WorldWideScience

Sample records for density functional formalism

  1. Time-dependent internal density functional theory formalism and Kohn-Sham scheme for self-bound systems

    International Nuclear Information System (INIS)

    Messud, Jeremie

    2009-01-01

    The stationary internal density functional theory (DFT) formalism and Kohn-Sham scheme are generalized to the time-dependent case. It is proven that, in the time-dependent case, the internal properties of a self-bound system (such as an atomic nuclei or a helium droplet) are all defined by the internal one-body density and the initial state. A time-dependent internal Kohn-Sham scheme is set up as a practical way to compute the internal density. The main difference from the traditional DFT formalism and Kohn-Sham scheme is the inclusion of the center-of-mass correlations in the functional.

  2. Density-Functional formalism

    International Nuclear Information System (INIS)

    Szasz, L.; Berrios-Pagan, I.; McGinn, G.

    1975-01-01

    A new Density-Functional formula is constructed for atoms. The kinetic energy of the electron is divided into two parts: the kinetic self-energy and the orthogonalization energy. Calculations were made for the total energies of neutral atoms, positive ions and for the He isoelectronic series. For neutral atoms the results match the Hartree-Fock energies within 1% for atoms with N 36 the results generally match the HF energies within 0.1%. For positive ions the results are fair; for the molecular applications a simplified model is developed in which the kinetic energy consists of the Weizsaecker term plus the Fermi energy reduced by a continuous function. (orig.) [de

  3. New correlation potential for the local-spin-density functional formalism. II

    International Nuclear Information System (INIS)

    Kolar, M.; Farkas, L.

    1982-01-01

    Using the new parameterization for the correlation potential which seems to be the best that is at present available within the local-spin-density (LSD) functional formalism, the Fermi contact term in light atoms (up to Ni) is calculated. Although the overall improvement of the previous LSD results is obtained, discrepancy between theory and experiment remains rather large. It seems that the local approximation for exchange and correlation fails to predict such quantities as magnetic-moment density near the nucleus. It is also shown that the self-interaction correction does not remedy this failure. Further, the effect of the nonzero nuclear radius is investigated and found to be most important in the lightest atoms (e.g. a factor of 0.664 appears in the case of Li). This fact was omitted in all previous calculations and throws doubt on the reported excellent agreement of the results of many-body perturbation theory with experiment. It was also verified that the contact approximation of the Fermi contact term is really good enough. (author)

  4. Density functional theory

    International Nuclear Information System (INIS)

    Das, M.P.

    1984-07-01

    The state of the art of the density functional formalism (DFT) is reviewed. The theory is quantum statistical in nature; its simplest version is the well-known Thomas-Fermi theory. The DFT is a powerful formalism in which one can treat the effect of interactions in inhomogeneous systems. After some introductory material, the DFT is outlined from the two basic theorems, and various generalizations of the theorems appropriate to several physical situations are pointed out. Next, various approximations to the density functionals are presented and some practical schemes, discussed; the approximations include an electron gas of almost constant density and an electron gas of slowly varying density. Then applications of DFT in various diverse areas of physics (atomic systems, plasmas, liquids, nuclear matter) are mentioned, and its strengths and weaknesses are pointed out. In conclusion, more recent developments of DFT are indicated

  5. Calculations of nuclear energies using the energy density formalism

    International Nuclear Information System (INIS)

    Pu, W.W.T.

    1975-01-01

    The energy density formalism (EDF) is used to investigate two problems. In this formalism the energy of the nucleus is expressed as a functional of its density. The nucleus energy is obtained by minimizing the functional with respect to the density. The first problem has to do with the stability of nuclei having shapes of different degrees of central depression (bubble shapes). It is shown that the bubble shapes are energetically favorable only for unrealistically large nuclei. Particularly, the super heavy nucleus that has been suggested (Z = 114, N = 184) prefers a shape with constant central density. These results are in good agreement with earlier calculations using the liquid drop model. The second problem concerns an anomaly detected experimentally in the isotope shift of mercury. The isotope shifts among a long chain of mercury isotopes show a sudden change as the neutron number is reduced. In particular, the experimental result suggests that the effective size of the charge distributions of 183 Hg and 185 Hg are as large as that of 196 Hg. Such sudden changes in other nuclei have been attributed to a sudden onset of permanent quadruple deformation. In the case of mercury there is no experimental evidence for deformed shapes. It was, therefore, suggested that the proton distribution might develop a central depression in the lighter isotopes. The EDF is used to investigate the mercury isotope shift anomaly following the aforementioned suggestion. Specifically, nucleon densities with different degrees of central depression are generated. Energies corresponding to these densities are obtained. To allow for shell effects, nucleon densities are obtained from single-particle wave functions. Calculations are made for a few mercury isotopes, especially for 184 Hg. The results are that in all cases the energy is lower for densities corresponding to a solid spherical shape

  6. Density functionals from deep learning

    OpenAIRE

    McMahon, Jeffrey M.

    2016-01-01

    Density-functional theory is a formally exact description of a many-body quantum system in terms of its density; in practice, however, approximations to the universal density functional are required. In this work, a model based on deep learning is developed to approximate this functional. Deep learning allows computational models that are capable of naturally discovering intricate structure in large and/or high-dimensional data sets, with multiple levels of abstraction. As no assumptions are ...

  7. First-principles nonlocal-pseudopotential approach in the density-functional formalism: Development and application to atoms

    International Nuclear Information System (INIS)

    Zunger, A.; Cohen, M.L.

    1978-01-01

    We present a method for obtaining first-principles nonlocal atomic pseudopotentials in the density-functional formalism by direct inversion of the pseudopotential eigenvalue problem, where the pseudo-wave-functions are represented as a unitary rotation of the exact all-electron wave functions. The usual pseudopotential nonuniqueness of the orbitals is fixed by imposing the physically appealing constraints of maximum similarity to the all-electron wave functions and minimum radial kinetic energy. These potentials are shown to yield very accurate energy eigenvalues, total energy differences, and wave-function moments over a wide range of excited atomic configurations. We have calculated the potentials for 68 transition and nontransition elements of rows 1--5 in the Periodic Table. Their characteristic features, such as classical turning points and minimum potential radii, faithfully reflect the chemical regularities of the Periodic Table. The nonempirical nature of these potentials permits both an analysis of their dominant features in terms of the underlying interelectronic potentials and the systematic improvement of their predictions through inclusion of appropriate correlation terms. As these potentials accurately reproduce both energy eigenvalues and wave functions and can be readily fit to analytic forms with known asymptotic behavior, they can be used directly for studies of many structural and electronic properties of solids

  8. Reduced density matrix functional theory via a wave function based approach

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Robert; Bloechl, Peter [Institute for Theoretical Physics, Clausthal University of Technology, Clausthal (Germany); Pruschke, Thomas [Institute for Theoretical Physics, University of Goettingen, Goettingen (Germany)

    2016-07-01

    We propose a new method for the calculation of the electronic and atomic structure of correlated electron systems based on reduced density matrix functional theory (rDMFT). The density-matrix functional is evaluated on the fly using Levy's constrained search formalism. The present implementation rests on a local approximation of the interaction reminiscent to that of dynamical mean field theory (DMFT). We focus here on additional approximations to the exact density-matrix functional in the local approximation and evaluate their performance.

  9. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried

  10. Energy vs. density on paths toward exact density functionals

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2018-01-01

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a “path”. Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness...

  11. Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids

    International Nuclear Information System (INIS)

    Holzwarth, N.A.; Matthews, G.E.; Dunning, R.B.; Tackett, A.R.; Zeng, Y.

    1997-01-01

    The projector augmented-wave (PAW) method was developed by Bloechl as a method to accurately and efficiently calculate the electronic structure of materials within the framework of density-functional theory. It contains the numerical advantages of pseudopotential calculations while retaining the physics of all-electron calculations, including the correct nodal behavior of the valence-electron wave functions and the ability to include upper core states in addition to valence states in the self-consistent iterations. It uses many of the same ideas developed by Vanderbilt in his open-quotes soft pseudopotentialclose quotes formalism and in earlier work by Bloechl in his open-quotes generalized separable potentials,close quotes and has been successfully demonstrated for several interesting materials. We have developed a version of the PAW formalism for general use in structural and dynamical studies of materials. In the present paper, we investigate the accuracy of this implementation in comparison with corresponding results obtained using pseudopotential and linearized augmented-plane-wave (LAPW) codes. We present results of calculations for the cohesive energy, equilibrium lattice constant, and bulk modulus for several representative covalent, ionic, and metallic materials including diamond, silicon, SiC, CaF 2 , fcc Ca, and bcc V. With the exception of CaF 2 , for which core-electron polarization effects are important, the structural properties of these materials are represented equally well by the PAW, LAPW, and pseudopotential formalisms. copyright 1997 The American Physical Society

  12. 2nd derivatives of the electronic energy in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Dam, H. van

    2001-08-01

    This document details the equations needed to implement the calculation of vibrational frequencies within the density functional formalism of electronic structure theory. This functionality has been incorporated into the CCP1 DFT module and the required changes to the application programmers interface are outlined. Throughout it is assumed that an implementation of Hartree-Fock vibrational frequencies is available that can be modified to incorporate the density functional formalism. Employing GAMESS-UK as an example the required changes to the Hartree-Fock code are outlined. (author)

  13. Single-particle energies and density of states in density functional theory

    Science.gov (United States)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  14. Reduced density matrix embedding. General formalism and inter-domain correlation functional.

    Science.gov (United States)

    Pernal, Katarzyna

    2016-08-03

    An embedding method for a one-electron reduced density matrix (1-RDM) is proposed. It is based on partitioning of 1-RDM into domains and describing each domain in the effective potential of the other ones. To assure N-representability of the total 1-RDM N-representability and strong-orthogonality conditions are imposed on the domains. The total energy is given as a sum of single-domain energies and domain-domain electron interaction contributions. Higher than two-body inter-domain interaction terms are neglected. The two-body correlation terms are approximated by deriving inter-domain correlation from couplings of density fluctuations of two domains at a time. Unlike in most density embedding methods kinetic energy is treated exactly and it is not required that densities pertaining to the domains are only weakly overlapping. We propose to treat each domain by a corrected perfect-pairing functional. On a few examples it is shown that the embedding reduced density matrix functional method (ERDMF) yields excellent results for molecules that are well described by a single Lewis structure even if strong static intra-domain or dynamic inter-domain correlation effects must be accounted for.

  15. Relativistic density functional for nuclear structure

    CERN Document Server

    2016-01-01

    This book aims to provide a detailed introduction to the state-of-the-art covariant density functional theory, which follows the Lorentz invariance from the very beginning and is able to describe nuclear many-body quantum systems microscopically and self-consistently. Covariant density functional theory was introduced in nuclear physics in the 1970s and has since been developed and used to describe the diversity of nuclear properties and phenomena with great success. In order to provide an advanced and updated textbook of covariant density functional theory for graduate students and nuclear physics researchers, this book summarizes the enormous amount of material that has accumulated in the field of covariant density functional theory over the last few decades as well as the latest developments in this area. Moreover, the book contains enough details for readers to follow the formalism and theoretical results, and provides exhaustive references to explore the research literature.

  16. Floquet-Green function formalism for harmonically driven Hamiltonians

    International Nuclear Information System (INIS)

    Martinez, D F

    2003-01-01

    A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system

  17. Uniform magnetic fields in density-functional theory

    Science.gov (United States)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  18. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism

    International Nuclear Information System (INIS)

    Gardet, G.

    1995-01-01

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)

  19. Recent advances in density functional methods, pt. 1-2

    CERN Document Server

    Chong, Delano P

    1995-01-01

    Of all the different areas in computational chemistry, density functional theory (DFT) enjoys the most rapid development. Even at the level of the local density approximation (LDA), which is computationally less demanding, DFT can usually provide better answers than Hartree-Fock formalism for large systems such as clusters and solids. For atoms and molecules, the results from DFT often rival those obtained by ab initio quantum chemistry, partly because larger basis sets can be used. Such encouraging results have in turn stimulated workers to further investigate the formal theory as well as the

  20. General framework for fluctuating dynamic density functional theory

    Science.gov (United States)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz

  1. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  2. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  3. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  4. Effects of shape differences in the level densities of three formalisms on calculated cross-sections

    International Nuclear Information System (INIS)

    Fu, C.Y.; Larson, D.C.

    1998-01-01

    Effects of shape differences in the level densities of three formalisms on calculated cross-sections and particle emission spectra are described. Reactions for incident neutrons up to 20 MeV on 58 Ni are chosen for illustrations. Level density parameters for one of the formalisms are determined from the available neutron resonance data for one residual nuclide in the binary channels and from fitting the measured (n,n'), (n,p) and (n,α) cross-sections for the other two residual nuclides. Level density parameters for the other two formalisms are determined such that they yield the same values as the above one at two selected energies. This procedure forces the level densities from the three formalisms used for the binary pat of the calculation to be as close as possible. The remaining differences are in their energy dependences (shapes). It is shown that these shape differences alone are enough to cause the calculated cross-sections and particle emission spectra to be different by up to 60%. (author)

  5. Longitudinal Associations Between Formal Volunteering and Cognitive Functioning.

    Science.gov (United States)

    Proulx, Christine M; Curl, Angela L; Ermer, Ashley E

    2018-03-02

    The present study examines the association between formal volunteering and cognitive functioning over time. We also examine the moderating roles of race, sex, education, and time. Using 11,100 participants aged 51 years and older and nine waves of data from the Health and Retirement Survey, we simultaneously modeled the longitudinal associations between engaging in formal volunteering and changes in cognitive functioning using multilevel models. Formal volunteering was associated with higher levels of cognitive functioning over time, especially with aspects of cognitive functioning related to working memory and processing. This association was stronger for women than it was for men, and for those with below average levels of education. The positive association between formal volunteering and cognitive functioning weakened over time when cognitive functioning was conceptualized as memory, but strengthened over time when conceptualized as working memory and processing. Volunteering is a productive activity that is beneficial not just to society, but to volunteers' levels of cognitive functioning in older age. For women and those with lower levels of education, formal volunteering appears particularly beneficial to working memory and processing. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Teaching Density Functional Theory Through Experiential Learning

    International Nuclear Information System (INIS)

    Narasimhan, Shobhana

    2015-01-01

    Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school. (paper)

  7. Energy vs. density on paths toward more exact density functionals.

    Science.gov (United States)

    Kepp, Kasper P

    2018-03-14

    Recently, the progression toward more exact density functional theory has been questioned, implying a need for more formal ways to systematically measure progress, i.e. a "path". Here I use the Hohenberg-Kohn theorems and the definition of normality by Burke et al. to define a path toward exactness and "straying" from the "path" by separating errors in ρ and E[ρ]. A consistent path toward exactness involves minimizing both errors. Second, a suitably diverse test set of trial densities ρ' can be used to estimate the significance of errors in ρ without knowing the exact densities which are often inaccessible. To illustrate this, the systems previously studied by Medvedev et al., the first ionization energies of atoms with Z = 1 to 10, the ionization energy of water, and the bond dissociation energies of five diatomic molecules were investigated using CCSD(T)/aug-cc-pV5Z as benchmark at chemical accuracy. Four functionals of distinct designs was used: B3LYP, PBE, M06, and S-VWN. For atomic cations regardless of charge and compactness up to Z = 10, the energy effects of the different ρ are energy-wise insignificant. An interesting oscillating behavior in the density sensitivity is observed vs. Z, explained by orbital occupation effects. Finally, it is shown that even large "normal" problems such as the Co-C bond energy of cobalamins can use simpler (e.g. PBE) trial densities to drastically speed up computation by loss of a few kJ mol -1 in accuracy. The proposed method of using a test set of trial densities to estimate the sensitivity and significance of density errors of functionals may be useful for testing and designing new balanced functionals with more systematic improvement of densities and energies.

  8. The use of perturbation theory in density-functional theory

    International Nuclear Information System (INIS)

    Goerling, A.

    1996-01-01

    Perturbation theory with respect to the electron-electron interaction leads to expressions for the exchange and correlation energies and potentials in terms of Kohn-Sham orbitals and Kohn-Sham eigenvalues. An exact open-quote exchange-only close-quote procedure for solids is introduced. Results for several semiconductors are presented. Perturbation theory expansions for the hardness of molecules and the bad gap of solids are given. Density-functional exchange and correlation energies for excited states are defined and a perturbation theory based Kohn-Sham formalism to treat excited states within density-functional theory is introduced

  9. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Eshuis, Henk [Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043 (United States)

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  10. Stationary solution of a time dependent density matrix formalism

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1994-01-01

    A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)

  11. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  12. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    Science.gov (United States)

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  13. Non-local energy density functionals: models plus some exact general results

    International Nuclear Information System (INIS)

    March, N.H.

    2001-02-01

    Holas and March (Phys. Rev. A51, 2040, 1995) gave a formally exact expression for the force - δV xc (r-tilde)/δr-tilde associated with the exchange-correlation potential V xc (r-tilde) of density functional theory. This forged a precise link between first- and second-order density matrices and V xc (r-tilde). Here models are presented in which these low-order matrices can be related to the ground-state electron density. This allows non-local energy density functionals to be constructed within the framework of such models. Finally, results emerging from these models have led to the derivation of some exact 'nuclear cusp' relations for exchange and correlation energy densities in molecules, clusters and condensed phases. (author)

  14. Density functional theory for polymeric systems in 2D

    International Nuclear Information System (INIS)

    Słyk, Edyta; Bryk, Paweł; Roth, Roland

    2016-01-01

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys . 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. (paper)

  15. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  16. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    International Nuclear Information System (INIS)

    Shamim, Md; Harbola, Manoj K

    2010-01-01

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  17. Comments on the locality in density-functional theory

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten

    2003-01-01

    The 'locality hypothesis' in density-functional theory (DFT), implying that the functional derivative is equivalent to a multiplicative local function, forms the basis of models of Kohn-Sham type. This has been generally accepted by the community since the advent of the model, and has later been formally proved for a large class of functionals. The hypothesis has recently been questioned by Nesbet [Phys. Rev. A 58, R12 (1998) and Phys. Rev. A 65, 010502 (2001)], who claims that it fails for the kinetic-energy functional for a system with more than two noninteracting electrons with a nondegenerate ground state. This conclusion has been questioned by Gal [Phys. Rev. A 62, 044501 (2000)] and by Holas and March [Phys. Rev. A 64, 016501 (2001)]. We claim that the arguments of Nesbet are incorrect, since the orbital functional used for the kinetic energy is not a unique functional of the total density in the domain of unnormalized orbitals. We have demonstrated that with a proper definition of the kinetic energy, which is a unique density functional also in the unnormalized region, the derivative can be represented by a single local multiplicative function for all v-representable densities. Therefore, we consider the controversy connected with the issue raised by Nesbet as resolved. We believe that the proof of the differentiability given here can be extended to larger groups of DFT functionals, and works along these lines are in progress

  18. Rydberg energies using excited state density functional theory

    International Nuclear Information System (INIS)

    Cheng, C.-L.; Wu Qin; Van Voorhis, Troy

    2008-01-01

    We utilize excited state density functional theory (eDFT) to study Rydberg states in atoms. We show both analytically and numerically that semilocal functionals can give quite reasonable Rydberg energies from eDFT, even in cases where time dependent density functional theory (TDDFT) fails catastrophically. We trace these findings to the fact that in eDFT the Kohn-Sham potential for each state is computed using the appropriate excited state density. Unlike the ground state potential, which typically falls off exponentially, the sequence of excited state potentials has a component that falls off polynomially with distance, leading to a Rydberg-type series. We also address the rigorous basis of eDFT for these systems. Perdew and Levy have shown using the constrained search formalism that every stationary density corresponds, in principle, to an exact stationary state of the full many-body Hamiltonian. In the present context, this means that the excited state DFT solutions are rigorous as long as they deliver the minimum noninteracting kinetic energy for the given density. We use optimized effective potential techniques to show that, in some cases, the eDFT Rydberg solutions appear to deliver the minimum kinetic energy because the associated density is not pure state v-representable. We thus find that eDFT plays a complementary role to constrained DFT: The former works only if the excited state density is not the ground state of some potential while the latter applies only when the density is a ground state density.

  19. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  20. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  1. Higher-order terms in the nuclear-energy-density functional

    International Nuclear Information System (INIS)

    Carlsson, B. G.; Borucki, M.; Dobaczewski, J.

    2009-01-01

    One of the current projects at the Department of Physics in the University of Jyvaeskylae is to explore more general forms of the Skyrme energy-density functional (EDF). The aim is to find new phenomenological terms which are sensitive to experimental data. In this context we have extended the Skyrme functional by including terms which contain higher orders of derivatives allowing for a better description of finite range effects. This was done by employing an expansion in derivatives in a spherical-tensor formalism [1] motivated by ideas of the density-matrix expansion. The resulting functionals have different number of free parameters depending on the order in derivatives and assumed symmetries, see Fig. 1. The usual Skyrme EDF is obtained as a second order expansion while we keep terms up to sixth order.(author)

  2. Density functional theory: Its origins, rise to prominence, and future

    Science.gov (United States)

    Jones, R. O.

    2015-07-01

    In little more than 20 years, the number of applications of the density functional (DF) formalism in chemistry and materials science has grown in an astonishing fashion. The number of publications alone shows that DF calculations make up a huge success story, and many younger colleagues are surprised to learn that the widespread application of density functional methods, particularly in chemistry, began only after 1990. This is indeed unexpected, because the origins are usually traced to the papers of Hohenberg, Kohn, and Sham more than a quarter of a century earlier. The DF formalism, its applications, and prospects were reviewed for this journal in 1989. About the same time, the combination of DF calculations with molecular dynamics promised to provide an efficient way to study structures and reactions in molecules and extended systems. This paper reviews the development of density-related methods back to the early years of quantum mechanics and follows the breakthrough in their application after 1990. The two examples from biochemistry and materials science are among the many current applications that were simply far beyond expectations in 1990. The reasons why—50 years after its modern formulation and after two decades of rapid expansion—some of the most cited practitioners in the field are concerned about its future are discussed.

  3. Many-body theory and Energy Density Functionals

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M. [INFN, Catania (Italy)

    2016-07-15

    In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)

  4. Energy density of a dissipative polarizable solid by a Lagrangean formalism

    International Nuclear Information System (INIS)

    Englman, R.; Yahalom, A.

    2003-01-01

    A Lagrangean for the dynamics of an electromagnetic field in a dispersive and dissipative material is constructed (adapting some ideas by Bekenstein and Hannay) and an expression for the energy density that is positive is obtained from it. The expression contains extra (sink) degrees of freedom that represent dissipating modes. In simplified cases the sink modes can be eliminated to yield an energy density expression in terms of the electromagnetic fields, the polarization and the magnetization only, but which contains parameters associated with the sink modes. The method of adding extra modes can be used to set up a Lagrangean formalism for dissipative systems in general, such that will reinstate time-translation invariance and will yield a unique energy density

  5. The Formalization of Cultural Psychology. Reasons and Functions.

    Science.gov (United States)

    Salvatore, Sergio

    2017-03-01

    In this paper I discuss two basic theses about the formalization of cultural psychology. First, I claim that formalization is a relevant, even necessary stage of development of this domain of science. This is so because formalization allows the scientific language to achieve a much needed autonomy from the commonsensical language of the phenomena that this science deals with. Second, I envisage the two main functions that formalization has to perform in the field of cultural psychology: on the one hand, it has to provide formal rules grounding and constraining the deductive construction of the general theory; on the other hand, it has to provide the devices for supporting the interpretation of local phenomena, in terms of the abductive reconstruction of the network of linkages among empirical occurrences comprising the local phenomena.

  6. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Betzinger, Markus

    2011-12-14

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  7. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    International Nuclear Information System (INIS)

    Betzinger, Markus

    2011-01-01

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  8. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism

    International Nuclear Information System (INIS)

    Trovato, M.; Reggiani, L.

    2011-01-01

    By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of (ℎ/2π) 2 . In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when (ℎ/2π)→0.

  9. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  10. Density functional calculations for atoms, molecules and clusters

    International Nuclear Information System (INIS)

    Gunnarsson, O.; Jones, R.O.

    1980-01-01

    The density functional formalism provides a framework for including exchange and correlation effects in the calculation of ground state properties of many-electron systems. The reduction of the problem to the solution of single-particle equations leads to important numerical advantages over other ab initio methods of incorporating correlation effects. The essential features of the scheme are outlined and results obtained for atomic and molecular systems are surveyed. The local spin density (LSD) approximation gives generally good results for systems where the bonding involves s and p electrons, but results are less satisfactory for d-bonded systems. Non-local modifications to the LSD approximation have been tested on atomic systems yielding much improved total energies. (Auth.)

  11. Density Functional Theory An Advanced Course

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    Density Functional Theory (DFT) has firmly established itself as the workhorse for the atomic-level simulation of condensed matter phases, pure or composite materials and quantum chemical systems. The present book is a rigorous and detailed introduction to the foundations up to and including such advanced topics as orbital-dependent functionals and both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, this text concentrates on the self-contained presentation of the basics of the most widely used DFT variants. This implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating strengths and weaknesses of a particular approach or functional. DFT for superconducting or nuclear and hadronic systems are not addressed in this work. The structure and material contain...

  12. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  13. On a theorem of Faltings on formal functions

    Directory of Open Access Journals (Sweden)

    Paola Bonacini

    2007-12-01

    Full Text Available In 1980, Faltings proved, by deep local algebra methods, a local resultregarding formal functions which has the following global geometric factas a consequence. Theorem. − Let k be an algebraically closed field (ofany characteristic. Let Y be a closed subvariety of a projective irreduciblevariety X defined over k. Assume that X ⊂ P^n , dim(X = d > 2 and Yis the intersection of X with r hyperplanes of P^n , with r ≤ d − 1. Then,every formal rational function on X along Y can be (uniquely extended toa rational function on X . Due to its importance, the aim of this paper is toprovide two elementary global geometric proofs of this theorem.

  14. Computational complexity of time-dependent density functional theory

    International Nuclear Information System (INIS)

    Whitfield, J D; Yung, M-H; Tempel, D G; Aspuru-Guzik, A; Boixo, S

    2014-01-01

    Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)

  15. Quantum Crystallography: Density Matrix-Density Functional Theory and the X-Ray Diffraction Experiment

    Science.gov (United States)

    Soirat, Arnaud J. A.

    Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine

  16. Density-functional calculations of the surface tension of liquid Al and Na

    Science.gov (United States)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  17. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    Science.gov (United States)

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  18. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  19. Spin theory of the density functional: reduced matrices and density functions

    International Nuclear Information System (INIS)

    Pavlov, R.; Delchev, Y.; Pavlova, K.; Maruani, J.

