WorldWideScience

Sample records for density glass transition

  1. The glass transition in high-density amorphous ice.

    Science.gov (United States)

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland

    2015-01-01

    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature T g of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's T g measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.

  2. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    International Nuclear Information System (INIS)

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.

    2001-01-01

    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10 -11 s time scale and has a low activation energy (E a f =0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than ∼10 6 Hz

  3. Low-density to high-density transition in Ce75Al23Si2 metallic glass

    International Nuclear Information System (INIS)

    Zeng, Q S; Lou, H B; Gong, Y; Wang, X D; Jiang, J Z; Fang, Y Z; Wu, F M; Yang, K; Li, A G; Yan, S; Yu, X H; Lathe, C

    2010-01-01

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce 75 Al 23 Si 2 metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T x ) between them with a turning point at about 2 GPa. Compared with Ce 75 Al 25 metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T x and changes their slopes dT x /dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  4. Glass transition in the spin-density wave phase of (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Lasjaunias, J.C.; Biljakovic, K.; Nad, F.

    1994-01-01

    We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static'......'' glass transition around 2 K. The jump in the specific heat in different controlled kinetic conditions shows all the characteristics of freezing in supercooled liquids. Both effects give direct evidence of a glass transition in the spin-density wave ground state....

  5. Low-density to high-density transition in Ce{sub 75}Al{sub 23}Si{sub 2} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Q S; Lou, H B; Gong, Y; Wang, X D; Jiang, J Z [International Center for New-Structured Materials, Zhejiang University, Hangzhou 310027 (China); Fang, Y Z; Wu, F M [College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang (China); Yang, K; Li, A G; Yan, S; Yu, X H [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203 (China); Lathe, C, E-mail: qiaoshizeng@gmail.co, E-mail: jiangjz@zju.edu.c [HASYLAB am DESY, Notkestrasse 85, Hamburg D-22603 (Germany)

    2010-09-22

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce{sub 75}Al{sub 23}Si{sub 2} metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T{sub x}) between them with a turning point at about 2 GPa. Compared with Ce{sub 75}Al{sub 25} metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T{sub x} and changes their slopes dT{sub x}/dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  6. Water’s second glass transition

    Science.gov (United States)

    Amann-Winkel, Katrin; Gainaru, Catalin; Handle, Philip H.; Seidl, Markus; Nelson, Helge; Böhmer, Roland

    2013-01-01

    The glassy states of water are of common interest as the majority of H2O in space is in the glassy state and especially because a proper description of this phenomenon is considered to be the key to our understanding why liquid water shows exceptional properties, different from all other liquids. The occurrence of water’s calorimetric glass transition of low-density amorphous ice at 136 K has been discussed controversially for many years because its calorimetric signature is very feeble. Here, we report that high-density amorphous ice at ambient pressure shows a distinct calorimetric glass transitions at 116 K and present evidence that this second glass transition involves liquid-like translational mobility of water molecules. This “double Tg scenario” is related to the coexistence of two liquid phases. The calorimetric signature of the second glass transition is much less feeble, with a heat capacity increase at Tg,2 about five times as large as at Tg,1. By using broadband-dielectric spectroscopy we resolve loss peaks yielding relaxation times near 100 s at 126 K for low-density amorphous ice and at 110 K for high-density amorphous ice as signatures of these two distinct glass transitions. Temperature-dependent dielectric data and heating-rate–dependent calorimetric data allow us to construct the relaxation map for the two distinct phases of water and to extract fragility indices m = 14 for the low-density and m = 20–25 for the high-density liquid. Thus, low-density liquid is classified as the strongest of all liquids known (“superstrong”), and also high-density liquid is classified as a strong liquid. PMID:24101518

  7. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    International Nuclear Information System (INIS)

    Koperwas, K.; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.

    2015-01-01

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition

  8. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Koperwas, K., E-mail: kkoperwas@us.edu.pl; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland)

    2015-07-14

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.

  9. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  10. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  11. Echoes of the Glass Transition in Athermal Soft Spheres.

    Science.gov (United States)

    Morse, Peter K; Corwin, Eric I

    2017-09-15

    Recent theoretical advances have led to the creation of a unified phase diagram for the thermal glass and athermal jamming transitions. This diagram makes clear that, while related, the mode-coupling-or dynamic-glass transition is distinct from the jamming transition, occurring at a finite temperature and significantly lower density than the jamming transition. Nonetheless, we demonstrate a prejamming transition in athermal frictionless spheres which occurs at the same density as the mode-coupling transition and is marked by percolating clusters of locally rigid particles. At this density in both the thermal and athermal systems, individual motions of an extensive number of particles become constrained, such that only collective motion is possible. This transition, which is well below jamming, exactly matches the definition of collective behavior at the dynamical transition of glasses. Thus, we reveal that the genesis of rigidity in both thermal and athermal systems is governed by the same underlying topological transition in their shared configuration space.

  12. Numerical study of the glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Zaccarelli, Emanuela; Sciortino, Francesco; Tartaglia, Piero

    2004-01-01

    We report extensive numerical simulations in the glass region for a simple model of short-ranged attractive colloids, the square well model. We investigate the behaviour of the density autocorrelation function and of the static structure factor in the region of temperatures and packing fractions where a glass-glass transition is expected according to theoretical predictions. We strengthen our observations by studying both waiting time and history dependence of the numerical results. We provide evidence supporting the possibility that activated bond-breaking processes destabilize the attractive glass, preventing the full observation of a sharp glass-glass kinetic transition

  13. Phase Transition in the Density of States of Quantum Spin Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, László, E-mail: lerdos@ist.ac.at [IST Austria (Austria); Schröder, Dominik, E-mail: schroeder.dominik@gmail.com [Ludwig-Maximilians-Universität München (Germany)

    2014-12-15

    We prove that the empirical density of states of quantum spin glasses on arbitrary graphs converges to a normal distribution as long as the maximal degree is negligible compared with the total number of edges. This extends the recent results of Keating et al. (2014) that were proved for graphs with bounded chromatic number and with symmetric coupling distribution. Furthermore, we generalise the result to arbitrary hypergraphs. We test the optimality of our condition on the maximal degree for p-uniform hypergraphs that correspond to p-spin glass Hamiltonians acting on n distinguishable spin- 1/2 particles. At the critical threshold p = n{sup 1/2} we find a sharp classical-quantum phase transition between the normal distribution and the Wigner semicircle law. The former is characteristic to classical systems with commuting variables, while the latter is a signature of noncommutative random matrix theory.

  14. Calorimetric study of water's two glass transitions in the presence of LiCl

    Science.gov (United States)

    Ruiz, Guadalupe N.; Amann-Winkel, Katrin; Bove, Livia E.; Corti, Horacio R.

    2018-01-01

    A DSC study of dilute glassy LiCl aqueous solutions in the water-dominated regime provides direct evidence of a glass-to-liquid transition in expanded high density amorphous (eHDA)-type solutions. Similarly, low density amorphous ice (LDA) exhibits a glass transition prior to crystallization to ice Ic. Both glass transition temperatures are independent of the salt concentration, whereas the magnitude of the heat capacity increase differs. By contrast to pure water, the glass transition endpoint for LDA can be accessed in LiCl aqueous solutions above 0.01 mole fraction. Furthermore, we also reveal the endpoint for HDA's glass transition, solving the question on the width of both glass transitions. This suggests that both equilibrated HDL and LDL can be accessed in dilute LiCl solutions, supporting the liquid–liquid transition scenario to understand water's anomalies. PMID:29442107

  15. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  16. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.; Starr, Francis W.

    2012-01-01

    Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature Tg. Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of Tg(P) for LDA and HDA by performing computer simulations of two water models – one with a LLPT, and one without. In the absence of a LLPT, Tg(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different Tg(P) which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario including a LLPT. PMID:22550566

  17. Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing.

    Science.gov (United States)

    Kim, Chae Un; Tate, Mark W; Gruner, Sol M

    2015-09-22

    Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water.

  18. Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing

    Science.gov (United States)

    Kim, Chae Un; Tate, Mark W.; Gruner, Sol M.

    2015-01-01

    Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water. PMID:26351671

  19. Density crosslink study of gamma irradiated LDPE predicted by gel-fraction, swelling and glass transition temperature characterization

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Moraes, Guilherme F.; Ono, Lilian S.; Parra, D.F.; Lugao, Ademar B.

    2011-01-01

    Experimental results showed that the crosslink density of polymeric stocks may be predicted from values of gel content based on the reactive portion of the stocks, that is, exclusive of plasticizers and fillers. Where entanglements may be neglected, the crosslink density is directly proportional to functions of the gel and sol contents. In order to predict the behavior of carbon-chain polymers exposed to ionizing radiation, an empirical rule can be used. According to this rule, polymers containing a hydrogen atom at each carbon atom predominantly undergo crosslinking. During irradiation, chain scission occurs simultaneously and competitively with crosslinking, the end result being determined by the ratio of the yields of the two reactions. The ratio of crosslinking to scission depends basically on factors including total irradiation dose, dose rate and the presence of oxygen. The glass transition temperature (Tg), temperature below which the polymer segments do not have sufficient energy to move past one another, marks the onset of segmental mobility for a polymer. Properties such as melt index, melt strength, crystallinity, glass transition, gel fraction, swelling ratio and elasticity modulus were assessed in LDPE (2.6 g.10 min -1 melt index) gamma irradiated within a 10, 15, 20 and 30 kGy and results obtained were further discussed prior conclusion. (author)

  20. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  1. Glass Transitions in a Monatomic Liquid with Two Glassy States

    Science.gov (United States)

    Gordon, Andrew; Giovambattista, Nicolas

    2014-04-01

    We perform out-of-equilibrium molecular dynamics simulations of a monatomic liquid that exhibits liquid and glass polymorphism, with two distinct glasses, low- (LDA) and high-density (HDA) amorphous solids. By performing isobaric heating simulations of LDA and HDA at different pressures, we determine (a) the glass transition temperature of LDA and HDA, TgLDA(P) and TgHDA(P), as well as (b) the corresponding glass-glass transformation temperatures, TLDA-HDA(P) and THDA-LDA(P). It is found that TgLDA(P) is anomalous; i.e., it decreases with increasing pressure, while TgHDA(P) increases with increasing pressure. Interestingly, the TgLDA(P) and TLDA-HDA(P) loci, as well as the TgHDA(P) and THDA-LDA(P) loci, constitute smooth single lines in the P -T plane, suggesting that heating-induced glass-glass and glass transitions are related. We discuss the present results in the context of water experiments and simulations.

  2. Configurational entropy of polar glass formers and the effect of electric field on glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  3. Configurational entropy of polar glass formers and the effect of electric field on glass transition.

    Science.gov (United States)

    Matyushov, Dmitry V

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ(γ)/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  4. Discontinuity in Fast Dynamics at the Glass Transition of ortho-Terphenyl.

    Science.gov (United States)

    Hoffman, David J; Fayer, Michael D

    2017-11-16

    The dynamics of the molecular glass former ortho-terphenyl through the glass transition were observed with two-dimensional infrared vibrational spectroscopy measurements of spectral diffusion using the small probe molecule phenylselenocyanate. Although the slow diffusive motions were not visible on the experimental time scale, a picosecond-scale exponential relaxation was observed at temperatures from above to well below the glass transition temperature. The characteristic time scale has a smooth temperature dependence from the liquid into the glass phase, but the range of vibrational frequencies the probe samples displayed a discontinuity at the glass transition temperature. Complementary pump-probe experiments associate the observed motion with density fluctuations. The key features of the dynamics are reproduced with a simple corrugated well potential energy surface model. In addition, the temperature dependence of the homogeneous vibrational dephasing was found to have a T 2 functional form, where T is the absolute temperature.

  5. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  6. Density of states of colloidal glasses and supercooled liquids

    NARCIS (Netherlands)

    Ghosh, A.; Mari, R.; Chikkadi, V.; Schall, P.; Kurchan, J.; Bonn, D.

    2010-01-01

    The glass transition is perhaps the greatest unsolved problem in condensed matter physics: the main question is how to reconcile the liquid-like structure with solid-like mechanical properties. In solids, structure and mechanics are related directly through the vibrational density of states of the

  7. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas

    2013-03-01

    Most liquids can form a single glass or amorphous state when cooled sufficiently fast (in order to prevent crystallization). However, there are a few substances that are relevant to scientific and technological applications which can exist in at least two different amorphous states, a property known as polyamorphism. Examples include silicon, silica, and in particular, water. In the case of water, experiments show the existence of a low-density (LDA) and high-density (HDA) amorphous ice that are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation evolves into a first-order liquid-liquid phase transition (LLPT) at temperatures above the glass transition temperature Tg. However, obtaining direct experimental evidence of the LLPT has been challenging since the LLPT occurs at conditions where water rapidly crystallizes. In this talk, I will (i) discuss the general phenomenology of polyamorphism in water and its implications, and (ii) explore the effects of a LLPT on the pressure dependence of Tg(P) for LDA and HDA. Our study is based on computer simulations of two water models - one with a LLPT (ST2 model), and one without (SPC/E model). In the absence of a LLPT, Tg(P) for all glasses nearly coincide. Instead, when there is a LLPT, different glasses exhibit dramatically different Tg(P) loci which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario that includes a LLPT (ST2 model) and hence, our results support the view that a LLPT may exist for the case of water.

  8. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  9. 'Vanishing' structural effects of temperature in polymer glasses close to the glass-transition temperature

    International Nuclear Information System (INIS)

    Shantarovich, V.P.; Suzuki, T.; Ito, Y.; Yu, R.S.; Kondo, K.; Yampolskii, Yu. P.; Alentiev, A.Yu.

    2007-01-01

    Positron annihilation lifetime (PAL) measurements were used for observation of structural effects of temperature in polystyrene (PS), super-cross-linked polystyrene networks (CPS), and in polyimides (PI) below and in the vicinity of glass-transition temperature T g . 'Vanishing' of these structural effects in the repeating cycles of the temperature controlled PAL experiments due to the slow relaxation processes in different conditions and details of chemical structure is demonstrated. Obtained results illustrate complex, dependent on thermal history, inhomogeneous character of the glass structure. In fact, structure of some polymer glasses is changing continuously. Calculations of the number density of free volume holes in these conditions are discussed

  10. Comparative molecular simulation study of low and high density polymer glasses: A competition between attractive and repulsive interactions

    Science.gov (United States)

    Singh, Jalim; Jose, Prasanth

    Results of molecular dynamics simulations of a system of Kremer and Grest linear polymer melts are presented at moderate and high number density. A detailed study of molecular pair distribution function shows that potential of mean force between the molecules has form of Gaussian with an attractive tail at number density ρ = 0.85 (in Lennard-Jones units), which is due to the dominating attractive interactions from temperature T = 0.7. This system shows gelation assisted glass transition, which is interpreted from peaks of molecular structure factor at small wave-numbers. At low temperature, this system phase separate to form dense domains whose local density is high; these domains show many dynamical features of glass transition in monomer and molecular level of relaxation indicating glass transition is assisted by gelation in this system. In the same system, at ρ = 1.0, repulsive interactions dominate, structure does not change even at low temperatures; the system exhibits dynamic heterogeneity and known to undergo glass transition. In this work, we compare and contrast the structure and dynamics of the system near its glass transition. Also, we computed correlation length of systems from the peak value of four-point structural dynamic susceptibility. HPC facility at IIT Mandi.

  11. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  12. Dimensional study of the caging order parameter at the glass transition.

    Science.gov (United States)

    Charbonneau, Patrick; Ikeda, Atsushi; Parisi, Giorgio; Zamponi, Francesco

    2012-08-28

    The glass problem is notoriously hard and controversial. Even at the mean-field level, little is agreed upon regarding why a fluid becomes sluggish while exhibiting but unremarkable structural changes. It is clear, however, that the process involves self-caging, which provides an order parameter for the transition. It is also broadly assumed that this cage should have a gaussian shape in the mean-field limit. Here we show that this ansatz does not hold. By performing simulations as a function of spatial dimension d, we find the cage to keep a nontrivial form. Quantitative mean-field descriptions of the glass transition, such as mode-coupling theory, density functional theory, and replica theory, all miss this crucial element. Although the mean-field random first-order transition scenario of the glass transition is qualitatively supported here and non-mean-field corrections are found to remain small on decreasing d, reconsideration of its implementation is needed for it to result in a coherent description of experimental observations.

  13. Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network

    Science.gov (United States)

    Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing

    2017-11-01

    We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.

  14. Isotope effect in glass-transition temperature and ionic conductivity of lithium-borate glasses

    International Nuclear Information System (INIS)

    Nagasaki, Takanori; Morishima, Ryuta; Matsui, Tsuneo

    2002-01-01

    The glass-transition temperature and the electrical conductivity of lithium borate (0.33Li 2 O-0.67B 2 O 3 ) glasses with various isotopic compositions were determined by differential thermal analysis and by impedance spectroscopy, respectively. The obtained glass-transition temperature as well as the vibrational frequency of B-O network structure was independent of lithium isotopic composition. This result indicates that lithium ions, which exist as network modifier, only weakly interact with B-O network structure. In addition, the glass-transition temperature increased with 10 B content although the reason has not been understood. The electrical conductivity, on the other hand, increased with 6 Li content. The ratio of the conductivity of 6 Li glass to that of 7 Li glass was found to be 2, being larger than the value (7/6) 1/2 calculated with the simple classical diffusion theory. This strong mass dependence could be explained by the dynamic structure model, which assumes local structural relaxation even far below the glass-transition temperature. Besides, the conductivity appeared to increase with the glass-transition temperature. Possible correlations between the glass-transition temperature and the electrical conductivity were discussed. (author)

  15. The correlation between fragility, density, and atomic interaction in glass-forming liquids.

    Science.gov (United States)

    Wang, Lijin; Guan, Pengfei; Wang, W H

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as RI, RII, and RIII, respectively, with qualitatively disparate dynamic behaviors: RI which can be described by "softness makes strong glasses," RII where fragility is independent of softness and can only be tuned by density, and RIII with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  16. Gauge theory of glass transition

    International Nuclear Information System (INIS)

    Vasin, Mikhail

    2011-01-01

    A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data

  17. Excitation Chains at the Glass Transition

    International Nuclear Information System (INIS)

    Langer, J. S.

    2006-01-01

    The excitation-chain theory of the glass transition, proposed in an earlier publication, predicts diverging, super-Arrhenius relaxation times and, via a similarly diverging length scale, suggests a way of understanding the relations between dynamic and thermodynamic properties of glass-forming liquids. I argue here that critically large excitation chains play a role roughly analogous to that played by critical clusters in the droplet model of vapor condensation. Unlike a first-order condensation point in a vapor, the glass transition is not a conventional phase transformation, and may not be a thermodynamic transition at all

  18. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures.

    Science.gov (United States)

    Andersson, Ove; Johari, G P

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T(-0.95); (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa(-1) at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa(-1) at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa(-1) at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  19. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  20. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin; Guan, Pengfei, E-mail: pguan@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100193 (China); Wang, W. H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-07-21

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R{sub I,} R{sub II}, and R{sub III}, respectively, with qualitatively disparate dynamic behaviors: R{sub I} which can be described by “softness makes strong glasses,” R{sub II} where fragility is independent of softness and can only be tuned by density, and R{sub III} with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  1. The correlation between fragility, density, and atomic interaction in glass-forming liquids

    International Nuclear Information System (INIS)

    Wang, Lijin; Guan, Pengfei; Wang, W. H.

    2016-01-01

    The fragility that controls the temperature-dependent viscous properties of liquids as the glass transition is approached, in various glass-forming liquids with different softness of the repulsive part of atomic interactions at different densities, is investigated by molecular dynamic simulations. We show that the landscape of fragility in purely repulsive systems can be separated into three regions denoted as R I, R II , and R III , respectively, with qualitatively disparate dynamic behaviors: R I which can be described by “softness makes strong glasses,” R II where fragility is independent of softness and can only be tuned by density, and R III with constant fragility, suggesting that density plays an unexpected role for understanding the repulsive softness dependence of fragility. What is more important is that we unify the long-standing inconsistence with respect to the repulsive softness dependence of fragility by observing that a glass former can be tuned more fragile if nonperturbative attraction is added into it. Moreover, we find that the vastly dissimilar influences of attractive interaction on fragility could be estimated from the structural properties of related zero-temperature glasses.

  2. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  3. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  4. Glass transition near the free surface studied by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, M.

    2008-06-15

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-{mu}m length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  5. Glass transition near the free surface studied by synchrotron radiation

    International Nuclear Information System (INIS)

    Sikorski, M.

    2008-06-01

    A comprehensive picture of the glass transition near the liquid/vapor interface of the model organic glass former dibutyl phthalate is presented in this work. Several surface-sensitive techniques using x-ray synchrotron radiation were applied to investigate the static and dynamic aspects of the formation of the glassy state from the supercooled liquid. The amorphous nature of dibutyl phthalate close to the free surface was confirmed by grazing incidence X-ray diffraction studies. Results from X-ray reflectivity measurements indicate a uniform electron density distribution close to the interface excluding the possibility of surface freezing down to 175 K. Dynamics on sub-μm length-scales at the surface was studied with coherent synchrotron radiation via x-ray photon correlation spectroscopy. From the analysis of the dispersion relation of the surface modes, viscoelastic properties of the dibutyl phthalate are deduced. The Kelvin-Voigt model of viscoelastic media was found to describe well the properties of the liquid/vapor interface below room temperature. The data show that the viscosity at the interface matches the values reported for bulk dibutyl phthalate. The scaled relaxation rate at the surface agrees with the bulk data above 210 K. Upon approaching the glass transition temperature the free surface was observed to relax considerably faster close to the liquid/vapor interface than in bulk. The concept of higher relaxation rate at the free surface is also supported by the results of the quasielastic nuclear forward scattering experiment, during which dynamics on molecular length scales around the calorimetric glass transition temperature is studied. The data were analyzed using mode-coupling theory of the glass transition and the model of the liquid(glass)/vapor interface, predicting inhomogeneous dynamics near the surface. The quasielastic nuclear forward scattering data can be explained when the molecular mobility is assumed to decrease with the increasing

  6. Glass Transition, Crystallization of Glass-Forming Melts, and Entropy

    Directory of Open Access Journals (Sweden)

    Jürn W. P. Schmelzer

    2018-02-01

    Full Text Available A critical analysis of possible (including some newly proposed definitions of the vitreous state and the glass transition is performed and an overview of kinetic criteria of vitrification is presented. On the basis of these results, recent controversial discussions on the possible values of the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero absolute temperature is in disagreement with the absolute majority of experimental and theoretical investigations of this process and the nature of the vitreous state. This conclusion is illustrated by model computations. In addition to the main conclusion derived from these computations, they are employed as a test for several suggestions concerning the behavior of thermodynamic coefficients in the glass transition range. Further, a brief review is given on possible ways of resolving the Kauzmann paradox and its implications with respect to the validity of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its consequences does the Kauzmann paradox result in contradictions with any basic laws of nature. Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as suggested by Kauzmann or a conventional (and not an ideal glass transition. Some further so far widely unexplored directions of research on the interplay between crystallization and glass transition are anticipated, in which entropy may play—beyond the topics widely discussed and reviewed here—a major role.

  7. Chiral-glass transition and replica symmetry breaking of a three-dimensional Heisenberg spin glass

    OpenAIRE

    Hukushima, K.; Kawamura, H.

    2000-01-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance ...

  8. Photoacoustic investigation of glass transition in AsxTe1-x glasses

    International Nuclear Information System (INIS)

    Madhusoodanan, K.N.; Nandakumar, K.; Philip, J.; Titus, S.S.K.; Asokan, S.; Gopal, E.S.R.

    1989-01-01

    Photoacoustic (Pa) technique is used to study glass transition and temperature dependence of thermal diffusivity in As x Te 1-x glasses with 0.25 ≤ x ≤ 0.60. PA amplitude goes through a minimum and the phase shows a maximum at glass transition temperature T g . The variation of thermal diffusivity with temperature shows sharp decrease near T g . The variation of thermal diffusivity with composition shows maximum at x = 0.40 for all temperatures T ≤ T g . (author)

  9. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    Science.gov (United States)

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  10. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  11. Dielectric determination of the glass transition temperature (T sub g)

    Science.gov (United States)

    Ries, Heidi R.

    1990-01-01

    The objective is to determine the glass transition temperature of a polymer using a dielectric dissipation technique. A peak in the dissipation factor versus temperature curve is expected near the glass transition temperature T sub g. It should be noted that the glass transition is gradual rather than abrupt, so that the glass transition temperature T sub g is not clearly identifiable. In this case, the glass transition temperature is defined to be the temperature at the intersection point of the tangent lines to the dissipation factor versus temperature curve above and below the transition region, as illustrated.

  12. Glass transition of anhydrous starch by fast scanning calorimetry.

    Science.gov (United States)

    Monnier, Xavier; Maigret, Jean-Eudes; Lourdin, Denis; Saiter, Allisson

    2017-10-01

    By means of fast scanning calorimetry, the glass transition of anhydrous amorphous starch has been measured. With a scanning rate of 2000Ks -1 , thermal degradation of starch prior to the glass transition has been inhibited. To certify the glass transition measurement, structural relaxation of the glassy state has been investigated through physical aging as well as the concept of limiting fictive temperature. In both cases, characteristic enthalpy recovery peaks related to the structural relaxation of the glass have been observed. Thermal lag corrections based on the comparison of glass transition temperatures measured by means of differential and fast scanning calorimetry have been proposed. The complementary investigations give an anhydrous amorphous starch glass transition temperature of 312±7°C. This estimation correlates with previous extrapolation performed on hydrated starches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microstructure and Rheology near an Attractive Colloidal Glass Transition

    International Nuclear Information System (INIS)

    Narayanan, T.; Sztucki, M.; Belina, G.; Pignon, F.

    2006-01-01

    Microstructure and rheological properties of a thermally reversible short-ranged attractive colloidal system are studied in the vicinity of the attractive glass transition line. At high volume fractions, the static structure factor changes very little but the low frequency shear moduli varies over several orders of magnitude across the transition. From the frequency dependence of shear moduli, fluid-attractive glass and repulsive glass-attractive glass transitions are identified

  14. Glass heat capacity and its abrupt change in glass transition region

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Smedskjær, Morten Mattrup; Mauro, John C.

    cover a large range of glass formers from metallic to non-metallic glasses. To conduct this study we convert the units of all the Cp data from J/mol K and J/g K to J/g-atom K. This study will provide insight into the correlations among chemical bonding, microstructure structure, liquid fragility, glass......Glass transition (GT) has been a fascinating, but challenging subject in the condensed matter science over decades. Despite progress in understanding GT, many crucial problems still need to be clarified. One of the problems deals with the microscopic origin of abrupt change of heat capacity (Cp......) around glass transition. Here we study this problem through two approaches. First, we analyze the Cp change with temperature on homologous series of glass formers (i.e., with regular compositional substitution). Second, we do the same on non-homologous systems (e.g. without regular compositional...

  15. The physics of the colloidal glass transition.

    Science.gov (United States)

    Hunter, Gary L; Weeks, Eric R

    2012-06-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.

  16. The physics of the colloidal glass transition

    International Nuclear Information System (INIS)

    Hunter, Gary L; Weeks, Eric R

    2012-01-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come. (review article)

  17. Modern aspects of the kinetic theory of glass transition

    International Nuclear Information System (INIS)

    Tropin, T V; Aksenov, V L; Schmelzer, J W

    2016-01-01

    This paper reviews glass transition kinetics models that are developed to describe the formation of structural (for example, covalent and metallic) glasses, as well as to account for the transition of a polymer to a solid glassy state. As the two approaches most frequently used over the last decade to model the glass transition, the Tool–Narayanaswamy–Moynihan model and the Adam–Gibbs theory of glass transition are described together with examples of their applications. Also discussed are entropy-based approaches that rely on irreversible thermodynamics methods originated in the work of De Donder, Mandelstam, and Leontovich. The actual problems that arise in applying these methods and the prospects of their development are discussed. A brief overview of statistical glass transition models is given, including the mode-coupling and energy-landscape theories. (reviews of topical problems)

  18. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  19. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    Science.gov (United States)

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Neutron- and light-scattering studies of the liquid-to-glass and glass-to-glass transitions in dense copolymer micellar solutions

    International Nuclear Information System (INIS)

    Chen Weiren; Chen Sowhsin; Mallamace, Francesco; Glinka, Charles J.; Fratini, Emiliano

    2003-01-01

    Recent mode coupling theory (MCT) calculations show that if a short-range attractive interaction is added to the pure hard sphere system, one may observe a new type of glass originating from the clustering effect (the attractive glass) as a result of the attractive interaction. This is in addition to the known glass-forming mechanism due to the cage effect in the hard sphere system (the repulsive glass). The calculations also indicate that if the range of attraction is sufficiently short compared to the diameter of the particle, within a certain interval of volume fractions where the two glass-forming mechanisms nearly balance each other, varying the external control parameter, the effective temperature, makes the glass-to-liquid-to-glass reentrance and the glass-to-glass transitions possible. Here we present experimental evidence of both transitions, obtained from small-angle neutron-scattering and photon correlation measurements taken from dense L64 copolymer micellar solutions in heavy water. Varying the temperature in certain predicted volume fraction range triggers a sharp transition between these two different types of glass. In particular, according to MCT, there is an end point (called A 3 singularity) of this glass-to-glass transition line, beyond which the long-time dynamics of the two glasses become identical. Our findings confirm this theoretical prediction. Surprisingly, although the Debye-Waller factors, the long-time limit of the coherent intermediate scattering functions, of these two glasses obtained from photon correlation measurements indeed become identical at the predicted volume fraction, they exhibit distinctly different intermediate time relaxation. Furthermore, our experimental results obtained from volume fractions beyond the end point are characterized by the same features as the repulsive glass obtained before the end point. A complete phase diagram giving the boundaries of the structural arrest transitions for L64 micellar system is

  1. Glass transition of soft colloids

    Science.gov (United States)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  2. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    International Nuclear Information System (INIS)

    Zhang Kaicheng; Liu Guibin; Zhu Yan

    2011-01-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.

  3. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  4. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  5. Spin-glass transition in disordered terbium

    International Nuclear Information System (INIS)

    Hauser, J.J.

    1985-01-01

    While crystalline Tb is a helix antiferromagnet with a Neel temperature of 229 K which becomes ferromagnetic at 222 K, disordered Tb exhibits a spin-glass transition. The spin-glass freezing temperature ranges from 183 to 53 K, the lowest temperatures corresponding to the greatest degree of atomic disorder. These experiments constitute the first evidence for an elemental spin-glass. (author)

  6. A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates.

    Science.gov (United States)

    Andersson, Ove; Häussermann, Ulrich

    2018-04-19

    Type II clathrate hydrates (CHs) M·17 H 2 O, with M = tetrahydrofuran (THF) or 1,3-dioxolane, are known to collapse, or amorphize, on pressurization to ∼1.3 GPa in the temperature range 77-140 K. On heating at 1 GPa, these pressure-amorphized CH states show a weak, stretched sigmoid-shaped, heat-capacity increase because of a glass transition. Here we use thermal conductivity and heat capacity measurements to show that also type II CH with M = cyclobutanone (CB) collapses on isothermal pressurization and undergoes a similar, weak, glass transition upon heating at 1 GPa. Furthermore, we reveal for both THF CH and CB CH a second, much more pronounced, glass transition at temperatures above the thermally weak glass transition on heating in the 0.2-0.7 GPa range. This result suggests the general occurrence of two glass transitions in water-rich (94 mol %) pressure-collapsed CHs. Because of a large increase in dielectric permittivity concurrently as the weak heat capacity increase, the first glass transition must be due to kinetic unfreezing of water molecules. The thermal features of the second glass transition, measured on isobaric temperature cycling, are typical of a glass-liquid-glass transition, which suggests that pressure-amorphized CHs transform reversibly to liquids.

  7. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  8. Structural relaxation and thermal conductivity of high-pressure formed, high-density di-n-butyl phthalate glass and pressure induced departures from equilibrium state.

    Science.gov (United States)

    Johari, G P; Andersson, Ove

    2017-06-21

    We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ∼20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.

  9. Correlation between physical properties and ultrasonic relaxation parameters in transition metal tellurite glasses

    Science.gov (United States)

    Abd El-Moneim, A.

    2003-07-01

    The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.

  10. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  11. The liquid-glass-jamming transition in disordered ionic nanoemulsions.

