predict the tensile response of fibers composed of aligned carbon nanotubes with intermolecular bonds of interstitial carbon atoms. The effects of bond density and carbon nanotube length distribution on fiber strength and stiffness are investigated. The interstitial carbon bonds significantly increase load transfer between the carbon nanotubes over that obtained with van der Waals forces. The simulation results indicate that fibers with tensile strengths to 60 GPa could be produced by employing interstitial cross-link atoms. The elastic modulus of the fibers is also increased by the bonds.

  17. High strength bioactive glass-ceramic scaffolds for bone regeneration.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Baino, Francesco; Verné, Enrica

    2009-02-01

    This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route, ground and sieved to obtain powders of specific size. A slurry of CEL2 powders, polyvinyl alcohol (PVA) as a binder and water was prepared in order to coat, by a process of impregnation, the polymeric template. A thermal treatment was then used to remove the sponge and to sinter the glass powders, in order to obtain a replica of the template structure. The scaffolds were characterized by means of X-ray diffraction analysis, morphological observations, density measurements, volumetric shrinkage, image analysis, capillarity tests, mechanical tests and in vitro bioactivity evaluation.

  18. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  19. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  20. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  1. TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2013-12-01

    Full Text Available The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process.

  2. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  3. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  4. Spontaneous radiation emission from short, high field strength magnetic devices

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2006-01-01

    Full Text Available Since the earliest papers on undulators were published, it has been known how to calculate the spontaneous emission spectrum from short undulators when the magnetic field strength parameter is small compared to unity, or in “single” frequency sinusoidal undulators where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulator. Fewer general results have been obtained in the case where the magnetic device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field magnetic devices. It is used to calculate the emission from some designs of recent interest.

  5. Probabilistic density function estimation of geotechnical shear strength parameters using the second Chebyshev orthogonal polynomial

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the originmoments)was used to approximate the PDF of parameters. χ2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.

  6. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  7. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  8. Advanced High Strength Steel in Auto Industry: an Overview

    OpenAIRE

    2014-01-01

    The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS) significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits in...

  9. Compressive mechanical of high strength concrete (HSC) after different high temperature history

    Science.gov (United States)

    Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao

    2017-08-01

    The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.

  10. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength...... steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... amplitude fatigue test results showed shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, the fatigue tests on high-strength steel tubular joints showed slightly longer fatigue lives than those obtained...

  11. The effects of power and strength training on bone mineral density in premenopausal women.

    Science.gov (United States)

    Gray, M; Di Brezzo, R; Fort, I L

    2013-08-01

    The purpose of this 48-week exercise intervention was designed to examine the effects of power and resistance training on bone mineral density (BMD). Premenopausal women were recruited and randomly assigned to either a power (N.=8) or resistance (N.=11) training group. The power exercises included jumping rope, skipping, hopping, and other power-type exercises. The resistance training group performed 8-10 whole-body strengthening exercises at 70% one-repetition maximum (1RM). Before and after the exercise intervention, BMD was measured via dual energy x-ray absorptiometry (DXA) for the total-body, lumbar spine, left femoral neck, and left greater trochanter. Muscular strength was measured by hand grip dynamometer and 1RM of chest press and leg press. Muscular power was assessed by the Margaria-Kalamen stair climb test. Data were analyzed using repeated measures ANOVA. There were no statistical differences between the two training groups for any of the BMD measurements. Chest press strength was different between the two groups, increasing 6.41 and 1.1kg for the resistance and power groups, respectively over the course of the training period (F[1.15]=9.44, P<0.01). There was a significant time effect for leg press 1RM (F[1.15]=6.04, P=0.03). The participants increased by 12.37kg after the 48-week intervention. Hand grip strength also increased after the study intervention (F[1.16]=46.32, P<0.01). The results of this study suggest that power and resistance training are comparable techniques for maintaining bone density.

  12. Development of a New Kind of High Strength Spring Steel

    Institute of Scientific and Technical Information of China (English)

    Dexiang XU; Zhongda YIN; Defu LIU

    2004-01-01

    A new kind of high strength, high toughness and high plasticity spring steel has been developed. The strength, the reduction of area and the elongation of the steel are all higher than those of the steel 60Si2CrVA. The decarburization resistance and the sag resistance are also higher than those of the steel 60Si2CrVA. It has good hardenability, and is suitable for making springs with big cross section. The bogie springs made of this kind of steel have passed 2×106 cycles without broken under the conditions of maximum stress of 906 MPa and the minimum stress of 388 MPa.

  13. Two-color QCD at high density

    Energy Technology Data Exchange (ETDEWEB)

    Boz, Tamer; Skullerud, Jon-Ivar [Department of Mathematical Physics, Maynooth University, Maynooth, Co. Kildare (Ireland); Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik, Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University, Swansea (United Kingdom); Williams, Anthony G. [Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005 (Australia)

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  14. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  15. A low-cost hierarchical nanostructured beta-titanium alloy with high strength.

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  16. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  17. Modeling and experimental analysis of magnetostriction in high strength steels

    Directory of Open Access Journals (Sweden)

    Della Torre E.

    2013-01-01

    Full Text Available Previous studies on the magnetostriction in high strength steels have ignored the internal anisotropies due to previous material handling. Cold-rolling an iron alloy will stretch and distort the magnetic domains in the direction of rolling. These altered domain shapes impact the magnetic characteristics of the alloy; adding an additional preferred direction of magnetization to the easy or hard axes within the crystalline structure. This paper presents data taken on rods of a high strength steel that have been machined parallel to the rolling direction; as well as simulated results using a Preisach-type magnetostriction model. The model, whose formulation is based on the DOK magnetization-based model, aims specifically to simulate the Villari reversal phenomenon observed in the magnetostriction measurements of high strength steels and some Terfenol-D alloys.

  18. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-01

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  19. Effects of laser energy density on forming accuracy and tensile strength of selective laser sintering resin coated sands

    Institute of Scientific and Technical Information of China (English)

    Xu Zhifeng; Liang Pei; Yang Wei; Li Sisi; Cai Changchun

    2014-01-01

    Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density (E =P/v), with different laser power (P) and scanning velocity (v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained whenP = 30-40 W andv = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excelent forming accuracy has been successfuly fabricated.

  20. Optimum high temperature strength of two-dimensional nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  1. Optimum high temperature strength of two-dimensional nanocomposites

    Directory of Open Access Journals (Sweden)

    M. A. Monclús

    2013-11-01

    Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  2. Method of high-density foil fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  3. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  4. High strength beta titanium alloys: New design approach

    Energy Technology Data Exchange (ETDEWEB)

    Okulov, I.V., E-mail: okulovilya@yandex.ru [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Wendrock, H. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Volegov, A.S. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Attar, H. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027 (Australia); Kühn, U. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Skrotzki, W. [TU Dresden, Institut für Strukturphysik, D-01062 Dresden (Germany); Eckert, J. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2015-03-25

    A novel approach for development of high strength and ductile beta titanium alloys was proposed and successfully applied. The microstructure of the designed alloys is fully composed of a bcc β-Ti phase exhibiting dendritic morphology. The new Ti{sub 68.8}Nb{sub 13.6}Cr{sub 5.1}Co{sub 6}Al{sub 6.5} (at%) alloy (BETA{sup tough} alloy) exhibits a maximum tensile strength of 1290±50 MPa along with 21±3% of fracture strain. The specific energy absorption value upon mechanical deformation of the BETA{sup tough} alloy exceeds that of Ti-based metallic glass composites and commercial high strength Ti-based alloys. The deformation behavior of the new alloys was correlated with their microstructure by means of in-situ studies of the microstructure evolution upon tensile loading in a scanning electron microscope.

  5. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  6. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  7. The Tensile Behavior of High-Strength Carbon Fibers.

    Science.gov (United States)

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  8. HIGH TEMPERATURE MATERIALS AND STRENGTH STUDY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the past half century China has developed and formed her own system of high temperature materials for power, automobile and aero-engine industries in the temperature range from 550 ℃ to 1 100 ℃. These high temperature materials include heat-resisting steels, iron-base, nickel-iron-base and nickel-base superalloys. Some achievements in high temperature strength study, new technologies and new alloy development are also discussed.

  9. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  10. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    Directory of Open Access Journals (Sweden)

    Muhammad Fadhil Nuruddin

    2014-01-01

    Full Text Available The mechanical properties of high-strength ductile concrete (HSDC have been investigated using Metakaolin (MK as the cement replacing material and PVA fibers. Total twenty-seven (27 mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  11. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  12. THEORETICAL ASPECTS, EXPERIMENTAL INVESTIGATIONS AND EFFICIENCY IN USAGE OF HIGH-STRENGTH CONCRETE FOR BRIDGE STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2014-01-01

    Full Text Available In Belarus concrete with strength up to 60 MPA is used for construction. At the same time high strength concrete with compressive strength above 60 MPA is widely used in all industrially developed countries. High- strength concrete is included in regulatory documents of the European Union and that fact has laid a solid foundation for its application. High strength concrete is produced using highly dispersed silica additives, such as micro-silica and plasticizers (super-plasticizers with a water/cement (w/c ratio not greater than 0.4.Theoretical aspects of high-strength concrete for bridge structures have been studied in the paper. The paper shows a positive impact of highly dispersed additives on structure and physico-mechanical properties of cement compositions, namely: reduction of total porosity of a cement stone in concrete while increasing volumetric concentration and dispersion of a filler; binding of calcium hydroxide with the help of amorphised micro-silica; increased activity of mineral additives during their thin shredding; acceleration of the initial stage of chemical hardening of cement compositions with highly dispersed particle additives that serve as centers of crystallization; “binder-additive” cluster formation due to high surface energy of highly dispersed additive particles; hardening of surface area between a cement stone and aggregates in concrete; high-strength concretes are gaining strength much faster than conventional concretes.Technology of preparation and composition of high-strength concrete using highly dispersed mineral additives and super-plasticizer has been developed in the paper. This concrete will ensure a higher density, wa- ter-and gas tightness, increased resistance to aggressive environment, reduced consumption of concrete and reinforcement, reduced transport and installation weight, increased initial strength, early easing of shutters and preliminary compression, increased length of bridge spans

  13. Fatigue experiments on connections made of very high strength steels

    NARCIS (Netherlands)

    Pijpers, R.; Kolstein, H.; Bijlaard, F.

    2013-01-01

    An effective application of Very High Strength Steels (VHSS) can be expected in truss-like structures, typically made of hollow sections. Improved design of VHSS truss structures could incorporate the application of cast joints, since an appropriate design of cast joints limits the stress concentrat

  14. High-strength porous carbon and its multifunctional applications

    Science.gov (United States)

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  15. Resistance spot welding and weldbonding of advanced high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.; Gaul, H.; Rethmeier, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. V.5 ' ' Safety of Joined Components' ' ; Thommes, H.; Hahn, O. [Paderborn Univ. (Germany). Fakultaet fuer Maschinenbau

    2010-11-15

    The resistance spot welding procedure is one of the most important joining techniques in lightweight car body shell mass production. Especially for newly developed high strength multiphase steels, also called advanced high strength steels (AHSS), and ultra high strength steels (UHSS), this joining technique has more advantages than other thermal and mechanical joining procedures for thin steel sheets. Additionally, the technique of adhesive bonding and its combination with the technique of resistance spot welding called weldbonding becomes more and more important. One of the targets of the contribution is to show the influence of joined advanced high strength steels on the process reliability for both the resistance spot welding process and the weldbonding process. Based on welding current ranges and on results of electrode wear tests, statements concerning the resistance spot weldability of some special AHSS will be given. The mechanical behaviour of spot welded and weldbonded joints for different AHSS will be studied. Furthermore, some statements regarding the fracture behaviour, the hardness and the fatigue behaviour of both spot welded and weldbonded joints for different AHSS will be given. Finally, some results on the mechanical properties of spot welded and weldbounded joints under corrosive attacks with be discussed. (orig.)

  16. Mobility and trapping of hydrogen in high-strength steel

    OpenAIRE

    2013-01-01

    6 pages; International audience; Electrochemical permeation and thermo-desorption tests are performed to evaluate hydrogen mobility in high strength steel. Experimental parameters are used in a Krom like phenomenological diffusion model. This model is developed to simulate hydrogen diffusion and trapping in processing zones of specimens subjected to fatigue loadings.

  17. Development of high strength line pipe for Arctic applications

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.E.; Klein, R.; Bai, D. [Evraz Inc., Regina, SK (Canada). Frontier Pipe Research Unit

    2009-07-15

    The pipelines that will carry large volumes of natural gas from the Mackenzie Delta and the Alaska North Slope to Alberta will have to meet stringent new requirements on material performance. High strength steels with thick pipe walls will be needed to accommodate the high operating pressure that will be needed to transmit gas over long distances. In addition, low operating temperatures and strain-based designs will be needed to meet Arctic operating conditions in areas of continuous or discontinuous permafrost. The Mackenzie Gas Project (MGP) has specified 762 mm OD x 16.2 mm WT Grade 550 (APIx80). Although the pipe has a high degree of ductility, material performance is of concern in terms of girth welds and associated heat affected zones. Studies have shown that the weld strength must overmatch the longitudinal strength of the pipe by at least 5 per cent in order to deflect any failure from a crack on the weld fusion line. The weld itself and the HAZ must also demonstrate a high degree of toughness. While proponents of the Alaska gas pipeline wish to use Grade 690 (APIx100) line pipe, full stress capacity tests have yet to be completed for Grade 690 material in the preferred gauge of 19 to 25 mm. Therefore, this paper examined 3 key issues pertaining to the performance of high strength line pipe in strain-based designs. These included girth weld HAZ toughness; work hardening characteristics; and achievement of very high strength levels. It was concluded that much more effort is needed to fully optimize these steels and to translate preliminary laboratory solutions to workable processing technologies. 15 refs., 2 tabs., 8 figs.

  18. High strength hot rolled and aged microalloyed 5%Ni steel

    Directory of Open Access Journals (Sweden)

    A.K. Lis

    2006-08-01

    Full Text Available Purpose: Purpose of this paper was to give information about low temperature strength and impact CharpyVtoughness of low carbon microalloyed 5%Ni bainitic steel after thermomechanical rolling (TMR orthermomechanical controlled processing (TMCP and ageing at different temperatures: 580°C/2 h, 640°C/1hand 680°C/1h.Design/methodology/approach: The tensile strength tests were performed at -196, -60 and 20°C and Charpy Vsamples were broken at -100, -80, -60, -40, -20 and 20°C temperatures. The tensile strength TS, yield strengthYS, elongation A5 and reduction of area RA were established from tensile experiments. After TMCP 16 mm steelplate had YS = 730MPa, TS = 950 MPa, A5 = 22,5% and RA = 61% and impact energy > 50 J at -196°C.Findings: The best combination of mechanical properties; yield strength and Charpy V toughness was achieved forsteel after TMR and ageing 580°C/ 2h; YS = 800MPa, TS = 900 MPa, A5 = 22.5%, at -1000C KVmin.= 110 J.Research limitations/implications: The precise methodology for retained austenite identification and itsamount content determination in the investigated microstructures is still metallographic problem which needsto be resolved.Practical implications: The best combination of yield strength and Charpy V toughness was achieved for steelafter TMR and ageing 580°C/ 2h. At liquid nitrogen temperature ultrahigh strength properties were: YS = 1140MPa, TS = 1280 MPa, A5 = 26%, RA = 55% and KV 122 J at -100°C.Originality/value: The detailed microstructure examination of the steel with optical and mainly scanningtransmission electron microscopy was needed to explain its good properties at very low temperature. TRIP effectwas observed due to the presence of highly alloyed retained austenite in the microstructure. That type of steelmay be used for contemporary military and structural applications working at low temperatures.

  19. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  20. REVIEW AND PROSPECT OF HIGH STRENGTH LOW ALLOY TRIP STEEL

    Institute of Scientific and Technical Information of China (English)

    L. Li; P. Wollants; Y.L. He; B.C. De Cooman; X.C. Wei; Z.Y. Xu

    2003-01-01

    Research status of high strength low alloy TRIP (transformation induced plasticity)steels for automobile structural parts is briefly described. Composition and microstructure factors especially the morphology, size and volume fraction of retained austenite,which largely influence the strength and ductility of the steel, are reviewed and discussed one after another. Modelling of the inter-critical annealing and martempering processes as well as the designing of the TRIP steel aided by commercial software are introduced. Some special aspects of the dynamic mechanical properties of TRIP steel are firstly reported.

  1. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  2. APPROXIMATE MEANS FOR EVALUATING TENSILE STRENGTH OF HIGH POROSITY MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Based on the simplified structure model of high porosity materials, the formulas for approximately evaluating the tensile strength of these materials have been derived from the corresponding deductions taken by means of the relative theories about geometry and mechanics. The results show that, the tensile strength of these materials not only associates with the material sort and production method, but do further have a direct value relationship with the porosity, θ. This value relationship can be specifically expressed by the power of the item (1-θ), and it makes the tensile strength variation display a complicated nonlinear law with the porosity. In addition, the application of those formulas has been investigated with the corresponding experiment on a nickel foam.

  3. Ultra-high Burst Strength of CVD Graphene Membranes

    Science.gov (United States)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  4. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis

    2006-11-01

    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  5. Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite

    Indian Academy of Sciences (India)

    J Rakshit; P K Das

    2002-10-01

    Four compositions of nitride bonded SiC were fabricated with varying particle size of SiC of ∼ 9.67, ∼ 13.79, ∼ 60 and their mixture with Si of ∼ 4.83 particle size. The green density and hence the open porosity of the shapes were varied between 1.83 to 2.09 g/cc and 33.3 to 26.8 vol.%, respectively. The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front. Formation of Si3N4 whisker was also observed. The strength of the mixture composition was maximum.

  6. Recycling of irradiated high-density polyethylene

    Science.gov (United States)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  7. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  8. STUDY ON HIGH MELT STRENGTH POLYPROPYLENE/LOW DENSITY POLYETHYLENE BLENDS EXTRUSION FOAMING BEHAVIOR%高熔体强度聚丙烯/低密度聚乙烯共混体系的挤出发泡行为研究

    Institute of Scientific and Technical Information of China (English)

    刘伟; 王向东

    2011-01-01

    High melt strength polypropylene was blended with low density polyethylene, and the rheology behavior was studied by melt flow rate instrument/torque rheometer, and rheological data was analysed. Then the blends were extrusion foamed with supercritical CO2 as vesicant, foam density and morphology of HMSPP/PE-LD blends were tested by using densimeter and SEM. The result showed that melt elastic of HMSPP was better than that of PE-LD. However, melt elastic of blends were slightly affected when PE-LD content was lower than 50% , blends possessed excellent foamability. Adding PE-LD within certain content to blends would increase cell density of blends. When PE-LD exceed certain content, foaming rate and cell density of foam samples would greatly decrease.%利用熔体流动速率测试仪和转矩流变仪对不同比例的高熔体强度聚丙烯(HMSPP)/低密度聚乙烯(PELD)共混体系的流变行为进行研究,并对共混体系的流变数据进行分析.随后采用超临界CO2作为发泡剂进行了HMSPP/PE-LD共混体系的挤出发泡研究,并通过真密度计和扫描电子显微镜表征了发泡材料的表观密度和泡体结构参数.结果表明,纯HMSPP的熔体弹性优于纯PE-LD,但是共混体系中PE-LD的比例在50%以下时,对共混体系的熔体弹性影响较小,能够保持纯HMSPP较好的可发性.同时少量加入PE-LD能够提高共混体系的泡孔密度,当PE-LD含量过多时,发泡倍率和泡孔密度均出现下降,泡孔分布不均匀.

  9. Path to Efficient Lower Hybrid Current Drive at High Density

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  10. Design of High Compressive Strength Concrete Mix without Additives

    Directory of Open Access Journals (Sweden)

    Akasha, N, M

    2017-02-01

    Full Text Available In this paper, the crashed Basalt and uncrushed granite is used in concrete mixes as coarse aggregate. The selected materials, with high specification using special production techniques, the properties ,the mix design procedure and mix proportion of the high strength concrete (HSC were discussed. Different proportions of Ordinary Portland cement (410,430 and 450 kg/m3 with different crashed Basalt and uncrushed Granite coarse aggregate amount (1120 and 1050 kg/m3 and fine aggregate with fine modulus of 3.65 were used. Eight concrete mixes were prepared: two as control mix for crashed Basalt and uncrushed Granite, three with crashed Basalt and three with uncrushed Granite coarse aggregate with mix amount(410:680:1120,430:610:1050 and 450:550:1050 kg/m3,(cement: fine aggregate: coarse aggregaterespectively. The study showed that the use of granite coarse aggregate in concrete mixes has a clear effect in mix proportion. The compressive strength of concrete was measured at ages of 7, 28 and 56 days and it was found that the granite (Mix3 of (450:550:1050 kg/m3 with w/c of 0.46 give the highest of strength in 28 and 56 days among the abovementioned mixes its 56 and 64 N/mm2 respectively. The paper shows that good results of compressive strength and workability of concrete were obtained when using granite coarse aggregate.

  11. Hydrogen Embrittlement of Automotive Advanced High-Strength Steels

    Science.gov (United States)

    Lovicu, Gianfranco; Bottazzi, Mauro; D'Aiuto, Fabio; De Sanctis, Massimo; Dimatteo, Antonella; Santus, Ciro; Valentini, Renzo

    2012-11-01

    Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.

  12. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  13. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  14. Effect of tension lap splice on the behavior of high strength concrete (HSC beams

    Directory of Open Access Journals (Sweden)

    Ahmed El-Azab

    2014-12-01

    Full Text Available In the recent years, many research efforts have been carried out on the bond strength between normal strength concrete (NSC and reinforcing bars spliced in tension zones in beams. Many codes gave a minimum splice length for tension and compression reinforcement as a factor of the bar diameter depending on many parameters such as concrete strength, steel yield stress, shape of bar end, shape of bar surface and also bar location. Also, codes gave another restriction about the percentage of total reinforcement to be spliced at the same time. Comparatively limited attention has been directed toward the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. HSC has high modulus of elasticity, high density and long-term durability. This research presents an experimental study on the bond between high strength concrete (HSC and reinforcing bars spliced in tension zones in beams. It reports the influence of several parameters on bond in splices. The parameters covered are casting position, splice length as a factor of bar diameter, bar diameter and reinforcement ratio. The research involved tests on sixteen simply-supported beams of 1800 mm span, 200 mm width and 400 mm thickness made of HSC. In each beam, the total tensile steel bars were spliced in the constant moment zone. Crack pattern, crack propagation, cracking load, failure load and mi span deflection were recorded and analyzed to study the mentioned parameters effect.

