WorldWideScience

Sample records for density fluctuation measurements

  1. Electron density fluctuation measurements in the TORTUR tokamak

    International Nuclear Information System (INIS)

    Remkes, G.J.J.

    1990-01-01

    This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63

  2. Frequency-resolved interferometric measurement of local density fluctuations for turbulent combustion analysis

    International Nuclear Information System (INIS)

    Köberl, S; Giuliani, F; Woisetschläger, J; Fontaneto, F

    2010-01-01

    A validation of a novel interferometric measurement technique for the frequency-resolved detection of local density fluctuation in turbulent combustion analysis was performed in this work. Two laser vibrometer systems together with a signal analyser were used to obtain frequency spectra of density fluctuations across a methane-jet flame. Since laser vibrometry is based on interferometric techniques, the derived signals are path-integrals along the measurement beam. To obtain local frequency spectra of density fluctuations, long-time-averaged measurements from each of the two systems were performed using correlation functions and cross spectra. Results were compared to data recorded by standard interferometric techniques for validation purposes. Additionally, Raman scattering and laser Doppler velocimetry were used for flame characterization

  3. Magnetic fluctuations associated with density fluctuations in the tokamak edge

    International Nuclear Information System (INIS)

    Kim, Y.J.; Gentle, K.W.; Ritz, C.P.; Rhodes, T.L.; Bengtson, R.D.

    1989-01-01

    Electrostatic density and potential fluctuations occurring with high amplitude near the edge of a tokamak are correlated with components of the fluctuating magnetic field measured outside the limiter radius. It has been established that this turbulence is associated with fluctuations in current as well as density and potential. The correlation extends for substantial toroidal distances, but only if the probes are displaced approximately along field lines, consistent with the short coherence lengths poloidally but long coherence lengths parallel to the field which are characteristic for this turbulence. Furthermore, the correlation can be found only with density fluctuations measured inside the limiter radius; density fluctuations behind the limiter have no detectable magnetic concomitant for the toroidally spaced probes used here. (author). Letter-to-the-editor. 12 refs, 3 figs

  4. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  5. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    Science.gov (United States)

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  6. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    International Nuclear Information System (INIS)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2014-01-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved

  7. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  8. Density fluctuation measurement at edge and internal transport barriers in JT-60U

    International Nuclear Information System (INIS)

    Oyama, N; Bruskin, L G; Takenaga, H; Shinohara, K; Isayama, A; Ide, S; Sakamoto, Y; Suzuki, T; Fujita, T; Kamada, Y; Miura, Y

    2004-01-01

    A new analytical method using a combination of the O-mode reflectometer and a time-dependent two-dimensional full-wave simulation code has been developed for the quantitative evaluation of density fluctuations in JT-60U. Two statistical parameters of the reflectometer signals, fluctuation index (F) and elongation factor (χ), are introduced as measures of the fluctuation amplitude (γ) and the width of the poloidal wave number spectrum (k θ0 ). This method is applied to the edge transport barrier (ETB) and internal transport barrier (ITB). At the transition to the ELM free H-mode phase, analysis suggests that the density fluctuation level reduced from 1.9-3.2% to 0.29-0.44%, while the value of k θ0 changed from 1.6-2.0 to 0.77-0.81 cm -1 in the ETB region. On the other hand, the amplitude of the density fluctuation was evaluated as 1.0-2.0% at the ITB region, even after the formation of the box type ITB. Instead, when a pellet was injected into the plasma with a box type ITB as an external perturbation, a remarkable change in the frequency spectrum was observed. Analysis suggests a reduction in the density fluctuation level to 0.4-0.6% after the pellet injection

  9. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  10. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  11. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  12. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Science.gov (United States)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-04-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.

  13. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    International Nuclear Information System (INIS)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs

  14. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  15. Measurements of density, temperature, and their fluctuations in turbulent supersonic flow using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, Douglas G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density, temperature, and their turbulent fluctuation levels were obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment are compared with previous measurements obtained in the same facility using conventional probes and an earlier spectroscopic technique. Densities and temperatures measured with the current technique agree with the previous surveys to within 3 percent and 2 percent, respectively. The fluctuation amplitudes for both variables agree with the measurements obtained using the earlier spectroscopic technique and show evidence of an unsteady, weak shock wave that perturbs the boundary layer.

  16. Density Fluctuations in a Polar Coronal Hole

    Science.gov (United States)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  17. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  18. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  19. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  20. Effects of phase transition induced density fluctuations on pulser dynamics

    International Nuclear Information System (INIS)

    Bagchi, Partha; Das, Arpan; Srivastava, Ajit M.; Layek, Biswanath

    2016-01-01

    We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling) may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves. (author)

  1. Effects of phase transition induced density fluctuations on pulsar dynamics

    Directory of Open Access Journals (Sweden)

    Partha Bagchi

    2015-07-01

    Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.

  2. Density fluctuation measurements via reflectometry on DIII-D during L- and H-mode operation

    International Nuclear Information System (INIS)

    Doyle, E.J.; Lehecka, T.; Luhmann, N.C. Jr.; Peebles, W.A.; Philipona, R.

    1990-01-01

    The unique ability of reflectometers to provide radial density fluctuation measurements with high spatial resolution (of the order of ≤ centimeters, is ideally suited to the study of the edge plasma modifications associated with H-mode operation. Consequently, attention has been focused on the study of these phenomena since an improved understanding of the physics of H-mode plasmas is essential if a predictive capability for machine performance is to be developed. In addition, DIII-D is ideally suited for such studies since it is a major device noted for its robust H-mode operation and excellent basic plasma profile diagnostic information. The reflectometer system normally used for fluctuation studies is an O-mode, homodyne, system utilizing 7 discrete channels spanning 15-75 GHz, with corresponding critical densities of 2.8x10 18 to 7x10 19 m -3 . The Gunn diode sources in this system are only narrowly tunable in frequency, so the critical densities are essentially fixed. An X-mode system, utilizing a frequency tunable BWO source, has also been used to obtain fluctuation data, and in particular, to 'fill in the gaps' between the discrete O-mode channels. (author) 12 refs., 5 figs

  3. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    Science.gov (United States)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  4. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  5. Density fluctuations measured by ISEE 1-2 in the Earth's magnetosheath and the resultant scattering of radio waves

    Directory of Open Access Journals (Sweden)

    C. Lacombe

    1997-04-01

    Full Text Available Radio waves undergo angular scattering when they propagate through a plasma with fluctuating density. We show how the angular scattering coefficient can be calculated as a function of the frequency spectrum of the local density fluctuations. In the Earth's magnetosheath, the ISEE 1-2 propagation experiment measured the spectral power of the density fluctuations for periods in the range 300 to 1 s, which produce most of the scattering. The resultant local angular scattering coefficient can then be calculated for the first time with realistic density fluctuation spectra, which are neither Gaussian nor power laws. We present results on the variation of the local angular scattering coefficient during two crossings of the dayside magnetosheath, from the quasi-perpendicular bow shock to the magnetopause. For a radio wave at twice the local electron plasma frequency, the scattering coefficient in the major part of the magnetosheath is b(2fp ≃ 0.5 – 4 × 10–9 rad2/m. The scattering coefficient is about ten times stronger in a thin sheet (0.1 to1RE just downstream of the shock ramp, and close to the magnetopause.

  6. Parallel-beam correlation technique for measuring density fluctuations in plasmas with strong magnetic shear

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1981-04-01

    A laser diagnostic scheme is described which facilitates localization of density fluctuations along the line of sight. The method exploits both the generally observed anisotropy of density fluctuations in low-beta plasmas, as well as the twisting of the magnetic field which occurs across the minor diameter of reversed-field pinches, spheromaks, etc. Both interferometric and schlieren variations are discussed

  7. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Measurements of density, potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. The properties of plasma fluctuations in a tokamak and stellarator can then be compared. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to measure the radial profiles of fluctuations in the ion saturation current and floating potential in W7-AS and ASDEX. In both devices, a reversal in radial electric field and an associated velocity shear layer at the plasma boundary have been observed and in both cases the normalized ion saturation current fluctuation level decreases monotonically moving towards the plasma centre and through the shear layer. At the radial position where the phase velocity in the poloidal direction of the fluctuations goes to zero, the normalized ion saturation current fluctuation level of 0.25 are similar for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between fluctuations in floating potential and ion saturation current has been observed in both machines. (author) 6 refs., 4 figs.

  8. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    Science.gov (United States)

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  9. General framework for fluctuating dynamic density functional theory

    Science.gov (United States)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz

  10. Scattering effects of small-scale density fluctuations on reflectometric measurements in a tokamak plasma

    International Nuclear Information System (INIS)

    Garcia, J.P.; Manso, M.E.; Serra, F.M.; Mendonca, J.T.

    1989-01-01

    When a wave propagates in a non homogeneous fluctuating plasma part of the incident energy is scattered out to the nonlinear interaction between the wave and the oscillating modes perturbing the plasma. The possibility of enhanced scattering at the cutoff layer, where reflection of the incident wave occurs, has been recently suggested as the basis of a reflectometric experiment to determine the spatial location of small scale fluctuations in a fusion plasma. Here we report on the development of a theoretical model to evaluate the flux of energy scattered by fluctuations, in order to give insight about the interpretation of measurements using a microwave reflectometry diagnostic in a tokamak. The scattered field is obtained through the resolution of a (non-homogeneous) wave propagation equation where the source term is related with the nonlinear current due to the interaction between the incident wave and local fluctuations. We use a slab model for the plasma, and an ordinary (0) wave propagation along the density gradient is considered. The amplitude of the scattered wave at the border of the plasma is estimated. In order to know the contributions to the energy scattered both from the propagation region and the reflecting layer, an approach was used where perturbations are modelled by spatial step functions at several layers. The main contribution to the scattered power comes from the cutoff region, where the electric field amplitude swells as compared with the incident value. Considering the reflectometric system recently installed on the ASDEX tokamak, and using typical density profiles, expected values of the 'swelling factor' have been numerically evaluated. The role of incoherent scattering due to drift wave activity is discussed as well as the coherent scattering due to fluctuations induced by lower hybrid (LH) waves. (author) 2 refs., 4 figs

  11. CO2 laser imaging heterodyne and phase contrast interferometer for density profile and fluctuation measurements in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Akiyama, T.; Kawahata, K.; Ito, Y.; Vyacheslavov, L.N.; Sanin, A.L.; Okajima, S.

    2007-01-01

    A CO 2 laser heterodyne imaging interferometer (CO 2 HI) and a CO 2 laser phase contrast imaging interferometer (CO 2 PCI) were installed in LHD. The purpose of CO 2 HI is to measure electron density profile at high density (>1x10 20 m -3 ), where the existing far infrared laser (wavelength 118.9 μm) interferometer suffers from fringe jump due to the reduction of signal intensity caused by refraction. In the beginning of 10th LHD experimental campaign (2006-2007), sixty three three of CO 2 HI with 10 channels of YAG HI for vibration compensation, and in the later of 10th LHD experimental campaign. Eighty one channels CO 2 HI and 15 channels YAG HI became available. The purpose of CO 2 PCI is to measure turbulent fluctuation, which can contribute to the energy and particle transport. In order to get local fluctuation information, magnetic shear technique was applied with use of 48 (6 by 8) channel two dimensional detector. (author)

  12. Density, temperature, and potential fluctuation measurements by the swept Langmuir probe technique in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Giannone, L.; Balbin, R.; Niedermeyer, H.; Endler, M.; Herre, G.; Hidalgo, C.; Rudyj, A.; Theimer, G.; Verplanke, P.

    1994-01-01

    In the Wendelstein 7-AS stellarator (W7-AS) [Plasma Phys. Controlled Fusion 33, 1591 (1991)], current-voltage characteristics of the Langmuir probe at sweep frequencies in the range 400 kHz to 1 MHz were measured and it was found that the mean and fluctuation values of the ion saturation current, floating potential, and electron temperature were independent of the sweep frequency. A radial scan in the vicinity of the velocity shear layer was performed. The simultaneous sweeping of 3 probe tips showed a statistically significant spatial coherence of the fluctuations in the poloidal direction and a decrease in spatial coherence of the fluctuations with increasing tip separation could be demonstrated. The observation of a change in the propagation direction of fluctuations as the shear layer was crossed and a calculation of the transport spectrum show that the swept probe method is capable of reproducing known results. Apparent temperature fluctuations, due to variations of density and potential during a sweep, are shown by simulations to be only of importance at frequencies above half the Nyquist frequency

  13. Sensitivity of orthopositronium annihilation to density fluctuations in ethane gas

    International Nuclear Information System (INIS)

    Eftekhari, A.

    1982-01-01

    The annihilation rates of orthopositronium (o-Ps) and free positrons and positronium formation fractions have been measured in gaseous ethane at seven temperatures between 295 and 377 K for densities in the range 1.2-286 amagat. The pick off quenching rate of o-Ps is observed to vary with temperature at low densities of ethane. The observed behavior of the o-Ps annihilation rates with density and temperature is interpreted in terms of density fluctuations in ethane gas. A simple theoretical model is developed which explains the observed annihilation behavior reasonably well at those temperatures and densities where density fluctuations are small. The annihilation rates of flow-energy positrons indicate the formation of positron-ethane collision complexes and self-trapping of positrons in clusters of ethane molecules. The o-Ps yields appear to be independent of temperature and show a strong dependence on the density of the gas

  14. Addendum to ''Density fluctuations in liquid rubidium''

    International Nuclear Information System (INIS)

    Haan, S.W.; Mountain, R.D.; Hsu, C.S.; Rahman, A.

    1980-01-01

    We performed molecular-dynamics simulations of liquid rubidium and the Lennard-Jones fluid at several densities and temperatures, and of a system whose pair potential is the repulsive core of the rubidium potential. In all cases, propagating density fluctuations occurred in the rubidiumlike systems at much shorter wavelengths than in the Lennard-Jones system. This indicates that the repulsive part of the pair potential is the dominant factor in determining the relaxation of short-wavelength density fluctuations

  15. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  16. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  17. Multi-spacecraft observations of small-scale fluctuations in density and fields in plasmaspheric plumes

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2012-03-01

    Full Text Available In this event study, small-scale fluctuations in plasmaspheric plumes with time scales of ~10 s to minutes in the spacecraft frame are examined. In one event, plasmaspheric plumes are observed by Cluster, while IMAGE measured density enhancement at a similar location. Fluctuations in density exist in plumes as detected by Cluster and are accompanied by fluctuations in magnetic fields and electric fields. Magnetic fluctuations are transverse and along the direction of the plumes. The E/B ratio is smaller than the Alfvén velocity. Another similar event is briefly presented. We then consider physical properties of the fluctuations. Alfvén mode modulated by the feedback instability is one possibility, although non-local generation is likely. It is hard to show that the fluctuations represent a fast mode. Interchange motion is possible due to the consistency between measurements and expectations. The energy source could be a pressure or density gradient in plasmaspheric plumes. When more events are accumulated so that statistical analysis becomes feasible, this type of study will be useful to understand the time evolution of plumes.

  18. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  19. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  20. Temporal separation of the density fluctuation signal measured by light scattering

    International Nuclear Information System (INIS)

    Antar, G.; Devynk, P.; Laviron, C.; Garbet, X.; Sabot, R.; Fenzi, C.; Hennequin, P.; Truc, A.; Quemeneur, A.; Honore, C.; Gervais, F.

    1999-02-01

    On Tore Supra, the frequency spectra of the turbulent fluctuations often have two peaks centered on some positive and negative values. These two peaks correspond to a poloidal motion of electron turbulence in opposite directions. In this paper, a criterion is elaborated allowing us to distinguish, in time, density fluctuations convected in the parallel from those in the anti-parallel direction with respect to the analysing wavevector. Two signals are thus extracted out of one. The validity of our model is experimentally checked up by comparing the auto-correlation coefficients and the frequency spectra computed for the whole and the separated signals. Consequently, the frequency spectrum is studied in detail as a function of the analysing wavenumber leading to an accurate determination of some plasma properties. (authors)

  1. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-05-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies

  2. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    International Nuclear Information System (INIS)

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.; Pietropaolo, E.

    2014-01-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  3. Origin of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Carr, B.J.

    1984-11-01

    The density fluctuations required to explain the large-scale cosmological structure may have arisen spontaneously as a result of a phase transition in the early Universe. There are several ways in which such fluctuations may have ben produced, and they could have a variety of spectra, so one should not necessarily expect all features of the large-scale structure to derive from a simple power law spectrum. Some features may even result from astrophysical amplification mechanisms rather than gravitational instability. 128 references

  4. Core density fluctuations in reverse magnetic shear plasmas with internal transport barrier on JT-60U

    International Nuclear Information System (INIS)

    Nazikian, R.; Shinohara, K.; Yoshino, R.; Fujita, T.; Shirai, H.; Kramer, G.T.

    1999-01-01

    First measurements of the radial correlation length of density fluctuations in JT-60U plasmas with internal transport barrier (ITB) is reported. The measurements are obtained using a newly installed correlation reflectometer operating in the upper X-mode. Before transport barrier formation in the low beam power current ramp-up phase of the discharge, reflectometer measurements indicate density fluctuation levels n-tilde/n∼0.1-0.2% and radial correlation lengths 2-3 cm (k r p i ≤0.5) in the central plasma region (r/a r p i ∼3. However, fluctuation levels are considerably higher than measured near the magnetic axis. Reflectometer measurements obtained at the foot of the ITB also indicate high fluctuation levels compared to measurements in the central region of the discharge. (author)

  5. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  6. Lyapunov spectra of density fluctuations in TBR-1

    International Nuclear Information System (INIS)

    Oiwa, N.N.; Fidler-Ferrara, N.

    1993-01-01

    The results for the Lyapunov exponents associated with density fluctuations measured by Langmuir probes placed in the scrape-off layer of the Tokamak TBR-1 are reported. By a judicious use of the Sano-Sawada and Eckmann-Ruelle algorithms conclusive values for the positive Lyapunov exponents for most of the analysed signals are used showing evidences of chaotic behavior. (author)

  7. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  8. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  9. Density fluctuations in ohmic Asdex discharges

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1989-01-01

    The investigations on the wave-number and frequency spectra of the density fluctuations, occurring in the different operational modes of ASDEX, are summarized. The aim of the experiments is to study the physical nature of fluctuations and their influence on anomalous transport. The scattering system is described. The results reported were obtained using a 100 mW, λ = 119 μm CW CH-30H laser and homodyne detection

  10. Interplanetary Type III Bursts and Electron Density Fluctuations in the Solar Wind

    Science.gov (United States)

    Krupar, V.; Maksimovic, M.; Kontar, E. P.; Zaslavsky, A.; Santolik, O.; Soucek, J.; Kruparova, O.; Eastwood, J. P.; Szabo, A.

    2018-04-01

    Type III bursts are generated by fast electron beams originated from magnetic reconnection sites of solar flares. As propagation of radio waves in the interplanetary medium is strongly affected by random electron density fluctuations, type III bursts provide us with a unique diagnostic tool for solar wind remote plasma measurements. Here, we performed a statistical survey of 152 simple and isolated type III bursts observed by the twin-spacecraft Solar TErrestrial RElations Observatory mission. We investigated their time–frequency profiles in order to retrieve decay times as a function of frequency. Next, we performed Monte Carlo simulations to study the role of scattering due to random electron density fluctuations on time–frequency profiles of radio emissions generated in the interplanetary medium. For simplification, we assumed the presence of isotropic electron density fluctuations described by a power law with the Kolmogorov spectral index. Decay times obtained from observations and simulations were compared. We found that the characteristic exponential decay profile of type III bursts can be explained by the scattering of the fundamental component between the source and the observer despite restrictive assumptions included in the Monte Carlo simulation algorithm. Our results suggest that relative electron density fluctuations /{n}{{e}} in the solar wind are 0.06–0.07 over wide range of heliospheric distances.

  11. Density, potential and temperature fluctuations in Wendelstein 7-AS and ASDEX

    International Nuclear Information System (INIS)

    Balbin, R.; Hidalgo, C.; Carlson, A.; Endler, M.; Giannone, L.; Herre, G.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1992-01-01

    Measurements of ion saturation current, floating potential and temperature fluctuations in Wendelstein 7-AS stellarator (W7-AS) and ASDEX tokamak have been carried out. A reciprocating Langmuir probe with an array of 19 graphite tips has been used to obtain the radial profiles of these fluctuations in W7-AS and ASDEX. In both devices, a reversal of the radial electric field and an associated velocity shear layer at the plasma boundary have been observed. At the radial position where the phase velocity the poloidal direction of the fluctuations goes to zero, the normalised ion saturation current fluctuation level of 0.2 is the same for edge plasma parameters of similar temperatures and densities. A spatial crosscorrelation between floating potential and ion saturation current fluctuations has been observed in both machines and this feature can be explained in terms of turbulent eddies. A comparison of fluctuations in a tokamak and stellarator therefore shows many features in common. (orig.)

  12. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  13. Neutron density fluctuations in point reactor systems with dichotomic reactivity noise

    International Nuclear Information System (INIS)

    Sako, Okitsugu

    1984-01-01

    The exactly solvable stochastic point reactor model systems are analyzed through the stochastic Liouville equation. Three kinds of model systems are treated: (1) linear system without delayed neutrons, (2) linear system with one-group of delayed neutrons, and (3) nonlinear system with direct power feedback. The exact expressions for the fluctuations of neutron density, such as the moments, autocorrelation function and power spectral density, are derived in the case where the colored reactivity noise is described by the dichotomic, or two state, Markov process with arbitrary correlation time and intensity, and the effects of the finite correlation time and intensity of the noise on the neutron density fluctuations are investigated. The influence of presence of delayed neutrons and the effect of nonlinearity of system on the neutron density fluctuations are also elucidated. When the reactivity correlation time is very short, the correlation time has almost no effect on the power spectral density, and the relative fluctuation of neutron density in the stationary state is not affected very much by the presence of delayed neutrons and also by the nonlinearity of system. On the other hand, if the reactivity correlation time is very long, the effect of the reactivity noise on the power spectral density appears at very low frequency, and the presence of delayed neutrons has an effect of reducing the neutron density fluctuations. (author)

  14. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    Directory of Open Access Journals (Sweden)

    Kim Nygård

    2016-02-01

    Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  15. Effect of density fluctuations on ECCD in ITER and TCV

    Directory of Open Access Journals (Sweden)

    Coda S.

    2012-09-01

    Full Text Available Density fluctuations near the edge of tokamak plasmas can affect the propagation of electron cyclotron (EC waves. In the present paper, the EC wave propagation in a fluctuating equilibrium is determined using the ray-tracing code C3PO. The evolution of the electron distribution function is calculated self-consistently with the EC wave damping using the 3-D Fokker-Planck solver LUKE. The cumulative effect of fluctuations results in a significant broadening of the current profile combined with a fluctuating power deposition profile. This mechanism improves the simulation of fully non-inductive EC discharges in the TCV tokamaks. Predictive simulations for ITER show that density fluctuations could make the stabilization of NTMs in ITER more challenging.

  16. Investigation of density fluctuations in the ASDEX tokamak via collective laser scattering

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1990-01-01

    A 119μm laser scattering experiment is used on ASDEX to investigate wavenumber and frequency spectra of the density fluctuations occurring in the different operational modes of the machine. The aim of the measurements is to get insight in the physical nature of the fluctuations and their possible role in connection with anomalous transport. Since no complete theory exists, the simple guidelines of gyroradius-scaling and mixinglength level are used in the choice of parameters to be varied. Particular emphasis has been placed on the investigation of the fluctuations in the ohmic phase. (author) 1 ref., 3 figs

  17. Investigation of density fluctuations in the ASDEX tokamak via collective laser scattering

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1990-01-01

    A 119 μm laser scattering experiment is used on ASDEX to investigate wavenumber and frequency spectra of the density fluctuations occurring in the different operational modes of the machine. The aim of the measurements is to get insight in the physical nature of the fluctuations and their possible role in connection with anomalous transport. Since no complete theory exists, the simple guidelines of gyroradius-scaling and mixinglength level are used in the choice of parameters to be varied. Particular emphasis has been placed on the investigation of the fluctuations in the ohmic phase. (orig./AH)

  18. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  19. State densities and spectrum fluctuations: Information propagation in complex nuclei

    International Nuclear Information System (INIS)

    French, J.B.; Kota, V.K.B.

    1988-01-01

    At excitation energies in nuclei where the state density is unambiguously defined there is a sharp separation between the smoothed spectrum (which defines the density) and fluctuations about it which have recently been studied with a view to understanding some aspects of quantum chaos. We briefly review these two complementary subjects, paying special attention to: the role of the effective interaction in determining the density; the calculation of interacting-particle state and level densities, and of expectation values of interesting operators; the information about the effective nucleon-nucleon interaction which is carried both by the density and the fluctuations. 28 refs., 1 fig

  20. Origin of density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Kolb, E.W.; Salopek, D.S.; Turner, M.S.

    1990-01-01

    We calculate both the curvature and isocurvature density fluctuations that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory. The curvature fluctuations that arise due to quantum fluctuations in the Brans-Dicke field in general have a non-scale-invariant spectrum and an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The curvature perturbations that arise due to the Higgs field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential, and the usual formula for the amplitude of curvature perturbations applies directly

  1. Temperature, density and potential fluctuations by a swept Langmuir probe in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Niedermeyer, H; Endler, M; Theimer, G; Rudyj, A; Verplancke, Ph [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Balbin, R; Hidalgo, C [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    1994-12-31

    Numerous experiments using a Langmuir probe to investigate the magnitude of temperature fluctuations and their contribution to heat transport in the edge region of tokamak plasmas have been carried out. Sweeping the voltage applied to a tip fast enough to ensure that the ion saturation current, floating potential and electron temperature may be assumed to be constant during the sweep is experimentally more difficult than alternative schemes but this disadvantage is compensated by the ability to measure all three of these quantities at one spatial location. Sweep frequencies up to 600 kHz have been employed to obtain the current-voltage characteristic. A radial scan in the vicinity of the velocity shear layer on W7-AS stellarator was performed. Inside and outside the shear layer the normalised magnitude of the temperature fluctuations was found to be approximately 30% larger than the magnitude of the electron density fluctuations, approaching a value of 0.12 and 0.09 respectively at a radial position 1 cm inside the shear layer. An increase in the coherency of the temperature, floating potential and density fluctuations between tips with a poloidal separation of 2 mm was also measured as the shear layer was crossed. Heat conduction produced by correlated temperature and poloidal electric field fluctuations is therefore possible. An increasing coherence of temperature and floating potential fluctuations leads to an increase in the coherence of temperature and plasma potential fluctuations as the shear layer was crossed. (author) 7 refs., 3 figs.

  2. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2004-01-01

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors

  3. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  4. Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay

    Science.gov (United States)

    Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.

    2018-02-01

    Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.

  5. Plasma fluctuation measurements in tokamaks using beam-plasma interactions

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  6. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    Science.gov (United States)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  7. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2001-05-01

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  8. Absolute density measurements in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. Rapp

    Full Text Available In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

    Key words. Middle atmosphere (composition and chemistry; pressure, density, and temperature; instruments and techniques

  9. BULK THERMODYNAMICS AND CHARGE FLUCTUATIONS AT NON-VANISHING BARYON DENSITY

    International Nuclear Information System (INIS)

    MIAO, C.; SCHMIDT, C.

    2007-01-01

    We present results on bulk thermodynamic quantities as well as net baryon number, strangeness and electric charge fluctuations in QCD at non-zero density and temperature obtained from lattice calculations with almost physical quark masses for two values of the lattice cut-off aT = 1/4 and 1/6. We show that with our improved p4fa3-action the cut-off effects are under control when using lattices with a temporal extent of 6 or larger and that the contribution to the equation of state, which is due to a finite chemical potential is small for μ q /T < 1. Moreover, at vanishing chemical potential, i.e. under conditions almost realized at RHIC and the LHC, quartic fluctuations of net baryon number and strangeness are large in a narrow temperature interval characterizing the transition region from the low to high temperature phase. At non-zero baryon number density, strangeness fluctuations are enhanced and correlated to fluctuations of the net baryon number. If strangeness is furthermore forced to vanish, as it may be the case in systems created in heavy ion collisions, strangeness fluctuations are significantly smaller than baryon number fluctuations

  10. Scattering of lower-hybrid waves by density fluctuations

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1981-07-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. Assuming the fluctuations to be of long wavelength compared to the incident wave the similarity of the wave equation to the Schroedinger equation for a particle in a random magnetic field is used to derive a two-way diffusion equation for the wave energy density. The diffusion constant found disagrees with earlier findings and the source of the discrepancy is pointed out. When the correct boundary conditions are imposed this equation can be solved by separation of variables. However most of the important features of the solution are apparent without detailed algebra

  11. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  12. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  13. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; Niedermeyer, H.; Rudyj, A.; Theimer, G.

    1993-01-01

    In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H α diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (orig.)

  14. Plasma fluctuation measurements in tokamaks using beam-plasma interactions (abstract)

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  15. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  16. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    Science.gov (United States)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  17. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  18. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  19. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    Science.gov (United States)

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  20. The simultaneous measurements of core and outer core density fluctuations in L-H transition using CO2 laser collective scattering diagnostic in the EAST superconducting tokamak

    International Nuclear Information System (INIS)

    Cao, G.M.; Li, Y.D.; Zhang, X.D.; Sun, P.J.; Hu, L.Q.; Li, J.G.; Wu, G.J.

    2013-01-01

    The H-mode is the projected basic operation scenario for the ITER tokamak. The turbulence de-correlation by the synergistic effect of zonal flow and equilibrium ExB flow shear is believed to be the reason for L-H transition, however, the detailed physical mechanism has not been identified so far. Tangential multi-channel CO 2 laser collective scattering diagnostic system (mainly k r measurement) was first installed to investigate electron density fluctuations on EAST tokamak. The measurements in a spontaneous dithering L-H transition show that in core plasma (0 < r/a < 0.5) the low-frequency fluctuations strengthen greatly before L-H transition; meanwhile in outer core plasma (0.2 < r/a < 1) the low-frequency fluctuations strengthen slightly. Bispectral analysis reveals that the coupling strength between low- and high-frequency fluctuations in both core and outer core plasma strengthens greatly before the transition, but the latter is greater than the former. The results indicate that the low-frequency fluctuations of the core and outer core plasma play active, but different, roles in the spontaneous L-H transition. (author)

  1. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  2. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    International Nuclear Information System (INIS)

    Bertelli, N; Balakin, A A; Westerhof, E; Garcia, O E; Nielsen, A H; Naulin, V

    2010-01-01

    A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667].

  3. The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks

    DEFF Research Database (Denmark)

    Bertelli, N.; Balakin, A.A.; Westerhof, E.

    2010-01-01

    are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...

  4. Consideration of magnetic field fluctuation measurements in a torus plasma with heavy ion beam probe

    International Nuclear Information System (INIS)

    Shimizu, A.; Fujisawa, A.; Ohshima, S.; Nakano, H.

    2004-03-01

    The article discusses feasibility of magnetic fluctuation measurement with a heavy ion beam probe (HIBP) in an axisymmetric torus configuration. In the measurements, path integral fluctuation along the probing beam orbit should be considered as is similar to the density fluctuation measurements with HIBP. A calculation, based on an analytic formula, is performed to estimate the path integral effects for fluctuation patterns that have difference in profile, the correlation length, the radial wavelength, and the poloidal mode number. In addition, the large distance between the plasma and the detector is considered to lessen the path integral effect. As a result, it is found that local fluctuation of magnetic field can be properly detected with a heavy ion beam probe. (author)

  5. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Dodel, G; Holzhauer, E [Stuttgart Univ. (Germany). Inst. fuer Plasmaforschung; Niedermeyer, H; Endler, M; Gerhardt, J; Giannone, L.; Wagner, F; Zohm, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The 119 [mu]m laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs.

  6. Density fluctuations in ohmic-, L-mode an H-mode discharges of ASDEX

    International Nuclear Information System (INIS)

    Dodel, G.; Holzhauer, E.

    1991-01-01

    The 119 μm laser scattering device ASDEX was used to investigate the direction of propagation and temporal development of density fluctuations. In ohmic discharges the density fluctuations propagate predominantly in the electron-diamagnetic direction and change direction with NI co-injection. A strong drop in total scattered power together with a further increase in the frequency shift is observed after the build-up of the transport barrier. Similar observations have been reported on other tokamaks. Due to the finite spatial resolution of the scattering system the variation of the fluctuations with local parameters cannot be sufficiently resolved to confirm their nature. (author) 5 refs., 3 figs

  7. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Sanin, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained in the standard configuration from density modulation experiments. The values of D and V are estimated separately in the core and edge. The diffusion coefficients are found to be a strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in the core and T e 1.1±0.14 in the edge. Edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in the edge is close to gyro-Bohm-like in nature. Non-zero V is observed and it is found that the electron temperature gradient can drive particle convection, particularly in the core region. The convection velocity in the core reverses direction from inward to outward as the T e gradient increases. In the edge, convection is inward directed in most cases of the present data set. It shows a modest tendency, being proportional to T e gradient and remaining inward directed. However, the toroidal magnetic field also significantly affects the value and direction of V. The density fluctuation spectrum varies with heating power suggesting that it has an influence on particle transport. The value of K sub(perpendicular) ρ i is around 0.1, as expected for gyro-Bohm diffusion. Fluctuations are localized in both positive and negative density gradient regions of the hollow density profiles. The fluctuation power in each region is clearly distinguished having different phase velocity profiles. (author)

  8. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    DEFF Research Database (Denmark)

    Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.

    2007-01-01

    with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force...... is usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity...

  9. Localized Measurement of Turbulent Fluctuations in Tokamaks with Coherent Scattering of Electromagnetic Waves

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2002-01-01

    Localized measurements of short-scale turbulent fluctuations in tokamaks are still an outstanding problem. In this paper, the method of coherent scattering of electromagnetic waves for the detection of density fluctuations is revisited. Results indicate that the proper choice of frequency, size and launching of the probing wave can transform this method into an excellent technique for high-resolution measurements of those fluctuations that plasma theory indicates as the potential cause of anomalous transport in tokamaks. The best spatial resolution can be achieved when the range of scattering angles corresponding to the spectrum of fluctuations under investigation is small. This favors the use of high frequency probing waves, such as those of far infrared lasers. The application to existing large tokamaks is discussed

  10. Extremal-point densities of interface fluctuations

    International Nuclear Information System (INIS)

    Toroczkai, Z.; Korniss, G.; Das Sarma, S.; Zia, R. K. P.