    Science.gov (United States)

    Braibanti, Marco; Kim, Ha Seong; Şenbil, Nesrin; Pagenkopp, Matthew J; Mason, Thomas G; Scheffold, Frank

    2017-11-08

    In quenched disordered out-of-equilibrium many-body colloidal systems, there are important distinctions between the glass transition, which is related to the onset of nonergodicity and loss of low-frequency relaxations caused by crowding, and the jamming transition, which is related to the dramatic increase in elasticity of the system caused by the deformation of constituent objects. For softer repulsive interaction potentials, these two transitions become increasingly smeared together, so measuring a clear distinction between where the glass ends and where jamming begins becomes very difficult or even impossible. Here, we investigate droplet dynamics in concentrated silicone oil-in-water nanoemulsions using light scattering. For zero or low NaCl electrolyte concentrations, interfacial repulsions are soft and longer in range, this transition sets in at lower concentrations, and the glass and the jamming regimes are smeared. However, at higher electrolyte concentrations the interactions are stiffer, and the characteristics of the glass-jamming transition resemble more closely the situation of disordered elastic spheres having sharp interfaces, so the glass and jamming regimes can be distinguished more clearly.

  12. Glass transition of repulsive charged rods (fd-viruses).

    Science.gov (United States)

    Kang, Kyongok

    2014-05-14

    It has recently been shown that suspensions of long and thin charged fibrous viruses (fd) form a glass at low ionic strengths. The corresponding thick electric double layers give rise to long-ranged repulsive electrostatic interactions, which lead to caging and structural arrest at concentrations far above the isotropic-nematic coexistence region. Structural arrest and freezing of the orientational texture are found to occur at the same concentration. In addition, various types of orientational textures are equilibrated below the glass transition concentration, ranging from a chiral-nematic texture with a large pitch (of about 100 μm), an X-pattern, and a tightly packed domain texture, consisting of helical domains with a relatively small pitch (of about 10 μm) and twisted boundaries. The dynamics of both particles as well as the texture are discussed, below and above the glass transition. Dynamic light scattering correlation functions exhibit two dynamical modes, where the slow mode is attributed to the elasticity of helical domains. On approach of the glass-transition concentration, the slow mode increases in amplitude, while as the amplitudes of the fast and slow mode become equal at the glass transition. Finally, interesting features of the "transient" behaviors of charged fd-rod glass are shown as the initial caging due to structural arrest, the propagation of flow originating from stress release, and the transition to the final metastable glass state. In addition to the intensity correlation function, power spectra are presented as a function of the waiting time, at the zero-frequency limit that may access to the thermal anomalities in a charged system.

  13. Ideal glass transitions by random pinning

    Science.gov (United States)

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  14. Effect of particle size on the glass transition.

    Science.gov (United States)

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  15. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Measurement of the volatility and glass transition temperatures of glasses produced during the DWPF startup test program

    International Nuclear Information System (INIS)

    Marra, J.C.; Harbour, J.R.

    1995-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize high-level radioactive waste currently stored in underground tanks at the Savannah River Site by incorporating the waste into a glass matrix. The molten waste glass will be poured into stainless steel canisters which will be welded shut to produce the final waste form. One specification requires that any volatiles produced as a result of accidentally heating the waste glass to the glass transition temperature be identified. Glass samples from five melter campaigns, run as part of the DWPF Startup Test Program, were analyzed to determine glass transition temperatures and to examine the volatilization (by weight loss). Glass transition temperatures (T g ) for the glasses, determined by differential scanning calorimetry (DSC), ranged between 445 C and 474 C. Thermogravimetric analysis (TGA) scans showed that no overall weight loss occurred in any of the glass samples when heated to 500 C. Therefore, no volatility will occur in the final glass product when heated up to 500 C

  17. A universal reduced glass transition temperature for liquids

    Science.gov (United States)

    Fedors, R. F.

    1979-01-01

    Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.

  18. A simple method for tuning the glass transition process in inorganic phosphate glasses

    OpenAIRE

    Fulchiron, Ren?; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legar?, V?ronique

    2015-01-01

    The physical modification of glass transition temperature (Tg ) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of ap...

  19. Shock-induced decomposition of a high density glass (ZF6)

    Science.gov (United States)

    Zhou, Xianming; Liu, Xun; Li, Jiabo; Li, Jun; Cao, Xiuxia

    2011-07-01

    The dynamic high-pressure behavior of a high density glass (ZF6) was investigated in this study. The Hugoniot data, shock temperature (TH) and release sound velocity (C) of ZF6 were measured by a time-resolved multi-channel pyrometer in the shock pressure (PH) range of 50-170 GPa. The Hugoniot data is in accord with the Los Alamos Scientific Laboratory (LASL) shock Hugoniot data and shows a good linearity over 21 GPa. Polymorphic phase transitions were identified by the kinks in the measured TH-PH and C-PH relationships. The onset pressures of the transformations are ˜75 and ˜128 GPa, respectively. A thermodynamic calculation suggests that the phase transition at 75 GPa is its disproportionation to massicot (high pressure phase of PbO) and melted silica while the transition at 128 GPa is from the melting of massicot.

  20. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  1. Light-scattering study of the glass transition in lubricants

    Science.gov (United States)

    Alsaad, M. A.; Winer, W. O.; Medina, F. D.; Oshea, D. C.

    1977-01-01

    The sound velocity of four lubricants has been measured as a function of temperature and pressure using Brillouin scattering. A change in slope of the velocity as a function of temperature or pressure allowed the determination of the glass transition temperature and pressure. The glass transition data were used to construct a phase diagram for each lubricant. The data indicate that the glass transition temperature increased with pressure at a rate which ranged from 120 to 200 C/GPa. The maximum pressure attained was 0.69 GPa and the temperature range was from 25 to 100 C.

  2. SiO2 Glass Density to Lower-Mantle Pressures

    DEFF Research Database (Denmark)

    Petitgirard, Sylvain; Malfait, Wim J.; Journaux, Baptiste

    2017-01-01

    and present Earth. SiO2 is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO2 glass up to 110 GPa, doubling the pressure range...... for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO2 minerals above 60...... GPa. The density data present two discontinuities at similar to 17 and similar to 60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO2 glass becomes denser than MgSiO3 glass at similar to 40 GPa, and its density...

  3. Quantum percolation phase transition and magnetoelectric dipole glass in hexagonal ferrites

    Science.gov (United States)

    Rowley, S. E.; Vojta, T.; Jones, A. T.; Guo, W.; Oliveira, J.; Morrison, F. D.; Lindfield, N.; Baggio Saitovitch, E.; Watts, B. E.; Scott, J. F.

    2017-07-01

    Hexagonal ferrites not only have enormous commercial impact (£2 billion/year in sales) due to applications that include ultrahigh-density memories, credit-card stripes, magnetic bar codes, small motors, and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbF e12 -xG axO19 to zero by chemical substitution x . The phase transition boundary is found to vary as TN˜(1-x /xc ) 2 /3 with xc very close to the calculated spin percolation threshold, which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally tuned, insulating, ferrimagnetic quantum criticality. Close to the zero-temperature phase transition, we observe the emergence of an electric dipole glass induced by magnetoelectric coupling. The strong frequency behavior of the glass freezing temperature Tm has a Vogel-Fulcher dependence with Tm finite, or suppressed below zero in the zero-frequency limit, depending on composition x . These quantum-mechanical properties, along with the multiplicity of low-lying modes near the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.

  4. TOPEM DSC study of glass transition region of polyurethane cationomers

    International Nuclear Information System (INIS)

    Pielichowska, Kinga; Król, Piotr; Król, Bożena; Pagacz, Joanna

    2012-01-01

    Highlights: ► TOPEM DSC method was employed to investigate the glass transition (T g ) region of fluorinated polyurethane cationomers. ► Introduction of fluorine compounds significantly changes thermal behaviour of cationomers in the T g region of hard segments. ► Introduction of fluorine compound leads to changes of the slope in activation diagram of glass transition. - Abstract: In this paper TOPEM DSC method was employed to investigate the glass transition region of fluorinated polyurethane cationomers. Fluorinated polyurethane cationomers have been synthesised in the reaction of MDI with poly(ethylene glycol) (600) and butane1,4-diol or N-methyl- or N-butyldiethanolamine and 2,2,3,3-tetrafluoro-1,4-butanediol. Better rigidity was found for generally amorphous cationomer coats. It was found that introduction of fluorine compound changes thermal behaviour of polyurethane cationomers as well as leads to changes in the slope in activation diagram profiles of glass transition in comparison to polyuretahene cationomer without fluorine compound. Application of TOPEM DSC allows to obtain more information concerning frequency dependence of glass transition region and thermodynamical stability of polyurethane structures.

  5. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  6. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  7. Unique properties associated with normal martensitic transition and strain glass transition – A simulation study

    International Nuclear Information System (INIS)

    Wang, Dong; Ni, Yan; Gao, Jinghui; Zhang, Zhen; Ren, Xiaobing; Wang, Yunzhi

    2013-01-01

    Highlights: ► We model the unique properties of strain glass which is different from that of normal martensite. ► We describe the importance of point defects in the formation of strain glass and related properties. ► The role of point defect can be attributed to global transition temperature effect (GTTE) and local field effect (LFE). -- Abstract: The transition behavior and unique properties associated with normal martensitic transition and strain glass transition are investigated by computer simulations using the phase field method. The simulations are based on a physical model that assumes that point defects alter the thermodynamic stability of martensite and create local lattice distortion. The simulation results show that strain glass transition exhibits different properties from those found in normal martensitic transformations. These unique properties include diffuse scattering pattern, “smear” elastic modulus peak, disappearance of heat flow peak and non-ergodicity. These simulation predictions agree well with the experimental observations

  8. Comment on 'Spherical 2+p spin-glass model: An analytically solvable model with a glass-to-glass transition'

    International Nuclear Information System (INIS)

    Krakoviack, V.

    2007-01-01

    Guided by old results on simple mode-coupling models displaying glass-glass transitions, we demonstrate, through a crude analysis of the solution with one step of replica symmetry breaking (1RSB) derived by Crisanti and Leuzzi for the spherical s+p mean-field spin glass [Phys. Rev. B 73, 014412 (2006)], that the phase behavior of these systems is not yet fully understood when s and p are well separated. First, there seems to be a possibility of glass-glass transition scenarios in these systems. Second, we find clear indications that the 1RSB solution cannot be correct in the full glassy phase. Therefore, while the proposed analysis is clearly naive and probably inexact, it definitely calls for a reassessment of the physics of these systems, with the promise of potentially interesting developments in the theory of disordered and complex systems

  9. Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.

    Science.gov (United States)

    Djemour, A; Sanctuary, R; Baller, J

    2015-04-07

    Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.

  10. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses.

    Science.gov (United States)

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-05-19

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO(2))(1 - x)(ZnO)(x) (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T(g) has been determined for each glass, showing a monotonous decrease of T(g) with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T(d) very close to the respective T(g) values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T(g) in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T(g) and confirms the correlation between the BP and the MRO of glasses.

  11. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses

    International Nuclear Information System (INIS)

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-01-01

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO 2 ) 1-x (ZnO) x (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T g has been determined for each glass, showing a monotonous decrease of T g with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T d very close to the respective T g values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T g in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T g and confirms the correlation between the BP and the MRO of glasses.

  12. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  13. Kinetic arrest and glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Sztucki, M.; Narayanan, T.; Belina, G.; Moussaied, A.; Pignon, F.; Hoekstra, H.

    2006-01-01

    A thermally reversible repulsive hard-sphere to sticky-sphere transition was studied in a model colloidal system over a wide volume fraction range. The static microstructure was obtained from high resolution small angle x-ray scattering, the colloid dynamics was probed by dynamic x-ray and light scattering, and supplementary mechanical properties were derived from bulk rheology. At low concentration, the system shows features of gas-liquid type phase separation. The bulk phase separation is presumably interrupted by a gelation transition at the intermediate volume fraction range. At high volume fractions, fluid-attractive glass and repulsive glass-attractive glass transitions are observed. It is shown that the volume fraction of the particles can be reliably deduced from the absolute scattered intensity. The static structure factor is modeled in terms of an attractive square-well potential, using the leading order series expansion of Percus-Yevick approximation. The ensemble-averaged intermediate scattering function shows different levels of frozen components in the attractive and repulsive glassy states. The observed static and dynamic behavior are consistent with the predictions of a mode-coupling theory and numerical simulations for a square-well attractive system

  14. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    Science.gov (United States)

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  15. Influence of entanglements on glass transition temperature of polystyrene

    Science.gov (United States)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  16. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    International Nuclear Information System (INIS)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-01

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B 2 O 3 -10SiO 2 were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T g ) and of the maximum crystallization temperature (T p ) on the heating rate was used to determine the activation energy associated with the glass transition (E g ), the activation energy for crystallization (E c ), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB 2 O 4 ) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba 5 Si 8 O 21 ). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E c (χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures

  17. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  18. The structural origin of the hard-sphere glass transition in granular packing.

    Science.gov (United States)

    Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a 'hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.

  19. Thermodynamic consequences of the kinetic nature of the glass transition

    Science.gov (United States)

    Koperwas, Kajetan; Grzybowski, Andrzej; Tripathy, Satya N.; Masiewicz, Elzbieta; Paluch, Marian

    2015-01-01

    In this paper, we consider the glass transition as a kinetic process and establish one universal equation for the pressure coefficient of the glass transition temperature, dTg/dp, which is a thermodynamic characteristic of this process. Our findings challenge the common previous expectations concerning key characteristics of the transformation from the liquid to the glassy state, because it suggests that without employing an additional condition, met in the glass transition, derivation of the two independent equations for dTg/dp is not possible. Hence, the relation among the thermodynamic coefficients, which could be equivalent to the well-known Prigogine-Defay ratio for the process under consideration, cannot be obtained. Besides, by comparing the predictions of our universal equation for dTg/dp and Ehrenfest equations, we find the aforementioned supplementary restriction, which must be met to use the Prigogine-Defay ratio for the glass transition. PMID:26657017

  20. Diffusive dynamics during the high-to-low density transition in amorphous ice

    Science.gov (United States)

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

  1. Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship

    International Nuclear Information System (INIS)

    Bai Yu; Jin Li

    2008-01-01

    The complex mechanical modulus of polymer and polymer based composite materials showed a frequency-dependent behaviour during glass transition relaxation, which was historically modelled by the Arrhenius equation. However, this might not be true in a broad frequency domain based on the experience from the frequency dependence of the complex dielectric permittivity, which resulted from the same glass transition relaxation as for the complex mechanical modulus. Considering a good correspondence between dielectric and mechanical relaxation during glass transition, the Vogel-Fulcher relationship, previously proposed for the frequency dependence of dielectric permittivity, is introduced for that of the mechanical modulus; and the corresponding static glass transition temperature (T f ) was first determined for polymer and polymer based composite materials. (fast track communication)

  2. Glass transition in soft-sphere dispersions

    International Nuclear Information System (INIS)

    RamIrez-Gonzalez, P E; Medina-Noyola, M

    2009-01-01

    The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

  3. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

    Science.gov (United States)

    Voudouris, P; Gomopoulos, N; Le Grand, A; Hadjichristidis, N; Floudas, G; Ediger, M D; Fytas, G

    2010-02-21

    The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.

  4. Discontinuous nature of the repulsive-to-attractive colloidal glass transition.

    Science.gov (United States)

    van de Laar, T; Higler, R; Schroën, K; Sprakel, J

    2016-03-04

    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive colloidal glass a re-entrant solidification ensues. Initially, the repulsive glass melts as free volume in the system increases. As the attraction strength is increased further, this weakened configurational glass gives way to an attractive glass in which motion is hindered by the formation of physical bonds between neighboring particles. In this paper, we study the transition from repulsive-to-attractive glasses using three-dimensional imaging at the single-particle level. We show how the onset of cage weakening and bond formation is signalled by subtle changes in local structure. We then demonstrate the discontinuous nature of the solid-solid transition, which is marked by a critical onset at a threshold bonding energy. Finally, we highlight how the interplay between bonding and caging leads to complex and heterogeneous dynamics at the microscale.

  5. Doping influence by some transition elements on the irradiation effects in nuclear waste glasses

    International Nuclear Information System (INIS)

    Florent, Olivier

    2006-06-01

    High-level waste glasses are submitted to auto-irradiation. Modelling it using external irradiations on simple glasses revealed defects production and non negligible structural changes. This thesis aims at determining the impact of a more complex composition on these effects, especially the influence of adding polyvalent transition metals. Silicate, soda-lime and alumino-borosilicate glasses are doped with different iron, chromium and manganese concentrations then β irradiated at different doses up to 10 9 Gy. Non doped glasses show an increase of their density and polymerisation coupled with a molecular oxygen and point defects production. Adding 0.16 mol% Fe decreases the amount of defects by 85 % and all irradiation effects. A Fe 3+ reduction is also observed by EPR, optical absorption and indirectly by Raman spectroscopy. A higher than 0.32 mol% Fe concentration causes complete blockage of the evolution of polymerisation, density and defect production. The same results are obtained on chromium or manganese doped glasses. An original in situ optical absorption device shows the quick decrease of Fe 3+ amount to a 25 % lower level during irradiation. Stopping irradiation causes a lower decrease of 65 %, suggesting a dynamic (h 0 /e-) consuming equilibrium. He + and Kr 3+ ions and γ irradiated glasses tend to confirm these phenomena for all kind of irradiation with electronic excitations. (author)

  6. Glass transition, crystallization kinetics and pressure effect on crystallization of ZrNbCuNiBe bulk metallic glass

    DEFF Research Database (Denmark)

    Xing, P.F.; Zhuang, Yanxin; Wang, W.H.

    2002-01-01

    The glass transition behavior and crystallization kinetics of Zr48Nb8Cu14Ni12Be18 bulk metallic glass have been investigated by differential scanning calorimetry and x-ray powder diffraction (XRD). The activation energies of both glass transition and crystallization events have been obtained using...... the Kissinger method. Results indicate that this glass crystallizes by a three-stage reaction: (1) phase separation and primary crystallization of glass, (2) formation of intermetallic compounds, and (3) decomposition of intermetallic compounds and crystallization of residual amorphous phase. The pressure...

  7. Unusual Crystallization Behavior Close to the Glass Transition

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-03-01

    Using molecular simulations, we shed light on the mechanism underlying crystal nucleation in metal alloys and unravel the interplay between crystal nucleation and glass transition, as the conditions of crystallization lie close to this transition. While decreasing the temperature of crystallization usually results in a lower free energy barrier, we find an unexpected reversal of behavior for glass-forming alloys as the temperature of crystallization approaches the glass transition. For this purpose, we simulate the crystallization process in two glass-forming Copper alloys, Ag6 Cu4 , which has a positive heat of mixing, and CuZr, characterized by a large negative heat of mixing. Our results allow us to identify this unusual behavior as directly correlated with a nonmonotonic temperature dependence for the formation energy of connected icosahedral structures, which are incompatible with crystalline order and impede the development of the crystal nucleus, leading to an unexpectedly larger free energy barrier at low temperature. This, in turn, promotes the formation of a predominantly closed-packed critical nucleus, with fewer defects, thereby suggesting a new way to control the structure of the crystal nucleus, which is of key importance in catalysis.

  8. Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition

    DEFF Research Database (Denmark)

    Mattern, N.; Hermann, H.; Roth, S.

    2003-01-01

    The thermal behavior of the structure of Pd40Cu30Ni10P20 bulk metallic glass has been investigated in situ through the glass transition by means of high-temperature x-ray synchrotron diffraction. The dependence of the x-ray structure factor S(q) of the Pd40Cu30Ni10P20 glass on temperature follows...... the Debye theory up to the glass transition with a Debye temperature theta=296 K. Above the glass transition temperature T-g, the temperature dependence of S(q) is altered, pointing to a continuous development of structural changes in the liquid with temperature. The atomic pair correlation functions g......(r) indicate changes in short-range-order parameters of the first and the second neighborhood with temperature. The temperature dependence of structural parameters is different in glass and in supercooled liquid, with a continuous behavior through the glass transition. The nearest-neighbor distance decreases...

  9. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  10. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    International Nuclear Information System (INIS)

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-01-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  11. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  12. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    Science.gov (United States)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  13. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    Science.gov (United States)

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  14. Radiation-Induced Fluidity and Glass-Liquid Transition in Irradiated Amorphous Materials

    International Nuclear Information System (INIS)

    Ojovan, M.I.

    2009-01-01

    This paper describes the fluidity behaviour of continuously irradiated glasses using the Congruent Bond Lattice model in which broken bonds 'configurons' facilitate the flow. Irradiation breaks the bonds creating configurons which at high concentrations provide the transition of material from the glassy to liquid state. An explicit equation of viscosity has been derived which gives results in agreement with experimental data. This equation provides correct viscosity data for non-irradiated materials and shows a significant increase of fluidity in radiation fields. It demonstrates a decrease of activation energy of flow for irradiated glasses. A simple equation for glass-transition temperature was also obtained which shows that irradiated glasses have lower glass transition temperatures and are readily transformed from glassy to liquid state e.g. fluidized in strong radiation fields. (authors)

  15. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  16. Glass transitions in lubricants - Its relation to elastohydrodynamic lubrication /EHD/

    Science.gov (United States)

    Alsaad, M.; Bair, S.; Sanborn, D. M.; Winer, W. O.

    1977-01-01

    A preliminary investigation into the possible role of glass transition and glassy state behavior of lubricants in EHD contacts is reported. Measurements of the glass transition of lubricants as a function of pressure by two methods are presented along with a discussion indicating possible implications of the results to EHD lubrication.

  17. Shear viscosity of glass-forming melts in the liquid-glass transition region

    International Nuclear Information System (INIS)

    Sanditov, D. S.

    2010-01-01

    A new approach to interpreting the hole-activation model of a viscous flow of glass-forming liquids is proposed. This model underlies the development of the concept on the exponential temperature dependence of the free energy of activation of a flow within the range of the liquid-glass transition in complete agreement with available experimental data. The 'formation of a fluctuation hole' in high-heat glass-forming melts is considered as a small-scale low-activation local deformation of a structural network, i.e., the quasi-lattice necessary for the switching of the valence bond, which is the main elementary event of viscous flow of glasses and their melts. In this sense, the hole formation is a conditioned process. A drastic increase in the activation free energy of viscous flow in the liquid-glass transition region is explained by a structural transformation that is reduced to a limiting local elastic deformation of the structural network, which, in turn, originates from the excitation (critical displacement) of a bridging atom like the oxygen atom in the Si-O-Si bridge. At elevated temperatures, as a rule, a necessary amount of excited bridging atoms (locally deformed regions of the structural network) always exists, and the activation free energy of viscous flow is almost independent of temperature. The hole-activation model is closely connected with a number of well-known models describing the viscous flow of glass-forming liquids (the Avramov-Milchev, Nemilov, Ojovan, and other models).

  18. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    Energy Technology Data Exchange (ETDEWEB)

    Aji, D. P. B.; Johari, G. P., E-mail: joharig@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-12-14

    Consequences of increase in structural fluctuations on heating Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20} and Zr{sub 46.75}Ti{sub 8.25}Cu{sub 7.5}Ni{sub 10}Be{sub 27.5} through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the T{sub g} (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (−dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-T{sub g} feature and a rapid rise at T near T{sub g}. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  19. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  20. [Glass transition of Chinese medicine extract powder and its application].

    Science.gov (United States)

    Luo, Xiao-Jian; Liu, Hui; Liang, Hong-Bo; Xiong, Lei; Rao, Xiao-Yong; Xie, Yin; He, Yan

    2017-01-01

    Glass transition theory is an important theory in polymer science, which is used to characterize the physical properties. It refers to the transition of amorphous polymer from the glassy state to the rubber state due to heating or the transition from rubber state to glassy state due to cooling. In this paper, the glassy state and glass transition of food and the similar relationship between the composition of Chinese medicine extract powder and food ingredients were described; the determination method for glass transition temperature (Tg) of Chinese medicine extract powder was established and its main influencing factors were analyzed. Meanwhile, the problems in drying process, granulation process and Chinese medicine extract powder and solid preparation storage were analyzed and investigated based on Tg, and then the control strategy was put forward to provide guidance for the research and production of Chinese medicine solid preparation. Copyright© by the Chinese Pharmaceutical Association.

  1. Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition.

    Science.gov (United States)

    Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2013-10-24

    We consider the theory of the glass phase and jamming of hard spheres in the large space dimension limit. Building upon the exact expression for the free-energy functional obtained previously, we find that the random first order transition (RFOT) scenario is realized here with two thermodynamic transitions: the usual Kauzmann point associated with entropy crisis and a further transition at higher pressures in which a glassy structure of microstates is developed within each amorphous state. This kind of glass-glass transition into a phase dominating the higher densities was described years ago by Elisabeth Gardner, and may well be a generic feature of RFOT. Microstates that are small excitations of an amorphous matrix-separated by low entropic or energetic barriers-thus emerge naturally, and modify the high pressure (or low temperature) limit of the thermodynamic functions.

  2. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  3. Meissner effects, vortex core states, and the vortex glass phase transition

    International Nuclear Information System (INIS)

    Huang, Ming.

    1991-01-01

    This thesis covers three topics involving Meissner effects and the resulting defect structures. The first is a study of Meissner effects in superconductivity and in systems with broken translational symmetry. The Meissner effect in the superconductors is a rigidity against external magnetic field caused by the breaking of the gauge symmetry. Other condensed matter systems also exhibit rigidities like this: The breaking of the translational symmetry in a cubic-liquid-crystal causes the system to expel twist deformations and the breaking of the translational symmetry in a nematic liquid crystal gives it a tendency to expel twist and bend deformations. In this thesis, the author studies these generalized Meissner effects in detail. The second is a study of the quasiparticle states bound to the vortex defect in superconductors. Scanning-tunneling-microscope measurements by Harald Hess et al. of the local density of states in a vortex core show a pronounced peak at small bias. These measurements contradict with previous theoretical calculations. Here, he solves the Bogoliubov equations to obtain the local density of states in the core and satisfactorily explain the experimental observations. He also predicted additional structure in the local density of states which were later observed in experiments. The third is a study of vortex dynamics in the presence of disorder. A mean field theory is developed for the recently proposed normal to superconducting vortex glass transition. Using techniques developed to study the critical dynamics of spin glasses, he calculates the mean field vortex glass phase boundary and the critical exponents

  4. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  5. Characterisation of the glass transition of an amorphous drug using modulated DSC.

    Science.gov (United States)

    Royall, P G; Craig, D Q; Doherty, C

    1998-07-01

    The use of modulated differential scanning calorimetry (MDSC) as a novel means of characterising the glass transition of amorphous drugs has been investigated, using the protease inhibitor saquinavir as a model compound. In particular, the effects of measuring variables (temperature cycling, scanning period, heating mode) have been examined. Saquinavir samples of known moisture content were examined using a TA Instruments 2920 MDSC at a heating rate of 2 degrees C/min and an amplitude of +/-0.159 degrees C with a period of 30 seconds. These conditions were used to examine the effects of cycling between - 50 degrees C and 150 degrees C. A range of periods between 20 and 50 seconds were then studied. Isothermal measurements were carried out between 85 degrees C and 120 degrees C using an amplitude of +/-0.159 degrees C with a period of 30 seconds. MDSC showed the glass transition of saquinavir (0.98 +/- 0.05%w/w moisture content) in isolation from the relaxation endotherm to give an apparent glass transition temperature of 107.0 degrees C +/- 0.4 degrees C. Subsequent temperature cycling gave reproducible glass transition temperatures of approximately 105 degrees C for both cooling and heating cycles. The enthalpic relaxation peak observed in the initial heating cycle had an additional contribution from a Tg "shift" effect brought about by the difference in response to the glass transition of the total and reversing heat flow signals. Isothermal studies yield a glass transition at 105.9 degrees C +/- 0.1 degrees C. MDSC has been shown to be capable of separating the glass transition of saquinavir from the relaxation endotherm, thereby facilitating measurement of this parameter without the need for temperature cycling. However, the Tg "shift" effect and the number of modulations through the transition should be taken into account to avoid drawing erroneous conclusions from the experimental data. MDSC has been shown to be an effective method of characterising the glass

  6. A simple method for tuning the glass transition process in inorganic phosphate glasses

    Science.gov (United States)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.

  7. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions.

    Science.gov (United States)

    Vivek, Skanda; Kelleher, Colm P; Chaikin, Paul M; Weeks, Eric R

    2017-02-21

    Phase transitions significantly differ between 2D and 3D systems, but the influence of dimensionality on the glass transition is unresolved. We use microscopy to study colloidal systems as they approach their glass transitions at high concentrations and find differences between two dimensions and three dimensions. We find that, in two dimensions, particles can undergo large displacements without changing their position relative to their neighbors, in contrast with three dimensions. This is related to Mermin-Wagner long-wavelength fluctuations that influence phase transitions in two dimensions. However, when measuring particle motion only relative to their neighbors, two dimensions and three dimensions have similar behavior as the glass transition is approached, showing that the long-wavelength fluctuations do not cause a fundamental distinction between 2D and 3D glass transitions.

  8. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    Science.gov (United States)

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Communication: Glass transition and melting lines of an ionic liquid

    Science.gov (United States)

    Lima, Thamires A.; Faria, Luiz F. O.; Paschoal, Vitor H.; Ribeiro, Mauro C. C.

    2018-05-01

    The phase diagram of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesufonyl)imide, [Pyrr1,4][NTf2], was explored by synchroton X-ray diffraction and Raman scattering measurements as a function of temperature and pressure. Glass transition Tg(p) and melting Tm(p) temperatures were obtained from atmospheric pressure up to ca. 2.0 GPa. We found that both the Tg(p) and Tm(p) curves follow essentially the same pressure dependence. The similarity of pressure coefficients, dTg/dp ≈ dTm/dp, is explained within the non-equilibrium thermodynamics approach for the glass transition by assuming that one of the Ehrenfest equations is appropriated for Tg(p), whereas Tm(p) follows the Clausius-Clapeyron equation valid for the first-order transitions. The results highlight that ionic liquids are excellent model systems to address fundamental questions related to the glass transition.

  10. Hybrid glasses from strong and fragile metal-organic framework liquids.

    Science.gov (United States)

    Bennett, Thomas D; Tan, Jin-Chong; Yue, Yuanzheng; Baxter, Emma; Ducati, Caterina; Terrill, Nick J; Yeung, Hamish H-M; Zhou, Zhongfu; Chen, Wenlin; Henke, Sebastian; Cheetham, Anthony K; Greaves, G Neville

    2015-08-28

    Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

  11. Fluorinated epoxy resins with high glass transition temperatures

    Science.gov (United States)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  12. Transition densities with electron scattering

    International Nuclear Information System (INIS)

    Heisenberg, J.

    1985-01-01

    This paper reviews the ground state and transition charge densities in nuclei via electron scattering. Using electrons as a spectroscopic tool in nuclear physics, these transition densities can be determined with high precision, also in the nuclear interior. These densities generally ask for a microscopic interpretation in terms of contributions from individual nucleons. The results for single particle transitions confirm the picture of particle-phonon coupling. (Auth.)

  13. Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2018-06-01

    Full Text Available Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud-forming (cloud condensation nuclei and ice nucleation capabilities of secondary organic aerosols (SOAs. The small size and relatively low mass concentration of SOAs in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adapted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K that are used to calculate the glass transition temperatures for several cooling or heating rates. IDE-enabled broadband dielectric spectroscopy (BDS was successfully used to measure the kinetically controlled glass transition temperatures of aerosols consisting of glycerol and four other compounds with selected cooling and heating rates. The glass transition results agree well with available literature data for these five compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects.

  14. Optical properties of 3d transition metal ion-doped sodium borosilicate glass

    International Nuclear Information System (INIS)

    Wen, Hongli; Tanner, Peter A.

    2015-01-01

    Graphical abstract: Photographs of undoped (SiO 2 ) 50 (Na 2 O) 25 (B 2 O 3 ) 25 (SiNaB) glass and transition metal ion-doped (TM) 0.5 (SiO 2 ) 49.5 (Na 2 O) 25 (B 2 O 3 ) 25 glass samples. - Highlights: • 3d transition metal ion (from Ti to Zn) doped SiO 2 -Na 2 O-B 2 O 3 glasses. • Optical properties of doped glasses investigated. • V(IV,V); Cr(III, VI); Mn(II,III); Fe(II,III); Co(II); Ni(II); Cu(II) by XANES, DRS. • Strong visible absorption but only vanadium ion gives strong emission in glass. - Abstract: SiO 2 -Na 2 O-B 2 O 3 glasses doped with 3d-transition metal species from Ti to Zn were prepared by the melting-quenching technique and their optical properties were investigated. The X-ray absorption near edge spectra of V, Cr, and Mn-doped glasses indicate that the oxidation states of V(IV, V), Cr(III, VI) and Mn(II, III) exist in the studied glasses. The oxidation states revealed from the diffuse reflectance spectra of the glasses are V(IV, V), Cr(III, VI), Mn(III), Fe(II, III), Co(II), Ni(II), and Cu(II). Most of the 3d transition element ions exhibit strong absorption in the visible spectral region in the glass. Under ultraviolet excitation, the undoped sodium borosilicate glass produces weak and broad emission, while doping of vanadium introduces strong and broad emission due to the V(V) charge transfer transition. Only weak emission is observed from Ti(IV), Mn(II), Fe(III) and Cu(II), partly resulting from the strong electron–phonon coupling of the 3d-electrons and the relatively high phonon energy of the studied glass host, with the former leading to dominant nonradiative relaxation based on multiphonon processes for most of the 3d excited states

  15. Stereodynamic insight into the thermal history effects on poly(vinyl chloride) calorimetric sub-glass and glass transitions as a fragile glass model.