  15. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  16. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    Science.gov (United States)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress–strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  17. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter syndrome.

    Science.gov (United States)

    Shanbhogue, Vikram V; Hansen, Stinus; Jørgensen, Niklas Rye; Brixen, Kim; Gravholt, Claus H

    2014-11-01

    Although the expected skeletal manifestations of testosterone deficiency in Klinefelter's syndrome (KS) are osteopenia and osteoporosis, the structural basis for this is unclear. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), microarchitecture, and estimated bone strength using high-resolution peripheral quantitative computed tomography (HR-pQCT) in patients with KS. Thirty-one patients with KS confirmed by lymphocyte chromosome karyotyping aged 35.8 ± 8.2 years were recruited consecutively from a KS outpatient clinic and matched with respect to age and height with 31 healthy subjects aged 35.9 ± 8.2 years. Dual-energy X-ray absorptiometry (DXA) and HR-pQCT were performed in all participants, and blood samples were analyzed for hormonal status and bone biomarkers in KS patients. Twenty-one KS patients were on long-term testosterone-replacement therapy. In weight-adjusted models, HR-pQCT revealed a significantly lower cortical area (p < 0.01), total and trabecular vBMD (p = 0.02 and p = 0.04), trabecular bone volume fraction (p = 0.04), trabecular number (p = 0.05), and estimates of bone strength, whereas trabecular spacing was higher (p = 0.03) at the tibia in KS patients. In addition, cortical thickness was significantly reduced, both at the radius and tibia (both p < 0.01). There were no significant differences in indices of bone structure, estimated bone strength, or bone biomarkers in KS patients with and without testosterone therapy. This study showed that KS patients had lower total vBMD and a compromised trabecular compartment with a reduced trabecular density and bone volume fraction at the tibia. The compromised trabecular network integrity attributable to a lower trabecular number with relative preservation of trabecular thickness is similar to the picture found in women with aging. KS patients also displayed a reduced cortical area and thickness at the tibia, which in

  18. Durable high strength cement concrete topping for asphalt roads

    Science.gov (United States)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  19. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F; Clark, Marin K; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  20. Degradation of permeability resistance of high strength concrete after combustion

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hongtao KAO; Chunxiang QIAN

    2008-01-01

    To evaluate the remaining durability of con-crete materials after combustion, the permeability of high strength concrete (HSC) after combustion was studied. The transport behavior of chloride ion, water and air in concrete after combustion and the effect of temperature, strength grade, and aggregation on the permeability of HSC after combustion are investigated by chloride ion permeability coefficient (Dc), water permeability coef-ficient (Dw) and air permeability coefficient (Da). The experiment results show that all three permeability coeffi-cients commendably reflect changes of permeability. The permeability coefficient increases with the evaluation tem-perature. After the same temperature, the permeability coefficient of HSC is lower than that of normal strength concrete (NSC). However, the degree of degradation of permeability coefficient of HSC is greater than that of NSC. The permeability resistance of HSC containing limestone is better than that of HSC containing basalt. Combining changes of compressive strength and per-meability, the remaining durability of concrete materials after combustion is appropriately evaluated.

  1. Optimising mechanical strength and bulk density of dry ceramic bodies through mixture design

    Directory of Open Access Journals (Sweden)

    Correia, S. L.

    2005-02-01

    Full Text Available In industrial practice, it is desirable to be able to predict, in an expeditious way, what the effects of a change in raw materials or the proportions thereof might be in the various processing steps towards the final product. When the property of interest is basically determined by the combination (or mixture of raw materials, an optimisation methodology specific to the design of mixture experiments can be successfully used. In the present study, dry bending strength and bulk density were selected as the properties to model, given the simplicity of their experimental determination and because they are frequently used as quality control parameter in the development and manufacture stages of floor and wall ceramic tiles. Ten formulations of three raw materials (a clay mixture, potash feldspar and quartz sand were processed in the laboratory under fixed conditions, similar to those used in the ceramics industry, and characterised. The use of this methodology enabled the calculation of valid regression models (equations relating dry bending strength and bulk density with the contents, in the starting mixture, of the particular raw materials used.

    En el trabajo industrial es deseable poder predecir de manera efectiva, los efectos que los cambios en las materias primas o en sus proporciones pueden ejercer sobre las variables del proceso y como estos afectan al producto final. Cuando la propiedad de interés depende preferentemente de la mezcla de las materias primas, una metodología específica de optimización para el diseño de los experimentos de mezclas puede ser empleada con éxito. En este trabajo, la resistencia mecánica en seco y la densidad se emplearon como los parámetros de control en el desarrollo y producción de azulejos cerámicos para pavimento y revestimiento. Diez formulaciones a partir de tres materias primas ( una mezcla de arcilla, feldespato potásico y arena de cuarzo fueron procesadas en el laboratorio bajo

  2. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  3. Grain refinement of high strength steels to improve cryogenic toughness

    Science.gov (United States)

    Rush, H. F.

    1985-01-01

    Grain-refining techniques using multistep heat treatments to reduce the grain size of five commercial high-strength steels were investigated. The goal of this investigation was to improve the low-temperature toughness as measured by Charpy V-notch impact test without a significant loss in tensile strength. The grain size of four of five alloys investigated was successfully reduced up to 1/10 of original size or smaller with increases in Charpy impact energy of 50 to 180 percent at -320 F. Tensile properties were reduced from 0 to 25 percent for the various alloys tested. An unexpected but highly beneficial side effect from grain refining was improved machinability.

  4. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  5. Nanotechnology for Synthetic High Density Lipoproteins

    Science.gov (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  6. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  7. Seismic Performance of High Strength Steel Building Frames

    OpenAIRE

    2014-01-01

    Tese de doutoramento em Engenharia Civil, no ramo de Construção Metálica e Mista, apresentada ao Departamento de Engenharia Civil da Faculdade de Ciências e Tecnologia da Universidade de Coimbra In steel building frames under seismic action, the members designed to remain elastic during an earthquake are responsible for the robustness of the structure and prevention of collapse, being characterised by high strength demands. On the other hand, seismic resistant building frames designed as ...

  8. Structural optimization of 3D-printed synthetic spider webs for high strength

    Science.gov (United States)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  9. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  10. High-density avalanche chambers for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Manfrass, P.; Enghardt, W.; Fromm, W.D.; Wohlfarth, D.; Hohmuth, K.

    1988-12-15

    A positron tomograph for radiopharmaceutical and medical research is under construction. In its final stage it will cover six high-density avalanche chambers (HIDAC) in a hexagonal arrangement. Each detector with a sensitive area of 50x28 cm/sup 2/ will consist of a stack of four pairs of multihole photon-to-electron converters with a multiwire proportional counter (MWPC) in between. An experimental investigation of detector properties as time and spatial resolutions as well as detector efficiency in dependence to converter structure, electric field strength and counting gas mixture preceded the final design of these detectors. Results of these studies are outlined. Furthermore, longitudinal tomograms taken with a stationary test camera are presented.

  11. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin.

    Science.gov (United States)

    Joves, Gerardo José; Inoue, Go; Nakashima, Syozi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    This study aimed to investigate an artificial caries-affected dentin (ACAD) model for in vitro bonding studies in comparison to natural caries-affected dentin (NCAD) of human teeth. ACAD was created over 7 days in a demineralizing solution. Mineral density (MD) at different depth levels (0-150 µm) was compared between NCAD and ACAD by transverse microradiography. Micro-tensile bond strengths (µTBS) of two two-step self-etch adhesives to sound dentin, NCAD and ACAD were evaluated. Caries-affected dentin type was not a significant factor when comparing MD at different lesion levels (p>0.05). Under SEM, the dentinal tubules appeared occluded with crystal logs 1-2 µm in thickness in the NCAD; whereas they remained open in the ACAD. The µTBS to caries-affected dentin was lower than sound dentin, but was not affected by the type of caries (p>0.05). In spite of their different morphologies, the ACAD model showed similar MD and µTBS compared to NCAD.

  12. Local strain energy density to assess the multiaxial fatigue strength of titanium alloys

    Directory of Open Access Journals (Sweden)

    Filippo Berto

    2016-07-01

    Full Text Available The present paper investigates the multiaxial fatigue strength of sharp V-notched components made of titanium grade 5 alloy (Ti-6Al-4V. Axisymmetric notched specimens have been tested under combined tension and torsion fatigue loadings, both proportional and non-proportional, taking into account different nominal load ratios (R = -1 and 0. All tested samples have a notch root radius about equal to 0.1 mm, a notch depth of 6 mm and an opening angle of 90 degrees. The fatigue results obtained by applying multiaxial loadings are discussed together with those related to pure tension and pure torsion experimental fatigue tests, carried out on both smooth and notched specimens at load ratios R ranging between -3 and 0.5. Altogether, more than 250 fatigue results (19 S-N curves are examined, first on the basis of nominal stress amplitudes referred to the net area and secondly by means of the strain energy density averaged over a control volume embracing the V-notch tip. The effect of the loading mode on the control volume size has been analysed, highlighting a wide difference in the notch sensitivity of the considered material under tension and torsion loadings. Accordingly, the control radius of the considered titanium alloy (Ti-6Al-4V is found to be strongly affected by the loading mode.

  13. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    Science.gov (United States)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  14. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V. (Lawrence Livermore Lab., CA); Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  15. Engineered Cooling Process for High Strength Ductile Iron Castings

    Science.gov (United States)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  16. Electricity generation at high ionic strength in microbial fuel cell by a newly isolated Shewanella marisflavi EP1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiexun [Univ. of Science and Technology of China, Hefei (China). Hefei National Lab. for Physical Sciences at Microscale and School of Life Sciences; State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources; Sun, Baolin [Univ. of Science and Technology of China, Hefei (China). Hefei National Lab. for Physical Sciences at Microscale and School of Life Sciences; Zhang, Xiaobo [Zhejiang Univ., Hangzhou (China). Coll. of Life Sciences; State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources

    2010-01-15

    Increasing the ionic strength of the electrolyte in a microbial fuel cell (MFC) can remarkably increase power output due to the reduction of internal resistance. However, only a few bacterial strains are capable of producing electricity at a very high ionic strength. In this report, we demonstrate a newly isolated strain EP1, belonging to Shewanella marisflavi based on polyphasic analysis, which could reduce Fe(III) and generate power at a high ionic strength of up to 1,488 mM (8% NaCl) using lactate as the electron donor. Using this bacterium, a measured maximum power density of 3.6 mW/m{sup 2} was achieved at an ionic strength of 291 mM. The maximum power density was increased by 167% to 9.6 mW/m{sup 2} when ionic strength was increased to 1,146 mM. However, further increasing the ionic strength to 1,488 mM resulted in a decrease in power density to 5.2 mW/m{sup 2}. Quantification of the internal resistance distribution revealed that electrolyte resistance was greatly reduced from 1,178 to 50 {omega} when ionic strength increased from 291 to 1,488 mM. These results indicate that isolation of specific bacterial strains can effectively improve power generation in some MFC applications. (orig.)

  17. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  18. Freezing and Thawing Durability of Very High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Sameer Hamoush

    2011-01-01

    Full Text Available Problem statement: The newly developed Very High Strength Concrete (VHSC, having compressive strengths of 29 ksi and flexural strengths of 6 ksi, represents a breakthrough in concrete technology. Study to further enhance the properties of this new concrete is continuing. Approach: The objective of this study is to investigate the effect of exposing Very High Strength Concrete (VHSC specimens to rapid freeze/thaw cycles. Twenty one specimens were tested according to the Standards of the American Society for Testing and Materials ASTM C215, ASTM C666 and ASTM C78. Results: One hundred freeze/thaw cycles were performed on the VHSC specimens. Change in specimen’s dimensions and material’s properties were recorded at zero, forty, seventy and one hundred cycles. Dimensions and properties considered were: dimension of cross section, length, weight, Dynamic Moduli, Poisson’s Ratio, durability factor and Modulus of Rupture. Conclusion/Recommendations: The test results indicated that VHSC is good freeze-thaw resistance (durability factor > 85% and can avoid freeze/thaw damage. Freeze- thaw cycling did not significantly affect VHSC specimens’ cross sectional dimensions, length, or Poisson’s Ratio. However, there was a decrease in the specimens’ weight with the increase in number of freeze/thaw cycles, but the decrease was very slim indicating little or no deterioration has occur. Moreover, the fine voids exist in VHSC greatly lower the freezing point of any trapped water, making the material less susceptible to Freeze- Thaw damage.

  19. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  20. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  1. Design aspects of high strength steel welded structures improved by high frequency mechanical impact (HFMI) treatment

    OpenAIRE

    Yildirim, Halid Can

    2013-01-01

    This doctoral study is concerned with the fatigue strength of welded steel structures which are improved by high frequency mechanical impact (HFMI) treatment. A comprehensive evaluation of 417 HFMI test data obtained from the literature and 24 HFMI fatigue data tested as a part of this work are studied. According to the statistical analyses an S-N slope of five (5) is proposed. A yield strength correction procedure which relates the material yield strength (fy) to fatigue is presented and ver...

  2. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    Science.gov (United States)

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  3. Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured α-brass

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N.K.; Roy, B.; Das, J., E-mail: j.das@metal.iitkgp.ernet.in

    2015-01-05

    Highlights: • Nanotwinned α-brass with varying lamellae thickness (28–170 nm), has been produced by cryorolling. • Equal thickness and uniform distribution of nanotwins increase the hardness homogeneity. • Formation of ∼10 nm subgrains within preexisting twin lamellae causes the refinement. • Flow stress has been predicted considering dislocation density, twin spacing and crystallite size. - Abstract: Nanotwinned α-brass (Cu–30 wt.% Zn) with varying lamellae thickness in the range of 28–170 nm, has been produced by cryorolling (CR). The effect of CR strain (ε{sub CR} = 0.2–0.95) on the evolution of homogeneity and refinement in terms of twin lamellae thickness, twin spacing, and their distribution, have been studied using high-resolution transmission electron microscopy (HRTEM) and microhardness measurements. Analysis of X-ray peak broadening has shown that the crystallite size reduces down to 20 nm at ε{sub CR} = 0.95, which scales with the subgrain size in preexisting twin lamellae, as revealed under HRTEM. The effect of dislocation density and crystallite size on the strength of nanotwinned brass has been correlated using an analytical model.

  4. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

    Directory of Open Access Journals (Sweden)

    Hou-Feng Zheng

    2012-07-01

    Full Text Available We aimed to identify genetic variants associated with cortical bone thickness (CBT and bone mineral density (BMD by performing two separate genome-wide association study (GWAS meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466 located in the WNT16 gene (7q31, associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9. This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg, also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12, and -0.16 SD per G allele, P = 1.2 × 10(-15, respectively. Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9, with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6 and rs2707466: OR = 1.22, P = 7.2 × 10(-6. We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/- mice had 27% (P<0.001 thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13strength, and risk of fracture.

  5. Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Albano, C.; Davidson, E.; Poleo, R. [Universidad Central de Venezuela, Caracas (Venezuela). Escuela de Quimica; Gonzalez, J.; Ichazo, M. [Universidad Simon Bolivar, Dept. de Mecanica, Caracas (Venezuela); Chipara, M. [Research Institute for Electrotechnics, Bucharest (Romania)

    2001-04-01

    The effect of the gamma-irradiation on the mechanical properties of the composites, Polypropylene (PP), PP+high density Polyethylene (HDPE), PP+ HDPE+wood flour, where HDPE is virgin and recycled, was studied. This paper discusses the behavior of the composites after exposure to various doses of gamma irradiation (1-7 MRads) in the presence of oxygen. The dependence of mechanical properties on the integral dose for a constant dose rate of 0.48 MRads/h confirms the influence of the irradiation. Strong effects on the elongation at break and break strength is noticed. The mathematical analysis suggests for the PP+r-HDPE a bimolecular process of the elongation at break. On the order hand, for the PP+HDPE a complex process is represented for a three exponential equation. (orig.)

  6. Bone Mineral Density and Respiratory Muscle Strength in Male Individuals with Mental Retardation (with and without Down Syndrome)

    Science.gov (United States)

    da Silva, Vinicius Zacarias Maldaner; Barros, Jonatas de Franca; de Azevedo, Monique; de Godoy, Jose Roberto Pimenta; Arena, Ross; Cipriano, Gerson, Jr.

    2010-01-01

    The purpose of this study was to assess the respiratory muscle strength (RMS) in individuals with mental retardation (MR), with or without Down Syndrome (DS), and its association with bone mineral density (BMD). Forty-five male individuals (15 with DS, 15 with mental retardation (MR) and 15 apparently healthy controls), aged 20-35, participated in…

  7. Production of high melt strength polypropylene by gamma irradiation

    Science.gov (United States)

    Lugão, A. B.; Artel, B. W. H.; Yoshiga, A.; Lima, L. F. C. P.; Parra, D. F.; Bueno, J. R.; Liberman, S.; Farrah, M.; Terçariol, W. R.; Otaguro, H.

    2007-11-01

    High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international producers of polypropylene. Therefore, BRASKEM, the leading Brazilian PP producer, together with EMBRARAD, the leading Brazilian gamma irradiator, and the IPEN (Institute of Nuclear Energy and Research) worked to develop a national technology for the production of HMS-PP. One of the effective approaches to improve melt strength and extensibility is to add chain branches onto polypropylene backbone using gamma radiation. Branching and grafting result from the radical combinations during irradiation process. Crosslinking and main chain scission in the polymer structure are also obtained during this process. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene with two different monomers, Tri-allyl-isocyanurate (TAIC) and Tri-methylolpropane-trimethacrylate (TMPTMA), with concentration ranging from 1.5 to 5.0 mmol/100 g of polypropylene. These samples were irradiated with a 60Co source at dose of 20 kGy. It used two different methods of HMS-PP processing. The crosslinking of modified polymers was studied by measuring gel content melt flow rate and rheological properties like melt strength and drawability. It was observed that the reaction method and the monomer type have influenced the properties. However, the concentration variation of monomer has no effect.

  8. Nanobiotechnology applications of reconstituted high density lipoprotein.

    Science.gov (United States)

    Ryan, Robert O

    2010-12-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  9. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  10. Galaxy interactions II: High density environments

    CERN Document Server

    Alonso, Sol; Padilla, Nelson; Lambas, Diego G

    2011-01-01

    With the aim to assess the role of dense environments in galaxy interactions, properties we present an analysis of close galaxy pairs in groups and clusters, obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We identified pairs that reside in groups by cross-correlating the total galaxy pair catalogue with the SDSS-DR7 group catalogue from Zapata et al. (2009). We classify pair galaxies according to the intensity of interaction. We analysed the effect of high density environments on different classes of galaxy-galaxy interactions and we have also studied the impact of the group global environment on pair galaxies. We find that galaxy pairs are more concentrated towards the group centres with respect to the other group galaxy members, and disturbed pairs show a preference to contain the brightest galaxy in the groups. The color-magnitude relation exhibits significant differences between pair galaxies and the control sample, consisting in color tails with a clear excess of extremely blue and...

  11. Strangeness production in high density baryon matter

    CERN Document Server

    Ganz, R E

    1999-01-01

    Strangeness production in heavy-ion collisions, when compared to proton proton collisions, is potentially a sensitive probe for collective energy deposition and therefore for reaction mechanisms in general. It may therefore provide insight into possible QGP formation in dense nuclear matter. To establish an understanding of the observed yields, a systematic study of high density baryon matter at different beam energies is essential. This might also reveal possible discontinuities in the energy dependence of the reaction mechanism. We present preliminary results for kaon production in Au+Au collisions at beam kinetic energies of 6, 8, and 10.7 GeV/u obtained by the E917 experiment at the AGS (BNL). These measurements complement those carried out by the E866 collaboration at 2, 4, and 10.7 GeV/u with a significantly enlarged data sample. In both experiments a large range of rapidities was covered by taking data at different angular settings of the magnetic spectrometer.

  12. High-density electroencephalography developmental neurophysiological trajectories.

    Science.gov (United States)

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. © The Authors. Journal compilation © 2015 Mac Keith Press.

  13. Overheating temperature of 7B04 high strength aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Feng-hua; LI Nian-kui; TIAN Ni; SUN Qiang; LIU Xian-dong; ZHAO Gang

    2008-01-01

    The microstructure and overheating characteristics of the direct chill semicontinuous casting ingot of 7B04 high strength aluminum alloy, and those after industrial homogenization treatment and multi-stage homogenization treatments, were studied by differential scanning calorimetry(DSC), optical microscopy(OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDX). The results show that the microstructure of direct chill semicontinuous casting ingot of the 7B04 alloy contains a large number of constituents in the form of dendritic networks that consist of nonequilibrium eutectic and Fe-containing phases. The nonequilibrium eutectic contains Al, Zn, Mg and Cu, and the Fe-containing phases include two kinds of phases, one containing Al, Fe, Mn and Cu, and the other having Al, Fe, Mn, Cr, Si and Cu. The melting point of the nonequilibrium eutectic is 478 ℃ for the casting ingot of the 7B04 alloy which is usually considered as its overheating temperature. During industrial homogenization treatment processing at 470 ℃, the nonequilibrium eutectic dissolves into the matrix of this alloy partly, and the remainder transforms into Al2CuMg phase that cannot be dissolved into the matrix at that temperature completely. The melting point of the Al2CuMg phase which can dissolve into the matrix completely by slow heating is about 490 ℃. The overheating temperature of this high strength aluminum alloy can rise to 500-520 ℃. By means of special multi-stage homogenization, the temperature of the homogenization treatment of the ingot of the 7B04 high strength aluminum alloy can reach 500 ℃ without overheating.

  14. 14 CFR 93.123 - High density traffic airports.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  15. High-altitude atomic nitrogen densities

    Science.gov (United States)

    Oran, E. S.; Strobel, D. F.; Mauersberger, K.

    1978-01-01

    Theoretical calculations of the seasonal and diurnal variations of atomic nitrogen are compared with measurements made by the open source neutral mass spectrometer on the AE-C satellite. With the simultaneous measurements of molecular nitrogen and atomic oxygen densities as input, model calculations of odd nitrogen densities predict the same trends in atomic nitrogen as those observed. From these comparisons it is inferred that horizontal transport significantly reduces the diurnal variation of atomic nitrogen. Estimates are given of the sensitivity of atomic nitrogen densities to variations in the photoelectron flux, the neutral temperatures, and the neutral winds.