    2000-01-01

    We introduce and investigate the stochastic dynamics of the density of local extrema (minima and maxima) of nonequilibrium surface fluctuations. We give a number of analytic results for interface fluctuations described by linear Langevin equations, and for on-lattice, solid-on-solid surface-growth models. We show that, in spite of the nonuniversal character of the quantities studied, their behavior against the variation of the microscopic length scales can present generic features, characteristic of the macroscopic observables of the system. The quantities investigated here provide us with tools that give an unorthodox approach to the dynamics of surface morphologies: a statistical analysis from the short-wavelength end of the Fourier decomposition spectrum. In addition to surface-growth applications, our results can be used to solve the asymptotic scalability problem of massively parallel algorithms for discrete-event simulations, which are extensively used in Monte Carlo simulations on parallel architectures. (c) 2000 The American Physical Society

  11. Optical fluctuation measurements of turbulence using a diagnostic beam on Phaedrus-T

    International Nuclear Information System (INIS)

    Evensen, H.; Brouchous, D.; Diebold, D.; Doczy, M.; Fonck, R.J.; Nolan, D.

    1992-01-01

    Plasma density turbulence has been measured with the beam emission spectroscopy (BES) diagnostic system, using a low-power neutral beam with He 0 and H 0 as beam species. In general, He 0 (588 nm) provided the best signal-to-noise ratio due to its lower edge plasma background interference. Simultaneous measurements of edge density fluctuations have been made with BES and Langmuir probes; the spectra are seen to be essentially identical, and the fluctuation amplitudes from both diagnostics are in close agreement. A poloidal coherence length of about 2--4 cm was observed. Radial propagation of modes was not seen, but a lab-frame poloidal phase velocity at r/a=0.77 of about 7x10 5 cm/s in the electron diamagnetic direction was observed, corresponding to m=8--75 kHz

  12. Anisotropic frequency response of critical density fluctuation of NIPA gel under oscillation shear

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Masaaki [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)]. E-mail: sugiyama@rri.kyoto-u.ac.jp; Vigild, Martin E. [Danish Polymer Centre, Technical University of Denmark, 2800 Lyngby (Denmark); Fukunaga, Toshiharu [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Itoh, Keiji [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Sato, Takashi [Department of Engineering Physics and Mechanics, Kyoto University, Kyoto 606-8501 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    A relation between rheology and structure of high density NIPA gel around a critical point on volume phase transition was studied by a simultaneous rheology and small-angle neutron scattering measurement. Just below the critical temperature, the NIPA gel showed softening: G{sup '} and G{sup '}' get closer (G{sup '}>G{sup '}'). At this temperature, the density fluctuation enhanced along the shear direction corresponding to the shear frequency but not to the shear strength. It means that this anisotropy is different from that observed in a statically stretched gel.

  13. Experimental study of particle transport and density fluctuation in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Morita, S.; Sanin, A.; Michael, C.; Kawahata, K.; Yamada, H.; Miyazawa, J.; Tokuzawa, T.; Akiyama, T.; Goto, M.; Ida, K.; Yoshinuma, M.; Narihara, K.; Yamada, I.; Yokoyama, M.; Masuzaki, S.; Morisaki, T.; Sakamoto, R.; Funaba, H.; Komori, A.; Vyacheslavov, L.N.; Murakami, S.; Wakasa, A.

    2005-01-01

    A variety of electron density (n e ) profiles have been observed in Large Helical Device (LHD). The density profiles change dramatically with heating power and toroidal magnetic field (B t ) under the same line averaged density. The particle transport coefficients, i.e., diffusion coefficient (D) and convection velocity (V) are experimentally obtained from density modulation experiments in the standard configuration. The values of D and V are estimated separately at the core and edge. The diffusion coefficients are strong function of electron temperature (T e ) and are proportional to T e 1.7±0.9 in core and T e 1.1±0.14 in edge. And edge diffusion coefficients are proportional to B t -2.08 . It is found that the scaling of D in edge is close to gyro-Bohm-like in nature. The existence of non-zero V is observed. It is observed that the electron temperature (T e ) gradient can drive particle convection. This is particularly clear in the core region. The convection velocity in the core region reverses direction from inward to outward as the T e gradient increases. In the edge, the convection is inward directed in the most of the case of the present data set. And it shows modest tendency, whose value is proportional to T e gradient keeping inward direction. However, the toroidal magnetic field also significantly affects value and direction of V. The spectrum of density fluctuation changes at different heating power suggesting that it has an influence on particle transport. The peak wavenumber is around 0.1 times the inversed ion Larmor radius, as is expected from gyro-Bohm diffusion. The peaks of fluctuation intensity are localized at the plasma edge, where density gradient becomes negative and diffusion contributes most to the particle flux. These results suggest a qualitative correlation of fluctuations with particle diffusion. (author)

  14. Effect of beam-attenuation modulation on fluctuation measurements by heavy-ion beam probe

    International Nuclear Information System (INIS)

    Ross, D.W.; Sloan, M.L.; Wootton, A.J.

    1991-03-01

    Beam-attenuation modulation arising from density fluctuations along the orbit of the heavy-ion beam probe can distort the local amplitude, coherence, and phase derived from one- and two-point correlation measurements. Path-integral expressions for these effects are derived and applications to TEXT data are discussed. The effects depend critically on the ratio of the average fluctuation amplitude, n e , along the beam path to the local n e at the sample volume. Because the fluctuation amplitude is small in the core and rises sharply toward the plasma edge, the contamination effect is negligible in a radial zone near the edge but rises sharply to the interior of a critical radius. With increasing average plasma density, bar n e , the interior contamination increases strongly and the critical radius moves outward. 16 refs., 12 figs

  15. Lyman-alpha clouds as a relic of primordial density fluctuations

    International Nuclear Information System (INIS)

    Bond, J.R.; Szalay, A.S.; Silk, J.

    1988-01-01

    Primordial density fluctuations are studied using a CDM model and primordial clouds some of which are expanding, driven by pressure gradients created when the medium is photionized, and some of which are massive enough to continue collapsing in spite of the pressure. Normalization of CDM models to the clustering properties on large scales are used to predict the parameters of collapsing clouds of subgalactic mass at early epochs. It is shown that the abundance and dimensions of these clouds are comparable to those of the Lyman-alpha systems. The evolutionary history of the clouds is computed, utilizing a spherically symmetric hydrodynamics code with the dark matter treated as a collisionless fluid, and the H I column density distribution is evaluated as a function of N(H I) and redshift. The observed cloud parameters come out naturally in the CDM model and suggest that Lyman-alpha clouds are the missing link between primordial density fluctuations and the formation of galaxies. 31 references

  16. Plasma density fluctuation measurements from coherent and incoherent microwave reflection

    International Nuclear Information System (INIS)

    Conway, G.D.; Schott, L.; Hirose, A.

    1996-01-01

    Using the spatial coherency present in a reflected microwave signal (Conway et al 1994 Rev. Sci. Instrum. 65 2920) it is possible to measure a coherent, Γ c , and an incoherent, Γ i , reflection coefficient (proportional to the radar cross section) from a turbulent plasma cutoff layer. Results acquired with a 17 GHz reflectometer from a STOR-M tokamak edge region (r/a ∼ 0.8) give significant Γ c and Γ i , which suggests two-dimensional structure in the reflection layer. Using a 'distorted-mirror' model for the plasma fluctuations, estimates of an effective radial width, σ, and poloidal correlation length, L p , can be derived from the reflection coefficients. STOR-M results typically give a σ of a few millimetres and an L p of a couple of centimetres. (author)

  17. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    International Nuclear Information System (INIS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-01-01

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T e measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D

  18. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E. [Institute for Fusion Studies, University of Texas at Austin, MS 13-505, 3483 Dunhill St, San Diego, CA 92121-1200 (United States); Petty, C. C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  19. The spectrum of small-scale density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Readhead, A.C.S.; Kemp, M.C.; Hewish, A.

    1978-01-01

    Interplanetary scintillation observations at frequencies between 74 and 1400 MHz and solar elongations in the range 10 to 90 0 are combined to determine the form of the wavenumber spectrum of electron density fluctuations in the range 10 -3 -1 /km (where k = 2π/lambda). The data are best explained by a spectrum in which there is a genuine scale-length; they are not consistent with a simple power-law spectrum. This suggests that turbulence may be less important than some kind of plasma instability in generating small-scale density fluctuations. The relevance of these conclusions to the use of IPS for determining radio source structure is discussed. (author)

  20. Scattering of Neutrons on Fluctuations of the Density of the Thin Films

    Directory of Open Access Journals (Sweden)

    S. G. ABDULVAHABOVA

    2016-11-01

    Full Text Available Abstract. The cross section for scattering neutron  on the density of  fluctuations of the  thin films is obtained in the framework of the quantum theory of multiple scattering  in the quasielastic approximation. Inhomogeneity can be caused by dynamic density fluctuations, and be statistical in nature. Fluctuations in the density of the scattering material cause neutron scattering wave. The probability of a collision between a neutron and an atomic nucleus depends on the number of neutrons and on their velocity. The formulas have been obtained under the assumption that the imaginary part of the optical potential is a local operator. It was determined that the scattering in density fluctuations does not contribute to the attenuation of the coherent neutron wave. In the approximation of a thin target the solution of the equation for the total scattering amplitude is identical to the expression obtained in the usual eikonal approximation and differs significantly, at least functionally, from the solution for the case of a thick target. There have been detailed investigations of the reflection and refraction of neutron waves in matter, and the details of their dispersion law have been studied. The results are  hown  also, that  the total cross section for scattering by the complete target becomes universal and does not depend on cross section for scattering by one nucleus.Keywords: 25.40-Ep

  1. Solidity of viscous liquids. IV. Density fluctuations

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle...... displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k space of the form C+Dk^2 with D>>C a^2 where a is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which...... with Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields...

  2. Measuring shape fluctuations in biological membranes

    International Nuclear Information System (INIS)

    Monzel, C; Sengupta, K

    2016-01-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes. (topical review)

  3. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    Science.gov (United States)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  4. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    DEFF Research Database (Denmark)

    Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim

    2014-01-01

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....

  5. Spectral density of electron concentration fluctuations in ionospheric D region

    International Nuclear Information System (INIS)

    Martynenko, S.I.

    1989-01-01

    Expression for spectral density of electron concentration fluctuations in D-region with regard to the effect of ionization-recombination proceses and negative ions is obtained in terms of atmospheric turbulence model which obeys Kolmogorov-Obukhov 2/3 law

  6. Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks

    Science.gov (United States)

    Vahala, George; Vahala, Linda; Bonoli, Paul T.

    1992-12-01

    Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].

  7. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Almagri, A.F.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude b/B decreases from 1.5% to 0.8%, the electron temperature T e0 increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta β 0 increases from 6% to 9%, and the energy confinement time τ E increases from 1 ms to ∼5 ms in I φ = 340 kA plasmas with density n = 1 x 10 19 m -3 . Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the 'electron diamagnetic dynamo,' is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E r with a robust biased probe. 24 refs

  8. Density fluctuation effects on collective neutrino oscillations in O-Ne-Mg core-collapse supernovae

    International Nuclear Information System (INIS)

    Cherry, John F.; Fuller, George M.; Wu Mengru; Qian Yongzhong; Carlson, J.; Duan Huaiyu

    2011-01-01

    We investigate the effect of matter density fluctuations on supernova collective neutrino flavor oscillations. In particular, we use full multiangle, three-flavor, self-consistent simulations of the evolution of the neutrino flavor field in the envelope of an O-Ne-Mg core-collapse supernova at shock breakout (neutronization neutrino burst) to study the effect of the matter density ''bump'' left by the He-burning shell. We find a seemingly counterintuitive increase in the overall ν e survival probability created by this matter density feature. We discuss this behavior in terms of the interplay between the matter density profile and neutrino collective effects. While our results give new insights into this interplay, they also suggest an immediate consequence for supernova neutrino burst detection: it will be difficult to use a burst signal to extract information on fossil burning shells or other fluctuations of this scale in the matter density profile. Consistent with previous studies, our results also show that the interplay of neutrino self-coupling and matter fluctuation could cause a significant increase in the ν e survival probability at very low energy.

  9. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  10. Size scaling effects on the particle density fluctuations in confined plasmas

    International Nuclear Information System (INIS)

    Vazquez, Federico; Markus, Ferenc

    2009-01-01

    In this paper, memory and nonlocal effects on fluctuating mass diffusion are addressed in the context of fusion plasmas. Nonlocal effects are included by considering a diffusivity coefficient depending on the size of the container in the transverse direction to the applied magnetic field. It is obtained by resorting to the general formulation of the extended version of irreversible thermodynamics in terms of the higher order dissipative fluxes. The developed model describes two different types of the particle density time correlation function. Both have been observed in tokamak and nontokamak devices. These two kinds of time correlation function characterize the wave and the diffusive transport mechanisms of particle density perturbations. A transition between them is found, which is controlled by the size of the container. A phase diagram in the (L,2π/k) space describes the relation between the dynamics of particle density fluctuations and the size L of the system together with the oscillating mode k of the correlation function.

  11. Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    NARCIS (Netherlands)

    Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C.; ASDEX Upgrade team,; EUROfusion MST1 Team,

    2018-01-01

    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T-e) and its fluctuations (delta T-e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects,

  12. Unusual features of long-range density fluctuations in glass-forming organic liquids: A Rayleigh and Rayleigh-Brillouin light scattering study

    International Nuclear Information System (INIS)

    Patkowski, A.; Fischer, E. W.; Steffen, W.; Glaser, H.; Baumann, M.; Ruths, T.; Meier, G.

    2001-01-01

    A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4 # prime#-methoxy-5 # prime#methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment, which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the α process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations ('clusters'). We have characterized the two states by static and dynamic light scattering in the temperature range from T g to T g +200 K. The relaxation times of the α process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The α process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and q-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories

  13. The theory of electromagnetic wave scattering by density fluctuations in nonequilibrium plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.; Panchenko, V.G.

    1993-01-01

    Scattering of electromagnetic waves by density fluctuations in a magnetized plasma in the presence of the external pump field is investigated. The spectral density of electron density fluctuations is calculated. The pump wave is supposed to decay into a lower hybrid wave and low frequency oscillations (ion-acoustic wave, modified convective cell and ion-cyclotron wave with ion-temperature anisotropy). When the pump wave amplitude tends to the threshold strength of the electric field, the scattering cross section increases anomalously, i.e. there is the critical opalescence. The differential scattering cross section dependence on the pump amplitude and ion temperature anisotropy is obtained in the region above the parametric instability threshold. For characteristic parameters of fusion and space plasmas it is shown that the pump field terms considerably surmount the thermal noise contribution to the scattering cross section

  14. Fluctuations and Photons

    International Nuclear Information System (INIS)

    Gupta, Sourendu

    2007-01-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence

  15. Fluctuations and Photons

    Science.gov (United States)

    Gupta, Sourendu

    2007-02-01

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  16. Fluctuations and Photons

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sourendu [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2007-02-15

    In this talk I discuss measures of fluctuations, especially those leading to the proof that the quark gluon plasma indeed contains quarks. I discuss the quark mass dependence of the critical end point of QCD. Then I discuss probes of the QCD critical point. Non-gaussian behaviour of event-to-event fluctuations of conserved quantum numbers is one such probe. Another is due to the coupling of fluctuations in baryon number and electrical charge, giving rise to long range random fluctuations of local charge density which relax slowly. These fluctuations can scatter photons, giving rise to critical opalescence.

  17. Bond index: relation to second-order density matrix and charge fluctuations

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.

    1985-01-01

    It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt

  18. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  19. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    Science.gov (United States)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  20. On lower hybrid wave scattering by plasma density fluctuations

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1988-01-01

    The scattering of lower hybrid waves on plasma density fluctuations in a thin turbulent layer at the plasma periphery is studied numerically. The lower hybrid waves are supposed to be radiated by a four-waveguide grill used on the CASTOR tokamak. A great number of calculated scattered wave spectra show that the scattered spectrum shifts to larger values of the parallel-to-magnetic-field component of the wave vector (to slower waves) with increasing central plasma density and with the decreasing safety factor at the boundary. As known, this shift of the wave spectra results in a decrease in current drive efficiency. The current drive efficiency will hence decrease with growing plasma density and with decreasing safety factor. (J.U.). 2 figs., 4 refs

  1. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  2. A note on chaotic vs. stochastic behavior of the high-latitude ionospheric plasma density fluctuations

    Directory of Open Access Journals (Sweden)

    A. W. Wernik

    1996-01-01

    Full Text Available Four data sets of density fluctuations measured in-situ by the Dynamics Explorer (DE 2 were analyzed in an attempt to study chaotic nature of the high-latitude turbulence and, in this way to complement the conventional spectral analysis. It has been found that the probability distribution function of density differences is far from Gaussian and similar to that observed in the intermittent fluid or MBD turbulence. This indicates that ionospheric density fluctuations are not stochastic but coherent to some extent. Wayland's and surrogate data tests for determinism in a time series of density data allowed us to differentiate between regions of intense shear and moderate shear. We observe that in the region of strong field aligned currents (FAC and intense shear, or along the convection in the collisional regime, ionospheric turbulence behaves like a random noise with non-Gaussian statistics implying that the underlying physical process is nondeterministic. On the other hand, when FACs are weak, and shear is moderate or observations made in the inertial regime the turbulence is chaotic. The attractor dimension is lowest (1.9 for 'old' convected irregularities. The dimension 3.2 is found for turbulence in the inertial regime and considerably smaller (2.4 in the collisional regime. It is suggested that a high dimension in the inertial regime may be caused by a complicated velocity structure in the shear instability region.

  3. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    International Nuclear Information System (INIS)

    Madi, M; Peysson, Y; Decker, J; Kabalan, K Y

    2015-01-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker–Planck calculations. (paper)

  4. Effects of limited spatial resolution on fluctuation measurements

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1994-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical - not only does it reduce the measured fluctuation amplitude and correlation length (as does an extent perpendicular to the propagation direction), but also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  5. Density Fluctuations in Uniform Quantum Gases

    International Nuclear Information System (INIS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2011-01-01

    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.

  6. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  7. Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.

    Science.gov (United States)

    Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V; Zafirov, Nikolay; de Luis, Martin

    2016-01-01

    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.

  8. Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps

    Directory of Open Access Journals (Sweden)

    Giovanna eBattipaglia

    2016-05-01

    Full Text Available Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical and other properties of tree rings are a synthesis of several intrinsic, environmental factors, and interconnected processes acting during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1 the influence of climatic factors on the formation of IADFs; (2 the occurrence of IADFs in different species and environments; (3 the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.

  9. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  10. Experimental and theoretical investigation of density and potential fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Giannone, L.; Niedermeyer, H; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    Electrostatic fluctuations (i.e. the magnetic field is assumed constant) are candidates for the explanation of the anomalous transport of particles and energy in both tokamaks and stellarators. While most theoretical effort has been directed to an explanation of the anomalous transport in the bulk plasma, it is now widely being realized that the anomalous radial transport in the scrape-off layer, determining the width of the power flow channel at limiter or divertor plates, may be equally important to a future reactor experiment. In the divertor tokamak ASDEX density and potential fluctuations in the scrape-off layer were investigated with high temporal and spatial resolution by Langmuir probes and an H{sub {alpha}} diagnostic. Many results of these measurements were reported and are summarized below. Several of these properties of the fluctuations have also been reported from other experiments. (author) 3 refs., 4 figs.

  11. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for

  12. Thermodynamic fluctuations and the monopole density of the early Universe

    International Nuclear Information System (INIS)

    Diosi, L.; Lukacs, B.

    1984-10-01

    The probability of thermodynamic fluctuations is calculated by explicitly using the Riemannian structure of the thermodynamic state space. By means of this probability distribution, a correlation volume can be defined. Identifying this volume with one domain in the GUT continuum at the symmetry breaking phase transition in the early Universe, a prediction can be obtained for the primordial monopole density. (author)

  13. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  14. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  15. Edge fluctuation measurements by phase contrast imaging on DIII-D

    International Nuclear Information System (INIS)

    Coda, S.; Porkolab, M.

    1994-05-01

    A novel CO 2 laser phase contrast imaging diagnostic has been developed for the DIII-D tokamak, where it is being employed to investigate density fluctuations at the outer edge of the plasma. This system generates 16-point, 1-D images of a 7.6 cm wide region in the radial direction, and is characterized by long wavelength (7.6 cm) and high frequency (100 MHz) capability, as well as excellent sensitivity (rvec n approx-gt 10 9 cm -3 ). The effects of vertical line integration have been studied in detail, both analytically and numerically with actual flux surface geometries generated by the EFITD magnetic equilibrium code. It is shown that in the present configuration the measurement is mostly sensitive to radial wave vectors. Experimental results on fluctuation suppression at the L- to H-mode transition and on the L-mode wave number spectrum are discussed briefly. Finally, future plans for extending the measurement to the core of the plasma and for investigating externally launched fast waves are presented

  16. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    International Nuclear Information System (INIS)

    Li, Rong; Wu, Yongquan; Xiao, Junjiang

    2014-01-01

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms

  17. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    Science.gov (United States)

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  18. Microwave background anisotropies and the primordial spectrum of cosmological density fluctuations

    International Nuclear Information System (INIS)

    Suto, Yasushi; Gouda, Naoteru; Sugiyama, Naoshi

    1990-01-01

    Microwave background anisotropies in various cosmological scenarios are studied. In particular, the extent to which nonscale-invariant spectra of the primordial density fluctuations are consistent with the observational upper limits is examined. The resultant constraints are summarized as contours on (n, Omega)-plane, where n is the power-law index of the primordial spectrum of density fuctuations and Omega is the cosmological density parameter. They are compared also with the constraints from the cosmic Mach number test, recently proposed by Ostriker and Suto (1990). The parameter regions which pass both tests are not consistent with the theoretical prejudice inspired by the inflationary model. 44 refs

  19. Precision Electron Density Measurements in the SSX MHD Wind Tunnel

    Science.gov (United States)

    Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.

    2017-10-01

    We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.

  20. Magnetic fluctuation measurements in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    LaPointe, M.A.

    1990-09-01

    Magnetic fluctuation measurements have been made in the Tokapole II tokamak in the frequency range 10 kHz ≤ f ≤ 5 MHz. The fluctuations above 500 kHz varied greatly as the effective edge safety factor, q a , was varied over the range 0.8 ≤ q a ≤ 3.8. As q a was varied from 3.8 to 0.8 the high frequency magnetic fluctuation amplitude increased by over three orders of magnitude. The fluctuation amplitude for 0.5 to 2.0 MHz was a factor of 10 lower than the fluctuation amplitude in the range 100 to 400 kHz for q a of 0.8. When q a was increased to 3.8 the difference between the differing frequency ranges increased to a factor of 10 3 . Comparison of the measured broadband fluctuation amplitudes with those predicted from thermally driven Alfven and magnetosonic waves shows that the amplitudes are at least 1000 times larger than the theoretical predictions. This indicates that there is some other mechanism driving the higher frequency magnetic fluctuations. Estimates show that the contribution by the magnetic fluctuations above 500 kHz to the estimated electron energy loss from stochastic fields is negligible. The profiles of the various components of the magnetic fluctuations indicate the possibility that the shear in the magnetic field may stabilize whatever instabilities drive the magnetic fluctuations

  1. Measurement of magnetic fluctuations on ZT-40(M)

    International Nuclear Information System (INIS)

    Miller, G.

    1990-01-01

    The mathematical basis for experimental measurement of magnetic fluctuations in a Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frame-work for analysis of the five-fixed-probe technique. The extrapolation of edge-measured rvec B r fluctuations into the plasma is discussed. Correlations between magnetic and other fluctuations expected from a quasi-static model are derived and transport-relevant correlations are discussed. Data from ZT-40(M) are presented

  2. On the influence of density and temperature fluctuations on the formation of spectral lines in stellar atmospheres

    International Nuclear Information System (INIS)

    Stahlberg, J.

    1985-01-01

    A method taking into account the influence of temperature and density fluctuations generated by the velocity field in stellar atmospheres on the formation of spectral lines is presented. The influenced line profile is derived by exchanging the values in a static atmosphere by a mean value and a fluctuating one. The correlations are calculated with the help of the well-know hydrodynamic eqs. It results, that in normal stellar atmospheres the visual lines are only very weakly influenced by such fluctuations due to the small values of the gradients of the pressure and density and of the velocity dispersion. (author)

  3. Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

    Science.gov (United States)

    Wilcox, R. S.; Rhodes, T. L.; Shafer, M. W.; Sugiyama, L. E.; Ferraro, N. M.; Lyons, B. C.; McKee, G. R.; Paz-Soldan, C.; Wingen, A.; Zeng, L.

    2018-05-01

    Small 3D perturbations to the magnetic field in DIII-D ( δB /B ˜2 ×10-4 ) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.

  4. Density fluctuations due to Raman forward scattering in quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Punit, E-mail: punitkumar@hotmail.com; Singh, Shiv; Rathore, Nisha Singh, E-mail: nishasingh-rathore@yahoo.com [Department of Physics, University of Lucknow, Lucknow-226007 (India)

    2016-05-06

    Density fluctuations due Raman forward scattering (RFS) is analysed in the interaction of a high intensity laser pulse with high density quantum plasma. The interaction model is developed using the quantum hydrodynamic (QHD) model which consist of a set of equations describing the transport of charge, density, momentum and energy of a charged particle system interacting through a self-consistent electrostatic potential. The nonlinear source current has been obtained incorporating the effects of quantum Bohm potential, Fermi pressure and electron spin. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam is quit large, various quantum effects are observed which can be attributed to the variation of electron mass with laser intensity.

  5. The scattering of E. M. waves from density fluctuations in a plasma

    International Nuclear Information System (INIS)

    Hagfors, T.

    1977-01-01

    The scattering of electromagnetic (EM) waves by a single electron is developed from first principles. The result is used to derive the relationship of the scattered power spectrum to the spacetime Fourier transform of the electron density fluctuations in a plasma. (Auth.)

  6. Density fluctuations in the de Sitter universe

    International Nuclear Information System (INIS)

    Banerjee, N.; Mallik, S.

    1991-01-01

    The de Sitter space-time appears to be the most widely chosen manifold to study quantum field theories on curved space-time. The reason is, of course, its high symmetry and the related fact that the mode functions can be obtained exactly in terms of known functions. Thus the different problems of quantization on curved space-time, like the non-uniqueness of the vacuum, regularization and renormalization of the stress tensor, have all been studied extensively in this model. The other reason of interest in the de Sitter geometry is related to the inflationary scenario of the early universe. For a brief period, the energy density of the false (symmetric) vacuum may dominate the total energy density, giving rise to de Sitter space-time. The resulting inflation may solve a number of outstanding problems of cosmology and particle physics. The properties of a Higgs-type scalar field theory is of central importance in the investigation of such a scenario. In this paper, a scalar Higgs field theory in de Sitter space-time has been investigated using the real time formulation of Semenoff and Weiss. The authors calculate the two-point function at late times and use it to obtain a general expression for the amplitude of fluctuation in energy density on scales which come out of the de Sitter horizon

  7. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST.

    Science.gov (United States)

    Ding, W X; Lin, L; Duff, J R; Brower, D L

    2014-11-01

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  8. Path integral effects in heavy ion beam probe density measurements: A comparison of simulation results and experimental data

    International Nuclear Information System (INIS)

    Heard, J.W.; Crowley, T.P.; Ross, D.W.; Schoch, P.M.; Hickok, R.L. Jr.; Zhang, B.Z.

    1993-01-01

    The heavy ion beam probe (HIBP) signal used to measure local density fluctuations in a plasma is also sensitive to modulation due to density fluctuations along the entire beam trajectory. A modulation model of the HIBP experiment on the Texas experimental tokamak (TEXT) is presented. The model includes profile information for equilibrium and fluctuating parameters, allows for differences in the radial and poloidal characteristics of the fluctuations, and uses realistic beam trajectories. It is shown that profile effects are important in understanding HIBP modulation and that modulation does not simply increase with line average density in TEXT. In addition, calculations of the modulation effects show that only the terms which correspond to in-phase signals at the two sample volumes are significant. Therefore, the modulation effects can be approximated with a real parameter. Under these assumptions, it is shown that only long correlation length, low wave number modes will contribute significantly to the corruption of the measured signal. The calculation of the modulation effects are consistent with the experiment. It is illustrated herein how the measured data can be used to set limits on the modulation signal without doing extensive model calculations. These limits show that there must be long wavelength fluctuations in the plasma

  9. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A. [University of California-Los Angeles, P.O. Box 957099, Los Angeles, California 90095 (United States)

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  10. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig

  11. Simultaneous measurement of 3 fluctuating plasma parameters

    International Nuclear Information System (INIS)

    Carlson, A.; Giannone, L.

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n e , T e , and V pl with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (orig.)

  12. Simultaneous measurement of 3 fluctuating plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany))

    1991-01-01

    Langmuir triple probes can provide simultaneous measurements of n[sub e], T[sub e] and V[sub pl] with good temporal and spatial resolution, and therefore are especially suited to detailed investigations of plasma turbulence in the scrape-off-layer. Unfortunately, the finite tip separation coupled with the fluctuating gradients prevents a simple interpretation of the results. We have developed a method using, essentially, two or more triple probes, which allows a good estimate of the three plasma parameters and their spatial derivatives at each point of time (assuming tip separation is much less than correlation length and dimensionless fluctuation levels are much less than unity). In particular, we can unambiguously measure the temperature fluctuations and the turbulent particle and heat flux. (author) 1 fig.

  13. Effects of limited spatial resolution on fluctuation measurements (invited)

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1995-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work, the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical---not only does it reduce the measured fluctuation amplitude and increase the correlation length (as does an extent perpendicular to the propagation direction), but it also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  14. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Niedermeyer, H; Giannone, L.; Holzhauer, E; Rudyj, A; Theimer, G; Tsois, N [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Team

    1995-11-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H{sub {alpha}} light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the `anomalous` radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above {approx} 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs.

  15. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX

    International Nuclear Information System (INIS)

    Endler, M.; Niedermeyer, H.; Giannone, L.; Holzhauer, E.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    In the edge plasma of the ASDEX tokamak, electrostatic fluctuations were observed with Langmuir probes and in H α light with high poloidal and temporal resolution. These fluctuations contribute a significant fraction to the 'anomalous' radial particle transport in the scrape-off layer (SOL). The basic properties and the dependence of the fluctuations parameters on the discharge conditions are documented. A model for an instability mechanism specific to the SOL is introduced and the experimentally observed fluctuation parameters are compared with the predictions of the linearized version of this model. For plasma temperatures above ∼ 10eV in the SOL the observed parameter dependences of the fluctuations are well reproduced by the model. By mixing length arguments the radial transport and the resulting density and pressure gradients in the SOL are estimated from the model. Their dependence on plasma temperature and density qualitatively agrees with the behaviour observed in ohmic discharges on ASDEX. (author). 54 refs, 25 figs

  16. Scattering of lower-hybrid waves by drift-wave density fluctuations: solutions of the radiative transfer equation

    International Nuclear Information System (INIS)

    Andrews, P.L.; Perkins, F.W.

    1983-01-01

    The investigation of the scattering of lower-hybrid waves by density fluctuations arising from drift waves in tokamaks is distinguished by the presence in the wave equation of a large, random, derivative-coupling term. The propagation of the lower-hybrid waves is well represented by a radiative transfer equation when the scale size of the density fluctuations is small compared to the overall plasma size. The radiative transfer equation is solved in two limits: first, the forward scattering limit, where the scale size of density fluctuations is large compared to the lower-hybrid perpendicular wavelength, and second, the large-angle scattering limit, where this inequality is reversed. The most important features of these solutions are well represented by analytical formulas derived by simple arguments. Based on conventional estimates for density fluctuations arising from drift waves and a parabolic density profile, the optical depth tau for scattering through a significant angle, is given by tauroughly-equal(2/N 2 /sub parallel/) (#betta#/sub p/i0/#betta#) 2 (m/sub e/c 2 /2T/sub i/)/sup 1/2/ [c/α(Ω/sub i/Ω/sub e/)/sup 1/2/ ], where #betta#/sub p/i0 is the central ion plasma frequency and T/sub i/ denotes the ion temperature near the edge of the plasma. Most of the scattering occurs near the surface. The transmission through the scattering region scales as tau - 1 and the emerging intensity has an angular spectrum proportional to cos theta, where sin theta = k/sub perpendicular/xB/sub p//(k/sub perpendicular/B/sub p/), and B/sub p/ is the poloidal field

  17. Statistical study of density fluctuations in the tore supra tokamak

    International Nuclear Information System (INIS)

    Devynck, P.; Fenzi, C.; Garbet, X.; Laviron, C.

    1998-03-01

    It is believed that the radial anomalous transport in tokamaks is caused by plasma turbulence. Using infra-red laser scattering technique on the Tore Supra tokamak, statistical properties of the density fluctuations are studied as a function of the scales in ohmic as well as additional heating regimes using the lower hybrid or the ion cyclotron frequencies. The probability distributions are compared to a Gaussian in order to estimate the role of intermittency which is found to be negligible. The temporal behaviour of the three-dimensional spectrum is thoroughly discussed; its multifractal character is reflected in the singularity spectrum. The autocorrelation coefficient as well as their long-time incoherence and statistical independence. We also put forward the existence of fluctuations transfer between two distinct but close wavenumbers. A rather clearer image is thus obtained about the way energy is transferred through the turbulent scales. (author)

  18. A microwave interferometer for density measurement and stabilization in process plasmas

    International Nuclear Information System (INIS)

    Pearson, D.I.C.; Campbell, G.A.; Domier, C.W.

    1988-01-01

    A low-cost heterodyne microwave interferometer system capable of measuring and/or controlling the plasma density over a dynamic range covering two orders of magnitude is demonstrated. The microwave frequency is chosen to match the size and density of plasma to be monitored. Large amplitude, high frequency fluctuations can be quantitatively followed and the longer-time-scale density can be held constant over hours of operation, for example during an inline production process to maintain uniformity and stoichiometry of films. A linear relationship is shown between plasma density and discharge current in a specific plasma device. This simple relationship makes control of the plasma straightforward using the interferometer as a density monitor. Other plasma processes could equally well benefit from such density control capability. By combining the interferometer measurement with diagnostics such as probes or optical spectroscopy, the total density profile and the constituent proportions of the various species in the plasma could be determined

  19. Cascade and intermittency model for turbulent compressible self-gravitating matter and self-binding phase-space density fluctuations

    International Nuclear Information System (INIS)

    Biglari, H.; Diamond, P.H.