    Science.gov (United States)

    Pin, Jean-Mathieu; Behazin, Ehsan; Misra, Manjusri; Mohanty, Amar

    2018-05-02

    The dynamic thermal history impact of poly(vinyl chloride) (PVC) has been explored for a wide range of pre-cooling rates, from 1 to 30 °C min-1. A first macroscopic insight into the dynamic thermal history influence has been highlighted through a decrease in the apparent activation energy (Eapp) in the first stage of the glass transition. The overall glass transition Eapp surface was successfully modeled in a polynomial fashion regarding the pre-cooling range. Raman scattering was used to associate the Eapp variations along the glass transition conversion with the stereochemistry evolution during the polymeric relaxation. Herein, the selection of atactic PVC as the polymer model permits us to monitor the glassy polymer segment stereodynamics during the heating ramp through the C-Cl stretching. The intermolecular H-Cl dipole interactions, as well as intramolecular conformational reorganizations among syndiotactic, isotactic and heterotactic polymer sequences, have been associated with non-cooperative and cooperative motions, i.e. the β- and α-process, respectively. The fruitful comparison of the two extreme values of the pre-cooling rates permits us to propose a thermokinetic scenario that explains the occurrence, intensity, and inter-dependence of β- and α-processes in the glassy state and during the glass transition. This scenario could potentially be generalized to all the other polymeric glass-formers.

  16. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  17. Size and pressure effects on glass transition temperature of poly (methyl methacrylate) thin films

    International Nuclear Information System (INIS)

    Lang, X.Y.; Zhang, G.H.; Lian, J.S.; Jiang, Q.

    2006-01-01

    A simple and unified model, without any adjustable parameter, is developed for size and pressure effects on glass transition temperatures of nanopolymers. The model is based on a model for size dependent glass transition temperature of nanopolymer glasses under ambient pressure, and a pressure-dependent function of the root of mean-square displacement of atom vibration. It is found that the size- and pressure-dependent glass transition temperatures of free-standing films or supported films having weak interaction with substrates decreases with decreasing of pressure and size. However, the glass transition temperature of supported films having strong interaction with substrates increases with the increase of pressure and the decrease of size. The predicted results correspond with available experimental evidences for atactic-Poly (methyl methacrylate) thin films under hydrostatic pressure or under the pressure induced by supercritical fluid CO 2 . In addition, the predicted glass transition temperature of isotactic-Poly (methyl methacrylate) thin films under ambient pressure is consistent with available experimental evidences

  18. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    We show the quantitative correlation between the degree of crystallization and the cationic diffusion extent in iron-containing diopside glass–ceramics at the glass transition temperature. We find a critical degree of crystallization, above which the diffusion extent sharply drops with the degree...... of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  19. Viscoelastic properties of attractive and repulsive colloidal glasses

    International Nuclear Information System (INIS)

    Puertas, Antonio M; Zaccarelli, Emanuela; Sciortino, Francesco

    2005-01-01

    We report a numerical study of the shear viscosity and the frequency dependent elastic moduli close to dynamical arrest for a model of short range attractive colloids, both for the repulsive and the attractive glass transition. Calculating the stress autocorrelation functions, we find that density fluctuations of wavevectors close to the first peak in the structure factor control the viscosity rise on approaching the repulsive glass, while fluctuations of larger wavevectors control the viscosity close to the attractive glass. On approaching the glass transition, the viscosity diverges with a power law with the same exponent as the density autocorrelation time. (letter to the editor)

  20. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Roseker, W.; Sikorski, M.

    2004-01-01

    Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition was det...... range of 0-2.2 GPa. This method opens a possibility to study the pressure effect of glass transition process in glassy systems under high pressures (>1 GPa). (C) 2004 American Institute of Physics.......Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition...... was detected from the change of the slope of peak position as a function of temperature. It is found that the glass transition temperature increases with pressure by 4.4 K/GPa for the Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass, and the supercooled liquid range decreases with pressure by 2.9 K/GPa in a pressure...

  1. Vortex-glass transition in three dimensions

    International Nuclear Information System (INIS)

    Reger, J.D.; Tokuyasu, T.A.; Young, A.P.; Fisher, M.P.A.

    1991-01-01

    We investigate the possibility of a vortex-glass transition in a disordered type-II superconductor in a magnetic field in three dimensions by numerical studies of a simplified model. Monte Carlo simulations at finite temperature and domain-wall renormalization-group calculations at T=0 indicate that d=3 is just above the lower critical dimension d l , though the possibility that d l =3 cannot be definitely ruled out. A comparison is made with XY and Ising spin glasses. The (effective) correlation-length exponent ν and dynamical exponent z are in fairly good agreement with experiment

  2. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    Science.gov (United States)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  3. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  4. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.

    Science.gov (United States)

    Micoulaut, Matthieu

    2010-07-21

    A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.

  5. Ideal glass transitions in thin films: An energy landscape perspective

    OpenAIRE

    Truskett, Thomas M.; Ganesan, Venkat

    2003-01-01

    We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperatu...

  6. Finite-size effects on the vortex-glass transition in thin YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1995-01-01

    Nonlinear current-voltage characteristics have been measured at high magnetic fields in YBa 2 Cu 3 O 7-δ films of a thickness t ranging from 3000 down to 16 A. Critical-scaling analyses of the data for the thinner films (t≤400 A) reveal deviations from the vortex-glass critical scaling appropriate for three-dimensional (3D) systems. This is argued to be a finite-size effect. At large current densities J, the vortices are probed at length scales smaller than the film thickness, i.e., 3D vortex-glass behavior is observed. At low J by contrast, the vortex excitations involve typical length scales exceeding the film thickness, resulting in 2D behavior. Further evidence for this picture is found directly from the 3D vortex-glass correlation length, which, upon approach of the glass transition temperature, appears to level off at the film thickness. The results indicate that a vortex-glass phase transition does occur at finite temperature in 3D systems, but not in 2D systems. In the latter an onset of 2D correlations occurs towards zero temperature. This is demonstrated in our thinnest film (16 A), which, in a magnetic field, displays a 2D vortex-glass correlation length which critically diverges at zero temperature

  7. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    International Nuclear Information System (INIS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-01-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al 2 O 3 ) 1−x (SiO 2 ) x , glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO 5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins

  8. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the

  9. Characterization of the glass transition of water predicted by molecular dynamics simulations using nonpolarizable intermolecular potentials.

    Science.gov (United States)

    Kreck, Cara A; Mancera, Ricardo L

    2014-02-20

    Molecular dynamics simulations allow detailed study of the experimentally inaccessible liquid state of supercooled water below its homogeneous nucleation temperature and the characterization of the glass transition. Simple, nonpolarizable intermolecular potentials are commonly used in classical molecular dynamics simulations of water and aqueous systems due to their lower computational cost and their ability to reproduce a wide range of properties. Because the quality of these predictions varies between the potentials, the predicted glass transition of water is likely to be influenced by the choice of potential. We have thus conducted an extensive comparative investigation of various three-, four-, five-, and six-point water potentials in both the NPT and NVT ensembles. The T(g) predicted from NPT simulations is strongly correlated with the temperature of minimum density, whereas the maximum in the heat capacity plot corresponds to the minimum in the thermal expansion coefficient. In the NVT ensemble, these points are instead related to the maximum in the internal pressure and the minimum of its derivative, respectively. A detailed analysis of the hydrogen-bonding properties at the glass transition reveals that the extent of hydrogen-bonds lost upon the melting of the glassy state is related to the height of the heat capacity peak and varies between water potentials.

  10. Determination of the glass transition temperature of cyclodextrin polymers.

    Science.gov (United States)

    Tabary, Nicolas; Garcia-Fernandez, Maria Jose; Danède, Florence; Descamps, Marc; Martel, Bernard; Willart, Jean-François

    2016-09-05

    The aim of this work was to determine the main physical characteristics of β-cyclodextrin polymers, well known for improving complexation capacities and providing enhanced and sustained release of a large panel of drugs. Two polymers were investigated: a polymer of β-cyclodextrin (polyβ-CD) and a polymer of partially methylated (DS=0.57) β-cyclodextrin (polyMe-β-CD). The physical characterizations were performed by powder X-ray diffraction and differential scanning calorimetry. The results indicate that these polymers are amorphous and that their glass transition is located above the thermal degradation point of the materials preventing their direct observation and thus their full characterization. We could however estimate the virtual glass transition temperatures by mixing the polymers with different plasticizers (trehalose and mannitol) which decreases Tg sufficiently to make the glass transition observable. Extrapolation to zero plasticizer concentration then yield the following Tg values: Tg (polyMe-β-CD)=317°C±5°C and Tg (polyβ-CD)=418°C±6°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A FeNiMnC alloy with strain glass transition

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2018-02-01

    Full Text Available Recent experimental and theoretical investigations suggested that doping sufficient point defects into a normal ferroelastic/martensitic alloy systems could lead to a frozen disordered state of local lattice strains (nanomartensite domains, thereby suppressing the long-range strain-ordering martensitic transition. In this study, we attempt to explore the possibility of developing novel ferrous Elinvar alloys by replacing nickel with carbon and manganese as dopant species. A nominal Fe89Ni5Mn4.6C1.4 alloy was prepared by argon arc melting, and XRD, DSC, DMA and TEM techniques were employed to characterize the strain glass transition signatures, such as invariance in average structure, frequency dispersion in dynamic mechanical properties (storage modulus and internal friction and the formation of nanosized strain domains. It is indicated that doping of Ni, Mn and C suppresses γ→α long-range strain-ordering martensitic transformation in Fe89Ni5Mn4.6C1.4 alloy, generating randomly distributed nanosized domains by strain glass transition. Keywords: Strain glass transition, Elinvar alloys, Point defects, Nanosized domains

  12. Pressure dependence of glass transition in As2Te3 glass.

    Science.gov (United States)

    Ramesh, K

    2014-07-24

    Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (Tg). Generally, application of high pressure increases the Tg and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As(2)Te(3) glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at Tg. The Tg estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 °C/kbar for a linear fit and -2.99 °C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As(2)Se(3), and As(30)Se(30)Te(40) show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As(2)Te(3) glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Δk/Δα will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between Tg and the optical band gap (Eg) for covalent semiconducting glasses when they are grouped

  13. Numerical detection of the Gardner transition in a mean-field glass former.

    Science.gov (United States)

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  14. Investigation of low glass transition temperature on COTS PEMs reliability

    Science.gov (United States)

    Sandor, M.; Agarwal, S.

    2002-01-01

    Many factors influence PEM component reliability.One of the factors that can affect PEM performance and reliability is the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. JPL/NASA is investigating how the Tg and CTE for PEMs affect device reliability under different temperature and aging conditions. Other issues with Tg are also being investigated. Some preliminary data will be presented on glass transition temperature test results conducted at JPL.

  15. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    International Nuclear Information System (INIS)

    Kashif, I.; Rahman, Samy A.; Soliman, A.A.; Ibrahim, E.M.; Abdel-Khalek, E.K.; Mostafa, A.G.; Sanad, A.M.

    2009-01-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  16. Magnetic properties of 3d-transition metal and rare earth fluoride glasses

    International Nuclear Information System (INIS)

    Renard, J.P.; Dupas, C.; Velu, E.; Jacobini, C.; Fonteneau, G.; Lucas, J.

    1981-01-01

    The ac susceptibility of fluoride glasses in the ternary systems PbF 2 -MnF 2 -FeF 3 , ThF 4 -BaF 2 -MnF 2 , ZnF 2 -BaF 2 -RF 3 (R = Dy-Ho) has been studied down to 0.3 K. The susceptibility of rare earth glasses exhibits a broad maximum strongly dependent on the measuring frequency ν while a spin glass transition with a sharp susceptibility cusp nearly independent on ν is observed in 3d-transition metal glasses. Magnetic after effects are observed below the spin freezing temperature. (orig.)

  17. Brittle to ductile transition in densified silica glass.

    Science.gov (United States)

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  18. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    Science.gov (United States)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  19. Piezoelectricity of a ferroelectric liquid crystal with a glass transition.

    Science.gov (United States)

    Jákli, A; Tóth-Katona, T; Scharf, T; Schadt, M; Saupe, A

    2002-07-01

    Pressure-electric (hydrostatic piezoelectric) measurements are reported on bookshelf textures of a ferroelectric smectic-C (Sm C*) liquid crystal with a glass transition. The continuous variation of a partially fluid state to the solid glass enables one to trace how the piezoelectric effect depends on the consistency of the material. It was observed that in the Sm C* samples with poled glass the piezoelectric constants are comparable to conventional piezoelectric crystals and poled piezoelectric polymers. This implies their application possibilities. The magnitude of the piezoelectric constant in the glassy state depends very much on the poling conditions. The studies indicate that there are two counteracting effects, which cancel each other out in the Sm C* phase near the glass transition. Our analysis indicates that the pressure-induced director tilt change has a dominating effect both in the fluid and the glassy Sm C* states.

  20. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  1. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  2. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  3. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  4. Expected anomalies of the neutron cross section near the liquid-glass transition

    International Nuclear Information System (INIS)

    Gotze, W.

    1987-01-01

    In the frameworks of a microscopic theory the anomalies of the neutron cross section near the liquid-glass transition are discussed. The central concept of the theory is the correlation function for density fluctuations of wave vector q and frequency ω. Its absorptive part is proportional to the dynamical structure factor S(q, ω), this is the scattering law for coherent neutron scattering. Tagged particle motion is evaluated as well and it yields the incoherent neutron scattering cross section S i (q, ω) in. The predictions of the theory for S(q, ω) and Si (q, ω) a q-ω domain are given

  5. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  6. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    Science.gov (United States)

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs

  7. Potential Energy Landscape of the Liquid-Liquid Phase Transition in Water and the transformation between Low-Density and High-Density Amorphous Ice

    Science.gov (United States)

    Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.

  8. Modeling glass transition and aging processes in nanocomposites and polymer thin films

    Science.gov (United States)

    Pryamitsyn, Victor; Ganesan, Venkat

    2010-03-01

    We use a lattice kinetic model of glass transition to study the role of confinement and the presence of nano-inclusions. We have studied freely suspended films of glass-formers and its nanocomposites with ``plastifying'' and ``hardening'' nanoparticles. Using our model we determine the thickness and nanoparticle load dependencies of the Kauzmann temperature T0 and the fragility parameter. We found the glass transition temperature increases with the thickness of the film and the volume fraction of ``hardening'' nanoparticles , while Tg decreases with increase in the loading of ``plastifying'' nanoparticles. We found that the isothermal free volume relaxation rate of the nanocomposite thin film, usually referred as an aging, correlates with the glass transition temperature shift. We also studied the relations between our lattice model and Curro's, Kovacs and Struik's phenomenological models of free volume reduction to deduce physical insights into the mechanisms governing aging processes in thin films and nanocomposites.

  9. A toy MCT model for multiple glass transitions: Double swallow tail singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, V.N. [Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region (Russian Federation); Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Moscow region (Russian Federation)

    2014-11-07

    We propose a toy model to describe in the frame of Mode Coupling Theory multiple glass transitions. The model is based on the postulated simple form for static structure factor as a sum of two delta-functions. This form makes it possible to solve the MCT equations in almost analytical way. The phase diagram is governed by two swallow tails resulting from two A{sub 4} singularities and includes liquid–glass transition and multiple glasses. The diagram has much in common with those of binary and quasibinary systems. - Highlights: • A simple toy model is proposed for description of glass–glass transitions. • The static structure factor of the model has the form of a sum of delta-functions. • The phase diagram contains A{sub 4} bifurcation singularities and A{sub 3} end points. • The results can be applied for the qualitative description of quasibinary systems.

  10. Ideal glass transitions in thin films: An energy landscape perspective

    Science.gov (United States)

    Truskett, Thomas M.; Ganesan, Venkat

    2003-07-01

    We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperature of thin films, suggesting the utility of landscape-based approaches for studying the behavior of confined fluids.

  11. Glass-like and Verwey transitions in magnetite in details

    Czech Academy of Sciences Publication Activity Database

    Janů, Zdeněk; Hadač, J.; Švindrych, Z.

    2007-01-01

    Roč. 310, - (2007), e203-e205 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : metal-insulator transition s and other electronic transition s * spin glass es and other random magnets * dynamic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  12. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids

    Science.gov (United States)

    Zhang, Meng; Liu, Lin

    2018-06-01

    To unravel the true nature of glass transition, broader insights into glass forming have been gained by examining the stress-driven glassy systems, where strong shear thinning, i.e. a reduced viscosity under increasing shear rate, is encountered. It is argued that arbitrarily small stress-driven shear rates would ‘melt’ the glass and erase any memory of its thermal history. In this work, we report a glass transition memorized by the enthalpy-entropy compensation in strongly shear-thinned supercooled metallic liquids, which coincides with the thermal glass transition in both the transition temperature and the activation Gibbs free energy. Our findings provide distinctive insights into both glass forming and shear thinning, and enrich current knowledge on the ubiquitous enthalpy-entropy compensation empirical law in condensed matter physics.

  13. Evaluation of Glass Density to Support the Estimation of Fissile Mass Loadings from Iron Concentrations in SB6 Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; Peeler, D.

    2010-12-15

    The Department of Energy - Savannah River (DOE-SR) previously provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of the guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft{reg_sign} Excel{reg_sign} spreadsheet for the evaluation of fissile loading in Sludge Batch 5 glass based on the Fe concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that SRNL provide the necessary information to allow SRR to update the Excel spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 6 (SB6). One of the primary inputs into the fissile loading spreadsheet includes a bounding density for SB6-based glasses. Based on the measured density data of select SB6 variability study glasses, SRNL recommends that SRR utilize the 99/99 Upper Tolerance Limit (UTL) density value at 38% WL (2.823 g/cm{sup 3}) as a bounding density for SB6 glasses to assess the fissile concentration in this glass system. That is, the 2.823 g/cm{sup 3} is recommended as a key (and fixed) input into the fissile concentration spreadsheet for SB6 processing. It should be noted that no changes are needed to the underlying structure of the Excel based spreadsheet to support fissile assessments for SB6. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB6 Waste Acceptance Product Specification (WAPS) sample. The purpose of this technical report is to present the density measurements that were determined for the SB6 variability study glasses and to conduct a statistical evaluation of these measurements to provide a bounding density value that may be used as input to the Excel{reg_sign} spreadsheet to be employed by SRR to maintain the

  14. Testing the paradigms of the glass transition in colloids

    Science.gov (United States)

    Zia, Roseanna; Wang, Jialun; Peng, Xiaoguang; Li, Qi; McKenna, Gregory

    2017-11-01

    Many molecular liquids freeze upon fast enough cooling. This so-called glass state is path dependent and out of equilibrium, as measured by the Kovacs signature experiments, i.e. intrinsic isotherms, asymmetry of approach and memory effect. The reasons for this path- and time-dependence are not fully understood, due to fast molecular relaxations. Colloids provide a natural way to model such behavior, owing to disparity in colloidal versus solvent time scales that can slow dynamics. To shed light on the ambiguity of glass transition, we study via large-scale dynamic simulation of hard-sphere colloidal glass after volume-fraction jumps, where particle size increases at fixed system volume followed by protocols of the McKenna-Kovacs signature experiments. During and following each jump, the positions, velocities, and particle-phase stress are tracked and utilized to characterize relaxation time scales. The impact of both quench depth and quench rate on arrested dynamics and ``state'' variables is explored. In addition, we expand our view to various structural signatures, and rearrangement mechanism is proposed. The results provide insight into not only the existence of an ``ideal'' glass transition, but also the role of structure in such a dense amorphous system.

  15. Glass transitions in one-, two-, three-, and four-dimensional binary Lennard-Jones systems

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Ralf; St-Onge, Denis A; Patterson, Steve [Physics Department, Mount Allison University, Sackville, NB, E4L 1E6 (Canada); Kob, Walter [Laboratoire des Colloides, Verres et Nanomateriaux, UMR5587, Universite Montpellier II and CNRS, 34095 Montpellier Cedex (France)], E-mail: rbruening@mta.ca

    2009-01-21

    We investigate the calorimetric liquid-glass transition by performing simulations of a binary Lennard-Jones mixture in one through four dimensions. Starting at a high temperature, the systems are cooled to T = 0 and heated back to the ergodic liquid state at constant rates. Glass transitions are observed in two, three and four dimensions as a hysteresis between the cooling and heating curves. This hysteresis appears in the energy and pressure diagrams, and the scanning rate dependence of the area and height of the hysteresis can be described using power laws. The one-dimensional system does not experience a glass transition but its specific heat curve resembles the shape of the D{>=}2 results in the supercooled liquid regime above the glass transition. As D increases, the radial distribution functions reflect reduced geometric constraints. Nearest neighbor distances become smaller with increasing D due to interactions between nearest and next-nearest neighbors. Simulation data for the glasses are compared with crystal and melting data obtained with a Lennard-Jones system with only one type of particle and we find that with increasing D crystallization becomes increasingly more difficult.

  16. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    Science.gov (United States)

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  17. Glass transition and relaxation processes of polymers studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science

    1996-10-01

    The glass transition and relaxation processes of polymers were studied by the positron annihilation technique. A positron implanted into polymers might annihilate from positronium (Ps) states in open spaces. Ps is a bound state between a positron and an electron, and its nonrelativistic quantum mechanics is practically identical to that of a hydrogen atom. The lifetime of Ps can be associated with the size of the open spaces, and the formation probability of Ps provides information of motions of molecules. Since the glass transition or relaxation processes affect behavior of open spaces, one can study these phenomena through the detection of the open spaces using the positron annihilation technique. In the present paper, we report studies of the glass transition and relaxation processes in polyethylene, polypropylene, and polystyrene by measurements of lifetime spectra of positrons and those of Doppler broadening profiles of the annihilation radiation. For these specimens, by measurements of the lifetime of Ps, {tau}{sub 3}, as a function of temperature, the glass transition temperature, T{sub g}, was determined as an onset temperature of the increase in the temperature coefficient of {tau}{sub 3}. Below T{sub g}, local motions of molecules were detected by measurements of the formation probability of Ps. The positron annihilation as a tool for the characterization of polymers was discussed. (author). 51 refs.

  18. Molecular Model for HNBR with Tunable Cross-Link Density.

    Science.gov (United States)

    Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A

    2016-12-15

    We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.

  19. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x=5, 10, 15, and 20) semiconducting glasses

    International Nuclear Information System (INIS)

    Imran, Mousa M.A.

    2011-01-01

    Crystallization and glass transition kinetics of Se 70-x Ga 30 In x (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (T g ) with the heating rate (β) was used to calculate the glass transition activation energy (E t ) using two different models. Meanwhile, the variation of the peak temperature of crystallization (T p ) with β was utilized to deduce the crystallization activation energy (E c ) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that E t decreases with increasing In content, while both T g and E c exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass. -- Research highlights: → Addition of In to Se-Ga glass decreases the glass transition activation energy. → The crystallization rate in Se-Ga-In glass is reduced as In content increases. → The crystal growth in Se-Ga-In glass occurs in one dimension. → Thermal properties of Se-Ga-In glass indicate a shift in Phillips-Thorpe threshold.

  20. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  1. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    Science.gov (United States)

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Acrylate oligomers in ultraviolet cured PSA's glass transition, molecular weight versus peel strength

    International Nuclear Information System (INIS)

    Miller, H.C.

    1999-01-01

    Typically those not skilled in the art relate Glass Transition Temperature to Pressure Sensitive Adhesives. You need a low Tg material to prepare good pressure sensitive adhesives. This report deals with a wide range acrylate terminated oligomers in a standard formulation. Molecular weight, chemical structure variations are examined versus the Glass Transition of the oligomers and final peel strength. Each formulated adhesive will require unique oligomer properties to reach one hundred newtons per 100 millimeters (5.71 pounds per square inch) peel strength. Excellent peel strengths may be obtained with oligomer molecular weight ranging from six thousand to one thousand molecular weight and glass transition temperatures ranging from minus seventy four degrees centigrade up to thirteen degrees centigrade

  3. Spin glass transition in canonical AuFe alloys: A numerical study

    International Nuclear Information System (INIS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-01-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments. -- Highlights: ► By simulation we investigated the abnormal critical exponents observed in canonical SG alloys. ► The critical exponents obtained from our simulations agree well with those measured from experiments. ► Our results strongly support that RKKY interactions lead to SG transitions at finite temperatures.

  4. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  5. Determination of the glass-transition temperature of proteins from a viscometric approach.

    Science.gov (United States)

    Monkos, Karol

    2015-03-01

    All fully hydrated proteins undergo a distinct change in their dynamical properties at glass-transition temperature Tg. To determine indirectly this temperature for dry albumins, the viscosity measurements of aqueous solutions of human, equine, ovine, porcine and rabbit serum albumin have been conducted at a wide range of concentrations and at temperatures ranging from 278 K to 318 K. Viscosity-temperature dependence of the solutions is discussed on the basis of the three parameters equation resulting from Avramov's model. One of the parameter in the Avramov's equation is the glass-transition temperature. For all studied albumins, Tg of a solution monotonically increases with increasing concentration. The glass-transition temperature of a solution depends both on Tg for a dissolved dry protein Tg,p and water Tg,w. To obtain Tg,p for each studied albumin the modified Gordon-Taylor equation was applied. This equation describes the dependence of Tg of a solution on concentration, and Tg,p and a parameter depending on the strength of the protein-solvent interaction are the fitting parameters. Thus determined the glass-transition temperature for the studied dry albumins is in the range (215.4-245.5)K. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Glass transition temperature of hard chairside reline materials after post-polymerisation treatments.

    Science.gov (United States)

    Urban, Vanessa M; Machado, Ana L; Alves, Marinês O; Maciel, Adeilton P; Vergani, Carlos E; Leite, Edson R

    2010-09-01

    This study evaluated the effect of post-polymerisation treatments on the glass transition temperature (T(g)) of five hard chairside reline materials (Duraliner II-D, Kooliner-K, New Truliner-N, Ufi Gel hard-U and Tokuso Rebase Fast-T). Specimens (10 x 10 x 1 mm) were made following the manufacturers' instructions and divided into three groups (n = 5). Control group specimens were left untreated. Specimens from the microwave group were irradiated with pre-determined power/time combinations, and specimens from the water-bath group were immersed in hot water at 55 degrees C for 10 min. Glass transition ( degrees C) was performed by differential scanning calorimetry. Data were analysed using anova, followed by post hoc Tukey's test (alpha = 0.05). Both post-polymerisation treatments promoted a significant (p glass transition of material Kooliner, with the effect being more pronounced for microwave irradiation.

  7. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    Science.gov (United States)

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 10–64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid–glass transitions upon cooling and from one to six liquid–glass and reverse glass–liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  8. Structure and DC conductivity of lead sodium ultraphosphate glasses

    International Nuclear Information System (INIS)

    Abid, M.; Et-tabirou, M.; Taibi, M.

    2003-01-01

    Glasses of (0.40-x)Na 2 O-xPbO-0.60P 2 O 5 system with (0≤x≤0.40) molar fraction have been prepared with a conventional melting procedure. Their physical, thermal and spectroscopic studies such as density, molar volume, glass transition temperature, ionic conductivity and infrared spectroscopy have been investigated. The density and thermal stability of theses glasses increase with the substitution of PbO for Na 2 O. The ionic conductivity increases substantially with increasing concentration of sodium oxide and diminishes with increasing PbO content. Fourier-transform infrared spectroscopy reveals the formation of P-O-Pb bonds in theses glasses. The formation of P-O-Pb bonds which replace P-O - ...Na + bonds is in accordance with variations of glass transition temperature (T g ), molar volume (V m ) and ionic conductivity (σ). The former bonds are the origin of the partial glass-forming ability of Pb 2+

  9. Aluminosilicate melts and glasses at 1 to 3 GPa: Temperature and pressure effects on recovered structural and density changes

    Science.gov (United States)

    Bista, S; Stebbins, Jonathan; Hankins, William B.; Sisson, Thomas W.

    2015-01-01

    In the pressure range in the Earth’s mantle where many basaltic magmas are generated (1 to 3 GPa) (Stolper et al. 1981), increases in the coordination numbers of the network-forming cations in aluminosilicate melts have generally been considered to be minor, although effects on silicon and particularly on aluminum coordination in non-bridging oxygen-rich glasses from the higher, 5 to 12 GPa range, are now well known. Most high-precision measurements of network cation coordination in such samples have been made by spectroscopy (notably 27Al and 29Si NMR) on glasses quenched from high-temperature, high-pressure melts synthesized in solid-media apparatuses and decompressed to room temperature and 1 bar pressure. There are several effects that could lead to the underestimation of the extent of actual structural (and density) changes in high-pressure/temperature melts from such data. For non-bridging oxygen-rich sodium and calcium aluminosilicate compositions in the 1 to 3 GPa range, we show here that glasses annealed near to their glass transition temperatures systematically record higher recovered increases in aluminum coordination and in density than samples quenched from high-temperature melts. In the piston-cylinder apparatus used, rates of cooling through the glass transition are measured as very similar for both higher and lower initial temperatures, indicating that fictive temperature effects are not the likely explanation of these differences. Instead, transient decreases in melt pressure during thermal quenching, which may be especially large for high initial run temperatures, of as much as 0.5 to 1 GPa, may be responsible. As a result, the equilibrium proportion of high-coordinated Al in this pressure range may be 50 to 90% greater than previously estimated, reaching mean coordination numbers (e.g., 4.5) that are probably high enough to significantly affect melt properties. New data on jadeite (NaAlSi2O6) glass confirm that aluminum coordination increase

  10. Hard sphere-like glass transition in eye lens α-crystallin solutions.

    Science.gov (United States)

    Foffi, Giuseppe; Savin, Gabriela; Bucciarelli, Saskia; Dorsaz, Nicolas; Thurston, George M; Stradner, Anna; Schurtenberger, Peter

    2014-11-25

    We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.

  11. Water sorption and glass transition of amorphous sugars containing BSA

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, K.; Suzuki, T.; Tatsumichi, T.; Kirii, S.; Okazaki, M. [Kyoto Univ., Kyoto (Japan). Dept. of Chemical Engineering

    2000-08-01

    Water sorption and glass transition of four amorphous sugars (lactose, maltose, sucrose, and trehalose) containing bovine serum albumin (BSA) are investigated. Freeze-dried sugar-BSA samples equilibrated at several water activities ranging from 0 to 0.43 were prepared. Moisture content and glass transition temperature (T{sub g}) were measured. For the all sugars, it is found that BSA lowers T{sub g} at low water activity, and raises it at high water activity. It is also found that the difference between T{sub g} of the sugar-BSA samples and that of the corresponding amorphous sugar samples (T{sub g0}) depends mainly on T{sub g0}. (author)

  12. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    Science.gov (United States)

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  13. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  14. Relaxation dynamics of glass transition in PMMA + SWCNT composites by temperature-modulated DSC

    Science.gov (United States)

    Pradhan, N. R.; Iannacchione, G. S.

    2010-03-01

    The experimental technique offered by temperature-modulated differential scanning calorimeter (TMDSC) used to investigate the thermal relaxation dynamics through the glass transition as a function of frequency was studied for pure PMMA and PMMA-single wall carbon nanotubes (SWCNTs) composites. A strong dependence of the temperature dependence peak in the imaginary part of complex heat capacity (Tmax) is found during the transition from the glass-like to the liquid-like region. The frequency dependence of Tmax of the imaginary part of heat capacity (Cp) is described by Arrhenius law. The activation energy obtained from the fitting shows increases while the characteristic relaxation time decreases with increasing mass fraction (phim) of SWCNTs. The dynamics of the composites during glass transition, at slow and high scan rates, are also the main focus of this experimental study. The change in enthalpy during heating and cooling is also reported as a function of scan rate and frequency of temperature modulation. The glass transition temperature (Tg) shows increases with increasing frequency of temperature modulation and phim of SWCNTs inside the polymer host. Experimental results show that Tg is higher at higher scan rates but as the frequency of temperature modulation increases, the Tg values of different scan rates coincide with each other and alter the scan rate dependence. From the imaginary part of heat capacity, it is obvious that Tmax is not the actual glass transition temperature of pure polymer but Tmax and Tg values can be superimposed when phim increases in the polymer host or when the sample undergoes a transition with a certain frequency of temperature modulation.

  15. Density-temperature scaling of the fragility in a model glass-former

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Sengupta, Shiladitya; Sastry, Srikanth

    2013-01-01

    . Such a scaling, referred to as density-temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass......Dynamical quantities e.g. diffusivity and relaxation time for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable......-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence...