  16. Performances of the High Strength Low Heat Pump Concrete (HLPC)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of mineral admixtures on fluidity,mechanical and hydrational exothermic behavior were studied.The results show that,double-adding ways,i e,fly ash and slag were added at the same time,not only improves the fluidity of fresh concrete with low W/B and compensates the lower early compressive strength of harden concrete caused by high adding amount of fly ash, but also greatly reduces the highest temperature rise, exothermic rate and total heat liberation of 3 day of binder pastes in HLPC, and postponed the arrival time of the highest temperature rise. HLPC was prepared and applied to project practice successfully.

  17. Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures

    Science.gov (United States)

    Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.

    2009-12-01

    The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible

  18. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  19. Behavior of high strength concrete columns under eccentric loads

    Directory of Open Access Journals (Sweden)

    Hany A. Kottb

    2015-04-01

    Full Text Available In recent decades, high strength concrete (HSC has been widely accepted by designers and contractors to be used in concrete structures, especially in high compressive stress elements. The research aims to study the behavior of high strength concrete columns under eccentric compression using experimental and analytical programs. The research is divided into two main parts; the first part is an experimental investigation for ten square columns tested at the Cairo University Concrete Research Laboratory. The main studied parameters were eccentricity of the applied load, column slenderness ratio; and ratios of longitudinal and transverse reinforcement. The second part is analytical analysis using nonlinear finite element program ANSYS11 on nineteen columns (ten tested square columns and nine rectangular section columns to study the effect of the previous parameters on the column ultimate load, mid-height displacement, and column cracking patterns. The analyzed columns revealed a good agreement with the experimental results with an average difference of 16% and 17% for column ultimate load and mid-height displacement respectively. Results showed an excellent agreement for cracking patterns. Predictions of columns capacities using the interaction diagrams based on ACI 318-08 stress block parameters indicated a safe design procedure of HSC columns under eccentric compression, with ACI 318-08 being more conservative for moderate reinforced HSC columns.

  20. Alternative Approaches to High Energy Density Fusion

    Science.gov (United States)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  1. High-Strength and High-Plasticity TWIP Steel for Modern Vehicle

    Institute of Scientific and Technical Information of China (English)

    Zhenli MI; Di TANG; Ling YAN; Jin GUO

    2005-01-01

    In this paper new high-strength and high-plasticity twinning induced plasticity (TWIP) steel for modern automobile body was investigated. Some basic experimental results were given. The results indicate the TWlP steel has excellent properties. It exhibits high ultimate tensile strength (600~1100 MPa) and extremely large elongation of 60% to 90%. In the future it would be capable of satisfying the requirements of new generation of vehicle.

  2. High-resolution dipole (e, e) study for optical oscillator strengths of helium

    Institute of Scientific and Technical Information of China (English)

    凤任飞; 杨炳忻; 武淑兰; 邢士林; 张芳; 钟志萍; 郭学哲; 徐克尊

    1996-01-01

    The optical oscillator strengths of helium have been studied by a high-resolution dipole (e, e) method on the recently built high-resolution fast-electron energy-loss spectrometer. The difficulties of optical measurement have been avoided and the experimental precision has been improved by using this method. The optical oscillator strength density spectrum corresponding to the 1S n’P transitions and ionization of helium has been measured in the energy loss range of 21 - 26 eV. And the same work corresponding to the autoionization resonance region has been done in energy loss ranges of 59-67 eV and 69-74 eV. The above results have also been compared with those of the previous work.

  3. High Pressure Strength Study on NaCl

    Science.gov (United States)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  4. Effects of high order deformations on the strength of planar lattice materials

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Yihui Zhang; Daining Fang

    2008-01-01

    Lattice materials have been attractive over the last decade for use as load-carrying structures, energy absorbing elements and heat exchanging structures because of their excellent mechanical properties and multifunctional charac-ters. However, the quantitative analysis accounting for high order deformations upon the collapse of lattice materials, which is important for their applications, has not been repor-ted. An analytical investigation of yield surfaces with res-pect to the high order deformations was carried out for two typical planar lattice materials: triangular and Kagome lat-tices separately. The analytical results were validated by the finite element method (FEM) simulations. It was found that the effect of high order deformation on the yield strength increases with the relative density. The bending effect of the Kagome lattice is more obvious than that of the triangular one with the same relative density and stress state. The yield strength of the Kagome lattice calculated by neglecting the bending effect overestimates the result by more than 10% when the relative density is higher than about 11.1%, which may not be ignored in engineering applications. The yiel-ding surfaces of the two lattice materials demonstrated in the paper also confirm the analytical results.

  5. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  6. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2016-01-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing...... was removed by either burning at 565◦C or soxhlet extraction with acetone. It was found that the density and the stiffness increased after removing the sizing by the two removal treatments whereas the diameter did not change significantly. The strength of the fibres decreased after burning as the sizing......, protecting against water and fibre-fibre damage, had been removed. The strength of the fibres after extraction was not significantly different from the strength of the pristine fibres despite removing the sizing. This indicates that the bonded part of sizing is still protecting the glass fibre surface....

  7. Density and Strength of Ties in Innovation Networks : A Competence and Governance View

    NARCIS (Netherlands)

    Nooteboom, B.; Gilsing, V.A.

    2005-01-01

    Taking into account both competence and governance issues, and six dimensions of tie strength, this article argues that in networks for exploration there are good reasons, counter to the thesis of the 'strength of weak ties', for a dense structure of ties that are strong in most dimensions.By contra

  8. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  9. High Density Lipoprotein Metabolism in Man

    Science.gov (United States)

    Blum, Conrad B.; Levy, Robert I.; Eisenberg, Shlomo; Hall, Marshall; Goebel, Robert H.; Berman, Mones

    1977-01-01

    The turnover of 125I-high density lipoprotein (HDL) was examined in a total of 14 studies in eight normal volunteers in an attempt to determine the metabolic relationship between apolipoproteins A-I (apoA-I) and A-II (apoA-II) of HDL and to define further some of the determinants of HDL metabolism. All subjects were first studied under conditions of an isocaloric balanced diet (40% fat, 40% carbohydrate). Four were then studied with an 80% carbohydrate diet, and two were studied while receiving nicotinic acid (1 g three times daily) and ingesting the same isocaloric balanced diet. The decay of autologous 125I-HDL and the appearance of urinary radioactivity were followed for at least 2 wk in each study. ApoA-I and apoA-II were isolated by Sephadex G-200 chromatography from serial plasma samples in each study. The specific activities of these peptides were then measured directly. It was found that the decay of specific activity of apoA-I and apoA-II were parallel to one another in all studies. The mean half-life of the terminal portion of decay was 5.8 days during the studies with a balanced diet. Mathematical modeling of the decay of plasma radioactivity and appearance of urinary radioactivity was most consistent with a two-compartment model. One compartment is within the plasma and exchanges with a nonplasma component. Catabolism occurs from both of these compartments. With a balanced isocaloric diet, the mean synthetic rate for HDL protein was 8.51 mg/kg per day. HDL synthesis was not altered by the high carbohydrate diet and was only slightly decreased by nicotinic acid treatment. These perturbations had effects on HDL catabolic pathways that were reciprocal in many respects. With an 80% carbohydrate diet, the rate of catabolism from the plasma compartment rose by a mean of 39.1%; with nicotinic acid treatment, it fell by 42.2%. Changes in the rate of catabolism from the second compartment were generally opposite those in the rate of catabolism from the plasma

  10. EFFECT OF CROSSLINK DENSITY ON THE HIGH PRESSURE CRYSTALLIZATION OF UHMWPE

    Science.gov (United States)

    Oral, Ebru; Beckos, Christine Godleski; Ghali, Bassem W.; Lozynsky, Andrew J.; Muratoglu, Orhun K.

    2010-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is a bearing surface material for total joint implants. It is radiation cross-linked for high wear resistance and is melted or treated with vitamin E for oxidative stability. We investigated high pressure crystallization (HPC) of irradiated UHMWPE as an alternative method to improve the mechanical strength while stabilizing the residual free radicals from radiation crosslinking. HPC of uncross-linked UHMWPE has resulted in the formation of extended chain crystals and increased crystallinity, leading to improved strength. We hypothesized that increased cross-link density would hinder crystallization during HPC due to decreased chain mobility. Therefore, we investigated the crystalline structure and tensile mechanical properties of high pressure crystallized 25-, 65- and 100-kGy irradiated UHMWPE. We also determined free radical content and wear. The strength of 25- and 65-kGy irradiated UHMWPEs was improved by HPC with increased crystallinity and crystal size. 100-kGy irradiated UHMWPE did not show improved strength, supporting our hypothesis that decreased chain mobility would hinder crystal formation and strength improvement. None of the HPC irradiated UHMWPEs contained detectable free radicals and their wear properties were maintained, suggesting oxidative and mechanical stability in the long term. Therefore, HPC can be used effectively for imparting oxidative stability while strength improvement can be achieved for irradiated UHMWPE with low to moderate crosslink density. PMID:19213055

  11. Experimental investigation of bond strength under high loading rates

    Science.gov (United States)

    Michal, Mathias; Keuser, Manfred; Solomos, George; Peroni, Marco; Larcher, Martin; Esteban, Beatriz

    2015-09-01

    The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw) and the Joint Research Centre (JRC) in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  12. Strength study of carbon dioxide under high pressures

    Science.gov (United States)

    Kaci, L.; Shieh, S. R.; Kiefer, B.

    2011-12-01

    Carbon dioxide (CO2) is one of the greenhouse gases that can be readily found in the Earth's atmosphere and possibly inside the Earth. The strength and elasticity study of carbon dioxide (CO2) under high pressures is important to understand the rheological behavior of CO2 that may be relevant to the CO2 storage issue within the Earth and also the evolution of other planets. Quantitative measurements of the strength of CO2 were achieved in a diamond anvil cell using x-ray diffraction in a radial geometry. CO2 sample was cryogenically loaded into a beryllium gasket and a thin foil of gold about 20 x 20 um2 was placed at the center of the gasket hole to serve as a pressure standard. The x-ray diffraction data were collected at beamline X17C of National Synchrotron Light Source, Brookhaven National Laboratory. We have determined the strength using three different methods. We analyze the peak broadening measurements in the axial direction, peak shifts in radial direction associated with lattice strains theory and also we measured pressure gradient of the CO2 under stress using ruby florescence method. Our results show that the ratios of differential stress to shear modulus are ranging from 0.006(5) to 0.04(18), exhibiting a positive slope within the applied pressure to 12 GPa. The differential stress was calculated as 0.029(3)-0.224(28) GPa, with the inputs of shear module from theoretical calculations. Our differential stress values are close to those of argon data at low pressures. In addition, our results show no pressure gradient of CO2 below 20 GPa. This fact suggests that up to 20GPa the differential stress supported by CO2 is mainly arising from elastic deformation. This is also supported by the linear positive trend of differential strain demonstrating the elastic regime up to 12 GPa.

  13. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  14. Guidelines for Stretch Flanging Advanced High Strength Steels

    Science.gov (United States)

    Sriram, S.; Chintamani, J.

    2005-08-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  15. Design of Reforma 509 with High Strength Steel

    Science.gov (United States)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  16. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  17. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility

    Science.gov (United States)

    Ye, Chang; Suslov, Sergey; Lin, Dong; Liao, Yiliang; Cheng, Gary J.

    2014-06-01

    Nanocrystalline metallic materials prepared by severe plastic deformation often possess high strength but low ductility due to the low dislocation accumulation capacity of the nanograins. Here, we report a unique process, namely, cryogenic laser shock peening (CLSP), to generate gradient nanotwinned microstructure that leads to high strength while preserving the ductility. It was observed that gradient structure was generated in copper. Near the top surface, nanocrystalline with high dense nanotwins have been observed; with the depth increasing, the fraction of the twin boundaries reduces and more heavily dislocated subgrains are observed. It has been demonstrated that CLSP can significantly improve material strength while preserving the ductility. The mechanism of the formation of gradient microstructure and high dense nanotwins near the surface was discussed. The reason behind the improvement in strength and ductility was investigated.

  18. Model-free analysis for large proteins at high magnetic field strengths.

    Science.gov (United States)

    Chang, Shou-Lin; Hinck, Andrew P; Ishima, Rieko

    2007-08-01

    Protein backbone dynamics is often characterized using model-free analysis of three sets of (15)N relaxation data: longitudinal relaxation rate (R1), transverse relaxation rate (R2), and (15)N-{H} NOE values. Since the experimental data is limited, a simplified model-free spectral density function is often used that contains one Lorentzian describing overall rotational correlation but not one describing internal motion. The simplified spectral density function may be also used in estimating the overall rotational correlation time, by making the R2/R1 largely insensitive to internal motions, as well as used as one of the choices in the model selection protocol. However, such approximation may not be valid for analysis of relaxation data of large proteins recorded at high magnetic field strengths since the contribution to longitudinal relaxation from the Lorentzian describing the overall rotational diffusion of the molecule is comparably small relative to that describing internal motion. Here, we quantitatively estimate the errors introduced by the use of the simplified spectral density in model-free analysis for large proteins at high magnetic field strength.

  19. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  20. Observable to explore high density behaviour of symmetry energy

    CERN Document Server

    Sood, Aman D

    2011-01-01

    We aim to see the sensitivity of collective transverse in-plane flow to symmetry energy at low as well as high densities and also to see the effect of different density dependencies of symmetry energy on the same.

  1. Synchrotron radiation absorber for high density loads

    Science.gov (United States)

    Anashin, V. V.; Kuzminych, V. S.; Trakhtenberg, E. M.; Zholents, A. A.

    1991-10-01

    A design of a special synchrotron radiation absorber for the storage ring VEPP-4M is presented. The density of the synchrotron radiation power on the absorber surface is up to 500 W/mm 2. The absorber is made from a beryllium plate, brazed inside to the copper vacuum chamber, which is intensively water-cooled from outside.

  2. Research on Stress and Strength of High Strength Reinforced Concrete Drilling Shaft Lining in Thick Top Soils

    Institute of Scientific and Technical Information of China (English)

    YAO Zhi-shu; CHANG Hua; RONG Chuan-xin

    2007-01-01

    High strength reinforced concrete drilling shaft linings have been adopted to solve the difficult problem of supporting coal drilling shafts penetrating through thick top soils. Through model experiments the stress and strength of such shaft linings are studied. The test results indicate that the load bearing capacity of the shaft lining is very high and that the main factors affecting the load bearing capacity are the concrete strength, the ratio of lining thickness to inner radius and the reinforcement ratio. Based on the limit equilibrium conditions and the strength theory of concrete under multi-axial compressive stressed state, a formula for calculating the load-bearing capacity of a high strength reinforced concrete shaft lining was obtained. Because the concrete in a shaft lining is in a multi-axial compressive stress state the compressive strength increases to a great extent compared to uni-axial loading. Based on experiment a formula for the gain factor in compressive strength was obtained: it can be used in the structural design of the shaft lining. These results have provided a basis for sound engineering practice when designing this kind of shaft lining structure.

  3. Irisin levels are lower in young amenorrheic athletes compared with eumenorrheic athletes and non-athletes and are associated with bone density and strength estimates.

    Directory of Open Access Journals (Sweden)

    Vibha Singhal

    Full Text Available Irisin and FGF21 are novel hormones implicated in the "browning" of white fat, thermogenesis, and energy homeostasis. However, there are no data regarding these hormones in amenorrheic athletes (AA (a chronic energy deficit state compared with eumenorrheic athletes (EA and non-athletes. We hypothesized that irisin and FGF21 would be low in AA, an adaptive response to low energy stores. Furthermore, because (i brown fat has positive effects on bone, and (ii irisin and FGF21 may directly impact bone, we hypothesized that bone density, structure and strength would be positively associated with these hormones in athletes and non-athletes. To test our hypotheses, we studied 85 females, 14-21 years [38 AA, 24 EA and 23 non-athletes (NA]. Fasting serum irisin and FGF21 were measured. Body composition and bone density were assessed using dual energy X-ray absorptiometry, bone microarchitecture using high resolution peripheral quantitative CT, strength estimates using finite element analysis, resting energy expenditure (REE using indirect calorimetry and time spent exercising/week by history. Subjects did not differ for pubertal stage. Fat mass was lowest in AA. AA had lower irisin and FGF21 than EA and NA, even after controlling for fat and lean mass. Across subjects, irisin was positively associated with REE and bone density Z-scores, volumetric bone mineral density (total and trabecular, stiffness and failure load. FGF21 was negatively associated with hours/week of exercise and cortical porosity, and positively with fat mass and cortical volumetric bone density. Associations of irisin (but not FGF21 with bone parameters persisted after controlling for potential confounders. In conclusion, irisin and FGF21 are low in AA, and irisin (but not FGF21 is independently associated with bone density and strength in athletes.

  4. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  5. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  6. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-12

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  7. High density and high temperature plasmas in Large Helical Device

    Science.gov (United States)

    Komori, Akio

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than ~ 1 × 1021 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  8. High density and high temperature plasmas in Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio, E-mail: komori@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than {approx} 1 x 10{sup 21} m{sup -3} is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is {approx} 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  9. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  10. A high-specific-strength and corrosion-resistant magnesium alloy

    Science.gov (United States)

    Xu, Wanqiang; Birbilis, Nick; Sha, Gang; Wang, Yu; Daniels, John E.; Xiao, Yang; Ferry, Michael

    2015-12-01

    Ultra-lightweight alloys with high strength, ductility and corrosion resistance are desirable for applications in the automotive, aerospace, defence, biomedical, sporting and electronic goods sectors. Ductility and corrosion resistance are generally inversely correlated with strength, making it difficult to optimize all three simultaneously. Here we design an ultralow density (1.4 g cm-3) Mg-Li-based alloy that is strong, ductile, and more corrosion resistant than Mg-based alloys reported so far. The alloy is Li-rich and a solute nanostructure within a body-centred cubic matrix is achieved by a series of extrusion, heat-treatment and rolling processes. Corrosion resistance from the environment is believed to occur by a uniform lithium carbonate film in which surface coverage is much greater than in traditional hexagonal close-packed Mg-based alloys, explaining the superior corrosion resistance of the alloy.

  11. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-01-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti–1Al–8V–5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. PMID:27034109

  12. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  13. Bone mineral density and breaking strength of White Leghorns housed in conventional, modified, and commercially available colony battery cages.

    Science.gov (United States)

    Jendral, M J; Korver, D R; Church, J S; Feddes, J J R

    2008-05-01

    Limited opportunity for movement and load-bearing exercise for conventionally caged laying hens leads to bone loss and increased susceptibility to osteoporosis, bone fractures, and cage layer fatigue, all of which compromise hen welfare and have negative consequences for production. The objective of this study was to compare bone mineral density (BMD) and strength measures of White Leghorns housed in conventional battery cages (CONV), cages modified to incorporate a nest box and perch (MOD), and commercially available, furnished colony cages with (CWDB) or without (CWODB) a raised dust bath. Hens reared on floor litter were randomly allocated to 1 of 4 cage systems at 19 wk of age. Hen-day production and egg quality were measured between 20 and 64 wk. At 65 wk, hens were killed, and right femur, tibia, and humerus were excised. Bone mineral density was assessed using quantitative computed tomography, and breaking strength was measured with an Instron Materials Tester. In the femur and tibia, CONV hens exhibited lower total BMD, bone mass, cortical bone area, cortical bone mass, and bone-breaking strength than CWDB, CWODB, and MOD hens. Density and cross-sectional area of bone in the trabecular space was highest in CONV. In the humerus, total and cortical BMD and mass and breaking strength values were higher for colony-housed birds than hens in CONV and MOD. The MOD birds did not exhibit increased humeral BMD or strength measures over CONV hens. These findings provide evidence that hens housed in modified and colony cages, furnished systems that promote load-bearing movement, are better able to preserve cortical structural bone than conventionally caged hens and simultaneously have stronger bones. Furthermore, inclusion of raised amenities that encourage wing loading is necessary to reduce humeral cortical bone loss. The overall absence of correlation between egg production or quality and bone quality measures also suggests that improved bone quality in CWDB, CWODB

  14. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  15. Method of making high strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  16. Low velocity impact behaviour of ultra high strength concrete panels

    Indian Academy of Sciences (India)

    Smitha Gopinath; R Ayashwarya; V Ramesh Kumar; Prabhat Ranjan Prem; A Rama Chandra Murthy; C K Madheswaran; R Nagesh Iyer

    2014-12-01

    This paper presents the results of an investigation carried out on Ultra High Strength Concrete (UHSC) panels subjected to low velocity projectile impact to assess impact resistance. UHSC panel of size 350 × 350 mm and thickness 15 mm is studied under drop weight impact loading for three different pre-determined drop heights ranging from 100 mm to 300 mm. The response of UHSC panel in terms of acceleration vs time is obtained experimentally. Numerical model has been developed to simulate the impact behaviour of UHSC panel. The Brittle cracking model is used to simulate the behaviour of UHSC panel under impact loading and to perform parametric studies by varying the volume fraction of steel fibres.

  17. Fatigue behaviour of high strength AA 7012 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Di Russo, E.; Ragazzini, R.; Buratti, M.; Ferrarin, C. (Aluminia-ISML, Novara (Italy) Caproni Vizzola costruzioni aeronautiche, Somma Lombarda (Italy))

    1990-02-01

    The alloy 7012 (Al, 6.2% Zn, 2% Mg, 1% Cn, 0.13% Mn, 0.14% Zn, 0.04% Ti) belongs to the 7XXX family of high mechanical resistance alloys containing Zr as the principal additive. Produced in the form of extrusions, sheets and forgings, the alloy finds application in the defense, transportation and power industry fields. This paper presents the results of experimental fatigue tests (10/sup 7/ cycles) on 7020 in the T6 and T73 temper conditions and draws comparisons with corresponding test results on 7075 and 2024 type alloys. A comparative analysis of S-N curves obtained from plane bending and axial fatigue tests on smooth and notched specimens evidences the superior performance of 7020 in terms of higher strength and corrosion cracking resistance.

  18. Hydrogen influence on the mechanical behaviour of high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Herenu, Silvina [National Technology Univ. of San Nicolas (Argentina).; National Council of Scientific Research and Technology (Argentina); Armas, Alberto [National Univ. of Rosario (Argentina); Brandaleze, Elena [National Technology Univ. of San Nicolas (Argentina). Metallurgical Dept.; Mansilla, Graciela [National Technology Univ. of San Nicolas (Argentina).