    1993-01-01

    Expressions for the reduced matrices and density functions of N-fermion systems of arbitrary order s (1<=s<=N) are derived within the frame of rigorous spin approach to the density functional theory (DFT). Using the local-scale transformation method and taking into account the particle spin it is shown that the reduced matrices and density functions are functionals of the total one-fermion density. Similar dependence is found for the distribution density of s-particle aggregates. Generalization and applicability of DFT to the case of s-particle ensembles and aggregates is discussed. 14 refs

  20. Description of odd-mass nuclei by multi-reference energy density functional methods

    International Nuclear Information System (INIS)

    Bally, B.

    2014-01-01

    In this work, we are interested in the treatment of odd-mass atomic nuclei in energy density functional (EDF) models. More precisely, the goal of this thesis is to develop and to apply to odd-mass nuclei, the theoretical extensions of the EDF method that are: first, the projection technique, and secondly the configuration mixing by the generator coordinate method (GCM). These two extensions are part of the so-called multi-reference energy density functional (MR-EDF) formalism and allow one to take into account, within an EDF context, the 'beyond-mean-field' correlations between the nucleons forming the nucleus. Until now, the MR-EDF formalism has been applied, in its fully-fledged version, only to the calculation of even-even nuclei. In this thesis, we want to demonstrate the applicability of such a model also for the description of odd-mass nuclei. In the first part of this thesis, we describe the theoretical formalism of the EDF models, giving particular attention to the treatment of symmetries within our approach. In the second part of the manuscript, we apply our model to the nucleus 25 Mg and investigate different aspects of the method (e.g. numerical accuracy, convergence of the configuration mixing, comparison to known experimental data). The results obtained in this work are encouraging and demonstrate the potential of our approach for theoretical nuclear structure calculations. (author)

  1. Formal Series of Generalised Functions and Their Application to Deformation Quantisation

    OpenAIRE

    Tosiek, Jaromir

    2016-01-01

    Foundations of the formal series $*$ -- calculus in deformation quantisation are discussed. Several classes of continuous linear functionals over algebras applied in classical and quantum physics are introduced. The notion of positivity in formal series calculus is proposed. Problems with defining quantum states over the set of formal series are analysed.

  2. Extension of the Kohn-Sham formulation of density functional theory to finite temperature

    Science.gov (United States)

    Gonis, A.; Däne, M.

    2018-05-01

    Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. We show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T > 0. Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T = 0, we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T > 0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T = 0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T = 0 . The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the

  3. Systematic analysis of hot Yb{sup *} isotopes using the energy density formalism

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Deepika; Sharma, Manoj K.; Rajni [Thapar University, School of Physics and Materials Science, Patiala (India); Kumar, Raj [University of Padova, Department of Physics and Astronomy, Padova (Italy); Gupta, Raj K. [Panjab University, Department of Physics, Chandigarh (India)

    2014-10-15

    A systematic study of the spin-orbit density interaction potential is carried out, with spherical as well as deformed choices of nuclei, for a variety of near-symmetric and asymmetric colliding nuclei leading to various isotopes of the compound nucleus Yb{sup *}, using the semiclassical extended Thomas-Fermi formulation (ETF) of the Skyrme energy density formalism (SEDF). We observe that the spin-orbit density interaction barrier height (V{sub JB}) and barrier position (R{sub JB}) increase systematically with the increase in number of neutrons in both the projectile and target, for spherical systems. On allowing deformation effects with optimum orientations, the barrier-height increases by a large order of magnitude, as compared to the spherical case, in going from {sup 156}Yb{sup *} to {sup 172}Yb{sup *} nuclear systems formed via near-symmetric Ni+Mo or asymmetric O+Sm colliding nuclei, except that for the oblate-shaped nuclei, the V{sub JB} is the highest and R{sub JB} shifts towards a smaller (compact) interaction radius. The temperature does not change the behavior of spin-orbit density dependent (V{sub J}) and independent (V{sub P}) interaction potentials, except for some minor changes in the magnitude. The orientation degree of freedom also plays an important role in modifying the barrier characteristics and hence produces a large effect on the fusion cross section. The fusion excitation function of the compound nuclei {sup 160,} {sup 164}Yb{sup *} formed in different incoming channels, show clearly that the new forces GSkI and KDE0v1 respond better than the old SIII force. Among the first two, KDE0v1 seems to perform better. The fusion cross-sections are also predicted for a few other isotopes of Yb{sup *}. (orig.)

  4. Hohenberg-Kohn theorem and non-V-representable densities

    International Nuclear Information System (INIS)

    Englisch, H.; Englisch, R.

    1983-01-01

    In the density-functional formalism of Hohenberg and Kohn, the variation is only allowed over the one-particle densities which are pure-state-V-representable (PS-V-representable). Levy and Lieb proved that not every ensemble-V-representable (E-V-representable) density is PS-V-representable. Since we show that the Hohenberg-Kohn formalism can be extended to a variation over E-V-representable densities for degenerated ground states, Levy's and Lieb's result is not a counterexample to the universality of the Hohenberg-Kohn theorem. The question whether every N-representable density is E-V-representable has remained open so far. Presenting examples of non-E-V-representable densities we answer this question in the negative. Thus the value of Levy's functional for the calculation of ground-state energies is obvious, since this functional only requires the N-representability of the densities. Therefore we transfer two approaches for the calculation of excited-state energies into the framework of Levy's formalism. (orig.)

  5. Formal methods in design and verification of functional specifications

    International Nuclear Information System (INIS)

    Vaelisuo, H.

    1995-01-01

    It is claimed that formal methods should be applied already when specifying the functioning of the control/monitoring system, i.e. when planning how to implement the desired operation of the plant. Formal methods are seen as a way to mechanize and thus automate part of the planning. All mathematical methods which can be applied on related problem solving should be considered as formal methods. Because formal methods can only support the designer, not replace him/her, they must be integrated into a design support tool. Such a tool must also aid the designer in getting the correct conception of the plant and its behaviour. The use of a hypothetic design support tool is illustrated to clarify the requirements such a tool should fulfill. (author). 3 refs, 5 figs

  6. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  7. A formal ontological perspective on the behaviors and functions of technical artifacts

    NARCIS (Netherlands)

    Borgo, S.; Carrara, M.; Garbacz, P.; Vermaas, P.E.

    2008-01-01

    In this paper we present a formal characterization of the engineering concepts of behavior and function of technical artifacts. We capture the meanings that engineers attach to these concepts by formalizing, within the formal ontology DOLCE, the five meanings of artifact behavior and the two

  8. Density functional theory investigation of two-dimensional dipolar fermions in a harmonic trap

    International Nuclear Information System (INIS)

    Ustunel, Hande; Abedinpour, Saeed H; Tanatar, B

    2014-01-01

    We investigate the behavior of polarized dipolar fermions in a two-dimensional harmonic trap in the framework of the density functional theory (DFT) formalism using the local density approximation. We treat only a few particles interacting moderately. Important results were deduced concerning key characteristics of the system such as total energy and particle density. Our results indicate that, at variance with Coulombic systems, the exchange- correlation component was found to provide a large contribution to the total energy for a large range of interaction strengths and particle numbers. In addition, the density profiles of the dipoles are shown to display important features around the origin that is not possible to capture by earlier, simpler treatments of such systems

  9. Using projector augmented-wave (PAW) formalism inside the density-functional perturbation theory; L'utilisation du formalisme PAW en theorie de la fonctionnelle de la densite perturbee

    Energy Technology Data Exchange (ETDEWEB)

    Audouze, Ch

    2006-07-01

    In condensed matter physics, ab-initio simulation allows to get macroscopic quantities (for example equations of state) from microscopic ones, as phonon frequencies which characterize the vibration Eigenmodes of the system. Therefore, one can theoretically predict the behavior of the material at very high pressure conditions, which can be out of reach by experiences. Computations of phonon spectrum are obtained thanks to the linear response theory, where the equations of Density Functional Theory (as the Kohn-Sham model) are perturbed around their fundamental state. The linear response functionality is one of the options included in the ABINIT code, which is an open source package developed in particular by a team of the CEA-DAM (DPTA) and the Catholic University of Louvain-la-Neuve (Belgium). Nevertheless, in spite of using pseudopotentials, computations of phonon spectrum are not tractable for heavy chemical elements, even on massively parallel computers. In order to overcome this difficulty, the linear response theory had to be extended to the PAW (Projector Augmented-Waves) formalism. In this CEA report, we first detail the PAW model, giving to it a more mathematical framework. Then we establish the linear response equations within the PAW formalism, up to the third order derivative of the total energy, for an isolated molecular system and for generic perturbations. Lastly, all these results are specified to the particular case of atom displacements and for perturbations associated to the change of an external potential in which the molecule is set. (author)

  10. No need for external orthogonality in subsystem density-functional theory.

    Science.gov (United States)

    Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R

    2016-08-03

    Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.

  11. NON-FORMAL EDUCATION WITHIN THE FUNCTION OF RESPONSIBLE PARENTING

    Directory of Open Access Journals (Sweden)

    Dragana Bogavac

    2017-06-01

    Full Text Available The aim of this survey was to discover to what degree parental non-formal education is present within the function of responsible parenting. The questionnaire research method was used in the survey. For the purpose of this research a questionnaire of 13 questions was constructed relating to the forms of non-formal education, and another questionnaire of 10 questions relating to the parents’ expectations of non-formal education. The sample included 198 parents. Examination of the scores concerning the presence of certain forms of parental non-formal education realized in cooperation with the school leads to the conclusion that the parents possess a positive attitude towards non-formal education. The analysis showed that the parents’ expectations were not on a satisfactory level. According to the results, the fathers displayed a greater interest towards non-formal education (7.72±1.35 than the mothers (6.93±1.85, (p<0.05. Unemployed parents had a greater score (7.85±1.30 than the employed parents (7.22±1.71, (p<0.05. A difference in the acceptance of non-formal education in accordance with the level of formal education was also noticeable (p<0.001. Respondents with a high school degree displayed the highest level of acceptance (7.97±0.78, while the lowest interest was seen in respondents with an associate degree (6.41±2.29. Univariate linear regression analysis showed that statistically important predictors were: gender (OR: -0.23 (-1.24 – -0.33, p< 0.001, work status (OR: -0.14 (-1.24 – -0.01, < 0.05 and the level of formal education (OR: -0.33 (-0.81 – -0.34, p< 0.001. The final results lead to the conclusion that parental non-formal education supports the concept of lifelong education.

  12. Combining formal and functional approaches to topic structure

    NARCIS (Netherlands)

    Zellers, M.; Post, B.

    2012-01-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this

  13. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    Science.gov (United States)

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  14. Density-functional theory for fluid-solid and solid-solid phase transitions.

    Science.gov (United States)

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/nfcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  15. Dominant partition method. [based on a wave function formalism

    Science.gov (United States)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  16. The problem of the universal density functional and the density matrix functional theory

    International Nuclear Information System (INIS)

    Bobrov, V. B.; Trigger, S. A.

    2013-01-01

    The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.

  17. Alpha-cluster transfer process in colliding S-D shell nuclei using the energy density formalism

    International Nuclear Information System (INIS)

    Puri, R.K.; Gupta, R.K.

    1992-01-01

    The energy density formalism is used for the first time to study the resonance-like behaviour of the α-cluster transfer process, observed for collisions between the s-d shell nuclei. Within the dynamical fragmentation theory, this formalism is shown to give better the observed alpha resonance-like mass spectrum of colliding α-particle nuclei and its suppression on adding neutrons to either of the α-particle reaction partners, compared with the earlier calculations of one of us and collaborators using the proximity pocket formula. For composite systems with N>>Z, these calculations predict an explicit preference for transfer of those clusters that are observed in recent cluster radioactivity. (Author)

  18. Critique of the foundations of time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Schirmer, J.; Dreuw, A.

    2007-01-01

    The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion

  19. Memory function formalism applied to electronic transport in disordered systems

    International Nuclear Information System (INIS)

    Cunha Lima, I.C. da

    1984-01-01

    Memory function formalism is briefly reviewed and applied to electronic transport using the projection operator technique. The resistivity of a disordered 2-D electron gas under strong magnetic field is obtained in terms of force-force correlation function. (Author) [pt

  20. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  1. Spin-Density Functionals from Current-Density Functional Theory and Vice Versa: A Road towards New Approximations

    International Nuclear Information System (INIS)

    Capelle, K.; Gross, E.

    1997-01-01

    It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society

  2. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  3. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  4. Combining Formal and Functional Approaches to Topic Structure

    Science.gov (United States)

    Zellers, Margaret; Post, Brechtje

    2012-01-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this kind of variation. We argue that it is fruitful to…

  5. Lattice dynamics calculations based on density-functional perturbation theory in real space

    Science.gov (United States)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  6. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  7. Interacting hadron resonance gas model in the K -matrix formalism

    Science.gov (United States)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  8. External field as the functional of inhomogeneous density and the density matrix functional approach

    NARCIS (Netherlands)

    Bobrov, V.B.; Trigger, S.A.; Vlasov, Y.P.

    2012-01-01

    Based on the Hohenberg-Kohn lemma and the hypotheses of the density functional existence for the external-field potential, it is shown that the strict result of the density functional theory is the equation of the external-field potential as the density functional. This result leads to the

  9. Orbital functionals in density-matrix- and current-density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, N

    2006-05-15

    Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized

  10. Hydrogen plasmas beyond density-functional theory: dynamic correlations and the onset of localization

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1984-01-01

    The density-functional theory (DFT) equations - previously considered in their application to the study of a system of ions and electrons in thermodynamic equilibrium at arbitrary temperatures and pressure - are reviewed with attention given to extending their validity in obtaining the one-electron excitation spectrum. The DFT model developed here provides structure factors and Kohn-Sham eigenstates which are then used to calculate the self-energy of the one-electron Green function, thus transcending the local-density approximations and the well-known limitations of DFT, especially with regard to the excitation spectrum. The one-particle formalism used makes contact with the multiple-scattering theories of disordered materials, liquid metals, etc., and is a necessary first step to a future calculation of two-particle propagators and related properties. 28 references

  11. Large thermoelectric efficiency of doped polythiophene junction: A density functional study

    Science.gov (United States)

    Golsanamlou, Zahra; Bagheri Tagani, Meysam; Rahimpour Soleimani, Hamid

    2018-06-01

    The thermoelectric properties of polythiophene (PT) coupled to the Au (111) electrodes are studied based on density functional theory with nonequilibrium Green function formalism. Specially, the effect of Li and Cl adsorbents on the thermoelectric efficiency of the PT junction is investigated in different concentrations of the dopants for two lengths of the PT. Results show that the presence of dopants can bring the structural changes in the oligomer and modify the arrangement of the molecular levels leading to the dramatic changes in the transmission spectra of the junction. Therefore, the large enhancement in thermopower and consequently figure of merit is obtained by dopants which makes the doped PT junction as a beneficial thermoelectric device.

  12. Local-scaling density-functional method: Intraorbit and interorbit density optimizations

    International Nuclear Information System (INIS)

    Koga, T.; Yamamoto, Y.; Ludena, E.V.

    1991-01-01

    The recently proposed local-scaling density-functional theory provides us with a practical method for the direct variational determination of the electron density function ρ(r). The structure of ''orbits,'' which ensures the one-to-one correspondence between the electron density ρ(r) and the N-electron wave function Ψ({r k }), is studied in detail. For the realization of the local-scaling density-functional calculations, procedures for intraorbit and interorbit optimizations of the electron density function are proposed. These procedures are numerically illustrated for the helium atom in its ground state at the beyond-Hartree-Fock level

  13. Molecular structures from density functional calculations with simulated annealing

    International Nuclear Information System (INIS)

    Jones, R.O.

    1991-01-01

    The geometrical structure of any aggregate of atoms is one of its basic properties and, in principle, straightforward to predict. One chooses a structure, determines the total energy E of the system of electrons and ions, and repeats the calculation for all possible geometries. The ground state structure is that with the lowest energy. A quantum mechanical calculation of the exact wave function Ψ would lead to the total energy, but this is practicable only in very small molecules. Furthermore, the number of local minima in the energy surface increases dramatically with increasing molecular size. While traditional ab initio methods have had many impressive successes, the difficulties have meant that they have focused on systems with relatively few local minima, or have used experiments or experience to limit the range of geometries studied. On the other hand, calculations for much larger molecules and extended systems are often forced to use simplifying assumptions about the interatomic forces that limit their predictive capability. The approach described here avoids both of these extremes: Total energies of predictive value are calculated without using semi-empirical force laws, and the problem of multiple minima in the energy surface is addressed. The density functional formalism, with a local density approximation for the exchange-correlation energy, allows one to calculate the total energy for a given geometry in an efficient, if approximate, manner. Calculations for heavier elements are not significantly more difficult than for those in the first row and provide an ideal way to study bonding trends. When coupled with finite-temperature molecular dynamics, this formalism can avoid many of the energetically unfavorable minima in the energy surface. We show here that the method leads to surprising and exciting results. (orig.)

  14. The detailed balance requirement and general empirical formalisms for continuum absorption

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.

  15. Mathematic-Graphical Formalization of Switch Point Control Circuit Function

    Directory of Open Access Journals (Sweden)

    Juraj Zdansky

    2004-01-01

    Full Text Available This article describes authors designed method then enables mathematic – graphical formalization of system’s functional specification. The result of this method is algebraic system – finite automata that is written in transition table. This transition table is possible to overwrite to graphic form (state diagram or to mathematic form (transition and output function. This method is described by example of switch point control circuit.

  16. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    International Nuclear Information System (INIS)

    Hyldgaard, P

    2012-01-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  17. Wave-function functionals for the density

    International Nuclear Information System (INIS)

    Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We extend the idea of the constrained-search variational method for the construction of wave-function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W=Σ i r i n , n=-2,-1,1,2, W=Σ i δ(r i ) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2)Σ i ∇ i 2 , the two-particle operators W=Σ n u n , n=-2,-1,1,2, where u=|r i -r j |, and the energy are accurate. We note that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional ψ[χ] is closer to the true wave function.

  18. Effect of the choice of wave functions on theoretical predictions for symmetry breaking processes: a view from the DKP formalism

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1978-01-01

    When considering an elementary particle matrix element, of necessity one must make an assumption, which often goes unnoticed, as to what formalism should be used for the wave functions. A current or interaction Lagrangian-density matrix-element is of the form V = anti psi/sub out/GAMMA psi/sub in/, where psi/sub in/ and anti psi/sub out/ represent the physical ingoing and outgoing particles, and GAMMA represents the vertex function. A current must have the dimensions of (length) -3 = (mass) 3 in units of h = c = 1. psi/sub in/ and anti psi/sub out/ must be described in terms of the physical on-shell masses or else one has no phase space. It is only the vertex function which can be symmetric in the internal symmetry under consideration. The decision as to how much of the matrix element will be taken to be symmetric and how much of the matrix element will be taken to be associated with on-mass-shell wave functions is a fundamental assumption. Depending on how the assumption is made, different results will be predicted. Normally first-order Dirac wave functions, with dimensions (length) -3 / 2 and second-order Klein--Gordon wave functions with dimensions (length) -1 are considered for spin- 1 / 2 fermions and spin-O bosons, respectively. The types of new results which are obtained if, on the contrary, one chooses to consider bosons in the first-order Duffin--Kemmer--Petiau formalism are discussed. It is argued that the DKP formalism represents a complementary viewpoint to the spectrum generating approach. Both challenge the standard phenomenology: DKP by changing the wave function, spectrum generating by changing the vertex function

  19. Fragmentation function in non-equilibrium QCD using closed-time path integral formalism

    International Nuclear Information System (INIS)

    Nayak, Gouranga C.

    2009-01-01

    In this paper we implement the Schwinger-Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins-Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function f(vector (p)) fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark-gluon plasma at RHIC and LHC. (orig.)

  20. A density functional and quantum Monte Carlo study of glutamic acid in vacuo and in a dielectric continuum medium

    NARCIS (Netherlands)

    Floris, F.; Filippi, Claudia; Amovilli, C.

    2012-01-01

    We present density functional theory (DFT) and quantum Monte Carlo (QMC) calculations of the glutamic acid and glutamate ion in vacuo and in various dielectric continuum media within the polarizable continuum model (PCM). In DFT, we employ the integral equation formalism variant of PCM while, in

  1. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    International Nuclear Information System (INIS)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry

    2015-01-01

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

  2. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Laura E., E-mail: lratcliff@anl.gov [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry [Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France)

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.

  3. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  4. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    International Nuclear Information System (INIS)

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-01-01

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  5. Functional Constructivism: In Search of Formal Descriptors.

    Science.gov (United States)

    Trofimova, Irina

    2017-10-01

    The Functional Constructivism (FC) paradigm is an alternative to behaviorism and considers behavior as being generated every time anew, based on an individual's capacities, environmental resources and demands. Walter Freeman's work provided us with evidence supporting the FC principles. In this paper we make parallels between gradual construction processes leading to the formation of individual behavior and habits, and evolutionary processes leading to the establishment of biological systems. Referencing evolutionary theory, several formal descriptors of such processes are proposed. These FC descriptors refer to the most universal aspects for constructing consistent structures: expansion of degrees of freedom, integration processes based on internal and external compatibility between systems and maintenance processes, all given in four different classes of systems: (a) Zone of Proximate Development (poorly defined) systems; (b) peer systems with emerging reproduction of multiple siblings; (c) systems with internalized integration of behavioral elements ('cruise controls'); and (d) systems capable of handling low-probability, not yet present events. The recursive dynamics within this set of descriptors acting on (traditional) downward, upward and horizontal directions of evolution, is conceptualized as diagonal evolution, or di-evolution. Two examples applying these FC descriptors to taxonomy are given: classification of the functionality of neuro-transmitters and temperament traits; classification of mental disorders. The paper is an early step towards finding a formal language describing universal tendencies in highly diverse, complex and multi-level transient systems known in ecology and biology as 'contingency cycles.'

  6. Perspective: Fifty years of density-functional theory in chemical physics

    International Nuclear Information System (INIS)

    Becke, Axel D.

    2014-01-01

    Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development

  7. Perspective: Fifty years of density-functional theory in chemical physics

    Energy Technology Data Exchange (ETDEWEB)

    Becke, Axel D., E-mail: axel.becke@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Rd., P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-05-14

    Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.

  8. Joint density-functional theory and its application to systems in solution

    Science.gov (United States)

    Petrosyan, Sahak A.

    The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional

  9. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states

    International Nuclear Information System (INIS)

    Yu, Kuang; Libisch, Florian; Carter, Emily A.

    2015-01-01

    We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to our previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors

  10. Multicomponent density functional theory embedding formulation

    Energy Technology Data Exchange (ETDEWEB)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, Illinois 61801 (United States)

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  11. Comparison of the iterated equation of motion approach and the density matrix formalism for the quantum Rabi model

    Science.gov (United States)

    Kalthoff, Mona; Keim, Frederik; Krull, Holger; Uhrig, Götz S.

    2017-05-01

    The density matrix formalism and the equation of motion approach are two semi-analytical methods that can be used to compute the non-equilibrium dynamics of correlated systems. While for a bilinear Hamiltonian both formalisms yield the exact result, for any non-bilinear Hamiltonian a truncation is necessary. Due to the fact that the commonly used truncation schemes differ for these two methods, the accuracy of the obtained results depends significantly on the chosen approach. In this paper, both formalisms are applied to the quantum Rabi model. This allows us to compare the approximate results and the exact dynamics of the system and enables us to discuss the accuracy of the approximations as well as the advantages and the disadvantages of both methods. It is shown to which extent the results fulfill physical requirements for the observables and which properties of the methods lead to unphysical results.

  12. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  13. Magnetic fields and density functional theory

    International Nuclear Information System (INIS)

    Salsbury, Freddie Jr.

    1999-01-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules

  14. Density dependence of the nuclear energy-density functional

    Science.gov (United States)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  15. Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism

    Science.gov (United States)

    Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.

    2015-04-01

    We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.

  16. Density-functional theory for internal magnetic fields

    Science.gov (United States)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  17. Necessity of Integral Formalism

    International Nuclear Information System (INIS)

    Tao Yong

    2011-01-01

    To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 445], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D 12 (1975) 3845]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schrödinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schrödinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description. (general)

  18. Density-density functionals and effective potentials in many-body electronic structure calculations

    International Nuclear Information System (INIS)

    Reboredo, Fernando A.; Kent, Paul R.

    2008-01-01

    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.

  19. Polymer density functional approach to efficient evaluation of path integrals

    DEFF Research Database (Denmark)

    Brukhno, Andrey; Vorontsov-Velyaminov, Pavel N.; Bohr, Henrik

    2005-01-01

    A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly......, the path integral problem can, in principle, be solved exactly by making use of the two-particle pair correlation function (2p-PCF) for the ends of an open polymer, half of the original. This way the exact data for one-dimensional quantum harmonic oscillator are reproduced in a wide range of temperatures....... The exact solution is not, though, reachable in three dimensions (3D) because of a vast amount of storage required for 2p-PCF. In order to treat closed paths in 3D, we introduce a so-called "open ring" approximation which proves to be rather accurate in the limit of long chains. We also employ a simple self...

  20. Excited-state density functional theory

    International Nuclear Information System (INIS)

    Harbola, Manoj K; Hemanadhan, M; Shamim, Md; Samal, P

    2012-01-01

    Starting with a brief introduction to excited-state density functional theory, we present our method of constructing modified local density approximated (MLDA) energy functionals for the excited states. We show that these functionals give accurate results for kinetic energy and exchange energy compared to the ground state LDA functionals. Further, with the inclusion of GGA correction, highly accurate total energies for excited states are obtained. We conclude with a brief discussion on the further direction of research that include the construction of correlation energy functional and exchange potential for excited states.

  1. Points of convergence between functional and formal approaches to syntactic analysis

    DEFF Research Database (Denmark)

    Bjerre, Tavs; Engels, Eva; Jørgensen, Henrik

    2008-01-01

    respectively: The functional approach is represented by Paul Diderichsen's (1936, 1941, 1946, 1964) sætningsskema, ‘sentence model', and the formal approach is represented by analysis whose main features are common to the principles and parameters framework (Chomsky 1986) and the minimalist programme (Chomsky...