  16. Glass transition and aging in dense suspensions of thermosensitive microgel particles

    NARCIS (Netherlands)

    Purnomo, E.H; van den Ende, Henricus T.M.; Vanapalli Veera, V.S.A.R.; Vanapalli, Srinivas; Mugele, Friedrich Gunther

    2008-01-01

    We report a thermosensitive microgel suspension that can be tuned reversibly between the glass state at low temperature and the liquid state at high temperature. Unlike hard spheres, we find that the glass transition for these suspensions is governed by both the volume fraction and the softness of

  17. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  18. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  19. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  20. Cell approach to glass transition

    International Nuclear Information System (INIS)

    Aste, Tomaso; Coniglio, Antonio

    2003-01-01

    We present a novel theoretical approach to understanding the complex dynamics of glass-forming liquids, granular packings and amorphous solids. This theory, which is an elaboration of the free volume and inherent structure approaches, allows one to retrieve the thermodynamical properties of these systems from studies of geometrical and topological properties of local, static configurations alone. When applied to hard-sphere systems, the present theory reproduces with a good quantitative agreement the equation of state for the crystalline and the disordered glassy phases. Moreover, we find that, as the density approaches a critical value close to the random close-packing density, the configurational entropy approaches zero and the large relaxation time diverges according to the Vogel-Fulcher behaviour, following also the Adam-Gibbs relation

  1. Cluster glass transition in Ca2-xLaxMnO4

    International Nuclear Information System (INIS)

    Manaka, H.; Mishima, K.; Okuda, T.

    2007-01-01

    We performed linear and nonlinear AC magnetic susceptibility measurements on Ca 2-x La x MnO 4 (x=0.03,0.07,0.10, and 0.14). In such manganites, coexistence or competition brings about various phenomena. We focus on a cluster glass state consisting of ferromagnetic clusters within an antiferromagnetic matrix because the coexistence of the ferromagnetic double exchange interaction and the antiferromagnetic superexchange interaction is closely associated with phase separation. As a result, temperature (T) dependence of a linear susceptibility (X 0 ' (T)) exhibits a sharp peak for x=0.03, and these peaks become broad with increasing x. The X 0 ' (T) curves for x=0.07 and 0.10 show a typical frequency dependence around the peaks, suggesting a cluster (spin) glass transition. Furthermore, a nonlinear susceptibility (X 2 ' (T)) for x=0.10 exhibits successive transitions: the ferromagnetic transition in each cluster occurs at ∼108K and the antiferromagnetic transition between the ferromagnetic clusters occurs at ∼89K. From the X 0 ' (T) and X 2 ' (T) curves for various values of x, we found the existence of the ferromagnetic clusters within the antiferromagnetic matrix, and the cluster glass state was realized for 0.07=< x=<0.14

  2. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    Science.gov (United States)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  3. A glance on the glass-transition phenomenon from the viewpoint of devitrification

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2007-01-01

    The formation of a supercooled liquid region and devitrification behaviour of metallic glasses on heating are discussed in relation with the glass-transition phenomenon observed using differential scanning and isothermal calorimetries as well as X-ray diffraction and transmission electron microscopy (TEM). One of the most clear sequences of the glassy ↔ supercooled liquid phase transition is the change of the devitrification behaviour and the kinetics of the devitrification reaction in Al-based and some other alloys after the transition from the glassy to the supercooled liquid state. The significant variation in the devitrification behaviour and thermodynamic parameters indicate the difference between the glassy and the supercooled liquid phases

  4. The extent of the glass transition from molecular simulation revealing an overcrank effect.

    Science.gov (United States)

    Godey, François; Fleury, Alexandre; Ghoufi, Aziz; Soldera, Armand

    2018-02-15

    A deep understanding of the transition between rubber and amorphous state characterized by a glass transition temperature, T g , is still a source of discussions. In this work, we highlight the role of molecular simulation in revealing explicitly this temperature dependent behavior. By reporting the specific volume, the thermal expansion coefficient and the heat capacity versus the temperature, we actually show that the glass transition domain extends to a greater range of temperature, compared with experiments. This significant enlargement width is due to the fast cooling rate, and actually explains the difficulty to locate T g . This result is the manifestation of an overcranking effect used by high-speed cameras to reveal slow-motion. Accordingly, atomistic simulation offers the significant opportunity to show that the transition from the rubber state to the glass phase should be detailed in terms of the degrees of freedom freeze. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Isoviscosity lines and the liquid-glass transition in simple liquids.

    Science.gov (United States)

    Fomin, Yu D; Brazhkin, V V; Ryzhov, V N

    2012-07-01

    This article presents the study of the generic behavior of viscosity of liquids based on some simple theoretical models, the soft-spheres and Lennard-Jones systems. The use of these simple models allows us to investigate in detail the viscosity behavior in a wide range of temperatures and pressures including the high-temperature-high-pressure limits. Based on the simulation results, we discuss the shape of isoviscosity lines and analyze the glass transition at high temperatures and high pressures. Despite the fact that the viscosity drastically increases in the limit of high temperatures and high pressures along the melting line, the relaxation time rapidly decreases in this region, and the system becomes further from the glass transition.

  6. Pair distribution function and its relation to the glass transition in an amorphous alloy

    International Nuclear Information System (INIS)

    Basak, S.; Clarke, R.; Nagel, S.R.

    1979-01-01

    Data for the pair distribution function g (r) are presented as a function of temperature for amorphous Nb/sub 0.4/Ni/sub 0.6/. We show, based on a simple model, that g (r) varies linearly with T over a wide temperature range in the glass as was found empirically by Wendt and Abraham. We also find that in our glass the behavior of g (r) near the glass transition is, within experimental error, similar to what they found in their Monte Carlo calculation. We interpret the deviation from linearity at the glass transition as due to the onset of diffusive motion of the atoms

  7. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    Science.gov (United States)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  8. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point

    Science.gov (United States)

    Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun

    2018-03-01

    The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.

  9. Motility-driven glass and jamming transitions in biological tissues

    Science.gov (United States)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2017-01-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of small persistence times, and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in these tissues. PMID:28966874

  10. Exploration of a new method in determining the glass transition temperature of BMGs by electrical resistivity

    Science.gov (United States)

    Guo, Jing; Zu, Fangqiu; Chen, Zhihao; Zheng, Shubin; Yuan, Yuan

    2005-07-01

    Based on a brief retrospect of the method in establishing Tg of the bulk metallic glasses (BMGs), some perplexities concerning this are pointed out. With the experimental results of Zr-Al-Ni-Cu-X (Nb,Ti) BMGs, a electrical resistivity method is proposed to determine the glass transition temperature of BMGs. With the method, we define two kinds of characteristic temperature related to the glass transition, Tg-dep and Tg-int, respectively. By comparing Tg-dep and Tg-int with Tg determined by the DSC method, we have found that, for the same alloy at the same heating rate, Tg-dep is very close to Tg-onset while Tg-int is approximate to Tg-mid. As a method to determine the glass transition temperature, the electrical resistivity method has proved to be more convenient and practical in comparison with the DSC method, especially when the DSC curve cannot show the glass transition character of BMGs. In addition, we would emphasize that when we refer to Tg, it is necessary to expatiate on the way of denoting the glass transition temperature, such as Tg-dep or Tg-int ( Tg-onset or Tg-mid), and on the heating rate, in order to avoid ambiguity.

  11. Thermodynamics and kinetics of the glass transition: A generic geometric approach

    International Nuclear Information System (INIS)

    Gutzow, I.; Ilieva, D.; Babalievski, F.; Yamakov, V.

    2000-01-01

    A generic phenomenological theory of the glass transition is developed in the framework of a quasilinear formulation of the thermodynamics of irreversible processes. Starting from one of the basic principles of this science in its approximate form given by de Donder's equation, after a change of variables the temperature dependence of the structural parameter ξ(T), the thermodynamic potentials ΔG(tilde sign)(T), the thermodynamic functions and the time of molecular relaxation τ of vitrifying systems is constructed. In doing so, a new effect in the ΔG(tilde sign)(T) course is observed. The analysis of the higher derivatives of the thermodynamic potential, and especially the nullification of the second derivative of the configurational specific heats ΔC(tilde sign) p (T) of the vitrifying liquid defines glass transition temperature T(tilde sign) g and leads directly to the basic dependence of glass transition kinetics: the Frenkel-Kobeko-Reiner equation. The conditions guaranteeing the fulfillment of this equation specify the temperature dependence of the activation energy U(T,ξ(tilde sign)) for viscous flow and give a natural differentiation of glass formers into fragile and strong liquids. The effect of thermal prehistory on the temperature dependence of both thermodynamic functions and kinetic coefficients is established by an appropriate separation of de Donder's equation. (c) 2000 American Institute of Physics

  12. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    Science.gov (United States)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  13. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  14. Note on the glass transition temperature of poly(vinylphenol)

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Šturcová, Adriana; Sikora, Antonín; Dybal, Jiří

    2009-01-01

    Roč. 45, č. 6 (2009), s. 1851-1856 ISSN 0014-3057 Institutional research plan: CEZ:AV0Z40500505 Keywords : Poly(4-vinylphenol) * glass transition temperature * differential scanning calorimetry Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.310, year: 2009

  15. Aging of a hard-sphere glass: effect of the microscopic dynamics

    International Nuclear Information System (INIS)

    Puertas, Antonio M

    2010-01-01

    We present simulations of the aging of a quasi-hard-sphere glass, with Newtonian and Brownian microscopic dynamics. The system is equilibrated at the desired density (above the glass transition in hard spheres) with short-range attractions, which are removed at t = 0. The structural part of the decay of the density correlation function can be time rescaled to collapse onto a master function independent of the waiting time, t w , and the timescale follows a power law with t w , with exponent z ∼ 0.89; the non-ergodicity parameter is larger than that of the glass transition point (the localization length is smaller) and oscillates in harmony with S q . The aging with both microscopic dynamics is identical, except for a scale factor from the age in Newtonian to the age in Brownian dynamics. This factor is approximately the same as that which scales the α-decay of the correlation function in fluids close to the glass transition.

  16. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  17. Dynamic thermal expansivity of liquids near the glass transition

    DEFF Research Database (Denmark)

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage Emil

    2012-01-01

    Based on previous works on polymers by Bauer et al. [ Phys. Rev. E 61 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ......Based on previous works on polymers by Bauer et al. [ Phys. Rev. E 61 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704...... the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer....

  18. Analyses of glass transition phenomena by solving differential equation with delay effect

    International Nuclear Information System (INIS)

    Takeuchi, A.; Inoue, A.

    2007-01-01

    A linear differential equation for the analyses of glass transition phenomena has been proposed by taking into account the delay effect due to the change in transportation of atoms near the glass transition temperature (T g ). Under the condition maintaining the order of the differential equation as the second, the non-linear differential equation proposed by Van Den Beukel and Sietsma is modified to obtain the analytic solution for a linear equation by introducing the following points: the delay effect which is described with a term of Mackey-Glass model, a concept of effective free volume (x fe eff ) and its concentration expression (C fe eff ) which correspond to the equilibrium, and an additional term associated with C fe eff . In analyzing the linear equation, Doyle's p-function was used for the integral of reaction rate with respect to temperature (T). It is found that the linear equation proposed in the present study can describe the changes in free volume (x) with increasing temperature in the dx/dT-T chart, the sharp increase in free volume at T g , and over shooting phenomena of free volume slightly above the T g , as experimentally in thermal analyses for metallic glasses. The linear solution obtained in the present study is of great importance for the analyses of the glass transition because the change in free volume with increasing temperature on heating is described with fundamental functions

  19. On melting dynamics and the glass transition. II. Glassy dynamics as a melting process.

    Science.gov (United States)

    Krzakala, Florent; Zdeborová, Lenka

    2011-01-21

    There are deep analogies between the melting dynamics in systems with a first-order phase transition and the dynamics from equilibrium in super-cooled liquids. For a class of Ising spin models undergoing a first-order transition--namely p-spin models on the so-called Nishimori line--it can be shown that the melting dynamics can be exactly mapped to the equilibrium dynamics. In this mapping the dynamical--or mode-coupling--glass transition corresponds to the spinodal point, while the Kauzmann transition corresponds to the first-order phase transition itself. Both in mean field and finite dimensional models this mapping provides an exact realization of the random first-order theory scenario for the glass transition. The corresponding glassy phenomenology can then be understood in the framework of a standard first-order phase transition.

  20. Neutron Scattering Analysis of Water's Glass Transition and Micropore Collapse in Amorphous Solid Water.

    Science.gov (United States)

    Hill, Catherine R; Mitterdorfer, Christian; Youngs, Tristan G A; Bowron, Daniel T; Fraser, Helen J; Loerting, Thomas

    2016-05-27

    The question of the nature of water's glass transition has continued to be disputed over many years. Here we use slow heating scans (0.4  K min^{-1}) of compact amorphous solid water deposited at 77 K and an analysis of the accompanying changes in the small-angle neutron scattering signal, to study mesoscale changes in the ice network topology. From the data we infer the onset of rotational diffusion at 115 K, a sudden switchover from nondiffusive motion and enthalpy relaxation of the network at 121  K, in excellent agreement with the glass transition onset deduced from heat capacity and dielectric measurements. This indicates that water's glass transition is linked with long-range transport of water molecules on the time scale of minutes and, thus, clarifies its nature. Furthermore, the slow heating rates combined with the high crystallization resistance of the amorphous sample allow us to identify the glass transition end point at 136 K, which is well separated from the crystallization onset at 144 K-in contrast to all earlier experiments in the field.

  1. Relaxation Dynamics of the Glass Transition in PMMA+SWCNT Composites by Temperature-Modulated DSC

    Science.gov (United States)

    Pradhan, Nihar; Iannacchione, Germano

    2010-03-01

    Temperature Modulated Differential Scanning Calorimeter (TMDSC) used to investigate the thermal relaxation dynamics of PMMA-Single wall carbon nanotubes (SWCNTs) through the glass transition as a function of frequency. A strong dependence of the temperature dependence peak in imaginary part of complex heat capacity (Tmax) was found during the transition from glass like to liquid like region and can be described by Arhenius law. The activation energy shows increases while the charactersistic time decreases with increasing mass fraction (φm) of SWCNTs. Decreasing of enthalpy, while heating and slowly increasing while cooling at 2.0 K/min scan rate was observed and as frequency of temperature modulation increases. There is no relative change of enthalpy in heating and cooling observed at sufficiently slow scan rate. The glass transition temperature (Tg) shows increases as a function of frequency of temperature modulation, φm of SWCNTs and with increasing scan rate. From imaginary part of heat capacity, it obvious that Tmax is not the actual glass transition temperature of pure polymer but Tmax and Tg values can be superimpose when φm of SWCNT increases in polymer.

  2. Three-dimensional superconductivity and vortex glass transition in La1.87Y0.13CuO4

    International Nuclear Information System (INIS)

    Lee, Hyun-Sook; Kim, Heon-Jung; Kim, Hyun-Jung; Jung, Myung-Hwa; Jo, Younghun; Lee, Sung-Ik; Tsukada, Akio; Naito, Michio

    2006-01-01

    The angular dependence of the critical current density (J c (θ)) and the vortex glass transition temperature (T g (θ)) in La 1.87 Y 0.13 CuO 4 were measured at different fields and temperatures. Both J c (θ) and T g (θ) showed a strong angular variation, which is typical for anisotropic superconductors. The angular variation could be described by using the anisotropic three-dimensional Ginzburg-Landau theory. From our analysis, we were able to estimate the anisotropy ratio

  3. Electron scattering by nuclei and transition charge densities

    International Nuclear Information System (INIS)

    Gul'karov, I.S.

    1988-01-01

    Transition charge densities for states of electric type, for nuclei with A≤40--50 as obtained from data on inelastic electron scattering, are studied. The formalism of electroexcitation of nuclei is considered, together with various models (macroscopic and microscopic) used to calculate form factors, transition charge densities, and the moments of these densities: B(Eλ) and R/sub λ/ . The macroscopic models are derived microscopically, and it is shown that the model-independent sum rules lead to the same transition densities as calculations based on various hydrodynamic models. The sum rules with and without allowance for the Skyrme exchange interaction are discussed. The results of the calculations are compared with the experimental form factors of electron scattering by nuclei from 12 C to 48 Ca with excitation in them of normal-parity states with I/sup π/ = 0 + , 1 - , 2 + , 3 - , 4 + , 5 - and T = 0. The model-independent transition charge densities for the weakly collectivized excitations differ strongly from the model-dependent densities. The influence of neutrons on the transition charge densities of the nuclear isotopes 16 /sup ,/ 18 O, 32 /sup ,/ 34 S, and 40 /sup ,/ 48 Ca is considered

  4. First Clear-Cut Experimental Evidence of a Glass Transition in a Polymer with Intrinsic Microporosity: PIM-1.

    Science.gov (United States)

    Yin, Huajie; Chua, Yeong Zen; Yang, Bin; Schick, Christoph; Harrison, Wayne J; Budd, Peter M; Böhning, Martin; Schönhals, Andreas

    2018-04-19

    Polymers with intrinsic microporosity (PIMs) represent a novel, innovative class of materials with great potential in various applications from high-performance gas-separation membranes to electronic devices. Here, for the first time, for PIM-1, as the archetypal PIM, fast scanning calorimetry provides definitive evidence of a glass transition ( T g = 715 K, heating rate 3 × 10 4 K/s) by decoupling the time scales responsible for glass transition and decomposition. Because the rigid molecular structure of PIM-1 prevents any conformational changes, small-scale bend and flex fluctuations must be considered the origin of its glass transition. This result has strong implications for the fundamental understanding of the glass transition and for the physical aging of PIMs and other complex polymers, both topical problems of materials science.

  5. Indentation size effect and the plastic compressibility of glass

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  6. An Overview of the Glass Transition Temperature of Synthetic Polymers.

    Science.gov (United States)

    Beck, Keith R.; And Others

    1984-01-01

    Presents an overview of the glass-to-rubber transition, what it is, why it is important, and the major factors that influence it. Indicates that this information should be incorporated into chemistry curricula. (JN)

  7. Exploring the Origin of Fragile-to-Strong Transition in Some Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Hu, L. N.

    2014-01-01

    , topological and thermodynamic changes causing this transition. The theory for describing the transition has not been fully established. In this paper, we summarize our current understanding of the fragile-to-strong transition in some glass-forming liquids basedon our two published papers and recent...

  8. Analytical evidence for the absence of spin glass transition on self-dual lattices

    International Nuclear Information System (INIS)

    Ohzeki, Masayuki; Nishimori, Hidetoshi

    2009-01-01

    We show strong evidence for the absence of a finite-temperature spin glass transition for the random-bond Ising model on self-dual lattices. The analysis is performed by an application of duality relations, which enables us to derive a precise but approximate location of the multicritical point on the Nishimori line. This method can be systematically improved to presumably give the exact result asymptotically. The duality analysis, in conjunction with the relationship between the multicritical point and the spin glass transition point for the symmetric distribution function of randomness, leads to the conclusion of the absence of a finite-temperature spin glass transition for the case of symmetric distribution. The result is applicable to the random-bond Ising model with ±J or Gaussian distribution and the Potts gauge glass on the square, triangular and hexagonal lattices as well as the random three-body Ising model on the triangular and the Union-Jack lattices and the four-dimensional random plaquette gauge model. This conclusion is exact provided that the replica method is valid and the asymptotic limit of the duality analysis yields the exact location of the multicritical point. (fast track communication)

  9. Glass/Jamming Transition in Colloidal Aggregation

    Science.gov (United States)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  10. The glass transition, crystallization and melting in Au-Pb-Sb alloys

    Science.gov (United States)

    Lee, M. C.; Allen, J. L.; Fecht, H. J.; Perepezko, J. H.; Ohsaka, K.

    1988-01-01

    The glass transition, crystallization and melting of Au(55)Pb(22.5)Sb(22.5) alloys have been studied by differential scanning calorimetry DSC. Crystallization on heating above the glass transition temperature Tg (45 C) begins at 64 C. Further crystallization events are observed at 172 C and 205 C. These events were found to correspond to the formation of the intermetallic compounds AuSb2, Au2Pb, and possibly AuPb2, respectively. Isothermal DSC scans of the glassy alloy above Tg were used to monitor the kinetics of crystallization. The solidification behavior and heat capacity in the glass-forming composition range were determined with droplet samples. An undercooling level of 0.3T(L) below the liquidus temperature T(L) was achieved, resulting in crystallization of different stable and metastable phases. The heat capacity C(P) of the undercooled liquid was measured over an undercooling range of 145 C.

  11. Thermal history of Hawaiian pāhoehoe lava crusts at the glass transition: implications for flow rheology and emplacement

    Science.gov (United States)

    Gottsmann, Joachim; Harris, Andrew J. L.; Dingwell, Donald B.

    2004-12-01

    We have investigated the thermal history of glassy pāhoehoe crusts across their glass transition. Ten different samples obtained between 1993 and 2003 from the active flow field of the Pu'u 'O'o-Kupaianaha eruption on Hawaii (USA) have been analysed using relaxation geospeedometry. This method employs differential scanning calorimetry to quantify the enthalpic relaxation of the glass to monitor the natural time-temperature (t-T) path followed by the melt during cooling across its glass transition. Cooling rates across the glass transition interval (at 1000- 900 K) have been found to vary between 8 and 140 K/min. The associated glass transition temperatures are up to 400 K, lower than previously anticipated by others. Melt viscosities at the glass transition for these crusts range from 10 9.4 to 10 10.7 Pa s. We have compared the t-T paths quantified via relaxation geospeedometry with those obtained from direct measurements on the active flow field. The calorimetrically determined cooling rates are consistent with either simple cooling from eruption temperatures to temperatures below the glass transition or more complex cooling paths, including periods of reheating and short-term annealing within the glass transition interval. By quantifying the relaxation times associated with these contrasting cooling histories, we show that secondary vesiculation of pāhoehoe flow crusts may be favoured by complex, nonlinear t-T paths within the glass transition. These constraints also allow us to evaluate the time scales associated with the crystallisation and inflation of flow lobes at the glass transition for different pāhoehoe lava flow types. Our results provide important quantifications of rheological parameters at the lower temperature range of viscoelastic deformation in basaltic lava flows. As such, the results may be helpful in refining models for the generation of continental flood basalt flows, as well as models of basaltic lava flow propagation for hazard

  12. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  13. Gardner Transition in Physical Dimensions

    Science.gov (United States)

    Hicks, C. L.; Wheatley, M. J.; Godfrey, M. J.; Moore, M. A.

    2018-06-01

    The Gardner transition is the transition that at mean-field level separates a stable glass phase from a marginally stable phase. This transition has similarities with the de Almeida-Thouless transition of spin glasses. We have studied a well-understood problem, that of disks moving in a narrow channel, which shows many features usually associated with the Gardner transition. We show that some of these features are artifacts that arise when a disk escapes its local cage during the quench to higher densities. There is evidence that the Gardner transition becomes an avoided transition, in that the correlation length becomes quite large, of order 15 particle diameters, even in our quasi-one-dimensional system.

  14. Transition density of charge-exchange processes

    International Nuclear Information System (INIS)

    Lovas, R.G.

    1983-01-01

    The transition density between parent and analogue states is studied with special reference to its role in charge-exchange nuclear reactions. The structure of the target nucleus is described in a perturbative approach, in which the Coulomb and asymmetry potentials mix the eigenstates of a charge-independent single-particle Hamiltonian. In this model formulae are derived for the transition density, the Coulomb displacement energy and the neutron-proton density difference, and their relationship is used to estimate the transition density. This estimate shows that: the largest contribution comes from the density of the excess neutrons; the weight of the Coulomb-mixing effect is small up to excess neutron number 10, and grows rapidly beyond; the weight of the core polarization term induced by the excess neutrons is modest and is the same for all nuclei. It is indicated that the Coulomb effect may explain the departure from the Lane model of nucleon charge-exchange scattering found for heavy nuclei, whereas the core polarization may account for the observed anomalous dependence of the deg 0 pion charge-exchange cross section on the number of excess neutrons. (author)

  15. Characterization of the hidden glass transition of amorphous cyclomaltoheptaose.

    Science.gov (United States)

    Tabary, Nicolas; Mahieu, Aurélien; Willart, Jean-François; Dudognon, Emeline; Danède, Florence; Descamps, Marc; Bacquet, Maryse; Martel, Bernard

    2011-10-18

    An amorphous solid of cyclomaltoheptaose (β-cyclodextrin, β-CD) was formed by milling its crystalline form using a high-energy planetary mill at room temperature. The glass transition of this amorphous solid was found to occur above the thermal degradation point of the material preventing its direct observation and thus its full characterization. The corresponding glass transition temperature (T(g)) and the ΔC(p) at T(g) have, however, been estimated by extrapolation of T(g) and ΔC(p) of closely related amorphous compounds. These compounds include methylated β-CD with different degrees of substitution and molecular alloys obtained by co-milling β-CD and methylated β-CD (DS 1.8) at different ratios. The physical characterization of the amorphous states have been performed by powder X-ray diffraction and differential scanning calorimetry, while the chemical integrity of β-CD upon milling was checked by NMR spectroscopy and mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Connection between slow and fast dynamics of molecular liquids around the glass transition

    DEFF Research Database (Denmark)

    Niss, Kristine; Dalle-Ferrier, Cecile; Frick, Bernhard

    2010-01-01

    The mean-square displacement (MSD) was measured by neutron scattering at various temperatures and pressures for a number of molecular glass-forming liquids. The MSD is invariant along the glass-transition line at the pressure studied, thus establishing an “intrinsic” Lindemann criterion for any...

  17. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    Science.gov (United States)

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. The influence of gamma radiation on the molecular weight and glass transition of PLLA and HAp/PLLA nanocomposite

    International Nuclear Information System (INIS)

    Milicevic, D.; Trifunovic, S.; Dojcilovic, J.; Ignjatovic, N.; Suljovrujic, E.

    2010-01-01

    The influence of gamma radiation on the molecular weight and glass transition behaviour of poly-L-lactide (PLLA) and hydroxyapatite/poly-L-lactide (HAp/PLLA) nanocomposite has been studied. Since PLLA exposed to high-energy radiation in the presence of air is prone to chain scission reactions and large degradation, changes in molecular weight were obtained by gel permeation chromatography (GPC). Alterations in the glass transition behaviour were investigated by differential scanning calorimetry (DSC). The apparent activation energy (ΔH*) for glass transition was determined on the basis of the heating rate dependence of the glass transition temperature (T g ). Our findings support the fact that chain scission is the main reason for the decrease of T g and ΔH* with the absorbed dose. Furthermore, more intensive chain scission degradation of PLLA was observed in HAp/PLLA and can only be ascribed to the presence of HAp nanoparticles. Consequently, initial differences in the glass transition temperature and/or apparent activation energy of PLLA and HAp/PLLA became more pronounced with absorbed dose. This study reveals that radiation-induced changes in molecular weight and glass transition temperature occur in a predictable and fairly accurate manner. Therefore, gamma radiation can be used not only for sterilization but also for tailoring desirable end-use properties of these biomaterials.

  19. Non-Fermi glasses: fractionalizing electrons at finite energy density

    Science.gov (United States)

    Parameswaran, Siddharth; Gopalakrishnan, Sarang

    Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of ``non-Fermi glasses,'' which are phases of interacting disordered fermions that are fully many-body localized, yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlation functions, that sharply distinguishes between the two phases even at infinite temperature. We argue that our results and diagnostic should generically apply to the high-temperature behavior of the many-body localized descendants of fractionalized phases. S.A.P. is supported by NSF Grant DMR-1455366 and a UC President's Research Catalyst Award CA-15-327861, and S.G. by the Burke Institute at Caltech.

  20. Glass transition temperature of dried lens tissue pretreated with trehalose, maltose, or cyclic tetrasaccharide.

    Science.gov (United States)

    Kawata, Tetsuhiro; Matsuo, Toshihiko; Uchida, Tetsuya

    2014-01-01

    Glass transition temperature is a main indicator for amorphous polymers and biological macromolecules as materials, and would be a key for understanding the role of trehalose in protecting proteins and cells against desiccation. In this study, we measured the glass transition temperature by differential scanning calorimetry of dried lens tissues as a model of a whole biological tissue to know the effect of pretreatment by trehalose and other sugars. Isolated porcine lenses were incubated with saline, 100 or 1000 mM concentration of trehalose, maltose, or cyclic tetrasaccharide dissolved in saline at room temperature for 150 minutes. The solutions were removed and all samples were dried at room temperature in a desiccator until no weight change. The dried tissues were ground into powder and placed in a measuring pan for differential scanning calorimetry. The glass transition temperature of the dried lens tissues, as a mean and standard deviation, was 63.0 ± 6.4°C (n = 3) with saline pretreatment; 53.0 ± 0.8°C and 56.3 ± 2.7°C (n = 3), respectively, with 100 and 1000 mM trehalose pretreatment; 56.0 ± 1.6°C and 55.8 ± 1.1°C (n = 3), respectively, with 100 and 1000 mM maltose pretreatment; 60.0 ± 8.8°C and 59.2 ± 6.3°C (n = 3), respectively, with 100 and 1000 mM cyclic tetrasaccharide pretreatment. The glass transition temperature appeared lower, although not significantly, with trehalose and maltose pretreatments than with saline and cyclic tetrasaccharide pretreatments (P > 0.05, Kruskal-Wallis test). The glass transition temperature of the dried lens tissues with trehalose pretreatment appeared more noticeable on the thermogram, compared with other pretreatments. The glass transition temperature was measured for the first time in the dried lens tissues as an example of a whole biological tissue and might provide a basis for tissue preservation in the dried condition.

  1. Preparation and characterization of boro-tellurite glasses

    Science.gov (United States)

    Kaur, Nirmal; Khanna, Atul; Krishna, P. S. R.

    2014-04-01

    Glass samples of the system: xB2O3-(100-x) TeO2; x= 15, 20, 25 and 30 mol% were prepared by melt quenching and characterized by X-ray diffraction, density measurements, Differential Scanning Calorimetry and FTIR spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreased with increase in B2O3 concentration due to the replacement of heavier TeO2 with lighter B2O3 whereas the glass transition temperature increased from 339°C to 366°C; the later effect was due to increase in the concentration of stronger B-O bonds in the glass network. FTIR studies found that BO4 units convert into BO3 with the addition of B2O3.

  2. Polymer relaxations in thin films in the vicinity of a penetrant or a temperature induced glass transition

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    The transient properties of thin glassy polymer films in the vicinity of the glass transition are investigated. We compare the differences and similarities between sorption and temperature induced glass transitions, referred to as Pg and Tg, respectively. The experimental technique used is in situ

  3. Transition from glass to graphite in manufacture of composite aircraft structure

    Science.gov (United States)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  4. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  5. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution.

    Science.gov (United States)

    Pansare, Swapnil K; Patel, Sajal Manubhai

    2016-08-01

    Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.

  6. Beta relaxation of nonpolymeric liquids close to the glass transition

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Christensen, Tage Emil; Dyre, Jeppe

    2000-01-01

    Dielectric beta relaxation in a pyridine-toluene solution is studied close to the glass transition. Loss peak frequency and maximum loss both exhibit thermal hysteresis. An annealing-state-independent parameter involving loss and loss peak frequency is identified. This parameter has a simple...

  7. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    Science.gov (United States)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  8. On fluidization of borosilicate glasses in intense radiation fields - 16055

    International Nuclear Information System (INIS)

    Ojovan, Michael; Moebus, Guenter; Tsai, Jim; Cook, Stuart; Yang, Guang

    2009-01-01

    The viscosity is rate-limiting for many processes in glassy materials such as homogenisation and crystallisation. Changes in the viscous flow behaviour in conditions of long-term irradiation are of particular interest for glassy materials used in nuclear installations as well as for nuclear waste immobilising glasses. We analyse the viscous flow behaviour of oxide amorphous materials in conditions of electron-irradiation using the congruent bond lattice model of oxide materials accounting for the flow-mediating role of broken bonds termed configurons. An explicit equation of viscosity was obtained which is in agreement with experimental data for non-irradiated glasses and shows for irradiated glasses, first, a significant decrease of viscosity, and, second, a stepwise reduction of the activation energy of flow. An equation for glass-transition temperature was derived which shows that irradiated glasses have lower glass transition temperatures. Intensive electron irradiation of glasses causes their fluidization due to non-thermal bond breaking and can occur below the glass transition temperature. Due to surface tension forces fluidization of glasses at enough high electron flux densities can result in modification of nano-size volumes and particles such as those experimentally observed under TEM electron beams. (authors)

  9. Optical transitions of Ho(3+) in oxyfluoride glasses and upconversion luminescence of Ho(3+)/Yb(3+)-codoped oxyfluoride glasses.

    Science.gov (United States)

    Feng, Li; Wu, Yinsu

    2015-05-05

    Optical properties of Ho(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Ho(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980nm excitation. The effects of composition, concentration of the doping ions, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Refractive index and density in F- and Cl-doped silica glasses

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Shimodaira, Noriaki; Sekiya, Edson H.; Saito, Kazuya; Ikushima, Akira J.