    2010-07-01

    Though numerous studies have been devoted to hydrogen embrittlement in steels, up to date there is not a general agreement about the effect of hydrogen on the mechanical behaviour. The purpose of this paper is to analyze the influence of hydrogen on the mechanical response of high strength steels. Samples were cathodically charged with hydrogen, previous to low cyclic fatigue and tensile tests at room temperature. The presence of hydrogen produces softening effects on the cyclic behaviour and improvements in the fatigue life for low hydrogen contents. The stress-strain curves of tensile tests on pre-charged samples depend on the strain rate imposed. Both tensile and fatigue response could be explained by the hydrogen enhancement of dislocation mobility mechanism. (orig.)

  19. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    Accurate calculations of the stiffness of concrete members are rare. Only in the uncracked state and the fully cracked state, where the reinforcement is near yielding, the stiffness calculations are relatively easy. The difficulties are due to the fact that concrete between cracks may give...... a substantial contribution to the stiffness, a phenomenon which is generally referred to as tension stiffening. The present paper describes a new theory of tension stiffening. It is based on a simple physical model for pure tension, which works with three different stages of crack generation. In a simplified...... form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  20. Possibilities to verify the level density and radiative strength functions, extracted from the two-step gamma-cascade intensities

    OpenAIRE

    2007-01-01

    The direct determination of the excitation level density and radiative strength functions of their exciting gamma-transitions is impossible for the larger part of the stable and long-life radioactive target nuclei. This circumstance is uniquely determined by the fact, that the level spacing much less than the resolution of the existing spectrometers of gamma-rays and charged particles. The extraction of these parameters of nucleus in this situation can be executed by their only fitting to the...

  1. Gamma strength function and level densities of $^{208}$Pb from forward-angle proton scattering at 295 MeV

    CERN Document Server

    Bassauer, S; Tamii, A

    2016-01-01

    Gamma strength functions (GSFs) and level densities (LDs) are essential ingredients of statistical nuclear reaction theory with many applications in astrophysics, reactor design, and waste transmutation. The aim of the present work is a test of systematic parametrizations of the GSF recommended by the RIPL-3 data base for the case of $^{208}$Pb. The upward GSF and LDs in $^{208}$Pb are compared to gamma decay data from an Oslo-type experiment to examine the validity of the Brink-Axel (BA) hypothesis. The E1 and M1 parts of the total GSF are determined from high-resolution forward angle inelastic proton scattering data taken at 295 MeV at RCNP, Osaka, Japan. Total LDs in $^{208}$Pb are derived from $1^-$ LDs extracted with a fluctuation analysis in the energy region of the isovector giant dipole resonance. The E1 GSF is compared to parametrizations recommended by the RIPL-3 data base showing systematic deficiencies of all models in the energy region around neutron threshold. The new data for the poorly known s...

  2. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  3. Low cycle fatigue behavior of high strength gun steels

    Institute of Scientific and Technical Information of China (English)

    Maoqiu Wang; Han Dong; Qi Wang; Changgang Fan

    2004-01-01

    The low cycle fatigue (LCF) behavior of two high strength steels, with nominal chemical compositions (mass fraction, %)of 0.40C-1.5Cr-3Ni-0.4Mo-0.2V (PCrNi3MoV) and 0.25C-3Cr-3Mo-0.8Ni-0.1Nb (25Cr3Mo3NiNb), was investigated by using the smooth bar specimens subjected to strained-controlled push-pull loading. It is found that both steels show cyclic softening, but 25Cr3Mo3NiNb steel has a lower tendency to cyclic softening. 25Cr3Mo3NiNb steel has higher fatigue ductility, and its transition fatigue life is almost three times that of PCrNi3MoV. 25Cr3Mo3NiNb steel also shows higher LCF life either at a given total strain amplitude above 0.5% or at any given plastic strain amplitude, despite its lower monotonic tensile strength than that of PCrNi3MoV.It also means that 25Cr3Mo3NiNb steel can endure higher total strain amplitude and plastic strain amplitude at a given number of reversals to failure within 104. 25Cr3Mo3NiNb steel is expected to be a good gun steel with high LCF properties because only several thousand firings are required for gun barrel in most cases.

  4. The importance of spatial models for estimating the strength of density dependence

    DEFF Research Database (Denmark)

    Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper;

    2014-01-01

    Identifying the existence and magnitude of density dependence is one of the oldest concerns in ecology. Ecologists have aimed to estimate density dependence in population and community data by fitting a simple autoregressive (Gompertz) model for density dependence to time series of abundance...... for an entire population. However, it is increasingly recognized that spatial heterogeneity in population densities has implications for population and community dynamics. We therefore adapt the Gompertz model to approximate local densities over continuous space instead of population-wide abundance......, and to allow productivity to vary spatially. Using simulated data generated from a spatial model, we show that the conventional (nonspatial) Gompertz model will result in biased estimates of density dependence, e.g., identifying oscillatory dynamics when not present. By contrast, the spatial Gompertz model...

  5. Experimental Study on Elastic-Plastic Behavior of SRC Columns with High Strength Steel

    OpenAIRE

    2006-01-01

    The demand to use high strength and high performance material because of large span and high rise of building in recent years. As to use of high-strength steel in composite steel and reinforced concrete structures, it remains to be clarified whether the ductile behavior can be ensured, especially when the high-strength steel is used in combination with High-strength concrete. This paper describes the test results on the elasto-plastic behavior of SRC column using high strength steel, and disc...

  6. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  7. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  8. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  9. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  10. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    2004-01-01

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  11. Bone Density, Turnover, and Estimated Strength in Postmenopausal Women Treated With Odanacatib

    DEFF Research Database (Denmark)

    Brixen, Kim; Chapurlat, Roland; Cheung, Angela M;

    2013-01-01

    bone compartments and estimated strength at the hip and spine.Design:This was a randomized, double-blind, 2-year trial.Setting:The study was conducted at a private or institutional practice.Participants:Participants included 214 postmenopausal women with low areal BMD.Intervention:The intervention...... included odanacatib 50 mg or placebo weekly.Main Outcome Measures:Changes in areal BMD by dual-energy x-ray absorptiometry (primary end point, 1 year areal BMD change at lumbar spine), bone turnover markers, volumetric BMD by quantitative computed tomography (QCT), and bone strength estimated by finite......-formation marker procollagen I N-terminal peptide initially decreased with odanacatib but by 2 years did not differ from placebo. After 6 months, odanacatib-treated women had greater increases in trabecular volumetric BMD and estimated compressive strength at the spine and integral and trabecular volumetric BMD...

  12. A Novel TiNi/AlSi Composite with High Strength and High Damping Capacity

    Institute of Scientific and Technical Information of China (English)

    Shuwei LIU; Xiuyan LI; Desheng YAN; Haichang JIANG; Lijian RONG

    2008-01-01

    A novel TiNi/AlSi composite with high compressive strength and high damping capacity was obtained by infiltrating Al-12%Si alloy into porous TiNi alloy.It had been found that the high compressive strength (440 MPa) of TiNi/AlSi composite is due to the increase of effective carrying area after infiltrating Al-12%Si alloy,while the high damping capacity is contributed to TiNi carcass,Al-12%Si filling material and micro-slipping at the interface.

  13. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    Science.gov (United States)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  14. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  15. PMSE strength during enhanced D region electron densities: Faraday rotation and absorption effects at VHF frequencies

    Science.gov (United States)

    Chau, Jorge L.; Röttger, Jürgen; Rapp, Markus

    2014-10-01

    In this paper we study the effects of absorption and Faraday rotation on measurements of polar mesosphere summer echoes (PMSE). We found that such effects can produce significant reduction of signal-to-noise ratio (SNR) when the D region electron densities (Ne) are enhanced, and VHF radar systems with linearly polarized antennas are used. In particular we study the expected effects during the strong solar proton event (SPE) of July 2000, also known as the Bastille day flare event. During this event, a strong anti-correlation between the PMSE SNR and the D-region Ne was found over three VHF radar sites at high latitudes: Andøya, Kiruna, and Svalbard. This anti-correlation has been explained (a) in terms of transport effects due to strong electric fields associated to the SPE and (b) due to a limited amount of aerosol particles as compared to the amount of D-region electrons. Our calculations using the Ne profiles used by previous researchers explain most, if not all, of the observed SNR reduction in both time (around the SPE peak) and altitude. This systematic effect, particularly the Faraday rotation, should be recognized and tested, and possibly avoided (e.g., using circular polarization), in future observations during the incoming solar maximum period, to contribute to the understanding of PMSE during enhanced D region Ne.

  16. High power densities from high-temperature material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  17. Effects of GFF Bands on Normal and High Strength Concrete Cylinders

    OpenAIRE

    Jayaprakash, J; Abdul Aziz Abdul Samad; Noridah Mohamad; K.K. Choong; M.J. Megat Azmi; H.A.B. Badorul

    2010-01-01

    This paper exemplifies the effects of externally confined Glass Fibre Fabric (GFF) bands on normal and high strength concrete cylinders. Twelve normal and high strength concrete cylinders were cast and tested in the laboratory environment under axial compression to failure. The experimental results show that the degree of confinement of discrete GFF confined high strength concrete cylinders was significantly better than normal strength concrete cylinders with GFF bands, however...

  18. Technical Note: Filler and superplasticizer usage on high strength concrete

    Directory of Open Access Journals (Sweden)

    Sümer, M.

    2007-08-01

    Full Text Available In this research, the effects of filler (rock-dust usage on high strength concrete have been investigated through lab experiments and some results have been obtained. The experiments involved three series of concrete with different cement proportions of 375 kg/m3, 400 kg/m3, and 425 kg/m3. For each series of concrete, three different groups of samples have been prepared, the first one being the reference concrete which contained 0% chemical admixture and 0% filler, the second one contained 1.5% chemical admixture and 0% filler and finally the last group contained 1.5% chemical admixture and 5% filler to the weight of cement used. The chemical admixture used was a type of Super plasticizer with a brand name of “DARACEM 190”, and the cement used was Ordinary Portland Cement of target compressive strength 42.5 N/mm2, obtained from Nuh Cement Plant. For each batch, Slump Tests and Unit Weight Tests were performed. For each stage and group, two 15 cm cubic samples have been tested for Compressive Strength after being cured in water at 20 ± 2 °C for ages of 3 days, 7 days, 28 and 60 days. The total number of samples was 72. As a result, filler usage was found to reduce the porosity of Concrete, increase the Unit Weight of Concrete, increase the need for water and improve the Compressive Strength Properties of Concrete.En el presente trabajo se estudia la influencia de la utilización de un “filler” (polvo mineral en el comportamiento del hormigón de altas prestaciones. Para ello, se realizan ensayos de laboratorio en los que se emplean tres series de hormigón, cada una con una dosificación de cemento distinta, de 375, 400 y 425 kg/m3. Se preparan tres grupos de probetas de cada serie, el primero o de referencia con 0% de aditivo químico y 0% de “filler”, el segundo con un 1,5% del aditivo químico y 0% de “filler” y el tercero con un 1,5% del aditivo químico y un 5% de “filler” en peso del cemento. Como aditivo se

  19. Properties of Raphia Palm Interspersed Fibre Filled High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Henry C. Obasi

    2013-01-01

    Full Text Available Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF filled high density polyethylene (HDPE have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.

  20. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers.

    Science.gov (United States)

    Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun

    2017-02-28

    The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10(7) M(-1) in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10(15) M(-2) and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and

  1. Characteristics in Paintability of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ha Sun [POSLAB, POSCO, Gwangyang (Korea, Republic of)

    2007-06-15

    It is expected that advanced high strength steels (AHSS) would be widely used for vehicles with better performance in automotive industries. One of distinctive features of AHSS is the high value of carbon equivalent (Ceq), which results in the different properties in formability, weldability and paintability from those of common grade of steel sheets. There is an exponential relation between Ceq and electric resistance, which seems also to have correlation with the thickness of electric deposition (ED) coat. higher value of Ceq of AHSS lower the thickness of ED coat of AHSS. Some elements of AHSS such as silicon, if it is concentrated on the surface, affect negatively the formation of phosphates. In this case, silicon itself doesn't affect the phosphate, but its oxide does. This phenomenon is shown dramatically in the welding area. Arc welding or laser welding melts the base material. In the process of cooling of AHSS melt, the oxides of Si and Mn are easily concentrated on the surface of boundary between welded and non welded area because Si and Mn cold be oxidized easier than Fe. More oxide on surface results in poor phosphating and ED coating. This is more distinctive in AHSS than in mild steel. General results on paintability of AHSS would be reported, being compared to those of mild steel

  2. RESEARCH ON CHEMICAL COMPOSITION AND MICROSTRUCTURE OF NEWLY-DEVELOPED HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; A.M. Guo; D.X. Luo; B.F. Xu; Z.X. Yuan; P.H. Li; S.K. Pu; S.B. Zhou

    2003-01-01

    The different chemical composition of silicon and manganese as well as different re-tained austenite fraction ranged from 4% to 10% of the high strength and high elon-gation steels were studied in the paper. The dislocations and carbon concentrationin retained austenite were observed by a transmission electron microscope and anelectric probe analyzer, respectively. The experimental results showed that silicon andmanganese are two fundamental alloying elements to stabilize austenite effectively butretaining austenite in different mechanisms. Meanwhile, the cooling processing playedan important role in controlling the fraction of retained austenite of the hot-rolledhigh strength and high plasticity steels.

  3. Graded High-Strength Spring-Steels by a Special Inductive Heat T reatment

    Science.gov (United States)

    Tump, A.; Brandt, R.

    2016-03-01

    A method for effective lightweight design is the use of materials with high specific strength. As materials e.g. titanium are very expensive, steel is still the most important material for manufacturing automotive components. Steel is cost efficient, easy to recycle and its tensile strength easily exceeds 2,000 MPa by means of modern QT-technology (Quenched and Tempered). Therefore, lightweight design is still feasible in spite of the high density of steel. However, a further increase of tensile strength is limited, especially due to an increasing notch sensitivity and exposure to a corrosive environment. One solution is a special QT-process for steel, which creates a hardness gradient from the surface to the core of the material. This type of tailored material possesses a softer layer, which improves material properties such as fracture toughness and notch sensitivity. This leads to a better resistance to stress corrosion cracking and corrosion fatigue. Due to this optimization, a weight reduction is feasible without the use of expensive alloying elements. To understand the damage mechanism a comprehensive testing procedure was performed on homogeneous and gradient steels. Some results regarding the fracture mechanic behavior of such steels will be discussed.

  4. Bone Structure and Estimated Bone Strength in Obese Patients Evaluated by High-Resolution Peripheral Quantitative Computed Tomography

    DEFF Research Database (Denmark)

    Andersen, Stine; Frederiksen, Katrine Diemer; Hansen, Stinus;

    2014-01-01

    Obesity is associated with high bone mineral density (BMD), but whether obesity-related higher bone mass increases bone strength and thereby protect against fractures is uncertain. We estimated effects of obesity on bone microarchitecture and estimated strength in 36 patients (12 males and 24...... females, age 25-56 years and BMI 33.2-57.6 kg/m(2)) matched with healthy controls (age 25-54 years and BMI 19.5-24.8 kg/m(2)) in regard to gender, menopausal status, age (±6 years) and height (±6 cm) using high resolution peripheral quantitative computed tomography and dual energy X-ray absorptiometry...

  5. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2017-06-01

    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  6. High density semiconductor nanodots by direct laser fabrication

    Science.gov (United States)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  7. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  8. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    Science.gov (United States)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  9. MAC Support for High Density Wireless Sensor Networks

    NARCIS (Netherlands)

    Taddia, C.; Meratnia, Nirvana; van Hoesel, L.F.W.; Mazzini, G.; Havinga, Paul J.M.

    Large scale and high density networks of tiny sensor nodes offer promising solutions for event detection and actuating applications. In this paper we address the effect of high density of wireless sensor network performance with a specific MAC protocol, the Lightweight Medium Access Control (LMAC).

  10. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  11. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  12. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  13. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G. (University of Rhode Island, Kingston, RI); Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter (University of Rhode Island, Kingston, RI)

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  14. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    Science.gov (United States)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  15. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    Science.gov (United States)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  16. Dynamic recrystallization behavior and kinetics of high strength steel

    Institute of Scientific and Technical Information of China (English)

    吴光亮; 周超洋; 刘新彬

    2016-01-01

    The dynamic recrystallization behavior of high strength steel during hot deformation was investigated. The hot compression test was conducted in the temperature range of 950−1150 °C under strain rates of 0.1, 1 and 5 s−1. It is observed that dynamic recrystallization (DRX) is the main flow softening mechanism and the flow stress increases with decreasing temperature and increasing strain rate. The relationship between material constants (Q, n, α and lnA) and strain is identified by the sixth order polynomial fit. The constitutive model is developed to predict the flow stress of the material incorporating the strain softening effect and verified. Moreover, the critical characteristics of DRX are extracted from the stress−strain curves under different deformation conditions by linear regression. The dynamic recrystallization volume fraction decreases with increasing strain rate at a constant temperature or decreasing deformation temperature under a constant strain rate. The kinetics of DRX increases with increasing deformation temperature or strain rate.

  17. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  18. Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays.

    Science.gov (United States)

    Maccione, Alessandro; Garofalo, Matteo; Nieus, Thierry; Tedesco, Mariateresa; Berdondini, Luca; Martinoia, Sergio

    2012-06-15

    We used electrophysiological signals recorded by CMOS Micro Electrode Arrays (MEAs) at high spatial resolution to estimate the functional-effective connectivity of sparse hippocampal neuronal networks in vitro by applying a cross-correlation (CC) based method and ad hoc developed spatio-temporal filtering. Low-density cultures were recorded by a recently introduced CMOS-MEA device providing simultaneous multi-site acquisition at high-spatial (21 μm inter-electrode separation) as well as high-temporal resolution (8 kHz per channel). The method is applied to estimate functional connections in different cultures and it is refined by applying spatio-temporal filters that allow pruning of those functional connections not compatible with signal propagation. This approach permits to discriminate between possible causal influence and spurious co-activation, and to obtain detailed maps down to cellular resolution. Further, a thorough analysis of the links strength and time delays (i.e., amplitude and peak position of the CC function) allows characterizing the inferred interconnected networks and supports a possible discrimination of fast mono-synaptic propagations, and slow poly-synaptic pathways. By focusing on specific regions of interest we could observe and analyze microcircuits involving connections among a few cells. Finally, the use of the high-density MEA with low density cultures analyzed with the proposed approach enables to compare the inferred effective links with the network structure obtained by staining procedures.

  19. INFLUENCE OF HIGH-STRENGTH REINFORCEMENT WITHOUT ADHESION TO CONCRETE ON STRENGTH OF CAST-IN-SITU BEAMLESS FLOORS

    Directory of Open Access Journals (Sweden)

    Osipenko Yuri Grigoryevich

    2017-08-01

    Full Text Available The influence and location of prestressed high-strength reinforcement without adhesion to concrete on the strength of a beamless floor panel is considered. The work is aimed at clarifying the methodology for calculating the strength of cast-in-situ beamless floor with mixed reinforcement, where reinforcement is used in a plastic shell of monostrend type without adhesion to concrete for the most complete use of the strength characteristics of the panel material. The aim of the study is to determine the level of influence and location of prestressed reinforcement without adhesion to concrete on the strength of a panel of cast-in-situ beamless floor, as well as comparison of the results obtained for the stresses of ropes in panels with contour and diagonal arrangement of prestressed reinforcement. The shape of the rope position is represented by a part of the parabola passing through the points of the rope support. On the support, the vertical and horizontal components of the reaction are determined by the longitudinal force in the rope and the exit angle of the guy rope. 9х9m cast-in-situ beamless floor panels in two variants were investigated: with diagonal and contour stressing steel. The values of increment in stresses in the ropes and the resulting values at various prestress and deflection levels, presented in the form of tables and graphs, have been calculated. According to the results of the study, the use of high-strength prestressed ropes without adhesion to concrete, as an additional working reinforcement, reduces deflections of the panels and lowers consumption of common reinforcement. The results indicate a relative decrease in efficiency of using rope strength along with an increase in the initial prestress level. From the point of ensuring load-bearing capacity, the contour positioning of ropes is preferable, due to more complete use of strength of high-tensile reinforcement. To meet the requirements of ultimate limit states, the

  20. Application of a high density adsorbent in expanded bed adsorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... The high density of the adsorbent allowed the EBA to be operated at linear velocity as high as 657 cm/h ... through precipitation and even dialyzed before sample ... In EBA process, upward fluidized stationary phase with.

  1. Performance of High Strength POFA Concrete in Acidic Environment

    Directory of Open Access Journals (Sweden)

    Mohamed Ismail

    2010-03-01

    disposing palm oil fuel ash, a by-product of palm oil mill since many years ago. The discovery made by researchers of Universiti Teknologi Malaysia last century in revealing the potential of this finely ground waste as a partial cement replacement in normal concrete has stem efforts towards studying the possibility of using it in high strength concrete production. This paper illustrates the durability aspect of high strength concrete produced using POFA of different fineness when exposed to acidic environment. Two POFA concrete mixes with different fineness termed (POFA 45 and POFA 10 at 20% replacement level by weight of cement and an OPC concrete mix functioning as control specimen termed Po was considered in this study. All the specimens were subjected to water curing for 28 days before immersed in the hydrochloric solution having pH 2 for 1800 hours. The progressive deterioration was evaluated through mass changing of the specimens, visual inspection and relative compressive strength determinations. Conclusively, the study found that increase in the POFA fineness enhances the resistance of high strength POFA concrete towards acid attack.

  2. Response of thermosphere density to high-latitude forcing

    Science.gov (United States)

    Yamazaki, Y.; Kosch, M. J.; Vickers, H.; Sutton, E. K.; Ogawa, Y.

    2014-12-01

    Solar wind-magnetospheric disturbances cause enhancements in the energy input to the high-latitude upper atmosphere through particle precipitation and Joule heating. As the upper atmosphere is heated and expanded during geomagnetically disturbed periods, the neutral density in the thermosphere increases at a fixed altitude. Conversely, the thermosphere contracts during the recovery phase of the disturbance, resulting in a decrease of the density. The main objectives of this study are (1) to determine the morphology of the global thermospheric density response to high-latitude forcing, and (2) to determine the recovery speed of the thermosphere density after geomagnetic disturbances. For (1), we use thermospheric density data measured by the Challenging Minisatellite Payload (CHAMP) satellite during 2000-2010. It is demonstrated that the density enhancement during disturbed periods occurs first in the dayside cusp region, and the density at other regions slowly follows it. The reverse process is observed when geomagnetic activity ceases; the density enhancement in the cusp region fades away first, then the global density slowly goes back to the quiet level. For (2), we analyze EISCAT Svalbard radar and Tromso UHF radar data to estimate thermospheric densities during the recovery phase of geomagnetic disturbances. We attempt to determine the time constant for the density recovery both inside and outside the cusp region.