    1988-01-01

    A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy

  20. Study of ion cyclotron fluctuations. Application to the measurement of the ion temperature

    International Nuclear Information System (INIS)

    Lehner, T.

    1982-02-01

    A diagnostic technique for measuring the ion temperature of tokamak-type plasmas was developed. A theoretical study was made of the form factor associated with the ion cyclotron waves; the influence of Te/Ti on the frequency of the extrema of the dispersion relations was demonstrated. The different effects able to modify the spectral density (in particular the drift velocity and the impurities) were investigated. The mechanisms of suprathermal excitation of cylotron waves in tokamaks were reviewed together with the various effects stabilizing the spectrum: collisions, shear of the magnetic field lines. The experimental realization of the diagnostic technique is based on Thomson scattering by the electron density fluctuations [fr

  1. Electron density measurement for steady state plasmas

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2000-01-01

    Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)

  2. Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited)

    International Nuclear Information System (INIS)

    Holzhauer, E.; Dodel, G.

    1990-01-01

    In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed

  3. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  4. Glass transition and density fluctuations in the fragile glass former orthoterphenyl

    International Nuclear Information System (INIS)

    Monaco, G.; Fioretto, D.; Comez, L.; Ruocco, G.

    2001-01-01

    High-resolution Brillouin light scattering is used to measure the dynamic structure factor of the fragile glass former orthoterphenyl (OTP) in a wide temperature range around the glass transition region and up to the boiling point. The whole set of spectra is described in terms of a phenomenological generalized hydrodynamic model. In the supercooled phase, we show the contemporary existence of the structural process, whose main features come out to be consistent with the results obtained with other spectroscopies, and of a secondary, activated process, which occurs on the 10 -11 s time scale and has a low activation energy (E a f =0.28 kcal/mol). This latter process, which is also present in the glassy phase and seems to be insensitive to the glass transition, is attributed to the coupling between the density modes and intramolecular degrees of freedom. In the normal liquid phase, the two processes merge together, and the resulting characteristic time is no longer consistent with those derived with other spectroscopies. The analysis points to the conclusion that, for what concerns the long-wavelength density fluctuations in fragile glass formers such as OTP, the universal dynamical features related to the glass transition come out clearly only in the supercooled phase and at frequencies lower than ∼10 6 Hz

  5. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  6. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  7. Characterization of the up-down asymmetry of density fluctuations induced by a lower modular limiter in Tore Supra

    International Nuclear Information System (INIS)

    Fenzi, C.; Devynck, P.; Garbet, X.; Antar, G.; Capes, H.; Laviron, C.; Truc, A.; Gervais, F.; Hennequin, P.; Quemeneur, A.

    1999-01-01

    In magnetic fusion devices, the effect of plasma facing components on plasma turbulence is a key issue for several reasons. Firstly, the edge turbulence controls the power deposition on plasma facing components. Secondly, the possible influence of the edge parameters on the core fluctuations is a central question, since the core turbulent transport is responsible for the confinement degradation. It is in practice difficult to determine whether the plasma core influences the edge, or the opposite. We show here that spatial edge asymmetries of density fluctuations, and particularly up-down asymmetries, provide a powerful tool to investigate this problem. In TORE SUPRA, previous scaling analyses with various plasma parameters have emphasized that a very clear effect on the asymmetry level appears when the plasma leans on the lower modular limiter located close to the measurement chord. We present here recent measurement results concerning that specific case. They tend to show that the limiter configuration has some effect on the core turbulence. (authors)

  8. Counting statistics in low level radioactivity measurements fluctuating counting efficiency

    International Nuclear Information System (INIS)

    Pazdur, M.F.

    1976-01-01

    A divergence between the probability distribution of the number of nuclear disintegrations and the number of observed counts, caused by counting efficiency fluctuation, is discussed. The negative binominal distribution is proposed to describe the probability distribution of the number of counts, instead of Poisson distribution, which is assumed to hold for the number of nuclear disintegrations only. From actual measurements the r.m.s. amplitude of counting efficiency fluctuation is estimated. Some consequences of counting efficiency fluctuation are investigated and the corresponding formulae are derived: (1) for detection limit as a function of the number of partial measurements and the relative amplitude of counting efficiency fluctuation, and (2) for optimum allocation of the number of partial measurements between sample and background. (author)

  9. Experimental evidence of significant temperature fluctuations in the plasma edge region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M.A.; Garcia-Cortes, I.; Ochando, M.A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a foast swept Langmuir probe technique. Evidence of sustantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author)

  10. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Hidalgo, C.; Balbin, R.; Pedrosa, M. A.; Garcia-Cortes, I.; Ochando, M. A.

    1993-01-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs

  11. Experimental evidence of significant temperature fluctuations in the plasma EDGE region of the TJ-I Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Balbin, R; Pedrosa, M A; Garcia-Cortes, I; Ochando, M A

    1993-07-01

    Density and temperature fluctuations have been measured in the plasma bulk side of the velocity shear location of the TJ-I tokamak using a feast swept Langmuir probe technique. Evidence of substantial temperature fluctuations which are in phase close to opposition with the corresponding density fluctuations has been found. This result suggests the possible role of radiation in determining edge fluctuation levels and call into question the determination of the density and potential fluctuations from the Langmuir current-probe and floating potential fluctuations. (Author) 16 refs.

  12. Quantum density fluctuations in liquid neon from linearized path-integral calculations

    International Nuclear Information System (INIS)

    Poulsen, Jens Aage; Scheers, Johan; Nyman, Gunnar; Rossky, Peter J.

    2007-01-01

    The Feynman-Kleinert linearized path-integral [J. A. Poulsen et al., J. Chem. Phys. 119, 12179 (2003)] representation of quantum correlation functions is applied to compute the spectrum of density fluctuations for liquid neon at T=27.6 K, p=1.4 bar, and Q vector 1.55 Aa -1 . The calculated spectrum as well as the kinetic energy of the liquid are in excellent agreement with the experiment of Cunsolo et al. [Phys. Rev. B 67, 024507 (2003)

  13. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream

    Science.gov (United States)

    Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.

    1990-01-01

    Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.

  14. Quasi-static electron density fluctuations of atoms in hot compressed matter

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.

    1982-01-01

    The standard theoretical methods for the calculation of properties of hot compressed matter lead to a description based on the Average Atom model. In this model the degenerate orbitals are populated with the Fermi-Dirac (FD) density, partitioned according to the binomial distribution. Since the one particle picture is inadequate to evaluate reliable optical properties, a method involving correlated population fluctuations, but limited to unrelaxed orbitals and lacking time dependence, has been examined. The probability distribution of fluctuations in a particular level is evaluated through a decoupling procedure. The method is carried out self consistently. For each level this leads to the definition of an effective 1st order ionization energy as a statistical sum of all possible transition energies. As a result the effective number of electrons exchanged with the outside weights the chemical potential. This defines an effective chemical potential μsup(k) for each level. In many cases of interest the statistics leads to FD type average occupation numbers. This allows a treatment of the continuum in a Thomas-Fermi like model using the effective ionization energy and μsup(k). We obtain a simultaneous description of charge rearrangements and net fluctuations in the Wigner-Seitz cell. The discussion is supported by numerical results for iron. (author)

  15. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Giannone, L.; Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.); Bengtson, R D; Ritz, Ch P [Texas Univ., Austin, TX (USA); Kraemer, M [Bochum Univ. (Germany, F.R.); Tsois, N [NRS Demokritos, Attiki (Greece)

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H/sub {alpha}/ emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs.

  16. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Giannone, L.; Niedermeyer, H.; Bengtson, R.D.; Ritz, Ch.P.; Kraemer, M.; Tsois, N.

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H α emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs

  17. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  18. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  19. The effect of electron cyclotron heating on density fluctuations at ion and electron scales in ITER baseline scenario discharges on the DIII-D tokamak

    Science.gov (United States)

    Marinoni, A.; Pinsker, R. I.; Porkolab, M.; Rost, J. C.; Davis, E. M.; Burrell, K. H.; Candy, J.; Staebler, G. M.; Grierson, B. A.; McKee, G. R.; Rhodes, T. L.; The DIII-D Team

    2017-12-01

    Experiments simulating the ITER baseline scenario on the DIII-D tokamak show that torque-free pure electron heating, when coupled to plasmas subject to a net co-current beam torque, affects density fluctuations at electron scales on a sub-confinement time scale, whereas fluctuations at ion scales change only after profiles have evolved to a new stationary state. Modifications to the density fluctuations measured by the phase contrast imaging diagnostic (PCI) are assessed by analyzing the time evolution following the switch-off of electron cyclotron heating (ECH), thus going from mixed beam/ECH to pure neutral beam heating at fixed βN . Within 20 ms after turning off ECH, the intensity of fluctuations is observed to increase at frequencies higher than 200 kHz in contrast, fluctuations at lower frequency are seen to decrease in intensity on a longer time scale, after other equilibrium quantities have evolved. Non-linear gyro-kinetic modeling at ion and electron scales scales suggest that, while the low frequency response of the diagnostic is consistent with the dominant ITG modes being weakened by the slow-time increase in flow shear, the high frequency response is due to prompt changes to the electron temperature profile that enhance electron modes and generate a larger heat flux and an inward particle pinch. These results suggest that electron heated regimes in ITER will feature multi-scale fluctuations that might affect fusion performance via modifications to profiles.

  20. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  1. Initial density fluctuations effects on the microphase separation in ramified polymer mixture

    Energy Technology Data Exchange (ETDEWEB)

    Ghaouar, N. [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire 2092 (Tunisia) and Institut National des Sciences Appliquees et de Technologie, INSAT, Centre Urbain Nord, BP. 676, Tunis (Tunisia)]. E-mail: naoufel-ghaouar@lycos.com

    2007-02-19

    Our study focuses on the initial density fluctuations effects on microphase separation in ramified polymer mixture. For this purpose, we introduce a screening length {kappa} by considering the condition that the scattered intensity should not be changed by cross-linking. We recover that {kappa}{sup 2}{approx}C/({chi}-{chi}{sub i}), where C is the rigidity constant of the network and {chi} the Flory parameter. Three regimes versus the temperature of the mixture are discussed. The kinetics of the microphase separation is also studied through the relaxation rate. The derived relaxation rate evolution relative to ramified polymers mixture must be compared to that relative to a linear polymer mixture. Finally, we discuss the solvent effect on the microphase separation and we show that the initial fluctuations have little importance because of the excluded volume interaction.

  2. Determination of plasma velocity from light fluctuations in a cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2009-01-01

    Measurements of plasma velocities in a 30 A high energy density cutting torch are reported. The velocity diagnostic is based on the analysis of the light fluctuations emitted by the arc which are assumed to propagate with the flow velocity. These light fluctuations originate from plasma temperature and plasma density fluctuations mainly due to hydrodynamic instabilities. Fast photodiodes are employed as the light sensors. The arc core velocity was obtained from spectrally filtered light fluctuations measurements using a band-pass filter to detect light emission fluctuations emitted only from the arc axis. Maximum plasma jet velocities of 5000 m s -1 close to the nozzle exit and about 2000 m s -1 close to the anode were found. The obtained velocity values are in good agreement with those values predicted by a numerical code for a similar torch to that employed in this work.

  3. Critical fluctuations of the proton density in A+A collisions at $158A$ GeV

    CERN Document Server

    Anticic, T.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Cetner, T.; Christakoglou, P.; Chvala, O.; Cramer, J.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.I.; Kowalski, M.; Kresan, D.; Laszlo, A.; Leeuwen, M.; Maćkowiak-Pawłowska, M.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mitrovski, M.; Mrówczyński, St.; Pálla, G.; Panagiotou, A.D.; Peryt, W.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rustamov, A.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarć, A.; Antoniou, N.G.; Davis, N.; Diakonos, F.K.

    2015-12-12

    Studies of QCD suggest the existence of a critical point in the phase diagram of strongly interacting matter. Close to this point, according to recent theoretical investigations, the net-proton density carries the critical fluctuations of the chiral order parameter. Using intermittency analysis in the transverse momentum phase space of protons produced around midrapidity in the 12.5% most central C+C, Si+Si and Pb+Pb collisions at the maximum SPS energy of 158$A$ GeV we find evidence of power-law fluctuations for the Si+Si and Pb+Pb data. The fitted power-law exponent approaches the value expected for critical fluctuations. This suggests that the freeze-out states of these two systems are located in the phase diagram in the neighbourhood of the chiral critical point.

  4. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  5. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  6. Recent results of studies of plasma fluctuations in stellarators by microwave scattering technique

    International Nuclear Information System (INIS)

    Skvortsova, N.N.; Batanov, G.M.; Kolik, L.V.; Petrov, A.E.; Pshenichnikov, A.A.; Sarksyan, K.A.; Kharchev, N.K.; Khol'nov, Yu.V.; Kubo, S.; Sanchez, J.

    2005-01-01

    Microwave scattering diagnostics are described that allow direct measurements of the turbulent processes in a high-temperature plasma of magnetic confinement systems. Plasma density fluctuations in the heating region of the L-2M stellarator were measured from microwave scattering at the fundamental and the second harmonics of the heating gyrotron radiation. In the TJ-II stellarator, a separate 2-mm microwave source was used to produce a probing beam; the measurements were performed at the middle of the plasma radius. Plasma density fluctuations in the axial (heating) region of the LHD stellarator were measured from microwave scattering at the fundamental harmonic of the heating gyrotron radiation. Characteristic features of fluctuations, common for all three devices, are revealed with the methods of statistical and spectral analysis. These features are the wide frequency Fourier and wavelet spectra, autocorrelation functions with slowly decreasing tails, and non-Gaussian probability distributions of the magnitudes and the increments of the magnitude of fluctuations. The drift-dissipative instability and the instability driven by trapped electrons are examined as possible sources of turbulence in a high-temperature plasma. Observations showed the high level of coherence between turbulent fluctuations in the central region and at the edge of the plasma in L-2M. It is shown in L-2M that the relative intensity of the second harmonic of gyrotron radiation on the axis of a microwave beam after quasi-optical filtering in a four-mirror quasi-optical transmission line is about -50 dB of the total radiation intensity. Spatiotemporal structures in plasma density fluctuations were observed in the central region of the plasma column. The correlation time between the structures was found to be on the order of 1 ms. It is shown that, the spectrum of the signal from the second-harmonic scattering extends to higher frequencies in comparison with that from the fundamental

  7. No pion condensate in nuclear matter due to fluctuations

    International Nuclear Information System (INIS)

    Kleinert, H.

    1981-01-01

    We show that if pion condensation occurs in a mean-field theory of infinite nuclear matter, fluctuations completely prevent the formation of a condensate as well as of the associated Goldstone mode. Thus if an increase of opalescence should ever be observed experimentally, it is these fluctuations which are measured rather than the scattering on the Goldstone modes. They preserve isotopic symmetry and increase very smoothly as the density passes the formerly critical density. There are no discontinuities in any thermodynamic quantitiy. (orig.)

  8. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO2

    International Nuclear Information System (INIS)

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-01-01

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2 . With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2 decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.

  9. General description of magnetic fluctuations in TEXT

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1989-01-01

    The magnetic fluctuations in TEXT (R = 1m, a = 0.26m, ohmically heated tokamak with a full poloidal limiter) have been extensively measured with magnetic probes in the shadow of the limiter with an instrumental range of f -1 (m rms p (f > 50kHz) at the limiter radius is found to be of order 10 -5 T, which is too small to produce significant transport directly. Over the range of discharge parameters in TEXT, the B rms p (f > 50kHz) is observed to have a strong q a dependence (q a -2.2 ) and also a density dependence (n eo -0.8 ). Furthermore, the magnetic fluctuations show a significant correlation with edge electrostatic density fluctuations measured by Langmiur probe inside the limiter radius, and extending along magnetic field lines. Phase variation of the correlated components suggests k double-prime/k perpendicular ∼ 0.005. The B p rms (f >50kHz) is also found to be little dependent on parallel electric field E double-prime. Magnetic fluctuations in both low and high frequency ranges have been characterized by their response to gas puffing, pellet injection, impurity injection, and the effect of an ergodic magnetic limiter. The behavior of magnetic fluctuations with electron cyclotron resonance heating (ECRH) has been also investigated in detail

  10. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    2000-05-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  11. RF current drive and plasma fluctuations

    International Nuclear Information System (INIS)

    Peysson, Yves; Decker, Joan; Morini, L; Coda, S

    2011-01-01

    The role played by electron density fluctuations near the plasma edge on rf current drive in tokamaks is assessed quantitatively. For this purpose, a general framework for incorporating density fluctuations in existing modelling tools has been developed. It is valid when rf power absorption takes place far from the fluctuating region of the plasma. The ray-tracing formalism is modified in order to take into account time-dependent perturbations of the density, while the Fokker–Planck solver remains unchanged. The evolution of the electron distribution function in time and space under the competing effects of collisions and quasilinear diffusion by rf waves is determined consistently with the time scale of fluctuations described as a statistical process. Using the ray-tracing code C3PO and the 3D linearized relativistic bounce-averaged Fokker–Planck solver LUKE, the effect of electron density fluctuations on the current driven by the lower hybrid (LH) and the electron cyclotron (EC) waves is estimated quantitatively. A thin fluctuating layer characterized by electron drift wave turbulence at the plasma edge is considered. The effect of fluctuations on the LH wave propagation is equivalent to a random scattering process with a broadening of the poloidal mode spectrum proportional to the level of the perturbation. However, in the multipass regime, the LH current density profile remains sensitive to the ray chaotic behaviour, which is not averaged by fluctuations. The effect of large amplitude fluctuations on the EC driven current is found to be similar to an anomalous radial transport of the fast electrons. The resulting lower current drive efficiency and broader current profile are in better agreement with experimental observations. Finally, applied to the ITER ELMy H-mode regime, the model predicts a significant broadening of the EC driven current density profile with the fluctuation level, which can make the stabilization of neoclassical tearing mode potentially

  12. Interpretation of fast measurements of plasma potential, temperature and density in SOL of ASDEX Upgrade

    DEFF Research Database (Denmark)

    Horacek, J.; Adamek, J.; Müller, H.W.

    2010-01-01

    This paper focuses on interpretation of fast (1 µs) and local (2–4 mm) measurements of plasma density, potential and electron temperature in the edge plasma of tokamak ASDEX Upgrade. Steady-state radial profiles demonstrate the credibility of the ball-pen probe. We demonstrate that floating...... potential fluctuations measured by a Langmuir probe are dominated by plasma electron temperature rather than potential. Spatial and temporal scales are found consistent with expectations based on interchange-driven turbulence. Conditionally averaged signals found for both potential and density are also...

  13. Dispersion relations of density fluctuations observed by heavy ion beam probe in the TEXT tokamak

    International Nuclear Information System (INIS)

    Ross, D.W.

    1990-09-01

    Wave numbers as functions of frequency for density fluctuations in the core of the TEXT tokamak are measured in Heavy Ion Beam Probe experiments by analyzing the relative phases of signals originating from nearby points in the plasma. The adjacent points are typically 2 cm apart, with their relative orientation (δr, δθ) depending on position (r,θ). for angular frequencies ω ≤ 10 6 /s the signals are quite coherent, leading to reasonably well-defined ''dispersion relations.'' These do not correspond to known modes of the drift wave type, i.e., ballooning or slab-like electron drift waves or ion temperature gradient modes. The effect of finite sample volume size does not significantly alter this conclusion. 25 refs., 6 figs., 3 tabs

  14. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    Science.gov (United States)

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  15. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    International Nuclear Information System (INIS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-01-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  16. Study of fluctuation and turbulance of JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi; Hanada, Kazuaki; Yamagishi, Kenichi [Tokyo Univ. (Japan)] [and others

    1998-01-01

    In many improved containment modes, it is said that E x B shear flow formed by shear of radial electric field acts as a mechanism of fluctuation control. In order to understand the mechanism of these improved containment modes, it is necessary to investigate a cause and result relation between controls of fluctuation on formation of sheared flow and fluctuating magnetic wave by using geometrical optics approximation. In this study, the following articles were conducted: (1) to improve a reflectometer with fixed 1-ch frequency using at last fiscal year to one with 2-ch variable frequency to test density fluctuation ranging 0.98 to 3.1 x 10(exp 19)m(sup-3) in density, (2) to examine a relationship between runaway phase and scattering, to propose and application of complex spectrum for usable analytical method even to runaway phase, (3) to study density fluctuation at L-H transition by using this analytical method, and (4) to research cause and result relation of the L-H transition by measuring various plasma parameters by inserting a triple probe array into main plasma. (G.K.)

  17. Study of fluctuation and turbulance of JFT-2M

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Hanada, Kazuaki; Yamagishi, Kenichi

    1998-01-01

    In many improved containment modes, it is said that E x B shear flow formed by shear of radial electric field acts as a mechanism of fluctuation control. In order to understand the mechanism of these improved containment modes, it is necessary to investigate a cause and result relation between controls of fluctuation on formation of sheared flow and fluctuating magnetic wave by using geometrical optics approximation. In this study, the following articles were conducted: 1) to improve a reflectometer with fixed 1-ch frequency using at last fiscal year to one with 2-ch variable frequency to test density fluctuation ranging 0.98 to 3.1 x 10(exp 19)m(sup-3) in density, 2) to examine a relationship between runaway phase and scattering, to propose and application of complex spectrum for usable analytical method even to runaway phase, 3) to study density fluctuation at L-H transition by using this analytical method, and 4) to research cause and result relation of the L-H transition by measuring various plasma parameters by inserting a triple probe array into main plasma. (G.K.)

  18. Reflectometry observations of density fluctuations in Wendelstein VII-AS stellarator

    International Nuclear Information System (INIS)

    Sanchez, J.; Hartfuss, H.J.; Anabitarte, E.; Navarro, A.P.

    1991-01-01

    In the almost shearless stellarator Wendelstein VII-AS strong correlation between the confinement properties and the rotational transform iota has been found. Reduced confinement was observed for the low order rational values 1/2 and 1/3. In their vicinity best confinement is observed. In general optimum confinement is obtained in the low shear configuration if the 'resonant' iota values can be excluded from the plasma column. The iota profile inside the plasma is affected by toroidal currents and beta effects. Although the global net current can be kept at zero level using a small OH induced current opposed to the gradient driven bootstrap current, the different currents flow at different radial positions affecting the iota profile. Tools for configuration control inside the plasma are besides OH current vertical fields and the currents driven by the NBI and most promising the ECH heating systems. In this context experimental information on the iota profile is highly needed. The localization of rational surfaces by reflectometry seems possible. Radially resolved density fluctuation measurements have been carried out by means of a simple microwave reflectometry system. The method is based on the reflection of microwave radiation in the millimeter range at the plasma cutoff layer. (orig./AH)

  19. Investigations on the density fluctuations of deuterium in niobium and tantalum by means of energy resolving neutron small-angle scattering

    International Nuclear Information System (INIS)

    Muenzing, W.

    1978-01-01

    Density fluctuations of solved deuterium were measured by means of small angle scattering ob subthermal neutrons at deuterated niobium and tantalum single crystals between temperatures of 340 and 640 K. The concentrations were varied at the NbD between c = 0.10 and c = 0.53 (atomic ratio D-atom / Nb-atom). The center point was at the critical concentration of c = 0.31. In TaD there was only one concentration c = 0.14 (D-atoms / Ta-atoms) measured. At the critical point of Tsub(c) approx. 455 K no diverging critical scattering intensity was observed. (orig./HSI) [de

  20. A new analysing approach for the structure of density fluctuation of supercritical fluid

    International Nuclear Information System (INIS)

    Sato, T; Sugiyama, M; Itoh, K; Mori, K; Fukunaga, T; Misawa, M; Otomo, T; Takata, S

    2008-01-01

    Large scale structural evolution of supercritical carbon dioxide along the isotherm at 32 deg. C was investigated with small-angle neutron scattering. The maximum of the density fluctuation, the so-called 'ridge', was confirmed with Ornstein-Zernike analysis. To investigate the structural change in more detail, the molecular distribution over a large domain was determined with a newly developed reverse Monte Carlo method. From the molecular distribution obtained, the pair distribution function and cluster-size distribution can be calculated. With increasing density of carbon dioxide, the cluster size increases monotonically, whereas the pair distribution function for the range of sizes shorter than 10 A shows a monotonic decrease. From this result, it is suggested that the structural change along the isotherm is caused by the change of balance between growth of clusters and increase of the average density

  1. Drift-Alfven waves induced optical emission fluctuations in Aditya tokamak

    International Nuclear Information System (INIS)

    Manchanda, R.; Ghosh, J.; Chattopadhyay, P. K.; Chowdhuri, M. B.; Banerjee, Santanu; Ramasubramanian, N.; Patel, Ketan M.; Kumar, Vinay; Vasu, P.; Tanna, R. L.; Paradkar, B.; Gupta, C. N.; Bhatt, S. B.; Raju, D.; Jha, R.; Atrey, P. K.; Joisa, S.; Rao, C. V. S.; Saxena, Y. C.

    2010-01-01

    In Aditya tokamak [S. B. Bhatt et al. Indian J. Pure Appl. Phys. 27, 710 (1989)], an increase in the H α and C 2+ intensity fluctuations from the edge region is observed with an increase in the magnetohydrodynamic (MHD) activity. Very small fluctuation amplitudes of H α and C 2+ intensity are observed in discharges where there is no MHD activity compared to the discharges with MHD activity. These fluctuations in the H α and C 2+ , measured by optical filter--photomultiplier tube combination--are modulated by Mirnov oscillations having a dominant peak with a common frequency ∼7-10 kHz. Further investigation reveals the presence of strong coherent fluctuations in density and floating potential at same frequency as well. These observations indicate the existence of a nonelectrostatic instability, which may be based on the coupled mode of the drift mode and the Alfven mode. The coherent density fluctuations give rise to the experimentally observed coherent H α and C 2+ intensity fluctuations.

  2. Multi-channel Langmuir-probe and H[alpha]-measurements of edge fluctuations on ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeyer, H; Carlson, A; Endler, M; Giannone, L.; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The anomalous transport observed in tokamaks is caused by turbulent fluctuations, the nature of which is still poorly understood. Diagnostic difficulties are one major reason for this lack of understanding, at least with respect to the bulk plasma. The plasma edge, however, is accessible by several diagnostics permitting localized measurements of different parameters with good spatial and temporal resolution. For this reason one can hope to obtain enough information about edge fluctuations to permit the development of theoretical models. Different ranges of plasma parameters and the lack of closed magnetic surfaces distinguish this plasma zone from the bulk plasma. Edge turbulence might well involve other mechanisms than the turbulence in the bulk. Although transport in the bulk plasma receives more attention transport in the edge plasma and edge physics are very relevant for reactor design. The realistic hope to find a solution and the importance of the problem for the next step in fusion research are reasons for the strong effort in this field on many tokamaks. Like in many limiter tokamaks Langmuir probes were used in the ASDEX divertor device for measurements of the floating potential and of the ion saturation current. Under certain assumptions the electron density and the plasma potential can be derived from these data. Observation of the H[alpha]-light emitted from the edge in the vicinity of a neutral gas source yields information about the electron density. While probe measurements are more suitable for quantitative evaluations including the calculation of the local particle flux the H[alpha]-method is not calibrated and integrates radially over the edge. It is however applicable in situations where probes fail because of excessive heat load. With 16-channel arrays both methods permit spatial correlations and wavenumber spectra to be determined without any further assumptions. (author) 4 refs., 2 figs.

  3. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  4. ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign

    Directory of Open Access Journals (Sweden)

    U. Villante

    2006-07-01

    Full Text Available We present an analysis of ULF geomagnetic field fluctuations at low latitudes during the first CAWSES campaign (29 March-3 April 2004. During the whole campaign, mainly in the prenoon sector, a moderate Pc3-4 pulsation activity is observed, clearly related to interplanetary upstream waves. On 3 April, in correspondence to the Earth's arrival of a coronal mass ejection, two SIs are observed whose waveforms are indicative of a contribution of the high-latitude ionospheric currents to the low-latitude ground field. During the following geomagnetic storm, low frequency (Pc5 waves are observed at discrete frequencies. Their correspondence with the same frequencies detected in the radial components of the interplanetary magnetic field and solar wind speed suggests that Alfvénic solar wind fluctuations may act as direct drivers of magnetospheric fluctuations. A cross-phase analysis, using different pairs of stations, is also presented for identifying field line resonant frequencies and monitoring changes in plasmaspheric mass density. Lastly, an analysis of ionospheric vertical soundings, measured at the Rome ionosonde station (41.8° N, 12.5° E, and vertical TEC measurements deduced from GPS signals within an European network shows the relation between the ULF resonances in the inner magnetosphere and thermal plasma density variations during geomagnetically quiet conditions, in contrast to various storm phases at the end of the CAWSES campaign.

  5. Edge density fluctuation diagnostic for DIII-D using lithium beams: 1992 annual report

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1994-01-01

    During the past several months the Lithium beam diagnostic was commissioned of DIII-D and began yielding useful information. The author developed the remote control and monitoring of the ion source operation and beam formation and focussing, and integrated the control system and data acquisition into the DIII-D operating system. Several detector types were fabricated, and fluorescence data were collected using several differing detector arrangements. Beam-gas measurements were conducted to analyze the intrinsic beam fluctuations and stability. Fluorescence data was then obtained on a number of Tokamak discharges under varying discharge conditions. Analysis of this initial data is proceeding but has already yielded some interesting features. These include changes in the edge plasma density behavior during the l- to h-transition, disruptions, and edge localized modes (ELMs). Based on the quality of data obtained the author proceeded with the design and construction of the full 16-channel detection system which will be completed and tested shortly

  6. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  7. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  8. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  9. Primordial black holes from passive density fluctuations

    OpenAIRE

    Lin, Chia-Min; Ng, Kin-Wang

    2013-01-01

    In this paper, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses $\\lesssim 10^{15}g$ depending on the number of e-folds when the scale of our observable universe leaves horizon...

  10. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  11. Localization of fluctuation measurement by wave scattering close to a cut off layer

    International Nuclear Information System (INIS)

    Zou, X.L.; Laurent, L.; Rax, J.M.; Lehner, T.

    1990-01-01

    The diagnostic of plasma fluctuations in tokamaks based on the scattering of an electromagnetic wave close to a cut off layer is investigated. A linear density profile is considered. An one-dimensional exact analysis is performed. Spatial and spectral localization of scattering process close to the cut off layer is studied and a modified Bragg rule is derived. The structure of pump and of scattered waves is analyzed. The diagnostic seems to be local and sensitive for low R fluctuations

  12. Experimental scaling of fluctuations and confinement with Lundquist number in the RFP

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Chapman, J.T.; Prager, S.C.; Sarff, J.S.

    1997-09-01

    The scaling of the magnetic and velocity fluctuations with Lundquist number (S) is examined experimentally over a range of values from 7 x 10 4 to 10 6 in a reversed field pinch (RFP) plasma. Magnetic fluctuations do not scale uniquely with the Lundquist number. At high (relative) density, fluctuations scale as b∝S -0.18 , and fluctuations are almost independent of S at low relative density, b∝S -0.07 ; however both exponents fall in the range of theoretical and numerical predictions. At high relative density, the scaling of the energy confinement time follows expectations for transport in a stochastic magnetic field. A confinement scaling law (nτ E ∝β 4/5 T -7/10 A -3/5 I φ 2 ) is derived assuming the persistent dominance of stochastic magnetic diffusion in the RFP and on the measured scaling of magnetic fluctuations. The peak velocity fluctuations during a sawtooth cycle scale marginally stronger than magnetic fluctuations but weaker than a simple Ohm's law prediction. The sawtooth period is determined by a resistive-Alfvenic hybrid time (T saw ∝√(τ R τ Alf )) rather than a purely resistive time

  13. Periodic fluctuations in correlation-based connectivity density time series: Application to wind speed-monitoring network in Switzerland

    Science.gov (United States)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-02-01

    In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.

  14. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  15. Sensitive measurement of fluctuations in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Davies, R D; Watson, R A; Daintree, E J; Hopkins, J; Lasenby, A N; Beckman, J; Sanchez-Almeida, J; Rebolo, R

    1987-04-02

    Extensive high sensitivity observations of the cosmic microwave background have been made on an angular scale of 8/sup 0/ covering a substantial fraction of the northern sky. An observed anisotropy in the sky emission at a level of ..delta..T/T = 3.7 x 10/sup -5/ has been detected (T is temperature). This level should strictly be interpreted as an upper limit to the cosmic microwave background fluctuations. It is possibly the direct imprint of density perturbations in the early Universe.

  16. Sensitive measurement of fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Davies, R.D.; Watson, R.A.; Daintree, E.J.; Hopkins, J.; Lasenby, A.N.

    1987-01-01

    Extensive high sensitivity observations of the cosmic microwave background have been made on an angular scale of 8 0 covering a substantial fraction of the northern sky. An observed anisotropy in the sky emission at a level of ΔT/T = 3.7 x 10 -5 has been detected (T is temperature). This level should strictly be interpreted as an upper limit to the cosmic microwave background fluctuations. It is possibly the direct imprint of density perturbations in the early Universe. (author)

  17. A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.; Kramer, G.J.; Valeo, E.

    2001-01-01

    Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices

  18. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  19. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.

    Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  20. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study.

    Science.gov (United States)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-21

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  1. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  2. Conserved charge fluctuations using the D measure in heavy-ion collisions

    Science.gov (United States)

    Mishra, D. K.; Netrakanti, P. K.; Garg, P.