    2005-01-01

    The refractive index and density of fluorine- and chlorine-doped silica glasses were measured as functions of fictive temperature. The halogen concentrations were observed to have a refractive index or density that is independent of the fictive temperature were found. This implies that these properties are not affected by any heat-treatment conditions

  11. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    Science.gov (United States)

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  12. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  13. SU-F-T-17: A Feasibility Study for the Transit Dosimetry with a Glass Dosimeter in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S; Yoon, M [Korea University, Seoul (Korea, Republic of); Chung, W; Chung, M; Kim, D [Kyung Hee University Hospital at Gangdong, Gangdonggu, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Confirming the dose delivered to a patient is important to make sure the treatment quality and safety of the radiotherapy. Measuring a transit dose of the patient during the radiotherapy could be an interesting way to confirm the patient dose. In this study, we evaluated the feasibility of the transit dosimetry with a glass dosimeter in brachytherapy. Methods: We made a phantom that inserted the glass dosimeters and placed under patient lying on a couch for cervix cancer brachytherapy. The 18 glass dosimeters were placed in the phantom arranged 6 per row. A point putting 1cm vertically from the source was prescribed as 500.00 cGy. Solid phantoms of 0, 2, 4, 6, 8, 10 cm were placed between the source and the glass dosimeter. The transit dose was measured each thickness using the glass dosimeters and compared with a treatment planning system (TPS). Results: When the transit dose was smaller than 10 cGy, the average of the differences between measured values and calculated values by TPS was 0.50 cGy and the standard deviation was 0.69 cGy. If the transit dose was smaller than 100 cGy, the average of the error was 1.67 ± 4.01 cGy. The error to a point near the prescription point was −14.02 cGy per 500.00 cGy of the prescription dose. Conclusion: The distances from the sources to skin of the patient generally are within 10 cm for cervix cancer cases in brachytherapy. The results of this preliminary study showed the probability of the glass dosimeter as the transit dosimeter in brachytherapy.

  14. Doping influence by some transition elements on the irradiation effects in nuclear waste glasses; Influence du dopage par certains elements de transition sur les effets d'irradiation dans des verres d'interet nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Florent, Olivier

    2006-06-15

    High-level waste glasses are submitted to auto-irradiation. Modelling it using external irradiations on simple glasses revealed defects production and non negligible structural changes. This thesis aims at determining the impact of a more complex composition on these effects, especially the influence of adding polyvalent transition metals. Silicate, soda-lime and alumino-borosilicate glasses are doped with different iron, chromium and manganese concentrations then {beta} irradiated at different doses up to 10{sup 9} Gy. Non doped glasses show an increase of their density and polymerisation coupled with a molecular oxygen and point defects production. Adding 0.16 mol% Fe decreases the amount of defects by 85 % and all irradiation effects. A Fe{sup 3+} reduction is also observed by EPR, optical absorption and indirectly by Raman spectroscopy. A higher than 0.32 mol% Fe concentration causes complete blockage of the evolution of polymerisation, density and defect production. The same results are obtained on chromium or manganese doped glasses. An original in situ optical absorption device shows the quick decrease of Fe{sup 3+} amount to a 25 % lower level during irradiation. Stopping irradiation causes a lower decrease of 65 %, suggesting a dynamic (h{sup 0}/e-) consuming equilibrium. He{sup +} and Kr{sup 3+} ions and {gamma} irradiated glasses tend to confirm these phenomena for all kind of irradiation with electronic excitations. (author)

  15. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    International Nuclear Information System (INIS)

    Rodney, David; Schuh, Christopher A.

    2009-01-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  16. Noise as a Probe of Ising Spin Glass Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare

    2009-03-01

    Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.

  17. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  18. Glass Transition Temperature Measurement for Undercured Cyanate Ester Networks: Challenges, Tips, and Tricks (Briefing Charts)

    Science.gov (United States)

    2014-01-29

    DISTRIBUTION A: Approved for public release; distribution is unlimited. Thermosetting Polymers Have a TG Envelope – Not Just a TG 4 • The glass transition...glass transition temperature of a thermosetting polymer can vary over a wide range of temperatures depending on how the polymer is processed • A... thermosetting polymer with only one kind of network formation and negligible side reactions, the conversion may be determined at every point in the scan. • By

  19. Preparation and characterization of boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Nirmal, E-mail: akphysics@yahoo.com; Khanna, Atul, E-mail: akphysics@yahoo.com [Glass Physics and Sensors Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab (India); Krishna, P. S. R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra (India)

    2014-04-24

    Glass samples of the system: xB{sub 2}O{sub 3}−(100−x) TeO{sub 2}; x= 15, 20, 25 and 30 mol% were prepared by melt quenching and characterized by X-ray diffraction, density measurements, Differential Scanning Calorimetry and FTIR spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreased with increase in B{sub 2}O{sub 3} concentration due to the replacement of heavier TeO{sub 2} with lighter B{sub 2}O{sub 3} whereas the glass transition temperature increased from 339°C to 366°C; the later effect was due to increase in the concentration of stronger B-O bonds in the glass network. FTIR studies found that BO{sub 4} units convert into BO{sub 3} with the addition of B{sub 2}O{sub 3}.

  20. Neutron shielding properties of a borated high-density glass

    Directory of Open Access Journals (Sweden)

    Saeed Aly Abdallah

    2017-01-01

    Full Text Available The neutron shielding properties of a borated high density glass system was characterized experimentally. The total removal macroscopic cross-section of fast neutrons, slow neutrons as well as the linear attenuation coefficient of total gamma rays, primary in addition to secondary, were measured experimentally under good geometric condition to characterize the attenuation properties of (75-x B2O3-1Li2O-5MgO-5ZnO-14Na2O-xBaO glassy system. Slabs of different thicknesses from the investigated glass system were exposed to a collimated beam of neutrons emitted from 252Cf and 241Am-Be neutron sources in order to measure the attenuation properties of fast and slow neutrons as well as total gamma rays. Results confirmed that barium borate glass was suitable for practical use in the field of radiation shielding.

  1. Transition matrices and orbitals from reduced density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, Thibaud [Université de Lorraine – Nancy, Théorie-Modélisation-Simulation, SRSMC, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy (France); CNRS, Théorie-Modélisation-Simulation, SRSMC, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy (France); Unité de Chimie Physique Théorique et Structurale, Université de Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)

    2015-06-28

    In this contribution, we report two different methodologies for characterizing the electronic structure reorganization occurring when a chromophore undergoes an electronic transition. For the first method, we start by setting the theoretical background necessary to the reinterpretation through simple tensor analysis of (i) the transition density matrix and (ii) the natural transition orbitals in the scope of reduced density matrix theory. This novel interpretation is made more clear thanks to a short compendium of the one-particle reduced density matrix theory in a Fock space. The formalism is further applied to two different classes of excited states calculation methods, both requiring a single-determinant reference, that express an excited state as a hole-particle mono-excited configurations expansion, to which particle-hole correlation is coupled (time-dependent Hartree-Fock/time-dependent density functional theory) or not (configuration interaction single/Tamm-Dancoff approximation). For the second methodology presented in this paper, we introduce a novel and complementary concept related to electronic transitions with the canonical transition density matrix and the canonical transition orbitals. Their expression actually reflects the electronic cloud polarisation in the orbital space with a decomposition based on the actual contribution of one-particle excitations from occupied canonical orbitals to virtual ones. This approach validates our novel interpretation of the transition density matrix elements in terms of the Euclidean norm of elementary transition vectors in a linear tensor space. A proper use of these new concepts leads to the conclusion that despite the different principles underlying their construction, they provide two equivalent excited states topological analyses. This connexion is evidenced through simple illustrations of (in)organic dyes electronic transitions analysis.

  2. Structural and thermal properties of vanadium tellurite glasses

    Science.gov (United States)

    Kaur, Rajinder; Kaur, Ramandeep; Khanna, Atul; González, Fernando

    2018-04-01

    V2O5-TeO2 glasses containing 10 to 50 mol% V2O5 were prepared by melt quenching and characterized by X-ray diffraction (XRD), density, Differential Scanning Calorimetry (DSC) and Raman studies.XRD confirmed the amorphous nature of vanadium tellurite samples. The density of the glasses decreases and the molar volume increases on increasing the concentration of V2O5. The thermal properties, such as glass transition temperature Tg, crystallization temperature Tc, and the melting temperature Tm were measured. Tg decreases from a value of 288°C to 232°C. The changes in Tg were correlated with the number of bonds per unit volume, and the average stretching force constant. Raman spectra were used to elucidate the short-range structure of vanadium tellurite glasses.

  3. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    Science.gov (United States)

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  4. DSC and Raman studies of silver borotellurite glasses

    Science.gov (United States)

    Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando

    2016-05-01

    Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.

  5. Application of Kissinger analysis to glass transition and study of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. Application of Kissinger analysis to glass transition and study of thermal degradation kinetics of phenolic–acrylic IPNs ... Author Affiliations. S Goswami1 K Kiran1. Department of Polymer Engineering, Birla Institute of Technology, Ranchi 835 215, India ...

  6. Depression of Glass Transition Temperatures of Polymer Networks by Diluents

    NARCIS (Netherlands)

    Brinke, Gerrit ten; Karasz, Frank E.; Ellis, Thomas S.

    1983-01-01

    A classical thermodynamic theory is used to derive expressions for the depression of the glass transition temperature Tg of a polymer network by a diluent. The enhanced sensitivity of Tg in cross-linked systems to small amounts of diluent is explained. Predictions of the theory are in satisfactory

  7. Charge and transition densities of samarium isotopes in the interacting Boson model

    International Nuclear Information System (INIS)

    Moinester, M.A.; Alster, J.; Dieperink, A.E.L.

    1982-01-01

    The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)

  8. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2015-01-01

    In the present work, we show experimental evidence for the dynamic fragile-to-strong (F-S) transition in a series of CuZr(Al) glass-forming liquids (GFLs). A detailed analysis of the dynamics of 98 glass-forming liquids indicates that the F-S transition occurs around Tf-s ≈ 1.36 Tg. Using...... the hyperquenching-annealing-x-ray scattering approach, we have observed a three-stage evolution pattern of medium-range ordering (MRO) structures during the F-S transition, indicating a dramatic change of the MRO clusters around Tf-s upon cooling. The F-S transition in CuZr(Al) GFLs is attributed to the competition...... among the MRO clusters composed of different locally ordering configurations. A phenomenological scenario has been proposed to explain the structural evolution from the fragile to the strong phase in the CuZr(Al) GFLs....

  9. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, M.; Mauro, J.C.

    2012-01-01

    boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O]=0. The structural......The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium...

  10. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    Science.gov (United States)

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  11. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  12. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  13. Ellipsometry measurements of glass transition breadth in bulk films of random, block, and gradient copolymers.

    Science.gov (United States)

    Mok, M M; Kim, J; Marrou, S R; Torkelson, J M

    2010-03-01

    Bulk films of random, block and gradient copolymer systems were studied using ellipsometry to demonstrate the applicability of the numerical differentiation technique pioneered by Kawana and Jones for studying the glass transition temperature (T (g)) behavior and thermal expansivities of copolymers possessing different architectures and different levels of nanoheterogeneity. In a series of styrene/n -butyl methacrylate (S/nBMA) random copolymers, T (g) breadths were observed to increase from approximately 17( degrees ) C in styrene-rich cases to almost 30( degrees ) C in nBMA-rich cases, reflecting previous observations of significant nanoheterogeneity in PnBMA homopolymers. The derivative technique also revealed for the first time a substantial increase in glassy-state expansivity with increasing nBMA content in S/nBMA random copolymers, from 1.4x10(-4) K-1 in PS to 3.5x10(-4) K-1 in PnBMA. The first characterization of block copolymer T (g) 's and T (g) breadths by ellipsometry is given, examining the impact of nanophase-segregated copolymer structure on ellipsometric measurements of glass transition. The results show that, while the technique is effective in detecting the two T (g) 's expected in certain block copolymer systems, the details of the glass transition can become suppressed in ellipsometry measurements of a rubbery minor phase under conditions where the matrix is glassy; meanwhile, both transitions are easily discernible by differential scanning calorimetry. Finally, broad glass transition regions were measured in gradient copolymers, yielding in some cases extraordinary T (g) breadths of 69- 71( degrees ) C , factors of 4-5 larger than the T (g) breadths of related homopolymers and random copolymers. Surprisingly, one gradient copolymer demonstrated a slightly narrower T (g) breadth than the S/nBMA random copolymers with the highest nBMA content. This highlights the fact that nanoheterogeneity relevant to the glass transition response in selected

  14. Gradient of molecular dynamics at the glass transition of PETg-Montmorillonite nanocomposites

    Science.gov (United States)

    Couderc, H.; Saiter, A.; Grenet, J.; Saiter, J. M.

    2011-07-01

    Temperature Modulated Differential Scanning Calorimetry (TMDSC) is used to estimate Cooperative Rearranging Region (CRR) average sizes for polymer/clay nanocomposites, obtained by mixing polyethylene 1,4-cyclohexylenedimethylene terephthalate glycol (PETg) filled and organically modified nanoclay (C15A) following a master-batch process. Two different basal distances are obtained. It is shown that the greater the basal distance and the nanofiller content, the lower the heat capacity step at the glass transition temperature Δ Cp( Tg), and the lower the CRR volume. It is also shown that the evolution of the CRR volume is consistent with the evolution of the fragility index obtained by DSC and Broadband Dielectric Spectroscopy (BDS) when the nanofiller content changes. The fragility index and the CRR size decreases can be correlated to nanofiller presence, hindering the molecular movements. From the Vollenberg and Heikens [34] approach, this behaviour can also be interpreted through the existence of an interfacial bilayer. This interfacial bilayer is composed by a zone, which is next to the nanofiller, with a density higher than the matrix one, followed by a more expanded zone with a density lower than the matrix one.

  15. Exploring effective interactions through transition charge density ...

    Indian Academy of Sciences (India)

    tematics like reduced transition probabilities B(E2) and static quadrupole moments Q(2) ... approximations of solving large scale shell model problems in Monte Carlo meth- ... We present the theoretical study of transition charge densities.

  16. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime o...

  17. Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear

    NARCIS (Netherlands)

    Dang, M. T.; Denisov, D.; Struth, B.; Zaccone, A.; Schall, P.

    The mechanical response of glasses remains challenging to understand. Recent results indicate that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the

  18. Dynamic thermal expansivity of liquids near the glass transition.

    Science.gov (United States)

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage; Dyre, Jeppe C

    2012-04-01

    Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer.

  19. The glass transition in nanoscaled confinement probed by dynamic mechanical spectroscopy

    International Nuclear Information System (INIS)

    Koppensteiner, J.

    2009-01-01

    A glass transition in a liquid is characterized by a massive change in some of its physical properties as viscosity η and molecular relaxation time τ, whereas no change in structure or long range order can be detected. Up to now an overall theory explaining the very nature of the glass transition and therewith all experimental findings is not available. Today's common approach, reaching back to Adams and Gibbs in 1963, is based on a cooperative rearrangement of molecules in groups whose size increases, when the glass transition is approached. In this picture a typical number of correlated molecules N corr,T form a compact cluster of a typical size ξ, predicted to be in the nm-range at T g . If this is true, nanoscaled confinement of a glass forming liquid should considerably influence this transition. In a pioneer work of 1991 Jackson and McKenna found a downshift ΔT g α 1/d in nm-sized pores of diameter d. This paper started a new eld of physics, the glass transition in confinement being investigated in experiment, simulation and theory. 20 years of research created partly contradictory results pointing to a large influence of side effects in confinement, opponent in their impact on T g . Both T g upshifts and downshifts were found in 2D and 3D conning geometries showing that spatially hindered molecular rearrangement is blurred by surface interactions and a negative pressure effect. An accurate investigation of side effects therefore is essential. The present thesis contributes to this rich eld and aims to help bridging the often cited gap between theory and experiments. For the rst time a mechanical approach is chosen and the dynamic elastic response of a mesoporous host matrix filled with a glass forming liquid is used to model the liquids behaviour across the glass transition. Low frequency dynamic mechanical measurements are proven to be very sensitive of the vitrification of the filling liquid. DMA turned out as a highly efficient and versatile tool

  20. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.

    Science.gov (United States)

    Weng, Lindong; Elliott, Gloria D

    2014-06-21

    The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation.

  1. DWPF glass transition temperatures: What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.; Ramsey, A.A.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site will immobilize high-level radioactive liquid waste in borosilicate glass. The glass will be poured into stainless steel canisters for eventual disposal in a geologic repository. The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  2. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  3. Spin-glass-like transition in the majority-vote model with anticonformists

    Science.gov (United States)

    Krawiecki, Andrzej

    2018-03-01

    Majority-vote model on scale-free networks and random graphs is investigated in which a randomly chosen fraction p of agents (called anticonformists) follows an antiferromagnetic update rule, i.e., they assume, with probability governed by a parameter q (0 transition from a disordered (paramagnetic) state to a spin-glass-like state, characterized by a non-zero value of the spin-glass order parameter measuring the overlap of agents' opinions in two replicas of the system, and simultaneously by the magnetization close to zero. In the case of the model on scale-free networks the critical value of the parameter q weakly depends on the details of the degree distribution. As p is decreased, the critical value of q falls quickly to zero and only the disordered phase is observed. On the other hand, for p close to zero for decreasing q the usual ferromagnetic transition is observed.

  4. Further evidence of a liquid-liquid transition in interfacial water

    International Nuclear Information System (INIS)

    Zanotti, J-M; Bellissent-Funel, M C; Chen, S-H; Kolesnikov, A I

    2006-01-01

    In a previous paper we combined calorimetric, diffraction and high-resolution quasi-elastic neutron scattering data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first order liquid-liquid transition at 240 K from a low-density to a high-density liquid. Here we present further evidence of these transitions obtained by high-energy inelastic neutron scattering

  5. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    Science.gov (United States)

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  6. Short-range structure and thermal properties of barium tellurite glasses

    Science.gov (United States)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  7. Thermal lens and interferometric method for glass transition and thermo physical properties measurements in Nd2O3 doped sodium zincborate glass.

    Science.gov (United States)

    Astrath, N G C; Steimacher, A; Rohling, J H; Medina, A N; Bento, A C; Baesso, M L; Jacinto, C; Catunda, T; Lima, S M; Karthikeyan, B

    2008-12-22

    In this work the time resolved thermal lens method is combined with interferometric technique, the thermal relaxation calorimetry, photoluminescence and lifetime measurements to determine the thermo physical properties of Nd(2)O(3) doped sodium zincborate glass as a function of temperature up to the glass transition region. Thermal diffusivity, thermal conductivity, fluorescence quantum efficiency, linear thermal expansion coefficient and thermal coefficient of electronic polarizability were determined. In conclusion, the results showed the ability of thermal lens and interferometric methods to perform measurements very close to the phase transition region. These techniques provide absolute values for the measured physical quantities and are advantageous when low scan rates are required.

  8. Charge density glass dynamics - Soft potentials and soft modes

    Energy Technology Data Exchange (ETDEWEB)

    Biljakovic, K., E-mail: katica@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Staresinic, D., E-mail: damirs@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Lasjaunias, J.C., E-mail: jean-claude.lasjaunias@pop3.grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Remenyi, G., E-mail: Gyorgy.Remenyi@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Melin, R., E-mail: Regis.Melin@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Monceau, P., E-mail: pierre.monceau@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Sahling, S., E-mail: sven.olaf@gmail.com [Institut fuer Festkoerperphysik, Universitaet Dresden, D-01062, Dresden (Germany)

    2012-06-01

    An universal fingerprint of glasses has been found in low-temperature thermodynamic properties of charge/spin density wave (C/SDW) systems. Deviations from the well-known Debye, elastic continuum prediction for specific heat (flat C{sub p}/T{sup 3} plot) appear as two anomalies; the upturn below 1 K and a broad bump at T{approx}10 K (named Boson peak in glasses). The first one, inherent of localized two level systems within the shalow corrugated phase space, exhibits slow relaxation with the complex dynamics. The second one, 'Boson peak-like peak' was attributed to the pinned mode and incomplete softening of CDW superstructural mode. We discuss similar C{sub p}(T) features found also in incommensurate dielectrics with well documented soft-mode anomalies.

  9. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses

    Science.gov (United States)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-01

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature

  10. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.

    Science.gov (United States)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-07

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room

  11. The length and time scales of water's glass transitions

    Science.gov (United States)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  12. The length and time scales of water's glass transitions.

    Science.gov (United States)

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  13. Origin of the strain glass transition in Ti_5_0(Ni_5_0_−_x D_x) alloys

    International Nuclear Information System (INIS)

    Wang, Xu; Shang, Jia-Xiang; Wang, Fu-He; Chen, Yue

    2016-01-01

    Direct evidence was recently discovered for the unique strain glass (STG) transition, which breaks the local symmetries (PRL 112, 025701 (2014)). To understand the origin of the STG transition, the effects of doping point defects on Ti_5_0(Ni_5_0_−_x D_x) are investigated using first-principle calculations. The experimental observation that STG only exists in a limited range of chemical composition x is successfully rationalized. The mechanisms that correspond to the division of a system into domains with distinctly different compositions are found to be directly related to a dip in the defect formation energy. - Highlights: • The strain glass transition phenomenon in Ti−Ni-based alloys is rationalized. • The electronic-structure origins of the strain glass transition are uncovered. • The separation of domains with different compositions is explained.

  14. Thermodynamic evidence for cluster ordering in Cu46Zr42Al7Y5 ribbons during glass transition

    DEFF Research Database (Denmark)

    Zheng, H.J.; Lv, Y.M.; Sun, Q.J.

    2016-01-01

    This work investigated the response of Cu46Zr42Al7Y5 glass ribbons to both dynamic and static heating using differential scanning calorimeter (DSC). The DSC curve manifests three exothermic responses to dynamic heating, among which the first and the third one are the signatures of the normal sub......-Tg (Tg, glass transition temperature) relaxation and the crystallization process, respectively. The second one is attributed to a partial overlap between the endothermic response to the glass transition and the exothermic response to the formation of ordered clusters. The cluster ordering, which begins...... at the final stage of glass transition, has been verified by the differences in the activation energy of the sub-Tg relaxation, the cluster ordering and primary crystallization for both the as-spun and annealed ribbons. The cluster ordering could be driven by the large difference between the Zr–Y mixing...

  15. Glass transition behaviour of the quaternary ammonium type ionic liquid, {[DEME][I] + H2O} mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Matsumoto, Hitoshi; Shimada, Osamu; Hanasaki, Tomonori; Yoshimura, Yukihiro

    2011-01-01

    By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H 2 O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H 2 O). Results were compared with the previous results of {[DEME][BF 4 ] + H 2 O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H 2 O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H 2 O} mixtures too, but the two-T g s regions lie towards the water-rich side of (77.5 to 85.0) mol% H 2 O. These clearly reflect the difference in the anionic effect between BF 4 - and I - on the water structure. The end of the glass-formation region of {[DEME][I] + H 2 O} mixtures is around x = 95.0 mol% H 2 O, and this is comparable to that of {[DEME][BF 4 ] + H 2 O} mixtures (x = 96.0 mol% H 2 O).

  16. Glass transition and degree of conversion of a light-cured orthodontic composite

    Directory of Open Access Journals (Sweden)

    Michela M. D. S. Sostena

    2009-12-01

    Full Text Available OBJECTIVE: This study evaluated the glass transition temperature (Tg and degree of conversion (DC of a light-cured (Fill Magic versus a chemically cured (Concise orthodontic composite. MATERIAL AND METHODS: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s. RESULTS: Fill Magic presented lower Tg than Concise (35-84ºC versus 135ºC, but reached a higher DC. CONCLUSIONS: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm² is necessary to reach adequate conversion level and obtain satisfactory adhesion.

  17. Short-range structure and thermal properties of lead tellurite glasses

    Science.gov (United States)

    Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.

  18. Dosimetric Properties of Plasma Density Effects on Laser-Accelerated VHEE Beams Using a Sharp Density-Transition Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Hoon; Cho, Sungho; Kim, Eun Ho; Park, Jeong Hoon; Jung, Won-Gyun; Kim, Geun Beom; Kim, Kum Bae [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Min, Byung Jun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jaehoon [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Jeong, Hojin [Gyeongsang National University Hospital, Jinju (Korea, Republic of); Lee, Kitae [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Park, Sung Yong [Karmanos Cancer Institute, Michigan (United States)

    2017-01-15

    In this paper, the effects of the plasma density on laser-accelerated electron beams for radiation therapy with a sharp density transition are investigated. In the sharp density-transition scheme for electron injection, the crucial issue is finding the optimum density conditions under which electrons injected only during the first period of the laser wake wave are accelerated further. In this paper, we report particle-in-cell simulation results for the effects of both the scale length and the density transition ratio on the generation of a quasi-mono-energetic electron bunch. The effects of both the transverse parabolic channel and the plasma length on the electron-beam's quality are investigated. Also, we show the experimental results for the feasibility of a sharp density-transition structure. The dosimetric properties of these very high-energy electron beams are calculated using Monte Carlo simulations.

  19. Physicochemical properties of new As2Se3–Ag4SSe–CdTe glasses

    International Nuclear Information System (INIS)

    Aljihmani, Lilia; Vassilev, Venceslav; Hristova-Vasileva, Temenuga; Fidancevska, Emilija

    2009-01-01

    Chalcogenide glasses from the As 2 Se 3 –Ag 4 SSe–CdTe system were synthesized. The basic physicochemical parameters such as density (d), microhardness (HV) and the temperatures glass transition Tg were measured. Compactness (C) and some thermomechanical characteristics such as volume (Vh) and formation energy (Eh) of micro-voids in the glassy network, as well as the module of elasticity (E) were calculated. A correlation between the composition and properties of the As 2 Se 3 –Ag 4 SSe–CdTe glasses was established and comprehensively discussed. Keywords: chalcogenide glasses, density, microhardness, compactness, elasticity modulus, thermomechanical characteristics

  20. On an inversion procedure for nuclear transition densities

    International Nuclear Information System (INIS)

    Overveld, C.W.A.M. van.

    1985-01-01

    The aim of this thesis is to present a method by means of which experimental results can be analysed to establish transition densities of nuclear reactions. The necessity of such a method is explained together with the reaction theory involved. A chapter is devoted to the extension of a computer code for the scattering calculations in order to include the spin-orbit coupling. Detailed attention is paid to the mathematical and numerical properties of the method. The method is applied to some simple one-step reactions. The resulting transition densities are interpreted in terms of the shell model theory of nuclear structure. The final chapter deals with an entirely different approach to the extraction of transition densities from experimental data. Here the possibilities of the classical scattering theory as a method to solve the problem are studied. (Auth.)

  1. Density of Ga2O3 Liquid

    OpenAIRE

    Dingwell, Donald B.

    1992-01-01

    The density of Ga2O3 liquid in equilibrium with air has been measured at 18000 to 19000C using an Ir double-bob Archimedean method. The data yield the following description of the density of Ga2O3 liquid: ρ= 4.8374(84)–0.00065(12)(T −18500C). This density-temperature relationship is compared with the partial molar volume of Ga2O3 in glasses in the systems CaO–Ga2O3–SiO2 and Na2O–Ga2O3–SiO2, corrected to the glass transition temperature using thermal expansivities. The comparison illustrates t...

  2. Effects of phase transition induced density fluctuations on pulser dynamics

    International Nuclear Information System (INIS)

    Bagchi, Partha; Das, Arpan; Srivastava, Ajit M.; Layek, Biswanath

    2016-01-01

    We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling) may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves. (author)

  3. Effects of phase transition induced density fluctuations on pulsar dynamics

    Directory of Open Access Journals (Sweden)

    Partha Bagchi

    2015-07-01

    Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.

  4. Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.M. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chang, C.T. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Chang, Z.Y.; Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shen, B.L.; Inoue, A. [Institute for Material Research, Tohoku University, Sendai 980-8577 (Japan); Jiang, J.Z. [International Center for New-Structured Materials (ICNSM) and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: jiangjz@zju.edu.cn

    2008-07-28

    In this work, quaternary Fe{sub 72-x}M{sub x}Y{sub 6}B{sub 22} (M = Ni, Co and Mo) bulk metallic glasses (BMGs) have been developed. It is found that a fully amorphous Fe{sub 68}Mo{sub 4}Y{sub 6}B{sub 22} cylindrical rod with 6.5 mm in diameter can be prepared by copper mold injection. These alloys have a high glass transition temperature of about 900 K with high fracture strengths up to about 3 GPa although they are still brittle. Magnetic measurements reveal that they are ferromagnetic at ambient temperature with low coercive force of about 2 A/m, saturation magnetization of about 0.7 T and effective permeability of about 7000 at 100 kHz. The newly developed Fe-based quaternary alloys exhibit excellent combination properties: superior glass forming ability (GFA), high glass transition temperature, and soft magnetic properties, which could have potential applications in electronic industries. Furthermore, the effect of Mo addition on GFA in the Fe-Y-B BMG system has been discussed compared with those of Ni and Co additions.

  5. Physical, thermal and structural properties of Calcium Borotellurite glass system

    Energy Technology Data Exchange (ETDEWEB)

    Paz, E.C. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Açailândia, MA (Brazil); Dias, J.D.M. [CCSST – UFMA, Imperatriz, MA (Brazil); Melo, G.H.A. [CCSST – UFMA, Imperatriz, MA (Brazil); IFMA, Imperatriz, MA (Brazil); Lodi, T.A. [CCSST – UFMA, Imperatriz, MA (Brazil); Carvalho, J.O. [CCSST – UFMA, Imperatriz, MA (Brazil); IFTO, Araguaína, TO (Brazil); Façanha Filho, P.F.; Barboza, M.J.; Pedrochi, F. [CCSST – UFMA, Imperatriz, MA (Brazil); Steimacher, A., E-mail: steimacher@hotmail.com [CCSST – UFMA, Imperatriz, MA (Brazil)

    2016-08-01

    In this work the glass forming ability in Calcium Borotellurite (CBTx) glass system was studied. Six glass samples were prepared by melt-quenching technique and the obtained samples are transparent, lightly yellowish, with no visible crystallites. The structural studies were carried out by using XRD, FTIR, Raman Spectra, density measurements, and the thermal analysis by using DTA and specific heat. The results are discussed in terms of tellurium oxide content and their changes in structural and thermal properties of glass samples. The addition of TeO{sub 2} increased the density and thermal stability values and decreased glass transition temperature (Tg). Raman and FTIR spectroscopies indicated that the network structure of CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. CBTx system showed good glass formation ability and good thermal stability, which make CBTx glasses suitable for manufacturing process and a candidate for rare-earth doping for several optical applications. - Highlights: • Glass forming ability on Calcium Borotellurite system was studied. • The glass structure was investigated by XRD, Raman and FTIR. • The glass network structure of the CBTx glasses is formed by BO{sub 3}, BO{sub 4}, TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} units. • The density and thermal stability of the CBTx glass decreases with TeO{sub 2} while the Cp and the Tg decreases. • The obtained CBTx glasses are suitable for manufacturing process and rare-earth doping for several optical applications.

  6. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  7. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  8. Superfluid/Bose-glass transition in one dimension

    Science.gov (United States)

    Ristivojevic, Zoran; Petković, Aleksandra; Le Doussal, Pierre; Giamarchi, Thierry

    2014-09-01

    We consider a one-dimensional system of interacting bosons in a random potential. At zero temperature, it can be either in the superfluid or in the insulating phase. We study the transition at weak disorder and moderate interaction. Using a systematic approach, we derive the renormalization group equations at two-loop order and discuss the phase diagram. We find the universal form of the correlation functions at the transitions and compute the logarithmic corrections to the main universal power-law behavior. In order to mimic large density fluctuations on a single site, we study a simplified model of disordered two-leg bosonic ladders with correlated disorder across the rung. Contrarily to the single-chain case, the latter system exhibits a transition between a superfluid and a localized phase where the exponents of the correlation functions at the transition do not take universal values.

  9. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids.

    Science.gov (United States)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2016-12-01

    We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.

  10. Effect of ZnO on the Thermal Properties of Tellurite Glass

    Directory of Open Access Journals (Sweden)

    H. A. A. Sidek

    2013-01-01

    Full Text Available Systematic series of binary zinc tellurite glasses in the form (ZnOx(TeO2 (where x=0 to 0.4 with an interval of 0.05 mole fraction have been successfully prepared via conventional melt cast-quenching technique. Their density was determined by Archimedes method with acetone as buoyant liquid. The thermal expansion coefficient of each zinc tellurite glasses was measured using L75D1250 dilatometer, while their glass transition temperature (Tg was determined by the SETARAM Labsys DTA/6 differential thermogravimetric analysis at a heating rate of 20 K min−1. The acoustic Debye temperature and the softening temperature (Ts were estimated based on the longitudinal (VL and shear ultrasonic (Vs wave velocities propagated in each glass sample. For ultrasonic velocity measurement of the glass sample, MATEC MBS 8000 Ultrasonic Data Acquisition System was used. All measurements were taken at 10 MHz frequency and at room temperature. All the thermal properties of such binary tellurite glasses were measured as a function of ZnO composition. The composition dependence was discussed in terms of ZnO modifiers that were expected to change the thermal properties of tellurite glasses. Experimental results show their density, and the thermal expansion coefficient increases as more ZnO content is added to the tellurite glass network, while their glass transition, Debye temperature, and the softening temperature decrease due to a change in the coordination number (CN of the network forming atoms and the destruction of the network structure brought about by the formation of some nonbridging oxygen (NBO atoms.