  2. Spectral function from Reduced Density Matrix Functional Theory

    Science.gov (United States)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  3. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  4. Self-interaction error in density functional theory: a mean-field correction for molecules and large systems

    International Nuclear Information System (INIS)

    Ciofini, Ilaria; Adamo, Carlo; Chermette, Henry

    2005-01-01

    Corrections to the self-interaction error which is rooted in all standard exchange-correlation functionals in the density functional theory (DFT) have become the object of an increasing interest. After an introduction reminding the origin of the self-interaction error in the DFT formalism, and a brief review of the self-interaction free approximations, we present a simple, yet effective, self-consistent method to correct this error. The model is based on an average density self-interaction correction (ADSIC), where both exchange and Coulomb contributions are screened by a fraction of the electron density. The ansatz on which the method is built makes it particularly appealing, due to its simplicity and its favorable scaling with the size of the system. We have tested the ADSIC approach on one of the classical pathological problem for density functional theory: the direct estimation of the ionization potential from orbital eigenvalues. A large set of different chemical systems, ranging from simple atoms to large fullerenes, has been considered as test cases. Our results show that the ADSIC approach provides good numerical values for all the molecular systems, the agreement with the experimental values increasing, due to its average ansatz, with the size (conjugation) of the systems

  5. A Case of Mixed Motives? : Formal and Informal Functions of Administrative Immigration Detention

    NARCIS (Netherlands)

    A.S. Leerkes (Arjen); D.W.J. Broeders (Dennis)

    2010-01-01

    textabstractIn most EU countries and the United States, immigration detention is defined as an administrative, non-punitive measure to facilitate expulsion. This paper argues that immigration detention in the Netherlands serves three informal functions in addition to its formal function as an

  6. On the v-representability of ensemble densities of electron systems

    Science.gov (United States)

    Gonis, A.; Däne, M.

    2018-05-01

    Analogously to the case at zero temperature, where the density of the ground state of an interacting many-particle system determines uniquely (within an arbitrary additive constant) the external potential acting on the system, the thermal average of the density over an ensemble defined by the Boltzmann distribution at the minimum of the thermodynamic potential, or the free energy, determines the external potential uniquely (and not just modulo a constant) acting on a system described by this thermodynamic potential or free energy. The paper describes a formal procedure that generates the domain of a constrained search over general ensembles (at zero or elevated temperatures) that lead to a given density, including as a special case a density thermally averaged at a given temperature, and in the case of a v-representable density determines the external potential leading to the ensemble density. As an immediate consequence of the general formalism, the concept of v-representability is extended beyond the hitherto discussed case of ground state densities to encompass excited states as well. Specific application to thermally averaged densities solves the v-representability problem in connection with the Mermin functional in a manner analogous to that in which this problem was recently settled with respect to the Hohenberg and Kohn functional. The main formalism is illustrated with numerical results for ensembles of one-dimensional, non-interacting systems of particles under a harmonic potential.

  7. Density of states functions for photonic crystals

    International Nuclear Information System (INIS)

    McPhedran, R.C.; McOrist, J.; Sterke, C.M. de; Nicorovici, N.A.; Botten, L.C.; Asatryan, A.A.

    2004-01-01

    We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem for arrays of cylinders of arbitrary cross section. We introduce the mutual density of states (MDOS), and show that this function can be used to calculate both the local density of states (LDOS), which gives position information for emission of radiation from photonic crystals, and the spectral density of states (SDOS), which gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional density of states, which depends only on frequency. We relate all four functions to the band structure and propagating states within the crystal, and give numerical examples of the relation between band structure and density of states functions

  8. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  9. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    Science.gov (United States)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  10. A multiconfigurational hybrid density-functional theory

    DEFF Research Database (Denmark)

    Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard

    2012-01-01

    We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...

  11. Local density approximation for exchange in excited-state density functional theory

    OpenAIRE

    Harbola, Manoj K.; Samal, Prasanjit

    2004-01-01

    Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.

  12. The closed time-path Green function formalism in many-body theory

    International Nuclear Information System (INIS)

    Guang-zhao Zhou; Zhao-bin Su; Bai-lin Hao; Lu Yu.

    1983-09-01

    The closed time-path Green function formalism, developed by our group during recent years, is briefly reviewed. The generating functional technique, the coupled equations for the order parameter and the elementary excitations as well as the systematic loop expansion are outlined. The applications to critical dynamics, quenched random systems, nonlinear response theory, superconductivity, laser system and quasi-one-dimensional conductors are described. The theoretical approach developed can be applied to both equilibrium and non-equilibrium many-body systems. (author)

  13. A Formal Verification Method of Function Block Diagram

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun; Jee, Eun Kyoung; Jeon, Seung Jae; Park, Gee Yong; Kwon, Kee Choon

    2007-01-01

    Programmable Logic Controller (PLC), an industrial computer specialized for real-time applications, is widely used in diverse control systems in chemical processing plants, nuclear power plants or traffic control systems. As a PLC is often used to implement safety, critical embedded software, rigorous safety demonstration of PLC code is necessary. Function block diagram (FBD) is a standard application programming language for the PLC and currently being used in the development of a fully-digitalized reactor protection system (RPS), which is called the IDiPS, under the KNICS project. Therefore, verification issue of FBD programs is a pressing problem, and hence is of great importance. In this paper, we propose a formal verification method of FBD programs; we defined FBD programs formally in compliance with IEC 61131-3, and then translate the programs into Verilog model, and finally the model is verified using a model checker SMV. To demonstrate the feasibility and effective of this approach, we applied it to IDiPS which currently being developed under KNICS project. The remainder of this paper is organized as follows. Section 2 briefly describes Verilog and Cadence SMV. In Section 3, we introduce FBD2V which is a tool implemented to support the proposed FBD verification framework. A summary and conclusion are provided in Section 4

  14. Nuclear level density

    International Nuclear Information System (INIS)

    Cardoso Junior, J.L.

    1982-10-01

    Experimental data show that the number of nuclear states increases rapidly with increasing excitation energy. The properties of highly excited nuclei are important for many nuclear reactions, mainly those that go via processes of the compound nucleus type. In this case, it is sufficient to know the statistical properties of the nuclear levels. First of them is the function of nuclear levels density. Several theoretical models which describe the level density are presented. The statistical mechanics and a quantum mechanics formalisms as well as semi-empirical results are analysed and discussed. (Author) [pt

  15. Excitonic effects in solids : time-dependent density functional theory versus the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    The aim of this work is to compare two state-of-the-art methods for the investigation of excitonic effects in solids, namely Time-Dependent Density Functional Theory (TDDFT) and Many-Body Perturbation Theory (MBPT), for selected simple gap systems as well as semiconducting polymers. Within TDDFT, the linear response framework is used and the Dyson equation for the density-density response function is solved, whereas within MBPT, the Bethe-Salpeter equation (BSE) for the electron-hole correlation function is solved. The dielectric function is obtained as a last step. Both techniques take into account the excitonic effects caused by the interaction of electron-hole pairs. In the former these effects are included in the exchange-correlation (xc) kernel, whereas in the latter they are located in the interaction kernel of the BSE. Kohn-Sham single-particle wave functions obtained from Density Functional Theory within the linearized augmented planewave (LAPW) method are used to calculate all relevant quantities of the formalism. For the simple systems GaAs, Si and LiF are chosen. The role of several approximations to the xc kernel is studied and it is found that for GaAs and Si simple semi-empirical models provide a dielectric function in accordance with the BSE. For the case of LiF, being a system with a weak screening and a strongly bound exciton, only an xc kernel derived from MBPT yields reasonable results but still a slight discrepancy to the BSE is observed. Finally, the semiconducting polymers poly-acetylene and poly(phenylene-vinylene) (PPV) are studied. For both materials the concept of semi-empirical approximations to the xc kernel turns out to be ambiguous due to their low-dimensional character. In the case of poly-acetylene, the xc kernel derived from MBPT yields a dielectric function which is in close but not exact agreement with the one obtained from the BSE. (author) [de

  16. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane...

  17. High-density limit of quantum chromodynamics

    International Nuclear Information System (INIS)

    Alvarez, E.

    1983-01-01

    By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system

  18. Impact ionization in GaAs: A screened exchange density-functional approach

    International Nuclear Information System (INIS)

    Picozzi, S.; Asahi, R.; Geller, C.B.; Continenza, A.; Freeman, A.J.

    2001-01-01

    Results are presented of a fully ab initio calculation of impact ionization rates in GaAs within the density functional theory framework, using a screened-exchange formalism and the highly precise all-electron full-potential linearized augmented plane wave method. The calculated impact ionization rates show a marked orientation dependence in k space, indicating the strong restrictions imposed by the conservation of energy and momentum. This anisotropy diminishes as the impacting electron energy increases. A Keldysh type fit performed on the energy-dependent rate shows a rather soft edge and a threshold energy greater than the direct band gap. The consistency with available Monte Carlo and empirical pseudopotential calculations shows the reliability of our approach and paves the way to ab initio calculations of pair production rates in new and more complex materials

  19. Polymer density functional theory approach based on scaling second-order direct correlation function.

    Science.gov (United States)

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  20. Locality of correlation in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kieron [Department of Chemistry, University of California, Irvine, California 92697 (United States); Cancio, Antonio [Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306 (United States); Gould, Tim [Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111 (Australia); Pittalis, Stefano [CNR-Istituto di Nanoscienze, Via Campi 213A, I-41125 Modena (Italy)

    2016-08-07

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that E{sub C} → −A{sub C} ZlnZ + B{sub C}Z as Z → ∞, where Z is the atomic number, A{sub C} is known, and we estimate B{sub C} to be about 37 mhartree. The local density approximation yields A{sub C} exactly, but a very incorrect value for B{sub C}, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with B{sub C} a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  1. Functional derivative of noninteracting kinetic energy density functional

    International Nuclear Information System (INIS)

    Liu Shubin; Ayers, Paul W.

    2004-01-01

    Proofs from different theoretical frameworks, namely, the Hohenbergh-Kohn theorems, the Kohn-Sham scheme, and the first-order density matrix representation, have been presented in this paper to show that the functional derivative of the noninteracting kinetic energy density functional can uniquely be expressed as the negative of the Kohn-Sham effective potential, arbitrary only to an additive orbital-independent constant. Key points leading to the current result as well as confusion about the quantity in the literature are briefly discussed

  2. Quantum Statistics of the Toda Oscillator in the Wigner Function Formalism

    Science.gov (United States)

    Vojta, Günter; Vojta, Matthias

    Classical and quantum mechanical Toda systems (Toda molecules, Toda lattices, Toda quantum fields) recently found growing interest as nonlinear systems showing solitons and chaos. In this paper the statistical thermodynamics of a system of quantum mechanical Toda oscillators characterized by a potential energy V(q) = Vo cos h q is treated within the Wigner function formalism (phase space formalism of quantum statistics). The partition function is given as a Wigner- Kirkwood series expansion in terms of powers of h2 (semiclassical expansion). The partition function and all thermodynamic functions are written, with considerable exactness, as simple closed expressions containing only the modified Hankel functions Ko and K1 of the purely imaginary argument i with = Vo/kT.Translated AbstractQuantenstatistik des Toda-Oszillators im Formalismus der Wigner-FunktionKlassische und quantenmechanische Toda-Systeme (Toda-Moleküle, Toda-Gitter, Toda-Quantenfelder) haben als nichtlineare Systeme mit Solitonen und Chaos in jüngster Zeit zunehmend an Interesse gewonnen. Wir untersuchen die statistische Thermodynamik eines Systems quantenmechanischer Toda-Oszillatoren, die durch eine potentielle Energie der Form V(q) = Vo cos h q charakterisiert sind, im Formalismus der Wigner-Funktion (Phasenraum-Formalismus der Quantenstatistik). Die Zustandssumme wird als Wigner-Kirkwood-Reihe nach Potenzen von h2 (semiklassische Entwicklung) dargestellt, und aus ihr werden die thermodynamischen Funktionen berechnet. Sämtliche Funktionen sind durch einfache geschlossene Formeln allein mit den modifizierten Hankel-Funktionen Ko und K1 des rein imaginären Arguments i mit = Vo/kT mit großer Genauigkeit darzustellen.

  3. New formalism for determining excitation spectra of many-body systems

    International Nuclear Information System (INIS)

    Saito, S.; Zhang, S.B.; Louie, S.G.; Cohen, M.L.

    1990-01-01

    We present a new general formalism for determining the excitation spectrum of interacting many-body systems. The basic assumption is that the number of the excitations is equal to the number of sites. Within this approximation, it is shown that the density-density response functions with two different pure-imaginary energies determine the excitation spectrum. The method is applied to the valence electrons of sodium clusters of differing sizes in the time-dependent local-density approximation (TDLDA). A jellium-sphere background model is used for the ion cores. The excitation spectra obtained in this way represent well the excitation spectra given by the full TDLDA calculation along the real energy axis. Important collective modes are reproduced very well

  4. Density functionals in the laboratory frame

    International Nuclear Information System (INIS)

    Giraud, B. G.

    2008-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals

  5. Analytic cubic and quartic force fields using density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)

    2014-01-21

    We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.

  6. Density-functional expansion methods: Grand challenges.

    Science.gov (United States)

    Giese, Timothy J; York, Darrin M

    2012-03-01

    We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.

  7. Periodic subsystem density-functional theory

    International Nuclear Information System (INIS)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-01-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed

  8. Periodic subsystem density-functional theory

    Science.gov (United States)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2014-11-01

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn-Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn-Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  9. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    Science.gov (United States)

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  10. Quantal density functional theory

    CERN Document Server

    Sahni, Viraht

    2016-01-01

    This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...

  11. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  12. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  13. Green function formalism for nonlinear acoustic waves in layered media

    International Nuclear Information System (INIS)

    Lobo, A.; Tsoy, E.; De Sterke, C.M.

    2000-01-01

    Full text: The applications of acoustic waves in identifying defects in adhesive bonds between metallic plates have received little attention at high intensities where the media respond nonlinearly. However, the effects of reduced bond strength are more distinct in the nonlinear response of the structure. Here we assume a weak nonlinearity acting as a small perturbation, thereby reducing the problem to a linear one. This enables us to develop a specialized Green function formalism for calculating acoustic fields in layered media

  14. Self-Interaction Error in Density Functional Theory: An Appraisal.

    Science.gov (United States)

    Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G

    2018-05-03

    Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.

  15. Density functional theory and parallel processing

    International Nuclear Information System (INIS)

    Ward, R.C.; Geist, G.A.; Butler, W.H.

    1987-01-01

    The authors demonstrate a method for obtaining the ground state energies and charge densities of a system of atoms described within density functional theory using simulated annealing on a parallel computer

  16. Rational Density Functional Selection Using Game Theory.

    Science.gov (United States)

    McAnanama-Brereton, Suzanne; Waller, Mark P

    2018-01-22

    Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.

  17. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  18. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.

    Science.gov (United States)

    Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio

    2015-04-21

    We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.

  19. Virial theorem in the Kohn-Sham density-functional theory formalism: Accurate calculation of the atomic quantum theory of atoms in molecules energies

    NARCIS (Netherlands)

    Rodriguez, A.; Ayers, P.W.; Gotz, A.W.; Castillo-Alvarado, F.L.

    2009-01-01

    A new approach for computing the atom-in-molecule [quantum theory of atoms in molecule (QTAIM)] energies in Kohn-Sham density-functional theory is presented and tested by computing QTAIM energies for a set of representative molecules. In the new approach, the contribution for the correlation-kinetic

  20. density functional theory approach

    Indian Academy of Sciences (India)

    YOGESH ERANDE

    2017-07-27

    Jul 27, 2017 ... a key role in all optical switching devices, since their optical properties can be .... optimized in the gas phase using Density Functional Theory. (DFT).39 The ...... The Mediation of Electrostatic Effects by Sol- vents J. Am. Chem.

  1. Formal System Verification - Extension 2

    Science.gov (United States)

    2012-08-08

    vision of truly trustworthy systems has been to provide a formally verified microkernel basis. We have previously developed the seL4 microkernel...together with a formal proof (in the theorem prover Isabelle/HOL) of its functional correctness [6]. This means that all the behaviours of the seL4 C...source code are included in the high-level, formal specification of the kernel. This work enabled us to provide further formal guarantees about seL4 , in

  2. Strong Correlation in Kohn-Sham Density Functional Theory

    NARCIS (Netherlands)

    Malet, F.; Gori Giorgi, P.

    2012-01-01

    We use the exact strong-interaction limit of the Hohenberg-Kohn energy density functional to approximate the exchange-correlation energy of the restricted Kohn-Sham scheme. Our approximation corresponds to a highly nonlocal density functional whose functional derivative can be easily constructed,

  3. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  4. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France); Jacquemin, Denis [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5 (France); Blase, Xavier [CNRS, Inst. NÉEL, F-38000 Grenoble (France); Univ. Grenoble Alpes, Inst. NÉEL, F-38000 Grenoble (France)

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  5. Functional renormalization group and Kohn-Sham scheme in density functional theory

    Science.gov (United States)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  6. Density functional theory: Foundations reviewed

    Energy Technology Data Exchange (ETDEWEB)

    Kryachko, Eugene S., E-mail: eugene.kryachko@ulg.ac.be [Bogolyubov Institute for Theoretical Physics, Kiev, 03680 (Ukraine); Ludeña, Eduardo V., E-mail: popluabe@yahoo.es [Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Prometheus Program, Senescyt (Ecuador); Grupo Ecuatoriano para el Estudio Experimental y Teórico de Nanosistemas, GETNano, USFQ, N104-E, Quito (Ecuador); Escuela Politécnica Superior del Litoral, ESPOL, Guayaquil (Ecuador)

    2014-11-10

    Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg–Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb’s comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn–Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn–Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn–Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem

  7. Thermal conductivity of silicic tuffs: predictive formalism and comparison with preliminary experimental results

    International Nuclear Information System (INIS)

    Lappin, A. R.

    1980-07-01

    Performance of both near- and far-field thermomechanical calculations to assess the feasibility of waste disposal in silicic tuffs requires a formalism for predicting thermal conductivity of a broad range of tuffs. This report summarizes the available thermal conductivity data for silicate phases that occur in tuffs and describes several grain-density and conductivity trends which may be expected to result from post-emplacement alteration. A bounding curve is drawn that predicts the minimum theoretical matrix (zero-porosity) conductivity for most tuffs as a function of grain density. Comparison of experimental results with this curve shows that experimental conductivities are consistently lower at any given grain density. Use of the lowered bounding curve and an effective gas conductivity of 0.12 W/m 0 C allows conservative prediction of conductivity for a broad range of tuff types. For the samples measured here, use of the predictive curve allows estimation of conductivity to within 15% or better, with one exception. Application and possible improvement of the formalism are also discussed

  8. Linear scaling of density functional algorithms

    International Nuclear Information System (INIS)

    Stechel, E.B.; Feibelman, P.J.; Williams, A.R.

    1993-01-01

    An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm

  9. Density-functional, density-functional tight-binding, and wave-function calculations on biomolecular systems

    Czech Academy of Sciences Publication Activity Database

    Kubař, Tomáš; Jurečka, Petr; Černý, Jiří; Řezáč, Jan; Otyepka, M.; Valdes, Haydee; Hobza, Pavel

    2007-01-01

    Roč. 111, č. 26 (2007), s. 5642-5647 ISSN 1089-5639 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510; GA ČR(CZ) GD203/05/H001; GA ČR GA203/05/0009 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional theory * empirical dispersion-energy term * non-covalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  10. The force distribution probability function for simple fluids by density functional theory.

    Science.gov (United States)

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  11. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy-to-computational c......Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy...... resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...

  12. Density-matrix formalism for the photoion-electron entanglement in atomic photoionization

    International Nuclear Information System (INIS)

    Radtke, T.; Fritzsche, S.; Surzhykov, A.

    2006-01-01

    The density-matrix theory, based on Dirac's relativistic equation, is applied for studying the entanglement between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular, emphasis is placed on deriving the final-state density matrix of the overall system 'photoion+electron', including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix enables one immediately to analyze the change of entanglement as a function of the energy, angle and the polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of neutral strontium, leading to a photoion in a 5s 2 S J f =1/2 level. It is found that the photoion-electron entanglement decreases significantly near the ionization threshold and that, in general, it depends on both the photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of entanglement may have far-reaching consequences for quantum information and elsewhere

  13. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  14. Benchmarking FeCr empirical potentials against density functional theory data

    International Nuclear Information System (INIS)

    Klaver, T P C; Bonny, G; Terentyev, D; Olsson, P

    2010-01-01

    Three semi-empirical force field FeCr potentials, two within the formalism of the two-band model and one within the formalism of the concentration dependent model, have been benchmarked against a wide variety of density functional theory (DFT) structures. The benchmarking allows an assessment of how reliable empirical potential results are in different areas relevant to radiation damage modelling. The DFT data consist of defect-free structures, structures with single interstitials and structures with small di- and tri-interstitial clusters. All three potentials reproduce the general trend of the heat of formation (h.o.f.) quite well. The most important shortcomings of the original two-band model potential are the low or even negative h.o.f. for Cr-rich structures and the lack of a strong repulsion when moving two solute Cr atoms from being second-nearest neighbours to nearest neighbours. The newer two-band model potential partly solves the first problem. The most important shortcoming in the concentration dependent model potential is the magnitude of the Cr–Cr repulsion, being too strong at short distances and mostly absent at longer distances. Both two-band model potentials do reproduce long-range Cr–Cr repulsion. For interstitials the two-band model potentials reproduce a number of Cr–interstitial binding energies surprisingly well, in contrast to the concentration dependent model potential. For Cr interacting with clusters, the result can sometimes be directly extrapolated from Cr interacting with single interstitials, both according to DFT and the three empirical potentials

  15. Studies of the energy density functional and its derivatives in atomic and molecular systems

    International Nuclear Information System (INIS)

    Robles, J.

    1986-01-01

    The first chapter is a review of formal density functional theory, (DFT). In the second chapter, approximations to exact DFT are reviewed. In chapter three, the author proposes a modified molecular Thomas-Fermi, (TF) theory. He proceeds by imposing a continuity condition on the density. This avoids the singularities at the nuclei of classical TF. The method is sanctioned by Teller and Balasz theorems. However, it is found that while the classical TF theory is improved, the present method still predicts no-binding. In chapter four, it is suggested that the correlation energy, (E/sub c/), is proportional to the exchange energy, (K), E/sub c/ = cK. This idea is tested with Hartree-Fock (HF) and DFT data. In HF, c = 1/40 for atoms and c = 1/25 for molecules. Furthermore, the method is used to estimate dissociation energies. Thereafter, the author studies the chemical potential, (μ), of atoms (chapter five) and molecules (chapter six). In chapter seven, the concept of local pressure in an inhomogeneous electronic system is studied and extended, within the local thermodynamic formulation of DFT. Finally, appendix A provides the required mathematical framework (basic functional calculus) to understand this work, while appendix B is essentially a summary of the HF method

  16. Correlation functions in finite temperature field theories: formalism and applications to quark-gluon plasma

    International Nuclear Information System (INIS)

    Gelis, Francois

    1998-12-01

    The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green's functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the 'retarded-advanced' version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green's functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author)

  17. Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2

    International Nuclear Information System (INIS)

    Salek, Pawel; Helgaker, Trygve; Saue, Trond

    2005-01-01

    We report the implementation and application of linear response density-functional theory (DFT) based on the 4-component relativistic Dirac-Coulomb Hamiltonian. The theory is cast in the language of second quantization and is based on the quasienergy formalism (Floquet theory), replacing the initial state dependence of the Runge-Gross theorem by periodic boundary conditions. Contradictions in causality and symmetry of the time arguments are thereby avoided and the exchange-correlation potential and kernel can be expressed as functional derivatives of the quasienergy. We critically review the derivation of the quasienergy analogues of the Hohenberg-Kohn theorem and the Kohn-Sham formalism and discuss the nature of the quasienergy exchange-correlation functional. Structure is imposed on the response equations in terms of Hermiticity and time-reversal symmetry. It is observed that functionals of spin and current densities, corresponding to time-antisymmetric operators, contribute to frequency-dependent and not static electric properties. Physically, this follows from the fact that only a time-dependent electric field creates a magnetic field. It is furthermore observed that hybrid functionals enhance spin polarization since only exact exchange contributes to anti-Hermitian trial vectors. We apply 4-component relativistic linear response DFT to the calculation of the frequency-dependent polarizability of the isoelectronic series Hg, AuH and PtH 2 . Unlike for the molecules, the effect of electron correlation on the polarizability of the mercury atom is very large, about 25%. We observe a remarkable performance of the local-density approximation (LDA) functional in reproducing the experimental frequency-dependent polarizability of this atom, clearly superior to that of the BLYP and B3LYP functionals. This allows us to extract Cauchy moments (S(-4) = 382.82 and S(-6) = 6090.89 a.u.) that we believe are superior to experiment since we go to higher order in the Cauchy

  18. A Safari Through Density Functional Theory

    Science.gov (United States)

    Dreizler, Reiner M.; Lüdde, Cora S.

    Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.

  19. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....

  20. Dynamical density functional theory for dense atomic liquids

    International Nuclear Information System (INIS)

    Archer, A J

    2006-01-01

    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids

  1. Constructive definition of functional derivatives in density-functional theory

    International Nuclear Information System (INIS)

    Luo Ji

    2006-01-01

    It is shown that the functional derivatives in density-functional theory (DFT) can be explicitly defined within the domain of electron densities restricted by the electron number, and a constructive definition of such restricted derivatives is suggested. With this definition, Kohn-Sham (KS) equations can be established for an N-electron system without extending the functional domain and introducing a Lagrange multiplier. This may clarify some of the fundamental questions raised by Nesbet (1998 Phys. Rev. A 58 R12). The definition naturally leads to the fact that the KS effective potential is determined only to within an additive constant, thus the KS levels can shift freely and the relation between the highest occupied molecular orbital (HOMO) energy and the ionization potential of the system depends on the choice of the constant. On the other hand, if the domain of functionals is indeed extended beyond the electron number restriction, conclusions depend on whether the extended functionals have unrestricted derivatives or not. It is shown that the ensemble extension of DFT to open systems of mixed states (Perdew et al 1982 Phys. Rev. Lett. 49 1691) leads to an energy functional which has no unrestricted derivative at integer electron numbers. Hence after this extension, the relation between the HOMO energy and the ionization potential for an N-electron system is still uncertain. Besides, there are different extensions of the energy functional to a domain of densities unrestricted by the integer electron number, resulting in different unrestricted derivatives and electron systems with different chemical potentials. Even for the exact exchange-correlation potential, there is still an undetermined constant, whether it is a restricted or unrestricted derivative

  2. Density functional theory in quantum chemistry

    CERN Document Server

    Tsuneda, Takao

    2014-01-01

    This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.

  3. Comment on 'Kinetic energy as a density functional'

    International Nuclear Information System (INIS)

    Holas, A.; March, N.H.