    2017-05-01

    We study the net-charge fluctuation D -measure variable, in high-energy heavy-ion collisions in heavy-ion jet interaction generator (HIJING), ultrarelativistic quantum molecular dynamics (UrQMD), and hadron resonance gas (HRG) models for various center-of-mass energies (√{sNN}). The effects of kinematic acceptance and resonance decay, in the pseudorapidity acceptance interval (Δ η ) and lower transverse momentum (pTmin) threshold, on fluctuation measures are discussed. A strong dependence of D with the Δ η in HIJING and UrQMD models is observed as opposed to results obtained from the HRG model. The dissipation of fluctuation signal is estimated by fitting the D measure as a function of the Δ η . An extrapolated function for higher Δ η values at lower √{sNN} is different from the results obtained from models. Particle species dependence of D and the effect of the pTmin selection threshold are discussed in HIJING and HRG models. The comparison of D , at midrapidity, of net-charge fluctuations at various √{sNN} obtained from the models with the data from the A Large Ion Collider Experiment (ALICE) experiment is discussed. The results from the present paper as a function of Δ η and √{sNN} will provide a baseline for comparison to experimental measurements.

  3. Development of a LiF-filter for measuring plasma fluctuations in the far ultraviolet radiation spectral range

    International Nuclear Information System (INIS)

    Schittenhelm, M.

    1991-06-01

    The investigations of fluctuations and anomalous transport lie at hart of the tokamak research program, especially in the shear zone close to and beyond the last closed flux surface. Until now fluctuation measurements using plasma radiation were only made on the edge of the plasma, since they rely on the H α emission. In order to measure electron density fluctuations with good spatial and temporal resolution in the shear zone, the OVI doublet (2s-2p) can be observed. These are very strong impurity emission lines in the VUV region (103.2 nm and 103.8 nm) emitted from a narrow layer close to the separatrix. To get an image of this layer and to achieve enough intensity for a good temporal resolution, it is necessary to develop a filter with high transmission. A possible candidate is lithium fluoride (LiF), which transmits light at shorter wavelength than other materials. By cooling LiF crystals from 300 K to 220 K the cutoff wavelength decreases from 105 nm to about 103 nm. This master thesis presents a detailed investigation of the transmission of LiF near the cutoff wavelength. Crystal sheets produced by different manufactures were tested and the temperature dependence of the cutoff edge was investigated. (orig./AH)

  4. Primordial black holes from passive density fluctuations

    International Nuclear Information System (INIS)

    Lin, Chia-Min; Ng, Kin-Wang

    2013-01-01

    In this Letter, we show that if passive fluctuations are considered, primordial black holes (PBHs) can be easily produced in the framework of single-field, slow-roll inflation models. The formation of PBHs is due to the blue spectrum of passive fluctuations and an enhancement of the spectral range which exits horizon near the end of inflation. Therefore the PBHs are light with masses ≲10 15 g depending on the number of e-folds when the scale of our observable universe leaves horizon. These PBHs are likely to have evaporated and cannot be a candidate for dark matter but they may still affect the early universe.

  5. Two-point density correlations of quasicondensates in free expansion

    DEFF Research Database (Denmark)

    Manz, S.; Bücker, R.; Betz, T.

    2010-01-01

    We measure the two-point density correlation function of freely expanding quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge gradually during expansion as a result of initial phase fluctuations present...... in the trapped quasicondensate. Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous correlations play an important role. Comparison...

  6. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Hamada, Y.; Nagashima, Y.; Nishizawa, A.; Kawasumi, Y.; Miura, Y.; Hoshino, K.; Ogawa, H.; Shinohara, K.; Kamiya, K.; Kusama, Y.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k r ) of 0.94 ± 0.05 (cm -1 ), that is corresponds to k r ρ i = 0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  7. Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Ido, T.; Miura, K.; Hoshino, K.

    2005-01-01

    The electrostatic fluctuation with Geodesic-Acoustic-Mode (GAM) frequency is observed in L-mode plasmas. The fluctuation has the poloidal wave number (k θ ) of (-2 ± 24) x 10 -3 (cm -1 ), that corresponds to the poloidal mode number of 1.5 or less, and the radial wave number (k γ ) of 0.94±0.05 (cm -1 ), that is corresponds to k γ ρ i =0.26 < 1. The amplitude of the fluctuation changes in the radial direction; it is small near the separatrix and it has maximum at 3 cm inside the separatrix. The relation between the amplitude of potential fluctuation and that of density fluctuation is the same as that of the predicted GAM. The fluctuation is probably GAM. The envelope of ambient density fluctuation and the potential fluctuation have a significant coherence at the GAM frequency. Thus, it is clearly verified that the fluctuation with the GAM frequency correlates with the ambient density fluctuation. The fluctuation with the GAM frequency affects the particle transport through the modulation of the ambient fluctuation. But the effect is not large, and it is not a sufficient condition to form the edge transport barrier and to drive the intermittent particle flux. (author)

  8. Measuring single-cell density.

    Science.gov (United States)

    Grover, William H; Bryan, Andrea K; Diez-Silva, Monica; Suresh, Subra; Higgins, John M; Manalis, Scott R

    2011-07-05

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.

  9. 1.48 GHz (34.8 T) ^1H NMR measurements of SDW fluctuations in (TMTSF)_2PF_6

    Science.gov (United States)

    Clark, W. G.; Vonlanthen, P.; Goto, A.; Tanaka, K. B.; Alavi, B.; Kuhns, P.; Reyes, A. P.; Moulton, W. G.

    2001-03-01

    We report ^1H spin-lattice relaxation rate (T_1-1) measurements that probe the spin-density-wave (SDW) fluctuations in the quasi 1-d system (TMTSF)_2PF6 up to 1.48 GHz (34.8 T) in the NHMFL hybrid magnet. In the critical regime above the SDW transition near 12 K, T_1-1 has no frequency dependence and the angular dependence of T_1-1 attributed to the spin-flop condition in the ordered phase is absent. These results indicate that amplitude fluctuations of the SDW drive T_1-1 in the critical regime and that the SDW critical fluctuation correlation time is <1× 10-10 s. Somewhat below the transition, T_1-1 continues the decrease with increasing NMR frequency observed at lower frequencies. We attribute it to the power spectrum of the SDW phason fluctuations. The dependence of T_1-1 upon the field orientation in this phase reflects the spin-flop condition, but with parameters that are different from the expected ones. The UCLA part of this work was supported by NSF Grants DMR-9705369 and DMR-0072524.

  10. A comparison of different measures for dynamical event mean transverse momentum fluctuation

    International Nuclear Information System (INIS)

    Liu Lianshou; Fu Jinghua

    2004-01-01

    Various measures for the dynamical event mean transverse momentum fluctuation are compared with the real dynamical fluctuation using a Monte Carlo model. The variance calculated from the G-moments can reproduce the dynamical variance well, while those obtained by subtraction procedures are approximate measures for not very low multiplicity. Φ pt , proposed by Gazdzicki M and Mrowczynski S, can also serve as an approximate measure after being divided by the square root of mean multiplicity

  11. Measurement of true density

    International Nuclear Information System (INIS)

    Carr-Brion, K.G.; Keen, E.F.

    1982-01-01

    System for determining the true density of a fluent mixture such as a liquid slurry, containing entrained gas, such as air comprises a restriction in pipe through which at least a part of the mixture is passed. Density measuring means such as gamma-ray detectors and source measure the apparent density of the mixture before and after its passage through the restriction. Solid-state pressure measuring devices are arranged to measure the pressure in the mixture before and after its passage through the restriction. Calculating means, such as a programmed microprocessor, determine the true density from these measurements using relationships given in the description. (author)

  12. Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. II. Stationary structures

    International Nuclear Information System (INIS)

    Higdon, J.C.

    1986-01-01

    A model of anisotropic, plasma-fluid variations was used to investigate the unknown origin of the power spectra of interstellar electron fluctuations inferred by Armstrong, Cordes, and Rickett (1981). The modeled electron variations are interpreted as density components of an anisotropic stationary mode of nonlinear magnetogasdynamics-tangential pressure balances. It is suggested that the wavenumber spectra of electron variations are identical to the spectra of the convecting velocity fields over a wide range of wavenumbers. 55 references

  13. Modeling a nucleon system: static and dynamical properties - density fluctuations

    International Nuclear Information System (INIS)

    Idier, D.

    1997-01-01

    This thesis sets forth a quasi-particle model for the static and dynamical properties of nuclear matter. This model is based on a scale ratio of quasi-particle to nucleons and the projection of the semi-classical distribution on a coherent Gaussian state basis. The first chapter is dealing with the transport equations, particularly with the Vlasov equation for Wigner distribution function. The second one is devoted to the statics of nuclear matter. Here, the sampling effect upon the nuclear density is treated and the state equation of the Gaussian fluid is compared with that given by Hartree-Fock approximation. We define state equation as the relationship between the nucleon binding energy and density, for a given temperature. The curvature around the state equation minimum of the quasi-particle system is shown to be related to the speed of propagation of density perturbation. The volume energy and the surface properties of a (semi-)infinite nucleon system are derived. For the resultant saturated auto-coherent semi-infinite system of quasi-particles the surface coefficient appearing in the mass formula is extracted as well as the system density profile. The third chapter treats the dynamics of the two-particle residual interactions. The effect of different parameters on relaxation of a nucleon system without a mean field is studied by means of a Eulerian and Lagrangian modeling. The fourth chapter treats the volume instabilities (spinodal decomposition) in nuclear matter. The quasi-particle systems, initially prepared in the spinodal region of the utilized interaction, are set to evolve. It is shown then that the scale ratio acts upon the amount of fluctuations injected in the system. The inhomogeneity degree and a proper time are defined and the role of collisions in the spinodal decomposition as well as that of the initial temperature and density, are investigated. Assuming different effective macroscopic interactions, the influence of quantities as

  14. Fluctuations and confinement in ATF

    International Nuclear Information System (INIS)

    Isler, R.C.; Harris, J.H.; Murakami, M.

    1993-01-01

    In the period immediately prior to the suspension of ATF operation in November, 1991, a great deal of emphasis was palced on investigations of the fundamental mechanisms controlling confinement in this device. At that time, measurements of the density fluctuations throughout the plasma volume indicated the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications were supported by results of dynamic configuration scans of the magnetic fields during which the extent of the magnetic well, shear, and fraction of confined trapped particles were changed continuously. Interpretation of the data from these experiments has been an ongoing exercise. Most recently, analysis of discharges employing strong gas puffing to change density gradients and fluctuation levels have strengthened the view that dissipative trapped electron modes may be present but do not play a significant direct role in energy transport. The present paper summarizes the current understanding concerning the identification of instabilities and their relationship to confinement in ATF

  15. Density measures and additive property

    OpenAIRE

    Kunisada, Ryoichi

    2015-01-01

    We deal with finitely additive measures defined on all subsets of natural numbers which extend the asymptotic density (density measures). We consider a class of density measures which are constructed from free ultrafilters on natural numbers and study a certain additivity property of such density measures.

  16. Calculation and analysis of thermal–hydraulics fluctuations in pressurized water reactors

    International Nuclear Information System (INIS)

    Malmir, Hessam; Vosoughi, Naser

    2015-01-01

    Highlights: • Single-phase thermal–hydraulics noise equations are originally derived in the frequency domain. • The fluctuations of all the coolant parameters are calculated, without any simplifying assumptions. • The radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. • The closed-loop calculations are performed by means of the point kinetics noise theory. • Both the space- and frequency-dependence of the thermal–hydraulics fluctuations are analyzed. - Abstract: Analysis of thermal–hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal–hydraulics surveillance and diagnostics. In this paper, the thermal–hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal–hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. Then, the derived governing equations are discretized using the finite volume method (FVM). Based on the discretized equations and the proposed algorithm of solving, a single heated channel noise calculation code (SHC-Noise) is developed, by which the steady-state and fluctuating parameters of PWR fuel assemblies can be calculated. The noise sources include the inlet coolant temperature and velocity fluctuations, in addition to the power density noises. The developed SHC-Noise code is benchmarked in different cases and scenarios. Furthermore, to show the effects of the power feedbacks, the closed-loop calculations are performed by means of the point kinetics noise

  17. An edge density fluctuation diagnostic for DIII-D using lithium beams

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1991-12-01

    This report covers the research conducted under DOE grant FG03- 90ER54081 during the period August 15, 1990 through November 15, 1991. Progress during the period March 15, 1990 through August 15, 1990 was covered in a previous report. Highlights during this period include the development of a compact neutral lithium accelerator capable of producing several mA at up to 30 kV, measurements of intrinsic beam fluctuation levels, and the design and partial completion of the diagnostic installation on the D3-D tokamak. We also had one journal article describing the system published in Reviews of Scientific Instruments, presented a poster on our recent progress at the APS Plasma Physics conference, and submitted an abstract to the 9th Topical Conference on Plasma Diagnostics. The overall objective of this project is to provide detailed information about the behavior of the electron density in the edge region of D3-D, and in particular to examine the local character of the associated degradation in confinement properties. Measurements should provide important data for testing theories of the L-H transition in tokamaks and should help in assessing the role of various instabilities in anomalous transport. The work on this project may be naturally organized according to the following six subareas: Ion source/beam system, neutralizer system, optical system, data acquisition, data analysis, and machine (D3-D) interface. Progress in each of these areas will be discussed briefly. We also briefly discuss our plans for future work on this program

  18. Seasonal and nightly variations of gravity-wave energy density in the middle atmosphere measured by the Purple Crow Lidar

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2007-11-01

    Full Text Available The Purple Crow Lidar (PCL is a large power-aperture product monostatic Rayleigh-Raman-Sodium-resonance-fluorescence lidar, which has been in operation at the Delaware Observatory (42.9° N, 81.4° W, 237 m elevation near the campus of The University of Western Ontario since 1992. Kinetic-energy density has been calculated from the Rayleigh-scatter system measurements of density fluctuations at temporal-spatial scales relevant for gravity waves, e.g. soundings at 288 m height resolution and 9 min temporal resolution in the upper stratosphere and mesosphere. The seasonal averages from 10 years of measurements show in all seasons some loss of gravity-wave energy in the upper stratosphere. During the equinox periods and summer the measurements are consistent with gravity waves growing in height with little saturation, in agreement with the classic picture of the variations in the height at which gravity waves break given by Lindzen (1981. The mean values compare favourably to previous measurements when computed as nightly averages, but the high temporal-spatial resolution measurements show considerable day-to-day variability. The variability over a night is often extremely large, with typical RMS fluctuations of 50 to 100% at all heights and seasons common. These measurements imply that using a daily or nightly-averaged gravity-wave energy density in numerical models may be highly unrealistic.

  19. Calculation of thermal-diffusion coefficients from plane-wave fluctuations in the heat energy density

    International Nuclear Information System (INIS)

    Palmer, B.J.

    1994-01-01

    A method to calculate the thermal diffusivity D T from spontaneous fluctuations in the local heat energy density is presented. Calculations of the thermal diffusivity are performed for the Lennard-Jones fluid, carbon dioxide, and water. The results for the Lennard-Jones fluid are in agreement with calculations of the thermal conductivity using Green-Kubo relations and nonequilibrium molecular-dynamics techniques. The results for carbon dioxide and water give thermal diffusivities within a factor of 2 of the experimental values

  20. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Giannone, L. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); McCormick, K [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Theimer, G [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Tsois, N [NCSR ` Demokritos` , Athens (Greece); ASDEX Team

    1995-04-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H{sub {alpha}} light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ``anomalous`` radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.)).

  1. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; McCormick, K.; Niedermeyer, H.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H α light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ''anomalous'' radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.))

  2. Single-pulse measurement of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy

    Science.gov (United States)

    Fletcher, D. G.; Mckenzie, R. L.

    1992-01-01

    Nonintrusive measurements of density and temperature and their turbulent fluctuation levels have been obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment compare favorably with previous measurements obtained in the same facility from conventional probes and an earlier spectroscopic technique.

  3. Temperature fluctuation spectral analysis of turbulent flow in circular sections with internal roughness

    International Nuclear Information System (INIS)

    Blanco, Rosa L.D.; Moeller, Sergio V.

    1995-01-01

    The experimental study of the temperature fluctuation in a circular section pipe with artificial roughness is presented. Micro thermocouples are applied for the measurements of the temperature and its fluctuations. Auto spectral density functions as well as autocorrelation functions were obtained by means of a Fourier Analyzer. Results compared to measurements performed in a smooth pipe, show that the turbulent scales for the temperature fluctuations increase in the regions near the walls, without significant changes in the regions near the center of the pipe. (author). 15 refs, 10 figs

  4. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, V.V. [Ulyanovsk State University, Leo Tolstoy str., 42, Ulyanovsk (Russian Federation)

    2010-05-15

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x{sup -{alpha}}{sup -1} and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    International Nuclear Information System (INIS)

    Saenko, V.V.

    2010-01-01

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x -α-1 and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Measurement of amplitude fluctuations in a rapid response photomultiplier

    International Nuclear Information System (INIS)

    Raimbault, P.

    1961-01-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr

  7. Electron bunchlength measurement from analysis of fluctuations in spontaneous emission

    International Nuclear Information System (INIS)

    Catravas, P.; Leemans, W.P.; Wurtele, J.S.; Zolotorev, M.S.; Babzien, M.; Ben-Zvi, I.; Segalov, Z.; Wang, X.; Yakimenko, V.

    1999-01-01

    A statistical analysis of fluctuations in the spontaneous emission of a single bunch of electrons is shown to provide a new bunchlength diagnostic. This concept, originally proposed by Zolotorev and Stupakov [1], is based on the fact that shot noise from a finite bunch has a correlation length defined by the bunchlength, and therefore has a spiky spectrum. Single shot spectra of wiggler spontaneous emission have been measured at 632 nm from 44 MeV single electron bunches of 1 - 5 ps. The scaling of the spectral fluctuations with frequency resolution and the scaling of the spectral intensity distribution with bunchlength are studied. Bunchlength was extracted in a single shot measurement. Agreement was obtained between the experiment and a theoretical model, and with independent time integrated measurements. copyright 1999 American Institute of Physics

  8. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  9. Study of density fluctuations during MHD activity, soft landing discharges and major disruptions in TEXTOR using CO2 laser collective scattering

    International Nuclear Information System (INIS)

    Boileau, A.; Van Andel, H.W.H.; Hellermann, M. von; Rogister, A.

    1987-01-01

    A modulation of microturbulence is observed in TEXTOR during low mode number MHD activity using CO 2 laser collective scattering. This is accomplished by a strong enhancement of density fluctuations near ka s approx. = 3 at the end of soft landing discharges and a displacement of the frequency spectrum towards lower frequencies. The increase is most significant for rapid rampdown of the plasma current accompanied by strong MHD activity but also occurs when the latter is not detected. The evolution of microturbulence is also studied during major plasma disruptions. It was found that disruptions without MHD precursor oscillations are characterized by a rapid increase in the density fluctuations starting approx. 100 ms before plasma disruption. (author)

  10. Measurements of fluctuations in the flux of runaway electrons to the PLT limiter

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.

    1982-07-01

    Fluctuations in the flux of runaway electrons to the limiter have been measured during many PLT discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen in the range of 2 → 20 kHz due to MHD magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe was used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits

  11. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-11-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  12. Simulation of density fluctuations before the L-H transition for Hydrogen and Deuterium plasmas in the DIII-D tokamak using the BOUT++ code

    Science.gov (United States)

    Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.

    2018-02-01

    A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n  =  30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are  ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.

  13. Fluctuations of the electron temperature measured by intensity interferometry on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Sattler, S.

    1993-12-01

    Fluctuations of the electron temperature can cause a significant amount of the anomalous electron heat conductivity observed on fusion plasmas, even with relative amplitudes below one per cent. None of the standard diagnostics utilized for measuring the electron temperature in the confinement region of fusion plasmas is provided with sufficient spatial and temporal resolution and the sensitivity for small fluctuation amplitudes. In this work a new diagnostic for the measurement of electron temperature fluctuations in the confinement region of fusion plasmas was developed, built up, tested and successfully applied on the W7-AS Stellarator. Transport relevant fluctuations of the electron temperature can in principle be measured by radiometry of the electron cyclotron emission (ECE), but they might be buried completely in natural fluctuations of the ECE due to the thermal nature of this radiation. Fluctuations with relative amplitudes below one per cent can be measured with a temporal resolution in the μs-range and a spatial resolution of a few cm only with the help of correlation techniques. The intensity interferometry method, developed for radio astronomy, was applied here: two independent but identical radiometers are viewing the same emitting volume along crossed lines of sight. If the angle between the sightlines is chosen above a limiting value, which is determined by the spatial coherence properties of thermal radiation, the thermal noise is uncorrelated while the temperature fluctuations remain correlated. With the help of this technique relative amplitudes below 0.1% are accessible to measurement. (orig.)

  14. Measuring Happiness: From Fluctuating Happiness to Authentic–Durable Happiness

    Science.gov (United States)

    Dambrun, Michaël; Ricard, Matthieu; Després, Gérard; Drelon, Emilie; Gibelin, Eva; Gibelin, Marion; Loubeyre, Mélanie; Py, Delphine; Delpy, Aurore; Garibbo, Céline; Bray, Elise; Lac, Gérard; Michaux, Odile

    2012-01-01

    On the basis of the theoretical distinction between self-centeredness and selflessness (Dambrun and Ricard, 2011), the main goal of this research was to develop two new scales assessing distinct dimensions of happiness. By trying to maximize pleasures and to avoid displeasures, we propose that a self-centered functioning induces a fluctuating happiness in which phases of pleasure and displeasure alternate repeatedly (i.e., Fluctuating Happiness). In contrast, a selfless psychological functioning postulates the existence of a state of durable plenitude that is less dependent upon circumstances but rather is related to a person’s inner resources and abilities to deal with whatever comes his way in life (i.e., Authentic–Durable Happiness). Using various samples (n = 735), we developed a 10-item Scale measuring Subjective Fluctuating Happiness (SFHS) and a 13-item scale assessing Subjective Authentic–Durable Happiness (SA–DHS). Results indicated high internal consistencies, satisfactory test–retest validities, and adequate convergent and discriminant validities with various constructs including a biological marker of stress (salivary cortisol). Consistent with our theoretical framework, while self-enhancement values were related only to fluctuating happiness, self-transcendence values were related only to authentic–durable happiness. Support for the distinction between contentment and inner-peace, two related markers of authentic happiness, also was found. PMID:22347202

  15. What measurable zero point fluctuations can(not) tell us about dark energy

    International Nuclear Information System (INIS)

    Doran, M.

    2006-05-01

    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ∝ 10 eV, well above the dark energy scale of ∝ 0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally. (Orig.)

  16. Measurement of magnetic fluctuations at small spatial scales in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.

    1991-08-01

    This thesis is a presentation of the measurements of short-wavelength, high-frequency radial magnetic fluctuations performed on the Tokapole 2 tokamak at the University of Wisconsin-Madison. Theories of electron temperature gradient (η e ) driven turbulence predict the existence of increased magnetic fluctuation power at small spatial scales near the collisionless skin depth c/ω pe and over a wide range of frequencies near and below the electron diamagnetic drift frequency ω* ne . Small magnetic probes of sizes down to 1 m m have been constructed and used to resolve short poloidal and radial wavelength magnetic fluctuations. These probes have been used with larger probes to make comparisons of fluctuation spectra measured in various ranges of wavelength and over the range of frequencies from 10 kHz to 6 MHz in Tokapole 2 plasmas. A calculation of the short-wavelength, high-frequency response of an electrostatically shielded model B r probe has been performed to guide the interpretation of the power comparison measurements. Comparisons of magnetic fluctuation spectra at various positions within the plasma, and for discharges with edge safety factor 1, 2, and 3 are presented. The linear and nonlinear theories and numerical simulations of η e turbulence are reviewed and compared, where possible with the experimental parameters and results

  17. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    , however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using...... the power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...

  18. Statistical fluctuations in reactors (1960); Fluctuations statistiques dans les piles (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The theory of space dependent fluctuations is developed, taking into account the effect of delayed neutrons. The 'diffusion equation' or Fokker-Planck equation is worked out in the case of age and two group theory, but the first one because of in physical significance is used in this report. The theory is applied to the study of the spectral density of fluctuations and fluctuations of counting rate and current flowing through the charge resistor of an ionisation chamber, the effect of the entrance capacity is discussed. The space dependent theory shows that the fluctuations in the core and reflector of a near critical pile obey to the same law. The spectral densities in the core and reflector are similar, there is no sensible attenuation of high frequency fluctuations in the reflector. Compared to the space independent theory, this theory give better agreement with experience, one can use the simple space independent theory but in checking with experiment it is necessary to introduce numerical factors given by the space dependent theory. (author) [French] La theorie des fluctuations statistiques est developpee dans le cas spatial en tenant compte des neutrons retardes, et dans le cadre de la theorie de l'age vitesse. L'equation d'evolution de la probabilite est egalement etablie dans le cadre de la theorie a deux groupes. Ces considerations sont appliquees a l'etude de la densite spectrale des fluctuations et aux fluctuations des taux de comptage et du courant circulant dans la resistance de charge du detecteur. On etudie en particulier l'effet de la constante de temps introduite par la capacite d'entree. Cette theorie etablit que les fluctuations dans le coeur et le reflecteur suivent la meme loi pour une pile critique, il en est de meme pour la densite spectrale meme a frequence elevee. Par rapport a la theorie d'ensemble, la theorie spatiale donne des coefficients numeriques ou facteurs de forme, qui permettent d'obtenir un bon accord entre la theorie et l

  19. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  20. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-07-10

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s{sup 1} bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  1. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  2. Electrostatic fluctuations measured in low temperature helical plasmas with low collisionality

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ikeda, R.; Ito, T.; Toi, K.; Suzuki, C.; Matsunaga, G.

    2004-01-01

    Electrostatic fluctuations have been measured by Langmuir probes from edge to core plasma region in low temperature helical plasmas which are produced by 2.45 GHz microwaves at very low field less than 0.1 T. The principal dimensionless parameters of the plasmas, that is, the normalized electron-ion collision frequency ν ei , and averaged plasma β φ and others are in the same range of them in high temperature plasmas, except the normalized gyro radius ρ s . The data on fluctuation characteristics from the dimensionally similar low temperature plasmas may give an important insight into the understanding of turbulent transport in high temperature plasmas. Dependences of fluctuation amplitudes on the radial electric field shear, ρ s and ν ei are investigated. Electrostatic fluctuations propagating in electron-diamagnetic drift direction have been observed in the plasma edge region and in ion-diamagnetic drift direction in the plasma core region. (authors)

  3. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION

    International Nuclear Information System (INIS)

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R.; Banavar, N.; Bandura, K.; Blake, C.; Chang, T.-C.; Liao, Y.-W.; Chen, X.; Li, Y.-C.; Natarajan, A.; Peterson, J. B.; Voytek, T. C.

    2013-01-01

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 HI b HI r = [0.43 ± 0.07(stat.) ± 0.04(sys.)] × 10 –3 , where Ω HI is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b HI is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z ∼ 0.8 both in its precision and in the range of scales probed.

  4. Measurement of nonlinear mode coupling of tearing fluctuations

    International Nuclear Information System (INIS)

    Assadi, S.; Prager, S.C.; Sidikman, K.L.

    1992-03-01

    Three-wave nonlinear coupling of spatial Fourier modes is measured in the MST reversed field pinch by applying bi-spectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 polodial modes and 32 toroidal modes. Comparison to bi-spectra predicted by MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomittant with a broadened (presumably nonlinearly generated) k-spectrum

  5. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated......This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple...

  6. Fluctuations, dynamical instabilities and clusterization processes

    International Nuclear Information System (INIS)

    Burgio, G.F.; Chomaz, Ph.; Randrup, J.

    1992-01-01

    Recent progress with regard to the numerical simulation of fluctuations in nuclear dynamics is reported. Cluster formation in unstable nuclear matter is studied within the framework of a Boltzmann-Langevin equation developed to describe large amplitude fluctuations. Through the Fourier analysis of the fluctuating nuclear density in coordinate space, the onset of the clusterization is related to the dispersion relation of harmonic density oscillations. This detailed study on the simple two-dimensional case demonstrates the validity of the general approach. It is also shown, how the inclusion of fluctuations implies a description in terms of ensemble of trajectories and it is discussed why the presence of a stochastic term may cure the intrinsic unpredictability of deterministic theories (such as mean-field approximation) in presence of instabilities and/or chaos. (author) 8 refs., 3 figs

  7. Turbulence in nearly incompressible fluids: density spectrum, flows, correlations and implication to the interstellar medium

    Directory of Open Access Journals (Sweden)

    S. Dastgeer

    2005-01-01

    Full Text Available Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron density fluctuations exhibit a Kolmogorov-like k-5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD fluctuations to density fluctuations through a 'pseudosound' relation within the context of 'nearly incompressible' (NI hydrodynamics (HD and MHD models. The NI theory provides a fundamentally different explanation for the observed ISM density spectrum in that the density fluctuations can be a consequence of passive scalar convection due to background incompressible fluctuations. The theory further predicts generation of long-scale structures and various correlations between the density, temperature and the (magneto acoustic as well as convective pressure fluctuations in the compressible ISM fluids in different thermal regimes that are determined purely by the thermal fluctuation level. In this paper, we present the results of our two dimensional nonlinear fluid simulations, exploring various nonlinear aspects that lead to inertial range ISM turbulence within the context of a NI hydrodymanics model. In qualitative agreement with the NI predictions and the in-situ observations, we find that i the density fluctuations exhibit a Kolmogorov-like spectrum via a passive convection in the field of the background incompressible fluctuations, ii the compressible ISM fluctuations form long scale flows and structures, and iii the density and the temperature fluctuations are anti-correlated.

  8. The fluctuating gap model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaobin

    2011-01-15

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the

  9. The fluctuating gap model

    International Nuclear Information System (INIS)

    Cao, Xiaobin

    2011-01-01

    The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi

  10. Thermal and active fluctuations of a compressible bilayer vesicle

    Science.gov (United States)

    Sachin Krishnan, T. V.; Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki

    2018-05-01

    We discuss thermal and active fluctuations of a compressible bilayer vesicle by using the results of hydrodynamic theory for vesicles. Coupled Langevin equations for the membrane deformation and the density fields are employed to calculate the power spectral density matrix of membrane fluctuations. Thermal contribution is obtained by means of the fluctuation dissipation theorem, whereas active contribution is calculated from exponentially decaying time correlation functions of active random forces. We obtain the total power spectral density as a sum of thermal and active contributions. An apparent response function is further calculated in order to compare with the recent microrheology experiment on red blood cells. An enhanced response is predicted in the low-frequency regime for non-thermal active fluctuations.

  11. Mass density fluctuations in quantum and classical descriptions of liquid water

    Science.gov (United States)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  12. Effects of rf power on electron density and temperature, neutral temperature, and Te fluctuations in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Camparo, James; Fathi, Gilda

    2009-01-01

    Atomic clocks that fly on global-navigation satellites such as global positioning system (GPS) and Galileo employ light from low-temperature, inductively coupled plasmas (ICPs) for atomic signal generation and detection (i.e., alkali/noble-gas rf-discharge lamps). In this application, the performance of the atomic clock and the capabilities of the navigation system depend sensitively on the stability of the ICP's optical emission. In order to better understand the mechanisms that might lead to instability in these rf-discharge lamps, and hence the satellite atomic clocks, we studied the optical emission from a Rb/Xe ICP as a function of the rf power driving the plasma. Surprisingly, we found that the electron density in the plasma was essentially independent of increases in rf power above its nominal value (i.e., 'rf-power gain') and that the electron temperature was only a slowly varying function of rf-power gain. The primary effect of rf power was to increase the temperature of the neutrals in the plasma, which was manifested by an increase in Rb vapor density. Interestingly, we also found evidence for electron temperature fluctuations (i.e., fluctuations in the plasma's high-energy electron content). The variance of these fluctuations scaled inversely with the plasma's mean electron temperature and was consistent with a simple model that assumed that the total electron density in the discharge was independent of rf power. Taken as a whole, our results indicate that the electrons in alkali/noble-gas ICPs are little affected by slight changes in rf power and that the primary effect of such changes is to heat the plasma's neutral species.

  13. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  14. Ordinary mode reflectometry. Modification of the scattering and cut-off responses due to the shape of localized density fluctuations

    International Nuclear Information System (INIS)

    Fanack, C.; Boucher, I.; Heuraux, S.; Leclert, G.; Clairet, F.; Zou, X.L.

    1996-01-01

    Ordinary wave reflectometry in a plasma containing a localized density perturbation is studied with a 1-D model. The phase response is studied as a function of the wavenumber and position of the perturbation. It is shown that it strongly depends upon the perturbation shape and size. For a small perturbation wavenumber, the response is due to the oscillation of the cut-off layer. For larger wavenumbers, two regimes are found: for a broad perturbation, the phase response is an image of the perturbation itself; for a narrow perturbation, it is rather an image of the Fourier transform. For tokamak plasmas it turns out that, for the fluctuation spectra usually observed, the phase response comes primarily from those fluctuations that are localized at the cut-off. Results of a 2-D numerical model show that geometry effects are negligible for the scattering by radial fluctuations. (author)

  15. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  16. Fluctuations measured by flush mounted versus proud divertor Langmuir probes - why are they different?

    Science.gov (United States)

    Garcia, O. E.; Kuang, A. Q.; Brunner, D.; Labombard, B.; Kube, R.

    2017-10-01

    A flush-mounted, toroidally-elongated, and field-aligned divertor `rail' Langmuir probe array was installed in Alcator C-Mod in 2015. This geometry is heat flux tolerant and effectively mitigates sheath expansion effects down to incident field line angles of 0.5 degree. Further complications have arisen that cannot be explained by sheath-expansion. In particular, the `rail' probe geometry measures significantly higher plasma fluctuation levels in the common flux region compared to traditional proud probes, whereas they are similar in the private flux zone. In some instances, the amplitudes of ion saturation current fluctuations normalized to the mean are a factor of 2 higher; probability distribution functions correspondingly record large amplitude events that are not seen by the proud probes. This discrepancy also appears to depend on divertor plasma regime. For example, fluctuations become similar near the strikepoint when the electron temperature is low. To ensure that these discrepancies were not due to perturbations caused by the voltage bias or currents collected by the probes, the two Langmuir probe systems were left to `float' and the fluctuation statistics analyzed. Yet, even in this non-perturbative situation, there exist clear differences in the fluctuation characteristics. The raises two questions: how does the probe geometry affect plasma fluctuations measurements and what are the true plasma fluctuations experienced by the divertor surface? Supported by USDoE awards DE-FC02-99ER54512.