  11. Neutron transition densities for the 2+-8+ multiplet of states in 90Zr

    International Nuclear Information System (INIS)

    Onegin, M.S.; Plavko, A.V.

    2004-01-01

    Neutron transition densities for the 2 + -8 + levels in 90 Zr were extracted in the process of analyzing (p,p ' ) scattering at 400 MeV. They were compared with the calculated neutron transition densities and with the experimental proton transition densities. Radial distributions of the experimental neutron and proton transition densities for each state were found to be different. (orig.)

  12. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  13. Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation

    International Nuclear Information System (INIS)

    Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A

    2006-01-01

    The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering

  14. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  15. USING STELLAR DENSITIES TO EVALUATE TRANSITING EXOPLANETARY CANDIDATES

    International Nuclear Information System (INIS)

    Tingley, B.; Deeg, H. J.; Bonomo, A. S.

    2011-01-01

    One of the persistent complications in searches for transiting exoplanets is the low percentage of the detected candidates that ultimately prove to be planets, which significantly increases the load on the telescopes used for the follow-up observations to confirm or reject candidates. Several attempts have been made at creating techniques that can pare down candidate lists without the need of additional observations. Some of these techniques involve a detailed analysis of light curve characteristics; others estimate the stellar density or some proxy thereof. In this paper, we extend upon this second approach, exploring the use of independently calculated stellar densities to identify the most promising transiting exoplanet candidates. We use a set of CoRoT candidates and the set of known transiting exoplanets to examine the potential of this approach. In particular, we note the possibilities inherent in the high-precision photometry from space missions, which can detect stellar asteroseismic pulsations from which accurate stellar densities can be extracted without additional observations.

  16. Fabrication of highly insulating foam glass made from CRT panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2015-01-01

    We prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. We investigated the influence of the carbon and MnO2 concentrations, the glass-powder preparation and the foaming conditions on the density and homogeneity of the pore structure...... and the dependence of the thermal conductivity on the foam density. The results show that the moderate foaming effect of the carbon is greatly improved by the addition of MnO2. A density as low as 131 kg m-3 can be achieved with fine glass powder. The foam density has a slight dependence on the carbon and MnO2...... concentrations, but it is mainly affected by the foaming temperature and the time. The thermal conductivity of the foam-glass samples is lower than that of commercial foam glasses with the same density. The lowest value was determined to be 42 mW m-1 K-1 for a foam glass with a density of 131 kg m-3. A further...

  17. Study of boro-tellurite glasses doped with neodymium oxide

    Science.gov (United States)

    Sanjay, Kishore, N.; Sheoran, M. S.; Devi, S.

    2018-05-01

    Borotellurite glasses doped with Nd2O3 [xB2O3(95-x)TeO25Nd2O3] have been prepared by the standard melt-quenching technique. Amorphous nature of the present system was estimated by XRD patterns. The thermal parameters like glass transition temperature (Tg), crystallization (Tc) and melting (Tm) temperatures have been estimated from differential scanning calorimetry (DSC) traces. Density and molar volume have been determined. It was found that Tg is increased due to increasing number of Te-O bonds were replaced by a number of stronger B-O bonds whereas density was decreased with an increase in B2O3 content is due to the higher degree of cross-bonding between the Boron and non-bridging oxygen ions resulting in a strengthening of glass network.

  18. Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls.

    Science.gov (United States)

    Solar, M; Binder, K; Paul, W

    2017-05-28

    Molecular dynamics simulations of a chemically realistic model for 1,4-polybutadiene in a thin film geometry confined by two graphite walls are presented. Previous work on melts in the bulk has shown that the model faithfully reproduces static and dynamic properties of the real material over a wide temperature range. The present work studies how these properties change due to nano-confinement. The focus is on orientational correlations observable in nuclear magnetic resonance experiments and on the local intermediate incoherent neutron scattering function, F s (q z , z, t), for distances z from the graphite walls in the range of a few nanometers. Temperatures from about 2T g down to about 1.15T g , where T g is the glass transition temperature in the bulk, are studied. It is shown that weakly attractive forces between the wall atoms and the monomers suffice to effectively bind a polymer coil that is near the wall. For a wide regime of temperatures, the Arrhenius-like adsorption/desorption kinetics of the monomers is the slowest process, while very close to T g the Vogel-Fulcher-Tammann-like α-relaxation takes over. The α-process is modified only for z≤1.2 nm due to the density changes near the walls, less than expected from studies of coarse-grained (bead-spring-type) models. The weakness of the surface effects on the glass transition in this case is attributed to the interplay of density changes near the wall with the torsional potential. A brief discussion of pertinent experiments is given.

  19. Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions

    Science.gov (United States)

    Ramteke, D. D.; Gedam, R. S.; Swart, H. C.

    2018-04-01

    The borosilicate glasses with Dy3+ ions were prepared by the melt quench technique with varying concentration of Dy2O3. The glasses were characterized by the density calculation, absorbance and photoluminescence (PL) spectroscopy measurements. Density and molar volume of the glasses increases with increase in Dy3+ ions in the glass matrix. This behavior is correlated with the higher molecular weight and larger ionic radius of Dy3+ ion compared to the other constituents of glass matrix. Emission of Dy3+ doped glasses showed three bands at 482, 573 and at 665 nm which correspond to 6H15/2 (blue), 6H13/2 (yellow) and 6H11/2 (red) transitions. The emission spectra of glasses with different concentration of Dy3+ ions shows that, glasses with 0.5 mol% of Dy2O3 shows highest emission and decreases with further doping. CIE 1931 chromaticity diagram showed that the emission of these glasses was in the white region. Photographs of these glasses under 349 nm Light emitting diode excitation also confirmed the white light emission from these glasses.

  20. Self-bonding in an amorphous polymer below the glass transition

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Bach, Anders; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    was found to develop with (th)1/2 at Th = Tg-bulk - 33 °C (where Tg-bulk is the glass-transition temperature of the bulk sample), and log G was found to develop with 1/Th at Tg-bulk - 43 °C Th Tg-bulk - 23 °C. The smallest measured value of G = 1.4 J/m2 was at least one order of magnitude larger than...

  1. First-order phase transition in the quantum spin glass at T=0

    Energy Technology Data Exchange (ETDEWEB)

    Viana, J. Roberto; Nogueira, Yamilles; Sousa, J. Ricardo de

    2003-05-26

    The van Hemmen model with transverse and random longitudinal field is studied to analyze the tricritical behavior in the quantum Ising spin glass at T=0. The free energy and order parameter are calculated for two types of probability distributions: Gaussian and bimodal. We obtain the phase diagram in the {omega}-H plane, where {omega} and H are the transverse and random longitudinal fields, respectively. For the case of Gaussian distribution the phase transition is of second order, while the bimodal distribution we observe second-order transition for high-transverse field and first-order transition for small transverse field, with a tricritical point in the phase diagram.

  2. First-order phase transition in the quantum spin glass at T=0

    International Nuclear Information System (INIS)

    Viana, J. Roberto; Nogueira, Yamilles; Sousa, J. Ricardo de

    2003-01-01

    The van Hemmen model with transverse and random longitudinal field is studied to analyze the tricritical behavior in the quantum Ising spin glass at T=0. The free energy and order parameter are calculated for two types of probability distributions: Gaussian and bimodal. We obtain the phase diagram in the Ω-H plane, where Ω and H are the transverse and random longitudinal fields, respectively. For the case of Gaussian distribution the phase transition is of second order, while the bimodal distribution we observe second-order transition for high-transverse field and first-order transition for small transverse field, with a tricritical point in the phase diagram

  3. Crystallizing hard-sphere glasses by doping with active particles

    NARCIS (Netherlands)

    Ni, Ran; Cohen Stuart, Martien A.; Dijkstra, Marjolein; Bolhuis, Peter G.

    2014-01-01

    Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as

  4. Physical properties and chemical durability of selected zirconia containing silicate glasses

    Directory of Open Access Journals (Sweden)

    ELEONÓRA GAŠPÁREKOVÁ

    2011-12-01

    Full Text Available Density, thermal expansion, glass transition temperature, refractive index, molar refractivity and chemical durability of five- and six-component glasses with as weighted composition xNa2O·(15-xK2O·yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 5, 7 were measured. The obtained experimental data were merged together with the previous results obtained for analogous glasses with lower zirconia content. The full set of glasses enabled the quantitative statistical estimation of possible mixed-oxide effects. The results of the multilinear regression analysis pointed out the ideal behavior of molar volume and molar refractivity. The strongest influence of mutual oxide interactions was found for chemical durability and glass transition temperature. The regression analysis of compositional dependence of metastable melt thermal expansion coefficient practically failed. The need of property-composition study based on the thermodynamic model was pointed out. Qualitatively the obtained results confirmed those previously obtained for the analogous glasses with zirconia content reaching up to 3 mol. %.

  5. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, University of Luxembourg, 162A avenue de la Faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany)], E-mail: martine.philipp@uni.lu

    2009-02-15

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  6. Interphases, gelation, vitrification, porous glasses and the generalized Cauchy relation: epoxy/silica nanocomposites

    International Nuclear Information System (INIS)

    Philipp, M; Mueller, U; Jimenez Rioboo, R J; Baller, J; Sanctuary, R; Krueger, J K; Possart, W

    2009-01-01

    The generalized Cauchy relation (gCR) of epoxy/silica nano-composites does not show either the chemically induced sol-gel transition or the chemically induced glass transition in the course of polymerization. Astonishingly, by varying the silica nanoparticles' concentration between 0 and 25 vol% in the composites, the Cauchy parameter A of the gCR remains universal and can be determined from the pure epoxy's elastic moduli. Air-filled porous silica glasses are considered as models for percolated silica particles. A longitudinal modulus versus density representation evidences the aforementioned transition phenomena during polymerization of the epoxy/silica nanocomposites. The existence of optically and mechanically relevant interphases is discussed.

  7. Physical, thermal, infrared and optical properties of Nd3+ doped lithium–lead-germanate glasses

    International Nuclear Information System (INIS)

    Veeranna Gowda, V.C.

    2015-01-01

    The structure–property relationships of neodymium doped lithium–lead-germanate glasses were investigated. The density was found to increase with the increase of Nd 2 O 3 concentration and its variation is explained in terms of its molecular mass, structural transformation and packing density. Addition of modifier oxide to lead-germanate glass suggests a decreased free space within the glass matrix, resulting in the formation of stiff network. The increase in glass transition temperature specifies strengthening of glass by forming bridging oxygens. The optical properties of glass were measured employing UV–visible spectroscopy. The refractive index values varied nonlinearly with Nd 2 O 3 concentration and were speculated to depend on the electronic polarizability of oxide glasses. The frequencies of the infrared absorption bands were affected marginally and the absorption peaks revealed that the glass matrix consists of [GeO 4/2 ], [GeO 6/2 ] and [PbO 4/2 ] structural units

  8. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    Science.gov (United States)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  9. Foaming of CRT panel glass powder with Na2CO3

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    melt, while Na2O becomes incorporated into the glass structure. We have quantified the melt expansion through density measurements and the Na2O incorporation is indicated by the decrease of the glass transition temperature (Tg) of the final foam glass. The glass foaming quality depends on the foaming......Recycling of cathode ray tube (CRT) glass remains a challenging task. The CRT glass consists of four glass types fused together: Funnel-, neck-, frit- and panel glass. The three former glasses contain toxic lead oxide, and therefore have a low recycling potential. The latter on the other hand...... is lead-free, but since barium and strontium oxide are present, panel glass is incompatible with most common recycling methods. However, foam glass production is a promising approach for the recycling of panel glass waste, since the process parameters can be changed according to the glass waste...

  10. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition......Boroaluminosilicate glasses are important materials for various applications, e.g., liquid crystal display substrates, glass fibers for reinforcement, and thermal shock-resistant glass containers. The complicated structural speciation in these glasses leads to a mixed network former effect yielding...... nonlinear variation in many macroscopic properties. It is therefore crucial to investigate and understand structure-property correlations in boroaluminosilicate glasses. Here we study the structure-property relationships of a range of sodium boroaluminosilicate glasses from peralkaline to peraluminous...

  11. Optical transitions of Tm3+ in oxyfluoride glasses and compositional and thermal effect on upconversion luminescence of Tm3+/Yb3+-codoped oxyfluoride glasses.

    Science.gov (United States)

    Feng, Li; Wu, Yinsu; Liu, Zhuo; Guo, Tao

    2014-01-24

    Optical properties of Tm(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Tm(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980 nm excitation. The effects of composition, concentration of the doping ions, temperature, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Development of Low Density CaMg-A1-Based Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    Low density Ca-Mg-Al-based bulk metallic glasses containing additionally Cu and Zn, were produced by a copper mold casting method as wedge-shaped samples with thicknesses varying from 0.5 mm to 10 rom...

  13. Kinetics of the high- to low-density amorphous water transition

    International Nuclear Information System (INIS)

    Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

    2003-01-01

    In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

  14. MoO3 incorporation in magnesium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-01-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO 3 ) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO 3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO 3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO 4 2− units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO 4

  15. Structure and properties of calcium iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Bin [School of Science, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: xfliangswust@gmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Cuiling; Yang, Shiyuan [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-11-15

    The structural properties of xCaO–(100 − x) (0.4Fe{sub 2}O{sub 3}–0.6P{sub 2}O{sub 5}) (x = 0, 10, 20, 30, 40, 50 mol%) glasses have been investigated by XRD, DTA, IR and Raman spectroscopy. XRD analysis has confirmed that the majority of samples are X-ray amorphous, and EDS analysis indicates that the glass matrix can accommodate ≈30 mol% CaO. IR and Raman spectra show that the glass structure consists predominantly of pyrophosphate (Q{sup 1}) units. IR spectra indicate that the phosphate network is depolymerized with the addition of CaO content. The density and glass transition temperature (T{sub g}) increase with increasing CaO content for the glasses. This behavior indicates that the addition of CaO improves the strength of the cross-links between the phosphate chains of the glass.

  16. Interactions in a blend of two polymers greatly differing in glass transition temperature

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, Jaroslav; Šturcová, Adriana; Sikora, Antonín; Dybal, Jiří

    2011-01-01

    Roč. 49, č. 14 (2011), s. 1031-1040 ISSN 0887-6266 Institutional research plan: CEZ:AV0Z40500505 Keywords : differential scanning calorimetry (DSC) * fouriertransform infrared spectroscopy (FT-IR) * glass transition temperature Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.531, year: 2011

  17. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing

    NARCIS (Netherlands)

    Janssen, Léon P.B.M.; Karman, Andre P.; Graaf, Robbert A. de

    Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal

  18. Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures

    International Nuclear Information System (INIS)

    Peter, S; Meyer, H; Baschnagel, J; Seemann, R

    2007-01-01

    We employ molecular dynamics simulations to explore the influence that the surface of a free-standing polymer film exerts on its structural relaxation when the film is cooled toward the glass transition. Our simulations are concerned with the features of a coarse-grained bead-spring model in a temperature regime above the critical temperature T c of mode-coupling theory. We find that the film dynamics is spatially heterogeneous. Monomers at the free surface relax much faster than they would in the bulk at the same temperature T. The fast relaxation of the surface layer continuously turns into bulk-like relaxation with increasing distance y from the surface. This crossover remains smooth for all T, but its range grows on cooling. We show that it is possible to associate a gradient in critical temperatures T c (y) with the gradient in the relaxation dynamics. This finding is in qualitative agreement with experimental results on supported polystyrene (PS) films (Ellison and Torkelson 2003 Nat. Mater. 2 695). Furthermore we show that the y dependence of T c (y) can be expressed in terms of the depression of T c (h)-the global T c for a film of thickness h-if we assume that T c (h) is the arithmetic mean of T c (y) and parameterize the depression of T c (h) by T c (h) = T c /(1+h 0 /h), a formula suggested by Herminghaus et al (2001 Eur. Phys. J. E 5 531) for the reduction of the glass transition temperature in supported PS films. We demonstrate the validity of this formula by comparing our simulation results to results from other simulations and experiments

  19. Physical properties of glasses in the Ag2GeS3-AgBr system

    Science.gov (United States)

    Moroz, M. V.; Demchenko, P. Yu.; Prokhorenko, S. V.; Moroz, V. M.

    2013-08-01

    Glasses have been prepared by quenching melts in the Ag2GeS3-AgBr system in a range of 0-53 mol % AgBr. The concentration dependences of density, microhardness, glass transition temperatures, and crystallization of alloys have been established. The conductivity of glasses has been investigated by the dc probe method in a range of 240-420 K. The models of the drift motion of silver and halogen ions have been proposed.

  20. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  1. Structural studies of WO3-TeO2 glasses by high-Q-neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Khanna, A.; Kaur, A.; Krishna, P.S.R.; Shinde, A.B.

    2013-01-01

    Glasses from the system: xWO 3 -(100-x)TeO 2 (x=15, 20 and 25 mol %) were prepared by melt quenching technique and characterized by density, UV-visible absorption spectroscopy, Differential Scanning Calorimetry (DSC), Raman spectroscopy and high-Q neutron diffraction measurements. Glass density and glass transition temperature increased with increase in WO 3 concentration, Raman spectroscopy indicated the conversion of TeO 4 units into TeO 3 units with increase in WO 3 content. The increase in glass transition temperature with the incorporation of WO 3 was attributed to the increase in average bond strength of the glass network since the bond dissociation energy of W-O bonds (672 kJ/mol) is significantly higher than that of Te-O bonds (376 kJ/mol). UV-visible studies found a very strong optical absorption band due to W 6+ ions, just below the absorption edge. High-Q neutron diffraction measurements were performed on glasses and radial distribution function analyses revealed changes in W-O and Te-O correlations in the glass network. The findings about changes in glass structure from neutron diffraction studies were consistent with structural information obtained from Raman spectroscopy and structure-property correlations were made. (author)

  2. Spin glass transition in a thin-film NiO/permalloy bilayer

    Science.gov (United States)

    Ma, Tianyu; Urazhdin, Sergei

    2018-02-01

    We experimentally study magnetization aging in a thin-film NiO/permalloy bilayer. Aging characteristics are nearly independent of temperature below the exchange bias blocking temperature TB, but rapidly vary above it. The dependence on the magnetic history qualitatively changes across TB. The observed behaviors are consistent with the spin glass transition at TB, with significant implications for magnetism and magnetoelectronic phenomena in antiferromagnet/ferromagnet bilayers.

  3. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  4. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  5. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  6. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  7. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    Science.gov (United States)

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Thermal expansion of amorphous Zr65Al7.5Cu17.5Ni10 in the vicinity of the glass transition

    International Nuclear Information System (INIS)

    Geier, N.; Weiss, M.; Moske, M.; Samwer, K.

    2000-01-01

    The thermal expansion of non-crystalline Zr 65 Al 7.5 Cu 17.5 Ni 10 has been studied in the range of the glass transition and in the undercooled liquid using a dilatometric device. The measuring technique used permits reliable experimental results up to 40 K above the glass transition temperature. The linear thermal expansion coefficient obtained is almost constant in the glassy state with a value of 8.0 x 10 -6 K -1 . It discontinuously increases at the glass transition temperature yielding a value of 20.0 x 10 -6 K -1 in the undercooled liquid. The results are compared with specific heat measurements of the amorphous material in this temperature range and are interpreted in the framework of a cluster model. (orig.)

  9. The ferromagnetic-spin glass transition in PdMn alloys: symmetry breaking of ferromagnetism and spin glass studied by a multicanonical method.

    Science.gov (United States)

    Kato, Tomohiko; Saita, Takahiro

    2011-03-16

    The magnetism of Pd(1-x)Mn(x) is investigated theoretically. A localized spin model for Mn spins that interact with short-range antiferromagnetic interactions and long-range ferromagnetic interactions via itinerant d electrons is set up, with no adjustable parameters. A multicanonical Monte Carlo simulation, combined with a procedure of symmetry breaking, is employed to discriminate between the ferromagnetic and spin glass orders. The transition temperature and the low-temperature phase are determined from the temperature variation of the specific heat and the probability distributions of the ferromagnetic order parameter and the spin glass order parameter at different concentrations. The calculation results reveal that only the ferromagnetic phase exists at x glass phase exists at x > 0.04, and that the two phases coexist at intermediate concentrations. This result agrees semi-quantitatively with experimental results.

  10. The role of lead oxide on structural and physical properties of lithium diborate glasses

    International Nuclear Information System (INIS)

    Kashif, I.; Abd El-Maboud, A.; El-said, R.; Sakr, E.M.; Soliman, A.A.

    2012-01-01

    Highlights: ► We prepare Li 2 B 4 O 7 –Pb 3 O 4 glass samples by the quenched method as bulk. ► The effects of substitution Li 2 B 4 O 7 with Pb 3 O 4 in glass composition are studied. ► The structure, density, Vickers hardness, glass transition temperature and electrical properties have been influenced by these substitution. - Abstract: Pseudo-binary (100 − x)Li 2 B 4 O 7 –xPb 3 O 4 , with x = 0–70 mol% PbO have been prepared and their properties investigated. The glass transition temperature, density and molar volume have been determined as a function of composition. The values of T g and the molar volume decrease non-linearly while the density increases as the Pb 3 O 4 content is raised. Infrared spectra of the glasses reveal that a strong network consisting of diborate units breaks up by the addition of Pb 3 O 4 . The absorption bands below 620 cm −1 show that PbO is one of the network formers of the glasses 70 ⩾ Pb 3 O 4 ⩾ 10; as they can be associated with vibrations of (PbO 4 ) 2− grouping. PbO plays a dual role in the glass network. The calculated values of N 4 [the fraction of borons which are tetrahedral] slightly decrease with PbO content up to 30 mol% and then increase with Pb 3 O 4 content up to 50 mol%, then followed by a decrease as the Pb 3 O 4 content rises further. The Vickers hardness of the glasses varies as a function of the PbO content in the same manner as the variation of N 4 . The dc conductivity decreases with the Pb 3 O 4 concentration up to about 30 mol% and then increases thereafter.

  11. Ultrasound-induced crystallization around the glass transition temperature for Pd40Ni40P20 metallic glass

    International Nuclear Information System (INIS)

    Ichitsubo, Tetsu; Matsubara, Eiichiro; Kai, Satoshi; Hirao, Masahiko

    2004-01-01

    We have found that crystallization of a Pd 40 Ni 40 P 20 bulk metallic glass is accelerated in the vicinity of the glass transition temperature T g when it is subjected to sub/low-MHz frequency ultrasonic vibration. Resonance frequencies and internal frictions have been measured with the electromagnetic acoustic resonance (EMAR) technique. In the initial heating process of an as-cast glassy sample, the resonance frequencies jump up just above T g under ultrasonic excitation, which is attributed to nano-crystallization that is confirmed by the X-ray diffraction profile. However, such a notable change is not observed without ultrasonic vibration. The irregular Λ-shaped internal-friction peaks are also observed prior to the abrupt crystallization. This rapid crystallization is considered to be caused by a stochastic resonance, in which the jump frequency of atoms matches the frequency of the interatomic-potential change by the ultrasonic vibration

  12. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    , 0 to 62·5 mol% B2O3, and 25 to 85 mol% SiO2. The glass samples were characterised by different methods. Refractive indices, density and thermal expansion were measured. Phase separation effects were investigated by electron microscopy. The electrical conductivity of glasses and melts were determined......Simple sodium borosilicate and silicate glasses were melted on a very large scale (35 l Pt crucible) to prepare model glasses of optical quality in order to investigate various properties depending on their structure. The composition of the glass samples varied in a wide range: 3 to 33·3 mol% Na2O...... by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...

  13. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  14. Boson localization and the superfluid-insulator transition

    International Nuclear Information System (INIS)

    Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)

    1989-01-01

    The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential

  15. Glass transition of poly (methyl methacrylate) filled with nanosilica and core-shell structured silica

    DEFF Research Database (Denmark)

    Song, Yihu; Bu, Jing; Zuo, Min

    2017-01-01

    transition and segmental dynamics of PMMA in the nanocomposites prepared via solution casting was compared. The remarkable depression (≥10 °C) of glass transition temperature (Tg) induced by the incorporation of SiO2 and CS was both observed at low loadings. Here, different mechanisms were responsible...... for the effect of SiO2 and CS on the segmental acceleration of PMMA matrix. The formation of rigid amorphous fraction (RAF) layer around SiO2 with the thickness of 16.4 nm led to the adjacent molecular packing frustration, while the “lubrication” effect of nonwetting interface between the grafted crosslinked......Core-shell (CS) nanocomposite particles with 53.4 wt% cross-linked poly (methyl methacrylate) (PMMA) shell of 11.6 nm in thickness were fabricated via miniemulsion polymerization of methyl methacrylate in the presence of modified nanosilica. The influence of nanosilica and CS nanoparticles on glass...

  16. The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass former-supercooled liquids on a long time scale

    International Nuclear Information System (INIS)

    Busch, R.; Johnson, W.L.

    1998-01-01

    Viscosity and enthalpy relaxation from the amorphous state into the supercooled liquid state was investigated in the bulk metallic glass forming Zr 46.75 Ti 8.25 Cu 7.5 Ni 10 Be 27.5 alloy below the calorimetric glass transition. At different temperatures, the viscosities relax into states that obey the same Vogel endash Fulcher endash Tammann relation as the data obtained at higher temperatures in the supercooled liquid. Enthalpy recovery experiments after relaxation in the same temperature range show that the enthalpy of the material reaches values that also corresponds to the supercooled liquid state. The glass relaxes into a metastable supercooled liquid state, if it is observed on a long time scale. Equilibration is possible far below the calorimetric glass transition and very likely even below the isentropic temperature. copyright 1998 American Institute of Physics

  17. Characterisation of moisture uptake effects on the glass transitional behaviour of an amorphous drug using modulated temperature DSC.

    Science.gov (United States)

    Royall, P G; Craig, D Q; Doherty, C

    1999-12-01

    The purpose of this study was to investigate the depression of the glass transition temperature, T(g), of the protease inhibitor saquinavir in the first heating scan as a function of the quantity of sorbed water by the application of modulated temperature differential scanning calorimetry (MTDSC). Samples of amorphous saquinavir were pretreated under various humidity conditions and the quantity of sorbed water measured by thermogravimetric analysis. MTDSC runs were performed using hermetically and non-hermetically sealed pans in order to determine the glass transition temperature. MTDSC allowed the separation of the glass transition from the enthalpic relaxation, thereby allowing clear visualisation of T(g) for amorphous saquinavir in the first heating scan. The plasticizing effects of water were assessed, with the depression in T(g) related to the mole fraction of water sorbed via the Gordon-Taylor relationship. An expression has been derived which allows estimation of the water content which lowers the T(g) to the storage temperature, thereby considerably increasing the risk of recrystallisation. It is argued that this model may aid prediction of the optimal storage conditions for amorphous drugs.

  18. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    International Nuclear Information System (INIS)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua; Zhao, Lijuan

    2016-01-01

    Tm 3+ ions doped β-PbF 2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm 3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O h to D 4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm 3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field

  19. An interatomic potential for studying CuZr bulk metallic glasses

    International Nuclear Information System (INIS)

    Paduraru, A.; Kenoufi, A.; Bailey, N.P.; Schioetz, J.

    2007-01-01

    Glass forming ability has been found in only a small number of binary alloys, one being CuZr. In order to simulate this glass, we fitted an interatomic potential within Effective Medium Theory (EMT). For this purpose we use basic properties of the B2 crystal structure as calculated from Density Functional Theory (DFT) or obtained from experiments. We then performed Molecular Dynamics (MD) simulations of the cooling process and studied the thermodynamics and structure of CuZr glass. We find that the potential gives a good description of the CuZr glass, with a glass transition temperature and elastic constants close to the experimental values. The local atomic order, as witnessed by the radial distribution function, is also consistent with similar experimental data. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Determination of the glass transition temperature: methods correlation and structural heterogeneity

    OpenAIRE

    Hutchinson, John M.

    2009-01-01

    The definition of the glass transition temperature, Tg, is recalled and its experimental determination by various techniques is reviewed. The diversity of values of Tg obtained by the different methods is discussed, with particular attention being paid to Differential Scanning Calorimetry (DSC) and to dynamic techniques such as Dynamic Mechanical Thermal Analysis (DMTA) and Temperature Modulated DSC (TMDSC). This last technique, TMDSC, in particular, is considered in respect of ways in which ...

  1. Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory

    International Nuclear Information System (INIS)

    Li Liangsheng; Li Li; Chen Xiaosong

    2009-01-01

    The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ 3 = 0.224 and the reduced temperature T* = kT/ element of = 1.87 (σ is the diameter of Heisenberg hard sphere and element of is the coupling constant).

  2. Peculiar thermal points during B2O3 transition from liquid to glass-like state

    International Nuclear Information System (INIS)

    Bartenev, G.M.; Lomovskoj, V.A.

    1992-01-01

    Relaxation transitions in glass-like B 2 O 3 were studied by dynamic methods in vacuum in the temperature range of 70-1070 K and frequency range of 10 -4 -1.2·10 6 Hz. The standard temperature of glass formation is T g =493 K and it corresponds to the standard frequency 5.3·10 -4 Hz. Above T g two special temperature points - T K and T F , position of which does not depend on the frequency, are observed

  3. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  4. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  5. Evidence for reentrant spin glass behavior in transition metal substituted Co-Ga alloys near critical concentration

    Science.gov (United States)

    Yasin, Sk. Mohammad; Srinivas, V.; Kasiviswanathan, S.; Vagadia, Megha; Nigam, A. K.

    2018-04-01

    In the present study magnetic and electrical transport properties of transition metal substituted Co-Ga alloys (near critical cobalt concentration) have been investigated. Analysis of temperature and field dependence of dc magnetization and ac susceptibility (ACS) data suggests an evidence of reentrant spin glass (RSG) phase in Co55.5TM3Ga41.5 (TM = Co, Cr, Fe, Cu). The magnetic transition temperatures (TC and Tf) are found to depend on the nature of TM element substitution with the exchange coupling strength Co-Fe > Co-Co > Co-Cu > Co-Cr. From magnetization dynamics precise transition temperatures for the glassy phases are estimated. It is found that characteristic relaxation times are higher than that of spin glasses with minimal spin-cluster formation. The RSG behavior has been further supported by the temperature dependence of magnetotransport studies. From the magnetic field and substitution effects it has been established that the magnetic and electrical transport properties are correlated in this system.

  6. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  7. Effect of composition on peraluminous glass properties: An application to HLW containment

    Energy Technology Data Exchange (ETDEWEB)

    Piovesan, V. [CEA, DEN, DTCD, SECM, LDMC – Marcoule, F-30207 Bagnols sur Cèze (France); CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Bardez-Giboire, I., E-mail: isabelle.giboire@cea.fr [CEA, DEN, DTCD, SECM, LDMC – Marcoule, F-30207 Bagnols sur Cèze (France); Perret, D. [CEA, DEN, DTCD, SECM, LDMC – Marcoule, F-30207 Bagnols sur Cèze (France); Montouillout, V.; Pellerin, N. [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France)

    2017-01-15

    Part of the Research and Development program concerning high level nuclear waste (HLW) glasses aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of thermal stability, chemical durability, and process ability. This study focuses on peraluminous glasses of the SiO{sub 2} – Al{sub 2}O{sub 3} – B{sub 2}O{sub 3} – Na{sub 2}O – Li{sub 2}O – CaO – La{sub 2}O{sub 3} system, defined by an excess of aluminum ions Al{sup 3+} in comparison with modifier elements such as Na{sup +}, Li{sup +} or Ca{sup 2+}. To understand the effect of composition on physical properties of glasses (viscosity, density, T{sub g}), a Design Of Experiments (DOE) approach was applied to investigate the peraluminous glass domain. The influence of each oxide was quantified to build predictive models for each property. Lanthanum and lithium oxides appear to be the most influential factors on peraluminous glass properties. - Highlights: • A Design of Experiment approach to link composition and glass properties. • Adding alkali decreases glass transition temperature. • Adding La{sub 2}O{sub 3} strongly decreases glass melt viscosity. • Adding La{sub 2}O{sub 3} increases density.