  3. High Bonding Temperatures Greatly Improve Soy Adhesive Wet Strength

    Directory of Open Access Journals (Sweden)

    Charles R. Frihart

    2016-11-01

    Full Text Available Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s for this has not been intensively investigated. Although these prior studies differ in other ways (such as type of soy, wood species, and test method, the effect of bonding temperature has not been clearly examined, which is important for focusing commercial applications. A tensile shear test using two-parallel-ply veneer specimens with smooth maple was used to measure both the dry and wet cohesive strength of soy adhesives. Although the soy adhesives gave very good strengths and dry wood failure, they often have low wood failure and shear strengths under wet conditions when bonded at 120 °C. However, wet strength greatly increased as the bonding temperature increased (120, 150 and 180 °C for these two-ply tests with. This study examined the use of different types of soys (flours, concentrates and isolates and different bonding temperatures and bonding conditions to evacuate several possible mechanisms for this temperature sensitivity, with coalescence being the most likely.

  4. Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids

    Indian Academy of Sciences (India)

    Ramin Andalib; M Zaimi Abd Majid; A Keyvanfar; Amirreza Talaiekhozan; Mohd Warid Hussin; A Shafaghat; Rosli Mohd Zin; Chew Tin Lee; Mohammad Ali Fulazzaky; Hasrul Haidar Ismail

    2014-12-01

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell concentration (30 * 105 cells/ml) was introduced onto different structural concrete grades (40, 45 and 50 MPa) by mixing water. In order to study the durability of structural concrete against aggressive agents, specimens were immersed in different types of acids solution (5% H2SO4 and HCl) to compare their effects on 60th, 90th and 120th day. In general, sulphuric acid and hydrochloric acid are known to be the most aggressive natural threats from industrial waters which can penetrate concrete to transfer the soluble calcium salts away from the cement matrix. The experimental results demonstrated that bio-concrete has less weight and strength losses when compared to the ordinary Portland cement concrete without microorganism. It was also found that maximum compressive strength and weight loss occurred during H2SO4 acid immersion as compared to HCl immersion. The density and uniformity of bio-concrete were examined using ultrasonic pulse velocity (UPV) test. Microstructure chemical analysis was also quantified by energy dispersive spectrometer (EDS) to justify the durability improvement in bacterial concrete. It was observed that less sulphur and chloride were noticed in bacterial concrete against H2SO4 and HCl, respectively in comparison to the ordinary Portland cement concrete due to calcite deposition.

  5. A Model for the Origin of High Density in Loop-top X-ray Sources

    CERN Document Server

    Longcope, D W

    2011-01-01

    Super-hot looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 megakelvins. High observed emission measure, as well as inference of electron thermalization within the small source region, both provide evidence of high densities at the looptop; typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through flux retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petschek's model owing to transient effects of thermal conduction. The actual density enhancemen...

  6. Nuclear Level Density at High Spin and Excitation Energy

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; Z. Kargar

    2001-01-01

    The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``

  7. Plant diversity increases with the strength of negative density dependence at the global scale

    Science.gov (United States)

    Joseph A. LaManna; Scott A. Mangan; Alfonso Alonso; Norman A. Bourg; Warren Y. Brockelman; Sarayudh Bunyavejchewin; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Keith Clay; Richard Condit; Susan Cordell; Stuart J. Davies; Tucker J. Furniss; Christian P. Giardina; I. A. U. Nimal Gunatilleke; C. V. Savitri Gunatilleke; Fangliang He; Robert W. Howe; Stephen P. Hubbell; Chang-Fu Hsieh; Faith M. Inman-Narahari; David Janík; Daniel J. Johnson; David Kenfack; Lisa Korte; Kamil Král; Andrew J. Larson; James A. Lutz; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Anuttara Nathalang; Vojtech Novotny; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; I-Fang Sun; J. Sebastián Tello; Duncan W. Thomas; Benjamin L. Turner; Dilys M. Vela Díaz; Tomáš Vrška; George D. Weiblen; Amy Wolf; Sandra Yap; Jonathan A. Myers

    2017-01-01

    Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only...

  8. Striated muscle fiber size, composition and capillary density in diabetes in relation to neuropathy and muscle strength

    DEFF Research Database (Denmark)

    Andreassen, Christer Swan; Jensen, Jacob Malte; Jakobsen, Johannes

    2014-01-01

    study was to evaluate histologic properties and capillarization of diabetic skeletal muscle in relation to DPN and muscle strength. METHODS: Twenty type 1 and 20 type 2 diabetic (T1D and T2D, respectively) patients underwent biopsy of the gastrocnemic muscle, isokinetic dynamometry at the ankle......, electrophysiological studies, clinical examination, and quantitative sensory examinations. Muscle biopsies were stained immunohistochemically and muscle fiber diameter, fiber type distribution, and capillary density determined. Twenty control subjects were also included in the study. RESULTS: No relationship was found...

  9. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  10. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permi......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  11. EFFECT OF CARBON CONTENT ON MICROSTRUCTURE AND PROPERTIES OF HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y.Chen; X.Chen; 等

    2003-01-01

    The microstructure and mechanical properties of new kind of hot-rolled high strength and high elongation steels with retained austenite were studied by discussing the in-fluence of different carbon content.The research results indicate that carbon content has a significant effect on retaining austenite and consequently resulting in high elon-gation.Besides,new findings about relationship between carbon content and retained austenite as well as properties were discussed in the paper.

  12. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  13. Breast density estimation from high spectral and spatial resolution MRI.

    Science.gov (United States)

    Li, Hui; Weiss, William A; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M; Karczmar, Gregory S; Giger, Maryellen L

    2016-10-01

    A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists' breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 ([Formula: see text]) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 ([Formula: see text]) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 ([Formula: see text]) was observed between HiSS-based breast density estimations and radiologists' BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy.

  14. Contraction of high strength invar steel during creep test

    Energy Technology Data Exchange (ETDEWEB)

    Myslowicki, T.; Bleck, W. [Dept. of Ferrous Metallurgy, Aachen Univ., Aachen (Germany); Weirich, T.E. [Central Facility for Electron Microscopy, Aachen Univ., Aachen (Germany)

    2003-06-01

    Modern large size Cathode Ray Tubes are equipped with so called ''true flat'' shadowmasks made of Invar steel. The mask is stretched onto a solid frame and both are submitted to a final heat treatment (blackening treatment). Elevated temperatures and pretension make the mask material prone to creep, resulting in disutility of the unit for the application. In order to reduce creep elongation of the mask material to a minimum, Mo added high strength Invar steels have been considered to provide the required specifications. Depending on prior processing this type of Invar steel shows an inexplicable contraction during the creep test. Even though this effect can be perfectly used to fulfil the creep requirements, the mechanisms involved were not understood. Focus of the present work was the examination of the effect of precipitations on the ''negative creep'' behaviour of the investigated Invar steel using carbon extraction replicae, transmission electron microscopy as well as SAED. Information about the chemical composition, morphology, size and number of the precipitations in the different states could be gained. The observations revealed that during the creep test, depending on the prior annealing temperature, the chemical composition of the precipitates changed. The Nb content decreased while simultaneously the Mo content increased. Due to the volume difference caused by Mo in solid solution and in precipitated form respectively, the precipitation of Mo during the creep test is supposed to cause the observed sample contraction. The results can be confirmed by calculating the effect of Mo on the distortion of the FeNi lattice. (orig.)

  15. High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels

    Institute of Scientific and Technical Information of China (English)

    Weijun HUI; Yihong NIE; Han DONG; Yuqing WENG; Chunxu WANG

    2008-01-01

    The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior.For AISI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curvedisplays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 μm. In the case of internal inclusion-induced fractures at cycles beyond about 1×106 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increasewith increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×106. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.

  16. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  17. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    Science.gov (United States)

    Jha, S. C.; Delagi, R. G.; Forster, J. A.; Krotz, P. D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1-to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain ( η > 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1-to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb micro-composite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains ( η > 3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct ( η ≅ 2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η > 10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet.

  18. Development of high performance and high strength heavy concrete for radiation shielding structures

    Science.gov (United States)

    Peng, Yu-Chu; Hwang, Chao-Lung

    2011-02-01

    Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with. This study replaced natural aggregate (stones) in concrete with round steel balls, which are inexpensive and easily obtainable. The diameters of the steel balls were 0.5 and 1 cm, and their density was 7.8 kg/m3. Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3. The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials (ASTM). The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm. More important, its compressive strength could reach 8848 MPa. These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.

  19. Level Densities, Thermodynamics and gamma -Ray Strength Functions in 163,164Dy

    Science.gov (United States)

    Nyhus, H. T.; Siem, S.; Guttormsen, M.; Larsen, A. C.; Bürger, A.; Syed, N. U. H.; Toft, H. K.; Tveten, G. M.; Voinov, A.

    2009-03-01

    The nuclei 163,164Dy have been investigated by use of the Oslo method on data from the pick-up reaction {(3He,alpha )} and the inelastic scattering {(3He,3He')}, respectively. The experiment was conducted at the Oslo cyclotron laboratory (OCL). The gamma -decay and ejectiles were measured with the CACTUS multidetector array, which consists of 28 NaI gamma -detectores and 8 Delta E - E Si particle telescopes. Thermodynamic quantities have been extracted within the micro-canonical ensemble theory. The pygmy resonance found around 3 MeV in the gamma -ray strength function, also referred to as the scissors mode, was studied. The question whether the width of the pygmy resonance is reaction dependent is addressed.

  20. High strength and high ductility in as-deposited nanocrystalline Ni

    Energy Technology Data Exchange (ETDEWEB)

    Dai Pinqiang; Xu Weichang; Tang Dian, E-mail: pqdai@126.co [School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 (China)

    2010-07-01

    In the present study, an electrodeposited nanocrystalline (nc) Ni sample with high strength and superior ductility relative to many other electrodeposited nc-Ni was prepared. The superior ductility in the present nc-Ni sample free of defects was ascribed to mixed grains, the size of which spanned nano- and sub-micro scales at its as-deposited state with a grain size distribution ranged from 5 to 120nm. Obvious dislocation motion happening in coarse-grained polycrystalline was observed in large grains of nc-Ni matrix resulting in a remarkable enhanced ductility without a decrease in the strength. The present nc-Ni with an average grain size of 27.2nm prepared by direct current electrodeposition shows the average ultimate tensile strength of 1200MPa and the average elongation to failure of 10.4%.

  1. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors

    Science.gov (United States)

    Cheng, Zhaoxi; Lin, Minren; Wu, Shan; Thakur, Yash; Zhou, Yue; Jeong, Dae-Yong; Shen, Qundong; Zhang, Q. M.

    2015-05-01

    Developing dielectric polymers with higher dielectric constant without sacrificing loss and thermal stability is of great importance for next generation of high energy density capacitors. We show here that by replacing the CH2 group in the aromatic polyurea (ArPU) with the polar ether group, thus raising the dipole moment of the molecular unit, poly(arylene ether urea) (PEEU) shows an increased dielectric constant of 4.7, compared with 4.2 of ArPU. Moreover, PEEU maintains the low dielectric loss and is thermally stable up to 250 °C. As a result, the polymer delivers 13 J/cm3 discharged energy density at room temperature and 9 J/cm3 at 120 °C. The high quality films perform well in terms of both breakdown strength (at 700 MV/m at room temperature) and leakage current from room temperature to elevated temperature. At 120 °C, the breakdown strength is 600 MV/m and the conductivity is 1.58 × 10-14 S/cm measured under 100 MV/m.

  2. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek [KAIST, Daejeon (Korea, Republic of); Hwang, Sun Kwang [KITECH, Cheonan (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [POSCO, Pohang (Korea, Republic of)

    2014-07-15

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

  3. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  4. New tungsten alloy has high strength at elevated temperatures

    Science.gov (United States)

    1966-01-01

    Tungsten-hafnium-carbon alloy has tensile strengths of 88,200 psi at 3000 deg F and 62,500 psi at 3500 deg F. Possible industrial applications for this alloy would include electrical components such as switches and spark plugs, die materials for die casting steels, and heating elements.

  5. High-strength tungsten alloy with improved ductility

    Science.gov (United States)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  6. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...

  7. High breakdown-strength composites from liquid silicone rubbers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Zakaria, Shamsul Bin; Yu, Liyun

    2014-01-01

    available fillers (an anatase TiO2, a core–shell TiO2-SiO2 and a CaCu3Ti4O12 filler) are evaluated with respect to dielectric permittivity, elasticity (Young’s modulus) and electrical breakdown strength. Film formation properties are also evaluated. The best-performing formulations are those with anatase Ti...

  8. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage.

    Science.gov (United States)

    Khanchaitit, Paisan; Han, Kuo; Gadinski, Matthew R; Li, Qi; Wang, Qing

    2013-01-01

    Ferroelectric polymers are being actively explored as dielectric materials for electrical energy storage applications. However, their high dielectric constants and outstanding energy densities are accompanied by large dielectric loss due to ferroelectric hysteresis and electrical conduction, resulting in poor charge-discharge efficiencies under high electric fields. To address this long-standing problem, here we report the ferroelectric polymer networks exhibiting significantly reduced dielectric loss, superior polarization and greatly improved breakdown strength and reliability, while maintaining their fast discharge capability at a rate of microseconds. These concurrent improvements lead to unprecedented charge-discharge efficiencies and large values of the discharged energy density and also enable the operation of the ferroelectric polymers at elevated temperatures, which clearly outperforms the melt-extruded ferroelectric polymer films that represents the state of the art in dielectric polymers. The simplicity and scalability of the described method further suggest their potential for high energy density capacitors.

  9. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    OpenAIRE

    F. Mat Yahaya; Muthusamy, K.; Sulaiman, N.

    2014-01-01

    This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0) with 100% ordinary Portland cement (control specimen) and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20) has been identified as the best performing mix after cubes (150×150×150 mm) containing various content of POFA as partial c...

  10. New technique for a simultaneous estimation of the level density and radiative strength functions of dipole transitions at E sub e sub x<=B sub n -0.5 MeV

    CERN Document Server

    Khitrov, V A

    2001-01-01

    The new, model-independent method to estimate simultaneously the level densities excited in the (n,gamma) reaction and the radiative strength functions of dipole transitions is developed. The method can be applied for any nucleus and reaction followed by cascade gamma-emission. It is just necessary to measure the intensities of two-step gamma-cascades depopulating one or several high-excited states and determine the quanta ordering in the main portion of the observed cascades. The method provides a sufficiently narrow interval of most probable densities of levels with given J suppi and radiative strength functions of dipole transitions populating them.

  11. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high-density deformable mirrors with up to 16,000 actuators to enable direct imaging of planets around...

  12. 128x128 Ultra-High Density Optical Interconnect Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high density deformable mirrors with upto 16,000 actuators to enable direct imaging of planets around...

  13. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  14. High energy density nanocomposite capacitors using non-ferroelectric nanowires

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-02-01

    A high energy density nanocomposite capacitor is fabricated by incorporating high aspect ratio functionalized TiO2 nanowires (NWs) into a polyvinylidene-fluoride matrix. These nanocomposites exhibited energy density as high as 12.4 J/cc at 450 MV/m, which is nine times larger than commercial biaxially oriented polypropylene polypropylene capacitors (1.2 J/cc at 640 MV/m). Also, the power density can reach 1.77 MW/cc with a discharge speed of 2.89 μs. The results presented here demonstrate that nanowires can be used to develop nanocomposite capacitors with high energy density and fast discharge speed for future pulsed-power applications.

  15. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    The usefulness of total cholesterol and high density lipoprotein - cholesterol ratio in ... cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. ... Article Metrics.

  16. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca;

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  17. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  18. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  19. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    Science.gov (United States)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  20. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; Yager, Kevin G.; Yuan, Guangcui; Satija, Sushil K.; Durstock, Michael F.; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  1. Weldability of 780 MPa Super-High Strength Heavy-Duty Truck Crossbeam Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-nan; DI Hong-shuang; ZHANG Chit; DU Lin-xiu; DONG Xue-xir

    2012-01-01

    CO2-shielded welding experiments of newly developed, 780 MPa super-high strength heavy-duty truck crossbeam steel were conducted, and the microstructure, microhardness, mechanical properties, and impact tough- hess of the welded joint were studied. The evolution of the microstructure of the welded joint occurred as follows.. welding seam (acicular ferrite+proeutectoid ferrite)→fusion zone (granular bainite-long strip M/A island)→coarse grain zone (granular bainite-long strip or short bar M/A island)→fine grain zone (ferrite+ pearlite+ blocky M/A is- land)→mixed grained zone (ferrite+granular bainite+blocky M/A island)→base metal (proeutectoid ferrite+gran- ular bainite-hlocky or granular M/A island). Increasing the density of the grain boundaries can effectively improve the impact toughness, and the blocky M/A island hindered crack propagation more effectively than the long strip M/A island. The new hot-rolled 780 MPa super-high strength steel had excellent weldability. The welding technology was applied under the following conditions: welding voltage was 20 to 21 V, welding current was 200 to 210 A, and the gas flow rate was 25 L/rain.

  2. Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser

    Science.gov (United States)

    Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko

    2012-03-01

    High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.

  3. Durability Index Performance of High Strength Concretes Made Based on Different Standard Portland Cements

    Directory of Open Access Journals (Sweden)

    Stephen O. Ekolu

    2012-01-01

    Full Text Available A consortium of three durability index test methods consisting of oxygen permeability, sorptivity and chloride conductivity were used to evaluate the potential influence of four (4 common SANS 10197 cements on strength and durability of concrete. Twenty four (24 concrete mixtures of water-cement ratios (w/c's = 0.4, 0.5, 0.65 were cast using the cement types CEM I 42.5N, CEM II/A-M (V-L 42.5N, CEM IV/B 32.5R and CEM II/A-V 52.5N. The concretes investigated fall in the range of normal strength, medium strength and high strength concretes. It was found that the marked differences in oxygen permeability and sorptivity results observed at normal and medium strengths tended to vanish at high concrete strengths. Also, the durability effects attributed to use of different cement types appear to diminish at high strengths. Cements of low strength and/or that contained no extenders (CEM 32.5R, CEM I 42.5N showed greater sensitivity to sorptivity, relative to other cement types. Results also show that while concrete resistance to chlorides generally improves with increase in strength, adequately high chloride resistance may not be achieved based on high strength alone, and appropriate incorporation of extenders may be necessary.

  4. Fabrication of very high density fuel pellets of thorium dioxide

    Science.gov (United States)

    Shiratori, Tetsuo; Fukuda, Kosaku

    1993-06-01

    Very high density ThO 2 pellets were prepared without binders and lubricants from the ThO 2 powder originated by the thorium oxalate, which was aimed to simplify the fabrication process by skipping a preheat treatment. The as-received ThO 2 powder with a surface area of 4.56 m 2/g was ball-milled up to about 9 m 2/g in order to increase the green pellet density as high as possible. Both of the single-sided and the double-sided pressing were tested in the range from 2 to 5 t/cm 2 in the green pellet formation. Sintering temperature was such low as 1550°C. The pellet prepared in this experiment had a very high density in the range from about 96 to 98% TD without any cracks, in which a difference of the pellet density was not recognized in the single-sided pressing methods.

  5. High-density scintillating glasses for a proton imaging detector

    Science.gov (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  6. Elastic behavior and platelet retraction in low- and high-density fibrin gels.

    Science.gov (United States)

    Wufsus, Adam R; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R; Liberatore, Matthew W; Neeves, Keith B

    2015-01-06

    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3-10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3-10 mg/mL) and high (30-100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi.

  7. Stability of high cell density brewery fermentations during serial repitching.

    Science.gov (United States)

    Verbelen, Pieter J; Dekoninck, Tinne M L; Van Mulders, Sebastiaan E; Saerens, Sofie M G; Delvaux, Filip; Delvaux, Freddy R

    2009-11-01

    The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size). However, the decreased yeast net growth observed in these high cell density brewery fermentations can adversely affect the physiological stability throughout subsequent yeast generations. Therefore, different O(2) conditions (wort aeration and yeast preoxygenation) were applied to high cell density fermentation and eight generations of fermentations were evaluated together with conventional fermentations. Freshly propagated high cell density populations adapted faster to the fermentative conditions than normal cell density populations. Preoxygenating the yeast was essential for the yeast physiological and beer flavor compound stability of high cell density fermentations during serial repitching. In contrast, the use of non-preoxygenated yeast resulted in inadequate growth which caused (1) insufficient yield of biomass to repitch all eight generations, (2) a 10% decrease in viability, (3) a moderate increase of yeast age, (4) and a dramatic increase of the unwanted flavor compounds acetaldehyde and total diacetyl during the sequence of fermentations. Therefore, to achieve sustainable high cell density fermentations throughout the economical valuable process of serial repitching, adequate yeast growth is essential.

  8. Bottom-up Design of Three-Dimensional Carbon-Honeycomb with Superb Specific Strength and High Thermal Conductivity.

    Science.gov (United States)

    Pang, Zhenqian; Gu, Xiaokun; Wei, Yujie; Yang, Ronggui; Dresselhaus, Mildred S

    2017-01-11

    Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, have been broadly explored due to their outstanding and special properties. However, there exist significant challenges in retaining such properties of basic building blocks when scaling them up to three-dimensional materials and structures for many technological applications. Here we show theoretically the atomistic structure of a stable three-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and thermal properties. A combination of sp(2) bonding in the wall and sp(3) bonding in the triple junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific strength could be the best in structural carbon materials, and this strength remains at a high level but tunable with different cell sizes. C-honeycomb is also found to have a very high thermal conductivity, for example, >100 W/mK along the axis of the hexagonal cell with a density only ∼0.4 g/cm(3). Because of the low density and high thermal conductivity, the specific thermal conductivity of C-honeycombs is larger than most engineering materials, including metals and high thermal conductivity semiconductors, as well as lightweight CNT arrays and graphene-based nanocomposites. Such high specific strength, high thermal conductivity, and anomalous Poisson's effect in C-honeycomb render it appealing for the use in various engineering practices.

  9. γ strength function and level density of 208Pb from forward-angle proton scattering at 295 MeV

    Science.gov (United States)

    Bassauer, S.; von Neumann-Cosel, P.; Tamii, A.