  17. Frontiers in Fluctuation Spectroscopy: Measuring protein dynamics and protein spatio-temporal connectivity

    Science.gov (United States)

    Digman, Michelle

    Fluorescence fluctuation spectroscopy has evolved from single point detection of molecular diffusion to a family of microscopy imaging correlation tools (i.e. ICS, RICS, STICS, and kICS) useful in deriving spatial-temporal dynamics of proteins in living cells The advantage of the imaging techniques is the simultaneous measurement of all points in an image with a frame rate that is increasingly becoming faster with better sensitivity cameras and new microscopy modalities such as the sheet illumination technique. A new frontier in this area is now emerging towards a high level of mapping diffusion rates and protein dynamics in the 2 and 3 dimensions. In this talk, I will discuss the evolution of fluctuation analysis from the single point source to mapping diffusion in whole cells and the technology behind this technique. In particular, new methods of analysis exploit correlation of molecular fluctuations originating from measurement of fluctuation correlations at distant points (pair correlation analysis) and methods that exploit spatial averaging of fluctuations in small regions (iMSD). For example the pair correlation fluctuation (pCF) analyses done between adjacent pixels in all possible radial directions provide a window into anisotropic molecular diffusion. Similar to the connectivity atlas of neuronal connections from the MRI diffusion tensor imaging these new tools will be used to map the connectome of protein diffusion in living cells. For biological reaction-diffusion systems, live single cell spatial-temporal analysis of protein dynamics provides a mean to observe stochastic biochemical signaling in the context of the intracellular environment which may lead to better understanding of cancer cell invasion, stem cell differentiation and other fundamental biological processes. National Institutes of Health Grant P41-RRO3155.

  18. Controlling fluctuations in an ITB and comparison with gyrokinetic simulations

    Science.gov (United States)

    Ernst, D. R.; Fiore, C. L.; Dominguez, A.; Podpaly, Y.; Reinke, M. L.; Terry, J. L.; Tsujii, N.; Bespamyatnov, I.; Churchill, M.; Greenwald, M.; Hubbard, A.; Hughes, J. W.; Lee, J.; Ma, Y.; Wolfe, S.; Wukitch, S.

    2011-10-01

    We have modulated on-axis ICRF minority heating to trigger fluctuations and core electron transport in Alcator C-Mod Internal Transport Barriers (ITB's). Temperature swings of 50% produced strong bursts of density fluctuations, measured by phase contrast imaging (PCI), while edge fluctuations from reflectometry, Mirnov coils, and gas puff imaging (GPI) simultaneously diminished. The PCI fluctuations are in phase with sawteeth, further evidence that they originate within the ITB foot. Linear gyrokinetic analysis with GS2 shows TEMs are driven unstable in the ITB by the on-axis heating, as in Refs.,. Nonlinear gyrokinetic simulations of turbulence in the ITB are compared with fluctuation data using a synthetic diagnostic. Strong ITB's were produced with high quality ion and electron profile data. Supported by U.S. DoE awards DE-FC02-99ER54512, DE-FG02-91ER54109, DE-FC02-08ER54966.

  19. 1 μs broadband frequency sweeping reflectometry for plasma density and fluctuation profile measurements

    Science.gov (United States)

    Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team

    2017-11-01

    Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.

  20. Considering fluctuation energy as a measure of gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Plunk, G G; Tatsuno, T; Dorland, W

    2012-01-01

    In gyrokinetic theory, there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain turbulence. In a recent work (Plunk and Tatsuno 2011 Phys. Rev. Lett. 106 165003) we reported on the novel consequences that this constraint has for the direction and locality of spectral energy transfer. This paper builds on that previous work. We provide a detailed analysis in support of the results of Plunk and Tatsuno (2011 Phys. Rev. Lett. 106 165003), but significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics (Plunk et al 2010 J. Fluid Mech. 664 407–35)) but also general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of turbulence. Although many questions remain open, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics. (paper)

  1. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  2. Dynamics and fluctuation spectra of electrostatic resistive interchange turbulence

    International Nuclear Information System (INIS)

    Sydora, R.D.; Leboeuf, J.N.; An, Z.G.; Diamond, P.H.; Lee, G.S.; Hahm, T.S.

    1985-11-01

    The saturation mechanism for density and potential fluctuation spectra which evolve from linearly unstable electrostatic resistive interchange modes, are investigated using particle simulations. Detailed comparisons of the nonlinear evolution, saturation levels and resultant spectra between two- and three-dimensional sheared magnetic field configurations are made. Significant differences appear. The single rational surface, quasilinear-dominated evolution, fluctuation spectrum is adequately described using a density convection model. For the multiple rational surface case, the potential fluctuations are adequately represented by a balance between the nonlinearly modified source (curvature drive) and linear sink (parallel resistive field line diffusion). An accurate description of the density spectrum requires a mode coupling theory based on the two-point density correlation evolution equation. 24 refs., 15 figs

  3. Models for universal reduction of macroscopic quantum fluctuations

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-10-01

    If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs

  4. Quasi-quadrature interferometer for plasma density radial profile measurements

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Hoffman, A.L.

    1979-01-01

    A cw Mach Zehnder multichannel interferometer has been developed to measure time-dependent fractional fringe shifts with an accuracy of one-fortieth fringe. The design is quasi-quadrature in that known phase shifts, introduced in the reference beam, are time multiplexed with the normal reference beam. This technique requires only one detector per interferometer channel as compared to two detectors for most quadrature designs. The quadrature information makes the sense of density changes unambiguous, it automatically calibrates the instrument during the plasma event, and it makes fringe shift measurements virtually independent of fringe contrast fluctuations caused by plasma refractive and/or absorptive effects. The interferometer optical design is novel in that the electro-optic crystal used to introduce the 90 0 phase shifts is located in the common 2-mm-diam HeNe entrance beam to the interferometer, by exploiting polarization techniques, rather than in the expanded 1--2-cm reference beam itself. This arrangement greatly reduces the size, cost, and high-voltage requirements for the phase modulating crystal

  5. Measurement of loose powder density

    International Nuclear Information System (INIS)

    Akhtar, S.; Ali, A.; Haider, A.; Farooque, M.

    2011-01-01

    Powder metallurgy is a conventional technique for making engineering articles from powders. Main objective is to produce final products with the highest possible uniform density, which depends on the initial loose powder characteristics. Producing, handling, characterizing and compacting materials in loose powder form are part of the manufacturing processes. Density of loose metallic or ceramic powder is an important parameter for die design. Loose powder density is required for calculating the exact mass of powder to fill the die cavity for producing intended green density of the powder compact. To fulfill this requirement of powder metallurgical processing, a loose powder density meter as per ASTM standards is designed and fabricated for measurement of density. The density of free flowing metallic powders can be determined using Hall flow meter funnel and density cup of 25 cm/sup 3/ volume. Density of metal powders like cobalt, manganese, spherical bronze and pure iron is measured and results are obtained with 99.9% accuracy. (author)

  6. Measurements of electron density irregularities in the ionosphere of Jupiter by Pioneer 10

    International Nuclear Information System (INIS)

    Woo, R.; Yang, F.

    1976-01-01

    In this paper we demonstrate that when the frequency spectrum of the log amplitude fluctuations is used, the radio occultation experiment is a powerful tool for detecting, identifying, and studying ionospheric irregularities. Analysis of the Pioneer 10 radio occultation measurements reveals that the Jovian ionosphere possesses electron density irregularities which are very similar to those found in the earth's ionosphere. This is the first time such irregularities have been found in a planetary ionosphere other than that of earth. The Pioneer 10 results indicate that the spatial wave number spectrum of the electron density irregularities is close to the Kolmogorov spectrum and that the outer scale size is greater than the Fresnel size (6.15 km). This type of spectrum suggests that the irregularities are probably produced by the turbulent dissipation of irregularities larger than the outer scale size

  7. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  8. Quantum fluctuation theorems and power measurements

    International Nuclear Information System (INIS)

    Prasanna Venkatesh, B; Watanabe, Gentaro; Talkner, Peter

    2015-01-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics. (paper)

  9. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)

  10. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal

  11. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  12. Magnetic flux density in the heliosphere through several solar cycles

    Energy Technology Data Exchange (ETDEWEB)

    Erdős, G. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Balogh, A., E-mail: erdos.geza@wigner.mta.hu [The Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-01-20

    We studied the magnetic flux density carried by solar wind to various locations in the heliosphere, covering a heliospheric distance range of 0.3-5.4 AU and a heliolatitudinal range from 80° south to 80° north. Distributions of the radial component of the magnetic field, B{sub R} , were determined over long intervals from the Helios, ACE, STEREO, and Ulysses missions, as well as from using the 1 AU OMNI data set. We show that at larger distances from the Sun, the fluctuations of the magnetic field around the average Parker field line distort the distribution of B{sub R} to such an extent that the determination of the unsigned, open solar magnetic flux density from the average (|B{sub R} |) is no longer justified. We analyze in detail two methods for reducing the effect of fluctuations. The two methods are tested using magnetic field and plasma velocity measurements in the OMNI database and in the Ulysses observations, normalized to 1 AU. It is shown that without such corrections for the fluctuations, the magnetic flux density measured by Ulysses around the aphelion phase of the orbit is significantly overestimated. However, the matching between the in-ecliptic magnetic flux density at 1 AU (OMNI data) and the off-ecliptic, more distant, normalized flux density by Ulysses is remarkably good if corrections are made for the fluctuations using either method. The main finding of the analysis is that the magnetic flux density in the heliosphere is fairly uniform, with no significant variations having been observed either in heliocentric distance or heliographic latitude.

  13. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    Science.gov (United States)

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  14. Changes in atomic populations due to edge plasma fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, R., E-mail: ramzi.hammami@univ-provence.fr [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Capes, H. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France); Catoire, F. [CELIA, Université de Bordeaux 1 and CNRS, Domaine du Haut Carré, Talence 33405 (France); Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Mekkaoui, A.; Rosato, J.; Stamm, R. [PIIM, Aix-Marseille Université and CNRS, centre Saint Jérôme, Marseille 13397 (France)

    2013-07-15

    The population balance of atoms or ions in an edge plasma is calculated in the presence of fluctuating density or temperature. We have used a stochastic model taking advantage of the knowledge of the plasma parameter statistical properties, and assuming a stepwise constant stochastic process for the fluctuating variable. The model is applied to simplified atomic systems such as three level hydrogen atoms or the ionization balance of carbon affected by electronic temperature or density fluctuations obeying a gamma PDF, and an exponential waiting time distribution.

  15. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  16. Panama City 2003 Acoustic Coherence Experiments: Low Frequency Bottom Penetration Fluctuation Measurements in a Multipath Environment

    Science.gov (United States)

    Meredith, Roger W.; Kennedy, E. Ted; Malley, Dexter; Fisher, Robert A.; Brown, Robert; Stanic, Steve

    2004-11-01

    This paper is part of a series of papers describing acoustic coherence and fluctuations measurements made by the Naval Research Laboratory in the Gulf of Mexico near Panama City Beach, FL during June 2003. This paper presents low frequency (1-10 kHz) buried hydrophone measurements and preliminary results for two source-receiver ranges with grazing angles less than two degrees (realtive to the direct-path to the seafloor at the receiver location). Results focus on fluctuations after acoustic penetration into the sediment. These fluctuations are correlated with environmental influences.

  17. Calculation of the intrinsic spectral density of current fluctuations in nanometric Schottky-barrier diodes at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F.Z. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria)], E-mail: fati_zo_mahi2002@yahoo.fr; Helmaoui, A. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria); Varani, L. [Institut d' Electronique du Sud (CNRS UMR 5214), Universite Montpellier II, 34095 Montpellier (France); Shiktorov, P.; Starikov, E.; Gruzhinskis, V. [Semiconductor Physics Institute, 01108 Vilnius (Lithuania)

    2008-10-01

    An analytical model for the noise spectrum of nanometric Schottky-barrier diodes (SBD) is developed. The calculated frequency dependence of the spectral density of current fluctuations exhibits resonances in the terahertz domain which are discussed and analyzed as functions of the length of the diode, free carrier concentration, length of the depletion region and applied voltage. A good agreement obtained with direct Monte Carlo simulations of GaAs SBDs operating from barrier-limited to flat-band conditions fully validates the proposed approach.

  18. Lensing of 21-cm fluctuations by primordial gravitational waves.

    Science.gov (United States)

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  19. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 3H8 (Canada); Banavar, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Bandura, K. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Blake, C. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Chang, T.-C.; Liao, Y.-W. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Chen, X.; Li, Y.-C. [National Astronomical Observatories, Chinese Academy of Science, 20A Datun Road, Beijing 100012 (China); Natarajan, A.; Peterson, J. B.; Voytek, T. C. [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  20. FLUCTUATING ENERGY STORAGE AND NONLINEAR CASCADE IN AN INHOMOGENEOUS CORONAL LOOP

    International Nuclear Information System (INIS)

    Malara, F.; Nigro, G.; Onofri, M.; Veltri, P.

    2010-01-01

    The dynamics and the energy balance of large-scale fluctuations in a coronal loop are studied. The loop is represented by a simplified structure where the curvature is neglected and the background magnetic field is uniform. In a previous paper, we studied a similar model where a uniform background density was assumed. The present paper represents a generalization of the previous one and it has the purpose of investigating possible modifications to the large-scale energy balance and dynamics due to a more realistic longitudinally nonuniform density. Large-scale fluctuations are dominated by coherent eigenmodes that nonlinearly couple to produce an energy cascade to smaller scales. Eigenmodes properties are calculated by a simplified linear dissipative model, deriving an expression for the input energy flux that is not substantially modified by the presence of the density inhomogeneity and is independent of dissipation. For typical values of the parameters, the derived input energy flux is comparable with that required to heat the active region corona. Nonlinear couplings are dominated by coherence effects due to the symmetry properties of eigenmodes; the consequences are that the system is in a weakly nonlinear regime that produces fluctuating energy storage in the loop, and that the kinetic and magnetic nonlinear energy fluxes are of the same order, despite the dominance of magnetic energy at large scales. From the energy balance, an expression for the velocity fluctuation is derived, which is valid in the more general case of a nonuniform background density; this estimate is in agreement both with measures of nonthermal velocities in the solar corona and with previous numerical results.

  1. Muon spin relaxation measurements of the fluctuation modes in spin-glass AgNm

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, R.H.; Leon, M.; Schillaci, M.E.; MacLaughlin, D.E.; Dodds, S.A.

    1983-01-01

    Recently reported zero-field ..mu..SR measurements below the spin-glass transition temperature in AgMn (1.6 at%) show a temperature dependent inhomogeneous width. The authors discuss these data in terms of a model in which the local field undergoes limited-amplitude fluctuations. The authors find that both very slow (approx. = 0.3 ..mu..s/sup -1/) and rapid (approx. = 3000 ..mu..s/sup -1/) fluctuations are required. 10 references, 1 figure, 1 table.

  2. Stochastic modelling of intermittent fluctuations in the scrape-off layer: Correlations, distributions, level crossings, and moment estimation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O. E., E-mail: odd.erik.garcia@uit.no; Kube, R.; Theodorsen, A. [Department of Physics and Technology, UiT The Arctic University of Norway, N-9037 Tromsø (Norway); Pécseli, H. L. [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway)

    2016-05-15

    A stochastic model is presented for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas. The fluctuations in the plasma density are modeled by a super-position of uncorrelated pulses with fixed shape and duration, describing radial motion of blob-like structures. In the case of an exponential pulse shape and exponentially distributed pulse amplitudes, predictions are given for the lowest order moments, probability density function, auto-correlation function, level crossings, and average times for periods spent above and below a given threshold level. Also, the mean squared errors on estimators of sample mean and variance for realizations of the process by finite time series are obtained. These results are discussed in the context of single-point measurements of fluctuations in the scrape-off layer, broad density profiles, and implications for plasma–wall interactions due to the transient transport events in fusion grade plasmas. The results may also have wide applications for modelling fluctuations in other magnetized plasmas such as basic laboratory experiments and ionospheric irregularities.

  3. Role of turbulence fluctuations on uncertainties of acoutic Doppler current profiler discharge measurements

    Science.gov (United States)

    Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin

    2012-01-01

    This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).

  4. Inflationary fluctuations, entropy generation and baryogenesis in a cold universe

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1987-01-01

    We study the implications of a generic inflationary model for scenarios of baryogenesis based on the decays of coherent oscillations of squark and slepton fields. We consider the effects of de Sitter fluctuations on the magnitudes of the coherent oscillations of squarks and sleptons. We see that the largest contribution to the entropy density is due to inflation decays which together with the value of the oscillation amplitude determined by the de Sitter fluctuations leads to a baryon to entropy ratio O(10 -10 ). The isothermal density fluctuations produced by the coherent oscillations are found to be negligible compared with the adiabatic fluctuations produced during inflation. (orig.)

  5. Fluctuations in the thermal superfluid model for heated spherical nuclei

    International Nuclear Information System (INIS)

    Nguyen Dinhdang; Nguyen Zuythang

    1990-01-01

    The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)

  6. The effect of longitudinal fluctuations in (3+1)D viscous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang; Karpenko, Yuri [FIAS, Frankfurt (Germany); Petersen, Hannah [FIAS, Frankfurt (Germany); ITP, Goethe University, Frankfurt (Germany); GSI, Darmstadt (Germany); Huovinen, Pasi [ITP, University of Wroclaw (Poland); Wang, Xin-Nian [CCNU, Wuhan (China); LBNL, Berkeley (United States)

    2016-07-01

    The energy density fluctuations of the quark gluon plasma (QGP) in the transverse plane are studied in detail and found to be important to explain the high order harmonic flow v{sub n} at RHIC and LHC. However, the energy density fluctuations along longitudinal direction (space-time rapidity η{sub s}) have not been fully investigated yet, even though they should exist as well. Previous studies show that the longitudinal fluctuations strongly depend on the initial entropy deposition mechanisms. In this work AMPT initial conditions are used where HIJING introduces longitudinal fluctuations originating from the asymmetry between forward and backward going participants, string length fluctuations and finite number of partons at different collision energies. The longitudinal fluctuations have been found to be responsible for the de-correlation of anisotropic flow and twist of event planes along rapidity. We study the effect of longitudinal fluctuations on the QGP expansion in both transverse and longitudinal direction within CLVisc, a (3+1)D viscous hydrodynamic code parallelized on GPU using OpenCL, to check whether the anisotropic flow is affected by longitudinal fluctuations and to determine appropriate shear viscosity over entropy density coefficients η/s in comparison with experiments at RHIC and LHC.

  7. Scattering of electromagnetic waves by anomalous fluctuations of a magnetized plasma

    Science.gov (United States)

    Pavlenko, V. N.; Panchenko, V. G.

    1990-04-01

    Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.

  8. Multi-scale analysis of compressible fluctuations in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Owen W.; Escoubet, C. Philippe [ESA/ESTEC SCI-S, Noordwijk (Netherlands); Narita, Yasuhito [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2018-04-01

    Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σ{sub m}) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvenic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density n{sub e}. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfven wave packets or a mixture of anti-sunward kinetic Alfven waves along with a component of kinetic slow waves.

  9. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  10. Edge density X-mode reflectometry of RF-heated plasmas on ASDEX

    International Nuclear Information System (INIS)

    Schubert, R.

    1991-09-01

    In the present work microwave reflectometry is extended to the outermost part of tokamak plasmas (n e ≅ 10 11 to 1.5x10 13 cm -3 ), which is subject to strong electron density fluctuations. The perturbations of electron density profile measurements by these fluctuations, which lead to strong modulations in intensity and phase of the reflected signal is analysed in detail. By increasing the frequency of the interference fringes to values between 800 kHz and 2.4 MHz it is possible to make reliable profile measurements even in the region of very strong fluctuations. Measurements in the low density region are only possible with reasonable errors in the X-mode (Eperpendicular toB), as only the cut-off frequency of this mode, in contrast to that of the O-mode (EparallelB), takes a finite value (f ce ) for n e ->O. Taking advantage of this property, a method is presented to calibrate the measurements on the first reflection, which occurs directly in front of the microwave antennas (1-4 mm from the opening) thus giving a high precision even in the outermost part of the plasma close to the microwave antennas. For the calculation of the electron density profile a new and numerically stable algorithm has been developed. Measurements in connection with Lower Hybrid have been made with a set of 2 reflectometer antennas installed in ASDEX. (orig./AH)

  11. Clustering phenomena in nuclear matter below the saturation density

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Fukushima, Masahiro; Chiba, Satoshi; Horiuchi, Hisashi; Akaishi, Yoshinori; Tohsaki, Akihiro

    2004-01-01

    We investigate density-fluctuated states of nuclear matter as a result of clustering below the saturation density ρ 0 by description in terms of the Bloch function. The Bloch description has the advantage of a unified representation for a density-fluctuated state from an aggregate of uncorrelated clusters in extremely low-density regions to the plane-wave state of uniform matter in relatively high-density regions. We treat the density-fluctuated states due to α and 16 O clustering in symmetric nuclear matter and due to 10 He clustering in asymmetric nuclear matter. The density-fluctuated states develop as the density of matter decreases below each critical density around 0.2-0.4 ρ 0 which depends on what kind of effective force we use

  12. Stability and propagation of the high field side high density front in the fluctuating state of detachment in ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    P. Manz

    2017-08-01

    Full Text Available During detachment a structure of strongly enhanced density develops close to the inner target. Its dynamics is approximated by those of radiative fluctuations appearing at a similar position and studied by means of a time-delay-estimation technique in the ASDEX Upgrade tokamak. Compared to theory the dynamics can be described as follows: at increasing density the ionization front moves upstream to reduce ionization radiation in order to balance the increased recombination radiation. The recombination zone stays close to the target strike point. The parallel motion of the ionization front is determined by the perpendicular neutral motion. The divertor nose constitutes an obstacle for the perpendicular neutral flux from the target to the region above the X-point. Passing into this shadow the neutral flux above the X-point is strongly reduced, the ionization front fades away and the heat flux from upstream can increase the temperature in the recombination region, subsequently reducing recombination and reforming an ionization front below the X-point. A cyclic reformation of the ionization front propagating from below to above the X-point occurs leading to a fluctuation as observed in the experiment.

  13. Direct measurement of friction of a fluctuating contact line.

    Science.gov (United States)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-12

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξ(c)≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions.

  14. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes.

    Science.gov (United States)

    Cherstvy, A G; Metzler, R

    2014-07-01

    We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) ∼ |x|(α) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x,t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus |α| of the scaling exponent. The fluctuations appear to diverge when the critical value α = 2 is approached, while for even larger α the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time.

  15. A tangential CO{sub 2} laser collective scattering system for measuring short-scale turbulent fluctuations in the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.M., E-mail: gmcao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Y.D. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Q. [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, X.D.; Sun, P.J.; Wu, G.J.; Hu, L.Q. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • A tangential CO{sub 2} laser collective scattering system was first installed on EAST. • It can measure the short-scale fluctuations in different regions simultaneously. • It can study the broadband fluctuations, QC fluctuations, MHD phenomenon, etc. - Abstract: A tangential CO{sub 2} laser collective scattering system has been first installed on the Experimental Advanced Superconducting Tokamak (EAST) to measure short-scale turbulent fluctuations in EAST plasmas. The system can measure fluctuations with up to four distinct wavenumbers simultaneously ranging from 10 cm{sup −1} to 26 cm{sup −1}, and correspondingly k{sub ⊥}ρ{sub s}∼1.5−4.3. The system is designed based on the oblique propagation of the probe beam with respect to the magnetic field, and thus the enhanced spatial localization can be achieved by taking full advantage of turbulence anisotropy and magnetic field inhomogeneity. The simultaneous measurements of turbulent fluctuations in different regions can be taken by special optical setup. Initial measurements indicate rich short-scale turbulent dynamics in both core and outer regions of EAST plasmas. The system will be a powerful tool for investigating the features of short-scale turbulent fluctuations in EAST plasmas.

  16. Spectral measurements of fluctuating ω/sub pe/ radiation from Alcator C tokamak

    International Nuclear Information System (INIS)

    Gandy, R.F.; Yates, D.

    1984-01-01

    High resolution spectral measurements have been made of the fluctuating electron plasma frequency (ω/sub pe/) radiation from Alcator C. Three techniques have been used in making the measurements. Features as narrow as 350 kHz have been observed (Δf/f approx. = 6 x 10 -6 ), impling that a highly coherent process is responsible for the emission

  17. Electron density and gas density measurements in a millimeter-wave discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology 167 Albany St., Bldg. NW16, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  18. Electron density and gas density measurements in a millimeter-wave discharge

    International Nuclear Information System (INIS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-01-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  19. Detection limit for rate fluctuations in inhomogeneous Poisson processes

    Science.gov (United States)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  20. Detection limit for rate fluctuations in inhomogeneous Poisson processes.

    Science.gov (United States)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  1. Could dark energy be measured in the lab?

    International Nuclear Information System (INIS)

    Beck, Christian; Mackey, Michael C.

    2005-01-01

    The experimentally measured spectral density of current noise in Josephson junctions provides direct evidence for the existence of zero-point fluctuations. Assuming that the total vacuum energy associated with these fluctuations cannot exceed the presently measured dark energy of the universe, we predict an upper cutoff frequency of ν c =(1.69+/-0.05)x10 12 Hz for the measured frequency spectrum of zero-point fluctuations in the Josephson junction. The largest frequencies that have been reached in the experiments are of the same order of magnitude as ν c and provide a lower bound on the dark energy density of the universe. It is shown that suppressed zero-point fluctuations above a given cutoff frequency can lead to 1/f noise. We propose an experiment which may help to measure some of the properties of dark energy in the lab

  2. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  3. Lidar measurements of plume statistics

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.

    1993-01-01

    of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities,and 4)Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All...... the measured statistics are referred to a fixed and a 'moving' frame of reference, the latter being defined as a frame of reference from which the (low frequency) plume meander is removed. Finally, the measured statistics are compared with statistics on concentration fluctuations obtained with a simple puff...

  4. Limits on arcsecond-scale fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Knoke, J.E.; Partridge, R.B.; Ratner, M.I.; Shapiro, I.I.

    1984-01-01

    We used the NRAO Very Large Array in its C configuration at a wavelength of 6 cm to set upper limits on the rms fluctuation of sky brightness on angular scales of 6''--18'' from sources too weak to be detected individually. At the highest resolution, we establish a limit of 8 μJy per beam area on the rms sky fluctuation. If this fluctuation level is the result of a Poisson distribution of unresolved sources, each of flux density S 0 Jy, then the number density of such sources per steradian must be less than 0.08 S 0 -2 sr -1 . For alternative models in which all sources are resolved, we derive less stringent limits. Our limits on the rms sky fluctuation also establish limits on the rms temperature fluctuation ΔT for simple models of fluctuations in the cosmic microwave background: (ΔT/2.7 K) -3 and (ΔT/2.7 K) -3 for Gaussian temperature fluctuations of angular scale 6'' and 18'', respectively

  5. Precision density measuring equipment: Design, selected examples

    International Nuclear Information System (INIS)

    Karasinski, T.; Patzelt, K.; Dieker, C.; Hansen, H.; Wenzl, H.; Schober, T.

    1987-06-01

    The report deals with solids density measurement using the pyknometer, the hydrostatic balance, or the floating specimen method. The mathematical relations are derived, and error sources are shown. A detailed description is given of a measuring set-up for measuring the density of solids and liquids. An error calculation is presented. After explaining the determination of density of a standard solid body, the report describes the density measurement of monocrystalline germanium, of niobium-tritide, Ni 3 Al, Ge-Si, and gallium arsenide, the determination of space-lattice expansion by hydrogen isotopes, and of the purity of H-D mixtures. (GG) [de

  6. Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Clemens [ARC Centre of Excellence for Engineered Quantum Systems, The University of Queensland, Brisbane (Australia); Lisenfeld, Juergen [Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe (Germany); Shnirman, Alexander [Institut fuer Theory der Kondensierten Materie, Karlsruhe Institute of Technology, Karlsruhe (Germany); LD Landau Institute for Theoretical Physics, Moscow (Russian Federation); Poletto, Stefano [IBM TJ Watson Research Centre, Yorktown Heights (United States)

    2016-07-01

    Since the very first experiments, superconducting circuits have suffered from strong coupling to environmental noise, destroying quantum coherence and degrading performance. In state-of-the-art experiments, it is found that the relaxation time of superconducting qubits fluctuates as a function of time. We present measurements of such fluctuations in a 3D-transmon circuit and develop a qualitative model based on interactions within a bath of background two-level systems (TLS) which emerge from defects in the device material. In our model, the time-dependent noise density acting on the qubit emerges from its near-resonant coupling to high-frequency TLS which experience energy fluctuations due to their interaction with thermally fluctuating TLS at low frequencies. We support the model by providing experimental evidence of such energy fluctuations observed in a single TLS in a phase qubit circuit.

  7. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  8. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    International Nuclear Information System (INIS)

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.

    2009-01-01

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  9. Measurement of amplitude fluctuations in a rapid response photomultiplier; Mesure des fluctuations d'amplitude d'un photo multiplicateur a reponse rapide

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [French] Pour etudier les fluctuations d'amplitude d'un photomultiplicateur a reponse rapide, on introduit deux variables aleatoires independantes qui determinent la forme de l'impulsion anodique. L'energie de chaque impulsion, directement fonction du gain et de sa variance, est la premiere variable; les fluctuations d'amplitude, fonctions de la premiere variable, dependent egalement de la largeur de l'impulsion qui, elle, constitue la deuxieme variable. Les resultats obtenus sur les variations de l'amplitude maximale, a l'aide d'un circuit elargisseur d'impulsions a front raide, et les resultats des variations statistiques du gain sont compares pour mettre en evidence le fait que la variance relative a l'amplitude maximale du signal est plus grande que celle du gain. Dans la mesure de ces fluctuations, sont mises en evidence la contribution du coefficient d'emission secondaire de la premiere dynode et celle du coefficient d'emission secondaire moyen du multiplicateur. (auteur)

  10. Multi-scale analysis of compressible fluctuations in the solar wind

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-01-01

    Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.

  11. Probability distribution functions for intermittent scrape-off layer plasma fluctuations

    Science.gov (United States)

    Theodorsen, A.; Garcia, O. E.

    2018-03-01

    A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically confined plasmas has been constructed based on a super-position of uncorrelated pulses arriving according to a Poisson process. In the most common applications of the model, the pulse amplitudes are assumed exponentially distributed, supported by conditional averaging of large-amplitude fluctuations in experimental measurement data. This basic assumption has two potential limitations. First, statistical analysis of measurement data using conditional averaging only reveals the tail of the amplitude distribution to be exponentially distributed. Second, exponentially distributed amplitudes leads to a positive definite signal which cannot capture fluctuations in for example electric potential and radial velocity. Assuming pulse amplitudes which are not positive definite often make finding a closed form for the probability density function (PDF) difficult, even if the characteristic function remains relatively simple. Thus estimating model parameters requires an approach based on the characteristic function, not the PDF. In this contribution, the effect of changing the amplitude distribution on the moments, PDF and characteristic function of the process is investigated and a parameter estimation method using the empirical characteristic function is presented and tested on synthetically generated data. This proves valuable for describing intermittent fluctuations of all plasma parameters in the boundary region of magnetized plasmas.

  12. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    Science.gov (United States)

    Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-06-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  13. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    International Nuclear Information System (INIS)

    Oldenbuerger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-01-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  14. Ultraviolet luminosity density of the universe during the epoch of reionization.

    Science.gov (United States)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-08

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  15. The prediction of rotor rotational noise using measured fluctuating blade loads

    Science.gov (United States)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  16. Measurement of the internal magnetic fluctuation by the transport of runaways on J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.; Yan, W.; Wei, Y. N.; Ma, T. K.; Jiang, Z. H.; Zhang, X. Q.; Chen, Z. P.; Yang, Z. J.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient D{sub r} is deduced to be about 30 m{sup 2}/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to the order of 1 × 10{sup −4}.

  17. Bursty fluctuation characteristics in SOL/divertor plasmas of large helical device

    International Nuclear Information System (INIS)

    Ohno, N.

    2006-01-01

    Full text: Fluctuation properties in the SOL plasmas were intensively studied to understand the crossfield plasma transport, which determines the SOL structure and heat/particle deposition onto the first wall. Recent studies in tokamaks showed that the SOL density fluctuation is highly intermittent. Convective cross-field transport associated with the intermittent events would have strong influence on recycling processes and impurity generation from the first wall. On the other hand, in helical devices, there are few systematic studies on the SOL fluctuation property focusing on the intermittent bursty fluctuations related to plasma blob transport. Recent theory predicts that the blobs propagate toward a low field side in tokamaks. On the other hand, in the Large Helical Device (LHD), the direction of the gradient in B is not uniform because the high-field and the low-field sides rotates poloidally along the torus in the helical system. Comparison between the intermittent bursty fluctuations in the edge plasma of tokamaks and helical devices makes it possible to understand the essential physics of the blob transport. Recently, fast camera observation showed the radial motion of filaments in the edge of the LHD, suggesting the convective cross-field transport. In this paper, bursty fluctuation properties in the edge of the LHD have been investigated by analyzing the ion saturation currents measured with a probe array embedded in an outboard divertor plate. Statistical analysis based on probability distribution function was employed to determine the intermittent evens in the density fluctuation. Large positive bursty events were often observed in the ion saturation current measured with a divertor probe near a divertor leg at which the magnetic line of force connected to the area of a low-field side with a short connection length. Condition averaging result of the positive bursty events indicates the intermittent feature with a rapid increase and a slow decay is

  18. Fast light pulse measurements and temporal fluctuations in photomultipliers

    International Nuclear Information System (INIS)

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  19. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  20. Linear response to long wavelength fluctuations using curvature simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baldauf, Tobias; Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States); Seljak, Uroš [Physics Department, Astronomy Department and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA (United States); Senatore, Leonardo, E-mail: baldauf@ias.edu, E-mail: useljak@berkeley.edu, E-mail: senatore@stanford.edu, E-mail: matiasz@ias.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA (United States)

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.