  8. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  9. Mixed-Alkali Effect in Li2O-Na2O-K2O-B2O3 Glasses: Infrared and Optical Absorption Studies

    Science.gov (United States)

    Samee, M. A.; Edukondalu, A.; Ahmmad, Shaik Kareem; Taqiullah, Sair Md.; Rahman, Syed

    2013-08-01

    The mixed-alkali effect (MAE) has been investigated in the glass system (40 - x)Li2O- xNa2O-10K2O-50B2O3 (0 mol% ≤ x ≤ 40 mol%) through density, modulated differential scanning calorimetry (DSC), and optical absorption studies. From the absorption studies, the values of the optical band gap ( E opt) for direct transition and Urbach energy (Δ E) have been evaluated. The values of E opt and Δ E show nonlinear behavior with the compositional parameter. The density and glass-transition temperature of the present glasses also show nonlinear variation, supporting the existence of MAE. The infrared (IR) spectra of the glasses reveal the presence of three- and four-coordinated boron atoms. The specific vibrations of Li-O, Na-O, and K-O bonds were observed in the present IR study.

  10. High temperature spin-glass-like transition in La0.67Sr0.33MnO3 nanofibers near the Curie point.

    Science.gov (United States)

    Lu, Ruie; Yang, Sen; Li, Yitong; Chen, Kaiyun; Jiang, Yun; Fu, Bi; Zhang, Yin; Zhou, Chao; Xu, Minwei; Zhou, Xuan

    2017-06-28

    The glassy transition of superparamagnetic (SPM) (r glass-like (SGL) behavior near the Curie point (T C ), i.e., T 0 = 330 K, in La 0.67 Sr 0.33 MnO 3 (LSMO) nanofibers (NFs) composed of nanoparticles beyond the SPM size (r ≫ r 0 ), resulting in a significant increase of the glass transition temperature. This SGL transition near the T C of bulk LSMO can be explained to be the scenario of locally ordered clusters embedded in a disordered host, in which the assembly of nanoparticles has a magnetic core-shell model driven by surface spin glass. The presence of a surface spin glass of nanoparticles was proved by the Almeida-Thouless line δT f ∝ H 2/3 , exchange bias, and reduced saturation magnetization of the NF system. Composite dynamics were found - that is, both the SPM and the super-spin-glass (SSG) behavior are found in such an NF system. The bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization vs. temperature curves at the ZFC peak, and the flatness of FC magnetization involve SSG, while the frequency-dependent ac susceptibility anomaly follows the Vogel-Fulcher law that implies weak dipole interactions of the SPM model. This finding can help us to find a way to search for high temperature spin glass materials.

  11. Elementary excitations and the phase transition in the bimodal Ising spin glass model

    International Nuclear Information System (INIS)

    Jinuntuya, N; Poulter, J

    2012-01-01

    We show how the nature of the phase transition in the two-dimensional bimodal Ising spin glass model can be understood in terms of elementary excitations. Although the energy gap with the ground state is expected to be 4J in the ferromagnetic phase, a gap 2J is in fact found if the finite lattice is wound around a cylinder of odd circumference L. This 2J gap is really a finite size effect that should not occur in the thermodynamic limit of the ferromagnet. The spatial influence of the frustration must be limited and not wrap around the system if L is large enough. In essence, the absence of 2J excitations defines the ferromagnetic phase without recourse to calculating the magnetization or investigating the system response to domain wall defects. This study directly investigates the response to temperature. We also estimate the defect concentration where the phase transition to the spin glass state occurs. The value p c = 0.1045(11) is in reasonable agreement with the literature

  12. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...... at elastic stage. The concentrated stress in crystals at elastic stage provided adequate energy for the direct gamma-alpha phase transition under T-g. The force to promote the gamma-phase into a phase directly is insufficient at the yield stage and a transient phase as a compromise was formed. The transient...... phase was confirmed by DSC measurements and assisted the gamma-alpha phase transition indirectly. The gamma-phase slips into incomplete fragments at yield point, and the parts along tensile direction are responsible for the formation of transient phase. The gamma-fragments after yield is oriented...

  13. Quantification of Protein Hydration, Glass Transitions, and Structural Relaxations of Aqueous Protein and Carbohydrate-Protein Systems.

    Science.gov (United States)

    Roos, Yrjö H; Potes, Naritchaya

    2015-06-11

    Water distribution and miscibility of carbohydrate and protein components in biological materials and their structural contributions in concentrated solids are poorly understood. In the present study, structural relaxations and a glass transition of protein hydration water and antiplasticization of the hydration water at low temperatures were measured using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) for bovine whey protein (BWP), aqueous glucose-fructose (GF), and their mixture. Thermal transitions of α-lactalbumin and β-lactoglobulin components of BWP included water-content-dependent endothermic but reversible dehydration and denaturation, and exothermic and irreversible aggregation. An α-relaxation assigned to hydration water in BWP appeared at water-content-dependent temperatures and increased to over the range of 150-200 K at decreasing water content and in the presence of GF. Two separate glass transitions and individual fractions of unfrozen water of ternary GF-BWP-water systems contributed to uncoupled α-relaxations, suggesting different roles of protein hydration water and carbohydrate vitrification in concentrated solids during freezing and dehydration. Hydration water in the BWP fraction of GF-BWP systems was derived from equilibrium water sorption and glass transition data of the GF fraction, which gave a significant universal method to quantify (i) protein hydration water and (ii) the unfrozen water in protein-carbohydrate systems for such applications as cryopreservation, freezing, lyophilization, and dehydration of biological materials. A ternary supplemented phase diagram (state diagram) established for the GF-BWP-water system can be used for the analysis of the water distribution across carbohydrate and protein components in such applications.

  14. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures.

    Science.gov (United States)

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2010-11-22

    The lyotropic behavior and glass-forming properties of octyl β-D-glucoside (C8Glu) and octyl β-D-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (T(g)) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher T(g). The experimental T(g) was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at T(g) showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  16. Contrasting the magnetic response between magnetic-glass and reentrant spin-glass

    OpenAIRE

    Roy, S. B.; Chattopadhyay, M. K.

    2008-01-01

    Magnetic-glass is a recently identified phenomenon in various classes of magnetic systems undergoing a first order magnetic phase transition. We shall highlight here a few experimentally determined characteristics of magnetic-glass and the relevant set of experiments, which will enable to distinguish a magnetic-glass unequivocally from the well known phenomena of spin-glass and reentrant spin-glass.

  17. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  18. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    Science.gov (United States)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  19. Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    Science.gov (United States)

    Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III

    1991-01-01

    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.

  20. Experimental evidence for two distinct deeply supercooled liquid states of water – Response to “Comment on ‘Water's second glass transition”’, by G.P. Johari, Thermochim. Acta (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J.; Seidl, M. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Gainaru, C. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Fuentes-Landete, V.; Amann-Winkel, K.; Handle, P.H. [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria); Köster, K.W.; Nelson, H. [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Böhmer, R., E-mail: roland.bohmer@tu-dortmund.de [Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund (Germany); Loerting, T., E-mail: thomas.loerting@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck (Austria)

    2015-10-10

    Highlights: • Two samples of amorphous ices quench-recovered from 140 K to 0.07 GPa are compared. • Calorimetry, X-ray diffraction, dielectric spectroscopy and volumetry are employed. • The two samples are distinct and cannot both be termed “pressure-densified glassy water”. • One route of preparation leads to high- (HDA), and the other to low-density amorphous ice (LDA). • Two distinct glass transitions are observed and interpreted to indicate two liquid H{sub 2}O phases. - Abstract: Recently, our earlier data which led us to conclude that deeply supercooled water displays a second glass transition (Amann-Winkel et al., 2013) was reinterpreted (Johari, 2015). In particular, the increase in heat capacity observed for high-density amorphous ice (HDA) samples at 116 K was reinterpreted to indicate sub-T{sub g} features of low-density amorphous ice's (LDA's) glass transition. We reply to the criticism in detail and report an experiment triggered by the comment on our work. This experiment unequivocally confirms our original interpretation of the observations and reinforces the case for water's second glass transition, its polyamorphism, and the observation of two distinct ultraviscous states of water differing by about 25% in density.

  1. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    International Nuclear Information System (INIS)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A.; Yudin, A. V.

    2011-01-01

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  2. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A., E-mail: trusov@itep.ru; Yudin, A. V. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2011-03-15

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  3. Fundamental considerations in the effect of molecular weight on the glass transition of the gelatin/cosolute system.

    Science.gov (United States)

    Jiang, Bin; Kasapis, Stefan; Kontogiorgos, Vassilis

    2012-05-01

    Four molecular fractions of gelatin produced by alkaline hydrolysis of collagen were investigated in the presence of cosolute to record the mechanical properties of the glass transition in high-solid preparations. Dynamic oscillatory and stress relaxation moduli in shear were recorded from 40°C to temperatures as low as -60°C. The small-deformation behavior of these linear polymers was separated by the method of reduced variables into a basic function of time alone and a basic function of temperature alone. The former allowed the reduction of isothermal runs into a master curve covering 17 orders of magnitude in the time domain. The latter follows the passage from the rubbery plateau through the glass transition region to the glassy state seen in the variation of shift factor, a(T) , as a function of temperature. The mechanical glass transition temperature (T(g) ) is pinpointed at the operational threshold of the free volume theory and the predictions of the reaction rate theory. Additional insights into molecular dynamics are obtained via the coupling model of cooperativity, which introduces the concept of coupling constant or interaction strength of local segmental motions that govern structural relaxation at the vicinity of T(g) . The molecular weight of the four gelatin fractions appears to have a profound effect on the transition temperature or coupling constant of vitrified matrices, as does the protein chemistry in relation to that of amorphous synthetic polymers or gelling polysaccharides. © 2011 Wiley Periodicals, Inc.

  4. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  5. Connection between slow and fast dynamics of molecular liquids around the glass transition

    International Nuclear Information System (INIS)

    Niss, Kristine; Dalle-Ferrier, Cecile; Frick, Bernhard; Russo, Daniela; Dyre, Jeppe; Alba-Simionesco, Christiane

    2010-01-01

    The mean-square displacement (MSD) was measured by neutron scattering at various temperatures and pressures for a number of molecular glass-forming liquids. The MSD is invariant along the glass-transition line at the pressure studied, thus establishing an 'intrinsic' Lindemann criterion for any given liquid. A one-to-one connection between the MSD's temperature dependence and the liquid's fragility is found when the MSD is evaluated on a time scale of ∼4 ns, but does not hold when the MSD is evaluated at shorter times. The findings are discussed in terms of the elastic model and the role of relaxations, and the correlations between slow and fast dynamics are addressed.

  6. DWPF glass transition temperatures - What they are and why they are important

    International Nuclear Information System (INIS)

    Marra, S.L.; Applewhite-Ramsey, A.L.; Jantzen, C.M.

    1991-01-01

    The Department of Energy has defined a set of requirements for the DWPF canistered waste form which must be met in order to assure compatibility with, and acceptance by, the first geologic repository. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to report glass transition temperatures for the projected range of compositions. This information will be used by the repository to establish waste package design limits

  7. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? – A review

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available Motivated by the widespread and contradictory results regarding the glass transition temperature of carbon nanotube (CNT/epoxy composites, we reviewed and analyzed the literature results dealing with the effect of unmodified multiwall carbon nanotubes (MWNT on the cure behaviour of an epoxy resin (as a possible source of this discrepancy. The aim of this work was to clarify the effective role of unmodified multiwall carbon nanotubes on the cure kinetics and glass transition temperature (Tg of their epoxy composites. It was found that various authors reported an acceleration effect of CNT. The cure reaction was promoted in its early stage which may be due to the catalyst particles present in the CNT raw material. While SWNT may lead to a decrease of Tg due to their bundling tendency, results reported for MWNT suggested an increased or unchanged Tg of the composites. The present status of the literature does not allow to isolate the effect of MWNT on the Tg due to the lack of a study providing essential information such as CNT purity, glass transition temperature along with the corresponding cure degree.

  8. Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses

    International Nuclear Information System (INIS)

    Guo Haitao; Zhai Yanbo; Tao Haizheng; Dong Guoping; Zhao Xiujian

    2007-01-01

    Chalcohalide glasses in the GeS 2 -Ga 2 S 3 -CdI 2 pseudo-ternary system were prepared by 3-5N pure raw materials. Structures of these glasses were studied with Raman spectroscopy. Several properties, namely, glass transition temperature, optical transmission, density and microhardness have also been measured. Based on the Raman spectra, it can be speculated that the glass network is mainly constituted by [GeS 4 ], [GaS 4 ] tetrahedra with some mixed-anion tetrahedra [S 3 GeI], [S 2 GeI 2 ] and [S 3 GaI], which are interconnected by bridging sulfurs and/or short S-S chains. In the glasses with little CdI 2 , some part of Ge(Ga) exists in the forms of the ethane-like units [S 3 (Ga)Ge-Ge(Ga)S 3 ] because of the lack of sulfur, but the amount of these units will decrease with the addition of CdI 2 . Additionally, in the glasses with high content of CdI 2 , some [CdI n ] structural units (s.u.) will be formed and dispersed homogenously in glass network. These novel glasses have relatively high glass transition temperatures (T g ranges from 512 to 670 K), good thermal stabilities (the maximum of difference between T x and T g is 185 K) and UV-vis optical transmission, large densities (d ranges from 3.162 to 3.863 g/cm 3 ) and microhardness (large than 150 kg/mm 2 generally). All properties evolutions follow the structural variations

  9. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV...

  10. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature.

    Science.gov (United States)

    Mallamace, Francesco; Branca, Caterina; Corsaro, Carmelo; Leone, Nancy; Spooren, Jeroen; Chen, Sow-Hsin; Stanley, H Eugene

    2010-12-28

    It is becoming common practice to partition glass-forming liquids into two classes based on the dependence of the shear viscosity η on temperature T. In an Arrhenius plot, ln η vs 1/T, a strong liquid shows linear behavior whereas a fragile liquid exhibits an upward curvature [super-Arrhenius (SA) behavior], a situation customarily described by using the Vogel-Fulcher-Tammann law. Here we analyze existing data of the transport coefficients of 84 glass-forming liquids. We show the data are consistent, on decreasing temperature, with the onset of a well-defined dynamical crossover η(×), where η(×) has the same value, η(×) ≈ 10(3) Poise, for all 84 liquids. The crossover temperature, T(×), located well above the calorimetric glass transition temperature T(g), marks significant variations in the system thermodynamics, evidenced by the change of the SA-like T dependence above T(×) to Arrhenius behavior below T(×). We also show that below T(×) the familiar Stokes-Einstein relation D/T ∼ η(-1) breaks down and is replaced by a fractional form D/T ∼ η(-ζ), with ζ ≈ 0.85.

  11. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  12. Influence of rare-earth ions on fluorogallate glass formation and properties

    International Nuclear Information System (INIS)

    Zhang Guoyin; Poulain, M.J.

    1998-01-01

    Various rare earths have been incorporated in a lead fluorogallate glass with the following chemical composition: 30PbF 2 -20GaF 3 -15InF 3 -20CdF 2 -15ZnF 2 (PGICZ). Selected rare earths are La, Ce, Pr, Nd, Gd, Er, Yb and Lu, and the doping level varies between 1 and 10 mol%. The influence of rare earth fluorides on glass forming ability and on physical properties is investigated. At low concentration ( 3 in a modified PGCIZ glass have been cast. Experimental results suggest that rare earths act as modifiers rather than vitrifies in this fluorogallate system. The effect of rare earths on the values of glass transition temperature, refractive index, density and thermal expansion is reported. (orig.)

  13. Non-ergodicity transition and multiple glasses in binary mixtures: on the accuracy of the input static structure in the mode coupling theory

    International Nuclear Information System (INIS)

    Tchangnwa Nya, F; Ayadim, A; Germain, Ph; Amokrane, S

    2012-01-01

    We examine the question of the accuracy of the static correlation functions used as input in the mode coupling theory (MCT) of non-ergodic states in binary mixtures. We first consider hard-sphere mixtures and compute the static pair structure from the Ornstein-Zernike equations with the Percus-Yevick closure and more accurate ones that use bridge functions deduced from Rosenfeld’s fundamental measures functional. The corresponding MCT predictions for the non-ergodicity lines and the transitions between multiple glassy states are determined from the long-time limit of the density autocorrelation functions. We find that while the non-ergodicity transition line is not very sensitive to the input static structure, up to diameter ratios D 2 /D 1 = 10, quantitative differences exist for the transitions between different glasses. The discrepancies with the more accurate closures become even qualitative for sufficiently asymmetric mixtures. They are correlated with the incorrect behavior of the PY structure at high size asymmetry. From the example of ultra-soft potential it is argued that this issue is of general relevance beyond the hard-sphere model. (paper)

  14. Molecular Motion in Polymers: Mechanical Behavior of Polymers Near the Glass-Rubber Transition Temperature.

    Science.gov (United States)

    Sperling, L. H.

    1982-01-01

    The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)

  15. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  16. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  17. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  18. Effects of molecular weight on the glass transition temperature in Durolon polycarbonate

    International Nuclear Information System (INIS)

    Miranda, Adelina; Sciani, Valdir

    1995-01-01

    The effect of variation of the dose rate on degradation mechanism of PC Durolon irradiated with gamma rays was determined trough out intrinsic viscosity and thermal analysis of DSC-type measurements. The results showed a linear relationship between the glass transition temperature and the viscosimetric average molecular weight. From the results it's shown that with an increased of the dose rate it also increases the degradation of the material. (author). 12 refs., 3 figs

  19. Watching excitons move: the time-dependent transition density matrix

    Science.gov (United States)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  20. Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model

    Science.gov (United States)

    Mukherjee, Sudip; Nag, Sabyasachi; Garg, Arti

    2018-04-01

    We analyze the many-body localization- (MBL) to-delocalization transition in the Sherrington-Kirkpatrick (SK) model of Ising spin glass in the presence of a transverse field Γ . Based on energy-resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating the MBL phase, which is nonergodic and nonthermal, from the delocalized phase, which is ergodic and thermal. The range of the delocalized regime increases with an increase in the strength of Γ , and eventually for Γ larger than ΓCP the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase while the delocalized phase shows extensive Renyi entropy. We further obtain the spin-glass transition curve in the energy density ɛ -Γ plane from the collapse of the eigenstate spin susceptibility. We demonstrate that in most of the parameter regime, the spin-glass transition occurs close to the MBL transition, indicating that the spin-glass phase is nonergodic and nonthermal while the paramagnetic phase is delocalized and thermal.

  1. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  2. Treatments of intrinsic viscosity and glass transition temperature data of poly(2,6-dimethylphenylmethacrylate)

    International Nuclear Information System (INIS)

    Hamidi, Nasrollah; Massoudi, Ruhullah

    2003-01-01

    A useful relationship, ln(T g )=ln(T g,∞ )-m[η] -ν , between intrinsic viscosity and glass transition temperature for a series of homologous polymers was obtained by combining the Mark-Houwink-Kuhn-Sakurada (MHKS) relation for intrinsic viscosity and molecular mass, and the Fox-Flory equation for glass transition temperature and number-average molecular mass. This relationship was applied to poly(2,6-dimethylphenylmethacrylate) (PDMPh) in a variety of solvents (ideal to good) such as toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems. The parameter α estimated by this procedure in toluene, tetrahydrofuran/water, tetrahydrofuran, and chlorobenzene systems are 0.50 6 , 0.51 1 , 0.56 7 , and 0.67 3 , respectively which are in agreement with those of Mark-Houwink-Kuhn-Sakurada values by less than 5% differences. The T g,∞ quantity estimated from this equation also is within the standard deviation of that obtained from the Fox-Flory method. The m quantity is increasing as the thermodynamic quality of the solvent improves, therefore, m may be considered as an indicator of coil conformations in a given solvent

  3. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  4. Effect of CeO2 addition on electrical and optical properties of lithium borate glasses

    International Nuclear Information System (INIS)

    Gedam, R.S.; Ramteke, D.D.

    2011-01-01

    Rare earth (RE) ions play an important role in modern technology as an active ion in many optical materials. RE-doped glasses were used in many optical devices because of abundant number of the absorption and emission bands arising from the transitions between the RE elements energy levels. Among all rare earth, glasses containing CeO 2 are extensively studied for scintillating applications. Radiation length of CeO 2 containing lithium silicate glasses decreases and absorption edge in transmittance shift towards longer wavelength. In the present study an attempt has been made to verify similar results in borate containing glasses. Therefore glass series 15Li 2 O-xCeO 2 -(85''x)B 2 O 3 where x= 0.25, 0.5, 0.75, 1 mol% was prepared by conventional melt quench technique. Their electrical and optical properties have been investigated. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of CeO 2 . The conductivity of the glasses is mostly controlled by the activation energy. Since the lithium fraction in the present series is kept constant, the decrease in conductivity for glasses may be attributed to the reduction in the number of available vacant sites for the mobile lithium ions when boron is substituted with CeO 2 . The radiation length was determined using density values and it was found to decrease with the addition of CeO 2 . The absorption coefficient a were determined near the absorption edge of different photon energy for all glass samples and plot of (αhν) 1/2 Vs. hν (Tauc's plot) is shown. It is observed that the optical band gap energy (E g Opt ) decreases with the addition of CeO 2

  5. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    Science.gov (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  6. Interpenetrating Polymer Network (IPN with Epoxidized and Acrylated Bioresins and their Composites with Glass and Jute Fibres

    Directory of Open Access Journals (Sweden)

    Francisco Cardona

    2016-02-01

    Full Text Available Epoxidized (EHO and acrylated (AEHO bio-resins from hemp oil were synthesized, and their interpenetrating networks (IPNs were investigated in reinforced bio-composites with natural jute fibres and glass fibres. The mechanical properties (tensile, flexural, Charpy impact, and inter-laminar shear and viscoelastic properties (glass transition temperature, storage modulus, and crosslink density of the bio-resins and their hybrid IPNs EHO/AEHO system were investigated as a function of the level of bio-resin hybridization. The hybrid bio-resins exhibited interpenetrating network (IPN behaviour. Composites prepared with the synthetic vinyl ester (VE and epoxy resins showed superior mechanical and viscoelastic properties compared with their bio-resins and IPNs-based counterparts. With glass fibre (GF reinforcement, increases in the EHO content of the IPNs resulted in increased stiffness of the composites, while the strength, inter-laminar shear strength (ILSS, and impact resistance decreased. However, in the jute fibre reinforced bio-composites, increases in AEHO content generated increased tensile modulus, ILSS, and mechanical strength of the bio-materials. Crosslink density and glass transition temperature (Tg were also higher for the synthetic resins than for the bio-resins. Increased AEHO content of the IPNs resulted in improved viscoelastic properties.

  7. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew, E-mail: maw64@cornell.edu; Thorne, Robert E. [Physics Department, Cornell University, Ithaca, New York (United States)

    2010-10-01

    Radiation damage to protein crystals exhibits two regimes of temperature-activated behavior between T = 300 and 100 K, with a crossover at the protein glass transition near 200 K. These results have implications for mechanistic studies of proteins and for structure determination when cooling to T = 100 K creates excessive disorder. The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol{sup −1} indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol{sup −1}, which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300–80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962 ▶), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183–191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for

  8. Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (B i1 -xB ax) (F e1 -xT ix ) O3 system

    Science.gov (United States)

    Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai

    2018-03-01

    For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all

  9. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.

    Science.gov (United States)

    Alhalaweh, Amjad; Alzghoul, Ahmad; Mahlin, Denny; Bergström, Christel A S

    2015-11-10

    Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (Tg) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12h at temperatures 20°C above or below the Tg. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20°C below the Tg. Fourteen of the Class II compounds crystallized when stored above the Tg whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e.g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the Tg. The use of a large dataset revealed that molecular features related to aromaticity and π-π interactions reduce the inherent physical stability of amorphous drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. 4-(ALPHA, ALPHA-DIMETHYLBENZYL)PHENYL METHACRYLATE .3. SYNTHESIS, TACTICITY AND GLASS-TRANSITION TEMPERATURES OF ITS POLYMERS

    NARCIS (Netherlands)

    VANEKENSTEIN, GORA; TAN, YY

    Depending on the kind of initiator, anionic Polymerization of 4-(alpha,alpha-dimethylbenzyl)phenyl methacrylate in toluene at -78-degrees-C led either to highly isotactic or predominantly syndiotactic polymers as determined by C-13 NMR spectro copy. The glass transition temperature difference

  11. Glass transition and intermixing of amorphous water and methanol

    International Nuclear Information System (INIS)

    Souda, Ryutaro

    2004-01-01

    The diffusion of molecules in amorphous water and methanol films has been investigated on the basis of time-of-flight secondary ion mass spectrometry as a function of temperature. The glass-liquid transition of the amorphous water film occurs at 130-145 K as confirmed from the surface segregation of embedded methanol molecules. The morphology of the pure amorphous water film changes drastically at 160 K as a consequence of dewetting induced by the surface tension and the strongly decreased viscosity of the film. The morphology of the amorphous methanol film changes at 115 K following the self-diffusion onset at 80 K. The binary films of water and heavy methanol are intermixed completely at 136 K as evidenced by the occurrence of the H/D exchange

  12. Molecular dynamics simulation for the baryon-quark phase transition at finite baryon density

    International Nuclear Information System (INIS)

    Akimura, Y.; Maruyama, T.; Chiba, S.; Yoshinaga, N.

    2005-01-01

    We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined quark state at high baryon density are reproduced. We investigate the equations of state of matters with different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width. (orig.)

  13. Impulsive Stimulated Light Scattering Studies of the Liquid-Glass Transition: on the Experimental Verification of Mode-Coupling Theory Predictions.

    Science.gov (United States)

    Halalay, Ion C.

    A study of the structural glass transition trough impulsive stimulated light scattering experiments has been carried out in concentrated aqueous lithium chloride solutions, at temperatures ranging from ambient to cryogenic. A specially designed sample cell made it possible to cover the whole temperature interval from simple liquid, to viscoelastic supercooled liquid, to glass. It is shown that a phenomenological description of the results of these experiments in terms of a spectrum of relaxation times through the use of a Kohlrausch-Williams-Watts relaxation function is inadequate. Based on predictions of mode-coupling theory of the liquid-glass transition, an alternative approach to data interpretation is proposed. It is shown that for an aqueous lithium chloride solution, the prediction of simple scaling and identical scaling for mechanical and electrical susceptibilities seems to be valid. However, another prediction of theory is called into question: instead of a power-law behavior on temperature difference, it is found experimentally that the behavior of the susceptibility spectrum minimum is exponential. Similar disagreements are found for other two materials, triphenyl phosphite and polypropylene oxide. The causes for these discrepancies are discussed and it is concluded that additional experimentation is necessary to verify theoretical claims. Experiments are proposed which can test these predictions and serve as guide for the construction of theoretical models for the glass transition in real systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  14. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.

    Science.gov (United States)

    van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry

    2012-03-12

    A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.

  15. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  16. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...... of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...

  17. The order parameter of glass transition: Spontaneously delocalized nanoscale solitary wave with transverse ripplon-like soft wave

    Directory of Open Access Journals (Sweden)

    Jia Lin Wu

    2013-06-01

    Full Text Available In macromolecular self-avoiding random walk, movement of each chain-particle accompanies an instantaneous spin system with de Gennes n = 0 that provides extra energy, extra vacancy volume and relaxation time needed for chain-particles co-movement. Using these additional and instantaneous spin systems not only directly yields the same Brownian motion mode in glass transition (GT and reptation-tube model, but also proves that the entangled chain length corresponding to the Reynolds number in hydrodynamics and the inherent diffusion - delocalization mode of entangled chains, from frozen glass state to melt liquid state, is a chain-size solitary wave with transverse ripplon-like soft wave. Thus, the order parameter of GT is found. The various currently available GT theories, such as Static Replica, Random First-Order Transition, Potential Energy Landscape, Mode-Coupling and Nanoscale Heterogeneity, can be unified using the additional and instantaneous spin system. GT served as an inspiration and continues to serve as the paradigm in the universal random delocalization transitions from disorder to more disorder until turbulence.

  18. Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres

    Science.gov (United States)

    Baris Yalcin; Steve E Amos; Andrew S D Souza; Craig M Clemons; I Sedat Gunes; Troy K Ista

    2012-01-01

    Hollow glass microspheres were introduced into wood flour/high density polyethylene composites by melt compounding in a twin-screw extruder. The prepared composites were subsequently converted to extruded profiles in order to obtain composite sheeting. The presence of hollow glass microspheres highly reduced the density of the extruded sheets down to 0.9 g/cc, while...

  19. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  20. Ab initio computation of the transition temperature of the charge density wave transition in TiS e2

    Science.gov (United States)

    Duong, Dinh Loc; Burghard, Marko; Schön, J. Christian

    2015-12-01

    We present a density functional perturbation theory approach to estimate the transition temperature of the charge density wave transition of TiS e2 . The softening of the phonon mode at the L point where in TiS e2 a giant Kohn anomaly occurs, and the energy difference between the normal and distorted phase are analyzed. Both features are studied as functions of the electronic temperature, which corresponds to the Fermi-Dirac distribution smearing value in the calculation. The transition temperature is found to be 500 and 600 K by phonon and energy analysis, respectively, in reasonable agreement with the experimental value of 200 K.

  1. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    Czech Academy of Sciences Publication Activity Database

    Harris, W.H.; Guillen, D.P.; Kloužek, Jaroslav; Pokorný, P.; Yano, T.; Lee, S.; Schweiger, M. J.; Hrma, P.

    2017-01-01

    Roč. 100, č. 9 (2017), s. 3883-3894 ISSN 0002-7820 Institutional support: RVO:67985891 Keywords : borosilicate glass * computed tomography * glass melting * morphology * nuclear waste * X-ray Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.841, year: 2016

  2. Sum rules for charge transition density

    Energy Technology Data Exchange (ETDEWEB)

    Gul' karov, I S [Tashkentskij Politekhnicheskij Inst. (USSR)

    1979-01-01

    The form factors of the quadrupole and octupole oscillations of the /sup 12/C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow one to obtain various CTDs which contain the components k: r/sup lambda + 2k-2/rho(r) and r/sup lambda + 2k-1)(drho(r)/dr) (k = 0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. Recurrence formulas are derived for the ratios of the higher-order transition matrix elements and CTD. These formulas can be used to predict the CTD behavior for highly excited nuclear states.

  3. Evolution of short range order in Ar: Liquid to glass and solid transitions-A computational study

    Science.gov (United States)

    Shor, Stanislav; Yahel, Eyal; Makov, Guy

    2018-04-01

    The evolution of the short range order (SRO) as a function of temperature in a Lennard-Jones model liquid with Ar parameters was determined and juxtaposed with thermodynamic and kinetic properties obtained as the liquid was cooled (heated) and transformed between crystalline solid or glassy states and an undercooled liquid. The Lennard-Jones system was studied by non-equilibrium molecular dynamics simulations of large supercells (approximately 20000 atoms) rapidly cooled or heated at selected quenching rates and at constant pressure. The liquid to solid transition was identified by discontinuities in the atomic volume and molar enthalpy; the glass transition temperature range was identified from the temperature dependence of the self-diffusion. The SRO was studied within the quasi-crystalline model (QCM) framework and compared with the Steinhardt bond order parameters. Within the QCM it was found that the SRO evolves from a bcc-like order in the liquid through a bct-like short range order (c/a=1.2) in the supercooled liquid which persists into the glass and finally to a fcc-like ordering in the crystalline solid. The variation of the SRO that results from the QCM compares well with that obtained with Steinhardt's bond order parameters. The hypothesis of icosahedral order in liquids and glasses is not supported by our results.

  4. Glass and liquid phase diagram of a polyamorphic monatomic system

    Science.gov (United States)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  5. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    Science.gov (United States)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  6. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    International Nuclear Information System (INIS)

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  7. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  8. Giant monopole transition densities within the local scale ATDHF approach

    International Nuclear Information System (INIS)

    Dimitrova, S.S.; Petkov, I.Zh.; Stoitsov, M.V.

    1986-01-01

    Transition densities for 12 C, 16 O, 28 Si, 32 S, 40 Ca, 48 Ca, 56 Ni, 90 Zr, 208 Pb even-even nuclei corresponding to nuclear glant monopole resonances obtained within a local-scale adiabatic time-dependent Hartree-Fook approach in terms of effective Skyrme-type forces SkM and S3. The approach, the particular form and all necessary coefficients of these transition densities are reported. They are of a simple analytical form and may be directly used for example in analyses of particle inelastic scattering on nuclei by distorted wave method and a such a way allowing a test of the theoretical interpretation of giant monopole resonances

  9. Glass transition in thermosetting clay-nanocomposite polyurethanes

    Energy Technology Data Exchange (ETDEWEB)

    Corcione, C. Esposito [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via Monteroni 73100, Lecce (Italy)], E-mail: carola.corcione@unile.it; Maffezzoli, A. [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via Monteroni 73100, Lecce (Italy)

    2009-03-10

    In this work nanocomposite in a polyurethane (PU) matrix, using an organically modified montmorillonite (OMM), were studied. An amount of organoclay ranging from 2% up to 6% by volume was added to the polyol component of the resin before mixing with isocyanate. The basal distance of OMM before and after mixing with the polyol and after curing was characterized by X-ray diffraction. The glass transition temperature (T{sub g}) of PU nanocomposites, measured using differential scanning calorimeter, increases with increasing the volume fraction of OMM. On the other hand, the heat capacity increment, {delta}C{sub p}, decreases from that the unfilled PU to that of the sample with 5.7 vol.% of OMM. Therefore the rigid amorphous fraction of the PU nanocomposites increases with increasing volume fraction of OMM. Finally, a three-phase model similar to that applied to study semi-crystalline polymers, was used to analyze the intercalation of the PU chains between OMM lamellae. The definition of molecular cooperativity was discussed for these systems and the characteristic length of the cooperative region was determined, using Donth equation.