    2002-01-01

    In a recent paper, Nesbet [Phys. Rev. A 65, 010502(R) (2001)] has proposed dropping ''the widespread but unjustified assumption that the existence of a ground-state density functional for the kinetic energy, T s [ρ], of an N-electron system implies the existence of a density-functional derivative, δT s [ρ]/δρ(r), equivalent to a local potential function,'' because, according to his arguments, this derivative 'has the mathematical character of a linear operator that acts on orbital wave functions'. Our Comment demonstrates that the statement called by Nesbet an 'unjustified assumption' happens, in fact, to be a rigorously proven theorem. Therefore, his previous conclusions stemming from his different view of this derivative, which undermined the foundations of density-functional theory, can be discounted

  4. Capillary wave Hamiltonian for the Landau–Ginzburg–Wilson density functional

    International Nuclear Information System (INIS)

    Chacón, Enrique; Tarazona, Pedro

    2016-01-01

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau–Ginzburg–Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers. (paper)

  5. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    We synthesized a number of aniline derivatives containing acyl groups to compare their barriers of rotation around ... KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION. Developments in ...

  6. Density functional approach to the many-body problem : Key concepts and exact functionals

    NARCIS (Netherlands)

    van Leeuwen, Robert

    2003-01-01

    We give an overview of the fundamental concepts of density functional theory. We give a careful discussion of the several density functionals and their differentiability properties. We show that for nondegenerate ground states we can calculate the necessary functional derivatives by means of linear

  7. Extended screened exchange functional derived from transcorrelated density functional theory.

    Science.gov (United States)

    Umezawa, Naoto

    2017-09-14

    We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.

  8. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  9. String operator formalism and functional intergal in the holomorphic representation

    International Nuclear Information System (INIS)

    Losev, A.S.; Morozov, A.Yu.; Rislyj, A.A.; Shatashvili, S.L.

    1989-01-01

    Connection between the continual integral over open Riemann surfaces and the operator formalism on closed Riemann surfaces is discussed. States of the operator formalism are the holomorphic representation of the continual integral

  10. Optimal Bandwidth Selection for Kernel Density Functionals Estimation

    Directory of Open Access Journals (Sweden)

    Su Chen

    2015-01-01

    Full Text Available The choice of bandwidth is crucial to the kernel density estimation (KDE and kernel based regression. Various bandwidth selection methods for KDE and local least square regression have been developed in the past decade. It has been known that scale and location parameters are proportional to density functionals ∫γ(xf2(xdx with appropriate choice of γ(x and furthermore equality of scale and location tests can be transformed to comparisons of the density functionals among populations. ∫γ(xf2(xdx can be estimated nonparametrically via kernel density functionals estimation (KDFE. However, the optimal bandwidth selection for KDFE of ∫γ(xf2(xdx has not been examined. We propose a method to select the optimal bandwidth for the KDFE. The idea underlying this method is to search for the optimal bandwidth by minimizing the mean square error (MSE of the KDFE. Two main practical bandwidth selection techniques for the KDFE of ∫γ(xf2(xdx are provided: Normal scale bandwidth selection (namely, “Rule of Thumb” and direct plug-in bandwidth selection. Simulation studies display that our proposed bandwidth selection methods are superior to existing density estimation bandwidth selection methods in estimating density functionals.

  11. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  12. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  13. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    Science.gov (United States)

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  14. Trivial constraints on orbital-free kinetic energy density functionals

    Science.gov (United States)

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  15. Transport through correlated systems with density functional theory.

    Science.gov (United States)

    Kurth, S; Stefanucci, G

    2017-10-18

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  16. Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment.

    Science.gov (United States)

    Dresselhaus, Thomas; Neugebauer, Johannes; Knecht, Stefan; Keller, Sebastian; Ma, Yingjin; Reiher, Markus

    2015-01-28

    We present the first implementation of a density matrix renormalization group algorithm embedded in an environment described by density functional theory. The frozen density embedding scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wavefunction and the environmental densities with respect to each other.

  17. Covariant Density Functionals: time-odd channel investigated

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2009-01-01

    The description of exotic nuclear systems and phenomena requires a detailed understanding of all channels of density functional theories. The role of time-odd mean fields, their evidence in experiment, and an accurate description of these fields are subject of current interest. Recent studies advanced the understanding of these fields in energy density functional theories based on the Skyrme force [1,2]. Time-odd mean fields are related to nuclear magnetism in covariant density functional (CDF) theories [3]. They arise from space-like components of vector mesons and Lorentz invariance requires that their coupling strengths are identical to that of time-like components. There were only few limited efforts to understand the role of time-odd mean fields in covariant density functional theory [4,5]. For example, the microscopic role of nuclear magnetism and its impact on rotational properties of nuclei has been studied in Ref. [5]. It is known that time-odd mean fields modify the angular momentum content of the single-particle orbitals and thus the moments of inertia, effective alignments, alignment gains at the band crossings and other physical observables. We aim on more detailed and systematic understanding of the role of time-odd mean fields in covariant density functional theory. This investigation covers both rotating and non-rotating systems. It is shown that contrary to the Skyrme energy density functionals time-odd mean fields of CDF theory always provide additional binding in the systems with broken time-reversal symmetry (rotating nuclei, odd mass nuclei). This additional binding increases with spin and has its maximum exactly at the terminating state [6], where it can reach several MeV. The impact of time-odd mean fields on the properties of rotating systems has been studied in a systematic way (as a function of particle number and deformation) across the nuclear chart [7]. In addition, this contribution extends these studies to non-rotating systems such as

  18. Density functional theory of the electrical double layer: the RFD functional

    International Nuclear Information System (INIS)

    Gillespie, Dirk; Valisko, Monika; Boda, Dezso

    2005-01-01

    Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions

  19. Continuum level density of a coupled-channel system in the complex scaling method

    International Nuclear Information System (INIS)

    Suzuki, Ryusuke; Kato, Kiyoshi; Kruppa, Andras; Giraud, Bertrand G.

    2008-01-01

    We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the 4 He=[ 3 H+p]+[ 3 He+n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L 2 basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role. (author)

  20. Fourier Series Formalization in ACL2(r

    Directory of Open Access Journals (Sweden)

    Cuong K. Chau

    2015-09-01

    Full Text Available We formalize some basic properties of Fourier series in the logic of ACL2(r, which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r. Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.

  1. Orthogonal bases of radial functions for charge density refinements

    International Nuclear Information System (INIS)

    Restori, R.

    1990-01-01

    Charge density determination from X-ray measurements necessitates the evaluation of the Fourier-Bessel transforms of the radial functions used to expand the charge density. Analytical expressions are given here for four sets of orthogonal functions which can substitute for the 'traditional exponential functions' set in least-squares refinements. (orig.)

  2. One-electron densities of freely rotating Wigner molecules

    Science.gov (United States)

    Cioslowski, Jerzy

    2017-12-01

    A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.

  3. Quantum formalism for classical statistics

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  4. Interpretation of the U L3-edge EXAFS in uranium dioxide using molecular dynamics and density functional theory simulations

    International Nuclear Information System (INIS)

    Bocharov, Dmitry; Chollet, Melanie; Krack, Matthias; Bertsch, Johannes; Grolimund, Daniel; Martin, Matthias; Kuzmin, Alexei; Purans, Juris; Kotomin, Eugene

    2016-01-01

    X-ray absorption spectroscopy is employed to study the local structure of pure and Cr-doped UO 2 at 300 K. The U L 3 -edge EXAFS spectrum is interpreted within the multiplescattering (MS) theory using the results of the classical and ab initio molecular dynamics simulations, allowing us to validate the accuracy of theoretical models. The Cr K-edge XANES is simulated within the full-multiple-scattering formalism considering a substitutional model (Cr at U site). It is shown that both unrelaxed and relaxed structures, produced by ab initio density functional theory (DFT) calculations, fail to describe the experiment. (paper)

  5. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism.; Application et developpement de calculs type fonctionnelle de la densite pour la determination de proprietes spectrales structurales et energetiques d`agregats de lithium

    Energy Technology Data Exchange (ETDEWEB)

    Gardet, G.

    1995-06-14

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author).

  6. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  7. Functional Automata - Formal Languages for Computer Science Students

    Directory of Open Access Journals (Sweden)

    Marco T. Morazán

    2014-12-01

    Full Text Available An introductory formal languages course exposes advanced undergraduate and early graduate students to automata theory, grammars, constructive proofs, computability, and decidability. Programming students find these topics to be challenging or, in many cases, overwhelming and on the fringe of Computer Science. The existence of this perception is not completely absurd since students are asked to design and prove correct machines and grammars without being able to experiment nor get immediate feedback, which is essential in a learning context. This article puts forth the thesis that the theory of computation ought to be taught using tools for actually building computations. It describes the implementation and the classroom use of a library, FSM, designed to provide students with the opportunity to experiment and test their designs using state machines, grammars, and regular expressions. Students are able to perform random testing before proceeding with a formal proof of correctness. That is, students can test their designs much like they do in a programming course. In addition, the library easily allows students to implement the algorithms they develop as part of the constructive proofs they write. Providing students with this ability ought to be a new trend in the formal languages classroom.

  8. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    Science.gov (United States)

    Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.

    2015-11-01

    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.

  9. A density functional approach to ferrogels

    Science.gov (United States)

    Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.

    2017-07-01

    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

  10. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    Science.gov (United States)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  11. On the evolution of the density probability density function in strongly self-gravitating systems

    International Nuclear Information System (INIS)

    Girichidis, Philipp; Konstandin, Lukas; Klessen, Ralf S.; Whitworth, Anthony P.

    2014-01-01

    The time evolution of the probability density function (PDF) of the mass density is formulated and solved for systems in free-fall using a simple approximate function for the collapse of a sphere. We demonstrate that a pressure-free collapse results in a power-law tail on the high-density side of the PDF. The slope quickly asymptotes to the functional form P V (ρ)∝ρ –1.54 for the (volume-weighted) PDF and P M (ρ)∝ρ –0.54 for the corresponding mass-weighted distribution. From the simple approximation of the PDF we derive analytic descriptions for mass accretion, finding that dynamically quiet systems with narrow density PDFs lead to retarded star formation and low star formation rates (SFRs). Conversely, strong turbulent motions that broaden the PDF accelerate the collapse causing a bursting mode of star formation. Finally, we compare our theoretical work with observations. The measured SFRs are consistent with our model during the early phases of the collapse. Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly in free-fall.

  12. Nonlinear electron-density distribution around point defects in simple metals. I. Formulation

    International Nuclear Information System (INIS)

    Gupta, A.K.; Jena, P.; Singwi, K.S.

    1978-01-01

    Modification, which is exact in the limit of long wavelength, of the nonlinear theory of Sjoelander and Stott of electron distribution around point defects is given. This modification consists in writing a nonlinear integral equations for the Fourier transform γ 12 (q) of the induced charge density surrounding the point defect, which includes a term involving the density derivative of γ 12 (q). A generalization of the Pauli-Feynman coupling-constant-integration method, together with the Kohn-Sham formalism, is used to exactly determine the coefficient of this derivative term in the long-wavelength limit. The theory is then used to calculate electron-density profiles around a vacancy, an eight-atom void, and a point ion. The results are compared with those of (i) a linear theory, (ii) Sjoelander-Stott theory, and (iii) a fully self-consistent calculation based on the density-functional formalism of Kohn and Sham. It is found that in the case of a vacancy, the results of the present theory are in very good agreement with those based on Kohn-Sham formalism, whereas in the case of a singular attractive potential of a proton, the results are quite poor in the vicinity of the proton, but much better for larger distances. A critical discussion of the theory vis a vis the Kohn-Sham formalism is also given. Some applications of the theory are pointed out

  13. Functional development in density functional theory for superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, Antonio; Gross, E.K.U.; Essenberger, Frank [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)

    2015-07-01

    Density functional theory for superconductors (SCDFT) is a fully parameter-free approach to superconductivity that allows for accurate predictions of critical temperature and properties of superconductors. We report on the most recent extensions of the method, in particular the development of new functionals to: (1) incorporate in a correct fashion Migdal's theorem; (2) compute the excitation spectrum; (3) include spin-fluctuation mediated pairing Applications and predictions are shown for a set of materials, including conventional and unconventional superconductors.

  14. Equation satisfied by electron-electron mutual Coulomb repulsion energy density functional

    OpenAIRE

    Joubert, Daniel P.

    2011-01-01

    The electron-electron mutual Coulomb repulsion energy density functional satisfies an equation that links functionals and functional derivatives at N-electron and (N-1)-electron densities for densities determined from the same adiabatic scaled external potential for the N-electron system.

  15. Density-functional theory in one dimension for contact-interacting fermions

    International Nuclear Information System (INIS)

    Magyar, R.J.; Burke, K.

    2004-01-01

    A density-functional theory is developed for fermions in one dimension, interacting via a δ function. Such systems provide a natural testing ground for questions of principle, as the local-density approximation should be highly accurate since for this interaction type the exchange contribution to the local-density approximation is intrinsically self-interaction-free. The exact-exchange contribution to the total energy is a local functional of the density. A local-density approximation for correlation is obtained using perturbation theory and Bethe ansatz results for the one-dimensional contact-interacting uniform Fermi gas. The ground-state energies are calculated for two finite systems, the analogs of helium and of Hooke's atom. The local-density approximation is shown to be excellent as expected

  16. Self-contained filtered density function

    Science.gov (United States)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  17. Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials

    Science.gov (United States)

    Moriarty, John A.

    1988-08-01

    The first-principles, density-functional version of the generalized pseudopotential theory (GPT) developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty- and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a specialized set of starting equations is derived from the basic local-density formalism for a pure metal, including refined expansions for the exchange-correlation terms and a simplified yet accurate representation of the cohesive energy. The parent pseudo-Green's-function formalism of the GPT is then used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive energy divides quite naturally into a large volume component and a smaller structural component. The volume component,which includes all one-ion intra-atomic energy contributions, already gives a good description of the cohesion in lowest order. The structural component is expanded in terms of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the interatomic potentials. Special attention is focused on the dominant d-electron contributions to this series and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (vd2, vd3, and vd4) are derived. In addition, a simplified model is used to demonstrate that while vd3 can be of comparable importance to vd2, vd4 is inherently small and the series is rapidly convergent beyond three-ion interactions. Analytic model forms are also derived for vd2 and vd3 in the case of canonical d bands. In this limit, vd2 is purely attractive and varies with interatomic distance as r-10, while

  18. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    Science.gov (United States)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure

  19. Development of gradient-corrected exchange-correlation functionals in the density functional theory; Developpement de fonctionnelles corrigees du gradient en theorie de la fonctionnelle de la densite

    Energy Technology Data Exchange (ETDEWEB)

    Lembarki, A.

    1994-12-01

    In this work, we have developed some gradient-corrected exchange-correlation functionals. This study is in keeping with the density functional theory (DFT) formalism. In the first part of this memory, a description of Hartree-Fock (HF), post-HF and density functional theories is given. The second part is devoted the study the different approximations of DFT exchange-correlation functionals which have been proposed in the last years. In particular, we have underlined the approximations used for the construction of these functionals. The third part of this memory consists in the development of new gradient-corrected functionals. In this study, we have established a new relation between exchange energy, correlation energy and kinetic energy. We have deduced two new possible forms of exchange or correlation functionals, respectively. In the fourth part, we have studied the exchange potential, for which the actual formulation does not satisfy some theoretical conditions, such as the asymptotic behavior -1/r. Our contribution lies in the development of an exchange potential with a correct asymptotic -1/r behavior for large values of r. In this chapter, we have proposed a model which permits the obtention of the exchange energy from the exchange potential, using the virial theorem. The fifth part of this memory is devoted the application of these different functionals to simple systems (H{sub 2}O, CO, N{sub 2}O, H{sub 3}{sup +} and H{sub 5}{sup +}) in order to characterize the performance of DFT calculations in regards to those obtained with post-HF methods. (author). 215 refs., 8 figs., 28 tabs.

  20. Local field distribution near corrugated interfaces: Green function formalism versus effective medium theory

    International Nuclear Information System (INIS)

    Choy, C.W.; Xiao, J.J.; Yu, K.W.

    2007-01-01

    The recent Green function formalism (GFF) has been used to study the local field distribution near a periodic interface separating two homogeneous media of different dielectric constants. In the GFF, the integral equations can be solved conveniently because of the existence of an analytic expression for the kernel (Greenian). However, due to a severe singularity in the Greenian, the formalism was formerly applied to compute the electric fields away from the interface region. In this work, we have succeeded in extending the GFF to compute the electric field inside the interface region by taking advantage of a sum rule. To our surprise, the strengths of the electric fields are quite similar in both media across the interface, despite of the large difference in dielectric constants. Moreover, we propose a simple effective medium approximation (EMA) to compute the electric field inside the interface region. We show that the EMA can indeed give an excellent description of the electric field, except near a surface plasmon resonance

  1. Projected evolution superoperators and the density operator

    International Nuclear Information System (INIS)

    Turner, R.E.; Dahler, J.S.; Snider, R.F.

    1982-01-01

    The projection operator method of Zwanzig and Feshbach is used to construct the time dependent density operator associated with a binary scattering event. The formula developed to describe this time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators. Both Schroedinger and interaction picture results are presented. The former is used to demonstrate the equivalence of the time dependent solution of the von Neumann equation and the more familiar frequency dependent Laplace transform solution. For two particular classes of projection superoperators projected density operators are shown to be equivalent to projected wave functions. Except for these two special cases, no projected wave function analogs of projected density operators exist. Along with the decoupled-motions approximation, projected interaction picture density operators are applied to inelastic scattering events. Simple illustrations are provided of how this formalism is related to previously established results for two-state processes, namely, the theory of resonant transfer events, the first order Magnus approximation, and the Landau-Zener theory

  2. Graphene on metals: A van der Waals density functional study

    DEFF Research Database (Denmark)

    Vanin, Marco; Mortensen, Jens Jørgen; Kelkkanen, Kari André

    2010-01-01

    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Co, Ni, Pd, Ag, Au, Cu, Pt, and Al(111) surfaces. In contrast to the local-density approximation (LDA) which predicts relatively strong binding for Ni...

  3. Internal medicine point-of-care ultrasound assessment of left ventricular function correlates with formal echocardiography.

    Science.gov (United States)

    Johnson, Benjamin K; Tierney, David M; Rosborough, Terry K; Harris, Kevin M; Newell, Marc C

    2016-02-01

    Although focused cardiac ultrasonographic (FoCUS) examination has been evaluated in emergency departments and intensive care units with good correlation to formal echocardiography, accuracy for the assessment of left ventricular systolic function (LVSF) when performed by internal medicine physicians still needs independent evaluation. This prospective observational study in a 640-bed, academic, quaternary care center, included 178 inpatients examined by 10 internal medicine physicians who had completed our internal medicine bedside ultrasound training program. The ability to estimate LVSF with FoCUS as "normal," "mild to moderately decreased," or "severely decreased" was compared with left ventricular ejection fraction (>50%, 31-49%, and internal medicine physician-performed FoCUS and formal echocardiography for any LVSF impairment was "good/substantial" with κ = 0.77 (p Internal medicine physicians using FoCUS identify normal versus decreased LVSF with high sensitivity, specificity, and "good/substantial" interrater agreement when compared with formal echocardiography. These results support the role of cardiac FoCUS by properly trained internal medicine physicians for discriminating normal from reduced LVSF. © 2015 Wiley Periodicals, Inc.

  4. Bayesian error estimation in density-functional theory

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Kaasbjerg, Kristen; Frederiksen, Søren Lund

    2005-01-01

    We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies...

  5. The effect of high column density systems on the measurement of the Lyman-α forest correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Font-Ribera, Andreu [Institut de Ciències de l' Espai (IEEC-CSIC), E. de Ciències, Torre C5, Bellaterra, Catalonia (Spain); Miralda-Escudé, Jordi, E-mail: font@physik.uzh.ch, E-mail: miralda@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia (Spain)

    2012-07-01

    We present a study of the effect of High Column Density (HCD) systems on the Lyα forest correlation function on large scales. We study the effect both numerically, by inserting HCD systems on mock spectra for a specific model, and analytically, in the context of two-point correlations and linear theory. We show that the presence of HCDs substantially contributes to the noise of the correlation function measurement, and systematically alters the measured redshift-space correlation function of the Lyα forest, increasing the value of the density bias factor and decreasing the redshift distortion parameter β{sub α} of the Lyα forest. We provide simple formulae for corrections on these derived parameters, as a function of the mean effective optical depth and bias factor of the host halos of the HCDs, and discuss the conditions under which these expressions should be valid. In practice, precise corrections to the measured parameters of the Lyα forest correlation for the HCD effects are more complex than the simple analytical approximations we present, owing to non-linear effects of the damped wings of the HCD systems and the presence of three-point terms. However, we conclude that an accurate correction for these HCD effects can be obtained numerically and calibrated with observations of the HCD-Lyα cross-correlation. We also discuss an analogous formalism to treat and correct for the contaminating effect of metal lines overlapping the Lyα forest spectra.

  6. Nuclear energy density functional from chiral pion-nucleon dynamics revisited

    Science.gov (United States)

    Kaiser, N.; Weise, W.

    2010-05-01

    We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from 1 π-exchange, iterated 1 π-exchange, and irreducible 2 π-exchange with intermediate Δ-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass M(ρ) entering the energy density functional is identical to the one of Fermi-liquid theory when employing the improved density-matrix expansion. The strength F(ρ) of the ( surface-term as provided by the pion-exchange dynamics is in good agreement with that of phenomenological Skyrme forces in the density region ρ/2short-range spin-orbit interaction. The strength function F(ρ) multiplying the square of the spin-orbit density comes out much larger than in phenomenological Skyrme forces and it has a pronounced density dependence.

  7. Density Profiles, Energy, and Oscillation Strength of a Quantum Dot in Two Dimensions with a Harmonic Oscillator External Potential using an Orbital-free Energy Functional Based on Thomas–Fermi Theory

    Directory of Open Access Journals (Sweden)

    Suhufa Alfarisa

    2016-03-01

    Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.

  8. Information entropy and Thomas-Fermi screening functions

    International Nuclear Information System (INIS)

    Donnamaria, M.C.; Meson, A.M.; Proto, A.N.

    1989-11-01

    In this work we apply the information entropy concept to analyze different trial electron densities in momentum and coordinate spaces, into the Thomas-Fermi density functional formalism. Furthermore, we try to assess how well-known physical properties of neutral atoms are reproduced and hence evaluate the quality of the screening functions in the light of their predictive capacity. (author). 32 refs, 4 figs, 3 tabs

  9. The heat current density correlation function: sum rules and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S

    2006-01-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed

  10. The heat current density correlation function: sum rules and thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)

    2006-02-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.

  11. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    Science.gov (United States)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below

  12. A classical density functional theory of ionic liquids.

    Science.gov (United States)

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  13. Self-contained filtered density function

    International Nuclear Information System (INIS)

    Nouri, Arash G.; Pope, Stephen B.

    2017-01-01

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  14. Multiconfiguration Pair-Density Functional Theory Is Free From Delocalization Error.

    Science.gov (United States)

    Bao, Junwei Lucas; Wang, Ying; He, Xiao; Gagliardi, Laura; Truhlar, Donald G

    2017-11-16

    Delocalization error has been singled out by Yang and co-workers as the dominant error in Kohn-Sham density functional theory (KS-DFT) with conventional approximate functionals. In this Letter, by computing the vertical first ionization energy for well separated He clusters, we show that multiconfiguration pair-density functional theory (MC-PDFT) is free from delocalization error. To put MC-PDFT in perspective, we also compare it with some Kohn-Sham density functionals, including both traditional and modern functionals. Whereas large delocalization errors are almost universal in KS-DFT (the only exception being the very recent corrected functionals of Yang and co-workers), delocalization error is removed by MC-PDFT, which bodes well for its future as a step forward from KS-DFT.

  15. Benchmark density functional theory calculations for nanoscale conductance

    DEFF Research Database (Denmark)

    Strange, Mikkel; Bækgaard, Iben Sig Buur; Thygesen, Kristian Sommer

    2008-01-01

    We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code...

  16. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  17. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  18. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    Science.gov (United States)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.

    2014-02-01

    In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

  20. A classical density functional investigation of nucleation

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Ghosh, Swapan K.

    2009-01-01

    Study of nucleation and growth phenomena in condensation is of prime importance in various applications such as crystal growth, nanoparticle synthesis, pattern formation etc. The knowledge of nucleation barrier in condensation is necessary to control the nucleation kinetics, size of the nanoparticles etc. Classical nucleation theory (CNT) assumes the density of the drop as bulk density irrespective of the size of the drop and overestimates the nucleation barrier. Here we are interested in solving the problem analytically using density functional theory (DFT) with square gradient approximation along the lines of Cahn and Hilliard. Nucleation barrier and density profile obtained in this work are consistent with other works based on nonclassical theory. (author)

  1. Nonlocal exchange and kinetic-energy density functionals for electronic systems

    International Nuclear Information System (INIS)

    Glossman, M.D.; Rubio, A.; Balbas, L.C.; Alonso, J.A.

    1992-01-01

    The nonlocal weighted density approximation (WDA) to the exchange and kinetic-energy functionals of many electron systems proposed several years ago by Alonso and Girifalco is used to compute, within the framework of density functional theory, the ground-state electronic density and total energy of noble gas atoms and of neutral jellium-like sodium clusters containing up to 500 atoms. These results are compared with analogous calculations using the well known Thomas-Fermi-Weizsacker-Dirac (TFWD) approximations for the kinetic (TFW) and exchange (D) energy density functionals. An outstanding improvement of the total and exchange energies, of the density at the nucleus and of the expectation values is obtained for atoms within the WDA scheme. For sodium clusters the authors notice a sizeable contribution of the nonlocal effects to the total energy and to the density profiles. In the limit of very large clusters these effects should affect the surface energy of the bulk metal

  2. Constraints on parton density functions from D0

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Jonathan M.; /Imperial Coll., London

    2008-04-01

    Five recent results from D0 which either impact or have the potential to impact on uncertainties in parton density functions are presented. Many analyses at D0 are sensitive to the modeling of the partonic structure of the proton. When theoretical and experimental uncertainties are well controlled there exists the possibility for additional constraints on parton density functions (PDF). Five measurements are presented which either have already been included in global parton fits or have the potential to contribute in the future.

  3. Higher-accuracy van der Waals density functional

    DEFF Research Database (Denmark)

    Lee, Kyuho; Murray, Éamonn D.; Kong, Lingzhu

    2010-01-01

    We propose a second version of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy...