  1. PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation

    International Nuclear Information System (INIS)

    Calif, Rudy

    2012-01-01

    Highlights: ► Probability Density Functions are proposed to fit the wind speed fluctuations distributions for three representative classes. ► Stochastic simulations are performed using a Langevin equation for each class. ► The properties of simulated and measured wind speed sequences are close. -- Abstract: Wind energy production is very sensitive to turbulent wind speed. Thus rapid variation of wind speed due to changes in the local meteorological conditions can lead to electrical power variations of the order of the nominal power output, in particular when wind power variations on very short time scales, range at few seconds to 1 h, are considered. In small grid as they exist on islands (Guadeloupean Archipelago: French West Indies) such fluctuations can cause instabilities in case of intermediate power shortages. The developed analysis in reveals three main classes of time series for the wind speed fluctuations. In this work, Probability Density Functions (PDFs) are proposed to fit the wind speed fluctuations distributions in each class. After, to simulate wind speed fluctuations sequences, we use a stochastic differential equation, the Langevin equation considering Gaussian turbulence PDF (class I), Gram–Charlier PDF (class II) and a mixture of gaussian PDF (class III). The statistical and dynamical properties of simulated wind sequences are close to those of measured wind sequences, for each class.

  2. Fluctuations and pattern formation in self-propelled particles.

    Science.gov (United States)

    Mishra, Shradha; Baskaran, Aparna; Marchetti, M Cristina

    2010-06-01

    We consider a coarse-grained description of a collection of self-propelled particles given by hydrodynamic equations for the density and polarization fields. We find that the ordered moving or flocking state of the system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion velocity of the individual units. In this region, the system organizes itself into an inhomogeneous state of well-defined propagating stripes of flocking particles interspersed with low-density disordered regions. Further, we find that even in the regime where the homogeneous flocking state is stable, the system exhibits large fluctuations in both density and orientational order. We study the hydrodynamic equations analytically and numerically to characterize both regimes.

  3. Simultaneous Measurements of Electrostatic and Magnetic Fluctuations in ASDEX Upgrade Edge Plasma

    DEFF Research Database (Denmark)

    Ionita, Codrina; Vianello, Nicola; Müller, H.W.

    2009-01-01

    In ASDEX Upgrade (AUG) electrostatic and magnetic fluctuations in the edge plasma region were measured simultaneously during ELMy H-mode (high confinement) plasmas and L-mode (low confinement) plasmas and during a transition between the two modes. A special probe was used containing six Langmuir...

  4. Study of the fluctuations in neutrons density in a homogeneous plutonium pile; Etude de la fluctuation de la population de neutrons sur une pile homogene au plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clouet d' Orval, C; Deilgat, E; Labbe, J; Molbert, M; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1962-07-01

    The variations in neutron density in the centre of a reactor core are subjected to a statistical fluctuation phenomenon. Because of the correlations existing between the neutrons, their distribution does not follow Poisson's law. It diverges from it by a quantity depending on various parameter such as the lifetime and the effective fraction of the slowed-down neutrons. Experiments have been carried out designed to demonstrate this divergence and also, more particularly, the correlation between unaffected and slowed-down neutrons; these have been carried out with the help of the reactor 'Proserpine', a critical homogeneous plutonium assembly. (author) [French] L'evolution de la population neutronique au sein d'un milieu multiplicateur est soumise a un phenomene de fluctuations statistiques. En raison des correlations qui existent entre les neutrons, leur distribution ne suit pas une loi de Poisson. Elle s'en ecarte d'une quantite qui depend de divers parametres tels que le temps de vie, la proportion effective des neutrons retardes. Des experiences, destinees a mettre en evidence cet ecart, et plus particulierement les correlations entre neutrons prompts et neutrons retardes, ont ete realisees a l'aide de la pile 'Proserpine', experience critique homogene au plutonium. (auteur)

  5. Estimation of piping temperature fluctuations based on external strain measurements

    International Nuclear Information System (INIS)

    Morilhat, P.; Maye, J.P.

    1993-01-01

    Due to the difficulty to carry out measurements at the inner sides of nuclear reactor piping subjected to thermal transients, temperature and stress variations in the pipe walls are estimated by means of external thermocouples and strain-gauges. This inverse problem is solved by spectral analysis. Since the wall harmonic transfer function (response to a harmonic load) is known, the inner side signal will be obtained by convolution of the inverse transfer function of the system and of the strain measurement enables detection of internal temperature fluctuations in a frequency range beyond the scope of the thermocouples. (authors). 5 figs., 3 refs

  6. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  7. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  8. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  9. Supersymmetric curvatons and phase-induced curvaton fluctuations

    International Nuclear Information System (INIS)

    McDonald, John

    2004-01-01

    We consider the curvaton scenario in the context of supersymmetry (SUSY) with gravity-mediated SUSY breaking. In the case of a large initial curvaton amplitude during inflation and a negative order H 2 correction to the mass squared term after inflation, the curvaton will be close to the minimum of its potential at the end of inflation. In this case the curvaton amplitude fluctuations will be damped due to oscillations around the effective minimum of the curvaton potential, requiring a large expansion rate during inflation in order to account for the observed energy density perturbations, in conflict with cosmic microwave background constraints. Here we introduce a new curvaton scenario, the phase-induced curvaton scenario, in which de Sitter fluctuations of the phase of a complex SUSY curvaton field induce an amplitude fluctuation that is unsuppressed even in the presence of a negative order H 2 correction and large initial curvaton amplitude. This scenario is closely related to the Affleck-Dine mechanism and a curvaton asymmetry is naturally generated in conjunction with the energy density perturbations. Cosmological energy density perturbations can be explained with an expansion rate H≅10 12 GeV during inflation

  10. Electrostatic and magnetic measurements of turbulence and transport in Extrap T2

    International Nuclear Information System (INIS)

    Moeller, A.; Sallander, E.

    1999-01-01

    Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge. (author)

  11. Electrostatic and magnetic measurements of turbulence and transport in Extrap T2

    Science.gov (United States)

    Möller, Anders; Sallander, Eva

    1999-10-01

    Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.

  12. Density fluctuations in extended inflation

    International Nuclear Information System (INIS)

    Guth, A.H.; Jain, B.

    1992-01-01

    We estimate the density perturbation spectrum δρ/ρ in the extended inflationary model, in which the scalar curvature is coupled to a Brans-Dicke field. Through a conformal transformation and a redefinition of the Brans-Dicke field, the action of the theory is cast into a form with no coupling to the scalar curvature and a canonical kinetic term for the redefined field. Following Kolb, Salopek, and Turner, we calculate δρ/ρ using the transformed action and the standard recipe developed for conventional inflation. This recipe is expected to give a valid order-of-magnitude estimate, but a precise calculation would require a more careful treatment of several aspects of the problem. The spectrum behaves as a positive power of the wavelength, a feature that might be useful in building models to account for the observed large-scale structure of the universe. Our result for the overall amplitude of density perturbations differs slightly from that of the previous authors, and the reasons for these differences are discussed. We also point out that the conformal transformation method can be applied to a wider class of generalized gravity theories

  13. Hadronic Correlations and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  14. Bridging the gap between event-by-event fluctuation measurements and theory predictions in relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Munzinger, P., E-mail: p.braun-munzinger@gsi.de [Extreme Matter Institute EMMI, GSI, Darmstadt (Germany); Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); Rustamov, A., E-mail: a.rustamov@cern.ch [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany); National Nuclear Research Center, Baku (Azerbaijan); Stachel, J., E-mail: stachel@physi.uni-heidelberg.de [Physikalisches Institut, Universität Heidelberg, Heidelberg (Germany)

    2017-04-15

    We develop methods to deal with non-dynamical contributions to event-by-event fluctuation measurements of net-particle numbers in relativistic nuclear collisions. These contributions arise from impact parameter fluctuations and from the requirement of overall net-baryon number or net-charge conservation and may mask the dynamical fluctuations of interest, such as those due to critical endpoints in the QCD phase diagram. Within a model of independent particle sources we derive formulae for net-particle fluctuations and develop a rigorous approach to take into account contributions from participant fluctuations in realistic experimental environments and at any cumulant order. Interestingly, contributions from participant fluctuations to the second and third cumulants of net-baryon distributions are found to vanish at mid-rapidity for LHC energies while higher cumulants of even order are non-zero even when the net-baryon number at mid-rapidity is zero. At lower beam energies the effect of participant fluctuations increases and induces spurious higher moments. The necessary corrections become large and need to be carefully taken into account before comparison to theory. We also provide a procedure for selecting the optimal phase–space coverage of particles for fluctuation analyses and discuss quantitatively the necessary correction due to global charge conservation.

  15. Radio-frequency slurry-density measurement for dredging pipelines

    NARCIS (Netherlands)

    van Eeten, M.J.C.

    2011-01-01

    Hydraulic dredgers make use of a density meter to measure the instantaneous density in the slurry transport pipeline, primarily for process control and production calculation. the current ‘golden’ standard for slurry density measurement is the radioactive density meter. It is based on a slurry

  16. A portable and independent edge fluctuation diagnostic

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Ritz, C.P.; Wootton, A.J.

    1991-01-01

    The measurements of fluctuations and its associated transport with Langmuir probes have provided essential experimental information for some understanding of the turbulent transport. While such measurements have been conducted in the edge region of several tokamaks, only limited effort has been devoted to link and to consolidate these results: such effort can provide information for a more global understanding of the transport process. The purpose of this project is to provide a portable diagnostic facility to measure the edge turbulence on different devices, a signal processing package to analyze the data in a systematic manner and a database to consolidate the experimental results. The end product which provides a collection of information for the comparisons with the theoretical models may lead to a more global understanding of the transport process. A compact self contained portable system has been designed and developed to diagnose the edge plasma of devices with a wide range of sizes and configurations. The system is capable of measuring both the mean and the fluctuation quantities of density, temperature and potential from a standardized Langmuir probe array using a fast reciprocating probe drive. The system can also be used for other fluctuation diagnostics, such as magnetic probes, if necessary. The data acquisition and analysis is performed on a Macintosh 2fx which provides a user-friendly environment. The results obtained by the signal processing routines are stored in a tabloid format to allow comparative studies. The database is a core part of the portable signal analysis system. It allows a fast display of shot data versus each other, as well as comparison between different devices

  17. Fluctuations and structure of amphiphilic films

    International Nuclear Information System (INIS)

    Gourier, CH.

    1996-01-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  18. Seahorse (Hippocampinae) population fluctuations in the Ria Formosa Lagoon, south Portugal.

    Science.gov (United States)

    Correia, M; Caldwell, I R; Koldewey, H J; Andrade, J P; Palma, J

    2015-09-01

    Comparisons of three sets of surveys in the Ria Formosa Lagoon, Portugal, over a 13 year period (2001-2002, 2008-2009 and 2010-2013) revealed significant population fluctuations in at least one of the two seahorse (Hippocampinae) species living there, and that those fluctuations were potentially associated with habitat changes in the lagoon. After a significant decline between the first two survey periods (2001-2002 v. 2008-2009), long-snouted seahorse Hippocampus guttulatus populations increased significantly between 2008-2009 surveys and new 2010-2013 surveys. There were no significant differences in H. guttulatus populations between the 2001-2002 and 2010-2013 surveys. In contrast, there were no significant differences in short-snouted seahorse Hippocampus hippocampus densities among the 16 sites surveyed throughout the three sampling periods, although the ability to detect any change was hampered by the low densities of this species in all time periods. Fluctuations in H. guttulatus densities were positively correlated with the percentage of holdfast coverage, but with none of the other environmental variables tested. These results highlight the importance of holdfast availability in maintaining stable seahorse populations. While population fluctuations are certainly more promising than a consistent downward decline, such extreme fluctuations observed for seahorses in the Ria Formosa Lagoon could still leave these two species vulnerable to any additional stressors, particularly during low density periods. © 2015 The Fisheries Society of the British Isles.

  19. 1/ f noise from the laws of thermodynamics for finite-size fluctuations.

    Science.gov (United States)

    Chamberlin, Ralph V; Nasir, Derek M

    2014-07-01

    Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.

  20. Probing non-thermal density fluctuations in the one-dimensional Bose gas

    Directory of Open Access Journals (Sweden)

    Jacopo De Nardis, Miłosz Panfil, Andrea Gambassi, Leticia F. Cugliandolo, Robert Konik, Laura Foini

    2017-09-01

    Full Text Available Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times, these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.

  1. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  2. Evaluation of magnetic helicity density in the wave number domain using multi-point measurements in space

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2009-10-01

    Full Text Available We develop an estimator for the magnetic helicity density, a measure of the spiral geometry of magnetic field lines, in the wave number domain as a wave diagnostic tool based on multi-point measurements in space. The estimator is numerically tested with a synthetic data set and then applied to an observation of magnetic field fluctuations in the Earth foreshock region provided by the four-point measurements of the Cluster spacecraft. The energy and the magnetic helicity density are determined in the frequency and the wave number domain, which allows us to identify the wave properties in the plasma rest frame correcting for the Doppler shift. In the analyzed time interval, dominant wave components have parallel propagation to the mean magnetic field, away from the shock at about Alfvén speed and a left-hand spatial rotation sense of helicity with respect to the propagation direction, which means a right-hand temporal rotation sense of polarization. These wave properties are well explained by the right-hand resonant beam instability as the driving mechanism in the foreshock. Cluster observations allow therefore detailed comparisons with various theories of waves and instabilities.

  3. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  4. Method of measuring density of gas in a vessel

    International Nuclear Information System (INIS)

    Shono, Kosuke.

    1981-01-01

    Purpose: To accurately measure the density of a gas in a vessel even at a loss-of-coolant accident in a BWR type reactor. Method: When at least one of the pressure or the temperature of gas in a vessel exceeds the usable range of a gas density measuring instrument due to a loss-of-coolant accident, the gas in the vessel is sampled, and the pressure or the temperature of the sampled gas are measured by matching them to the usable conditions of the gas density measuring instrument. Hydrogen gas and oxygen gas densities exceeding the usable range of the gas density measuring instrument are calculated by the following formulae based on the measured values. C'sub(O) = P sub(T).C sub(O)/P sub(T), C'sub(H) = C''sub(H).C'sub(O)/C''sub(O), where C sub(O), P sub(T), C'sub(H) represent the oxygen density, the total pressure and the hydrogen density of the internal pressure gas of the vessel after the respective gas density measuring instruments exceed the usable ranges; C sub(O), P sub(T) represent the oxygen density and the total pressure of the gas in the vessel before the gas density measuring instruments exceeded the usable range, and C''sub(H), C''sub(O) represent the hydrogen density and oxygen density of the respective sampled gases. (Kamimura, M.)

  5. Active Brownian particles with velocity-alignment and active fluctuations

    International Nuclear Information System (INIS)

    Großmann, R; Schimansky-Geier, L; Romanczuk, P

    2012-01-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case. (paper)

  6. Method of measuring surface density

    International Nuclear Information System (INIS)

    Gregor, J.

    1982-01-01

    A method is described of measuring surface density or thickness, preferably of coating layers, using radiation emitted by a suitable radionuclide, e.g., 241 Am. The radiation impinges on the measured material, e.g., a copper foil and in dependence on its surface density or thickness part of the flux of impinging radiation is reflected and part penetrates through the material. The radiation which has penetrated through the material excites in a replaceable adjustable backing characteristic radiation of an energy close to that of the impinging radiation (within +-30 keV). Part of the flux of the characteristic radiation spreads back to the detector, penetrates through the material in which in dependence on surface density or thickness of the coating layer it is partly absorbed. The flux of the penetrated characteristic radiation impinging on the face of the detector is a function of surface density or thickness. Only that part of the energy is evaluated of the energy spectrum which corresponds to the energy of characteristic radiation. (B.S.)

  7. Gamma densitometer for measuring Pu density in fuel tubes

    International Nuclear Information System (INIS)

    Winn, W.G.

    1982-01-01

    A fuel-gamma-densitometer (FGD) has been developed to examine nondestructively the uniformity of plutonium in aluminum-clad fuel tubes at the Savannah River Plant (SRP). The monitoring technique is γ-ray spectroscopy with a lead-collimated Ge(Li) detector. Plutonium density is correlated with the measured intensity of the 208 keV γ-ray from 237 U (7d) of the 241 Pu (15y) decay chain. The FGD measures the plutonium density within 0.125- or 0.25-inch-diameter areas of the 0.133- to 0.183-inch-thick tube walls. Each measurement yields a density ratio that relates the plutonium density of the measured area to the plutonium density in normal regions of the tube. The technique was used to appraise a series of fuel tubes to be irradated in an SRP reactor. High-density plutonium areas were initially identified by x-ray methods and then examined quantitatively with the FGD. The FGD reliably tested fuel tubes and yielded density ratios over a range of 0.0 to 2.5. FGD measurements examined (1) nonuniform plutonium densities or hot spots, (2) uniform high-density patches, and (3) plutonium density distribution in thin cladding regions. Measurements for tubes with known plutonium density agreed with predictions to within 2%. Attenuation measurements of the 208-keV γ-ray passage through the tube walls agreed to within 2 to 3% of calculated predictions. Collimator leakage measurements agreed with model calculations that predicted less than a 1.5% effect on plutonium density ratios. Finally, FGD measurements correlated well with x-ray transmission and fluoroscopic measurements. The data analysis for density ratios involved a small correction of about 10% for γ-shielding within the fuel tube. For hot spot examinations, limited information for this correction dictated a density ratio uncertainty of 3 to 5%

  8. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  9. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    Science.gov (United States)

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  10. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  11. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Science.gov (United States)

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  12. Spin fluctuations and low temperature features of thermal coefficient of linear expansion of iron monosilicide

    International Nuclear Information System (INIS)

    Volkov, A.G.; Kortov, S.V.; Povzner, A.A.

    1996-01-01

    The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density

  13. Self-similar density turbulence in the TCV tokamak scrape-off layer

    International Nuclear Information System (INIS)

    Graves, J P; Horacek, J; Pitts, R A; Hopcraft, K I

    2005-01-01

    Plasma fluctuations in the scrape-off layer (SOL) of the TCV tokamak exhibit statistical properties which are universal across a broad range of discharge conditions. Electron density fluctuations, from just inside the magnetic separatrix to the plasma-wall interface, are described well by a gamma distributed random variable. The density fluctuations exhibit clear evidence of self-similarity in the far SOL, such that the corresponding probability density functions collapse upon renormalization solely by the mean particle density. This constitutes a demonstration that the amplitude of the density fluctuations is simply proportional to the mean density and is consistent with the further observation that the radial particle flux fluctuations scale solely with the mean density over two orders of magnitude. Such findings indicate that it may be possible to improve the prediction of transport in the critical plasma-wall interaction region of future large scale tokamaks. (letter to the editor)

  14. Smart density: A more accurate method of measuring rural residential density for health-related research.

    Science.gov (United States)

    Owens, Peter M; Titus-Ernstoff, Linda; Gibson, Lucinda; Beach, Michael L; Beauregard, Sandy; Dalton, Madeline A

    2010-02-12

    Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. We compared residential density (units/acre) in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block) with two GIS buffer measures: a 1-kilometer (km) circle around the school and a 1-km circle intersected with a 100-meter (m) road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  15. Smart density: a more accurate method of measuring rural residential density for health-related research

    Directory of Open Access Journals (Sweden)

    Gibson Lucinda

    2010-02-01

    Full Text Available Abstract Background Studies involving the built environment have typically relied on US Census data to measure residential density. However, census geographic units are often unsuited to health-related research, especially in rural areas where development is clustered and discontinuous. Objective We evaluated the accuracy of both standard census methods and alternative GIS-based methods to measure rural density. Methods We compared residential density (units/acre in 335 Vermont school neighborhoods using conventional census geographic units (tract, block group and block with two GIS buffer measures: a 1-kilometer (km circle around the school and a 1-km circle intersected with a 100-meter (m road-network buffer. The accuracy of each method was validated against the actual residential density for each neighborhood based on the Vermont e911 database, which provides an exact geo-location for all residential structures in the state. Results Standard census measures underestimate residential density in rural areas. In addition, the degree of error is inconsistent so even the relative rank of neighborhood densities varies across census measures. Census measures explain only 61% to 66% of the variation in actual residential density. In contrast, GIS buffer measures explain approximately 90% of the variation. Combining a 1-km circle with a road-network buffer provides the closest approximation of actual residential density. Conclusion Residential density based on census units can mask clusters of development in rural areas and distort associations between residential density and health-related behaviors and outcomes. GIS-defined buffers, including a 1-km circle and a road-network buffer, can be used in conjunction with census data to obtain a more accurate measure of residential density.

  16. Level density of 57Co

    International Nuclear Information System (INIS)

    Mishra, V.; Boukharouba, N.; Brient, C.E.; Grimes, S.M.; Pedroni, R.S.

    1994-01-01

    Levels in 57 Co have been studied in the region of resolved levels (E 57 Fe(p,n) 57 Co neutron spectrum with resolution ΔE∼5 keV. Seventeen previously unknown levels are located. Level density parameters in the continuum region are deduced from thick target measurements of the same reaction and additional level density information is deduced from Ericson fluctuation studies of the reaction 56 Fe(p,n) 56 Co. A set of level density parameters is found which describes the level density of 57 Co at energies up to 14 MeV. Efforts to obtain level density information from the 56 Fe(d,n) 57 Co reaction were unsuccessful, but estimates of the fraction of the deuteron absorption cross section corresponding to compound nucleus formation are obtained

  17. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    Science.gov (United States)

    2009-08-01

    Fluctuation Cone The Pressure-Fluctuation Cone was used for all wind-tunnel tests (Figure 3.7). The model is a 7◦ half-angle stainless - steel cone. It...analysis as a medium for fault detection: A review. Journal of Tribology , 130, January 2008. [80] L. M. Mack. Boundary layer linear stability theory. In

  18. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    Science.gov (United States)

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  19. Fluctuations and dark count rates in superconducting NbN single-photon detectors

    International Nuclear Information System (INIS)

    Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael

    2005-01-01

    We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Fluctuation measurements by Langmuir probes during LHCD on ASDEX tokamak

    International Nuclear Information System (INIS)

    Stoeckel, J.

    1991-01-01

    The level of edge electrostatic fluctuations decreases and the global particle/energy confinement improves during lower hybrid current drive (LHCD) regimes on ASDEX, when the total power remains below the initial OH power level. For higher powers, the fluctuations increase noticeably, whereas the global confinement is returning to its OH value. The observed increase of fluctuations is poloidally asymmetric and is caused by local power deposition in front of the grill antenna. (orig.)

  1. Superconducting fluctuations and characteristic time scales in amorphous WSi

    Science.gov (United States)

    Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas

    2018-05-01

    We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.

  2. Measuring past glacier fluctuations from historic photographs geolocated using Structure from Motion

    Science.gov (United States)

    Vargo, L.; Anderson, B.; Horgan, H. J.; Mackintosh, A.; Lorrey, A.; Thornton, M.

    2017-12-01

    Quantifying glacier fluctuations is important for understanding how the cryosphere responds to climate variability and change. Photographs of past ice extents have become iconic images of climate change, but until now incorporating these images into quantitative estimates of glacier change has been problematic. We present a new method to quantitatively measure past glacier fluctuations from historic images. The method uses a large set of modern geolocated photographs and Structure from Motion (SfM) to calculate the camera parameters for the historic images, including the location from which they were taken. We initially apply this method to a small maritime New Zealand glacier (Brewster Glacier, 44°S, 2 km2), and quantify annual equilibrium line altitudes (ELAs) and length changes from historic oblique aerial photographs (1981 - 2017). Results show that Brewster has retreated 364 ± 12 m since 1981 and, using independent field measurements of terminus positions (2005 - 2014), we show that this SfM-derived length record accurately captures glacier change. We calculate the uncertainties associated with this method using known coordinates of bedrock features surrounding the glacier. Mean uncertainties in the ELA and length records are 7 m and 11 m, respectively. In addition to Brewster, 49 other New Zealand glaciers have been monitored by aerial photographs since 1978. However, the length records for these glaciers only include years of relative advance or retreat, and no length changes have been quantified. We will ultimately apply this method to all 50 glaciers, expanding the database of New Zealand glacier fluctuations that until now included only a few glaciers. This method can be further applied to any glacier with historic images, and can be used to measure past changes in glacier width, area, and surface elevation in addition to ELA and length.

  3. Electron density measurements in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O; Nakashima, H; Nakamura, K; Hiraki, N; Toi, K [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10/sup 13/ cm/sup -3/ is measured.

  4. Electron density measurements in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Mitarai, Osamu; Nakashima, Hisatoshi; Nakamura, Kazuo; Hiraki, Naoji; Toi, Kazuo

    1980-01-01

    Electron density measurements in the TRIAM-1 tokamak are carried out by a 140 GHz microwave interferometer. To follow rapid density variations, a high-speed direct-reading type interferometer is constructed. The density of (1 - 20) x 10 13 cm -3 is measured. (author)

  5. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Groebner, R. J.; Osborne, T. H.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T. L. [Physics and Astronomy Department, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Smith, D. R. [Department of Engineering Physics, 1500 Engineering Dr., Madison, Wisconsin 53706 (United States); Canik, J. M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States)

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.

  6. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    International Nuclear Information System (INIS)

    Diallo, A.; Battaglia, D. J.; Guttenfelder, W.; Groebner, R. J.; Osborne, T. H.; Snyder, P. B.; Rhodes, T. L.; Smith, D. R.; Canik, J. M.

    2015-01-01

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution including its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. The saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Thus, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant

  7. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  8. Rapid density-measurement system with vibrating-tube densimeter

    International Nuclear Information System (INIS)

    Kayukawa, Yohei; Hasumoto, Masaya; Watanabe, Koichi

    2003-01-01

    Concerning an increasing demand for environmentally friendly refrigerants including hydrocarbons, thermodynamic properties of such new refrigerants, especially densities, are essential information for refrigeration engineering. A rapid density-measurement system with vibrating-tube densimeter was developed in the present study with an aim to supply large numbers of high-quality PVT property data in a short period. The present system needs only a few minutes to obtain a single datum, and requires less than 20 cm 3 sample fluid. PVT properties in the entire fluid-phase, vapor-pressures, saturated-liquid densities for pure fluid are available. Liquid densities, bubble-point pressures and saturated-liquid densities for mixture can be obtained. The measurement range is from 240 to 380 K for temperature and up to 7 MPa for pressure. By employing a new calibration function, density can be precisely obtained even at lower densities. The densimeter is calibrated with pure water and iso-octane which is one of the density-standard fluids, and then measurement uncertainty was evaluated to be 0.1 kg m -3 or 0.024% whichever greater in density, 0.26 kPa or 0.022% whichever greater in pressure and 3 mK for temperature, respectively. The performance of the present measurement system was examined by measuring thermodynamic properties for refrigerant R134a. The experimental results were compared with available equation of state and confirmed to agree with it within ±0.05% for liquid densities while ±0.5% in pressure for the gas phase

  9. Plasma parameters, fluctuations and kinetics in a magnetic field line reconnection experiment

    International Nuclear Information System (INIS)

    Wild, N.C. Jr.

    1983-01-01

    The processes associated with reconnecting magnetic field lines have been studied in a large experimental laboratory plasma. Detailed time- and space-resolved probe measurements of the plasma density, temperature, potential and electric and magnetic fields are discussed. Plasma currents are seen to modify the vacuum magnetic field topology. A flat neutral sheet develops along the separatrix where magnetic flux is transferred from regions of private to common flux. Forced tearing and magnetic island formation are also observed. Rapid electron heating, density and temperature nonuniformities and plasma potential gradients are all observed. The pressure is found to peak at the two edges of the neutral sheet. The dissipation E.J is determined and analyzed in terms of particle heating and fluid acceleration. A consistent, detailed picture of the energy flow via Poynting's theorem is also described. Significant temporal fluctuations in the magnetic fields and electron velocity distribution are measured and seen to give rise to anomalously high values for the plasma resistivity, the ion viscosity and the cross-field thermal conductivity. Electron temperature fluctuations, double layers associated with partial current disruptions, and whistler wave magnetic turbulence have all been identified and studied during the course of the reconnection event

  10. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.E.

    1992-05-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus (MST) reversed field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The evolution of the ion and electron temperature, as well as density and charge exchange power loss, were measured for a series of reproducible discharges. The ion heating expected from collisional processes with the electrons is calculated and shown too small to explain the measured ion temperatures. The charge exchange determined ion temperature is also compared to measurements of the thermally broadened CV 227.1 nm line. The ion temperature, T i ∼ 250 eV for I = 360 kA, increases by more than 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5 endash 5 MHz were also measured during the dynamo bursts. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion cyclotron frequencies. Theoretical models for ion heating are reviewed and discussed in light of the experimental results. Similar electron heating mechanisms may be responsible for the discrepancy between measured and expected loop voltages in the RFP. The electrons, as well as the ions, may be heated by turbulent mechanisms, and a RFP energy budget including such phenomena is described

  11. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy).

    Science.gov (United States)

    Battipaglia, Giovanna; DE Micco, Veronica; Brand, Willi A; Saurer, Matthias; Aronne, Giovanna; Linke, Petra; Cherubini, Paolo

    2014-02-01

    Erica arborea (L) is a widespread Mediterranean species, able to cope with water stress and colonize semiarid environments. The eco-physiological plasticity of this species was evaluated by studying plants growing at two sites with different soil moistures on the island of Elba (Italy), through dendrochronological, wood-anatomical analyses and stable isotopes measurements. Intra-annual density fluctuations (IADFs) were abundant in tree rings, and were identified as the key parameter to understand site-specific plant responses to water stress. Our findings showed that the formation of IADFs is mainly related to the high temperature, precipitation patterns and probably to soil water availability, which differs at the selected study sites. The recorded increase in the (13) C-derived intrinsic water use efficiency at the IADFs level was linked to reduced water loss rather than to increasing C assimilation. The variation in vessel size and the different absolute values of δ(18) O among trees growing at the two study sites underlined possible differences in stomatal control of water loss and possible differences in sources of water uptake. This approach not only helped monitor seasonal environmental differences through tree-ring width, but also added valuable information on E. arborea responses to drought and their ecological implications for Mediterranean vegetation dynamics. © 2013 John Wiley & Sons Ltd.

  12. Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions

    Science.gov (United States)

    Castle, James R.

    The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation

  13. Faraday polarization fluctuations of satellite beacon signals

    Science.gov (United States)

    Lee, M. C.; Klobuchar, J. A.

    1988-01-01

    The anisotropic effects of random density irregularities in causing Faraday polarization fluctuations of VHF radio signals are examined, taking both rod-like and sheet-like irregularities into consideration. It is found that the variance of Faraday polarization fluctuations depends on the ratio of perpendicular to parallel correlation lengths. The anisotropic effect of rod-like ionospheric irregularities are shown to be most appreciable for longitudinal propagation. The anisotropic effect of sheet-like ionospheric irregularities, however, is not strongly dependent on the radio propagation angle. During transionospheric propagation at large angles with respect to the geomagnetic field, sheet-like irregularities may cause greater Faraday polarization fluctuations than rod-like irregularities.

  14. Interferometric investigation of turbulently fluctuating temperature in an LMFBR outlet plenum geometry

    International Nuclear Information System (INIS)

    Bennett, R.G.; Golay, M.W.

    1975-01-01

    A novel optical technique is described for the measurement of turbulently fluctuating temperature in a transparent fluid flow. The technique employs a Mach-Zehnder interferometer of extremely short field and a simple photoconductive diode detector. The system produces a nearly linear D.C. electrical analog of the turbulent temperature fluctuations in a small, 1 mm 3 volume. The frequency response extends well above 2500 Hz, and can be improved by the choice of a more sophisticated photodetector. The turbulent sodium mixing in the ANL 1 1 / 15 -scale FFTF outlet plenum is investigated with a scale model outlet mixing plenum, using flows of air. The scale design represents a cross section of the ANL outlet plenum, so that the average recirculating flow inside the test cell is two dimensional. The range of the instrument is 120 0 F above the ambient air temperature. The accuracy is generally +-5 0 F, with most of the error due to noise originating from building vibrations and room noise. The power spectral density of the fluctuating temperature has been observed experimentally at six different stations in the flow. A strong 300 Hz component is generated in the inlet region, which decays as the flow progresses along streamlines. The effect of the inlet Reynolds number and the temperature difference between the inlet flows on the power spectral density has also been investigated. Traces of the actual fluctuating temperature are included for the six stations

  15. Quenched disorder and thermopower fluctuations in high temperature superconductors

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1997-01-01

    Thermopower behavior in high temperature superconductors YBa 2 Cu 3 O 7-δ single crystals near the transition temperature was examined. An expression for the thermoelectric power containing the divergent term (1-T/T c ) -s , where s is a scaling exponent that does not appear in Maki's calculations, was derived. This divergent term is the result of contributions due to the flow of currents across disordered conduction paths in the sample. These currents are driven by the density gradients of the conductivity fluctuations as a result of the increased disorder due to the existence of amorphous regions in the two-dimensional lattice. The present calculations include the most divergent effects to the thermopower due to the conductivity fluctuations near the transition temperature. The model predictions are in good agreement with recent experimental measurements reported in the literature. (orig.)

  16. Mammography density estimation with automated volumetic breast density measurement

    International Nuclear Information System (INIS)

    Ko, Su Yeon; Kim, Eun Kyung; Kim, Min Jung; Moon, Hee Jung

    2014-01-01

    To compare automated volumetric breast density measurement (VBDM) with radiologists' evaluations based on the Breast Imaging Reporting and Data System (BI-RADS), and to identify the factors associated with technical failure of VBDM. In this study, 1129 women aged 19-82 years who underwent mammography from December 2011 to January 2012 were included. Breast density evaluations by radiologists based on BI-RADS and by VBDM (Volpara Version 1.5.1) were compared. The agreement in interpreting breast density between radiologists and VBDM was determined based on four density grades (D1, D2, D3, and D4) and a binary classification of fatty (D1-2) vs. dense (D3-4) breast using kappa statistics. The association between technical failure of VBDM and patient age, total breast volume, fibroglandular tissue volume, history of partial mastectomy, the frequency of mass > 3 cm, and breast density was analyzed. The agreement between breast density evaluations by radiologists and VBDM was fair (k value = 0.26) when the four density grades (D1/D2/D3/D4) were used and moderate (k value = 0.47) for the binary classification (D1-2/D3-4). Twenty-seven women (2.4%) showed failure of VBDM. Small total breast volume, history of partial mastectomy, and high breast density were significantly associated with technical failure of VBDM (p 0.001 to 0.015). There is fair or moderate agreement in breast density evaluation between radiologists and VBDM. Technical failure of VBDM may be related to small total breast volume, a history of partial mastectomy, and high breast density.

  17. Neutrino propagation in a fluctuating sun

    International Nuclear Information System (INIS)

    Burgess, C.P.; Michaud, D.