  10. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer.

    Science.gov (United States)

    Drake, Andrew C; Lee, Youngjoo; Burgess, Emma M; Karlsson, Jens O M; Eroglu, Ali; Higgins, Adam Z

    2018-01-01

    Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.

  12. In-Situ Phase Transition Control in the Supercooled State for Robust Active Glass Fiber.

    Science.gov (United States)

    Lv, Shichao; Cao, Maoqing; Li, Chaoyu; Li, Jiang; Qiu, Jianrong; Zhou, Shifeng

    2017-06-21

    The construction of a dopant-activated photonic composite is of great technological importance for various applications, including smart lighting, optical amplification, laser, and optical detection. The bonding arrangement around the introduced dopants largely determines the properties, yet it remains a daunting challenge to manipulate the local state of the matrix (i.e., phase) inside the transparent composite in a controllable manner. Here we demonstrate that the relaxation of the supercooled state enables in-situ phase transition control in glass. Benefiting from the unique local atom arrangement manner, the strategy offers the possibility for simultaneously tuning the chemical environment of the incorporated dopant and engineering the dopant-host interaction. This allows us to effectively activate the dopant with high efficiency (calculated as ∼100%) and profoundly enhance the dopant-host energy-exchange interaction. Our results highlight that the in-situ phase transition control in glass may provide new opportunities for fabrication of unusual photonic materials with intense broadband emission at ∼1100 nm and development of the robust optical detection unit with high compactness and broadband photon-harvesting capability (from X-ray to ultraviolet light).

  13. Changing electronic density in sites of crystalline lattice under superconducting of phase transition

    International Nuclear Information System (INIS)

    Turaev, N.Yu.; Turaev, E.Yu.; Khuzhakulov, E.S.; Seregin, P.P.

    2006-01-01

    Results of electron density change calculations for sites of the one-dimensional Kronig-Penny lattice at the superconducting phase transition have been presented. The transition from normal state to super conducting one is accompanied by the rise of the electron density at the unit cell centre. It is agreement with Moessbauer spectroscopy data. (author)

  14. Influence of power density on the setting behaviour of light-cured glass-ionomer cements monitored by ultrasound measurements.

    Science.gov (United States)

    Tonegawa, Motoka; Yasuda, Genta; Chikako, Takubo; Tamura, Yukie; Yoshida, Takeshi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2009-07-01

    To monitor the influence of the power density of the curing unit on the setting behaviour of light-cured glass-ionomer cements (LCGICs) using ultrasound measurements. The ultrasound equipment comprised a pulser-receiver, transducers and an oscilloscope. The LCGICs used were Fuji II LC, Fuji II LC EM and Fuji Filling LC. The cements were mixed according to the manufacturer's instructions and then inserted into a transparent mould. The specimens were placed on the sample stage and cured with power densities of 0 (no irradiation), 200 or 600 mW/cm(2). The transit time through the cement disk was divided by the specimen thickness and then the longitudinal ultrasound velocity (V) within the material was obtained. Analysis of variance and Tukey's Honestly Significantly Different test were used to compare the V values between the set cements. When the LCGICs were light-irradiated, each curve displayed an initial plateau at approximately 1500 m/s and then rapidly increased to a second plateau at approximately 2600 m/s. The rate of increase of V was retarded when the cements were light-irradiated with a power density of 200 mW/cm(2) than with a power density of 600 mW/cm(2). Although sonic echoes were detected from the beginning of the measurements, the rates of increase of the sonic velocity were relatively slow when the cement was not light-irradiated. The ultrasound device monitored the setting processes of LCGICs accurately based on the longitudinal V. The polymerization behaviour of LCGICs was shown to be affected by the power density of the curing unit.

  15. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    Science.gov (United States)

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  16. Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition.

    Science.gov (United States)

    Crassous, Jérôme J; Casal-Dujat, Lucia; Medebach, Martin; Obiols-Rabasa, Marc; Vincent, Romaric; Reinhold, Frank; Boyko, Volodymyr; Willerich, Immanuel; Menzel, Andreas; Moitzi, Christian; Reck, Bernd; Schurtenberger, Peter

    2013-08-20

    We use a combination of different scattering techniques and rheology to highlight the link between structure and dynamics of dense aqueous suspensions of soft repulsive colloids in the vicinity of a glass transition. Three different latex formulations with an increasing amount of the hydrophilic component resulting in either purely electrostatically or electrosterically stabilized suspensions are investigated. From the analysis of the static structure factor measured by small-angle X-ray scattering, we derive an effective volume fraction that includes contributions from interparticle interactions. We further investigate the dynamics of the suspensions using 3D cross-correlation dynamic light scattering (3DDLS) and rheology. We analyze the data using an effective hard sphere model and in particular compare the linear viscoelasticity and flow behavior to the predictions of mode coupling theory, which accounts for a purely kinetic glass transition determined by the equilibrium structure factor. We demonstrate that seemingly very different colloidal systems exhibit the same generic behavior when the effects from interparticle interactions are incorporated using an effective volume fraction description.

  17. Aging of a Binary Colloidal Glass

    Science.gov (United States)

    Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.

    2008-03-01

    After having undergone a glass transition, a glass is in a non-equilibrium state, and its properties depend on the time elapsed since vitrification. We study this phenomenon, known as aging. In particular, we study a colloidal suspension consisting of micron-sized particles in a liquid --- a good model system for studying the glass transition. In this system, the glass transition is approached by increasing the particle concentration, instead of decreasing the temperature. We observe samples composed of particles of two sizes (d1= 1.0μm and d2= 2.0μm) using fast laser scanning confocal microscopy, which yields real-time, three-dimensional movies deep inside the colloidal glass. We then analyze the trajectories of several thousand particles as the glassy suspension ages. Specifically, we look at how the size, motion and structural organization of the particles relate to the overall aging of the glass. We find that areas richer in small particles are more mobile and therefore contribute more to the structural changes found in aging glasses.

  18. Structural simulation and ionic conductivity mechanisms in lithium thio-borate based glasses

    International Nuclear Information System (INIS)

    Estournes, C.

    1992-04-01

    We propose in this work a structural study of B 2 S 3 -Li 2 S glass system through the use of neutron scattering, X-ray photo-electron spectroscopy and computerized simulation. We have got information on the order at low and short distance range of these glasses. This information has been correlated to changes in physical features like ionic conductivity, density and temperature of the vitreous transition according to their chemical compositions. The knowledge of the local order in the most modified binary glasses has allowed us to propose a model for ionic conduction similar to the model used for ionic crystals. This model has been validated: it yields an activation energy that agrees well with experimental data

  19. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass.

    Science.gov (United States)

    Hima Nagamanasa, K; Gokhale, Shreyas; Sood, A K; Ganapathy, Rajesh

    2014-06-01

    We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.

  20. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  1. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  2. On the dynamics of liquids in their viscous regime approaching the glass transition.

    Science.gov (United States)

    Chen, Z; Angell, C A; Richert, R

    2012-07-01

    Recently, Mallamace et al. (Eur. Phys. J. E 34, 94 (2011)) proposed a crossover temperature, T(×), and claimed that the dynamics of many supercooled liquids follow an Arrhenius-type temperature dependence between T(×) and the glass transition temperature T(g). The opposite, namely super-Arrhenius behavior in this viscous regime, has been demonstrated repeatedly for molecular glass-former, for polymers, and for the majority of the exhaustively studied inorganic glasses of technological interest. Therefore, we subject the molecular systems of the Mallamace et al. study to a "residuals" analysis and include not only viscosity data but also the more precise data available from dielectric relaxation experiments over the same temperature range. Although many viscosity data sets are inconclusive due to their noise level, we find that Arrhenius behavior is not a general feature of viscosity in the T(g) to T(×) range. Moreover, the residuals of dielectric relaxation times with respect to an Arrhenius law clearly reveal systematic curvature consistent with super-Arrhenius behavior being an endemic feature of transport properties in this viscous regime. We also observe a common pattern of how dielectric relaxation times decouple slightly from viscosity.

  3. Effect of aging time on the volumetric and enthalpic glass transition of a-PMMA upon heating

    Czech Academy of Sciences Publication Activity Database

    Říha, Pavel; Hadač, J.; Slobodian, P.; Sáha, P.; Rychwalski, R. W.; Kubát, J.

    2007-01-01

    Roč. 48, č. 25 (2007), s. 7356-7363 ISSN 0032-3861 R&D Projects: GA ČR GA103/05/0803 Institutional research plan: CEZ:AV0Z20600510 Keywords : a-PMMA * Glass transition * Aging Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2007

  4. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  5. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    Science.gov (United States)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the

  6. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  7. Local structural mechanism for frozen-in dynamics in metallic glasses

    Science.gov (United States)

    Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.

    2018-04-01

    The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.

  8. Mid-infrared emission and Raman spectra analysis of Er(3+)-doped oxyfluorotellurite glasses.

    Science.gov (United States)

    Chen, Fangze; Xu, Shaoqiong; Wei, Tao; Wang, Fengchao; Cai, Muzhi; Tian, Ying; Xu, Shiqing

    2015-04-10

    This paper reports on the spectroscopic and structural properties in Er(3+)-doped oxyfluorotellurite glasses. The compositional variation accounts for the evolutions of Raman spectra, Judd-Ofelt parameters, radiative properties, and fluorescent emission. It is found that, when maximum phonon energy changes slightly, phonon density plays a crucial role in quenching the 2.7 μm emission generated by the Er(3+):(4)I11/2→(4)I13/2 transition. The comparative low phonon density contributes strong 2.7 μm emission intensity. The high branching ratio (18.63%) and large emission cross section (0.95×10(-20)  cm(2)) demonstrate that oxyfluorotellurite glass contained with 50 mol.% TeO2 has potential application in the mid-infrared region laser.

  9. Inelastic neutron scattering from glass formers

    International Nuclear Information System (INIS)

    Buchenau, U.

    1997-01-01

    Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO 2 . That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived. (author)

  10. Pressure-controlled nucleation and growth in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass close to and beyond glass transition temperature

    International Nuclear Information System (INIS)

    Pan Mingxiang; Yao Yushu; Zhao Deqian; Zhuang Yanxin; Wang Weihua

    2002-01-01

    By high-pressure annealing close to and beyond glass transition temperature, the behavior of nucleation and growth of crystals in Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 bulk metallic glass (BMG) is investigated. The experimental results indicate that exerting a high pressure during annealing can markedly decrease the nucleation temperature of the BMG. The growth rate of crystals first increases and then decreases with increase of annealing pressure. The effect of pressure on nucleation and growth of crystals is phenomenologically explained

  11. Red light emission from europium doped zinc sodium bismuth borate glasses

    Science.gov (United States)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  12. Effect of increasing disorder on domains of the 2d Coulomb glass.

    Science.gov (United States)

    Bhandari, Preeti; Malik, Vikas

    2017-12-06

    We have studied a two dimensional lattice model of Coulomb glass for a wide range of disorders at [Formula: see text]. The system was first annealed using Monte Carlo simulation. Further minimization of the total energy of the system was done using an algorithm developed by Baranovskii et al, followed by cluster flipping to obtain the pseudo-ground states. We have shown that the energy required to create a domain of linear size L in d dimensions is proportional to [Formula: see text]. Using Imry-Ma arguments given for random field Ising model, one gets critical dimension [Formula: see text] for Coulomb glass. The investigation of domains in the transition region shows a discontinuity in staggered magnetization which is an indication of a first-order type transition from charge-ordered phase to disordered phase. The structure and nature of random field fluctuations of the second largest domain in Coulomb glass are inconsistent with the assumptions of Imry and Ma, as was also reported for random field Ising model. The study of domains showed that in the transition region there were mostly two large domains, and that as disorder was increased the two large domains remained, but a large number of small domains also opened up. We have also studied the properties of the second largest domain as a function of disorder. We furthermore analysed the effect of disorder on the density of states, and showed a transition from hard gap at low disorders to a soft gap at higher disorders. At [Formula: see text], we have analysed the soft gap in detail, and found that the density of states deviates slightly ([Formula: see text]) from the linear behaviour in two dimensions. Analysis of local minima show that the pseudo-ground states have similar structure.

  13. Are the dynamics of silicate glasses and glass-forming liquids embedded in their elastic properties?

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Mauro, John C.

    According to the elastic theory of the glass transition, the dynamics of glasses and glass-forming liquids are controlled by the evolution of shear modulus. In particular, the elastic shoving model expresses dynamics in terms of an activation energy required to shove aside the surrounding atoms......, which is determined by the shear modulus. First, we here present an in situ high-temperature Brillouin spectroscopy test of the shoving model near the glass transition of eight aluminosilicate glass-forming systems. We find that the measured viscosity data agree qualitatively with the measured...... temperature dependence of shear moduli, as predicted by the shoving model. However, the model systematically underpredicts the values of fragility. Second, we also present a thorough test of the shoving model for predicting the low temperature dynamics of an aluminosilicate glass system. This is done...

  14. Unusual features of long-range density fluctuations in glass-forming organic liquids: A Rayleigh and Rayleigh-Brillouin light scattering study

    International Nuclear Information System (INIS)

    Patkowski, A.; Fischer, E. W.; Steffen, W.; Glaser, H.; Baumann, M.; Ruths, T.; Meier, G.

    2001-01-01

    A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4 # prime#-methoxy-5 # prime#methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment, which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the α process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations ('clusters'). We have characterized the two states by static and dynamic light scattering in the temperature range from T g to T g +200 K. The relaxation times of the α process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The α process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and q-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories

  15. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  16. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  17. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  18. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  19. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass

  20. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  1. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.

    Science.gov (United States)

    Li, Jinjiang; Zhao, Junshu; Tao, Li; Wang, Jennifer; Waknis, Vrushali; Pan, Duohai; Hubert, Mario; Raghavan, Krishnaswamy; Patel, Jatin

    2015-02-01

    To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

  2. Effect of aging time on a glass transition of amorphous polymers at heating

    Czech Academy of Sciences Publication Activity Database

    Hadač, J.; Říha, Pavel; Slobodian, P.; Saha, P.; Kubát, J.

    2014-01-01

    Roč. 108, special issue 1 (2014), s. 59-65 ISSN 0009-2770 Grant - others:GA MŠk(CZ) EE.2.3.20.0104; GA MŠk(CZ) ED2.1.00/03.0111 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : physical aging * glass transition * PMMA * relaxation function Subject RIV: BK - Fluid Dynamics Impact factor: 0.272, year: 2014 http://www.chemicke-listy.cz/docs/full/2014_s1_s59-s65.pdf

  3. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  4. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    Science.gov (United States)

    Drummond, Charles H., III; Bansal, Narottam P.

    1990-01-01

    Glass of stoichiometric celsian composition, BaO-Al2O3-SiO2, has a density of 3.39 g/cu cm, a thermal expansion coefficient of 6.6 x 10 to the -6th/C, a glass-transition temperature of 910 C, and a dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot-pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass have been studied. CIP'd samples, after appropriate heat treatments, always crystallized out as celsian, whereas presence of 5-10 wt pct of an additive was necessary for formation of celsian in sintered as well as hot-pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot-pressing resulted in fully dense samples.

  5. Study of rigidity of semiconducting vanadate glasses and its ...

    Indian Academy of Sciences (India)

    These parameters along with the coordination number of the glasses affect the glass transition temperature. The correlation between the elastic moduli and thermal properties of these samples showed that 0.25MoO3–0.25PbO–0.5V2O5 glass is the most rigid and has an applicable glass transition temperature for coating.

  6. Glass transition temperatures of microphase separated semi-interpenetrating polymer networks of polystyrene-inter-poly(cross)-2-ethylhexyl-methacrylate

    NARCIS (Netherlands)

    de Graaf, L.A.; de Graaf, Leontine A.; Möller, Martin; Moller, M.

    1995-01-01

    The glass transition temperature of semi-interpenetrating polymer networks (semi-IPNs) of atactic polystyrene (PS) in crosslinked methacrylates was studied by systematic variation of the morphology, that is domain size, continuity and concentration in the domains. Semi-IPNs were prepared from

  7. Influence of SiO{sub 2} on conduction and relaxation mechanism of Li{sup +} ions in binary network former lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Navneet [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Aghamkar, Praveen [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Agarwal, Ashish; Sanghi, Sujata; Sindhu, Monica [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2013-04-01

    Ion conducting glasses having composition 30Li{sub 2}O·(70−x)PbO·xSiO{sub 2} were prepared by the normal melt quench technique. The compositional variations in density, molar volume and glass transition temperature confirm the dual role of PbO acting as a network modifying oxide as well as a network forming oxide. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in the frequency range from 1 Hz to 7 MHz and in a temperature range below glass transition temperature. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions have to overcome the same energy barrier while conducting and relaxing. The increase in dc conductivity for silica rich compositions is attributed to the presence of mixed former effect in the studied glasses. The study of conductivity spectra reveals a transition from non-random to random hopping motion of lithium ions on successive replacement of PbO by SiO{sub 2} in glass matrix. The conduction and relaxation mechanism in the studied glasses are well explained with the concept of mismatch and relaxation (CMR) model.

  8. Density Functional Theory for Phase-Ordering Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2016-03-30

    Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.

  9. X-ray absorption spectroscopy of GeO2 glass to 64 GPa

    International Nuclear Information System (INIS)

    Hong, Xinguo; Newville, Matthew; Sutton, Stephen R; Rivers, Mark L; Duffy, Thomas S

    2014-01-01

    The structural behavior of GeO 2 glass has been investigated up to 64 GPa using results from x-ray absorption spectroscopy in a diamond anvil cell combined with previously reported density measurements. The difference between the nearest Ge–O distances of glassy and rutile-type GeO 2 disappears at the Ge–O distance maximum at 20 GPa, indicating completion of the tetrahedral–octahedral transition in GeO 2 glass. The mean-square displacement σ 2 of the Ge–O distance in the first Ge–O shell increases progressively to a maximum at 10 GPa, followed by a substantial reduction at higher pressures. The octahedral glass is, as expected, less dense and has a higher compressibility than the corresponding crystalline phase, but the differences in Ge–O distance and density between the glass and the crystals are gradually eliminated over the 20–40 GPa pressure range. Above 40 GPa, GeO 2 forms a dense octahedral glass with a compressibility similar to that of the corresponding crystalline phase (α-PbO 2 type). The EXAFS and XANES spectra show evidence for subtle changes in the dense glass continuing to occur at these high pressures. The Ge–O bond distance shows little change between 45–64 GPa, and this may reflect a balance between bond shortening and a gradual coordination number increase with compression. The density of the glass is similar to that of the α–PbO 2 -type phase, but the Ge–O distance is longer and is close to that in the higher-coordination pyrite-type phase which is stable above ∼60 GPa. The density data provide evidence for a possible discontinuity and change in compressibility at 40–45 GPa, but there are no major changes in the corresponding EXAFS spectra. A pyrite-type local structural model for the glass can provide a reasonable fitting to the XAFS spectra at 64 GPa. (paper)

  10. Effect of Concurrent ZnO Addition and AlF3 Reduction on the Elastic Properties of Tellurite Based Glass System

    Directory of Open Access Journals (Sweden)

    Haji Abdul Aziz Sidek

    2014-01-01

    Full Text Available New ternary zinc oxyfluorotellurite (ZOFT with the composition (ZnOx-(AlF3y-(TeO2z, where 5≤x<35; 5≤y≤25; 60≤z≤70, has been successfully prepared by the conventional rapid melt quenching technique. Density, molar volume, and glass transition temperature have been assessed for each ZOFT glass sample. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system at 5 MHz frequency and room temperature. The longitudinal modulus (L, shear modulus (G, Young’s modulus (E, bulk modulus (K, and Poisson’s ratio (σ are assessed from both velocity data and their respective density. The compositional dependence of the ultrasonic velocities and related parameters are discussed to understand the rigidity and compactness of the glass system studied.

  11. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  12. Superconducting phase of YBa2Cu3O7-δ films in high magnetic fields: Vortex glass or Bose glass

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Swueste, J.; de Wijn, H.W.

    1993-01-01

    Nonlinear current-voltage (I-V) curves are measured in laser-ablated YBa 2 Cu 3 O 7-δ films deposited onto SrTiO 3 . The measurements are performed near the glass phase transition in a magnetic field of 5 T at various angles from the c axis. From a critical scaling analysis, the angular dependencies of the glass transition temperature and the critical glass exponents are extracted. At small angles, these results distinguish between a vortex glass, caused by random pointlike disorder, and a Bose glass, caused by linelike disorder. The results can be understood in terms of the vortex-glass model only. No evidence is found for the existence of a Bose-glass phase

  13. Glass science tutorial: Lecture number-sign 1, Chemistry and properties of oxide glasses. Professor William C. LaCourse, Lecturer

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1994-10-01

    The tutorial covers the following topics: Definitions and terminology; Introduction to glass structure and properties; The glass transition; Structure/property relationships in oxide glasses; Generalized models for predicting structure/properties; Glass surfaces; Chemical durability; and Mechanical properties

  14. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    Science.gov (United States)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  15. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  16. The far infrared radiation characteristics for Li2O.Al2O3.4SiO2(LAS) glass-ceramics and transition-metal oxide

    International Nuclear Information System (INIS)

    Huh, Nam Jung; Yang, Joong Sik

    1991-01-01

    The far infrared radiation characteristic for Li 2 O.Al 2 O 3 .4SiO 2 (LAS) glass, the LAS glass-ceramic and sintered transition metal oxides such as CuO, Fe 2 O 3 and Co 3 O 4 , were investigated. LAS glass and LAS glass-ceramic was higher than that of the LAS glass. Heat-treated CuO and Co 3 o 4 had radiation characteristic of high efficiency infrared radiant, and heat-treated Fe 2 O 3 had radiation characteristic that infrared emissivity decreased in higher was length above 15μm. (Author)

  17. On sum rules for charge transition density

    International Nuclear Information System (INIS)

    Gul'karov, I.S.

    1979-01-01

    The form factors of the quadrupole and octupole oscillations of the 12 C nucleus are compared with the predictions of the sum rules for the charge transition density (CTD). These rules allow to obtain various CTD which contain the components k: rsup(lambda+2k-2)rho(r) and rsup(lambda+2k-1)(drho(r)/dr) (k=0, 1, 2...) and can be applied to analyze the inelastic scattering of high energy particles by nuclei. It is shown that the CTD under consideration have different radius dependence and describe the data essentially better (though ambiguously) than the Tassy and Steinwedel-Jensen models do. The recurrent formulas are derived for the ratios of the higher order transition matrix elements and CTD. These formulas can be used to predict the CTD behaviour for highly excited nuclear states

  18. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  19. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    International Nuclear Information System (INIS)

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-01-01

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - μm sized domains were grown at the surface, which might not be reported for other glasses

  20. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    International Nuclear Information System (INIS)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian; Sugii, Taisuke

    2015-01-01

    We investigate the volumetric glass transition temperature T g in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T g increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T g in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T g is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment

  1. Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets

    NARCIS (Netherlands)

    Steendam, R.; Van Steenbergen, M.J.; Hennink, W.E.; Frijlink, H.W.; Lerk, C.F.

    2001-01-01

    Different molecular weight grades of poly(DL-lactic acid) were applied as release controlling excipients in tablets for oral drug administration. The role of molecular weight and glass transition in the mechanism of water-induced volume expansion and drug release of PDLA tablets was investigated.

  2. Ferromagnetism and spin glass ordering in transition metal alloys (invited)

    Science.gov (United States)

    Crane, S.; Carnegie, D. W., Jr.; Claus, H.

    1982-03-01

    Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.

  3. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  4. Models of agglomeration and glass transition

    CERN Document Server

    Kerner, Richard

    2007-01-01

    This book is for any physicist interested in new vistas in the domain of non-crystalline condensed matter, aperiodic and quasi-crystalline networks and especially glass physics and chemistry. Students with an elementary background in thermodynamics and statistical physics will find the book accessible. The physics of glasses is extensively covered, focusing on their thermal and mechanical properties, as well as various models leading to the formation of the glassy states of matter from overcooled liquids. The models of agglomeration and growth are also applied to describe the formation of quasicrystals, fullerenes and, in biology, to describe virus assembly pathways.

  5. Crystallization study of Te–Bi–Se glasses

    Indian Academy of Sciences (India)

    Unknown

    Thermal stability; chalcogenide glasses; glass forming ability; glass transition temperature. 1. Introduction ... as well as their wide technological applications including threshold and ... are other important aspects such as ON-state current,.

  6. Challenges in commercial manufacture of radiation shielding glasses

    International Nuclear Information System (INIS)

    Gupta, R.K.

    2011-01-01

    Radioactive hot-cells employ Radiation Shielding Windows (RSWs), assembled from specialty glasses, developed exclusively for nuclear industry. RSWs serve the twin purpose of direct viewing and shielding protection to the operator and use various types of radiation resistant and optically compatible glasses, such as low-density borosilicate glass; medium-density glass with up to 45% Lead and high-density glass with over 70% lead. Some glasses are Ceria-doped for enhancing their resistance threshold to radiation browning. A clear view of future requirement, capital and environmental costs could be the driving force towards bringing about changes in melting practices, encourage melting development, and enhancing collaboration. With DAE and CGCRI working in tandem, production of the entire range of RSW glasses by an Indian glass industry participant may no longer be a distant dream

  7. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  8. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  9. Phase-glass scaling near the coherence transition in granular HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Roa-Rojas, J.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A. A. 14490, Bogota DC (Colombia); Prieto, P. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia)

    2005-07-01

    Systematic measurements of electrical magnetoconductivity near the coherence transition of granular HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films are reported. Experiments performed in magnetic fields ranging from 0 to 2500 Oe reveal that close to the coherence transition temperature T{sub c0}(H), the correlation length scales as a power law of temperature with a thermal-dependent critical exponent, {nu}. In low external fields the corresponding value of {nu} is consistent with the two-dimensional phase-glass model, which is in the same dynamical universality class of the so-called vortex-glass model. At applied fields H > 1000 Oe, the vortex dynamics becomes stronger and the coherence transition is not observed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Determination of the Glass-Transition Temperature of GRPS and CFRPS Using a Torsion Pendulum in Regimes of Freely Damped Vibrations and Quasi-Stastic Torsion of Specimens

    Science.gov (United States)

    Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.

    2018-03-01

    A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.

  11. Thermal properties and optical transition probabilities of Tm3 + doped TeO2-WO3 glass.

    Science.gov (United States)

    Cenk, S; Demirata, B; Oveçoglu, M L; Ozen, G

    2001-10-01

    Glasses with the composition of (1 - x)TeO2 + (x)WO3, where x = 0.15, 0.25 and 0.3 were prepared and, their thermal and absorption measurements were carried out. Differential thermal analysis (DTA) curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while crystallization was not observed for the glasses containing a WO3 content of more than 15 mol%. All the glasses were found to be moisture-resistant. The absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of the Tm3+ ion were observed in the optical absorption spectra. Integrated absorption cross-sections of each band except that of 3H5 level was found to vary with the glass composition. Judd-Ofelt analysis was carried out for the samples doped with 1.0 mol% Tm2O3. The omega2 parameter shows the strongest dependence on the host composition and it increases with the increasing WO3 amount. The value of omega4 increases rather slowly while the value of omega6 is practically independent of the composition. The strong dependence of the parameter omega2 indicates that this parameter is related to the structural change and the symmetry of the local environment of the Tm3+ ions in this glass.

  12. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    Science.gov (United States)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  13. Simultaneous Determination of Glass Transition Temperatures of Several Polymers.

    Science.gov (United States)

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.

  14. Study of L-ascorbic acid (vitamin C)/H 2O mixture across glass transition

    Science.gov (United States)

    Migliardo, F.; Branca, C.; Faraone, A.; Magazù, S.; Migliardo, P.

    2001-07-01

    In this paper, we report quasi elastic neutron scattering (QENS) spectra of vitamin C aqueous solutions, obtained using MIBEMOL spectrometer (LLB). The main purpose of this work is to characterize the relaxational and vibrational properties of the Vitamin C/H 2O system below and above the glass transition temperature by analysing the low-frequency neutron scattering spectra. The determination of the relative weight of vibrational over relaxational contributions allows to get information on the fragility degree of this peculiar hydrogen-bond system.

  15. Spin glass transition in the rhombohedral LiNi1/3Mn1/3Co1/3O2

    International Nuclear Information System (INIS)

    Bie, Xiaofei; Yang, Xu; Han, Bing; Chen, Nan; Liu, Lina; Wei, Yingjin; Wang, Chunzhong; Chen, Hong; Du, Fei; Chen, Gang

    2013-01-01

    Highlights: •The Rietveld analysis of XRD data reveals a single phase with rhombohedral structure. •Dc susceptibility data suggest a spin glass behavior at low T in the 333 compound. •The ac susceptibility measurements have been observed in the typical SG system. •Three models have been employed to study the behavior of the spin glass state. •Both geometrical frustration and disorder play important role in the formation of SG. -- Abstract: Layered LiNi 1/3 Mn 1/3 Co 1/3 O 2 has been synthesized by co-precipitation method, and the magnetic properties were comprehensively studied by dc and ac susceptibilities. The dc magnetization curves show the irreversibility and spin freezing behavior at 109 K and 9 K. The evolution of real and imaginary part of ac susceptibility under different frequencies indicates a spin glass transition at low temperature. Three models (the Néel–Arrhenius law, the Vogel–Fulcher law, and the power law) have been employed to study the relaxation behavior of the spin glass state. Both frustration and disorder play important role in the formation of spin glass

  16. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  17. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  18. Structural and thermochemical properties of sodium magnesium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oueslati Omrani, Refka [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Kaoutar, Abdeltif; El Jazouli, Abdelaziz [LCMS, URAC 17, Faculté des Sciences Ben M’Sik, UH2MC, Casablanca (Morocco); Krimi, Saida [LPCMI, Faculté des Sciences Aïn Chok, UH2C, Casablanca (Morocco); Khattech, Ismail, E-mail: ismail.khattech@fst.rnu.tn [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Jemal, Mohamed [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Videau, Jean-Jacques [ICMCB, Institut de Chimie de la matière condensée, Université de Bordeaux 1 (France); Couzi, Michel [Institut des Sciences Moléculaires, CNRS-Université de Bordeaux 1 (France)

    2015-05-25

    Highlights: • Phosphate glasses were prepared by met quenching technique. • Structural study is investigated using FTIR, Raman and {sup 31}PNMR spectroscopy. • A 4.5% weight of H{sub 3}PO{sub 4} solution has use for glass dissolution. • Dissolution is endothermic for lower MgO content and becomes exothermic when x rises. - Abstract: Ternary phosphate based glasses with the general formula (50−x/2)Na{sub 2}O–xMgO–(50−x/2)P{sub 2}O{sub 5} (0 ⩽ x ⩽ 42.8 mol%), where the O/P ratio was varied from 3 to 3.75, have been prepared using a conventional melt quenching technique. Samples were investigated by means of density measurements, Fourier-transformed infrared (FTIR), Raman and {sup 31}P solid state magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies, differential scanning calorimetry (DSC), inductively coupled plasma atomic emission spectroscopy (ICP/AES) analysis and calorimetric dissolution. The depolymerization of metaphosphate chains are described by the decrease of Q{sup 2} tetrahedral sites allowing the formation of pyrophosphate groups (Q{sup 1}) revealed by spectroscopic investigations. As a result, the increase of density and glass transition temperature when x rises. Calorimetric study shows that the dissolution phenomenon is endothermic for a lower MgO content and becomes exothermic when magnesium oxide is gradually incorporated, suggesting the disruption of phosphate chains with increasing O/P ratio.

  19. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    Science.gov (United States)

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  20. Shear-driven dynamic clusters in a colloidal glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David

    2007-03-01

    We investigate the effect of shear applied to a colloidal glass on a microscopic level using a shear device that can be mounted on top of a confocal microscope. We find that the glass yields at a critical strain of about 10%, independently of the shear rate. Surprisingly, the yielding is accompanied by an increase of cooperative particle movements and a formation of dynamic clusters which is in contrast to the normal glass transition where one typically finds heterogeneity increasing whilst moving towards the glass transition.