  4. A comparative study of density functional and density functional tight binding calculations of defects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, Alberto [Laboratoire de Physique des Solides, Univ. Paris Sud, CNRS UMR, Orsay (France); Ivanovskaya, Viktoria; Wagner, Philipp; Yaya, Abu; Ewels, Chris P. [Institut des Materiaux Jean Rouxel (IMN), CNRS UMR, University of Nantes (France); Suarez-Martinez, Irene [Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia (Australia)

    2012-02-15

    The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb+ code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene. DFTB-MD derived sputtering energy threshold map for a carbon atom in a graphene plane. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Obtaining muonic density estimates via application of matrix formalism to proposed surface detector upgrade at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, David; Engel, Ralph; Roth, Markus [Karlsruhe Institute of Technology, Karlsruhe (Germany); Collaboration: Pierre Auger-Collaboration

    2015-07-01

    Event-by-event identification of cosmic ray primary composition lends itself to enhanced event selection in the search for anisotropic arrival directions. Principally, the number of muons reaching Earth's surface in an extensive air shower is indicative of composition. The Pierre Auger Observatory seeks to capitalize on this axiom by improving reconstructed muonic density estimates via an upgrade to its surface detector array. This upgrade, consisting of placing a scintillator on top of each existing water Cherenkov detector, exploits the differing response of two detectors to muonic and electromagnetic particles. Exploitation of this difference may be expressed in a matrix formalism whose application to simulated proton and iron showers is presented here.

  6. Closed-time path formalism of quantum scattering

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1988-01-01

    The closed-time path formalism of quantum mechanics, first introduced by Schwinger, is developed starting from a second-quantized formalism by using a functional calculus. An exact functional expression for the closed-time amplitude for a particle state (not just of the vacuum state)is derived from which time-dependent expectation value of observables may be written in closed functional form. In particular, this leads directly to the expression for transition probabilities for scattering theory without computing first the corresponding amplitudes. Finally it is made a comparison with the standard approach

  7. Postfragmentation density function for bacterial aggregates in laminar flow.

    Science.gov (United States)

    Byrne, Erin; Dzul, Steve; Solomon, Michael; Younger, John; Bortz, David M

    2011-04-01

    The postfragmentation probability density of daughter flocs is one of the least well-understood aspects of modeling flocculation. We use three-dimensional positional data of Klebsiella pneumoniae bacterial flocs in suspension and the knowledge of hydrodynamic properties of a laminar flow field to construct a probability density function of floc volumes after a fragmentation event. We provide computational results which predict that the primary fragmentation mechanism for large flocs is erosion. The postfragmentation probability density function has a strong dependence on the size of the original floc and indicates that most fragmentation events result in clumps of one to three bacteria eroding from the original floc. We also provide numerical evidence that exhaustive fragmentation yields a limiting density inconsistent with the log-normal density predicted in the literature, most likely due to the heterogeneous nature of K. pneumoniae flocs. To support our conclusions, artificial flocs were generated and display similar postfragmentation density and exhaustive fragmentation. ©2011 American Physical Society

  8. Rapidly converging path integral formalism. Pt. 1

    International Nuclear Information System (INIS)

    Bender, I.; Gromes, D.; Marquard, U.

    1990-01-01

    The action to be used in the path integral formalism is expanded in a systematic way in powers of the time spacing ε in order to optimize the convergence to the continuum limit. This modifies and extends the usual formalism in a transparent way. The path integral approximation to the Green function obtained by this method approaches the continuum Green function with a higher power of ε than the usual one. The general theoretical derivations are exemplified analytically for the harmonic oscillator and by Monte Carlo methods for the anharmonic oscillator. We also show how curvilinear coordinates and curved spaces can naturally be treated within this formalism. Work on field theory is in progress. (orig.)

  9. Linking density functional and mode coupling models for supercooled liquids.

    Science.gov (United States)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.

  10. Linking density functional and mode coupling models for supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-03-28

    We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.

  11. First order formalism for quantum gravity

    International Nuclear Information System (INIS)

    Gleiser, M.; Holman, R.; Neto, N.P.

    1987-05-01

    We develop a first order formalism for the quantization of gravity. We take as canonical variables both the induced metric and the extrinsic curvature of the (d - 1) -dimensional hypersurfaces obtained by the foliation of the d - dimensional spacetime. After solving the constraint algebra we use the Dirac formalism to quantize the theory and obtain a new representation for the Wheeler-DeWitt equation, defined in the functional space of the extrinsic curvature. We also show how to obtain several different representations of the Wheeler-DeWitt equation by considering actions differing by a total divergence. In particular, the intrinsic and extrinsic time approaches appear in a natural way, as do equivalent representations obtained by functional Fourier transforms of appropriate variables. We conclude with some remarks about the construction of the Hilbert space within the first order formalism. 10 refs

  12. Density functional theory a practical introduction

    CERN Document Server

    Sholl, David

    2009-01-01

    Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to studen...

  13. Relationship of Quantum Entanglement to Density Functional Theory

    OpenAIRE

    Rajagopal, A. K.; Rendell, R. W.

    2005-01-01

    The maximum von Neumann entropy principle subject to given constraints of mean values of some physical observables determines the density matrix. Similarly the stationary action principle in the case of time-dependent (dissipative) situations under similar constraints yields the density matrix. The free energy and measures of entanglement are expressed in terms of such a density matrix and thus define respective functionals of the mean values. In the light of several model calculations, it is...

  14. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    Science.gov (United States)

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  15. Chemical hardness and density functional theory

    Indian Academy of Sciences (India)

    Unknown

    RALPH G PEARSON. Chemistry Department, University of California, Santa Barbara, CA 93106, USA. Abstract. The concept of chemical hardness is reviewed from a personal point of view. Keywords. Hardness; softness; hard & soft acids bases (HSAB); principle of maximum hardness. (PMH) density functional theory (DFT) ...

  16. Density functional and neural network analysis

    DEFF Research Database (Denmark)

    Jalkanen, K. J.; Suhai, S.; Bohr, Henrik

    1997-01-01

    Density functional theory (DFT) calculations have been carried out for hydrated L-alanine, L-alanyl-L-alanine and N-acetyl L-alanine N'-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA) and vibrational circular...

  17. Nuclear energy density functional from chiral pion-nucleon dynamics revisited

    OpenAIRE

    Kaiser, N.; Weise, W.

    2009-01-01

    We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from $1\\pi$-exchange, iterated $1\\pi$-exchange, and irreducible $2\\pi$-exchange with intermediate $\\Delta$-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass $M^*(\\rho)$ entering the energy density functional is iden...

  18. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    Science.gov (United States)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  19. Comparison of the anomalous and non-anomalous generalized Schwinger models via functional formalism

    International Nuclear Information System (INIS)

    Souza Dutra, A. de.

    1992-01-01

    The Green functions of the two versions of the two versions of the generalized Schwinger model, the anomalous and the non-anomalous one, in their higher order Lagrangian density form are calculated. Furthermore it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term is also considered. It is verified that the two models have the same correlation functions only of the gauge-invariant sector is taken into account. Finally it is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations. (author)

  20. Ground-state energies and highest occupied eigenvalues of atoms in exchange-only density-functional theory

    Science.gov (United States)

    Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht

    1989-11-01

    The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].

  1. Reduced density matrix functional theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baldsiefen, Tim

    2012-10-15

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to

  2. Reduced density matrix functional theory at finite temperature

    International Nuclear Information System (INIS)

    Baldsiefen, Tim

    2012-10-01

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to iteratively construct

  3. Improved density functional calculations for atoms, molecules and surfaces

    International Nuclear Information System (INIS)

    Fricke, B.; Anton, J.; Fritzsche, S.; Sarpe-Tudoran, C.

    2005-01-01

    The non-collinear and collinear descriptions within relativistic density functional theory is described. We present results of both non-collinear and collinear calculations for atoms, diatomic molecules, and some surface simulations. We find that the accuracy of our density functional calculations for the smaller systems is comparable to good quantum chemical calculations, and thus this method provides a sound basis for larger systems where no such comparison is possible. (author)

  4. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    Science.gov (United States)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  5. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.

  6. Structural evolution due to Zn and Te adsorption on As-exposed Si(211): density functional calculation

    International Nuclear Information System (INIS)

    Gupta, Bikash C; Konar, Shyamal; Grein, C H; Sivananthan, S

    2009-01-01

    Systematic theoretical investigations are carried out under the density functional formalism in an effort to understand the initial structural evolution due to the adsorption of ZnTe on As-exposed Si(211). Our calculations indicate that after the adsorption of Zn and Te on the As-exposed Si(211), the stable atomic structure qualitatively follows the ideal atomic structure of Si(211) with alteration of various bond lengths. Since the basic symmetry of the Si(211) is preserved after the adsorption of ZnTe, the deposition of ZnTe on the As terminated Si(211) prior to the deposition of CdTe and HgCdTe is useful for obtaining an ultimate quality layer of HgCdTe on Si(211). Some of our results are compared with the available experimental results, and they are found to agree with each other qualitatively.

  7. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    Science.gov (United States)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  8. Density Functional Methods for Shock Physics and High Energy Density Science

    Science.gov (United States)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. The maximal-density mass function for primordial black hole dark matter

    Science.gov (United States)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  10. Non-empirical energy density functional for the nuclear structure

    International Nuclear Information System (INIS)

    Rot ival, V.

    2008-09-01

    The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)

  11. Persian Back Channel Responses in Formal versus Informal Contexts

    Directory of Open Access Journals (Sweden)

    Shahla Sharifi

    2012-01-01

    Full Text Available Utterances like /xob/ (okay, /doroste/ (right, /hmm/, /ee/, /?re/ (yeah, occur frequently in Persian conversations, but have thus far escaped from the systematic studies. Good listeners generally produce these short utterances, called "back channel responses", in appropriate times to show their participation in the conversation, but the rules governing back channeling vary from one context to another. The usage of back channel responses is different in various contexts, due to politeness or formality. This paper studies the types and functions of the back channel responses in both formal and informal settings and provides a comparison of the usage of these responses in these two kinds of contexts. The results show /bale/ (yes and /doroste/ (right are used with formal or polite verbal form, while /xob/ (okay is used with the informal style of speech and less polite verbal form. With respect to the function of back channels, signaling the understanding is the main function of back channels in informal contexts. Also, back channels signaling agreement are more frequent in formal contexts, where emotional function is less likely.

  12. Formal Analysis of Functional Behaviour for Model Transformations Based on Triple Graph Grammars - Extended Version

    OpenAIRE

    Hermann, Frank; Ehrig, Hartmut; Orejas, Fernando; Ulrike, Golas

    2010-01-01

    Triple Graph Grammars (TGGs) are a well-established concept for the specification of model transformations. In previous work we have formalized and analyzed already crucial properties of model transformations like termination, correctness and completeness, but functional behaviour - especially local confluence - is missing up to now. In order to close this gap we generate forward translation rules, which extend standard forward rules by translation attributes keeping track of the elements whi...

  13. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  14. Balancing Exchange Mixing in Density-Functional Approximations for Iron Porphyrin.

    Science.gov (United States)

    Berryman, Victoria E J; Boyd, Russell J; Johnson, Erin R

    2015-07-14

    Predicting the correct ground-state multiplicity for iron(II) porphyrin, a high-spin quintet, remains a significant challenge for electronic-structure methods, including commonly employed density functionals. An even greater challenge for these methods is correctly predicting favorable binding of O2 to iron(II) porphyrin, due to the open-shell singlet character of the adduct. In this work, the performance of a modest set of contemporary density-functional approximations is assessed and the results interpreted using Bader delocalization indices. It is found that inclusion of greater proportions of Hartree-Fock exchange, in hybrid or range-separated hybrid functionals, has opposing effects; it improves the ability of the functional to identify the ground state but is detrimental to predicting favorable dioxygen binding. Because of the uncomplementary nature of these properties, accurate prediction of both the relative spin-state energies and the O2 binding enthalpy eludes conventional density-functional approximations.

  15. General many-body formalism for composite quantum particles.

    Science.gov (United States)

    Combescot, M; Betbeder-Matibet, O

    2010-05-21

    This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.

  16. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsaecker functional

    International Nuclear Information System (INIS)

    Garcia-Aldea, David; Alvarellos, J. E.

    2008-01-01

    We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved

  17. Blue functions: probability and current density propagators in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Withers, L P Jr

    2011-01-01

    Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)

  18. Describing long-range charge-separation processes with subsystem density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de [Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Simulation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster (Germany); Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, 73 Warren St., Newark, New Jersey 07102 (United States)

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.

  19. Describing long-range charge-separation processes with subsystem density-functional theory

    International Nuclear Information System (INIS)

    Solovyeva, Alisa; Neugebauer, Johannes; Pavanello, Michele

    2014-01-01

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants in Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states

  20. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research February 2016; 15 (2): 385-392 ... tested for its antimicrobial activities and computational studies including density function test (DFT) and docking ... agonists [4], selective dopamine D3 and D4 ...

  1. Applications of Density Functional Theory in Soft Condensed Matter

    Science.gov (United States)

    Löwen, Hartmut

    Applications of classical density functional theory (DFT) to soft matter systems like colloids, liquid crystals and polymer solutions are discussed with a focus on the freezing transition and on nonequilibrium Brownian dynamics. First, after a brief reminder of equilibrium density functional theory, DFT is applied to the freezing transition of liquids into crystalline lattices. In particular, spherical particles with radially symmetric pair potentials will be treated (like hard spheres, the classical one-component plasma or Gaussian-core particles). Second, the DFT will be generalized towards Brownian dynamics in order to tackle nonequilibrium problems. After a general introduction to Brownian dynamics using the complementary Smoluchowski and Langevin pictures appropriate for the dynamics of colloidal suspensions, the dynamical density functional theory (DDFT) will be derived from the Smoluchowski equation. This will be done first for spherical particles (e.g. hard spheres or Gaussian-cores) without hydrodynamic interactions. Then we show how to incorporate hydrodynamic interactions between the colloidal particles into the DDFT framework and compare to Brownian dynamics computer simulations. Third orientational degrees of freedom (rod-like particles) will be considered as well. In the latter case, the stability of intermediate liquid crystalline phases (isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally, the corresponding dynamical extension of density functional theory towards orientational degrees of freedom is proposed and the collective behaviour of "active" (self-propelled) Brownian particles is briefly discussed.

  2. Jauch-Piron system of imprimitivities for phonons. II. The Wigner function formalism

    Science.gov (United States)

    Banach, Zbigniew; Piekarski, Sławomir

    1993-01-01

    In 1932 Wigner defined and described a quantum mechanical phase space distribution function for a system composed of many identical particles of positive mass. This function has the property that it can be used to calculate a class of quantum mechanical averages in the same manner as the classical phase space distribution function is used to calculate classical averages. Considering the harmonic vibrations of a system of n atoms bound to one another by elastic forces and treating them as a gas of indistinguishable Bose particles, phonons, the primary objective of this paper is to show under which circumstances the Wigner formalism for classical particles can be extended to cover also the phonon case. Since the phonons are either strongly or weakly localizable particles (as described in a companion paper), the program of the present approach consists in applying the Jauch-Piron quantum description of localization in (discrete) space to the phonon system and then in deducing from such a treatment the explicit expression for the phonon analogue of the Wigner distribution function. The characteristic new features of the “phase-space” picture for phonons (as compared with the situation in ordinary theory) are pointed out. The generalization of the method to the case of relativistic particles is straightforward.

  3. Plato: A localised orbital based density functional theory code

    Science.gov (United States)

    Kenny, S. D.; Horsfield, A. P.

    2009-12-01

    The Plato package allows both orthogonal and non-orthogonal tight-binding as well as density functional theory (DFT) calculations to be performed within a single framework. The package also provides extensive tools for analysing the results of simulations as well as a number of tools for creating input files. The code is based upon the ideas first discussed in Sankey and Niklewski (1989) [1] with extensions to allow high-quality DFT calculations to be performed. DFT calculations can utilise either the local density approximation or the generalised gradient approximation. Basis sets from minimal basis through to ones containing multiple radial functions per angular momenta and polarisation functions can be used. Illustrations of how the package has been employed are given along with instructions for its utilisation. Program summaryProgram title: Plato Catalogue identifier: AEFC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 219 974 No. of bytes in distributed program, including test data, etc.: 1 821 493 Distribution format: tar.gz Programming language: C/MPI and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux and Mac OS X Has the code been vectorised or parallelised?: Yes, up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Nature of problem: Density functional theory study of electronic structure and total energies of molecules, crystals and surfaces. Solution method: Localised orbital based density functional theory. Restrictions: Tight-binding and density functional theory only, no exact exchange. Unusual features: Both atom centred and uniform meshes available

  4. A Mathematical Account of the NEGF Formalism

    DEFF Research Database (Denmark)

    Cornean, Decebal Horia; Moldoveanu, Valeriu; Pillet, Claude-Alain

    2018-01-01

    The main goal of this paper is to put on solid mathematical grounds the so-called non-equilibrium Green’s function transport formalism for open systems. In particular, we derive the Jauho–Meir–Wingreen formula for the time-dependent current through an interacting sample coupled to non-interacting......The main goal of this paper is to put on solid mathematical grounds the so-called non-equilibrium Green’s function transport formalism for open systems. In particular, we derive the Jauho–Meir–Wingreen formula for the time-dependent current through an interacting sample coupled to non...

  5. A comparison of the real-time and the imaginary-time formalisms of finite temperature field theory for 2,3, and 4-point Green's functions

    International Nuclear Information System (INIS)

    Aurenche, P.; Becherrawy, T.

    1991-07-01

    The predictions of the real-time and the imaginary-time formalisms of Finite Temperature Field Theory is compared. Retarded and advanced amplitudes are constructed in the real-time formalism which are linear combinations of the usual time-ordered thermo-field dynamics amplitudes. These amplitudes can be easily compared to the various analytically continued amplitudes of the imaginary-time formalism. Explicit calculation of the 2,3 and 4-point Green's functions in φ 3 field theory is done in the one and two-loop approximations, and the compatibility of the two formalisms is shown. (author) 17 refs., 12 figs

  6. What Density Functional Theory could do for Quantum Information

    Science.gov (United States)

    Mattsson, Ann

    2015-03-01

    The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Density-functional approach to the three-body dispersion interaction based on the exchange dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Proynov, Emil; Wang, Matthew; Kong, Jing, E-mail: jing.kong@mtsu.edu [Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Liu, Fenglai [Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260 (United States); Gan, Zhengting [Q-Chem Inc., 5001 Baum Boulevard, Pittsburgh, Pennsylvania 15213 (United States)

    2015-08-28

    We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C{sub 9} dispersion coefficients is done in a non-empirical fashion. The obtained C{sub 9} values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C{sub 9} values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at short distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He{sub 3} and Ar{sub 3} trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters.

  8. The QTP family of consistent functionals and potentials in Kohn-Sham density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yifan; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu [Quantum Theory Project and Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2016-07-21

    This manuscript presents the second, consistent density functional in the QTP (Quantum Theory Project) family, that is, the CAM-QTP(01). It is a new range-separated exchange-correlation functional in which the non-local exchange contribution is 100% at large separation. It follows the same basic principles of this family that the Kohn-Sham eigenvalues of the occupied orbitals approximately equal the vertical ionization energies, which is not fulfilled by most of the traditional density functional methods. This new CAM-QTP(01) functional significantly improves the accuracy of the vertical excitation energies especially for the Rydberg states in the test set. It also reproduces many other properties such as geometries, reaction barrier heights, and atomization energies.

  9. The Feynman-Vernon Influence Functional Approach in QED

    International Nuclear Information System (INIS)

    Biryukov, Alexander; Shleenkov, Mark

    2016-01-01

    In the path integral approach we describe evolution of interacting electromagnetic and fermionic fields by the use of density matrix formalism. The equation for density matrix and transitions probability for fermionic field is obtained as average of electromagnetic field influence functional. We obtain a formula for electromagnetic field influence functional calculating for its various initial and final state. We derive electromagnetic field influence functional when its initial and final states are vacuum. We present Lagrangian for relativistic fermionic field under influence of electromagnetic field vacuum

  10. Density functional study of gamma-aminopropyltriethoxysilane

    International Nuclear Information System (INIS)

    Bistricic, L; Volovsek, V; Daani, V; Leskovac, M

    2006-01-01

    Density functional theory calculations using Becke's three-parameter exchange functional in combination with the Lee-Young-Parr correlation functional (B3-LYP) and standard 6-311 + G(d,p) basis set were carried out to study the conformational stability and vibrational spectra of gamma-aminopropyltriethoxysilane. Calculations reveal the existence of two stable conformers trans and gauche. The calculated energy for the gauche conformation was found to be 608 cm -1 above the minimum energy of the trans conformation. Temperature dependence of Raman spectra of liquid APTES and DFT calculation enabled us to identify the vibrational bands characteristic for both conformers. It has been shown that there is an increase in the population of gauche conformer with increasing temperature

  11. Formalization of Hostel Management System. | Obi | Journal of the ...

    African Journals Online (AJOL)

    HMS) can invariably contribute greatly to the success, profitability and customerbased approach of such an organization. The use of formal specification creates a formal approach for specifying the underlying functions and properties of the ...

  12. Open-system Kohn-Sham density functional theory.

    Science.gov (United States)

    Zhou, Yongxi; Ernzerhof, Matthias

    2012-03-07

    A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics

  13. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  14. Investigation of the atom-atom and structural relaxation in liquid alkali metals by means of the memory function formalism

    International Nuclear Information System (INIS)

    Blagoveshchenskii, N. M.; Novikov, A. G.; Savostin, V. V.

    2011-01-01

    An attempt is made to systematize the data on the relaxation characteristics of liquid alkali metals (Li, Na, and K), which were investigated based on neutron-scattering data with the application of the two-time memory function formalism.

  15. Bone mineral density and menstrual function in adolescent female ...

    African Journals Online (AJOL)

    Bone mineral density and menstrual function in adolescent female long-distance runners - A prospective comparative study of bone structure and menstrual function in adolescent female endurance athletes from five secondary schools in Pretoria.

  16. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    Science.gov (United States)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  17. The virialization density of peaks with general density profiles under spherical collapse

    OpenAIRE

    Rubin, Douglas; Loeb, Abraham

    2013-01-01

    We calculate the non-linear virialization density, $\\Delta_c$, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of $\\Delta_c$ which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for $\\Delta_c$ for halos in an Einstein de-Sitter an...

  18. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  19. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    Science.gov (United States)

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  20. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach

    Science.gov (United States)

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-01

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  1. A Comparative Density Functional Theory and Density Functional Tight Binding Study of Phases of Nitrogen Including a High Energy Density Material N8

    Directory of Open Access Journals (Sweden)

    Nicholas Capel

    2015-11-01

    Full Text Available We present a comparative dispersion-corrected Density Functional Theory (DFT and Density Functional Tight Binding (DFTB-D study of several phases of nitrogen, including the well-known alpha, beta, and gamma phases as well as recently discovered highly energetic phases: covalently bound cubic gauche (cg nitrogen and molecular (vdW-bound N8 crystals. Among several tested parametrizations of N–N interactions for DFTB, we identify only one that is suitable for modeling of all these phases. This work therefore establishes the applicability of DFTB-D to studies of phases, including highly metastable phases, of nitrogen, which will be of great use for modelling of dynamics of reactions involving these phases, which may not be practical with DFT due to large required space and time scales. We also derive a dispersion-corrected DFT (DFT-D setup (atom-centered basis parameters and Grimme dispersion parameters tuned for accurate description simultaneously of several nitrogen allotropes including covalently and vdW-bound crystals and including high-energy phases.

  2. Comment on "Nonuniqueness of algebraic first-order density-matrix functionals"

    Science.gov (United States)

    Gritsenko, O. V.

    2018-02-01

    Wang and Knowles (WK) [Phys. Rev. A 92, 012520 (2015), 10.1103/PhysRevA.92.012520] have given a counterexample to the conventional in reduced density-matrix functional theory representation of the second-order reduced density matrix (2RDM) Γi j ,k l in the basis of the natural orbitals as a function Γi j ,k l(n ) of the orbital occupation numbers (ONs) ni. The observed nonuniqueness of Γi j ,k l for prototype systems of different symmetry has been interpreted as the inherent inability of ON functions to reproduce the 2RDM, due to the insufficient information contained in the 1RDM spectrum. In this Comment, it is argued that, rather than totally invalidating Γi j ,k l(n ) , the WK example exposes its symmetry dependence which, as well as the previously established analogous dependence in density functional theory, is demonstrated with a general formulation based on the Levy constrained search.

  3. Variational formalism for spin particles

    International Nuclear Information System (INIS)

    Horvathy, P.

    1977-11-01

    The geometrical formulation of Hamilton's principle presented in a previous paper has been related to the usual one in terms of Lagrangian functions. The exact conditions for their equivalence are obtained and a method is given for the construction of a Lagrangian function. The formalism is extended to spin particles and a local Lagrangian is constructed in this case, too. However, this function cannot be extended to a global one. (D.P.)

  4. Density functional theory calculations of charge transport properties ...

    Indian Academy of Sciences (India)

    ZIRAN CHEN

    2017-08-04

    Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.

  5. Towards improved local hybrid functionals by calibration of exchange-energy densities

    International Nuclear Information System (INIS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-01-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities

  6. Environment-dependent crystal-field tight-binding based on density-functional theory

    International Nuclear Information System (INIS)

    Urban, Alexander

    2012-01-01

    Electronic structure calculations based on Kohn-Sham density-functional theory (DFT) allow the accurate prediction of chemical bonding and materials properties. Due to the high computational demand DFT calculations are, however, restricted to structures containing at most several hundreds of atoms, i.e., to length scales of a few nanometers. Though, many processes of technological relevance, for example in the field of nanoelectronics, are governed by phenomena that occur on a slightly larger length scale of up to 100 nanometers, which corresponds to tens of thousands of atoms. The semiempirical Slater-Koster tight-binding (TB) method makes it feasible to calculate the electronic structure of such large systems. In contrast to first-principles-based DFT, which is universally applicable to almost all chemical species, the TB method is based on parametrized models that are usually specialized for a particular application or for one certain class of compounds. Usually the model parameters (Slater-Koster tables) are empirically adjusted to reproduce either experimental reference data (e.g., geometries, elastic constants) or data from first-principles methods such as DFT. The construction of a new TB model is therefore connected with a considerable effort that is often contrasted by a low transferability of the parametrization. In this thesis we develop a systematic methodology for the derivation of accurate and transferable TB models from DFT calculations. Our procedure exploits the formal relationship between the two methods, according to which the TB total energy can be understood as a direct approximation of the Kohn--Sham energy functional. The concept of our method is different to previous approaches such as the DFTB method, since it allows to extract TB parameters from converged DFT wave functions and Hamiltonians of arbitrary reference structures. In the following the different subjects of this thesis are briefly summarized. We introduce a new technique for the

  7. A density functional study of backbone structures of polydiacetylene: destabilization of butatriene structure

    International Nuclear Information System (INIS)

    Katagiri, Hideki; Shimoi, Yukihiro; Abe, Shuji

    2004-01-01

    Backbone structures of polydiacetylene are studied with first-principles electronic structure method using plane-waves within generalized gradient approximation (GGA) of density functional theory. In spin-restricted calculations a coarse k-point sampling gives a potential energy curve with two local minima corresponding to acetylene and butatriene structures. However, the potential barrier between the two structures rapidly decreases with increasing number of k-points, which results in destabilization of the butatriene structure. Spin polarization effects also destabilize the butatriene structure, inducing atom-centered spin-density-wave state. These potential energies were compared with those obtained by Hartree-Fock, density functional within local density approximation (LDA) and GGA, and hybrid density functional methods using a gaussian basis set. The comparison shows that the density functional methods within LDA and GGA favor the destabilization of the butatriene structure in contrast to the Hartree-Fock method

  8. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  9. Isobaric-Isothermal Molecular Dynamics Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at Near-Ambient Conditions

    International Nuclear Information System (INIS)

    Schmidt, J.; VandeVondele, J.; Kuo, I.W.; Sebastiani, D.; Siepmann, J.I.; Hutter, J.; Mundy, C.J.

    2009-01-01

    We present herein a comprehensive density functional theory study toward assessing the accuracy of two popular gradient-corrected exchange correlation functionals on the structure and density of liquid water at near ambient conditions in the isobaric-isothermal ensemble. Our results indicate that both PBE and BLYP functionals under predict the density and over structure the liquid. Adding the dispersion correction due to Grimme(1, 2) improves the predicted densities for both BLYP and PBE in a significant manner. Moreover, the addition of the dispersion correction for BLYP yields an oxygen-oxygen radial distribution function in excellent agreement with experiment. Thus, we conclude that one can obtain a very satisfactory model for water using BLYP and a correction for dispersion.

  10. Density functional application to strongly correlated electron systems

    International Nuclear Information System (INIS)

    Eschrig, H.; Koepernik, K.; Chaplygin, I.

    2003-01-01

    The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn

  11. Density-correlation functions in Calogero-Sutherland models

    International Nuclear Information System (INIS)

    Minahan, J.A.; Polychronakos, A.P.

    1994-01-01

    Using arguments from two-dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density-correlation function for coupling l and 1/l, where l is an integer. We present overwhelming evidence that the conjecture is indeed correct

  12. Density correlation functions in Calogero-Sutherland models

    CERN Document Server

    Minahan, Joseph A.; Joseph A Minahan; Alexios P Polychronakos

    1994-01-01

    Using arguments from two dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density correlation function for coupling l and 1/l, where l is an integer. We present overwhelming evidence that the conjecture is indeed correct.

  13. Recent Advances in the Korringa-Kohn-Rostoker Green Function Method

    Directory of Open Access Journals (Sweden)

    Zeller Rudolf

    2014-01-01

    Full Text Available The Korringa-Kohn-Rostoker (KKR Green function (GF method is a technique for all-electron full-potential density-functional calculations. Similar to the historical Wigner-Seitz cellular method, the KKR-GF method uses a partitioning of space into atomic Wigner-Seitz cells. However, the numerically demanding wave-function matching at the cell boundaries is avoided by use of an integral equation formalism based on the concept of reference Green functions. The advantage of this formalism will be illustrated by the recent progress made for very large systems with thousands of inequivalent atoms and for very accurate calculations of atomic forces and total energies.

  14. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    Science.gov (United States)

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  15. Level Densities and Radiative Strength Functions in 170,171Yb

    International Nuclear Information System (INIS)

    Agvaanluvsan, U.; Schiller, A.; Becker, J.A.; Berstein, L.A.; Guttormsen, M.; Mitchell, G.E.; Rekstad, J.; Siem, S.; Voinov, A.

    2003-01-01

    Level densities and radiative strength functions in 171 Yb and 170 Yb nuclei have been measured with the 171 Yb( 3 He, 3 He(prime) γ) 171 Yb and 171 Yb( 3 He, αγ) 170 Yb reactions. A simultaneous determination of the nuclear level density and the radiative strength function was made. The present data adds to and is consistent with previous results for several other rare earth nuclei. The method will be briefly reviewed and the result from the analysis will be presented. The radiative strength function for 171 Yb is compared to previously published work.

  16. Treatment of Layered Structures Using a Semilocal meta-GGA Density Functional

    DEFF Research Database (Denmark)

    Madsen, Georg; Ferrighi, Lara; Hammer, Bjørk

    2010-01-01

    Density functional theory calculations on solids consisting of covalently bonded layers held together by dispersive interactions are presented. Utilizing the kinetic energy density in addition to the density and its gradients gives the meta-generalized gradient approximation (MGGA) M06-L enough...

  17. Formal matrices

    CERN Document Server

    Krylov, Piotr

    2017-01-01

    This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...

  18. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    Science.gov (United States)

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  19. Density-functional theory of atoms and molecules

    CERN Document Server

    Parr, Robert G

    1995-01-01

    Provides an account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. This book contains a discussion of the chemical potential and its derivatives. It is intended for physicists, chemists, and advanced students in chemistry.

  20. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    International Nuclear Information System (INIS)

    Bakosi, Jozsef; Ristorcelli, Raymond J.

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  1. Formalized Verification of Snapshotable Trees: Separation and Sharing

    DEFF Research Database (Denmark)

    Mehnert, Hannes; Sieczkowski, Filip; Birkedal, Lars

    2012-01-01

    We use separation logic to specify and verify a Java program that implements snapshotable search trees, fully formalizing the speci- cation and verication in the Coq proof assistant. We achieve local and modular reasoning about a tree and its snapshots and their iterators, al- though...... for full functional specication and verication, whether by separation logic or by other formalisms....

  2. A pair density functional theory utilizing the correlated wave function

    International Nuclear Information System (INIS)

    Higuchi, M; Higuchi, K

    2009-01-01

    We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.

  3. Reasoning about variables in 11 to 18 year olds: informal, schooled and formal expression in learning about functions

    Science.gov (United States)

    Ayalon, Michal; Watson, Anne; Lerman, Steve

    2016-09-01

    This study examines expressions of reasoning by some higher achieving 11 to 18 year-old English students responding to a survey consisting of function tasks developed in collaboration with their teachers. We report on 70 students, 10 from each of English years 7-13. Iterative and comparative analysis identified capabilities and difficulties of students and suggested conjectures concerning links between the affordances of the tasks, the curriculum, and students' responses. The paper focuses on five of the survey tasks and highlights connections between informal and formal expressions of reasoning about variables in learning. We introduce the notion of `schooled' expressions of reasoning, neither formal nor informal, to emphasise the role of the formatting tools introduced in school that shape future understanding and reasoning.

  4. Probability-density-function characterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.

    2006-01-01

    We propose a method to characterize and quantify multipartite entanglement for pure states. The method hinges upon the study of the probability density function of bipartite entanglement and is tested on an ensemble of qubits in a variety of situations. This characterization is also compared to several measures of multipartite entanglement

  5. Quantal density functional theory II. Approximation methods and applications

    International Nuclear Information System (INIS)

    Sahni, Viraht

    2010-01-01

    This book is on approximation methods and applications of Quantal Density Functional Theory (QDFT), a new local effective-potential-energy theory of electronic structure. What distinguishes the theory from traditional density functional theory is that the electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and the correlation contribution to the kinetic energy -- the Correlation-Kinetic effects -- are separately and explicitly defined. As such it is possible to study each property of interest as a function of the different electron correlations. Approximations methods based on the incorporation of different electron correlations, as well as a many-body perturbation theory within the context of QDFT, are developed. The applications are to the few-electron inhomogeneous electron gas systems in atoms and molecules, as well as to the many-electron inhomogeneity at metallic surfaces. (orig.)

  6. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  7. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    Science.gov (United States)

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  8. Correlation functional in screened-exchange density functional theory procedures.

    Science.gov (United States)

    Chan, Bun; Kawashima, Yukio; Hirao, Kimihiko

    2017-10-15

    In the present study, we have explored several prospects for the further development of screened-exchange density functional theory (SX-DFT) procedures. Using the performance of HSE06 as our measure, we find that the use of alternative correlation functionals (as oppose to PBEc in HSE06) also yields adequate results for a diverse set of thermochemical properties. We have further examined the performance of new SX-DFT procedures (termed HSEB-type methods) that comprise the HSEx exchange and a (near-optimal) reparametrized B97c (c OS,0  = c SS,0  = 1, c OS,1  = -1.5, c OS,2  = -0.644, c SS,1  = -0.5, and c SS,2  = 1.10) correlation functionals. The different variants of HSEB all perform comparably to or slightly better than the original HSE-type procedures. These results, together with our fundamental analysis of correlation functionals, point toward various directions for advancing SX-DFT methods. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Building a universal nuclear energy density functional

    International Nuclear Information System (INIS)

    Bertsch, G F

    2007-01-01

    This talk describes a new project in SciDAC II in the area of low-energy nuclear physics. The motivation and goals of the SciDAC are presented as well as an outline of the theoretical and computational methodology that will be employed. An important motivation is to have more accurate and reliable predictions of nuclear properties including their binding energies and low-energy reaction rates. The theoretical basis is provided by density functional theory, which the only available theory that can be systematically applied to all nuclei. However, other methodologies based on wave function methods are needed to refine the functionals and to make applications to dynamic processes

  10. A-centers in silicon studied with hybrid density functional theory

    KAUST Repository

    Wang, Hao; Chroneos, Alexander; Londos, C. A.; Schwingenschlö gl, Udo; Sgourou, E. N.

    2013-01-01

    Density functional theory employing hybrid functional is used to gain fundamental insight into the interaction of vacancies with oxygen interstitials to form defects known as A-centers in silicon. We calculate the formation energy of the defect with respect to the Fermi energy for all possible charge states. It is found that the neutral and doubly negatively charged A-centers dominate. The findings are analyzed in terms of the density of states and discussed in view of previous experimental and theoretical studies.

  11. A-centers in silicon studied with hybrid density functional theory

    KAUST Repository

    Wang, Hao

    2013-07-29

    Density functional theory employing hybrid functional is used to gain fundamental insight into the interaction of vacancies with oxygen interstitials to form defects known as A-centers in silicon. We calculate the formation energy of the defect with respect to the Fermi energy for all possible charge states. It is found that the neutral and doubly negatively charged A-centers dominate. The findings are analyzed in terms of the density of states and discussed in view of previous experimental and theoretical studies.

  12. Density-functional errors in ionization potential with increasing system size

    Energy Technology Data Exchange (ETDEWEB)

    Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-14

    This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.

  13. A Density Functional for Liquid 3He Based on the Aziz Potential

    Science.gov (United States)

    Barranco, M.; Hernández, E. S.; Mayol, R.; Navarro, J.; Pi, M.; Szybisz, L.

    2006-09-01

    We propose a new class of density functionals for liquid 3He based on the Aziz helium-helium interaction screened at short distances by the microscopically calculated two-body distribution function g(r). Our aim is to reduce to a minumum the unavoidable phenomenological ingredients inherent to any density functional approach. Results for the homogeneous liquid and droplets are presented and discussed.

  14. On Farmer's line, probability density functions, and overall risk

    International Nuclear Information System (INIS)

    Munera, H.A.; Yadigaroglu, G.

    1986-01-01

    Limit lines used to define quantitative probabilistic safety goals can be categorized according to whether they are based on discrete pairs of event sequences and associated probabilities, on probability density functions (pdf's), or on complementary cumulative density functions (CCDFs). In particular, the concept of the well-known Farmer's line and its subsequent reinterpretations is clarified. It is shown that Farmer's lines are pdf's and, therefore, the overall risk (defined as the expected value of the pdf) that they represent can be easily calculated. It is also shown that the area under Farmer's line is proportional to probability, while the areas under CCDFs are generally proportional to expected value

  15. Density functional and many-body theories of Hydrogen plasmas

    International Nuclear Information System (INIS)

    Perrot, F.; Dharma-Wardana, M.W.C.

    1983-11-01

    This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state

  16. Ground-state properties of third-row elements with nonlocal density functionals

    International Nuclear Information System (INIS)

    Bagno, P.; Jepsen, O.; Gunnarsson, O.

    1989-01-01

    The cohesive energy, the lattice parameter, and the bulk modulus of third-row elements are calculated using the Langreth-Mehl-Hu (LMH), the Perdew-Wang (PW), and the gradient expansion functionals. The PW functional is found to give somewhat better results than the LMH functional and both are found to typically remove half the errors in the local-spin-density (LSD) approximation, while the gradient expansion gives worse results than the local-density approximation. For Fe both the LMH and PW functionals correctly predict a ferromagnetic bcc ground state, while the LSD approximation and the gradient expansion predict a nonmagnetic fcc ground state

  17. Spinor formalism and complex-vector formalism of general relativity

    International Nuclear Information System (INIS)

    Han-ying, G.; Yong-shi, W.; Gendao, L.

    1974-01-01

    In this paper, using E. Cartan's exterior calculus, we give the spinor form of the structure equations, which leads naturally to the Newman--Penrose equations. Furthermore, starting from the spinor spaces and the el (2C) algebra, we construct the general complex-vector formalism of general relativity. We find that both the Cahen--Debever--Defrise complex-vector formalism and that of Brans are its special cases. Thus, the spinor formalism and the complex-vector formalism of general relativity are unified on the basis of the uni-modular group SL(2C) and its Lie algebra

  18. Solvent density inhomogeneities and solvation free energies in supercritical diatomic fluids: a density functional approach.

    Science.gov (United States)

    Husowitz, B; Talanquer, V

    2007-02-07

    Density functional theory is used to explore the solvation properties of a spherical solute immersed in a supercritical diatomic fluid. The solute is modeled as a hard core Yukawa particle surrounded by a diatomic Lennard-Jones fluid represented by two fused tangent spheres using an interaction site approximation. The authors' approach is particularly suitable for thoroughly exploring the effect of different interaction parameters, such as solute-solvent interaction strength and range, solvent-solvent long-range interactions, and particle size, on the local solvent structure and the solvation free energy under supercritical conditions. Their results indicate that the behavior of the local coordination number in homonuclear diatomic fluids follows trends similar to those reported in previous studies for monatomic fluids. The local density augmentation is particularly sensitive to changes in solute size and is affected to a lesser degree by variations in the solute-solvent interaction strength and range. The associated solvation free energies exhibit a nonmonotonous behavior as a function of density for systems with weak solute-solvent interactions. The authors' results suggest that solute-solvent interaction anisotropies have a major influence on the nature and extent of local solvent density inhomogeneities and on the value of the solvation free energies in supercritical solutions of heteronuclear molecules.

  19. Density functional theory

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    This chapter gives an introduction to first-principles electronic structure calculations based on the density functional theory (DFT). Electronic structure calculations have a crucial importance in the multi-scale modelling scheme of materials: not only do they enable one to accurately determine physical and chemical properties of materials, they also provide data for the adjustment of parameters (or potentials) in higher-scale methods such as classical molecular dynamics, kinetic Monte Carlo, cluster dynamics, etc. Most of the properties of a solid depend on the behaviour of its electrons, and in order to model or predict them it is necessary to have an accurate method to compute the electronic structure. DFT is based on quantum theory and does not make use of any adjustable or empirical parameter: the only input data are the atomic number of the constituent atoms and some initial structural information. The complicated many-body problem of interacting electrons is replaced by an equivalent single electron problem, in which each electron is moving in an effective potential. DFT has been successfully applied to the determination of structural or dynamical properties (lattice structure, charge density, magnetisation, phonon spectra, etc.) of a wide variety of solids. Its efficiency was acknowledged by the attribution of the Nobel Prize in Chemistry in 1998 to one of its authors, Walter Kohn. A particular attention is given in this chapter to the ability of DFT to model the physical properties of nuclear materials such as actinide compounds. The specificities of the 5f electrons of actinides will be presented, i.e., their more or less high degree of localisation around the nuclei and correlations. The limitations of the DFT to treat the strong 5f correlations are one of the main issues for the DFT modelling of nuclear fuels. Various methods that exist to better treat strongly correlated materials will finally be presented. (author)

  20. Extending density functional embedding theory for covalently bonded systems.

    Science.gov (United States)

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  1. Finite anticanonical transformations in field-antifield formalism

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A.; Tyutin, Igor V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2015-06-15

    We study the role of arbitrary (finite) anticanonical transformations in the field-antifield formalism and the gauge-fixing procedure based on the use of these transformations. The properties of the generating functionals of the Green functions subjected to finite anticanonical transformations are considered. (orig.)

  2. Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2008-01-01

    In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a non-uniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail. (condensed matter: structure, thermal and mechanical properties)

  3. Formal truncations of connected kernel equations

    International Nuclear Information System (INIS)

    Dixon, R.M.

    1977-01-01

    The Connected Kernel Equations (CKE) of Alt, Grassberger and Sandhas (AGS); Kouri, Levin and Tobocman (KLT); and Bencze, Redish and Sloan (BRS) are compared against reaction theory criteria after formal channel space and/or operator truncations have been introduced. The Channel Coupling Class concept is used to study the structure of these CKE's. The related wave function formalism of Sandhas, of L'Huillier, Redish and Tandy and of Kouri, Krueger and Levin are also presented. New N-body connected kernel equations which are generalizations of the Lovelace three-body equations are derived. A method for systematically constructing fewer body models from the N-body BRS and generalized Lovelace (GL) equations is developed. The formally truncated AGS, BRS, KLT and GL equations are analyzed by employing the criteria of reciprocity and two-cluster unitarity. Reciprocity considerations suggest that formal truncations of BRS, KLT and GL equations can lead to reciprocity-violating results. This study suggests that atomic problems should employ three-cluster connected truncations and that the two-cluster connected truncations should be a useful starting point for nuclear systems

  4. Density matrix embedding in an antisymmetrized geminal power bath

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy

    2015-01-01

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlation energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation

  5. SBME : Exploring boundaries between formal, non-formal, and informal learning

    OpenAIRE

    Shahoumian, Armineh; Parchoma, Gale; Saunders, Murray; Hanson, Jacky; Dickinson, Mike; Pimblett, Mark

    2013-01-01

    In medical education learning extends beyond university settings into practice. Non-formal and informal learning support learners’ efforts to meet externally set and learner-identified objectives. In SBME research, boundaries between formal, non-formal, and informal learning have not been widely explored. Whether SBME fits within or challenges these categories can make a contribution. Formal learning is described in relation to educational settings, planning, assessment, and accreditation. In...

  6. JDFTx: Software for joint density-functional theory

    Directory of Open Access Journals (Sweden)

    Ravishankar Sundararaman

    2017-01-01

    Full Text Available Density-functional theory (DFT has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units. This code hosts the development of joint density-functional theory (JDFT that combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.

  7. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    International Nuclear Information System (INIS)

    Zhang, Xing; Herbert, John M.

    2014-01-01

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state

  8. A formalism for the calculus of variations with spinors

    Energy Technology Data Exchange (ETDEWEB)

    Bäckdahl, Thomas, E-mail: thobac@chalmers.se [The School of Mathematics, University of Edinburgh, JCMB 6228, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom and Mathematical Sciences - Chalmers University of Technology and University of Gothenburg - SE-412 96 Gothenburg (Sweden); Valiente Kroon, Juan A., E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2016-02-15

    We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors.

  9. A formalism for the calculus of variations with spinors

    International Nuclear Information System (INIS)

    Bäckdahl, Thomas; Valiente Kroon, Juan A.

    2016-01-01

    We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors

  10. Interrelationships among Elements of Formal Mentoring and the Dimensions of Organizational Socialization

    Science.gov (United States)

    Connelly, John T.

    2011-01-01

    Organizations created formal mentoring programs to replicate the benefits of informal mentoring. With regard to measuring mentoring functions, organizations are using informal measures to measure formal mentoring programs. As a result, empirical measurements of the effectiveness of university formal mentoring programs are limited. Researchers…

  11. Characterizing the Spatial Density Functions of Neural Arbors

    Science.gov (United States)

    Teeter, Corinne Michelle

    Recently, it has been proposed that a universal function describes the way in which all arbors (axons and dendrites) spread their branches over space. Data from fish retinal ganglion cells as well as cortical and hippocampal arbors from mouse, rat, cat, monkey and human provide evidence that all arbor density functions (adf) can be described by a Gaussian function truncated at approximately two standard deviations. A Gaussian density function implies that there is a minimal set of parameters needed to describe an adf: two or three standard deviations (depending on the dimensionality of the arbor) and an amplitude. However, the parameters needed to completely describe an adf could be further constrained by a scaling law found between the product of the standard deviations and the amplitude of the function. In the following document, I examine the scaling law relationship in order to determine the minimal set of parameters needed to describe an adf. First, I find that the at, two-dimensional arbors of fish retinal ganglion cells require only two out of the three fundamental parameters to completely describe their density functions. Second, the three-dimensional, volume filling, cortical arbors require four fundamental parameters: three standard deviations and the total length of an arbor (which corresponds to the amplitude of the function). Next, I characterize the shape of arbors in the context of the fundamental parameters. I show that the parameter distributions of the fish retinal ganglion cells are largely homogenous. In general, axons are bigger and less dense than dendrites; however, they are similarly shaped. The parameter distributions of these two arbor types overlap and, therefore, can only be differentiated from one another probabilistically based on their adfs. Despite artifacts in the cortical arbor data, different types of arbors (apical dendrites, non-apical dendrites, and axons) can generally be differentiated based on their adfs. In addition, within

  12. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    Science.gov (United States)

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  13. Formalization of Database Systems -- and a Formal Definition of {IMS}

    DEFF Research Database (Denmark)

    Bjørner, Dines; Løvengreen, Hans Henrik

    1982-01-01

    Drawing upon an analogy between Programming Language Systems and Database Systems we outline the requirements that architectural specifications of database systems must futfitl, and argue that only formal, mathematical definitions may 6atisfy these. Then we illustrate home aspects and touch upon...... come ueee of formal definitions of data models and databaee management systems. A formal model of INS will carry this discussion. Finally we survey some of the exkting literature on formal definitions of database systems. The emphasis will be on constructive definitions in the denotationul semantics...... style of the VCM: Vienna Development Nethd. The role of formal definitions in international standardiaation efforts is briefly mentioned....

  14. Scalar formalism for non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Hostler, L.C.

    1986-01-01

    The gauge field theory of an N-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation ]Pi x (1+isigma) x Pi+m 2 ]Phi = 0, Pi/sub μ/equivalentpartial/partialix/sub μ/-eA/sub μ/, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub μ//sub ν/ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. The equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent , where Psi/sub in/ is a Heisenberg operator belonging to a 4N x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics

  15. Density functional theory of polydisperse fluid interfaces

    International Nuclear Information System (INIS)

    Baus, M.; Bellier-Castella, L.; Xu, H.

    2002-01-01

    Most colloids usually exhibit one or several polydispersities. A natural framework for the theoretical description of polydisperse systems is provided by the extension of density functional theory to 'continuous' mixtures. This will be illustrated here by the study of both the bulk and interfacial properties of a simple van der Waals model for a polydisperse colloidal fluid. (author)

  16. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory.

    Science.gov (United States)

    Eich, F G; Hellgren, Maria

    2014-12-14

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.

  17. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory

    International Nuclear Information System (INIS)

    Eich, F. G.; Hellgren, Maria

    2014-01-01

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative

  18. Ab initio derivation of model energy density functionals

    International Nuclear Information System (INIS)

    Dobaczewski, Jacek

    2016-01-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)

  19. Geometry optimization of molecules within an LCGTO local-density functional approach

    International Nuclear Information System (INIS)

    Mintmire, J.W.

    1990-01-01

    We describe our implementation of geometry optimization techniques within the linear combination of Gaussian-type orbitals (LCGTO) approach to local-density functional theory. The algorithm for geometry optimization is based on the evaluation of the gradient of the total energy with respect to internal coordinates within the local-density functional scheme. We present optimization results for a range of small molecules which serve as test cases for our approach

  20. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    Science.gov (United States)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  1. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  2. SELF-EFFICACY OF FORMALLY AND NON-FORMALLY TRAINED PUBLIC SECTOR TEACHERS

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem ANWAR

    2009-07-01

    Full Text Available The main objective of the study was to compare the formally and non-formally trained in-service public sector teachers’ Self-efficacy. Five hypotheses were developed describing no difference in the self-efficacy of formally and non-formally trained teachers to influence decision making, influence school resources, instructional self-efficacy, disciplinary self-efficacy and create positive school climate. Teacher Efficacy Instrument (TSES developed by Bandura (2001 consisting of thirty 9-point items was used in the study. 342 formally trained and 255 non-formally trained respondents’ questionnaires were received out of 1500 mailed. The analysis of data revealed that the formally trained public sector teachers are high in their self-efficacy on all the five categories: to influence decision making, to influence school resources, instructional self-efficacy, disciplinary self-efficacy and self-efficacy to create positive school climate.

  3. Masses of Formal Philosophy

    DEFF Research Database (Denmark)

    Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods i...... in philosophy. Including contributions from a wide range of philosophers, Masses of Formal Philosophy contains important new responses to the original five questions.......Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods...

  4. Density-functional theory based on the electron distribution on the energy coordinate

    Science.gov (United States)

    Takahashi, Hideaki

    2018-03-01

    We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.

  5. Quantal density functional theory. 2. ed.

    International Nuclear Information System (INIS)

    Sahni, Viraht

    2016-01-01

    This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2 nd edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.

  6. Quantal density functional theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Viraht

    2016-07-01

    This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2{sup nd} edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.

  7. Hartree and Exchange in Ensemble Density Functional Theory: Avoiding the Nonuniqueness Disaster.

    Science.gov (United States)

    Gould, Tim; Pittalis, Stefano

    2017-12-15

    Ensemble density functional theory is a promising method for the efficient and accurate calculation of excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of practical applicability. Here, we introduce a guaranteed single-valued "Hartree-exchange" ensemble density functional, E_{Hx}[n], in terms of the right derivative of the universal ensemble density functional with respect to the coupling constant at vanishing interaction. We show that E_{Hx}[n] is straightforwardly expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for E_{Hx}[n] from the literature, including those involving superpositions of Slater determinants, can now be regarded as originating from the unifying picture presented here. We thus establish a clear and practical description for Hartree and exchange in ensemble systems.

  8. Schwinger–Keldysh canonical formalism for electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuehua, E-mail: suyh@ytu.edu.cn

    2016-03-01

    Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

  9. Artificial cognitive memory—changing from density driven to functionality driven

    Science.gov (United States)

    Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.

    2011-03-01

    Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.

  10. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    Our approach represents a full solid-state calculation, allowing for polarization ef- fects while still capable of capturing inter-molecular dis...AFRL-AFOSR-UK-TR-2017-0030 Optical absorption in molecular crystals from time-dependent density functional theory Leeor Kronik WEIZMANN INSTITUTE OF...from time-dependent density functional theory 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0290 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S

  11. Exact density functional and wave function embedding schemes based on orbital localization

    International Nuclear Information System (INIS)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály; Ferenczy, György G.

    2016-01-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  12. Exact density functional and wave function embedding schemes based on orbital localization

    Science.gov (United States)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  13. Exact density functional and wave function embedding schemes based on orbital localization

    Energy Technology Data Exchange (ETDEWEB)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu [MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest (Hungary); Ferenczy, György G. [Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest (Hungary); Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest (Hungary)

    2016-08-14

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  14. Synergy between pair coupled cluster doubles and pair density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Bulik, Ireneusz W. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Henderson, Thomas M. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892 (United States); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  15. Benchmarking Density Functionals for Chemical Bonds of Gold

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark aga...

  16. Wigner Function of Density Operator for Negative Binomial Distribution

    International Nuclear Information System (INIS)

    Xu Xinglei; Li Hongqi

    2008-01-01

    By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator

  17. Approximate self-consistent potentials for density-functional-theory exchange-correlation functionals

    International Nuclear Information System (INIS)

    Cafiero, Mauricio; Gonzalez, Carlos

    2005-01-01

    We show that potentials for exchange-correlation functionals within the Kohn-Sham density-functional-theory framework may be written as potentials for simpler functionals multiplied by a factor close to unity, and in a self-consistent field calculation, these effective potentials find the correct self-consistent solutions. This simple theory is demonstrated with self-consistent exchange-only calculations of the atomization energies of some small molecules using the Perdew-Kurth-Zupan-Blaha (PKZB) meta-generalized-gradient-approximation (meta-GGA) exchange functional. The atomization energies obtained with our method agree with or surpass previous meta-GGA calculations performed in a non-self-consistent manner. The results of this work suggest the utility of this simple theory to approximate exchange-correlation potentials corresponding to energy functionals too complicated to generate closed forms for their potentials. We hope that this method will encourage the development of complex functionals which have correct boundary conditions and are free of self-interaction errors without the worry that the functionals are too complex to differentiate to obtain potentials

  18. Magnetic behavior study of samarium nitride using density functional theory

    Science.gov (United States)

    Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.

    2018-02-01

    In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.

  19. Variational formalism for kinetic-MHD instabilities in tokamaks

    International Nuclear Information System (INIS)

    Edery, D.; Garbet, X.; Roubin, J.P.; Samain, A.

    1991-07-01

    A variational formalism that includes in a consistent way the tokamak plasma fluid response to an electromagnetic field as well as the particle-field resonant interaction effects is presented. The integrability of the unperturbed motion of the particles is used to establish a general functional similar to the classical Lagrangian for the electromagnetic field, which is extremum with respect to the field potentials. This functional is the sum of fluid terms closely related to the classical MHD energy and of resonant terms describing the kinetic effects. The formalism is used to study a critical issue in tokamak confinement, namely the sawteeth stabilization by energetic particles

  20. Adolescent thinking ála Piaget: The formal stage.

    Science.gov (United States)

    Dulit, E

    1972-12-01

    Two of the formal-stage experiments of Piaget and Inhelder, selected largely for their closeness to the concepts defining the stage, were replicated with groups of average and gifted adolescents. This report describes the relevant Piagetian concepts (formal stage, concrete stage) in context, gives the methods and findings of this study, and concludes with a section discussing implications and making some reformulations which generally support but significantly qualify some of the central themes of the Piaget-Inhelder work. Fully developed formal-stage thinking emerges as far from commonplace among normal or average adolescents (by marked contrast with the impression created by the Piaget-Inhelder text, which chooses to report no middle or older adolescents who function at less than fully formal levels). In this respect, the formal stage differs appreciably from the earlier Piagetian stages, and early adolescence emerges as the age for which a "single path" model of cognitive development becomes seriously inadequate and a more complex model becomes essential. Formal-stage thinking seems best conceptualized, like most other aspects of psychological maturity, as a potentiality only partially attained by most and fully attained only by some.

  1. INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS

    KAUST Repository

    Potter, Kristin; Kirby, Robert Michael; Xiu, Dongbin; Johnson, Chris R.

    2012-01-01

    The probability density function (PDF), and its corresponding cumulative density function (CDF), provide direct statistical insight into the characterization of a random process or field. Typically displayed as a histogram, one can infer probabilities of the occurrence of particular events. When examining a field over some two-dimensional domain in which at each point a PDF of the function values is available, it is challenging to assess the global (stochastic) features present within the field. In this paper, we present a visualization system that allows the user to examine two-dimensional data sets in which PDF (or CDF) information is available at any position within the domain. The tool provides a contour display showing the normed difference between the PDFs and an ansatz PDF selected by the user and, furthermore, allows the user to interactively examine the PDF at any particular position. Canonical examples of the tool are provided to help guide the reader into the mapping of stochastic information to visual cues along with a description of the use of the tool for examining data generated from an uncertainty quantification exercise accomplished within the field of electrophysiology.

  2. Some properties for integro-differential operator defined by a fractional formal.

    Science.gov (United States)

    Abdulnaby, Zainab E; Ibrahim, Rabha W; Kılıçman, Adem

    2016-01-01

    Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator [Formula: see text] defined by a fractional formal (fractional differential operator) and study some its geometric properties by employing it in new subclasses of analytic univalent functions.

  3. A formalism to generate probability distributions for performance-assessment modeling

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1990-01-01

    A formalism is presented for generating probability distributions of parameters used in performance-assessment modeling. The formalism is used when data are either sparse or nonexistent. The appropriate distribution is a function of the known or estimated constraints and is chosen to maximize a quantity known as Shannon's informational entropy. The formalism is applied to a parameter used in performance-assessment modeling. The functional form of the model that defines the parameter, data from the actual field site, and natural analog data are analyzed to estimate the constraints. A beta probability distribution of the example parameter is generated after finding four constraints. As an example of how the formalism is applied to the site characterization studies of Yucca Mountain, the distribution is generated for an input parameter in a performance-assessment model currently used to estimate compliance with disposal of high-level radioactive waste in geologic repositories, 10 CFR 60.113(a)(2), commonly known as the ground water travel time criterion. 8 refs., 2 figs

  4. Pressure and surface tension of solid-liquid interface using Tara zona density functional theory

    International Nuclear Information System (INIS)

    Moradi, M.; Kavosh Tehrani, M.

    2001-01-01

    The weighted density functional theory proposed by Tara zona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this research we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is pitted in three dimensions. We also calculate the pressure and compare it with the Carnahan-Starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation

  5. Time-dependent density functional theory for multi-component systems

    International Nuclear Information System (INIS)

    Tiecheng Li; Peiqing Tong

    1985-10-01

    The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)

  6. Function of Maximal Microvessel Density in Breast Tumor Metastasis

    National Research Council Canada - National Science Library

    McLeskey, Sandra

    2000-01-01

    .... These data are gained by quantitating the number of microvessels in "hot spots" of high-density tumor vasculature, implying that such hot spots have functional significance in the process of metastasis...

  7. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    Science.gov (United States)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  8. Density Functional Calculations of Solid State Heats of Formation

    National Research Council Canada - National Science Library

    Politzer, Peter

    1999-01-01

    It is now feasible to compute quite accurate gas phase heats of formation for relatively small molecules by means of ab initio or density functional techniques and one of several possible approaches...

  9. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  10. Deep inelastic scattering in the formalism with the wave functions of composite systems at rest

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.; Sisakyan, A.N.

    1987-01-01

    A deep inelastic process of lepton-hadron scattering is studied in the bound-state rest frame. A new version of expansion of structure functions over an interaction constant is proposed, each term in it having spectral properties. It is shown that the impulse approximation is insufficient for a correct description of the elastic limit in the composite particle rest frame in contrast with the system of infinite momentum P Z → ∞. The leading asymptotics of the structure functions as x Bj → 1 can be obtained by allowing for the interaction of consituents in a final state. Using as an example a bound state ot two and three particles it is shown that the results of calculations of the relevant diagrams in the QCD model are in agreement with those obtained in th formalism P Z → ∞

  11. Fitness function and nonunique solutions in x-ray reflectivity curve fitting: crosserror between surface roughness and mass density

    International Nuclear Information System (INIS)

    Tiilikainen, J; Bosund, V; Mattila, M; Hakkarainen, T; Sormunen, J; Lipsanen, H

    2007-01-01

    Nonunique solutions of the x-ray reflectivity (XRR) curve fitting problem were studied by modelling layer structures with neural networks and designing a fitness function to handle the nonidealities of measurements. Modelled atomic-layer-deposited aluminium oxide film structures were used in the simulations to calculate XRR curves based on Parratt's formalism. This approach reduced the dimensionality of the parameter space and allowed the use of fitness landscapes in the study of nonunique solutions. Fitness landscapes, where the height in a map represents the fitness value as a function of the process parameters, revealed tracks where the local fitness optima lie. The tracks were projected on the physical parameter space thus allowing the construction of the crosserror equation between weakly determined parameters, i.e. between the mass density and the surface roughness of a layer. The equation gives the minimum error for the other parameters which is a consequence of the nonuniqueness of the solution if noise is present. Furthermore, the existence of a possible unique solution in a certain parameter range was found to be dependent on the layer thickness and the signal-to-noise ratio

  12. Cylinders out of a top hat: counts-in-cells for projected densities

    Science.gov (United States)

    Uhlemann, Cora; Pichon, Christophe; Codis, Sandrine; L'Huillier, Benjamin; Kim, Juhan; Bernardeau, Francis; Park, Changbom; Prunet, Simon

    2018-06-01

    Large deviation statistics is implemented to predict the statistics of cosmic densities in cylinders applicable to photometric surveys. It yields few per cent accurate analytical predictions for the one-point probability distribution function (PDF) of densities in concentric or compensated cylinders; and also captures the density dependence of their angular clustering (cylinder bias). All predictions are found to be in excellent agreement with the cosmological simulation Horizon Run 4 in the quasi-linear regime where standard perturbation theory normally breaks down. These results are combined with a simple local bias model that relates dark matter and tracer densities in cylinders and validated on simulated halo catalogues. This formalism can be used to probe cosmology with existing and upcoming photometric surveys like DES, Euclid or WFIRST containing billions of galaxies.

  13. Methodology of formal software evaluation

    International Nuclear Information System (INIS)

    Tuszynski, J.

    1998-01-01

    Sydkraft AB, the major Swedish utility, owner of ca 6000 MW el installed in nuclear (NPP Barsebaeck and NPP Oskarshamn), fossil fuel and hydro Power Plants is facing modernization of the control systems of the plants. Standards applicable require structured, formal methods for implementation of the control functions in the modem, real time software systems. This presentation introduces implementation methodology as discussed presently at the Sydkraft organisation. The approach suggested is based upon the process of co-operation of three parties taking part in the implementation; owner of the plant, vendor and Quality Assurance (QA) organisation. QA will be based on tools for formal software validation and on systematic gathering by the owner of validated and proved-by-operation control modules for the concern-wide utilisation. (author)

  14. Formalizing Informal Logic

    Directory of Open Access Journals (Sweden)

    Douglas Walton

    2015-12-01

    Full Text Available This paper presents a formalization of informal logic using the Carneades Argumentation System (CAS, a formal, computational model of argument that consists of a formal model of argument graphs and audiences. Conflicts between pro and con arguments are resolved using proof standards, such as preponderance of the evidence. CAS also formalizes argumentation schemes. Schemes can be used to check whether a given argument instantiates the types of argument deemed normatively appropriate for the type of dialogue.

  15. Covariant density functional theory for nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Badarch, U.

    2007-07-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  16. Covariant density functional theory for nuclear matter

    International Nuclear Information System (INIS)

    Badarch, U.

    2007-01-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  17. Explicit treatment of N-body correlations within a density-matrix formalism

    International Nuclear Information System (INIS)

    Shun-Jin, W.; Cassing, W.

    1985-01-01

    The nuclear many-body problem is reformulated in the density-matrix approach such that n-body correlations are separated out from the reduced density matrix rho/sub n/. A set of equations for the time evolution of the n-body correlations c/sub n/ is derived which allows for physically transparent truncations with respect to the order of correlations. In the stationary limit (c/sub n/ = 0) a restriction to two-body correlations yields a generalized Bethe-Goldstone equation a restriction to body correlations yields generalized Faddeev equations in the density-matrix formulation. Furthermore it can be shown that any truncation of the set of equations (c/sub n/ = 0, n>m) is compatible with conservation laws, a quality which in general is not fulfilled if higher order correlations are treated perturbatively

  18. Spin-density functional for exchange anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.

    2009-01-01

    Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.

  19. A density functional theory-based chemical potential equalisation

    Indian Academy of Sciences (India)

    A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few ...

  20. Semiclassical neutral atom as a reference system in density functional theory.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, E; Laricchia, S; Della Sala, F

    2011-05-06

    We use the asymptotic expansions of the semiclassical neutral atom as a reference system in density functional theory to construct accurate generalized gradient approximations (GGAs) for the exchange-correlation and kinetic energies without any empiricism. These asymptotic functionals are among the most accurate GGAs for molecular systems, perform well for solid state, and overcome current GGA state of the art in frozen density embedding calculations. Our results also provide evidence for the conjointness conjecture between exchange and kinetic energies of atomic systems.

  1. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  2. Density operators in quantum mechanics

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    A brief discussion and resume of density operator formalism in the way it occurs in modern physics (in quantum optics, quantum statistical physics, quantum theory of radiation) is presented. Particularly we emphasize the projection operator method, application of spectral theorems and superoperators formalism in operator Hilbert spaces (Hilbert-Schmidt type). The paper includes an appendix on direct sums and direct products of spaces and operators, and problems of reducibility for operator class by using the projection operators. (author)

  3. A J matrix engine for density functional theory calculations

    International Nuclear Information System (INIS)

    White, C.A.; Head-Gordon, M.

    1996-01-01

    We introduce a new method for the formation of the J matrix (Coulomb interaction matrix) within a basis of Cartesian Gaussian functions, as needed in density functional theory and Hartree endash Fock calculations. By summing the density matrix into the underlying Gaussian integral formulas, we have developed a J matrix open-quote open-quote engine close-quote close-quote which forms the exact J matrix without explicitly forming the full set of two electron integral intermediates. Several precomputable quantities have been identified, substantially reducing the number of floating point operations and memory accesses needed in a J matrix calculation. Initial timings indicate a speedup of greater than four times for the (pp parallel pp) class of integrals with speedups increasing to over ten times for (ff parallel ff) integrals. copyright 1996 American Institute of Physics

  4. Covariant density functional theory: The role of the pion

    International Nuclear Information System (INIS)

    Lalazissis, G. A.; Karatzikos, S.; Serra, M.; Otsuka, T.; Ring, P.

    2009-01-01

    We investigate the role of the pion in covariant density functional theory. Starting from conventional relativistic mean field (RMF) theory with a nonlinear coupling of the σ meson and without exchange terms we add pions with a pseudovector coupling to the nucleons in relativistic Hartree-Fock approximation. In order to take into account the change of the pion field in the nuclear medium the effective coupling constant of the pion is treated as a free parameter. It is found that the inclusion of the pion to this sort of density functionals does not destroy the overall description of the bulk properties by RMF. On the other hand, the noncentral contribution of the pion (tensor coupling) does have effects on single particle energies and on binding energies of certain nuclei.

  5. Tunable non-interacting free-energy functionals: development and applications to low-density aluminum

    Science.gov (United States)

    Trickey, Samuel; Karasiev, Valentin

    We introduce the concept of tunable orbital-free non-interacting free-energy density functionals and present a generalized gradient approximation (GGA) with a subset of parameters defined from constraints and a few free parameters. Those free parameters are tuned to reproduce reference Kohn-Sham (KS) static-lattice pressures for Al at T=8 kK for bulk densities between 0.6 and 2 g/cm3. The tuned functional then is used in OF molecular dynamics (MD) simulations for Al with densities between 0.1 and 2 g/cm3 and T between 6 and 50 kK to calculate the equation of state and generate configurations for electrical conductivity calculations. The tunable functional produces accurate results. Computationally it is very effective especially at elevated temperature. Kohn-Shiam calculations for such low densities are affordable only up to T=10 kK, while other OF approximations, including two-point functionals, fail badly in that regime. Work supported by US DoE Grant DE-SC0002139.

  6. Modulation Based on Probability Density Functions

    Science.gov (United States)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  7. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    Science.gov (United States)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both

  8. From Real Materials to Model Hamiltonians With Density Matrix Downfolding

    Directory of Open Access Journals (Sweden)

    Huihuo Zheng

    2018-05-01

    Full Text Available Due to advances in computer hardware and new algorithms, it is now possible to perform highly accurate many-body simulations of realistic materials with all their intrinsic complications. The success of these simulations leaves us with a conundrum: how do we extract useful physical models and insight from these simulations? In this article, we present a formal theory of downfolding–extracting an effective Hamiltonian from first-principles calculations. The theory maps the downfolding problem into fitting information derived from wave functions sampled from a low-energy subspace of the full Hilbert space. Since this fitting process most commonly uses reduced density matrices, we term it density matrix downfolding (DMD.

  9. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  10. Generation of gravitational waves. II. The postlinear formalism revisited

    International Nuclear Information System (INIS)

    Crowley, R.J.; Thorne, K.S.

    1977-01-01

    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not

  11. Formal verification of reactor process control software using assertion checking environment

    International Nuclear Information System (INIS)

    Sharma, Babita; Balaji, Sowmya; John, Ajith K.; Bhattacharjee, A.K.; Dhodapkar, S.D.

    2005-01-01

    Assertion Checking Environment (ACE) was developed in-house for carrying out formal (rigorous/ mathematical) functional verification of embedded software written in MISRA C. MISRA C is an industrially sponsored safe sub-set of C programming language and is well accepted in the automotive and aerospace industries. ACE uses static assertion checking technique for verification of MISRA C programs. First the functional specifications of the program are derived from the specifications in the form of pre- and post-conditions for each C function. These pre- and post-conditions are then introduced as assertions (formal comments) in the program code. The annotated C code is then formally verified using ACE. In this paper we present our experience of using ACE for the formal verification of process control software of a nuclear reactor. The Software Requirements Document (SRD) contained textual specifications of the process control software. The SRD was used by the designers to draw logic diagrams which were given as input to a code generator. The verification of the generated C code was done at 2 levels viz. (i) verification against specifications derived from logic diagrams, and (ii) verification against specifications derived from SRD. In this work we checked approximately 600 functional specifications of the software having roughly 15000 lines of code. (author)

  12. The formal path integral and quantum mechanics

    International Nuclear Information System (INIS)

    Johnson-Freyd, Theo

    2010-01-01

    Given an arbitrary Lagrangian function on R d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  13. Functional methods for arbitrary densities in curved spacetime

    International Nuclear Information System (INIS)

    Basler, M.

    1993-01-01

    This paper gives an introduction to the technique of functional differentiation and integration in curved spacetime, applied to examples from quantum field theory. Special attention is drawn on the choice of functional integral measure. Referring to a suggestion by Toms, fields are choosen as arbitrary scalar, spinorial or vectorial densities. The technique developed by Toms for a pure quadratic Lagrangian are extended to the calculation of the generating functional with external sources. Included are two examples of interacting theories, a self-interacting scalar field and a Yang-Mills theory. For these theories the complete set of Feynman graphs depending on the weight of variables is derived. (orig.)

  14. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jeng-Da; Head-Gordon, Martin

    2008-06-14

    We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, {omega}B97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, {omega}B97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as {omega}B97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

  15. On Formalization of the Concept of Value Proposition

    OpenAIRE

    Marek Winkler; Vladimír Dosoudil

    2011-01-01

    This paper presents an original description and a semi-formal definition of the concept of a value proposition, which has been so far used in service science rather intuitively. Our approach is based on utility functions and conceptual modelling techniques. The proposed semi-formalization can be exploited to describe services from the point of view of their (potential) utility for their clients. This description can be used especially to organize a service portfolio in an enterprise in a bett...

  16. Formal Methods for Abstract Specifications – A Comparison of Concepts

    DEFF Research Database (Denmark)

    Instenberg, Martin; Schneider, Axel; Schnetter, Sabine

    2006-01-01

    In industry formal methods are becoming increasingly important for the verification of hardware and software designs. However current practice for specification of system and protocol functionality on high level of abstraction is textual description. For verification of the system behavior manual...... inspections and tests are usual means. To facilitate the introduction of formal methods in the development process of complex systems and protocols, two different tools evolved from research activities – UPPAAL and SpecEdit – have been investigated and compared regarding their concepts and functionality...

  17. Minimal nuclear energy density functional

    Science.gov (United States)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  18. Density functional study of the bonding in small silicon clusters

    International Nuclear Information System (INIS)

    Fournier, R.; Sinnott, S.B.; DePristo, A.E.

    1992-01-01

    We report the ground electronic state, equilibrium geometry, vibrational frequencies, and binding energy for various isomers of Si n (n = 2--8) obtained with the linear combination of atomic orbitals-density functional method. We used both a local density approximation approach and one with gradient corrections. Our local density approximation results concerning the relative stability of electronic states and isomers are in agreement with Hartree--Fock and Moller--Plesset (MP2) calculations [K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. The binding energies calculated with the gradient corrected functional are in good agreement with experiment (Si 2 and Si 3 ) and with the best theoretical estimates. Our analysis of the bonding reveals two limiting modes of bonding and classes of silicon clusters. One class of clusters is characterized by relatively large s atomic populations and a large number of weak bonds, while the other class of clusters is characterized by relatively small s atomic populations and a small number of strong bonds

  19. Stochastic density functional theory at finite temperatures

    Science.gov (United States)

    Cytter, Yael; Rabani, Eran; Neuhauser, Daniel; Baer, Roi

    2018-03-01

    Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O (" close=")N3T3)">N T-1 and is compared with the high-temperature limit scaling O density approximation (LDA); we demonstrate its efficiency, statistical errors, and bias in the estimation of the free energy per electron for a diamond structure silicon. The bias is small compared to the fluctuations and is independent of system size. In addition to calculating the free energy itself, one can also use the method to calculate its derivatives and obtain the equations of state.

  20. Assessment of density-functional approximations: Long-range correlations and self-interaction effects

    International Nuclear Information System (INIS)

    Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.

    2004-01-01

    The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles

  1. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  2. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  3. Geometry-based density functional theory an overview

    CERN Document Server

    Schmidt, M

    2003-01-01

    An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.

  4. Geometry-based density functional theory: an overview

    Science.gov (United States)

    Schmidt, Matthias

    2003-01-01

    An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.

  5. Geometry-based density functional theory: an overview

    International Nuclear Information System (INIS)

    Schmidt, Matthias

    2003-01-01

    An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls

  6. Noncommutativity and Duality through the Symplectic Embedding Formalism

    Directory of Open Access Journals (Sweden)

    Everton M.C. Abreu

    2010-07-01

    Full Text Available This work is devoted to review the gauge embedding of either commutative and noncommutative (NC theories using the symplectic formalism framework. To sum up the main features of the method, during the process of embedding, the infinitesimal gauge generators of the gauge embedded theory are easily and directly chosen. Among other advantages, this enables a greater control over the final Lagrangian and brings some light on the so-called ''arbitrariness problem''. This alternative embedding formalism also presents a way to obtain a set of dynamically dual equivalent embedded Lagrangian densities which is obtained after a finite number of steps in the iterative symplectic process, oppositely to the result proposed using the BFFT formalism. On the other hand, we will see precisely that the symplectic embedding formalism can be seen as an alternative and an efficient procedure to the standard introduction of the Moyal product in order to produce in a natural way a NC theory. In order to construct a pedagogical explanation of the method to the nonspecialist we exemplify the formalism showing that the massive NC U(1 theory is embedded in a gauge theory using this alternative systematic path based on the symplectic framework. Further, as other applications of the method, we describe exactly how to obtain a Lagrangian description for the NC version of some systems reproducing well known theories. Naming some of them, we use the procedure in the Proca model, the irrotational fluid model and the noncommutative self-dual model in order to obtain dual equivalent actions for these theories. To illustrate the process of noncommutativity introduction we use the chiral oscillator and the nondegenerate mechanics.

  7. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    International Nuclear Information System (INIS)

    Aradi, Balint; Frauenheim, Thomas

    2015-01-01

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology

  8. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    Science.gov (United States)

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  9. Density-functional theory simulation of large quantum dots

    Science.gov (United States)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  10. Long-range-corrected Rung 3.5 density functional approximations

    Science.gov (United States)

    Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.

    2018-03-01

    Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.

  11. Density functional approach for pairing in finite size systems

    International Nuclear Information System (INIS)

    Hupin, G.

    2011-09-01

    The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)

  12. Density functional theory for field emission from carbon nano-structures.

    Science.gov (United States)

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  13. Graph approach to the gradient expansion of density functionals

    International Nuclear Information System (INIS)

    Kozlowski, P.M.; Nalewajski, R.F.

    1986-01-01

    A graph representation of terms in the gradient expansion of the kinetic energy density functional is presented. They briefly discuss the implications of the virial theorem for the graph structure and relations between possible graphs at a given order of expansion

  14. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...

  15. An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism

    International Nuclear Information System (INIS)

    Sellier, J.M.; Nedjalkov, M.; Dimov, I.

    2015-01-01

    The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H 2 molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future

  16. A density functional for sparse matter

    DEFF Research Database (Denmark)

    Langreth, D.C.; Lundqvist, Bengt; Chakarova-Kack, S.D.

    2009-01-01

    forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators......Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional...... theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed...

  17. Type I supergravity effective action from pure spinor formalism

    International Nuclear Information System (INIS)

    Alencar, Geova

    2009-01-01

    Using the pure spinor formalism, we compute the tree-level correlation functions for three strings, one closed and two open, in N = 1 D = 10 superspace. Expanding the superfields in components, the respective terms of the effective action for the type I supergravity are obtained. All terms found agree with the effective action known in the literature. This result gives one more consistency test for the pure spinor formalism.

  18. Perspective: Fundamental aspects of time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa T. [Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2016-06-14

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  19. Aspects of the supersymmetric Goldstone formalism

    International Nuclear Information System (INIS)

    Lerche, W.

    1985-01-01

    The present thesis deal with the discussion of general properties of Goldstone excitations in global N=1 supersymmetric theories. The results can become relevant in the framework of theories which interpret quarks and leptons as composite 'quasi-Goldstone fermions'. The thesis is arranged in two main parts: the first is occupied by group-theoretical aspects, i.e. by the spectrum of supersymmetric Goldstone excitations as well as by geometrical considerations which are connected with effective Lagrangian densities. In the second main part dynamic questions like for instance mass generation are treated. For this a suitable formalism is developed. (orig.) [de

  20. Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids.

    Science.gov (United States)

    Senet, P; Aparicio, F

    2007-04-14

    By using the exact density functional theory, one demonstrates that the value of the local electronic softness of a molecular fragment is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the fragment. Our finding generalizes to a chemical group a formal relation between these molecular descriptors recently obtained for an atom in a molecule using an approximate atomistic model [P. Senet and M. Yang, J. Chem. Sci. 117, 411 (2005)]. In addition, a practical ab initio computational scheme of the Coulomb hole and related local descriptors of reactivity of a molecular family having in common a similar fragment is presented. As a blind test, the method is applied to the lateral chains of the 20 isolated amino acids. One demonstrates that the local softness of the lateral chain is a quantitative measure of the similarity of the amino acids. It predicts the separation of amino acids in different biochemical groups (aliphatic, basic, acidic, sulfur contained, and aromatic). The present approach may find applications in quantitative structure activity relationship methodology.

  1. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  2. What is the method in applying formal methods to PLC applications?

    NARCIS (Netherlands)

    Mader, Angelika H.; Engel, S.; Wupper, Hanno; Kowalewski, S.; Zaytoon, J.

    2000-01-01

    The question we investigate is how to obtain PLC applications with confidence in their proper functioning. Especially, we are interested in the contribution that formal methods can provide for their development. Our maxim is that the place of a particular formal method in the total picture of system

  3. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory

    International Nuclear Information System (INIS)

    Hermet, P; Veithen, M; Ghosez, Ph

    2009-01-01

    Nonlinear optical susceptibilities and Raman scattering spectra of the ferroelectric phases of BaTiO 3 and PbTiO 3 are computed using a first-principles approach based on density functional theory and taking advantage of a recent implementation based on the nonlinear response formalism and the 2n+1 theorem. These two prototypical ferroelectric compounds were chosen to demonstrate the accuracy of the Raman calculation based both on their complexity and their technological importance. The computation of the Raman scattering intensities has been performed not only for the transverse optical modes, but also for the longitudinal optical ones. The agreement between the measured and computed Raman spectra of these prototypical ferroelectrics is remarkable for both the frequency position and the intensity of Raman lines. This agreement presently demonstrates the state-of-the-art in the computation of Raman responses on one of the most complex systems, ferroelectrics, and constitutes a step forward in the reliable prediction of their electro-optical responses.

  4. Formality in Brackets

    DEFF Research Database (Denmark)

    Garsten, Christina; Nyqvist, Anette

    Ethnographic work in formal organizations involves learning to recognize the many layers of front stage and back stage of organized life, and to bracket formality. It means to be alert to the fact that what is formal and front stage for one some actors, and in some situations, may in fact be back...... stage and informal for others. Walking the talk, donning the appropriate attire, wearing the proper suit, may be part of what is takes to figure out the code of formal organizational settings – an entrance ticket to the backstage, as it were. Oftentimes, it involves a degree of mimicry, of ‘following...... suits’ (Nyqvist 2013), and of doing ‘ethnography by failure’ (Garsten 2013). In this paper, we explore the layers of informality and formality in our fieldwork experiences among financial investors and policy experts, and discuss how to ethnographically represent embodied fieldwork practices. How do we...

  5. Density functional theory embedding for correlated wavefunctions: improved methods for open-shell systems and transition metal complexes.

    Science.gov (United States)

    Goodpaster, Jason D; Barnes, Taylor A; Manby, Frederick R; Miller, Thomas F

    2012-12-14

    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.

  6. Differentiability in density-functional theory: Further study of the locality theorem

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten

    2004-01-01

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the arguments [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s 3 S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem

  7. Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory?

    International Nuclear Information System (INIS)

    Hupin, G; Lacroix, D; Bender, M

    2011-01-01

    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.

  8. Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    International Nuclear Information System (INIS)

    Gebremariam, B.; Bogner, S.K.; Duguet, T.

    2011-01-01

    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in (arXiv:0910.4979) by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.

  9. A density functional theory study of the influence of exchange-correlation functionals on the properties of FeAs.

    Science.gov (United States)

    Griffin, Sinéad M; Spaldin, Nicola A

    2017-06-01

    We use density functional theory within the local density approximation (LDA), LDA  +  U, generalised gradient approximation (GGA), GGA  +  U, and hybrid-functional methods to calculate the properties of iron monoarsenide. FeAs, which forms in the MnP structure, is of current interest for potential spintronic applications as well as being the parent compound for the pnictide superconductors. We compare the calculated structural, magnetic and electronic properties obtained using the different functionals to each other and to experiment, and investigate the origin of a recently reported magnetic spiral. Our results indicate the appropriateness or otherwise of the various functionals for describing FeAs and the related Fe-pnictide superconductors.

  10. Software Formal Inspections Guidebook

    Science.gov (United States)

    1993-01-01

    The Software Formal Inspections Guidebook is designed to support the inspection process of software developed by and for NASA. This document provides information on how to implement a recommended and proven method for conducting formal inspections of NASA software. This Guidebook is a companion document to NASA Standard 2202-93, Software Formal Inspections Standard, approved April 1993, which provides the rules, procedures, and specific requirements for conducting software formal inspections. Application of the Formal Inspections Standard is optional to NASA program or project management. In cases where program or project management decide to use the formal inspections method, this Guidebook provides additional information on how to establish and implement the process. The goal of the formal inspections process as documented in the above-mentioned Standard and this Guidebook is to provide a framework and model for an inspection process that will enable the detection and elimination of defects as early as possible in the software life cycle. An ancillary aspect of the formal inspection process incorporates the collection and analysis of inspection data to effect continual improvement in the inspection process and the quality of the software subjected to the process.

  11. Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Christensen, Rune; Hummelshøj, Jens S.; Hansen, Heine Anton

    2015-01-01

    Density functional theory calculations can be used to gain valuable insight into the fundamental reaction processes in metal−oxygen systems, e.g., metal−oxygen batteries. Here, the ability of a range of different exchange-correlation functionals to reproduce experimental enthalpies of formation...

  12. Describing a Strongly Correlated Model System with Density Functional Theory.

    Science.gov (United States)

    Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth

    2017-07-06

    The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.

  13. Nuclear level density of 166Er with static deformation

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.

    2006-01-01

    The level densities of 166 Er is calculated using the microscopic theory of interacting fermions and is compared with experimental. It is concluded that the data can be reproduced with level density formalism for nuclei with static deformation

  14. On the locus and spread of pseudo-density functions in the time-frequency plane

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1982-01-01

    Various time-frequency pseudo-density functions used in signal analysis are compared with respect to spread. Among the members of Cohen's class of pseudo-density functions satisfying the finite support property as well as Moyal's formula, the Wigner distribution is the most well-behaved one in the

  15. Implementation of a method for calculating temperature-dependent resistivities in the KKR formalism

    Science.gov (United States)

    Mahr, Carsten E.; Czerner, Michael; Heiliger, Christian

    2017-10-01

    We present a method to calculate the electron-phonon induced resistivity of metals in scattering-time approximation based on the nonequilibrium Green's function formalism. The general theory as well as its implementation in a density-functional theory based Korringa-Kohn-Rostoker code are described and subsequently verified by studying copper as a test system. We model the thermal expansion by fitting a Debye-Grüneisen curve to experimental data. Both the electronic and vibrational structures are discussed for different temperatures, and employing a Wannier interpolation of these quantities we evaluate the scattering time by integrating the electron linewidth on a triangulation of the Fermi surface. Based thereupon, the temperature-dependent resistivity is calculated and found to be in good agreement with experiment. We show that the effect of thermal expansion has to be considered in the whole calculation regime. Further, for low temperatures, an accurate sampling of the Fermi surface becomes important.

  16. Formal, Non-Formal and Informal Learning in the Sciences

    Science.gov (United States)

    Ainsworth, Heather L.; Eaton, Sarah Elaine

    2010-01-01

    This research report investigates the links between formal, non-formal and informal learning and the differences between them. In particular, the report aims to link these notions of learning to the field of sciences and engineering in Canada and the United States, including professional development of adults working in these fields. It offers…

  17. The generation of gravitational waves. 2. The post-linear formalism revisted

    International Nuclear Information System (INIS)

    Crowley, R.J.; Thorne, K.S.

    1976-04-01

    Different versions of the Green's function for the scalar wave equation in weakly curved space-time are compared and contrasted and their mathematical equivalence is demonstrated. Then the DeWitt--DeWitt Green's function is used to construct several alternative versions of the Thorne--Kovacs post-linear formalism for gravitational-wave generation. Finally, it is shown that, in calculations of gravitational bremsstrahlung radiation, some of the presented versions of the post-linear formalism allow one to treat the interacting bodies as point masses, while others do not

  18. Symbolic computation of exact solutions expressible in rational formal hyperbolic and elliptic functions for nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Wang Qi; Chen Yong

    2007-01-01

    With the aid of symbolic computation, some algorithms are presented for the rational expansion methods, which lead to closed-form solutions of nonlinear partial differential equations (PDEs). The new algorithms are given to find exact rational formal polynomial solutions of PDEs in terms of Jacobi elliptic functions, solutions of the Riccati equation and solutions of the generalized Riccati equation. They can be implemented in symbolic computation system Maple. As applications of the methods, we choose some nonlinear PDEs to illustrate the methods. As a result, we not only can successfully obtain the solutions found by most existing Jacobi elliptic function methods and Tanh-methods, but also find other new and more general solutions at the same time

  19. Analyzing the financial crisis using the entropy density function

    Science.gov (United States)

    Oh, Gabjin; Kim, Ho-yong; Ahn, Seok-Won; Kwak, Wooseop

    2015-02-01

    The risk that is created by nonlinear interactions among subjects in economic systems is assumed to increase during an abnormal state of a financial market. Nevertheless, investigating the systemic risk in financial markets following the global financial crisis is not sufficient. In this paper, we analyze the entropy density function in the return time series for several financial markets, such as the S&P500, KOSPI, and DAX indices, from October 2002 to December 2011 and analyze the variability in the entropy value over time. We find that the entropy density function of the S&P500 index during the subprime crisis exhibits a significant decrease compared to that in other periods, whereas the other markets, such as those in Germany and Korea, exhibit no significant decrease during the market crisis. These findings demonstrate that the S&P500 index generated a regular pattern in the return time series during the financial crisis.

  20. A general range-separated double-hybrid density-functional theory.

    Science.gov (United States)

    Kalai, Cairedine; Toulouse, Julien

    2018-04-28

    A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.

  1. Level densities of iron isotopes and lower-energy enhancement of y-strength function

    International Nuclear Information System (INIS)

    Voinov, A V; Grimes, S M; Agvaanluvsan, U; Algin, E; Belgya, T; Brune, C R; Guttormsen, M; Hornish, M J; Massey, T N; Mitchell, G; Rekstad, J; Schiller, A; Siem, S

    2005-01-01

    The neutron spectrum from the 55 Mn(d,n) 56 Fe reaction has been measured at E d = 7 MeV. The level density of 56 Fe obtained from neutron evaporation spectrum has been compared to the level density from Oslo-type 57 Fe( 3 He, aγ) 56 Fe experiment [1]. The good agreement supports the recent results [1, 8] including an availability of a low-energy enhancement in the γ-strength function for iron isotopes. The new level density function allowed us to investigate an excitation energy dependence of this enhancement, which is shown to increase with increasing excitation energy

  2. International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions

    CERN Document Server

    Vignale, Giovanni; Das, Mukunda

    1998-01-01

    This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...

  3. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  4. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Valsson, Omar [Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr [Laboratoire de Chimie Théorique, Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Joseph Fourier, Grenoble I, F-3801 Grenoble (France)

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

  5. QCD at Zero Baryon Density and the Polyakov Loop Paradox

    CERN Document Server

    Kratochvila, S; Forcrand, Ph. de

    2006-01-01

    We compare the grand canonical partition function at fixed chemical potential mu with the canonical partition function at fixed baryon number B, formally and by numerical simulations at mu=0 and B=0 with four flavours of staggered quarks. We verify that the free energy densities are equal in the thermodynamic limit, and show that they can be well described by the hadron resonance gas at T T_c. Small differences between the two ensembles, for thermodynamic observables characterising the deconfinement phase transition, vanish with increasing lattice size. These differences are solely caused by contributions of non-zero baryon density sectors, which are exponentially suppressed with increasing volume. The Polyakov loop shows a different behaviour: for all temperatures and volumes, its expectation value is exactly zero in the canonical formulation, whereas it is always non-zero in the commonly used grand-canonical formulation. We clarify this paradoxical difference, and show that the non-vanishing Polyakov loop e...

  6. Symmetrized partial-wave method for density-functional cluster calculations

    International Nuclear Information System (INIS)

    Averill, F.W.; Painter, G.S.

    1994-01-01

    The computational advantage and accuracy of the Harris method is linked to the simplicity and adequacy of the reference-density model. In an earlier paper, we investigated one way the Harris functional could be extended to systems outside the limits of weakly interacting atoms by making the charge density of the interacting atoms self-consistent within the constraints of overlapping spherical atomic densities. In the present study, a method is presented for augmenting the interacting atom charge densities with symmetrized partial-wave expansions on each atomic site. The added variational freedom of the partial waves leads to a scheme capable of giving exact results within a given exchange-correlation approximation while maintaining many of the desirable convergence and stability properties of the original Harris method. Incorporation of the symmetry of the cluster in the partial-wave construction further reduces the level of computational effort. This partial-wave cluster method is illustrated by its application to the dimer C 2 , the hypothetical atomic cluster Fe 6 Al 8 , and the benzene molecule

  7. Fear of the Formal

    DEFF Research Database (Denmark)

    du Gay, Paul; Lopdrup-Hjorth, Thomas

    Over recent decades, institutions exhibiting high degrees of formality have come in for severe criticism. From the private to the public sector, and across a whole spectrum of actors spanning from practitioners to academics, formal organization is viewed with increasing doubt and skepticism....... In a “Schumpetarian world” (Teece et al., 1997: 509) of dynamic competition and incessant reform, formal organization appears as well suited to survival as a fish out of water. Indeed, formal organization, and its closely overlapping semantic twin bureaucracy, are not only represented as ill suited to the realities...... is that formal organization is an obstacle to be overcome. For that very reason, critics, intellectuals and reformers alike have urged public and private organizations to break out of the stifling straightjacket of formality, to dispense with bureaucracy, and to tear down hierarchies. This could either be done...

  8. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    International Nuclear Information System (INIS)

    Sundararaman, Ravishankar; Goddard, William A. III; Arias, Tomas A.

    2017-01-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  9. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    Science.gov (United States)

    Sundararaman, Ravishankar; Goddard, William A.; Arias, Tomas A.

    2017-03-01

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  10. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2).

    Science.gov (United States)

    Löble, Matthias W; Keith, Jason M; Altman, Alison B; Stieber, S Chantal E; Batista, Enrique R; Boland, Kevin S; Conradson, Steven D; Clark, David L; Lezama Pacheco, Juan; Kozimor, Stosh A; Martin, Richard L; Minasian, Stefan G; Olson, Angela C; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Zehnder, Ralph A

    2015-02-25

    Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

  11. Rationale for switching to nonlocal functionals in density functional theory.

    Science.gov (United States)

    Lazić, P; Atodiresei, N; Caciuc, V; Brako, R; Gumhalter, B; Blügel, S

    2012-10-24

    Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.

  12. Rationale for switching to nonlocal functionals in density functional theory

    International Nuclear Information System (INIS)

    Lazić, P; Atodiresei, N; Caciuc, V; Blügel, S; Brako, R; Gumhalter, B

    2012-01-01

    Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.

  13. Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation

    Directory of Open Access Journals (Sweden)

    Michal Halas

    2012-01-01

    Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.

  14. Electron mobility in supercritical pentanes as a function of density and temperature

    International Nuclear Information System (INIS)

    Itoh, Kengo; Nakagawa, Kazumichi; Nishikawa, Masaru

    1988-01-01

    The excess electron mobility in supercritical n-, iso- and neopentane was measured isothermally as a function of density. The density-normalized mobility μN in all three isomers goes through a minimum at a density below the respective critical densities, and the mobility is quite temperature-dependent in this region, then goes through a minimum. The μN behavior around the minimum in n-pentane is well accounted for by the Cohen-Lekner model with the structure factor S(K) estimated from the speed of sound, while that in iso- and neopentane is not. (author)

  15. Gluon and ghost correlation functions of 2-color QCD at finite density

    Science.gov (United States)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  16. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  17. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...

  18. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    Science.gov (United States)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  19. Conjugate-gradient optimization method for orbital-free density functional calculations.

    Science.gov (United States)

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  20. Microhartree precision in density functional theory calculations

    Science.gov (United States)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  1. On Improving Density Estimators which are not Bona Fide Functions

    OpenAIRE

    Gajek, Leslaw

    1986-01-01

    In order to improve the rate of decrease of the IMSE for nonparametric kernel density estimators with nonrandom bandwidth beyond $O(n^{-4/5})$ all current methods must relax the constraint that the density estimate be a bona fide function, that is, be nonnegative and integrate to one. In this paper we show how to achieve similar improvement without relaxing any of these constraints. The method can also be applied for orthogonal series, adaptive orthogonal series, spline, jackknife, and other ...

  2. Methods for converging correlation energies within the dielectric matrix formalism

    Science.gov (United States)

    Dixit, Anant; Claudot, Julien; Gould, Tim; Lebègue, Sébastien; Rocca, Dario

    2018-03-01

    Within the dielectric matrix formalism, the random-phase approximation (RPA) and analogous methods that include exchange effects are promising approaches to overcome some of the limitations of traditional density functional theory approximations. The RPA-type methods however have a significantly higher computational cost, and, similarly to correlated quantum-chemical methods, are characterized by a slow basis set convergence. In this work we analyzed two different schemes to converge the correlation energy, one based on a more traditional complete basis set extrapolation and one that converges energy differences by accounting for the size-consistency property. These two approaches have been systematically tested on the A24 test set, for six points on the potential-energy surface of the methane-formaldehyde complex, and for reaction energies involving the breaking and formation of covalent bonds. While both methods converge to similar results at similar rates, the computation of size-consistent energy differences has the advantage of not relying on the choice of a specific extrapolation model.

  3. Mean density and two-point correlation function for the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample. 45 references

  4. Energetics of cyclohexane isomers: a density-functional study

    International Nuclear Information System (INIS)

    Lee, Chang Yol

    1999-01-01

    The binding energies and the geometric structures of conformational isomers of cyclohexane (C 6 H 12 ) are determined from the density-functional theory combined with ultrasoft pseudopotentials and gradient-corrected nonlocal exchange-correlation functionals. The ground-state chair conformation is found to have a binding energy of 99.457 eV, and the metastable twist-boat conformation has 99.161 eV. The chair conformation converts to another conformation via a half-chair conformation with an energy barrier of 0.507 eV whereas the twist-boat conformation converts to another twist-boat conformation via a boat conformation with a much smaller energy barrier of 0.015 eV

  5. Pragmatics for formal semantics

    DEFF Research Database (Denmark)

    Danvy, Olivier

    2011-01-01

    This tech talk describes how to write and how to inter-derive formal semantics for sequential programming languages. The progress reported here is (1) concrete guidelines to write each formal semantics to alleviate their proof obligations, and (2) simple calculational tools to obtain a formal...

  6. An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Nedjalkov, M. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien (Austria); Dimov, I. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria)

    2015-05-12

    The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H{sub 2} molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future.

  7. Cosmological perturbations of non-minimally coupled quintessence in the metric and Palatini formalisms

    International Nuclear Information System (INIS)

    Fan, Yize; Wu, Puxun; Yu, Hongwei

    2015-01-01

    Cosmological perturbations of the non-minimally coupled scalar field dark energy in both the metric and Palatini formalisms are studied in this paper. We find that on the large scales with the energy density of dark energy becoming more and more important in the low redshift region, the gravitational potential becomes smaller and smaller, and the effect of non-minimal coupling becomes more and more apparent. In the metric formalism the value of the gravitational potential in the non-minimally coupled case with a positive coupling constant is less than that in the minimally coupled case, while it is larger if the coupling constant is negative. This is different from that in the Palatini formalism where the value of gravitational potential is always smaller. Based upon the quasi-static approximation on the sub-horizon scales, the linear growth of matter is also analyzed. We obtain that the effective Newton's constants in the metric and Palatini formalisms have different forms. A negative coupling constant enhances the gravitational interaction, while a positive one weakens it. Although the metric and Palatini formalisms give different linear growth rates, the difference is very small and the current observation cannot distinguish them effectively

  8. Industrial use of formal methods formal verification

    CERN Document Server

    Boulanger, Jean-Louis

    2012-01-01

    At present the literature gives students and researchers of the very general books on the formal technics. The purpose of this book is to present in a single book, a return of experience on the used of the "formal technics" (such proof and model-checking) on industrial examples for the transportation domain. This book is based on the experience of people which are completely involved in the realization and the evaluation of safety critical system software based.  The implication of the industrialists allows to raise the problems of confidentiality which could appear and so allow

  9. Derivation of the density functional theory from the cluster expansion.

    Science.gov (United States)

    Hsu, J Y

    2003-09-26

    The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.

  10. Generalized operator canonical formalism and gauge invariance

    International Nuclear Information System (INIS)

    Fradkina, T.E.

    1988-01-01

    A direct proof is given in the functional representation of the invariance of the S-matrix constructed in the framework of the generalized operator canonical formalism. We find the traditional functional expression for the S-matrix (without point-splitting in the time factor) in the generalized phase space, as well as in the ghost configuration space. An explicit expression is obtained for the effective unitarizing Hamiltonian for gauge theories with constraints of arbitrary rank

  11. Density Functional Simulation of a Breaking Nanowire

    DEFF Research Database (Denmark)

    Nakamura, A.; Brandbyge, Mads; Hansen, Lars Bruno

    1999-01-01

    to a specific number of eigenchannels. The transitions between plateaus can be abrupt in connection with structural rearrangements or extend over a few a of elongation. The interplay between conductance modes and structural deformation is discussed by means of the eigenchannel transmission probabilities.......We study the deformation and breaking of an atomic-sized sodium wire using density functional simulations. The wire deforms through sudden atomic rearrangements and smoother atomic displacements. The conductance of the wire exhibits plateaus at integer values in units of 2e(2)/h corresponding...

  12. Electronic states of aryl radical functionalized graphenes: Density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-06-01

    Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.

  13. Graphene oxide and adsorption of chloroform: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth, E-mail: schroder@chalmers.se [Quantum Device Physics Laboratory, Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl{sub 3}) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  14. Formal Verification -26 ...

    Indian Academy of Sciences (India)

    by testing of the components and successful testing leads to the software being ... Formal verification is based on formal methods which are mathematically based ..... scenario under which a similar error could occur. There are various other ...

  15. First-order density matrices in one dimension for independent fermions and impenetrable bosons in harmonic traps

    International Nuclear Information System (INIS)

    Capuzzi, P.; Howard, I.A.; March, N.H.; Tosi, M.P.

    2007-01-01

    To complement existing knowledge of the density matrix γ F (x,y) of independent fermions for N particles in one dimension under harmonic confinement, the corresponding matrix γ IB (x,y) for impenetrable bosons is given for N=2 and 3 (with the N=4 form available also). For fermions the momentum density is then obtained and illustrated numerically for N=10. The boson momentum density is studied analytically at high momentum p, the coefficients of the p -4 and p -6 terms being tabulated for N=2-5 inclusive. Their dependence on powers of N is exhibited numerically. Finally, the functional relationship between γ IB (x,y) and γ F (x,y) is formally set out and illustrated

  16. δ M formalism and anisotropic chaotic inflation power spectrum

    Science.gov (United States)

    Talebian-Ashkezari, A.; Ahmadi, N.

    2018-05-01

    A new analytical approach to linear perturbations in anisotropic inflation has been introduced in [A. Talebian-Ashkezari, N. Ahmadi and A.A. Abolhasani, JCAP 03 (2018) 001] under the name of δ M formalism. In this paper we apply the mentioned approach to a model of anisotropic inflation driven by a scalar field, coupled to the kinetic term of a vector field with a U(1) symmetry. The δ M formalism provides an efficient way of computing tensor-tensor, tensor-scalar as well as scalar-scalar 2-point correlations that are needed for the analysis of the observational features of an anisotropic model on the CMB. A comparison between δ M results and the tedious calculations using in-in formalism shows the aptitude of the δ M formalism in calculating accurate two point correlation functions between physical modes of the system.

  17. Continuation of probability density functions using a generalized Lyapunov approach

    NARCIS (Netherlands)

    Baars, S.; Viebahn, J. P.; Mulder, T. E.; Kuehn, C.; Wubs, F. W.; Dijkstra, H. A.

    2017-01-01

    Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial

  18. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.

    Science.gov (United States)

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-05-13

    We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.

  19. Toward tuning the surface functionalization of small ceria nanoparticles

    International Nuclear Information System (INIS)

    Huang, Xing; Wang, Binghui; Grulke, Eric A.; Beck, Matthew J.

    2014-01-01

    Understanding and controlling the performance of ceria nanoparticle (CNP) catalysts requires knowledge of the detailed structure and property of CNP surfaces and any attached functional groups. Here we report thermogravimetric analysis results showing that hydrothermally synthesized ∼30 nm CNPs are decorated with 12.9 hydroxyl groups per nm 2 of CNP surface. Quantum mechanical calculations of the density and distribution of bound surface groups imply a scaling relationship for surface group density that balances formal charges in the functionalized CNP system. Computational results for CNPs with only hydroxyl surface groups yield a predicted density of bound hydroxyl groups for ∼30 nm CNPs that is ∼33% higher than measured densities. Quantitative agreement between predicted and measured hydroxyl surface densities is achieved when calculations consider CNPs with both –OH and –O x surface groups. For this more general treatment of CNP surface functionalizations, quantum mechanical calculations predict a range of stable surface group configurations that depend on the chemical potentials of O and H, and demonstrate the potential to tune CNP surface functionalizations by varying temperature and/or partial pressures of O 2 and H 2 O

  20. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.