    1997-01-01

    We adapt to neutrino physics a general formulation for particle propagation in fluctuating media, initially developed for applications to electromagnetism and neutron optics. In leading approximation this formalism leads to the usual MSW effective Hamiltonian governing neutrino propagation through a medium. Next-to-leading contributions describe deviations from this description, which arise due to neutrino interactions with fluctuations in the medium. We compute these corrections for two types of fluctuations: (i) microscopic thermal fluctuations and (ii) macroscopic fluctuations in the medium s density. While the first of these reproduces standard estimates, which are negligible for applications to solar neutrinos, we find that the second can be quite large, since it grows in size with the correlation length of the fluctuation. We consider two models in some detail. For fluctuations whose correlations extend only over a local region in space of length l, appreciable effects for MSW oscillations arise if (δn/n) 2 l approx-gt 100m or so. Alternatively, a crude model of helioseismic p-waves gives appreciable effects only when (δn/n)approx-gt 1%. In general the dominant effect is to diminish the quality of the resonance, making the suppression of the 7 Be neutrinos a good experimental probe of fluctuations deep within the sun. Fluctuations can also provide a new mechanism for reducing the solar neutrino flux, giving an energy-independent suppression factor of 1/2 away from the resonant region, even for small vacuum mixing angles. copyright 1997 Academic Press, Inc

  18. Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology.

    Science.gov (United States)

    Smith, Rosanna C G; Stumpf, Patrick S; Ridden, Sonya J; Sim, Aaron; Filippi, Sarah; Harrington, Heather A; MacArthur, Ben D

    2017-06-20

    A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can systematically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of Nanog, we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations of Nanog variability and highlight the problem of measurement in live cells. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Measurement of pressure fluctuation in gas-liquid two-phase vortex street

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Sang Wenhui; Zhang Hongjian

    2009-01-01

    The pressure fluctuation in the wake is an important parameter to characterize the shedding process of gas-liquid two-phase Karman vortex street. This paper investigated such pressure fluctuations in a horizontal pipe using air and water as the tested fluid media. The dynamic signal representing the pressure fluctuation was acquired by the duct-wall differential pressure method. Results show that in the wake of the gas-liquid two-phase Karman vortex street, the frequency of the pressure fluctuation is linear with the Reynolds number when the volume void fraction is within the range of 18%. Moreover, the mean amplitude of the pressure fluctuation decreases with the volume void fraction, and the mean amplitude is larger at higher water flowrates under the same volume void fraction. These findings contribute to an in-depth understanding of the gas-liquid two-phase Karman vortex street.

  20. Edge fluctuation studies in Heliotron J

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Chechkin, V.V.; Ohashi, K.; Sorokovoy, E.L.; Chechkin, A.V.; Gonchar, V.Yu.; Takahashi, K.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Yamamoto, S.; Sano, F.; Kondo, K.; Nishino, N.; Kawazome, H.; Shidara, H.; Kaneko, S.; Fukagawa, Y.; Morita, Y.; Nakazawa, S.; Nishio, S.; Tsuboi, S.; Yamada, M.

    2005-01-01

    Low frequency and small-scale fluctuations of density and potential near the last closed flux surface are investigated by using Langmuir probes for the second harmonic ECH plasmas in a helical-axis heliotron device, Heliotron J. The existence of a plasma layer with a radial electric field shear was indicated near the last closed flux surface. Near this layer, the reversal of phase velocity and de-correlation of the fluctuations were observed. On the other hand, it is suggested that a considerable fraction of the fluctuation induced particle flux is carried off through the intermittent events. Preliminary analyses to classify the PDFs of the ion-saturation current fluctuation as stable Levy distributions demonstrate that the Levy index decreases from the inner to the outer region of edge plasma, suggesting that the PDFs near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer regions of plasma they become strongly non-Gaussian

  1. Transition in plasma fluctuation between attached and detached plasmas

    International Nuclear Information System (INIS)

    Okazaki, Katsuya; Ohno, Noriyasu; Kajita, Shin; Tanaka, Hirohiko

    2012-01-01

    The static and dynamic behaviors of detached plasmas have received considerable attention because the use of a detached divertor is thought to provide a promising method for reducing the heat flux to plasma-facing components. In this study, fluctuations were measured with an electrostatic probe as the plasma was changed from attached to detached states by increasing the neutral gas pressure. The transition from an attached plasma to a detached plasma was found to change the phase relation between the density and the potential. (author)

  2. Fluctuations in collisional plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Momot, A. I.; Zagorodny, A. G.

    2011-01-01

    The theory of large-scale fluctuations in a plasma is used to calculate the correlations functions of electron and ion density with regard to particle collisions described within the Bhatnagar-Gross-Krook (BGK) model and the presence of a constant external electric field. The changes of plasma particle distribution functions due to an external electric field and their influence on the plasma dielectric response are taken into account. The dispersion relations for longitudinal waves in such a plasma are studied in details. It is shown that external electric field can lead to the ion-acoustic wave instability and anomalous growth of the fluctuation level. Detailed numerical studies of the general relations for electron number density fluctuations are performed and the effect of external electric field on the fluctuation spectra is studied.

  3. Concentration fluctuations in gas releases by industrial accidents

    DEFF Research Database (Denmark)

    Nielsen, M.; Chatwin, P.C.; Ejsing Jørgensen, Hans

    2002-01-01

    The COFIN project studied existing remote-sensing Lidar data on concentration fluctuations in atmospheric dispersion from continuous sources at ground level. Fluctuations are described by stochastic models developed by a combination of statisticalanalyses and surface-layer scaling. The statistical...... and the probability distribution for the plume centreline. The distance-neighbour function generalizedfor higher-order statistics has a universal exponential shape. Simulation tools for concentration fluctuations have been developed for either multiple correlated time series or multi-dimensional fields. These tools...... moments and probability density distribution of the fluctuations are most accurately determined in a frame of reference following the instantaneous plume centreline. The spatial distribution of thesemoments is universal with a gaussian core and exponential tails. The instantaneous plume width...

  4. Critical fluctuations of the proton density in A+A collisions at 158A GeV

    Energy Technology Data Exchange (ETDEWEB)

    Anticic, T.; Kadija, K.; Susa, T. [Rudjer Boskovic Institute, Zagreb (Croatia); Baatar, B.; Kolesnikov, V.I.; Malakhov, A.I.; Melkumov, G.L. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bartke, J.; Kowalski, M.; Rybicki, A. [Polish Academy of Science, H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland); Beck, H.; Blume, C.; Book, J.; Mitrovski, M.; Renfordt, R.; Rustamov, A.; Schuster, T.; Stock, R.; Stroebele, H. [Fachbereich Physik der Universitaet, Frankfurt (Germany); Betev, L.; Buncic, P.; Karev, A. [CERN, Geneva (Switzerland); Bialkowska, H.; Boimska, B. [National Center for Nuclear Research, Warsaw (Poland); Bogusz, M.; Cetner, T.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Peryt, W.; Pluta, J.; Slodkowski, M.; Szuba, M. [Warsaw University of Technology, Faculty of Physics, Warsaw (Poland); Botje, M.; Christakoglou, P.; Leeuwen, M. van [NIKHEF, Amsterdam (Netherlands); Chvala, O. [Charles University, Institute of Particle and Nuclear Physics, Prague (Czech Republic); Cramer, J.; Prindle, D. [University of Washington, Nuclear Physics Laboratory, Seattle, WA (United States); Eckardt, V.; Schmitz, N.; Seyboth, P. [Max-Planck-Institut fuer Physik, Munich (Germany); Fodor, Z.; Laszlo, A.; Palla, G.; Sikler, F.; Veres, G.I.; Vesztergombi, G. [Hungarian Academy of Sciences, Wigner Research Center for Physics, Budapest (Hungary); Foka, P.; Friese, V.; Hoehne, C.; Kresan, D.; Sandoval, A.; Vranic, D. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Gazdzicki, M. [Fachbereich Physik der Universitaet, Frankfurt (Germany); Jan Kochanowski University, Institute of Physics, Kielce (Poland); Makariev, M. [BAS, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Mateev, M. [Sofia University St. Kliment Ohridski, Atomic Physics Department, Sofia (Bulgaria); Mrowczynski, S.; Rybczynski, M.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Panagiotou, A.D.; Vassiliou, M.; Antoniou, N.G.; Davis, N.; Diakonos, F.K. [University of Athens, Department of Physics, Athens (Greece); Puehlhofer, F. [Fachbereich Physik der Universitaet, Marburg (Germany); Roland, C.; Roland, G. [MIT, Cambridge, MA (United States); Skrzypczak, E. [University of Warsaw, Institute for Experimental Physics, Warsaw (Poland); Varga, D. [Eoetvoes Lorant University, Budapest (Hungary); Collaboration: (NA49 Collaboration)

    2015-12-15

    We look for fluctuations expected for the QCD critical point using an intermittency analysis in the transverse momentum phase space of protons produced around midrapidity in the 12.5 % most central C+C, Si+Si and Pb+Pb collisions at the maximum SPS energy of 158A GeV. We find evidence of power-law fluctuations for the Si+Si data. The fitted power-law exponent φ{sub 2} = 0.96{sub -0.25}{sup +0.38}(stat.)±0.16(syst.) is consistent with the value expected for critical fluctuations. Power-law fluctuations had previously also been observed in low-mass π{sup +}π{sup -} pairs in the same Si+Si collisions. (orig.)

  5. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  6. Stochastic transport models for mixing in variable-density turbulence

    Science.gov (United States)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  7. Dispersion of a Passive Scalar Fluctuating Plume in a Turbulent Boundary Layer. Part I: Velocity and Concentration Measurements

    Science.gov (United States)

    Nironi, Chiara; Salizzoni, Pietro; Marro, Massimo; Mejean, Patrick; Grosjean, Nathalie; Soulhac, Lionel

    2015-09-01

    The prediction of the probability density function (PDF) of a pollutant concentration within atmospheric flows is of primary importance in estimating the hazard related to accidental releases of toxic or flammable substances and their effects on human health. This need motivates studies devoted to the characterization of concentration statistics of pollutants dispersion in the lower atmosphere, and their dependence on the parameters controlling their emissions. As is known from previous experimental results, concentration fluctuations are significantly influenced by the diameter of the source and its elevation. In this study, we aim to further investigate the dependence of the dispersion process on the source configuration, including source size, elevation and emission velocity. To that end we study experimentally the influence of these parameters on the statistics of the concentration of a passive scalar, measured at several distances downwind of the source. We analyze the spatial distribution of the first four moments of the concentration PDFs, with a focus on the variance, its dissipation and production and its spectral density. The information provided by the dataset, completed by estimates of the intermittency factors, allow us to discuss the role of the main mechanisms controlling the scalar dispersion and their link to the form of the PDF. The latter is shown to be very well approximated by a Gamma distribution, irrespective of the emission conditions and the distance from the source. Concentration measurements are complemented by a detailed description of the velocity statistics, including direct estimates of the Eulerian integral length scales from two-point correlations, a measurement that has been rarely presented to date.

  8. Stochastic approach and fluctuation theorem for charge transport in diodes

    Science.gov (United States)

    Gu, Jiayin; Gaspard, Pierre

    2018-05-01

    A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.

  9. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  10. Fluctuation measurements at c/ωpe spatial scales in a tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.; Tan, I.H.; Prager, S.C.

    1994-07-01

    Magnetic and electrostatic fluctuations have been measured at the short scale length of the collisionless skin depth (c/ω pe using small magnetic and electrostatic probes in the Tokapole II tokamak. For certain conditions and at high frequency (MHz range) the amplitude is observed to increase as wavelength is decreased toward the c/ω pe scale. Wavelength dependence is inferred from measurements with probes of varying sizes. The amplitude of the turbulence at the c/ω pe scale is smaller than the dominant low frequency turbulence, and is thus not relevant to transport in Tokapole II. Comparison with theoretical treatments of c/ω pe turbulence is discussed

  11. The text neutral lithium beam edge density diagnostic

    International Nuclear Information System (INIS)

    Howald, A.M.; McChesney, J.M.; West, W.P.

    1994-07-01

    A fast neutral lithium beam has been installed on the TEXT tokamak for Beam Emission Spectroscopy (BES) studies of the edge plasma electron density profile. The diagnostic was recently upgraded from ten to twenty spatial channels, each of which has two detectors, one to measure lithium beam signal and one to monitor plasma background light. The spatial resolution is 6 mm, and the temporal resolution is designed to be as high as 10 ms for studies of transient events including plasma density fluctuations. Initial results are presented from the ten-channel system: Edge electron densities unfolded from the LiI(2 s 2 S - 2 p 2 P) 670.8 nm emission profile have the same general time dependence as the line-averaged density measured by microwave interferometry

  12. Nuclear dynamics of zero point fluctuations in ordinary and in gauge space

    International Nuclear Information System (INIS)

    Broglia, R.A.; Barranco, F.; Gallardo, M.

    1985-01-01

    The change of the nuclear density due to the zero point fluctuations associated with surface modes are calculated making use of field theoretical many-body techniques. For medium heavy nuclei the density renormalizations (vertex corrections) are much smaller than the potential renormalizations (self-energy contributions). The microscopic results agree well with the results of the collective model. Zero point fluctuations associated with pairing vibrations renormalize the properties of strongly rotating nuclei around the critical frequency at which the pairing phase transition takes place. Fluctuations of the pairing field play also an important role in the sub-barrier fusion cross section associated with the 58 Ni+ 64 Ni reaction. (orig.)

  13. Dynamics of voids and clusters and fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Salpeter, E.E.

    1983-01-01

    The author summarizes briefly calculations on spherically symmetric models without dissipation for the dynamical development of large voids and galaxy (super)clusters from small underdensities and overdensities, respectively, at the recombination era. Implications are mentioned and conjectures for more complex geometries are discussed. He infers the density fluctuations which must have been present just after the recombination era to produce some present-day configuration. Fluctuations in the present-day cosmic background radiation are related to this and their inferred amplitude depends very strongly on the present-day value of the cosmological density parameter. The relation to observed upper limits on these fluctuations are discussed. (Auth.)

  14. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2017-11-01

    Full Text Available Based on the coalescence model for light nuclei production, we show that the yield ratio Op-d-t=NH3Np/Nd2 of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn=〈(δn2〉/〈n〉2 at kinetic freeze-out. From recent experimental data in central Pb+Pb collisions at sNN=6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS, we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at sNN=8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ∼144 MeV and baryon chemical potential of ∼385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.

  15. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  16. Fluctuations in an Inorganic Glass Forming System Capable of Liquid-Liquid Phase Separation

    Science.gov (United States)

    Bogdanov, V.; Maksimov, L.; Anan'ev, A.; Nemilov, S.; Rusan, V.

    2012-08-01

    Rayleigh and Mandel'shtam-Brillouin scattering (RMBS) spectroscopy and high temperature ultrasonic study (HTUS) are applied to PbO-Al2O3-B2O3 glass forming system characterized by over liquidus miscibility gap. Temperature dependences of ultrasonic velocity of glass melts were measured in 600-1200°C range. "Frozen-in" density fluctuations in two phase glasses were estimated from HTUS data by Macedo-Shroeder formulation. Landau-Placzek ratios were found from RMBS spectra of single phase glasses at room temperature. Results of RMBS and HTUS were compared with well-known SAXS data. It was found that contribution of "frozen-in" density fluctuations into light scattering by two-phase glasses is much smaller than the scattering on particles of the second glassy phase causing opalescence of the glasses. Abnormal "water-like" growth of ultrasonic velocity with melt temperature can be explained by coexistence of two types of packaging of structural elements.

  17. Statistical properties of fluctuations of time series representing appearances of words in nationwide blog data and their applications: An example of modeling fluctuation scalings of nonstationary time series.

    Science.gov (United States)

    Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako

    2016-11-01

    To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.

  18. Dissipative neutrino oscillations in randomly fluctuating matter

    International Nuclear Information System (INIS)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis

  19. Dissipative neutrino oscillations in randomly fluctuating matter

    Science.gov (United States)

    Benatti, F.; Floreanini, R.

    2005-01-01

    The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to be physically untenable: A more general model needs to be instead considered, leading to flavor changing effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino oscillation pattern in a way amenable to a direct experimental analysis.

  20. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  1. Electronic and magnetic phase separation in EuB6. Fluctuation spectroscopy and nonlinear transport

    International Nuclear Information System (INIS)

    Amyan, Adham

    2013-01-01

    The main topics of this thesis are electrical, stationary, and time-resolved transport measurements on EuB 6 as well as the further development of measuring methods and analysis procedures of the fluctuation spectroscopy. The first part of this thesis was dedicated to the further development of the already known measuring methods under application of a fast data-acquisition card. The second part deals with the electrical transport properties of EuB 6 and the understanding of the coupling between charge and magnetic degrees of freedom. By means of resistance and nonlinear-transport measurements as well as fluctuation spectroscopy hypotheses of other scientists were systematically verified as well as new knowledge obtained. The magnetoresistance was studied as function of the temperature in small external magnetic fields between 1 mT and 700 mT. Measurements of the third harmonic resistance as function of the temperature show maxima at T MI and T C . Electrical-resistance fluctuations were measured without external magnetic field between 5 and 100 K as well in presence of a magnetic field between 18 K and 32 K. At constant temperature measurements of the spectral power density in external magnetic fields were performed in the temperature range from 18 K to 32 K. Highly resolving measurements of the thermal expansion coefficient showed a very strong coupling of the magnetic (polaronic) degrees of freedom to the crystal lattice.

  2. Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities.

    Science.gov (United States)

    Wang, Hsiao-Hsuan; Grant, W E; Teel, P D; Hamer, S A

    2015-12-01

    Tick vector systems are comprised of complex climate-tick-host-landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially-explicit, individual-based model, parameterized to represent ecological conditions typical of the south-central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size-class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host-class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system-level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co-occurrence of actively host-seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host-seeking ticks in the system were due primarily to the degree of co-occurrence of periods of high densities of unfed ticks and periods of high densities

  3. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  4. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    International Nuclear Information System (INIS)

    Yoon, P. H.; Schlickeiser, R.; Kolberg, U.

    2014-01-01

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result

  5. Impact of quantum entanglement on spectrum of cosmological fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi, E-mail: sugumi.kanno@uct.ac.za [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa)

    2014-07-01

    We investigate the effect of entanglement between two causally separated open charts in de Sitter space on the spectrum of vacuum fluctuations. We consider a free massive scalar field, and construct the reduced density matrix by tracing out the vacuum state for one of the open charts, as recently derived by Maldacena and Pimentel. We formulate the mean-square vacuum fluctuations by using the reduced density matrix and show that the scale invariant spectrum of massless scalar field is realized on small scales. On the other hand, we find that the quantum entanglement affects the shape of the spectrum on large scales comparable to or greater than the curvature radius.

  6. Detector array for measurement of high-frequency fluctuations in visible and near-UV emission from tokamaks

    International Nuclear Information System (INIS)

    Hurwitz, P.D.; Hall, B.F.; Rowan, W.L.

    1992-01-01

    We developed an imaging detector to measure high-frequency fluctuations in visible and near-UV emission from tokamaks. The detector is intended for the study of plasma turbulence, mhd phenomena, and edge-localized modes. Particularly in the first two applications, it will complement existing techniques by providing higher spatial resolution as well as measurement capability in otherwise inaccessible regions of the plasma. The device consists of an optical system, a linear array of 32 photodiodes, and an amplifier for each photodiode. The amplifiers have a transimpedance gain of 10 5 --10 6 and the frequency response is flat to 100 kHz. Experience with this device has shown that optical imaging systems can be easily designed and tailored to a specific measurement because of the small size and close spacing of the individual light-sensitive elements. The device has been successfully tested on TEXT-U in measurements of H α fluctuations

  7. X mode reflectometry for edge density profile measurements on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Bottereau, C.; Chareau, J.M.; Paume, M.; Sabot, R.

    1999-01-01

    X mode heterodyne reflectometry associated with fast sweep capabilities demonstrates very precise measurement on Tore Supra and a high sensitivity (∼10 17 m -3 ) to density variations. Very good agreement with Thomson scattering measurement is observed. Fluctuations of the radial positions of the profile are no more than ± 0.5 cm. However, edge magnetic field ripple can be a concern since it is not easy to stand precisely for the wave trajectory into the plasma and for the toroidal position of the cutoff layer; nevertheless if the error can be estimated to be less than than 3 cm in the position of the whole profile, addition work is needed combining 3-D ray tracing and different antenna systems. Additional LH heating generates an ECE noise in the same frequency range of the reflectometer and is detected. This emission throughout the plasma is fortunately stopped by the upper X mode cutoff and is also reabsorbed by the electron cyclotron resonance. But at the very edge, due to a misalignment of the antenna to the plasma magnetic field and the low optical thickness of the plasma, the first cutoff frequency, i.e. the profile initialization, may be determined less precisely. (authors)

  8. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sechrest, Y.; Munsat, T. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Smith, D. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Stotler, D. P.; Zweben, S. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2015-05-15

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff.

  9. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Sechrest, Y.; Munsat, T.; Smith, D.; Stotler, D. P.; Zweben, S. J.

    2015-01-01

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff

  10. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  11. Small-angle x-ray scattering and density measurements of liquid Se50-Te50 mixture at high temperatures and high pressures using synchrotron radiation

    International Nuclear Information System (INIS)

    Kajihara, Y; Inui, M; Matsuda, K; Tomioka, Y

    2010-01-01

    We have carried out small-angle x-ray scattering and x-ray transmission measurements of liquid Se 50 -Te 50 mixture at SPring-8 in Japan and obtained the structure factor S(Q) at small-Q region (0.6 -1 ) and the density at high temperatures and high pressures up to 1000 0 C and 180 MPa. We report preliminary results in this paper. With increasing temperature, the density shows a minimum at around 500 0 C and a maximum at around 700 0 C. On the other hand, S(0) becomes maximum and S(Q) strongly depends on Q at around 600 0 C, which is about the middle temperature where the density shows the minimum and maximum. The temperatures shift to lower side when the pressure increases. These results prove that, with increasing temperature, the sample exhibits gradual transition from low-density structure to high-density structure, which causes mesoscopic density fluctuations in the intermediate temperature region.

  12. Quantum tunnelling fluctuations in anharmonic potentials

    International Nuclear Information System (INIS)

    Papadopoulos, G.J.; Hadjiagapiou, I.A.

    1993-01-01

    A nonlinear perturbation theory is developed for the logarithm of the wavefunction. It is then used developing a long range time perturbation series for the wavefunction of the Schroedinger equation in the case of a cubic potential exhibiting a valley and a hump. Starting with a low energy Gaussian wavefunction centred at the bottom of the valley the profiles of the probability and current densities are obtained at different times, thus providing an idea of their evolution. While the probability density is slightly displaced the current density, starting from zero, fluctuates vividly. (author). 4 refs, 4 figs

  13. Fluctuation effects on bubble growth in hot nuclear matter

    International Nuclear Information System (INIS)

    Santiago, A.J.; Chung, K.C.

    1991-01-01

    The evolution of bubbles with arbitrary density in an infinite nuclear system is studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface are considered. The critical radius, evolution time and probability for bubble expansion are shown to depend significantly on the initial bubble density. (author)

  14. Planets in other universes: habitability constraints on density fluctuations and galactic structure

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Fred C.; Coppess, Katherine R. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Bloch, Anthony M., E-mail: fca@umich.edu, E-mail: kcoppess@umich.edu, E-mail: abloch@umich.edu [Mathematics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-09-01

    Motivated by the possibility that different versions of the laws of physics could be realized within other universes, this paper delineates the galactic structure parameters that allow for habitable planets and revisits constraints on the amplitude Q of the primordial density fluctuations. Previous work indicates that large values of Q lead to galaxies so dense that planetary orbits cannot survive long enough for life to develop. Small values of Q lead to delayed star formation, loosely bound galaxies, and compromised heavy element retention. This work generalizes previous treatments in the following directions: [A] We consider models for the internal structure of the galaxies, including a range of stellar densities, and find the fraction of the resulting galactic real estate that allows for stable, long-lived planetary orbits. [B] For high velocity encounters, we perform a large ensemble of numerical simulations to estimate cross sections for the disruption of planetary orbits due to interactions with passing stars. [C] We consider the background radiation fields produced by the galaxies: if a galaxy is too compact, the night sky seen from a potentially habitable planet can provide more power than the host star. [D] One consequence of intense galactic background radiation fields is that some portion of the galaxy, denoted as the Galactic Habitable Zone, will provide the right flux levels to support habitable planets for essentially any planetary orbit including freely floating bodies (but excluding close-in planets). As the value of Q increases, the fraction of stars in a galaxy that allow for (traditional) habitable planets decreases due to both orbital disruption and the intense background radiation. However, the outer parts of the galaxy always allow for habitable planets, so that the value of Q does not have a well-defined upper limit (due to scattering or radiation constraints). Moreover, some Galactic Habitable Zones are large enough to support more

  15. Planets in other universes: habitability constraints on density fluctuations and galactic structure

    International Nuclear Information System (INIS)

    Adams, Fred C.; Coppess, Katherine R.; Bloch, Anthony M.

    2015-01-01

    Motivated by the possibility that different versions of the laws of physics could be realized within other universes, this paper delineates the galactic structure parameters that allow for habitable planets and revisits constraints on the amplitude Q of the primordial density fluctuations. Previous work indicates that large values of Q lead to galaxies so dense that planetary orbits cannot survive long enough for life to develop. Small values of Q lead to delayed star formation, loosely bound galaxies, and compromised heavy element retention. This work generalizes previous treatments in the following directions: [A] We consider models for the internal structure of the galaxies, including a range of stellar densities, and find the fraction of the resulting galactic real estate that allows for stable, long-lived planetary orbits. [B] For high velocity encounters, we perform a large ensemble of numerical simulations to estimate cross sections for the disruption of planetary orbits due to interactions with passing stars. [C] We consider the background radiation fields produced by the galaxies: if a galaxy is too compact, the night sky seen from a potentially habitable planet can provide more power than the host star. [D] One consequence of intense galactic background radiation fields is that some portion of the galaxy, denoted as the Galactic Habitable Zone, will provide the right flux levels to support habitable planets for essentially any planetary orbit including freely floating bodies (but excluding close-in planets). As the value of Q increases, the fraction of stars in a galaxy that allow for (traditional) habitable planets decreases due to both orbital disruption and the intense background radiation. However, the outer parts of the galaxy always allow for habitable planets, so that the value of Q does not have a well-defined upper limit (due to scattering or radiation constraints). Moreover, some Galactic Habitable Zones are large enough to support more

  16. The Physical Density of the City—Deconstruction of the Delusive Density Measure with Evidence from Two European Megacities

    Directory of Open Access Journals (Sweden)

    Hannes Taubenböck

    2016-11-01

    Full Text Available Density is among the most important descriptive as well as normative measures in urban research. While its basic concept is generally understandable, approaches towards the density measure are manifold, diverse and of multidimensional complexity. This evolves from differing thematic, spatial and calculative specifications. Consequently, applied density measures are often used in a subjective, non-transparent, unspecific and thus non-comparable manner. In this paper, we aim at a systematic deconstruction of the measure density. Varying thematic, spatial and calculative dimensions show significant influence on the measure. With both quantitative and qualitative techniques of evaluation, we assess the particular influences on the measure density. To do so, we reduce our experiment setting to a mere physical perspective; that is, the quantitative measures building density, degree of soil sealing, floor space density and, more specifically, the density of generic structural classes such as open spaces and highest built-up density areas. Using up-to-date geodata derived from remote sensing and volunteered geographic information, we build upon high-quality spatial information products such as 3-D city models. Exemplified for the comparison of two European megacities, namely Paris and London, we reveal and systemize necessary variables to be clearly defined for meaningful conclusions using the density measure.

  17. New mechanism for generating density perturbations from inflation

    International Nuclear Information System (INIS)

    Dvali, Gia; Gruzinov, Andrei; Zaldarriaga, Matias

    2004-01-01

    We propose a new mechanism to generate density perturbations in inflationary models. Spatial fluctuations in the decay rate of the inflaton field to ordinary matter lead to fluctuations in the reheating temperature. We argue that in most realistic models of inflation the coupling of the inflaton to normal matter is determined by the vacuum expectation values of fields in the theory. If those fields are light during inflation (this is a generic situation in the minimal models of supersymmetric inflation) they will fluctuate leading to density perturbations through the proposed mechanism. We show that these fluctuations could easily dominate over the ones generated through the standard mechanism. The new scenario has several consequences for inflation model building and observations. The proposed mechanism allows us to generate the observed level of density perturbations with a much lower scale of inflation and thus generically predicts a smaller level of gravitational waves. The relation between the slope of the spectrum of the produced density perturbations and the potential of the inflaton field is different from the standard relations obtained in the context of slow roll inflation. Because the field responsible for the fluctuations is not the inflaton, it can have significantly larger self-couplings and thus density perturbations could be non-Gaussian. The non-Gaussianity can be large enough to be detectable by CMB and large scale structure observations

  18. Magnetic fluctuation induced transport and edge dynamo measurements in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Fiksel, G.; Ji, H.

    1994-09-01

    Probe measurements in MST indicate that RFP particle and energy loss is governed by magnetic fluctuations inside r/a = 0.8, with energy carried out convectively by superthermal electrons. The radial loss rate is lower than the Rechester-Rosenbluth level, presumably due to the establishment of a restraining ambipolar potential. Several aspects of these measurements contradict the Kinetic Dynamo Theory, while the MHD dynamo EMF is measured to be large enough to drive the edge current carried by these superthermal electrons

  19. Analysis of fluctuations in semiconductor devices

    Science.gov (United States)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  20. Density gradients in ceramic pellets measured by computed tomography

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Palmer, B.J.F.

    1986-07-01

    Density gradients are of fundamental importance in ceramic processing and computed tomography (CT) can provide accurate measurements of density profiles in sintered and unsintered ceramic parts. As a demonstration of this potential, the density gradients in an unsintered pellet pressed from an alumina powder were measured by CT scanning. To detect such small density gradients, the CT images must have good density resolution and be free from beam-hardening effects. This was achieved by measuring high-contrast (low-noise) images with the use of an Ir-192 isotopic source. A beam-hardening correction was applied. The resulting images are discussed relative to the transmission of forces through the powder mass during the pelletizing process

  1. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  2. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  3. Fluctuating fluid dynamics for the QGP in the LHC and BES era

    Directory of Open Access Journals (Sweden)

    Bluhm Marcus

    2018-01-01

    Full Text Available In an era of high-precision determinations of QGP properties a full incorporation of fluid dynamical fluctuations into our models has become crucial, in particular, when describing the dynamics of small systems or near the conjectured QCD critical point. In this talk we discuss some effects of the propagation of these fluctuations. For LHC physics we focus on fluctuations in the energy-momentum tensor, while the impact of fluctuations in the diffusive net-baryon density is studied to improve our knowledge on the formation of critical fluctuations being searched in current and future BES programs.

  4. Fluctuation of heat current in Josephson junctions

    Directory of Open Access Journals (Sweden)

    P. Virtanen

    2015-02-01

    Full Text Available We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  5. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  6. NMR investigation of charge fluctuations in the charge-density-wave (CDW) system Rb_0.3MoO_3

    Science.gov (United States)

    Tanaka, K. B.; Vonlanthen, P.; Clark, W. G.; Kriza, G.; Moulton, W. G.; Kuhns, P.; Reyes, A. P.

    2001-03-01

    We report measurements of the spin-lattice relaxation rate (T_1-1), the spin-spin relaxation rate (T_2-1), and NMR spectra of ^85Rb and ^87Rb in Rb_0.3MoO3 for the temperature (T) range 5-300 K at 9 T and 23 T. The ratio of T_1-1 for ^85Rb and ^87Rb shows that for all T, the dominant coupling for T_1-1 is quadrupolar; i.e., it is driven by charge fluctuations. Prior work assumed that in the metallic phase above 182 K, the relaxation was via magnetic coupling to conduction electrons. Another surprising result is the absence of a strong variation of T_1-1 across the CDW-broadened spectrum. Such a variation is expected for relaxation by thermal CDW phason fluctuations. Our high field measurements also show very little frequency dependence for T_1-1. The observed T-variation of T_1-1 displays five different regimes, which will be presented and discussed. The UCLA part of the work was supported by NSF Grants DMR-9705369 and DMR-0072524.

  7. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  8. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    Science.gov (United States)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  9. Interferometry and MHD turbulence measurements in toroidal pinches

    International Nuclear Information System (INIS)

    Dutt, T.L.; Evans, D.E.; Wilcock, P.D.

    1976-01-01

    A 10.6 micron interferometer produced 2 to 3 good quality fringes in the HBTX plasma. There is substantial agreement in the electron densities determined by interferometry and by Thomson scattering, but since the former is an absolute measurement and is systematically lower than the Thomson scattering values, the latter may be too great by about 35%. In RF Pinches, turbulence associated with the instability deflects the beam and corrupts the interferogram. However, if the intensity fluctuations induced in this beam by the turbulence, are measured, as is done in the second experiment performed in the FRSX plasma with a HCN laser, the frequency spectrum of the turbulence can be deduced. In this plasma, rms fluctuations in the density were measured by this means to be 20%, and the dominant frequency of the fluctuations multiplied by the tube diameter was approximately Alfven speed, favouring an interpretation of the gross turbulence in this plasma in terms of Alfen waves. (U.K.)

  10. The relationship between turbulence measurements and transport in different heating regimes in TFTR

    International Nuclear Information System (INIS)

    Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C.

    1992-01-01

    The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, δn 2 , in the confinement zone for 0.2 aux and I p in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k max ∼ 1 cm -1 (k perpendicular ps ∼ 0.2) in the poloidal direction and k max approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm

  11. Are topological charge fluctuations in QCD instanton dominated?

    International Nuclear Information System (INIS)

    Edwards, Robert G.; Heller, Urs M.

    2002-01-01

    We consider a recent proposal by Horvath et al. to address the question of whether topological charge fluctuations in QCD are instanton dominated via the response of fermions using lattice fermions with exact chiral symmetry, the overlap fermions. Considering several volumes and lattice spacings, we find strong evidence for chirality of a finite density of low-lying eigenvectors of the overlap-Dirac operator in the regions where these modes are peaked. This result suggests instanton dominance of topological charge fluctuations in quenched QCD

  12. Are Topological Charge Fluctuations in QCD Instanton Dominated?

    International Nuclear Information System (INIS)

    Edwards, Robert G.; Heller, Urs M.