    2016-11-01

    Background: γ strength functions (GSFs) and level densities (LDs) are essential ingredients of statistical nuclear reaction theory with many applications in astrophysics, reactor design, and waste transmutation. Purpose: The aim of the present work is a test of systematic parametrizations of the GSF recommended by the RIPL-3 database for the case of 208Pb. The upward GSF and LD in 208Pb are compared to γ decay data from an Oslo-type experiment to examine the validity of the Brink-Axel (BA) hypothesis. Methods: The E 1 and M1 parts of the total GSF are determined from high-resolution forward angle inelastic proton scattering data taken at 295 MeV at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. The total LD in 208Pb is derived from the 1- LD extracted with a fluctuation analysis in the energy region of the isovector giant dipole resonance. Results: The E 1 GSF is compared to parametrizations recommended by the RIPL-3 database showing systematic deficiencies of all models in the energy region around neutron threshold. The new data for the poorly known spin-flip M 1 resonance call for a substantial revision of the model suggested in RIPL-3. The total GSF derived from the present data is larger in the PDR energy region than the Oslo data but the strong fluctuations due to the low LD resulting from the double shell closure of 208Pb prevent a conclusion on a possible violation of the BA hypothesis. Using the parameters suggested by RIPL-3 for a description of the LD in 208Pb with the back-shifted Fermi gas model, remarkable agreement between the two experiments spanning a wide excitation energy range is obtained. Conclusions: Systematic parametrizations of the E 1 and M 1 GSF parts need to be reconsidered at low excitation energies. The good agreement of the LD provides an independent confirmation of the approach underlying the decomposition of GSF and LD in Oslo-type experiments.

  10. Chloride-Ion Penetrability and Mechanical Analysis of High Strength Concrete with Copper Slag

    Directory of Open Access Journals (Sweden)

    Savaş Erdem

    2014-05-01

    Full Text Available The use of waste materials and industrial by-products in high-strength concrete could increase the sustainability of the construction industry. In this study, the potential of using copper slag as coarse aggregate in high-strength concrete was experimentally investigated. The effects of replacing gravel coarse aggregate by copper slag particles on the compressive strength, chloride ion- migration, water permeability and impact resistance of high-strength concretes were evaluated. Incorporating copper slag coarse particles resulted in a compressive strength increase of about 14 % on average partly due to the low Ca/Si ratio through the interface area of this concrete (more homogenous internal structure as confirmed by the energy dispersive X-ray micro chemical analysis. It was also found that the copper slag high-strength concrete provided better ductility and had much greater load carrying capacity compared to gravel high-strength concrete under dynamic conditions. Finally, it was observed that in comparison to the high strength concrete with slag, the chloride migration coefficient from non-steady state migration was approximately 30 % greater in the gravel high-strength concrete.

  11. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches

    National Research Council Canada - National Science Library

    deGoma, Emil M; deGoma, Rolando L; Rader, Daniel J

    2008-01-01

    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression...

  12. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    Science.gov (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  13. Development of 30Cr06A, a high strength cast steel and its welding ability

    Institute of Scientific and Technical Information of China (English)

    GAO You-jin

    2008-01-01

    High performance hydraulic supports have a high requirement in strength, toughness and welding ability of socket ma- terial. Targeting this problem, we analyzed the properties of the high strength socket material 30Cr06, used in high performance hydraulic supports both at home and abroad and developed a new kind of high strength cast steel 30Cr06A, by making use of an orthogonal experiment, which provided the design conditions for its optimal composition. The result shows that the strength and toughness of the newly developed high strength cast steel 30Cr06A is much better than that of 30Cr06. Theoretical calculations, mechanical property tests and hardness distribution tests of welded joints were carried out for a study of the welding ability of the new material, which is proved to be very good. Therefore, this 30Cr06A material has been successfully used in the socket of high performance hydraulic support.

  14. High strength microstructural forms developed in titanium alloys by rapid heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M. [Institute of Metal Physics, Kiev (Ukraine)

    2001-09-01

    It is shown that rapid heat treatment of alpha+beta and beta titanium alloys, which includes rapid heating of alloys with initial equiaxed microstructure into single-phase beta field is able to produce microstructural forms in which high strength can be well balanced with other mechanical properties. Main advantage of rapid heating approach comes from the possibility to extend the level of ''useful'' strength. Desirably high strength is provided by intragranular morphology and microchemistry while beta-grain refinement permits a reliability of such high strength conditions. (orig.)

  15. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  16. Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete

    Science.gov (United States)

    2014-10-17

    AFRL-RW-EG-TR-2014-120 Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete Lance...EXTENSION TESTS ON EGLIN HIGH-STRENGTH CONCRETE FA8651-12-D-0309, Task 005 N/A 2502 9210 W0DT (1) Lance Besaw, Applied Research Associates, Inc. (2...models. All concretes exhibit higher strength in compression than in tension, therefore it is critical to understand the tensile properties of such

  17. Strength of fibres in low-density thermally bonded nonwovens: An experimental investigation

    Science.gov (United States)

    Farukh, Farukh; Demirci, Emrah; Acar, Memiş; Pourdeyhimi, Behnam; Silberschmidt, Vadim V.

    2012-08-01

    Mechanical properties of nonwovens related to damage such as failure stress and strain at that stress depend on deformation and damage characteristics of their constituent fibres. Damage of polypropylene-fibre commercial low-density thermally bonded nonwovens in tension was analysed with tensile tests on single fibres, extracted from nonwovens bonded at optimal manufacturing parameters and attached to individual bond points at both ends. The same tests were performed on raw polypropylene fibres that were used in manufacturing of the analysed nonwovens to study quantitatively the effect of manufacturing parameters on tenacity of fibres. Those tests were performed with a wide range of strain rates. It was found that the fibres break at their weakest point, i.e. bond edge, in optimally bonded nonwovens. Additionally, failure stress and strain in tension of a fibre extracted from the fabric were significantly lower than those of virgin fibre. Since damage in nonwovens occurs by progressive failure of fibres, those experiments were used to establish criteria for damage initiation and propagation in thermally bonded nonwovens based on polypropylene fibres. Moreover, the results obtained from the experiments are useful to simulate the damage behaviour of nonwoven fabrics.

  18. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  19. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  20. Microstructure and high-temperature strength of high Cr ODS tempered martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S., E-mail: ohtsuka.satoshi@jaea.go.jp; Kaito, T.; Tanno, T.; Yano, Y.; Koyama, S.; Tanaka, K.

    2013-11-15

    11-12Cr oxide dispersion strengthened (ODS) tempered martensitic steels underwent manufacturing tests and their ferritic–martensitic duplex structures were quantitatively evaluated by three methods: high-temperature X-ray diffraction (XRD), electron probe microanalyzer (EPMA), and metallography. It was demonstrated that excessive formation of residual-α ferrite, due to increasing Cr content, could be suppressed by appropriately controlling the concentration of the ferrite-forming and austenite-forming elements on the basis of the parameter “chemical driving force of α to γ reverse transformation. 11Cr-ODS steel containing a small portion of residual-α ferrite was successfully manufactured. In the as-received condition, this 11Cr-ODS steel was shown to have satisfactory creep strength and ductility, both as high as those of the 9Cr-ODS steel, while its 0.2% proof strength at 973 K was lower than in the 9Cr-ODS steel.

  1. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  2. Strengthening Mechanism of a New 700 MPa Hot Rolled High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    YI Hai-long; DU Lin-xiu; WANG Guo-dong; LIU Xiang-hua

    2008-01-01

    The microstructural evolution in a 700 MPa hot rolled high strength steel was analyzed in terms of strengthening mechanisms. The results show that the hot rolled sheet steel has yield strength of 710 MPa with good elongation and toughness. The strength of the developed 700 MPa hot rolled high strength steel is derived from the cumulative contribution of fine grain size, dislocation hardening and precipitation hardening. The fine grain strength ening and precipitation hardening are the dominant factors responsible for such high strength, and the amount of pre cipitation hardening is two or four times higher than that of conventional microalloyed hot rolled sheet steels reported in the past. Good toughness is due to refinement of ferrite grain size.

  3. Preparation for Retarding and High Early Strength Concrete

    Institute of Scientific and Technical Information of China (English)

    HU Zhijian; FENG Hao; WANG Xuefei

    2015-01-01

    The primary objective of this research was to determine optimum dosage of mixing concrete containing plasticizers and lfy ash, consistent with desirable structural grade concrete properties. Factorial tests were also conducted to investigate the four main factors: water-cementing materials ratio, water content, content of superplasticizers (SP) and fly ash content. It was found that the requirement for setting time played the dominant role in shrinkage and anti-cracking, and lfy ash played a critical role in workability and reducing heat of hydration but showed insigniifcant effects on slump, early strength and initial setting time of concrete.

  4. Noise reduction in muon tomography for detecting high density objects

    CERN Document Server

    Benettoni, M; Bonomi, G; Calvagno, G; Calvini, P; Checchia, P; Cortelazzo, G; Cossutta, L; Donzella, A; Furlan, M; Gonella, F; Pegoraro, M; Garola, A Rigoni; Ronchese, P; Squarcia, S; Subieta, M; Vanini, S; Viesti, G; Zanuttigh, P; Zenoni, A; Zumerle, G

    2013-01-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. A new and innovative method is presented in this paper to handle the density fluctuations (noise) of reconstructed images, that are a known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect in short times high density materials, such as lead, when surrounded by light or medium density material. A comparison with algorithms published in literature is also presented.

  5. Noise reduction in muon tomography for detecting high density objects

    Science.gov (United States)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  6. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently...

  7. Fabrication of High Strength and Ductile Stainless Steel Fiber Felts by Sintering

    Science.gov (United States)

    Wang, J. Z.; Tang, H. P.; Qian, M.; Li, A. J.; Ma, J.; Xu, Z. G.; Li, C. L.; Liu, Y.; Wang, Y.

    2016-03-01

    Stainless steel fiber felts are important porous stainless steel products for a variety of industry applications. A systematic study of the sintering of 28- µm stainless steel fibers has been conducted for the first time, assisted with synchrotron radiation experiments to understand the evolution of the sintered joints. The critical sintering conditions for the formation of bamboo-like grain structures in the fiber ligaments were identified. The evolution of the number density of the sintered joints and the average sintered neck radius during sintering was assessed based on synchrotron radiation experiments. The optimum sintering condition for the fabrication of high strength and ductile 28- µm-diameter stainless steel fiber felts was determined to be sintering at 1000°C for 900 s. Sintering under this optimum condition increased the tensile strength of the as-sintered stainless steel fiber felts by 50% compared to conventional sintering (1200°C for 7200 s), in addition to much reduced sintering cycle and energy consumption.

  8. Possibilities to verify the level density and radiative strength functions, extracted from the two-step gamma-cascade intensities

    CERN Document Server

    Khitrov, V A; Khang, Pham Dinh; Tan, Vuong Huu; Hai, Nguyen Xuan

    2007-01-01

    The direct determination of the excitation level density and radiative strength functions of their exciting gamma-transitions is impossible for the larger part of the stable and long-life radioactive target nuclei. This circumstance is uniquely determined by the fact, that the level spacing much less than the resolution of the existing spectrometers of gamma-rays and charged particles. The extraction of these parameters of nucleus in this situation can be executed by their only fitting to the most probable values, reproducing the measured in the nuclear reactions spectra and sections. This inverse problem of mathematical analysis of its nature is principally ambiguous. Moreover, system of equations, those connecting the number of excitable levels and probability of the emission of charge particles are assigned usually within the framework of some assumptions about the mechanism of nuclear reaction and factors, determining the dynamics of the studied process. The verification of these parameters can be partial...

  9. Effects of casein, whey and soy proteins on volumetric bone density and bone strength in immunocompromised piglets

    DEFF Research Database (Denmark)

    Budek, Alicja Zofia; Bjørnvad, Charlotte; Mølgaard, Christian

    2007-01-01

    assigned to a formula based on either casein (n=11), whey (n=11) or soy (n=10) as the protein source (each 55 g/L), and equal amounts of fat, carbohydrates, calcium and phosphorus. Results & Conclusion: Despite efforts to sustain immuno-protection (sow serum and antibiotic injections), some piglets became......Summary:Background and aims: Bone-promoting effect of different proteins in early life, under immunocompromised conditions, is unknown. We investigated effects of milk- and plantderived proteins on bone development in immunocompromised piglets. Methods: Newborn, colostrum-deprived piglets were...... sick and were early euthanised. After 6 days, bone density (peripheral quantitative computed tomography), bone mechanical strength (three-point bending test) and serum insulin-like growth factor-I (sIGF-I) (immunoassay) were measured in the surviving piglets (casein n=5, whey n=9, soy n=5)....

  10. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  11. BCS Theory of Hadronic Matter at High Densities

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca

    2012-01-01

    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state...... than is usual in NJL type models. This should be adequate if the relevant chemical potential does not exceed 0.6 GeV....

  12. High-strength cast irons used for manufacturing parts of vaz passenger cars

    Science.gov (United States)

    Kitaigora, N. I.

    1996-10-01

    Methods for solving problems arising in the production of high-strength cast iron with stable properties and structure are considered. Results of introduction of new grades of high-strength cast iron instead of malleable cast iron and camshaft cast iron in the Volzhskii Automobile Plant are described.

  13. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is th

  14. A constitutive model for the anelastic behavior of Advanced High Strength Steels

    NARCIS (Netherlands)

    Torkabadi, A.; Liempt, van P.; Meinders, V.T.; Boogaard, van den A.H.

    2015-01-01

    In this work a physically based model describing the anelastic behaviour and nonlinear unloading in Advanced High Strength Steels (AHSS) is proposed. The model is fitted to the experimental data obtained from uni-axial tests on a dual-phase high strength steel grade (HCT780). The results show a good

  15. Performance of High-Strength Concrete Using Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Dr. M. Swaroopa Rani

    2015-04-01

    Full Text Available The advancement in material technology has led to development of concrete with higher strengths. Presence of high cementitious materials contents in high strength concrete mixes increases heat of hydration that causes higher shrinkage and leading it to potential of cracking. However, use of supplementary cementitious materials leads to control in heat of hydration which further avoids higher shrinkage. Materials such as fly ash, silica fume, metakaolin and ground granulated blast furnace slag are largely been used as supplementary cementitious materials in High strength concrete mixes. In the present study use of palm oil fuel ash (POFA as partial cement replacement in high strength concrete mixes is evaluated with an experimental study. High strength concrete mix of M60 grade is taken as a reference and the compressive strength, split tensile strength and flexural strength where performed for 7, 28 and 56 days and analyzed it with results for partial replacement mixes of POFA 5%, 10%, 15%, 20% & 25%. It has been observed that concrete with 15% replacement of POFA gave the highest strength.

  16. Manufacturing of complex high strength components out of high nitrogen steels at industrial level

    Institute of Scientific and Technical Information of China (English)

    Hannes NONEDER; Marion MERKLEIN

    2012-01-01

    High performance components,e.g.,fasteners,nowadays are usually made out of cold forged and heat treated steels like steel 1.5525 (20MnB4).To overcome the problems of heat treatment,e.g.,low surface quality,new workpiece materials for cold forging should be found to achieve the needlessness of heat treatment after cold forging.One possible material is given by high nitrogen steels like steel 1.3815 (X8CrMnN19-19).Due to the high strain hardening of these materials the process and tool design for an industrial batch process are challenging and should be conducted by FE-simulation.The numerical results show that,high strength tool materials,like PM-steels or cemented carbides,in most cases,are inevitable.Additionally to the selection of suitable tool materials,the tool layout should be developed further to achieve a high loadability of the tools.The FE-models,used for process and tool design,are validated with respect to the materials' flow and occurring forming force to assure a proper design process.Also the comparison of strength of components made out of steel 1.5525 in quenched and tempered conditions and steel 1.3815 in strain hardened condition is done.The results show that the component made of steel 1.3815 has a significantly higher strength than the component made of steel 1.5525.This shows that by the use of high nitrogen steels a high performance component can be manufactured by cold forging.

  17. Threshold Stress Intensity of Hydrogen-Induced Cracking and Stress Corrosion Cracking of High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The threshold stress intensity of stress corrosion cracking (SCC) for 40CrMo steel in 3.5 % NaCl solution decreased exponentially with the increase of yield strength. The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen. This equation was also applicable to SCC of high strength steel in aqueous solution. The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength. Based on the results, the relationship between KISCC and σys could be deduced.

  18. Mendelian Disorders of High-Density Lipoprotein Metabolism

    NARCIS (Netherlands)

    Oldoni, Federico; Sinke, Richard J.; Kuivenhoven, Jan Albert

    2014-01-01

    High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL chol

  19. Perceived Strengths and Weaknesses of Highly Realistic Training and Live Tissue Training for Navy Corpsmen

    Science.gov (United States)

    2015-04-08

    Naval Health Research Center Perceived Strengths and Weaknesses of Highly Realistic Training and Live Tissue Training for Navy Corpsmen Stephanie...Highly Realistic and Live Tissue Training 1 Perceived Strengths and Weaknesses of Highly Realistic Training and Live Tissue...Highly Realistic and Live Tissue Training 2 ABSTRACT The U.S. Navy currently employs two types of trauma care training for Navy corpsmen: highly

  20. The research on delayed fracture behavior of high-strength bolts in steel structure

    Science.gov (United States)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  1. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    Science.gov (United States)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  2. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  3. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben

    2009-01-01

    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  4. Elevated-temperature properties of one long-life high-strength gun steel

    Institute of Scientific and Technical Information of China (English)

    Maoqiu Wang; Han Dong; Qi Wang

    2004-01-01

    The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures were investigated in order to develop high-strength steel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensile strength at elevated temperature in comparison with the commonly used G4335V high-strength gun steel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strength of the steel is attributed to the strong secondary hardening effect and high tempering softening resistance caused by the tempering precipitation of fine Mo-rich M2C carbides in the α-Fe matrix. The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, its room-temperature impact energy is much higher than the normal requirement of impact toughness for high strength gun steels. Therefore, the steel is suitable for production of long-life high-strength gun barrels with the combination of superior elevated-temperature strength and good impact toughness.

  5. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  6. Kenaf Powder Filled Recycled High Density Polyethylene/Natural Rubber Biocomposites: The Effect of Filler Content

    Directory of Open Access Journals (Sweden)

    Xuan Viet Cao

    2012-09-01

    Full Text Available The performance of kenaf powder (KP as filler for recycled high density polyethylene (rHDPE/natural rubber (NR thermoplastic elastomer (TPE composites was investigated. The composites with different filler loading were prepared in a Haake internal mixer. Increasing KP loading in rHDPE/NR/KP biocomposites reduced the tensile strength, elongation at break but increased the stabilization torque and the tensile modulus. SEM study of fracture surface indicated that fibrillation of rHDPE was reduced and detachment of kenaf powder from polymer matrix was present particularly at high filler loading. These observations were responsible for the deterioration of tensile strength and elongation at break of rHDPE/NR/KP biocomposites. Water absorption study also showed that the water absorption of these biocomposites increased with increasing KP content.

  7. Experimental study of Electro-Plastic Effect on Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xun; Lan, Shuhuai; Ni, Jun, E-mail: junni@umich.edu

    2013-10-10

    Application of Advanced High Strength Steels (AHSS) into vehicle structures calls for innovative manufacturing processes. In terms of reducing deformation resistance through external energy, Electro-Plastic Effect (EPE) provides a potential alternative to traditional thermal softening phenomenon. In this work, effectiveness of EPE on one group of AHSS, Transformation Induced Plasticity (TRIP) Steel, was evaluated. It was found that EPE cannot be effectively initiated until the current density reaches a threshold value between 7.4 A/mm{sup 2} and 11.4 A/mm{sup 2}. Besides, the softening phenomenon is more distinct at larger strains. Underlying mechanisms are explained from perspectives of dislocation multiplication, gliding and mechanical twinning. The inevitable Joule heating phenomenon associated with current was suppressed with forced air cooling and the temperature distribution inside the tensile specimen was numerically calculated with a coupled Finite Element Model. Effectiveness of EPE rather than thermal softening or expansion was further proved with the larger flow stress reduction under higher current density and shorter pulses at same temperature increase. Hollomon equation was adopted to model the observed stress strain relationships. Since material properties of TRIP steels are directly related to the phase transformation from retained austenite into martensite, volume fraction of retained austenite was quantitatively measured by X-ray Diffraction (XRD). It was found that the applied current retarded martensitic transformation process. Metallographic analysis was further performed and phenomena of change of grain structures and phase distribution were hardly observable.

  8. High-Strength, Low-Shrinkage Ceramic Tiles

    Science.gov (United States)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Addition of refractory fibers and whiskers to insulating tiles composed primarily of fibrous silica, such as those used on the skin of Space Shuttle orbiter, greatly improves properties. New composition suitable for lightweight, thermally-stable mirror blanks and as furnace and kiln insulation. Improved tiles made with current tile-fabrication processes. For given density, tiles containing silicon carbide and boron additives stronger in flexure than tiles made from silica alone. In addition, tiles with additives nearly immune to heat distortion, whereas pure-silica tiles shrink and become severely distorted.

  9. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  10. Development of Low and Middle Carbon Martensite Spring Steel with High Strength and Toughness for Automobile

    Institute of Scientific and Technical Information of China (English)

    Li Ye-sheng; Wu Zi-ping; Zhu Yin-lu; Chen Hui-huang

    2004-01-01

    The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring steel35Si2CrMnVB, C0.34, Sil.66, Mn0.80, Cr0.67, V0.13, B0.001, P0.011, S0.014 wt.%, has been developed. Comparison between the new spring steel 35Si2CrMnVB and the conventional spring steel 60Si2MnA, C0.61, Sil.75, Mn0.76, P0.021,S0.018 wt.%, shows that the new spring steel has not only high strength, good ductility, good comprehensive mechanical properties, but also low decarbonization tendency, sufficient hardenability and high elastic sag resistance, etc.. The microstructure change in quenched steel caused by the decreasing of carbon contents is detected through metallographic observation, the new low and middle carbon spring steel 35Si2CrMnVB after quenching is composed of almost lath martensite with high dislocation density and only a little martensite with twin structure. It is testified that to develop low carbon spring steel with more excellent properties for automobile is feasible.

  11. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...... a week. Muscle fiber size, composition and capillary density were analyzed in biopsies obtained in the vastus lateralis muscle. Glucose tolerance and the insulin response were measured by a 2-hour oral glucose tolerance test. Results: All outcome measures remained unchanged during the control period....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...

  12. High speed, high strength microwelding of Si/glass using ps-laser pulses.

    Science.gov (United States)

    Miyamoto, Isamu; Okamoto, Yasuhiro; Hansen, Assi; Vihinen, Joma; Amberla, Tiina; Kangastupa, Jarno

    2015-02-09

    A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 µm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

  13. Precision continuous high-strength Azimuth track for large telescopes

    Science.gov (United States)

    Antebi, Joseph; Kan, Frank W.

    2003-01-01

    A novel track joint was developed for the azimuth track of the 50-m diameter Large Millimeter Telescope (LMT) now under construction in Mexico at an elevation of 4,600 m. The track, which is 430 mm wide by 230 mm deep, must be flat to within +/- 0.3 mm, and the material hardness at least 290 Brinell. This design uses a partial penetration narrow gap groove weld on the top surface of the track and a splice plate welded to the underside of the track. Pre-camber of the joint compensates for weld shrinkage which is small because of the use of the narrow gap groove weld. The residual deviations from flatness are reduced to the required tolerance by adjusting anchor bolts using an optimization procedure. The feasibility of the design with respect to fabrication, strength, fatigue, and alignment was demonstrated by detailed finite element analyses, trial welding and alignment of full scale joints, and testing of the mechanical properties of the joint and adjacent metal.

  14. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  15. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  16. Origins and Impacts of High-Density Symmetry Energy

    CERN Document Server

    Li, Bao-An

    2016-01-01

    What is nuclear symmetry energy? Why is it important? What do we know about it? Why is it so uncertain especially at high densities? Can the total symmetry energy or its kinetic part be negative? What are the effects of three-body and/or tensor force on symmetry energy? How can we probe the density dependence of nuclear symmetry energy with terrestrial nuclear experiments? What observables of heavy-ion reactions are sensitive to the high-density behavior of nuclear symmetry energy? How does the symmetry energy affect properties of neutron stars, gravitational waves and our understanding about the nature of strong-field gravity? In this lecture, we try to answer these questions as best as we can based on some of our recent work and/or understanding of research done by others. This note summarizes the main points of the lecture.

  17. Preparation of spherical cobalt carbonate powder with high tap density

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; WANG Jian-feng; LIU Yong-dong; LI Jie; LIU Ye-xiang

    2006-01-01

    Spherical cobalt carbonate with high tap density, good crystallization and uniform particle size was prepared by controlled chemical crystal method using cobalt chloride and ammonium bicarbonate as cobalt source and precipitator. The effects of pH value and reaction time on crystallization and physical properties of cobalt carbonate were studied. The results show that the key factors influencing the preparation process of spherical cobalt carbonate with high tap density and good crystallization are how to control pH value (7.25 ± 0.05) and keep some reaction time (about 10 h). Co4O3 was prepared by sintering spherical morphology CoCO3 samples at varied temperatures. The results show that as the decomposition temperature increases, the as-obtained Co4O3 products with porous structure transform into polyhedral structure with glazed surface, and simultaneously the cobalt content and tap density increase. However, the specific surface area shows a trend of decrease.

  18. Effect of Polymer Blocking Layer and Processing Method on the Breakdown Strength and the Extractable Energy Density of Barium Titanate/poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite Thin Film Capacitors

    Science.gov (United States)

    Kim, Yunsang; Kathaperumal, Mohanalingam; Smith, O'neil; Pan, Ming-Jen; Perry, Joseph

    2013-03-01

    Polymer-metal oxide nanocomposites are of great interest because of their high energy density and easy processability, which make them candidate materials for energy storage applications. Although loading of high-k filler in polymer matrix is desirable to maximize energy density of nanocomposites, the decrease of breakdown strength at higher loading compromises a potential gain in energy density. In this work, we investigate the effect of a fluoropolymer (CYTOP) blocking layer in BaTiO3/poly(vinylidene fluoride-co-hexafluoro propylene) nanocomposite films on the improvement of breakdown strength and energy storage density. The introduction of blocking layer may serve to prevent moisture absorption and charge injection from electrode, thereby decreasing the probability of catastrophic breakdown events. We also examine the influence of processing method, i.e. spin- or blade-casting, on the performance of bilayer films. The charge-discharge method shows about a twofold increase in extractable energy density (from 2 to 3.7 J/cm3) of bilayer films fabricated by blade-casting compared to single layer film by spin-casting because of improved breakdown strength. The results will be discussed in regards to morphology, electric field distribution, and loss of bilayer films.

  19. Fatigue experiments on very high strength steel base material and transverse butt welds

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.

    2009-01-01

    Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years. However, the use of these steels in the civil engineering industry is still uncommon, due to lack of design and fabrication knowledge and therefore limited inclusion in codes. Mor

  20. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...

  1. Fatigue experiments on very high strength steel base material and transverse butt welds

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Kolstein, M.H.; Romeijn, A.; Bijlaard, F.S.K.

    2009-01-01

    Very High Strength Steels (VHSS) with nominal strengths up to 1100 MPa have been available on the market for many years. However, the use of these steels in the civil engineering industry is still uncommon, due to lack of design and fabrication knowledge and therefore limited inclusion in codes.

  2. Production of small diameter high-temperature-strength refractory metal wires

    Science.gov (United States)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  3. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  4. An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator

    Science.gov (United States)

    Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.

  5. HIGH SPEED INJECTION MOLDING OF HIGH DENSITY POLYETHYLENE - EFFECTS OF INJECTION SPEED ON STRUCTURE AND PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Kun Jiang; Feng Chen; Qiang Fu; Fei-long Yu; Run Su; Jing-hui Yang; Tian-nan Zhou; Jian Gao; Hua Deng; Ke Wang; Qin Zhang

    2011-01-01

    Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with differentinjection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young's moduluswas observed with increasing injection speed. In order to investigate the mechanism behind this decrease, the orientation,molecular weight, molecular weight distribution, melt flow rate, crystallinity and crystal morphology of HDPE werecharacterized using two-dimensional wide-angle X-ray diffraction (2D-WAXD), gel permeation chromatography (GPC),capillary rheometry and differential scanning calorimetry (DSC), respectively. It is demonstrated that the orientation,molecular weight, molecular weight distribution, melt flow rate and crystallinity have no obvious change with increasinginjection speed. Nevertheless, the content of extended chain crystals or large folded chain crystals was found to decreasewith increasing injection speed. Therefore, it is concluded that the decrease in tensile properties is mainly contributed by the reduced content of extended chain crystals or large folded chain crystals. This study provides industry with valuableinformation for the application of high speed injection molding.

  6. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  7. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players.

    Science.gov (United States)

    Wong, Pui-lam; Chaouachi, Anis; Chamari, Karim; Dellal, Alexandre; Wisloff, Ulrik

    2010-03-01

    This study examined the effect of concurrent muscular strength and high-intensity running interval training on professional soccer players' explosive performances and aerobic endurance. Thirty-nine players participated in the study, where both the experimental group (EG, n = 20) and control group (CG, n = 19) participated in 8 weeks of regular soccer training, with the EG receiving additional muscular strength and high-intensity interval training twice per week throughout. Muscular strength training consisted of 4 sets of 6RM (repetition maximum) of high-pull, jump squat, bench press, back half squat, and chin-up exercises. The high-intensity interval training consisted of 16 intervals each of 15-second sprints at 120% of individual maximal aerobic speed interspersed with 15 seconds of rest. EG significantly increased (p aerobic speed test, and maximal aerobic speed. High-intensity interval running can be concurrently performed with high load muscular strength training to enhance soccer players' explosive performances and aerobic endurance.

  8. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  9. EVALUATION AND APPLICATION OF THE INVASIVE WEED MIKANIA MICRANTHA AS AN ALTERNATIVE REINFORCEMENT IN RECYCLED HIGH DENSITY POLYETHYLENE

    Directory of Open Access Journals (Sweden)

    Yong-Long Chen,

    2012-04-01

    Full Text Available In this study Mikania micrantha particle (MP and fiber (MF were added to recycled high density polyethylene (rHDPE for producing natural fiber (or particle reinforced plastic composites (NFRPC by the flat-platen pressing process. The results showed that the flexural strength and stiffness of NFRPC were significantly improved through incorporating M. micrantha particle and fiber. Higher aspect ratio of reinforcement displayed stronger mechanical properties. The vertical density profile in composites significantly influenced the mechanical properties of NFRPC. A conventional V-shaped profile and a uniform vertical density profile (homo-profile were observed in MP and MF based NFRPC, respectively. Additionally, with increasing lignocellulose content, a more uniform vertical density profile and higher wood screw holding strength were observed. These results indicate M. micrantha particle and fiber are excellent reinforcements for NFRPC applications.

  10. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  11. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin

  12. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture resemblin

  13. Two-Dimensional Super High Density Multi-Fiber Connector

    Institute of Scientific and Technical Information of China (English)

    Takashi Shigenaga; Katsuki Suematsu; Masao Shinoda; Takayuki Ando

    2003-01-01

    We have developed 32-fiber and 60-fiber super high density multi fiber connector. This 32-fiber connector can be applicable for single-mode fiber and 60-fiber connector for multi-mode fiber. We have also established PC (physical contact) connection technology by optimizing polishing condition and clamping force.

  14. Interaction effects in high density magnetic particulate media

    Energy Technology Data Exchange (ETDEWEB)

    Cerchez, Mihai; Stoleriu, Laurentiu; Stancu, Alexandru

    2004-01-01

    The paper presents a micromagnetic study of the particulate high density recording media. The main difference in the behavior of such a system is the appearance of magnetic clusters which lead to a different behavior of the system. New hypotheses for interpreting such systems are presented.

  15. Metabolism of high density lipoproteins in liver cancer

    Institute of Scientific and Technical Information of China (English)

    Jing-Ting Jiang; Ning Xu; Chang-Ping Wu

    2007-01-01

    Liver plays a vital role in the production and catabolism of plasma lipoproteins. It depends on the integrity of cellular function of liver, which ensures homeostasis of lipid and lipoprotein metabolism. When liver cancer occurs these processes are impaired and high-density lipoproteins are changed.

  16. High Energy Density Physics and Exotic Acceleration Schemes

    Science.gov (United States)

    Cowan, Thomas; Colby, Eric

    2002-12-01

    We summarize the reported results and the principal technical discussions that occurred in our Working Group on High Energy Density Physics and Exotic Acceleration Schemes at the 2002 workshop on Advanced Accelerator Concepts at the Mandalay Beach resort, June 22-28, 2002.

  17. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture

  18. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  19. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomized rats.

    Science.gov (United States)

    Bae, Yun Jung; Bu, So Young; Kim, Jae Young; Yeon, Jee-Young; Sohn, Eun-Wha; Jang, Ki-Hyo; Lee, Jae-Cheol; Kim, Mi-Hyun

    2011-12-01

    Commercially available seaweed calcium extract can supply high amounts of calcium as well as significant amounts of magnesium and other microminerals. The purpose of this study was to investigate the degree to which the high levels of magnesium in seaweed calcium extract affects the calcium balance and the bone status in ovariectomized rats in comparison to rats supplemented with calcium carbonate and magnesium oxide. A total of 40 Sprague-Dawley female rats (7 weeks) were divided into four groups and bred for 12 weeks: sham-operated group (Sham), ovariectomized group (OVX), ovariectomized with inorganic calcium and magnesium supplementation group (OVX-Mg), and ovariectomized with seaweed calcium and magnesium supplementation group (OVX-SCa). All experimental diets contained 0.5% calcium. The magnesium content in the experimental diet was 0.05% of the diet in the Sham and OVX groups and 0.1% of the diet in the OVX-Mg and OVX-SCa groups. In the calcium balance study, the OVX-Mg and OVX-SCa groups were not significantly different in calcium absorption compared to the OVX group. However, the femoral bone mineral density and strength of the OVX-SCa group were higher than those of the OVX-Mg and OVX groups. Seaweed calcium with magnesium supplementation or magnesium supplementation alone did not affect the serum ALP and CTx levels in ovariectomized rats. In summary, consumption of seaweed calcium extract or inorganic calcium carbonate with magnesium oxide demonstrated the same degree of intestinal calcium absorption, but only the consumption of seaweed calcium extract resulted in increased femoral bone mineral density and strength in ovariectomized rats. Our results suggest that seaweed calcium extract is an effective calcium and magnesium source for improving bone health compared to synthetic calcium and magnesium supplementation.

  20. High follicle density does not decrease sweat gland density in Huacaya alpacas.

    Science.gov (United States)

    Moore, K E; Maloney, S K; Blache, D

    2015-01-01

    When exposed to high ambient temperatures, mammals lose heat evaporatively by either sweating from glands in the skin or by respiratory panting. Like other camelids, alpacas are thought to evaporate more water by sweating than panting, despite a thick fleece, unlike sheep which mostly pant in response to heat stress. Alpacas were brought to Australia to develop an alternative fibre industry to sheep wool. In Australia, alpacas can be exposed to ambient temperatures higher than in their native South America. As a young industry there is a great deal of variation in the quality and quantity of the fleece produced in the national flock. There is selection pressure towards animals with finer and denser fleeces. Because the fibre from secondary follicles is finer than that from primary follicles, selecting for finer fibres might alter the ratio of primary and secondary follicles. In turn the selection might alter sweat gland density because the sweat glands are associated with the primary follicle. Skin biopsy and fibre samples were obtained from the mid-section of 33 Huacaya alpacas and the skin sections were processed into horizontal sections at the sebaceous gland level. Total, primary, and secondary follicles and the number of sweat gland ducts were quantified. Fibre samples from each alpaca were further analysed for mean fibre diameter. The finer-fibred animals had a higher total follicle density (P<0.001) and more sweat glands (P<0.001) than the thicker-fibred animals. The fibre diameter and total follicle density were negatively correlated (R(2)=0.56, P<0.001). Given that the finer-fibred animals had higher follicle density and more sweat glands than animals with thicker fibres, we conclude that alpacas with high follicle density should not be limited for potential sweating ability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. High static gel strength cement slurries for gas flow-laboratory surveys and case history

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P.; Ribeiro, Danilo [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pessoa, Laudemar [University of Adelaide (Australia). Math. Bachelor Master Petroleum Engineer

    2008-07-01

    Gas migration is a phenomenon involving fluid density control, well conditioning, good adherence of the cement slurry to the contacting surfaces, chemical-physical properties, cement hydration mechanisms, and the well's geometry. This problem is evident in several producing wells with a pressurized annulus. Recently, a trend of combining operational techniques with cement slurries capable of developing very high static gel strength (SGS) has developed. Slurry designs intended to confer high SGS almost always have greater rheologies. This can make it difficult to mix the slurry on surfaces or even move the slurry placement through the well, more so because gas-producing wells are typically deep and have complex geometry. This paper evaluates the industry's understanding of this problem. It compares the major solutions with current cement slurry designs and, in addition to the conventional specific gas well parameters, it emphasizes the high SGS and low rheologies on surface conditions. This study also documents the success and efficiency of cementing at a Brazilian sedimentary basin which was completed using designs recommended in this work. This paper does not consider the gas migration occurrence through the cementing matrix. (author)

  2. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.

    2012-01-01

    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentia...... of interfacial tension becomes significant for particles with a radius of similar to 5 nm, when the area per molecule in the surface region is...

  3. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  4. HIGH-STRENGTH POLY(METH)ACRYLAMIDE COPOLYMER HYDROGELS

    NARCIS (Netherlands)

    WIERSMA, JA; SOS, M; PENNINGS, AJ

    1994-01-01

    The hydrogels described here are copolymers of acrylamide and methacrylamide highly cross-linked with piperazine diacrylamide or 4,7,10-trioxa-1,13-tridecanediamine diacrylamide by radical polymerisation in highly concentrated aqueous and aqueous gelatin solutions. The hydrogels were characterised b

  5. Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model

    CERN Document Server

    Qauli, A I

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...

  6. Combining areal DXA bone mineral density and vertebrae postero-anterior width improves the prediction of vertebral strength

    Energy Technology Data Exchange (ETDEWEB)

    Taton, Grzegorz; Rokita, Eugeniusz [Jagiellonian University Medical College, Department of Biophysics, Krakow (Poland); Wrobel, Andrzej [Jagiellonian University, Institute of Physics, Krakow (Poland); Korkosz, Mariusz [Jagiellonian University Medical College, Department of Internal Medicine and Gerontology, Division of Rheumatology, Krakow (Poland)

    2013-12-15

    Areal bone mineral density (aBMD) measured by dual-energy X-ray absorptiometry (DXA) is an important determinant of bone strength (BS), despite the fact that the correlation between aBMD and BS is relatively weak. Parameters that describe BS more accurately are desired. The aim of this study was to determine whether the geometrical corrections applied to aBMD would improve its ability for BS prediction. We considered new parameters, estimated from a single DXA measurement, as well as BMAD (bone mineral apparent density) reported in the literature. In vitro studies were performed with the L3 vertebrae from 20 cadavers, which were studied with DXA and quantitative computed tomography (QCT). A mechanical strength assessment was carried out. Two new parameters were introduced: vBMD{sub min} = (aBMD)/(W{sub PA}{sup min}) and vBMD{sub av} = (aBMD)/(W{sub PA}{sup av}) (W{sub PA}{sup min} - minimal vertebral body width in postero-anterior (PA) view, W{sub PA}{sup av} - average PA vertebral body width). Volumetric BMD measured by QCT (vBMD), aBMD, BMAD, vBMD{sub min}, and vBMD{sub av} were correlated to ultimate load and ultimate stress (P{sub max}) to find the best predictor of vertebrae BS. The coefficients of correlation between P{sub max} and vBMD{sub min}, vBMD{sub av}, as well as BMAD, were r = 0.626 (p = 0.005), r = 0.610 (p = 0.006) and r = 0.567 (p = 0.012), respectively. Coefficients for vBMD and aBMD are r = 0.648 (p = 0.003) and r = 0.511 (p = 0.03), respectively. Our results showed that aBMD normalized by vertebrae dimensions describes vertebrae BS better than aBMD alone. The considered indices vBMD{sub av}, vBMD{sub min}, and BMAD can be measured in routine PA DXA and considerably improve BS variability prediction. vBMD{sub min} is superior compared to vBMD{sub av} and BMAD. (orig.)

  7. High-Density Stacked Ru Nanocrystals for Nonvolatile Memory Application

    Institute of Scientific and Technical Information of China (English)

    MAO Ping; ZHANG Zhi-Gang; PAN Li-Yang; XU Jun; CHEN Pei-Yi

    2009-01-01

    @@ Stacked ruthenium (Ru) nanocrystals (NCs) are formed by rapid thermal annealing for the whole gate stacks and embedded in memory structure, which is compatible with conventional CMOS technology. Ru NCs with high density (3×1012 cm-2 ), small size (2-4 nm) and good uniformity both in aerial distribution and morphology are formed. Attributed to the higher surface trap density, a memory window of 5.2 V is obtained with stacked Ru NCs in comparison to that of 3.5 V with single-layer samples. The stacked Ru NCs device also exhibits much better retention performance because of Coulomb blockade and vertical uniformity between stacked Ru NCs.

  8. The effect of dimerization strength and comb-like bond’s hopping energy on electronic conductance and density of states of typical polyacetylene polymers

    Directory of Open Access Journals (Sweden)

    A Esmaeili

    2012-03-01

    Full Text Available  In this paper, we study the electronic conductance and density of states for a comb-like polymer with periodic hopping energies in the tight-binding approach. Electron transmission coefficient and density of states are analytically calculated by using Green’s function of the system. The results show that the electronic conductance spectrum has one energy gap in the absence of carbon-hydrogen bond’s hopping energy, which is proportional to the dimerization strength. Carbon-Hydrogen bond’s hopping energy makes the appearance three energy gaps in the conductance spectrum and the dimerization strength influences only the outer gaps.

  9. Lightweight, High Strength Nano-Composite Magnesium for Radiators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Terves will develop processing routes to produce high thermal conductivity magnesium composites for use in heat transfer applications such as...

  10. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE

    Directory of Open Access Journals (Sweden)

    S. S. Cota

    2007-06-01

    Full Text Available This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates.

  11. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Cota, S.S.; Vasconcelos, V.; Senne Junior, M.; Carvalho, L.L.; Rezende, D.B.; Correa, R.F. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: sdsc@cdtn.br

    2007-04-15

    This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE) samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates. (author)

  12. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  13. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  14. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  15. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  16. Collapsing Bubble in Metal for High Energy Density Physics Study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S F; Barnard, J J; Leung, P T; Yu, S S

    2011-04-13

    This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall.

  17. High Folic Acid Intake during Pregnancy Lowers Body Weight and Reduces Femoral Area and Strength in Female Rat Offspring

    Directory of Open Access Journals (Sweden)

    Pedro S. P. Huot

    2013-01-01

    Full Text Available Rats fed gestational diets high in multivitamin or folate produce offspring of altered phenotypes. We hypothesized that female rat offspring born to dams fed a gestational diet high in folic acid (HFol have compromised bone health and that feeding the offspring the same HFol diet attenuates these effects. Pregnant rats were fed diets with either recommended folic acid (RFol or 10-fold higher folic acid (HFol amounts. Female offspring were weaned to either the RFol or HFol diet for 17 weeks. HFol maternal diet resulted in lower offspring body weights (6%, P=0.03 and, after adjusting for body weight and femoral length, smaller femoral area (2%, P=0.03, compared to control diet. After adjustments, HFol pup diet resulted in lower mineral content (7%, P=0.01 and density (4%, P=0.002 of lumbar vertebra 4 without differences in strength. An interaction between folate content of the dam and pup diets revealed that a mismatch resulted in lower femoral peak load strength (P=0.01 and stiffness (P=0.002. However, the match in folate content failed to prevent lower weight gain. In conclusion, HFol diets fed to rat dams and their offspring affect area and strength of femurs and mineral quantity but not strength of lumbar vertebrae in the offspring.

  18. High energy-density science on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  19. A study of high-strength bolts after dephosphoring

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2016-03-01

    Full Text Available A wide variety of fasteners are produced, including those for the automobile industry, household electrical appliances industry, architectural engineering, and even the aviation industry. The effects of the high-tensile bolt dephosphoring process on the entire fastener manufacturing process and its organizational characteristics and mechanical properties are analyzed and discussed in this study. Our experimental results reveal that the bolt dephosphoring process must be completed before heat treatment, which can be confirmed with a dephosphoring reagent or metallographic observation. Once bolt heat treatment is completed, bolts without dephosphoring appear to be coated with δ ferrite (delta ferrite composed of a phosphate coating and a phosphatizing coating, which are not easily removed. Heat treatment with phosphorus results in grain boundary segregation, causing embrittlement and a reduction in lattice bonding forces and resulting in a high risk of fracturing when bolts are used in high-temperature environments or undergo multiaxial stresses.

  20. The feasibility and benefits of using high-strength concrete for ...

    African Journals Online (AJOL)

    The feasibility and benefits of using high-strength concrete for construction purposes in earthquake prone areas. ... Journal Home > Vol 8, No 2 (2016) > ... and evolutions that lead to emergence of new concrete with different properties. One of ...

  1. STRUCTURAL ASPECTS OF PLASTICITY LOWERING OF HIGH-STRENGTH WIRE AT BIG CUMULATIVE COMPRESSIONS

    Directory of Open Access Journals (Sweden)

    V. P. Fetisov

    2012-01-01

    Full Text Available It is shown that decrease of plasticity of high-strength wire at big total cobbings is connected with reduction of mobility of dislocations in the substructure formed at loss of perlite lamellar structure.

  2. Poly(acrylamide-MWNTs hybrid hydrogel with extremely high mechanical strength

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Poly(acrylamide-multiwalled carbon nanotubes (PAAm-MWNTs hybrid hydrogels were prepared through the radiation-induced polymerization and crosslinking of the aqueous solution of acrylamide and well-dispersed MWNTs for the first time. The PAAm gels obtained by the radiation-induced polymerization and cosslinking showed very high mechanical strengths, and the PAAm-MWNTs hybrid hydrogels had improved mechanical properties compared with the PAAm gels, and hence the PAAm-MWNTs hybrid hydrogels showed extremely high compressive and tensile strengths. The hybrid hydrogels with water contents more than 80 wt.% usually did not fracture even at compressive strengths close to or even more than 60 MPa and strains more than 97%. And the hybrid hydrogels had very high elongations (more than 2000% in some cases, especially when the water content was high. The tensile strengths were in sub-MPa. The hybrid PAAm-MWNTs hydrogel is one of the strongest hydrogel even made.

  3. The Spalling of Geopolymer High Strength Concrete Wall Panels and Cylinders Under Hydrocarbon Fire

    Directory of Open Access Journals (Sweden)

    Mohd Ali Ahmad Zurisman

    2016-01-01

    Full Text Available Concrete structures were designed to withstand various types of environment conditions from mild to very severe conditions. Fire represents one of the most severe environmental conditions to which concrete structures may be subjected especially in close conduct structure like tunnel. This paper focuses on the spalling of geopolymer high strength concrete exposed to hydrocarbon fire for minimum 2 hours. From the fire test, geopolymer concrete can be classified as a good fire resistance construction materials based on spalling performance of high strength concrete when exposed to hydrocarbon fire. A maximum of 1% (excluding water moisture loss of spalling recorded for high strength geopolymer concrete wall panel. No explosive spallings were observed for high strength geopolymer concrete.

  4. A calculation method of cracking moment for the high strength concrete beams under pure torsion

    Indian Academy of Sciences (India)

    Metin Husem; Ertekin Oztekin; Selim Pul

    2011-02-01

    In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal reinforcements. Two plain high strength concrete (without reinforcement) and eight high strength reinforced concrete beams which have two different cross-sections (150 × 250 mm and 150 × 300 mm) were produced to examine the validity of the proposed method. The predictions of the proposed approach for the calculation of the cracking moment of beams under pure torsion were compared with the experimental and the analytical results of previous studies. From these comparisons it is concluded that the predictions of the proposed equations for the cracking moment of plain and reinforced high strength concrete beams under pure torsion are closer to the experimental data compared to the analytical results of previous theories.

  5. Selection of High Strength Encapsulant for MEMS Devices Undergoing High Pressure Packaging

    CERN Document Server

    Hamzah, A A; Husaini, Y; Majlis, B Y; Ahmad, I

    2008-01-01

    Deflection behavior of several encapsulant materials under uniform pressure was studied to determine the best encapsulant for MEMS device. Encapsulation is needed to protect movable parts of MEMS devices during high pressure transfer molded packaging process. The selected encapsulant material has to have surface deflection of less than 5 ?m under 100 atm vertical loading. Deflection was simulated using CoventorWare ver.2005 software and verified with calculation results obtained using shell bending theory. Screening design was used to construct a systematic approach for selecting the best encapsulant material and thickness under uniform pressure up to 100 atm. Materials considered for this study were polyimide, parylene C and carbon based epoxy resin. It was observed that carbon based epoxy resin has deflection of less than 5 ?m for all thickness and pressure variations. Parylene C is acceptable and polyimide is unsuitable as high strength encapsulant. Carbon based epoxy resin is considered the best encapsula...

  6. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  7. Investigation of Phosphate Cement-based Binder with Super High Early Strength for Repair of Concrete

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnesium phosphate cement-based binder (MPB) for repair of concrete was prepared by proportionally mixing over burned MgO powder (M) with NHH2PO4 powder (P) and set modifying admixtures. It is characteristic by excellent properties such as rapid setting,high strength and high bond strength to old concrete.. The study is focused on the key factors influencing the setting time and strength of MPB, the bond property of MPB to old concrete and the kinetic feature of the hydration of MPB.

  8. Property Evaluation Method Using Spherical Indentation for High-Yield Strength Materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsick; Marimuthu, Karuppasamy Pandian; Lee, Hyungyil [Sogang Univ., Seoul (Korea, Republic of); Lee, Jin Haeng [KAERI, Daejeon (Korea, Republic of)

    2015-11-15

    In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

  9. Property evaluation method using spherical indentation for high-yield strength materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Sick; Marimuthu, Karuppasamy Pandian; Lee, Hyung Yil [Dept. of Mechanical Engineering, Sogang University, Seoul (Korea, Republic of); Lee, Jin Haeng [Reactor Mechanical Engineering Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-11-15

    In this paper, we propose a method to evaluate the material properties of high-yield strength materials exceeding 10 GPa from spherical indentation. Using a regression equation considering four indentation variables, we map the load displacement relation into a stress-strain relation. To calculate the properties of high-strength materials, we then write a program that produces material properties using the loading / unloading data from the indentation test. The errors in material properties computed by the program are within 0.3, 0.8, and 6.4 for the elastic modulus, yield strength, and hardening coefficient, respectively.

  10. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Islamgaliev, R. K., E-mail: saturn@mail.rb.ru; Nesterov, K. M. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000 (Russian Federation); Bourgon, J.; Champion, Y. [ICMPE-CNRS, Université Paris 12, 6-8 rue Henri Dunant, 94320 Thiais, cedex (France); Valiev, R. Z. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa 450000 (Russian Federation); Laboratory for Mechanics of Bulk Nanostructured Materials, Saint Petersburg State University, 198504 Peterhof, Saint Petersburg (Russian Federation)

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  11. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  12. The High Density Region of QCD from an Effective Model

    CERN Document Server

    De Pietri, R; Seiler, E; Stamatescu, I O

    2007-01-01

    We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov-type loops as the main dynamical variables representing the fermionic matter. This model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the simulated Monte Carlo ensemble with the true one. We review the main features of the model and present results concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the Polykov loop susceptibility, which may be used to characterize the various phases expected at high baryonic density. In this way, we obtain information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints about the behaviour of non-zero density QCD.

  13. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  14. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif

    2010-03-15

    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  15. A multi-wavelength, high-contrast contact radiography system for the study of low-density aerogel foams.

    Science.gov (United States)

    Opachich, Y P; Koch, J A; Haugh, M J; Romano, E; Lee, J J; Huffman, E; Weber, F A; Bowers, J W; Benedetti, L R; Wilson, M; Prisbrey, S T; Wehrenberg, C E; Baumann, T F; Lenhardt, J M; Cook, A; Arsenlis, A; Park, H-S; Remington, B A

    2016-07-01

    A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 μm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX-6 (C20H30) aerogel are discussed in this manuscript.

  16. INFLUENCE OF LASER CUTTING ON THE FATIGUE LIMIT OF TWO HIGH STRENGTH STEELS

    OpenAIRE

    Mateo García, Antonio Manuel; Fargas Ribas, Gemma; Calvo Muñoz, Jessica; Roa Rovira, Joan Josep

    2013-01-01

    Laser cutting is widely used in the metal industry, particularly when components of high strength steels sheets are produced. On the other hand, the roughness of cut - edges produced by laser differs from that obt ained by other methods, such as mechanical blank ing, and this fact influence s the fatigue performance. Moreover, thermal effects are another factor to consider. In the present investigation, specimens of two grades of high strength ...

  17. Residual formability of preformed and subsequently welded advanced high strength steels (Reform): Final Report

    OpenAIRE

    Standfuß, Jens; Jahn, Axel; Weber, P; Neges, J.; Wischmann, S.; Höfemann, M.; Sierlinger, R.; Cretteur, L.; Veldt, T. van der; Veit, R.; Trattnig, G.; Pickett, A.; D Aiuto, F.

    2014-01-01

    The research project Reform was situated within the scope of research and technological development of steel and its utilisation. The central point of investigation was the determination of the load capability of preformed and subsequently welded parts made of high-strength steels. In order to cover a wide spectrum of automotive steel applications and with respect to the current development of modern high-strength steels, - two dual phase steels (HCT780X, HCT980X), - one trip steel (HCT690T),...

  18. Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds

    OpenAIRE

    Thibaut Huin; Sylvain Dancette; Damien Fabrègue; Thomas Dupuy

    2016-01-01

    Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS) and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lo...

  19. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures

    OpenAIRE

    Bangi, Mugume Rodgers; HORIGUCHI, Takashi

    2011-01-01

    The present experimental work investigates the build-up of pore pressure at different depths of High Strength Concrete (HSC) and Hybrid-Fibre-Reinforced High Strength Concrete (HFRHSC) when exposed to different heating rates. First, the effect of the measurement technique on maximum pore pressures measured was evaluated. The pressure measurement technique which utilized a sintered metal and silicon oil was found to be the most effective technique for pore pressure measurement. Pore pressure m...

  20. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junsu [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Sin, Young-Gwan [Department of Nano-Mechatronics, Korea University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon 34113 (Korea, Republic of); Kim, Jae-Hyun [Department of Nano-Mechanics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of); Kim, Jaegu, E-mail: gugu99@kimm.re.kr [Department of Nano-Manufacturing Technology, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103 (Korea, Republic of)

    2016-10-30

    Highlights: • Fundamental relationship between laser irradiation and adhesion strength, between gallium-nitride light emitted diode and sapphire substrate, is proposed during selective laser lift-off. • Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate. • Ga precipitation caused by thermal decomposition and roughened interface caused by thermal damage lead to the considerable difference of adhesion strength at the interface. - Abstract: Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  1. STIR: Tailored Interfaces for High Strength Composites Across Strain Rates

    Science.gov (United States)

    2013-09-02

    was requested during our kickoff meeting at ARL APG. High performance fabrics including Kevlar, Twaron, Zylon , and Dyneema are used in developing...Kevlar, and Zylon for various pullout rates. Force– displacement data was recorded, and both warp and fill yarns were pulled from the fabric. Their...results presented that the effect of pullout rate is negligible for Kevlar, whereas the effect is bigger on Spectra, and significant for Zylon

  2. Design of High Power Density Amplifiers: Application to Ka Band

    Science.gov (United States)

    Passi, Davide; Leggieri, Alberto; Di Paolo, Franco; Bartocci, Marco; Tafuto, Antonio

    2017-06-01

    Recent developments in the design of high-power-high-frequency amplifiers are assessed in this paper by the analysis and measurements of a high power density amplifier operating in the Ka Band. Design procedure is presented and a technical investigation is reported. The proposed device has shown over 23% of useful frequency bandwidth. It is an ensemble of 16 monolithic solid state power amplifiers that employees mixed technologies as spatial and planar combiners. Test performed have given maximum delivered power of 47.2 dBm.

  3. Surface characteristics and mechanical properties of high-strength steel wires in corrosive conditions

    Science.gov (United States)

    Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming

    2013-04-01

    Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.

  4. Durability and Strength Properties on High Performance Self Compacting Concrete with GGBS and Silica Fumes

    Directory of Open Access Journals (Sweden)

    J. M.Srishaila

    2014-06-01

    Full Text Available This study on the experimental investigation on strength aspects like compressive strength, flexural strength and split tensile strength, and durability aspects like rapid chloride penetration test(RCPT of high performance self-compacting concrete with different mineral admixtures . Initials tests like slump test, L-box test, U-box test and T50 test will be carried out. The methodology adopted here is Ground granulated blast furnace slag (GGBS which is replaced partially by cement at 10%, 20% and 30% and silica fumes(SF by 3%, 6%, 9% in combination with Portland cement and the performance is measured and compared. The influence of mineral admixtures on the workability, mechanical strength and durability aspects of self-compacting concrete are studied. The mix proportion is obtained as per the guidelines given by European Federation of producers and contractors of special products for structure.

  5. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  6. Experimental Study on Deterioration Concrete Strength Different Sub-high Temperature Cycles

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Tests were carried out to study the strength deterioration of concrete cooled in air or by water after sub-high temperature at different level and varying with cycles. It is proved that the cross-shaped cracks turned up and extended little by little on the surface of specimen subjected to repeat sub-high temperature, the splitting failure is characterized by cross-shaped cracks after 30 cycles, the concrete strengths decrease rapidly at early stage and to be steady subsequently with the increase of the temperature cycles,the splitting-tensile strength is more sensitive to temperature cycles than the compressive strength, the decline of concrete strength is mainly controlled by the maximum temperature having reached, the ultrasonic velocity in concrete is also declined. On the basis of test results, the mechanisms of sub-high temperature to the strength deterioration of concrete are analyzed.The formulas for calculating the compressive and splitting-tensile strength of concrete relating to the variation of temperature are proposed.

  7. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  8. A Tale of Two Electrons: Correlation at High Density

    CERN Document Server

    Loos, Pierre-François

    2010-01-01

    We review our recent progress in the determination of the high-density correlation energy $\\Ec$ in two-electron systems. Several two-electron systems are considered, such as the well known helium-like ions (helium), and the Hooke's law atom (hookium). We also present results regarding two electrons on the surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that, in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interacting {\\em via} a Coulomb potential is given by $\\Ec \\sim -1/(8D^2)$ for any radial external potential $V(r)$, where $D$ is the dimensionality of the space. This result explains the similarity of $\\Ec$ in the previous two-electron systems for $D=3$.

  9. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  10. Behavior of steel fiber-reinforced high-strength concrete at medium strain rate

    Institute of Scientific and Technical Information of China (English)

    Chujie JIAO; Wei SUN; Shi HUAN; Guoping JIANG

    2009-01-01

    Impact compression experiments for the steel fiber-reinforced high-strength concrete (SFRHSC) at medium strain rate were conducted using the split Hopkinson press bar (SHPB) testing method. The volume fractions of steel fibers of SFRHSC were between 0 and 3%. The experimental results showed that, when the strain rate increased from threshold value to 90 s-1, the maximum stress of SFRHSC increased about 30%, the elastic modulus of SFRHSC increased about 50%, and the increase in the peak strain of SFRHSC was 2-3 times of that in the matrix specimen. The strength and toughness of the matrix were improved remarkably because of the superposition effect of the aggregate high-strength matrix and steel fiber high-strength matrix. As a result, under impact loading, cracks developed in the SFRHSC specimen, but the overall shape of the specimen remained virtually unchanged. However, under similar impact loading, the matrix specimens were almost broken into small pieces.

  11. Series multilayer internal electrodes for high energy density glass-ceramic capacitors

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; DU Jun; TANG Qun; MAO ChangHui

    2009-01-01

    The glass-ceramic dielectrics and internal electrode structures are investigated for improving the general energy storage density of capacitors.Calculation indicates that glass-ceramics acquired from glass matrix annealing at 850℃ for 3 hours can be approximately up to 17 J/cm3 in energy storage density.They are appropriately chosen as the dielectrics for preparing high energy storage density capacitors (HESDCs).A series multilayer structure of internal electrode is developed for the HESDCs,in which each layer is a combination of gold film and silver paste.This electrode structure promises the capacitor immune from the residual porosity defects inevitably brought by electrode paste sintering process,and specifically improves the electrical breakdown strength of the capacitor.Based on this new electrode structure,the energy storage densities of capacitors are increased by more than one order of magnitude compared with those traditional ones with only single layer of internal electrode.Thus,HESDCs based on the optimized glass-ceramic dielectrics can potentially achieve 7.5 J/cm3 in energy storage density,even taking into consideration the enlargement of total capacitor volumes while encapsulating practicable capacitors from dielectrics media.

  12. Phase Transformation in a β-Ti Alloy with Good Balance Between High Strength and High Fracture Toughness

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Wei Qiang; Ma Chaoli; Zheng Lijing; Li Huanxi; Ge Peng; Zhao Yongqing

    2009-01-01

    This article studies the phase transformation of the metastable (-Ti-Al-Mo-V-Cr-Zr alloy (Ti-1300) to disclose the morphological reason for its high strength and high fracture toughness. It has been found that its ultrahigh strength (ultimate tensile strength exceeds 1 400 MPa) owes mainly to the spheroidization of the (-phase, while the high fracture toughness (exceeds 81 MPa·m~(1/2)) to the special lath-shaped (-particles. Compared to the needle-shaped second (-articles, the coarser lath-shaped ones remove the stress concentration at the lath tips and consequently benefit improvement of fracture toughness. The article also describes shape evolution of the (-particles during aging thermodynamically and kinetically, and suggests an optimized aging processing to achieve an ideal balance between high strength and high toughness for this alloy.

  13. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    Science.gov (United States)

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-06-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

  14. High energy density capacitor testing for the AFWL SHIVA

    Science.gov (United States)

    Smith, D. L.; Reinovsky, R. E.

    Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and 2 microsec quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  15. Polypropylene-(high density polyethylene) precipitation from stirred solutions

    OpenAIRE

    Esperidião,Maria Cecília Azevedo; Galembeck,Fernando

    1993-01-01

    Texto completo: acesso restrito. p.993–997 The fast precipitation of mixtures of polypropylene (PP) with high density polyethylene (HDPE) from decalin solutions is affected by the stirring rate of the solutions. With fast stirring, two types of precipitates were obtained viz. globules dispersed in the liquid phase and fibres adhering to the stirrer. Studies by i.r., WAXD, DSC and optical microscopy indicated that the fibrous precipitate is more birefringent, richer in HDPE and richer in th...

  16. Flexible and Lightweight Fuel Cell with High Specific Power Density.

    Science.gov (United States)

    Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun

    2017-06-27

    Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm(2) working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L(-1), which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.

  17. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  18. Analysis of particle size and interface effects on the strength and ductility of advanced high strength steels

    Science.gov (United States)

    Ettehad, Mahmood

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the automotive industry due the unique properties such as high strength and ductility with low finished cost. Many experimental and numerical studies have been done to achieve the optimized behavior of DP steels by controlling their microstructure. Experiments are costly and time consuming so in recent years numerical tools are utilized to help the metallurgist before doing experiments. Most of the numerical studies are based on classical (local) constitutive models where no material length scale parameters are incorporated in the model. Although these models are proved to be very effective in modeling the material behavior in the large scales but they fail to address some critical phenomena which are important for our goals. First, they fail to address the size effect phenomena which materials show at microstructural scale. This means that materials show stronger behavior at small scales compared to large scales. Another issue with classical models is the mesh size dependency in modeling the softening behavior of materials. This means that in the finite element context (FEM) the results will be mesh size dependent and no converged solution exist upon mesh refinement. Thereby by applying the classical (local) models one my loose the accuracy on measuring the strength and ductility of DP steels. Among the non-classical (nonlocal) models, gradient-enhanced plasticity models which consider the effect of neighboring point on the behavior of one specific point are proved to be numerically effective and versatile tools to accomplish the two concerns mentioned above. So in this thesis a gradient-enhanced plasticity model which incorporates both the energetic and dissipative material length scales is derived based on the laws of thermodynamics. This model also has a consistent yield-like function for the

  19. Effect of cyclic high loading rates on the fatigue strength of aluminum-based composites

    Science.gov (United States)

    Calderon Arteaga, Hermes Eskander

    The study of fatigue under high loading rates is of great interest in the complete characterization of a new series of composites with Al-Cu-Mg matrix reinforced with AlB2 dispersoids. Homogeneous and functionally graded composites were prepared via gravity and centrifugal casting, respectively. Through centrifugal casting a gradual variation of the volume fraction of reinforcing particles along the cross section was obtained. In specific fabrication conditions, even complete segregation of the reinforcement particles was achieved. Charpy impact tests as well as hardness tests were conducted to assess the composite strength as a function of the weight percent of boron. The tensile properties of gravity cast samples were obtained. Then for both casting conditions, simple edge-notched bend SE(B) specimens were tested under fatigue conditions (three-point bending). The results from impact and hardness tests allowed identifying an interaction between the Mg dissolved in the matrix and the diborides. This interaction, which has never been reported before, was responsible for the strength reduction observed. It was assumed that a substitutional diffusion of Al by Mg atoms in the hp3 structure of diboride was causing the strength reduction, and three approaches were developed to estimate the amount of Mg depleted from the matrix by the diborides during the composite processing. Gravity cast samples were more sensitive to monotonic damage due to fatigue loads where compared with functionally-graded composites. Contrary to the centrifugal cast samples, gravity samples were also affected by the loading rate. The Mg-AlB2 interaction was also responsible for the reduction in the fatigue resistance as the weight percent of boron increased in both types of composites; regression models were obtained to predict the crack growth curve slope change as function of the boron level. The particle distribution showed to affect the crack growth behavior of the FGMs, decreasing the

  20. Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden

    Science.gov (United States)

    Grünberger, W.; Heilmaier, M.; Schultz, L.

    2001-01-01

    The work at the IFW Dresden is focused on the development of microcomposite Cu-Ag alloys and steel-copper macrocomposites with high-nitrogen steel and pearlitic steel jackets, respectively. In Cu-Ag alloys the investigation of continuously cast rods with different starting diameters suggests that the cooling rate during solidification determining the dendrite arm spacing has a minor influence on the development of the strength compared to the cooling velocity after solidification which determines the extent of the Ag-supersaturation in the Cu solid solution. Maximum strength at minimum drawing strain demands (i) a sufficient volume fraction of eutectic in order to suppress discontinuous precipitation (absence of grain boundaries) and (ii) a sufficiently rapid cooling after solidification in order to prevent pre-precipitation. With a continuously cast starting rod of 12 mm diameter a maximum tensile strength of 1.3 GPa was obtained after a drawing strain of only η=4.3. Steel-copper macrocomposites were fabricated by the ‘rod-in-tube’ technology. The experiments with austenitic high-nitrogen steels were performed with two alloys. With the commercial alloy Nicrofer 3033 a strength level of 1.2 GPa has been achieved with a 52 vol% Cu composite at a drawing strain of η=2.3. A composite with pearlitic C60-steel (0.6 wt% C) and 56 vol% Cu showed a tensile strength of 1.53 GPa after a final patenting at a diameter of 14.7 mm and a drawing strain of η=4.