    2001-01-01

    We consider a recent proposal by Horvath et al. to address the question whether topological charge fluctuations in QCD are instanton dominated via the response of fermions using lattice fermions with exact chiral symmetry, the overlap fermions. Considering several volumes and lattice spacings we find strong evidence for chirality of a finite density of low-lying eigenvectors of the overlap-Dirac operator in the regions where these modes are peaked. This result suggests instanton dominance of topological charge fluctuations in quenched QCD

  13. Kinetic-Scale Electric and Magnetic Field Fluctuations in the Solar Wind at 1 AU: THEMIS/ARTEMIS Observations

    Science.gov (United States)

    Salem, C. S.; Hanson, E.; Bonnell, J. W.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2017-12-01

    We present here an analysis of kinetic-scale electromagnetic fluctuations in the solar wind using data from THEMIS and ARTEMIS spacecraft. We use high-time resolution electric and magnetic field measurements, as well as density fluctuations, up to 128 samples per second, as well as particle burst plasma data during carefully selected solar wind intervals. We focus our analysis on a few such intervals spanning different values of plasma beta and angles between the local magnetic field and the radial Sun-Earth direction. We discuss the careful analysis process of characterizing and removing the different instrumental effects and noise sources affecting the electric and magnetic field data at those scales, above 0.1 Hz or so, above the breakpoint marking the start of the so-called dissipation range of solar wind turbulence. We compute parameters such as the electric to magnetic field ratio, the magnetic compressibility, magnetic helicity, and other relevant quantities in order to diagnose the nature of the fluctuations at those scales between the ion and electron cyclotron frequencies, extracting information on the dominant modes composing the fluctuations. We also discuss the presence and role of coherent structures in the measured fluctuations. The nature of the fluctuations in the dissipation or dispersive scales of solar wind turbulence is still debated. This observational study is also highly relevant to the current Turbulent Dissipation Challenge.

  14. DAQ system for low density plasma parameters measurement

    International Nuclear Information System (INIS)

    Joshi, Rashmi S.; Gupta, Suryakant B.

    2015-01-01

    In various cases where low density plasmas (number density ranges from 1E4 to 1E6 cm -3 ) exist for example, basic plasma studies or LEO space environment measurement of plasma parameters becomes very critical. Conventional tip (cylindrical) Langmuir probes often result into unstable measurements in such lower density plasma. Due to larger surface area, a spherical Langmuir probe is used to measure such lower plasma densities. Applying a sweep voltage signal to the probe and measuring current values corresponding to these voltages gives V-I characteristics of plasma which can be plotted on a digital storage oscilloscope. This plot is analyzed for calculating various plasma parameters. The aim of this paper is to measure plasma parameters using a spherical Langmuir probe and indigenously developed DAQ system. DAQ system consists of Keithley source-meter and a host system connected by a GPIB interface. An online plasma parameter diagnostic system is developed for measuring plasma properties for non-thermal plasma in vacuum. An algorithm is developed using LabVIEW platform. V-I characteristics of plasma are plotted with respect to different filament current values and different locations of Langmuir probe with reference to plasma source. V-I characteristics is also plotted for forward and reverse voltage sweep generated programmatically from the source meter. (author)

  15. The small amplitude of density turbulence in the inner solar wind

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2003-01-01

    Full Text Available Very Long Baseline Interferometer (VLBI observations were made of radio sources close to the Sun, whose lines of sight pass through the inner solar wind (impact parameters 16-26 RE. Power spectra were analyzed of the interferometer phase fluctuations due to the solar wind plasma. These power spectra provide information on the level of plasma density fluctuations on spatial scales of roughly one hundred to several thousand kilometers. By specifying an outer scale to the turbulence spectrum, we can estimate the root-mean-square (rms amplitude of the density fluctuations. The data indicate that the rms fluctuation in density is only about 10% of the mean density. This value is low, and consistent with extrapolated estimates from more distant parts of the solar wind. Physical speculations based on this result are presented.

  16. Density measurements of small amounts of high-density solids by a floatation method

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Shiba, Koreyuki

    1984-09-01

    A floatation method for determining the density of small amounts of high-density solids is described. The use of a float combined with an appropriate floatation liquid allows us to measure the density of high-density substances in small amounts. Using the sample of 0.1 g in weight, the floatation liquid of 3.0 g cm -3 in density and the float of 1.5 g cm -3 in apparent density, the sample densities of 5, 10 and 20 g cm -3 are determined to an accuracy better than +-0.002, +-0.01 and +-0.05 g cm -3 , respectively that correspond to about +-1 x 10 -5 cm 3 in volume. By means of appropriate degassing treatments, the densities of (Th,U)O 2 pellets of --0.1 g in weight and --9.55 g cm -3 in density were determined with an accuracy better than +-0.05 %. (author)

  17. Voltage fluctuations in granular superconductors in the perpendicular configuration

    International Nuclear Information System (INIS)

    Gerashchenko, O V

    2003-01-01

    The spectral density of voltage fluctuations in granular YBa 2 Cu 3 O 7-δ superconductors in the perpendicular configuration has been studied in the flux flow mode. It has been found that, in this case, the 1/f-voltage noise observed depends weakly on temperature and is associated with motion of a magnetic flux in the superconductor. A comparison of the data obtained with the results of previous measurements in parallel configuration has shown that voltage noise is produced by a single common source, which is presumably associated with self-organization of the critical state in granular superconductors

  18. Modelling an infinite nucleonic system. Static and dynamical properties. Study of density fluctuations

    Science.gov (United States)

    Idier, D.; Farine, M.; Remaud, B.; Sébille, F.

    For one decade, several fields in physics as well microscopic as macroscopic benefit from the computational particle-models (astrophysics, electronics, fluids mechanics...). In particular, the nuclear matter offers an interesting challenge as many body problem, owing to the quantal nature of its components and the complexity of the in-medium interaction. Using a model derived from semi-classical Vlasov equation and the projection of the Wigner function on a Gaussian coherent states basis (pseudo-particles), static and dynamical properties of nuclear matter are studied, featuring the growing of bulk instabilities in dilute matter. Using different zero and finite range effective interactions, the effect of the model parameters upon the relation total energy - density - temperature and surface energy of the pseudo-particles fluid is pointed out. The dynamical feature is first based upon a model of the 2-body Uehling-Ulhenbeck collisionnal term. A study of the relaxation of a nucleonic system is performed. At last, the pseudo-particle model is used in order to extract time scale for the growing of density fluctuations. This process is supposed to be a possible way to clusterization during heavy nuclei collisions. Depuis une dizaine d'années, plusieurs domaines de la physique aussi bien microscopiques que macroscopiques bénéficient des modèles à particules pour ordinateurs (astrophysique, électronique, plasmas...). En particulier, la matière nucléaire constitue un objet intéressant pour le problème à N corps ; tant par la nature quantique des nucléons que par la complexité des interactions dans ce milieu. A travers un modèle dérivant de l'équation de Vlasov semi-classique et de la projection de la fonction de Wigner sur une base d'état cohérents gaussiens (les pseudo-particules), on étudie les propriétés statiques et dynamiques de la matière nucléaire dont en particulier le développement des instabilités de volume en milieu dilué. Pour diff

  19. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  20. Atmospheric Fluctuation Measurements with the Palomar Testbed Interferometer

    Science.gov (United States)

    Linfield, R. P.; Lane, B. F.; Colavita, M. M.; PTI Collaboration

    Observations of bright stars with the Palomar Testbed Interferometer, at a wavelength of 2.2 microns, have been used to measure atmospheric delay fluctuations. The delay structure function Dτ(Δ t) was calculated for 66 scans (each >= 120s in length) on seven nights in 1997 and one in 1998. For all except one scan, Dτ exhibited a clean power law shape over the time interval 50-500 msec. Over shorter time intervals, the effect of the delay line servo loop corrupts Dτ. Over longer time intervals (usually starting at > 1s), the slope of Dτ decreases, presumably due to some combination of saturation e.g. finite turbulent layer thickness) and the effect of the finite wind speed crossing time on our 110 m baseline. The mean power law slopes for the eight nights ranged from 1.16 to 1.36, substantially flatter than the value of 1.67 for three dimensional Kolmogorov turbulence. Such sub-Kolmogorov slopes will result in atmospheric seeling (θ) that improves rapidly with increasing wavelength: θ propto λ1-(2β), where β is the observed power law slope of Dτ. The atmospheric errors in astrometric measurements with an interferometer will average down more quickly than in the Kolmogorov case.

  1. Negative vacuum energy densities and the causal diamond measure

    International Nuclear Information System (INIS)

    Salem, Michael P.

    2009-01-01

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  2. Experimental study on airflow fluctuation characteristic of an underfloor air supply terminal unit

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinping [School of Electric Power, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640 (China); Wu, Yanfang [Design Institute of Guangzhou Metro Corporation, Guangzhou 510010 (China)

    2010-11-15

    In order to investigate dynamic characteristic of underfloor air supply terminal unit, an IFV900A hot-wire anemometer was used to measure the corresponding velocity field. Turbulence intensity and power spectrum density exponent of air velocity signal were analyzed. The result showed that the outlet velocity distribution of underfloor air supply terminal unit was uniform. With increment of height, the velocity distribution trends to be uniform. Two velocity attenuation regions appear during airflow development. Turbulence intensity changes obviously with height. It is lower than that of mechanical wind. Turbulence intensity goes up with the increment of jetting distance. Power spectrum density exponent trends to the value of natural wind with increase of jetting distance and decrease of wind velocity. The exponent value approaches to the value of typical natural wind for the air velocity is 0.5 m/s under high supply air rate. With airflow diffusion, the fluctuation characteristic of airflow varies obviously with the jetting direction. The fluctuation characteristic of airflow changes to that of natural wind with the increase of height which can improve comfort of indoor environment. (author)

  3. Dynamics of density fluctuations in a non-Markovian Boltzmann- Langevin model

    International Nuclear Information System (INIS)

    Ayik, S.

    1996-01-01

    In the course of the past few years, the nuclear Boltzmann-Langevin (BL)model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and multifragmentation. In these standard models, the collision term is treated in a Markovian approximation by assuming that two-body collisions are local in both space and time, in accordance with Boltzmann's original treatment. This simplification is usually justified by the fact that the duration of a two-body collision is short on the time scale characteristic of the macroscopic evolution of the system. As a result, transport properties of the collective motion has then a classical character. However, when the system possesses fast collective modes with characteristic energies that are not small in comparision with the temperature, then the quantum-statistical effects are important and the standard Markovian treatment is inadequate. In this case, it is necessary to improve the one-body transport model by including the memory effect due to the finite duration of two-body collisions. First we briefly describe the non-Markovian extension of the BL model by including the finite memory time associated with two-body collisions. Then, using this non-Markovian model in a linear response framework, we investigate the effect of the memory time on the agitation of unstable modes in nuclear matter in the spinodal zone, and calculate the collisional relaxation rates of nuclear collective vibrations

  4. Individual Test Point Fluctuations of Macular Sensitivity in Healthy Eyes and Eyes With Age-Related Macular Degeneration Measured With Microperimetry.

    Science.gov (United States)

    Barboni, Mirella Telles Salgueiro; Szepessy, Zsuzsanna; Ventura, Dora Fix; Németh, János

    2018-04-01

    To establish fluctuation limits, it was considered that not only overall macular sensitivity but also fluctuations of individual test points in the macula might have clinical value. Three repeated measurements of microperimetry were performed using the Standard Expert test of Macular Integrity Assessment (MAIA) in healthy subjects ( N = 12, age = 23.8 ± 1.5 years old) and in patients with age-related macular degeneration (AMD) ( N = 11, age = 68.5 ± 7.4 years old). A total of 37 macular points arranged in four concentric rings and in four quadrants were analyzed individually and in groups. The data show low fluctuation of macular sensitivity of individual test points in healthy subjects (average = 1.38 ± 0.28 dB) and AMD patients (average = 2.12 ± 0.60 dB). Lower sensitivity points are more related to higher fluctuation than to the distance from the central point. Fixation stability showed no effect on the sensitivity fluctuation. The 95th percentile of the standard deviations of healthy subjects was, on average, 2.7 dB, ranging from 1.2 to 4 dB, depending on the point tested. Point analysis and regional analysis might be considered prior to evaluating macular sensitivity fluctuation in order to distinguish between normal variation and a clinical change. S tatistical methods were used to compare repeated microperimetry measurements and to establish fluctuation limits of the macular sensitivity. This analysis could add information regarding the integrity of different macular areas and provide new insights into fixation points prior to the biofeedback fixation training.

  5. Structural Fluctuation and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    2003-01-01

    The objectives of the project is to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs and to study the fundamental heterophase fluctuations phenomena in these melts by: 1) Conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts such as viscosity, electrical conductivity, thermal diffusivity and density as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) Performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. An apparatus based on the transient torque induced by a rotating magnetic field has been developed to determine the viscosity and electrical conductivity of semiconducting liquids. Viscosity measurements on molten tellurium showed similar relaxation behavior as the measured diffusivity. Neutron scattering experiments were performed on the HgTe and HgZnTe melts and the results on pair distribution showed better resolution than previous reported.

  6. Non-classical radiation transport in random media with fluctuating densities

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    The ensemble averaged propagation kernels of the non-classical radiation transport are studied by means of the proposed application of the stochastic differential equation random medium generators. It is shown that the non-classical transport is favored in long-correlated weakly fluctuating media. The developed kernel models have been implemented in GEANT4 and validated against the d ouble Monte Carlo m odeling of absorptions curves of disperse neutron absorbers and γ-albedos from a scatterer/absorber random mix

  7. Total charge fluctuation in heavy ion collision

    International Nuclear Information System (INIS)

    Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.; Garg, P.

    2014-01-01

    Event-by-event fluctuations of positive, negative, total and net charge produced in relativistic nuclear collisions have been of interest to explore phase transition and/or a critical end point (CEP) which is believed to exist somewhere between the hadronic phase and the quark-gluon phase of the QCD phase diagram. The entropy is closely related to the particle multiplicity, and it is expected to be approximately conserved during the evolution of the matter created at the early stage. The entropy fluctuations are not directly observed but can be inferred from the experimentally measured quantities. The final state mean multiplicity is proportional to the entropy of the initial state ( ∼ S). The particle multiplicity can be measured on an event-by-event basis, whereas the entropy is defined by averaging the particle multiplicities in the ensemble of events. Thus, the dynamical entropy fluctuations can be measured experimentally by measuring the fluctuations in the mean multiplicity

  8. Correlated isocurvature fluctuation in quintessence and suppressed cosmic microwave background anisotropies at low multipoles.

    Science.gov (United States)

    Moroi, Takeo; Takahashi, Tomo

    2004-03-05

    We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.

  9. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  10. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  11. Fast response densitometer for measuring liquid density

    Science.gov (United States)

    1972-01-01

    Densitometer was developed which produces linear voltage proportional to changes in density of flowing liquid hydrogen. Unit has fast response time and good system stability, statistical variation, and thermal equilibrium. System accuracy is 2 percent of total density span. Basic design may be altered to include measurement of other flowing materials.

  12. Particle transport and fluctuation characteristics around neoclassically optimized configurations in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Vyacheslavov, L.N.

    2008-01-01

    Density profiles in LHD were measured and particle transport coefficients were estimated from density modulation experiments in LHD. The data set contains the wide region of discharge condition. The dataset of different magnetic axis, toroidal magnetic field and heating power provided data set of widely scanned neoclassical transport. At minimized neoclassical transport configuration in the dataset (Rax=3.5m, Bt=2.8T) showed peaked density profile. Its peaking factor increased gradually with decrease of collisional frequency. This is a similar result observed in tokamak data base. At other configuration, peaking factor reduced with decrease of collisional frequency. Data set showed that larger contribution of neoclassical transport produced hollowed density profile. Comparison between neoclassical and experimental estimated particle diffusivity showed different minimum condition. This suggests neoclassical optimization is not same as anomalous optimization. Clear difference of spatial profile of turbulence was observed between hollowed and peaked density profiles. Major part of fluctuation existed in the unstable region of linear growth rate of ion temperature gradient mode. (author)

  13. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  14. Analysis of dynamic multiplicity fluctuations at PHOBOS

    Science.gov (United States)

    Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-01-01

    This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

  15. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  16. Backreaction of Cosmological Fluctuations during Power-Law Inflation

    International Nuclear Information System (INIS)

    Marozzi, G.

    2007-01-01

    We study the renormalized energy-momentum tensor of cosmological scalar fluctuations during the slow-rollover regime for power-law inflation and find that it is characterized by a negative energy density at the leading order, with the same time behavior as the background energy. The average expansion rate appears decreased by the backreaction of the effective energy of cosmological fluctuations, but this value is comparable with the energy of the background only if inflation starts at a Planckian energy. We also find that, for this particular model, the first- and second-order inflaton fluctuations are decoupled and satisfy the same equation of motion. To conclude, the fourth-order adiabatic expansion for the inflaton scalar field is evaluated for a general potential V(φ)

  17. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  18. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    Science.gov (United States)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  19. Fluctuations in a Levy flight gas

    International Nuclear Information System (INIS)

    Fogedby, H.C.; Jensen, H.J.

    1991-01-01

    We consider the density fluctuations of an ideal Brownian gas of particles performing Levy flights characterized by the index f. We find that the fluctuations scale as ΔN(t)∝t H , where the Hurst exponent H locks onto the universal value 1/4 for Levy flights with a finite root mean square range (f>2). For Levy flights with a finite mean range but infinite root mean square range (1< f<2) the Hurst exponent H=1/2f. For infinite range Levy flights (f<1) the Hurst exponent locks onto the value 1/2. The corresponding power spectrum scales with an exponent 1+2H, independent of dimension. (orig.)

  20. Capacitive density measurement for supercritical hydrogen

    Science.gov (United States)

    Funke, Th; Haberstroh, Ch; Szoucsek, K.; Schott, S.; Kunze, K.

    2017-12-01

    A new approach for automotive hydrogen storage systems is the so-called cryo-compressed hydrogen storage (CcH2). It has a potential for increased energy densities and thus bigger hydrogen amounts onboard, which is the main attractiveness for car manufacturers such as BMW. This system has further advantages in terms of safety, refueling and cooling potential. The current filling level measurement by means of pressure and temperature measurement and subsequent density calculation faces challenges especially in terms of precision. A promising alternative is the capacitive gauge. This measuring principle can determine the filling level of the CcH2 tank with significantly smaller tolerances. The measuring principle is based on different dielectric constants of gaseous and liquid hydrogen. These differences are successfully leveraged in liquid hydrogen storage systems (LH2). The present theoretical analysis shows that the dielectric values of CcH2 in the relevant operating range are comparable to LH2, thus achieving similarly good accuracy. The present work discusses embodiments and implementations for such a sensor in the CcH2 tank.

  1. Local fluctuations of the signed traded volumes and the dependencies of demands: a copula analysis

    Science.gov (United States)

    Wang, Shanshan; Guhr, Thomas

    2018-03-01

    We investigate how the local fluctuations of the signed traded volumes affect the dependence of demands between stocks. We analyze the empirical dependence of demands using copulas and show that they are well described by a bivariate K copula density function. We find that large local fluctuations strongly increase the positive dependence but lower slightly the negative one in the copula density. This interesting feature is due to cross-correlations of volume imbalances between stocks. Also, we explore the asymmetries of tail dependencies of the copula density, which are moderate for the negative dependencies but strong for the positive ones. For the latter, we reveal that large local fluctuations of the signed traded volumes trigger stronger dependencies of demands than of supplies, probably indicating a bull market with persistent raising of prices.

  2. Coherent edge fluctuation measurements in H-mode discharges on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Shinohara, K; Hoshino, K; Ejiri, A; Tsuzuki, K; Ido, T; Uehara, K; Kawashima, H; Kamiya, K; Ogawa, H; Yamada, T; Shiraiwa, S; Ohara, S; Takase, Y; Asakura, N; Oyama, N; Fujita, T; Ide, S; Takenaga, H; Kusama, Y; Miura, Y

    2004-01-01

    Results of coherent edge fluctuation measurements using three diagnostics (a reciprocating Langmuir probe, a two channel O-mode reflectometer, and fast magnetic probes) in H-mode discharges on JFT-2M are presented. In discharges in which a high recycling steady (HRS) H-mode phase is obtained through a transient phase with slightly enhanced D α intensity, two types of coherent fluctuations are observed. The higher frequency mode (around 300 kHz) is the high frequency mode (HFM) observed in the HRS H-mode (Kamiya K et al 2003 9th IAEA Tech. Meeting H-mode Workshop Topic B-14). The lower frequency mode has a frequency of around 80 kHz. The HFM is detected by a Langmuir probe over a wide region in the SOL, as well as by the reflectometer and magnetic probes. However, the HFM is not detected by the higher frequency (38 GHz) channel of the reflectometer after the HRS transition, suggesting that the HFM is not located deeply inside the plasma. The 80 kHz mode is detected by both channels of the reflectometer and by a Langmuir probe, but not by magnetic probes, suggesting that it is an electrostatic mode. In contrast to the HFM, the 80 kHz mode is detected by the Langmuir probe only near the separatrix during the transient phase, which leads to either the HRS phase or the ELMy phase, and is similar to the fluctuations reported in Shinohara K et al (1998 J. Plasma Fusion Res. 74 607)

  3. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  4. Observation of fluctuations responsible for stochastic ion heating in a turbulent plasma

    International Nuclear Information System (INIS)

    Amagishi, Y.; Iguchi, H.; Ito, Y.; Kawabe, T.

    1977-10-01

    Experiments are described in which the correlation time and fluctuation level of ion acoustic waves are measured under the condition of turbulent heating using twin capacitive probes. At the anomalously resistive time, the correlation time becomes shorter, typically several periods of ion waves, and the energy density of the waves is of the order of 10 -2 n sub(e)T sub(e). The ion heating rate previously reported is well explained by these results to be due to stochastic mechanism. (auth.)

  5. Effect of electric fields and fluctuations on confinement in a bumpy torus

    International Nuclear Information System (INIS)

    Hiroe, S.; Glowienka, J.C.; Hillis, D.L.

    1986-06-01

    In order to understand the relationships between confinement and space potential (electric field) and between confinement and density fluctuations, plasma parameters in the ELMO Bumpy Torus Scale (EBT-S) have been measured systematically for a wide range of operating conditions. Present EBT plasma parameters do not show a strong dependence on the potential profile, but rather exhibit a correlation with the fluctuations. The plasma pressure profile is found to be consistent with the profile anticipated on the basis of the flute stability criterion for a marginally stable plasma. For a heating power of 100 kW, the stored energy density is found to be restricted to the range between 4.5 x 10 13 eV-cm -3 and 7 x 10 13 eV-cm -3 . The lower limit remains constant regardless of heating power and pertains to plasmas lacking an equilibrium and/or stability. The upper limit increases with heating power and is found to result from the onset of instabilities. In between the two limits is a plasma that is in an equilibrium state and is marginally stable. Operational trajectories exist that take the EBT plasma from one limit to the other

  6. A comprehensive tool for measuring mammographic density changes over time.

    Science.gov (United States)

    Eriksson, Mikael; Li, Jingmei; Leifland, Karin; Czene, Kamila; Hall, Per

    2018-06-01

    Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.

  7. Nondestructive density measured in powder metallurgy and ceramics

    International Nuclear Information System (INIS)

    Schlieper, G.; Arnold, V.; Dirkes, H.

    1989-01-01

    Absorption measurements with gamma radiation have been utilized for the determination of porosities (densities) in materials compacted or sintered from metallic or ceramic powders. The mathematical background for the assessment of this method, and for evaluations of the accuracy of measurement is presented within the reported paper. The equipment for the practical application of density measurements in industry has been developed. Hardware and software of this computerized instrument are designed for a maximum of safety, ease of operation, reliability, flexibility, and efficiency. (orig./RHM) [de

  8. A gauge for the measurement of wood density MGD-05

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Urbanski, P.; Pienkos, P.

    2006-01-01

    Wood density is an important parameter determining several properties of wood as: wood quality, mechanical resistance, charcoal production, transport cost, etc. Radiometric methods for the measurement of wood density are based on attenuation of 241 Am gamma radiation, or measurement of backscattered 241 Am radiation. In the paper authors describe the newly constructed computerized gauge designed for the non routine measurements. Up to 1000 measuring results can be stored in the gauge memory and the measuring results can be sent to an external laptop for computations of density contours

  9. Measurements of temperature fluctuations in the mixing of hot and cold air jets

    International Nuclear Information System (INIS)

    Sumner, V.W.

    1977-03-01

    In order to assess the effect of the mixing of 'hot' and 'cold' jets of sodium on structures in the above-core region of the fast reactor, temperature fluctuations have been measured in an experiment consisting of a heated jet of air surrounded by six unheated jets. Temperature spectra obtained from the experiment showed no strong peaks or bands. In considering the effect of thermal cycling of the above-core structures, it is the higher strain values at low frequencies which will be more limiting than the smaller values at high frequencies, due to the nature of strain-lifetime curves. Thus the spectra have been summarised using a low-frequency level and a cut-off frequency at which this level has fallen by an order of magnitude. Attenuation of temperature fluctuations due to the high thermal conductivity of sodium or by boundary layer effects has been considered; however, in the low-frequency, high-energy region of the spectra, little attenuation can be expected. (author)

  10. Study of fluctuations. Variance measurement on Proserpine

    International Nuclear Information System (INIS)

    Berger, F.; Renaux, R.

    1960-01-01

    The authors present an equipment designed for the study of the statistical fluctuation of the number of neutrons existing in a pile in the neighbourhood of its critical status. This equipment must allow series of counts of constant duration per series, and triggered by a random process. The counting assembly is presented (principle, description and operation), as well as the memorization assembly for a slow or quick count triggering

  11. The Fluctuation Niche in Plants

    Directory of Open Access Journals (Sweden)

    Jaume Terradas

    2009-01-01

    Full Text Available Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and ecophysiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and interannual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  12. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  13. Analysis of density fluctuations in the Tore Supra tokamak. Up-down asymmetries and limiter effect on plasma turbulence; Etude des fluctuations de density dans les plasmas du tokamak Tore Supra. Asymetries haut-bas et effet du limiteur sur la turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Fenzi, Ch

    1999-10-29

    In magnetic fusion devices, the optimisation of the power deposition profile on plasma facing components crucially depends on the heat diffusivity across the magnetic field fines, which is determined by the plasma edge turbulence. In this regard, spatial asymmetries of plasma edge turbulence are of great interest. In this work, we interest in up-down asymmetries of density fluctuations which are usually observed in Tore Supra, using a coherent light scattering experiment. It is shown that these asymmetries are correlated to the plasma edge geometrical configuration (plasma facing components, limiters). In fact, the plasma-limiter interaction induces locally in the plasma edge and the SOL (r/a > 0.9) an additional turbulence with short correlation length along the magnetic field fines, which spreads in the plasma core (0.9 {>=} r/a {>=} 0.5). The resultant up-down asymmetry weakly depends on density, increases with the edge safety factor, and inverts when the plasma current direction is reversed. Such up-down asymmetry observations bring strong impact on edge turbulence and transport models, which usually predict a ballooning of the turbulence in the high-field side but not an up-down asymmetry. A possible model is proposed here, based on the Kelvin Helmholtz instability. (author)

  14. Study on Method of Asphalt Density Measurement Using Low Level Radioactive Isotope

    International Nuclear Information System (INIS)

    Chung, Jin-young; Kim, Jung-hoon; Whang, Joo-ho

    2008-01-01

    The fundamental cause of damage to road pavement is insufficient management of asphalt density during construction. Currently, asphalt density in Korea is measured in a laboratory by extracting a core sample after construction. This method delays the overall time of measurement and therefore it is difficult to achieve real-time density management. Using a radioactive isotope for measuring asphalt density during construction reduces measuring time thus enabling realtime measurement. Also, it is provided reliable density measurement to achieve effective density management at work sites. However, existing radiological equipment has not been widely used because of management restrictions and regulations due to the high radiation dose. In this study, we employed a non-destructive method for density measurement. Density is measured by using a portable gamma-ray backscatter device having a radioactivity emission of 100 μCi or less (notice No. 2002-23, Ministry of Science and Technology, standards on radiation protection, etc.), a sealed radioactive source subject to declaration

  15. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  16. Mammographic density measurements are not affected by mammography system.

    Science.gov (United States)

    Damases, Christine N; Brennan, Patrick C; McEntee, Mark F

    2015-01-01

    Mammographic density (MD) is a significant risk factor for breast cancer and has been shown to reduce the sensitivity of mammography screening. Knowledge of a woman's density can be used to predict her risk of developing breast cancer and personalize her imaging pathway. However, measurement of breast density has proven to be troublesome with wide variations in density recorded using radiologists' visual Breast Imaging Reporting and Data System (BIRADS). Several automated methods for assessing breast density have been proposed, each with their own source of measurement error. The use of differing mammographic imaging systems further complicates MD measurement, especially for the same women imaged over time. The purpose of this study was to investigate whether having a mammogram on differing manufacturer's equipment affects a woman's MD measurement. Raw mammographic images were acquired on two mammography imaging systems (General Electric and Hologic) one year apart and processed using VolparaDensity™ to obtain the Volpara Density Grade (VDG) and average volumetric breast density percentage (AvBD%). Visual BIRADS scores were also obtained from 20 expert readers. BIRADS scores for both systems showed strong positive correlation ([Formula: see text]; [Formula: see text]), while the VDG ([Formula: see text]; [Formula: see text]) and AvBD% ([Formula: see text]; [Formula: see text]) showed stronger positive correlations. Substantial agreement was shown between the systems for BIRADS ([Formula: see text]; [Formula: see text]), however, the systems demonstrated an almost perfect agreement for VDG ([Formula: see text]; [Formula: see text]).

  17. RZP 202 - a modular system for surface density measurement

    International Nuclear Information System (INIS)

    Severa, L.; Merinsky, J.

    The sensing element is an ionization chamber of the type that has maximum sensitivity to beta radiation of the used radionuclide ( 147 Pm, 85 Kr, 90 Sr- 90 Y) or to gamma radiation of radionuclide 241 Am. Collimation shields were developed for the said sources. Measurement of the ionization currents is made with an electrometer with a vibration capacitor. Invariable configuration is secured by a measuring arm. The modular units are of the CAMAC system design. The surface density meters measure deviations from the rated surface density. The scale for inputting surface density is linear. The configuration, functional continuity of the individual parts and the possibility of variant designs of surface density meters are described and the technical parameters of RZP 202 and its configuration and design are given

  18. A density tensor hierarchy for open system dynamics: retrieving the noise

    International Nuclear Information System (INIS)

    Adler, Stephen L

    2007-01-01

    We develop a density tensor hierarchy for open system dynamics that recovers information about fluctuations (or 'noise') lost in passing to the reduced density matrix. For the case of fluctuations arising from a classical probability distribution, the hierarchy is formed from expectations of products of pure state density matrix elements and can be compactly summarized by a simple generating function. For the case of quantum fluctuations arising when a quantum system interacts with a quantum environment in an overall pure state, the corresponding hierarchy is defined as the environmental trace of products of system matrix elements of the full density matrix. Whereas all members of the classical noise hierarchy are system observables, only the lowest member of the quantum noise hierarchy is directly experimentally measurable. The unit trace and idempotence properties of the pure state density matrix imply descent relations for the tensor hierarchies, that relate the order n tensor, under contraction of appropriate pairs of tensor indices, to the order n - 1 tensor. As examples to illustrate the classical probability distribution formalism, we consider a spatially isotropic ensemble of spin-1/2 pure states, a quantum system evolving by an Ito stochastic Schroedinger equation and a quantum system evolving by a jump process Schroedinger equation. As examples to illustrate the corresponding trace formalism in the quantum fluctuation case, we consider the tensor hierarchies for collisional Brownian motion of an infinite mass Brownian particle and for the weak coupling Born-Markov master equation. In different specializations, the latter gives the hierarchies generalizing the quantum optical master equation and the Caldeira-Leggett master equation. As a further application of the density tensor, we contrast stochastic Schroedinger equations that reduce and that do not reduce the state vector, and discuss why a quantum system coupled to a quantum environment behaves like

  19. Detection of small-amplitude periodic surface pressure fluctuation by pressure-sensitive paint measurements using frequency-domain methods

    Science.gov (United States)

    Noda, Takahiro; Nakakita, Kazuyki; Wakahara, Masaki; Kameda, Masaharu

    2018-06-01

    Image measurement using pressure-sensitive paint (PSP) is an effective tool for analyzing the unsteady pressure field on the surface of a body in a low-speed air flow, which is associated with wind noise. In this study, the surface pressure fluctuation due to the tonal trailing edge (TE) noise for a two-dimensional NACA 0012 airfoil was quantitatively detected using a porous anodized aluminum PSP (AA-PSP). The emission from the PSP upon illumination by a blue laser diode was captured using a 12-bit high-speed complementary metal-oxide-semiconductor (CMOS) camera. The intensities of the captured images were converted to pressures using a standard intensity-based method. Three image-processing methods based on the fast Fourier transform (FFT) were tested to determine their efficiency in improving the signal-to-noise ratio (SNR) of the unsteady PSP data. In addition to two fundamental FFT techniques (the full data and ensemble averaging FFTs), a technique using the coherent output power (COP), which involves the cross correlation between the PSP data and the signal measured using a pointwise sound-level meter, was tested. Preliminary tests indicated that random photon shot noise dominates the intensity fluctuations in the captured PSP emissions above 200 Hz. Pressure fluctuations associated with the TE noise, whose dominant frequency is approximately 940 Hz, were successfully measured by analyzing 40,960 sequential PSP images recorded at 10 kfps. Quantitative validation using the power spectrum indicates that the COP technique is the most effective method of identification of the pressure fluctuation directly related to TE noise. It is possible to distinguish power differences with a resolution of 10 Pa^2 (4 Pa in amplitude) when the COP was employed without use of another wind-off data. This resolution cannot be achieved by the ensemble averaging FFT because of an insufficient elimination of the background noise.

  20. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    International Nuclear Information System (INIS)

    Pradhan, Prabhakar; Damania, Dhwanil; Turzhitsky, Vladimir; Subramanian, Hariharan; Backman, Vadim; Joshi, Hrushikesh M; Dravid, Vinayak P; Roy, Hemant K; Taflove, Allen

    2011-01-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed