WorldWideScience

Sample records for density dependence suggests

  1. Density dependent neurodynamics.

    Science.gov (United States)

    Halnes, Geir; Liljenström, Hans; Arhem, Peter

    2007-01-01

    The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.

  2. Pyridoxine dependent epilepsy: a suggestive electroclinical pattern

    OpenAIRE

    1999-01-01

    AIMS—To determine if there is an electroencephalographic pattern suggestive of pyridoxine dependent epilepsy that could be used to improve the chances of early diagnosis.
METHODS—A retrospective study was made of all the clinical records and electroencephalograms of neonates identified with pyridoxine dependent seizures between 1983 and 1994, at this hospital. Neonates whose seizures began after more than 28 days of life were excluded; in all, five patients from four fami...

  3. Density Dependence of Nuclear Symmetry Energy

    CERN Document Server

    Behera, B; Tripathy, S K

    2016-01-01

    High density behaviour of nuclear symmetry energy is studied on the basis of a stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral $n+p+e+\\mu$ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars

  4. Density dependence of nuclear symmetry energy

    Science.gov (United States)

    Behera, B.; Routray, T. R.; Tripathy, S. K.

    2016-10-01

    High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.

  5. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  6. Density dependence in demography and dispersal generates fluctuating invasion speeds.

    Science.gov (United States)

    Sullivan, Lauren L; Li, Bingtuan; Miller, Tom E X; Neubert, Michael G; Shaw, Allison K

    2017-05-09

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities-i.e., an Allee effect-combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting.

  7. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  8. Host range expansion is density dependent.

    Science.gov (United States)

    Castagneyrol, Bastien; Jactel, Hervé; Brockerhoff, Eckehard G; Perrette, Nicolas; Larter, Maximilien; Delzon, Sylvain; Piou, Dominique

    2016-11-01

    The realized host range of herbivores is expected to increase with herbivore population density. Theory also predicts that trait similarity and phylogenetic relatedness between native and exotic plants is expected to increase the susceptibility of introduced plants to feeding by native herbivores. Whether the ability of native herbivores to extend their host range to introduced species is density dependent is still unknown. We addressed this question by monitoring pine processionary moth (PPM, Thaumetopoea pityocampa) attacks during nine consecutive years on 41 pine species (8 native and 33 introduced) planted in an arboretum. The survey encompassed latent and outbreak periods. A total of 28 pine species were attacked by PPM. There was no difference in the probability of attack between native and introduced pine species. Host range increased and was more phylogenetically clustered during outbreak than latent periods. When population density increased, PPM expanded its diet breadth by attacking introduced pine species that were closely related to native hosts. This study demonstrates the density dependence of host range expansion in a common pine herbivore. Importantly, it supports the idea that the degree of phylogenetic proximity between host species can be a better predictor of attacks than the introduction status, which may help to predict the outcomes of new plant-herbivore interactions.

  9. Density dependence of clutch size: habitat heterogeneity or individual adjustment?

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Two hypotheses have been proposed to explain density- dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in heterogeneous environments only being occupied at high densities.

  10. Density-dependent cladogenesis in birds.

    Directory of Open Access Journals (Sweden)

    Albert B Phillimore

    2008-03-01

    Full Text Available A characteristic signature of adaptive radiation is a slowing of the rate of speciation toward the present. On the basis of molecular phylogenies, studies of single clades have frequently found evidence for a slowdown in diversification rate and have interpreted this as evidence for density dependent speciation. However, we demonstrated via simulation that large clades are expected to show stronger slowdowns than small clades, even if the probability of speciation and extinction remains constant through time. This is a consequence of exponential growth: clades, which, by chance, diversify at above the average rate early in their history, will tend to be large. They will also tend to regress back to the average diversification rate later on, and therefore show a slowdown. We conducted a meta-analysis of the distribution of speciation events through time, focusing on sequence-based phylogenies for 45 clades of birds. Thirteen of the 23 clades (57% that include more than 20 species show significant slowdowns. The high frequency of slowdowns observed in large clades is even more extreme than expected under a purely stochastic constant-rate model, but is consistent with the adaptive radiation model. Taken together, our data strongly support a model of density-dependent speciation in birds, whereby speciation slows as ecological opportunities and geographical space place limits on clade growth.

  11. Density-dependent nest predation in waterfowl: the relative importance of nest density versus nest dispersion

    Science.gov (United States)

    Ackerman, Joshua T.; Ringelman, Kevin M.; Eadie, J.M.

    2012-01-01

    When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for “dispersion-dependent” predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.

  12. Wildlife disease elimination and density dependence

    KAUST Repository

    Potapov, A.

    2012-05-16

    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.

  13. The population dynamical consequences of density-dependent prophylaxis.

    Science.gov (United States)

    Reynolds, Jennifer J H; White, Andrew; Sherratt, Jonathan A; Boots, Mike

    2011-11-07

    When infectious disease transmission is density-dependent, the risk of infection will tend to increase with host population density. Since host defence mechanisms can be costly, individual hosts may benefit from increasing their investment in immunity in response to increasing population density. Such "density-dependent prophylaxis" (DDP) has now indeed been demonstrated experimentally in several species. However, it remains unclear how DDP will affect the population dynamics of the host-pathogen interaction, with previous theoretical work making conflicting predictions. We develop a general host-pathogen model and assess the role of DDP on the population dynamics. The ability of DDP to drive population cycles is critically dependent on the time delay between the change in density and the subsequent phenotypic change in the level of resistance. When the delay is absent or short, DDP destabilises the system. As the delay increases, its destabilising effect first diminishes and then DDP becomes increasingly stabilising. Our work highlights the significance of the time delay and suggests that it must be estimated experimentally or varied in theoretical investigations in order to understand the implications of DDP for the population dynamics of particular systems.

  14. Cuticular antifungals in spiders: density- and condition dependence.

    Science.gov (United States)

    González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

    2014-01-01

    Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  15. Formation of Los Angeles's low density and high car dependence

    Institute of Scientific and Technical Information of China (English)

    DAI Te-qi; JIN Feng-jun

    2009-01-01

    As a typical car-dependent city, Los Angeles (LA) is extensively used as an example in research to illustrate car influences on city form. Focusing on the features of LA's geologic conditions and civil circumstances, we argued that the relationship between LA's low-density pattern and car dependence is more involved than previously deemed simple causality. The low density should be primarily credited to the spacious requirement of the mining industry, frequent earthquakes and multiethnic population of the city. Oil reserves in LA fueled its economic boom and fast urbanization that coincided with the start of mass production of cheap cars, and cars became medium-priced consumables for average families. Politicians preference for short construction-peried projects enabled fast establishment of LA's highway infrastructure. The popularity of car use in return faciliatated further development of the low-density pattern of the city. The low-density urban form and car dependence created environmental and social problems for LA. Looking at P. R. China's motorization and urban development, we found that the trajectory of Beijing's motorization between 1978 and 2003 coincides with that of the U.S. in the 1910s and 1920s. Lessons from LA's urban and transportation development should be suggestive to China's urban and transportation planning.

  16. Time-dependent density-functional theory for extended systems

    Energy Technology Data Exchange (ETDEWEB)

    Botti, Silvana [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Schindlmayr, Arno [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Del Sole, Rodolfo [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Reining, Lucia [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown)

    2007-03-15

    For the calculation of neutral excitations, time-dependent density functional theory (TDDFT) is an exact reformulation of the many-body time-dependent Schroedinger equation, based on knowledge of the density instead of the many-body wavefunction. The density can be determined in an efficient scheme by solving one-particle non-interacting Schroedinger equations-the Kohn-Sham equations. The complication of the problem is hidden in the-unknown-time-dependent exchange and correlation potential that appears in the Kohn-Sham equations and for which it is essential to find good approximations. Many approximations have been suggested and tested for finite systems, where even the very simple adiabatic local-density approximation (ALDA) has often proved to be successful. In the case of solids, ALDA fails to reproduce optical absorption spectra, which are instead well described by solving the Bethe-Salpeter equation of many-body perturbation theory (MBPT). On the other hand, ALDA can lead to excellent results for loss functions (at vanishing and finite momentum transfer). In view of this and thanks to recent successful developments of improved linear-response kernels derived from MBPT, TDDFT is today considered a promising alternative to MBPT for the calculation of electronic spectra, even for solids. After reviewing the fundamentals of TDDFT within linear response, we discuss different approaches and a variety of applications to extended systems.

  17. Density dependent catchability in bottom trawl surveys

    OpenAIRE

    Aglen, Asgeir; Engås, Arill; Godø, Olav Rune; McCallum, Barry R.; Stansbury, Don; Walsh, Stephen J.

    1997-01-01

    Fish form schools, layer or patches in which the individual fish's behaviour is not independent of its neighbours movements. On the other hand, at low densities fish may have the freedom to act as single individuals independently of what other fish are doing. Potentially, if these contrasts occur in nature, they may give rise to behavioural differences of fish in front of the trawl at high and low densities with successive effects on catchability and bottom trawl indices of stock ...

  18. Density dependence of the saturated velocity in graphene

    Science.gov (United States)

    Ferry, D. K.

    2016-11-01

    The saturated velocity of a semiconductor is an important measure in bench-marking performance for either logic or microwave applications. Graphene has been of interest for such applications due to its apparently high value of the saturated velocity. Recent experiments have suggested that this value is very density dependent and can even exceed the band limiting Fermi velocity. Some of these measurements have also suggested that the scattering is dominated by the low energy surface polar mode of the SiO2 substrate. Here, we show that the saturated velocity of graphene on SiO2 is relatively independent of the density and that the scattering is dominated by the high energy surface polar mode of the substrate.

  19. Density dependence in Caenorhabditis larval starvation

    Science.gov (United States)

    Artyukhin, Alexander B.; Schroeder, Frank C.; Avery, Leon

    2013-01-01

    Availability of food is often a limiting factor in nature. Periods of food abundance are followed by times of famine, often in unpredictable patterns. Reliable information about the environment is a critical ingredient of successful survival strategy. One way to improve accuracy is to integrate information communicated by other organisms. To test whether such exchange of information may play a role in determining starvation survival strategies, we studied starvation of L1 larvae in C. elegans and other Caenorhabditis species. We found that some species in genus Caenorhabditis, including C. elegans, survive longer when starved at higher densities, while for others survival is independent of the density. The density effect is mediated by chemical signal(s) that worms release during starvation. This starvation survival signal is independent of ascarosides, a class of small molecules widely used in chemical communication of C. elegans and other nematodes. PMID:24071624

  20. Adaptive density dependence of avian clutch size

    NARCIS (Netherlands)

    Both, C; Tinbergen, JM; Visser, ME

    2000-01-01

    In birds, the annual mean clutch size is often negatively correlated with population density. This relationship is at least in part due to adjustment by individuals. We investigated whether this response is adaptive in two ways. First we used an optimality model to predict how optimal clutch size

  1. Size-dependent density of nanoparticles and nanostructured materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Karuna Kar, E-mail: nanda@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 12 (India)

    2012-10-01

    We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. -- Highlights: ► Density of nanoparticles depends mainly on the size-dependent lattice parameter. ► Density is predicted to increase with decreasing size for nanoparticles. ► Density decreases with size for nanostructured materials.

  2. Dependence of quartz wettability on fluid density

    Science.gov (United States)

    Al-Yaseri, Ahmed Zarzor; Roshan, Hamid; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-04-01

    Wettability is one of the most important parameters in multiphase flow through porous rocks. However, experimental measurements or theoretical predictions are difficult and open to large uncertainty. In this work we demonstrate that gas densities (which are much simpler to determine than wettability and typically well known) correlate remarkably well with wettability. This insight can significantly improve wettability predictions, thus derisking subsurface operations (e.g., CO2 geostorage or hydrocarbon recovery), and significantly enhance fundamental understanding of natural geological processes.

  3. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  4. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  5. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not sup

  6. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not sup

  7. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou

  8. Density dependence of clutch size : habitat heterogeneity or individual adjustment?

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.   Two hypotheses have been proposed to explain density-dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in hetero geneous environments only being occupied at high

  9. Balancing selection shapes density-dependent foraging behaviour.

    Science.gov (United States)

    Greene, Joshua S; Brown, Maximillian; Dobosiewicz, May; Ishida, Itzel G; Macosko, Evan Z; Zhang, Xinxing; Butcher, Rebecca A; Cline, Devin J; McGrath, Patrick T; Bargmann, Cornelia I

    2016-11-10

    The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.

  10. Viscosity and density dependence during maximal flow in man.

    Science.gov (United States)

    Staats, B A; Wilson, T A; Lai-Fook, S J; Rodarte, J R; Hyatt, R E

    1980-02-01

    Maximal expiratory flow curves were obtained from ten healthy subjects white breathing air and three other gas mixtures with different densities and viscosities. From these data, the magnitudes of the dependence of maximal flow on gas density and viscosity were obtained. The scaling laws of fluid mechanics, together with a model for the flow-limiting mechanism, were used to obtain a prediction of the relationship between the density dependence and the viscosity dependence of maximal flow. Although the data for individual subjects were too variable to allow a precise comparison with this prediction, the relationship between the mean density dependence and the mean viscosity dependence of all usbjects agreed with the theoretic prediction. This agreement supports the assumption, which is frequently made, that flow resistance rather than tissue visoelasticity is the dominant contributor to peripheral resistance. Information on the relationships between the pressure drop to the flow-limiting segment and flow, gas density and viscosity, and lung volume were also obtained.

  11. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  12. Density-dependent acoustic properties of PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hartline, Ernest L [Los Alamos National Laboratory; Hagelberg, Stephanie I [Los Alamos National Laboratory

    2009-07-31

    We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.

  13. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility.

    Science.gov (United States)

    Köppl, Christine; Forge, Andrew; Manley, Geoffrey A

    2004-11-08

    Hair cells are the mechanoreceptive cells of the vertebrate lateral line and inner ear. In addition to their sensory function, hair cells display motility and thus themselves generate mechanical energy, which is thought to enhance sensitivity. Two principal cellular mechanism are known that can mediate hair-cell motility in vitro. One of these is based on voltage-dependent changes of an intramembrane protein and has so far been demonstrated only in outer hair cells of the mammalian cochlea. Correlated with this, the cell membranes of outer hair cells carry an extreme density of embedded particles, as revealed by freeze fracturing. The present study explored the possibility of membrane-based motility in hair cells of nonmammals, by determining their density of intramembrane particles. Replicas of freeze-fractured membrane were prepared from auditory hair cells of a lizard, the Tokay gecko, and a bird, the barn owl. These species were chosen because of independent evidence for active cochlear mechanics, in the form of spontaneous otoacoustic emissions. For quantitative comparison, mammalian inner and outer hair cells, as well as vestibular hair, cells were reevaluated. Lizard and bird hair cells displayed median densities of 2,360 and 1,880 intramembrane particles/microm2, respectively. This was not significantly different from the densities in vestibular and mammalian inner hair cells; however, it was about half the density in of mammalian outer hair cells. This suggests that nonmammalian hair cells do not possess high densities of motor protein in their membranes and are thus unlikely to be capable of somatic motility. 2004 Wiley-Liss, Inc.

  14. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes.

    Science.gov (United States)

    Johnson, Darren W

    2006-05-01

    Density dependence in demographic rates can strongly affect the dynamics of populations. However, the mechanisms generating density dependence (e.g., predation) are also dynamic processes and may be influenced by local conditions. Understanding the manner in which local habitat features affect the occurrence and/or strength of density dependence will increase our understanding of population dynamics in heterogeneous environments. In this study I conducted two separate field experiments to investigate how local predator density and habitat complexity affect the occurrence and form of density-dependent mortality of juvenile rockfishes (Sebastes spp.). I also used yearly censuses of rockfish populations on nearshore reefs throughout central California to evaluate mortality of juvenile rockfish at large spatial scales. Manipulations of predators (juvenile bocaccio, S. paucispinus) and prey (kelp, gopher, and black-and-yellow [KGB] rockfish, Sebastes spp.) demonstrated that increasing the density of predators altered their functional response and thus altered patterns of density dependence in mortality of their prey. At low densities of predators, the number of prey consumed per predator was a decelerating function, and mortality of prey was inversely density dependent. However, at high densities of predators, the number of prey killed per predator became an accelerating response, and prey mortality was directly density dependent. Results of field experiments and large-scale surveys both indicated that the strength of density-dependent mortality may also be affected by the structural complexity of the habitat. In small-scale field experiments, increased habitat complexity increased the strength of density-dependent mortality. However, at large scales, increasing complexity resulted in a decrease in the strength of density dependence. I suggest that these differences resulted from scale-dependent changes in the predatory response that generated mortality. Whether

  15. Density-dependent prophylaxis and condition-dependent immune function in Lepidopteran larvae: a multivariate approach

    OpenAIRE

    Cotter, Sheena; Hails, R. S.; Cory, J S; Wilson, K.

    2004-01-01

    1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).

  16. Dependence of polar hole density on magnetic and solar conditions

    Science.gov (United States)

    Hoegy, W. R.; Grebowsky, J. M.

    1991-01-01

    Electron densities from the Langmuir probes on the Atmospheric Explorer C and Dynamics Explorer 2 are used for analyzing the behavior of the high-altitude night-side F region polar hole as a function of solar and magnetic activity and of universal time (UT). The polar region of invariant latitude from 70 deg to 80 deg and MLT from 22 to 03 hours is examined. The strongest dependencies are observed in F10.7 and UT; a strong hemispherical difference due to the offset of the magnetic poles from the earth's rotation axis is observed in the UT dependence of the ionization hole. A seasonal variation in the dependence of ion density on solar flux is indicated, and an overall asymmetry in the density level between hemispheres is revealed, with the winter-hole density about a factor of 10 greater in the north than in the south.

  17. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  18. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  19. Loss of density-dependence and incomplete control by dominant breeders in a territorial species with density outbreaks

    Directory of Open Access Journals (Sweden)

    Ylönen Hannu

    2011-07-01

    Full Text Available Abstract Background A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression. Results We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density. Conclusions At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point, the dominance of breeders could not be sustained (incomplete control. In our experiment, this point

  20. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  1. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care

    Science.gov (United States)

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B.; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism’s entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained. PMID:27093056

  2. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Directory of Open Access Journals (Sweden)

    Elijah Reyes

    Full Text Available Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1 egg survival is density dependent or 2 adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  3. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Science.gov (United States)

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  4. Time dependent density functional calculation of plasmon response in clusters

    Institute of Scientific and Technical Information of China (English)

    Wang Feng(王锋); Zhang Feng-Shou(张丰收); Eric Suraud

    2003-01-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged timedependent local density approximation scheme, which is solved directly in the time domain without any linearization.As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  5. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the Ne /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. Incorporating density dependence into the directed-dispersal hypothesis.

    Science.gov (United States)

    Spiegel, Orr; Nathan, Ran

    2010-05-01

    The directed-dispersal (DrD) hypothesis, one of the main explanations for the adaptive value of seed dispersal, asserts that enhanced (nonrandom) arrival to favorable establishment sites is advantageous for plant fitness. However, as anticipated by the ideal free distribution theory, enhanced seed deposition may impair site suitability by increasing density-dependent mortality, thus negating the advantage postulated by the DrD hypothesis. Although the role of density effects is thoroughly discussed in the seed-dispersal literature, this DrD paradox remains largely overlooked. The paradox, however, may be particularly pronounced in animal-mediated dispersal systems, in which DrD is relatively common, because animals tend to generate local seed aggregations due to their nonrandom movements. To investigate possible solutions to the DrD paradox, we first introduce a simple analytical model that calculates the optimal DrD level at which seed arrival to favorable establishment sites yields maximal fitness gain in comparison to a null model of random arrival. This model predicts intermediate optimal DrD levels that correspond to various attributes of the plants, the dispersers, and the habitat. We then use a simulation model to explore the temporal dynamics of the invasion process of the DrD strategy in a randomly dispersed population, and the resistance of a DrD population against invasion of other dispersal strategies. This model demonstrates that some properties of the invasion process (e.g., mutant persistence ratio in the population and generations until initial establishment) are facilitated by high DrD levels, and not by intermediate levels as expected from the analytical model. These results highlight the need to revise the DrD hypothesis to include the countering effects of density-dependent mortality inherently imposed by enhanced arrival of seeds to specific sites. We illustrate how the revised hypothesis can elucidate previous results from empirical studies

  7. Effect of the density dependent symmetry energy on fragmentation

    CERN Document Server

    Vinayak, Karan Singh

    2011-01-01

    The effect of the density dependence of symmetry energy on fragmentation is studied using isospin-dependent quantum molecular dynamics model(IQMD) Model. We have used the reduced isospin-dependent cross-section with soft equation of state to explain the experimental findings for the system 79_Au^197 + 79_Au^197 for the full colliding geometry. In addition to that we have tried to study the collective response of the momentum dependent interactions(MDI) and symmetry energy towards the multifragmentation

  8. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  9. Disentangling density-dependent dynamics using full annual cycle models and Bayesian model weight updating

    Science.gov (United States)

    Robinson, Orin J.; McGowan, Conor; Devers, Patrick K.

    2017-01-01

    Density dependence regulates populations of many species across all taxonomic groups. Understanding density dependence is vital for predicting the effects of climate, habitat loss and/or management actions on wild populations. Migratory species likely experience seasonal changes in the relative influence of density dependence on population processes such as survival and recruitment throughout the annual cycle. These effects must be accounted for when characterizing migratory populations via population models.To evaluate effects of density on seasonal survival and recruitment of a migratory species, we used an existing full annual cycle model framework for American black ducks Anas rubripes, and tested different density effects (including no effects) on survival and recruitment. We then used a Bayesian model weight updating routine to determine which population model best fit observed breeding population survey data between 1990 and 2014.The models that best fit the survey data suggested that survival and recruitment were affected by density dependence and that density effects were stronger on adult survival during the breeding season than during the non-breeding season.Analysis also suggests that regulation of survival and recruitment by density varied over time. Our results showed that different characterizations of density regulations changed every 8–12 years (three times in the 25-year period) for our population.Synthesis and applications. Using a full annual cycle, modelling framework and model weighting routine will be helpful in evaluating density dependence for migratory species in both the short and long term. We used this method to disentangle the seasonal effects of density on the continental American black duck population which will allow managers to better evaluate the effects of habitat loss and potential habitat management actions throughout the annual cycle. The method here may allow researchers to hone in on the proper form and/or strength of

  10. Effective Maxwell Equations from Time-dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Weinan E; Jianfeng LU; Xu YANG

    2011-01-01

    The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.

  11. Linear-response thermal time-dependent density functional theory

    CERN Document Server

    Pribram-Jones, Aurora; Burke, Kieron

    2015-01-01

    The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.

  12. Rapidity dependence of particle densities in pp and AA collisions

    CERN Document Server

    Bautista, Irais; Milhano, Jose Guilherme; Dias de Deus, Jorge

    2012-01-01

    We use multiple scattering and energy conservation arguments to describe $dn/d\\eta_{NANA}$ as a function of $dn/d\\eta_{pp}$ in the framework of string percolation. We discuss the pseudo-rapidity $\\eta$? and beam rapidity Y dependence of particle densities. We present our results for pp, Au- Au, and Pb-Pb collisions at RHIC and LHC.

  13. Temperature dependence of densities of Sb and Bi melts

    Institute of Scientific and Technical Information of China (English)

    GENG HaoRan; SUN ChunJing; WANG Rui; QI XiaoGang; ZHANG Ning

    2007-01-01

    The densities of Sb and Bi melts were investigated by an improved Archimedean method. The results show that the density of the Sb melt decreases linearly with increasing temperature, but the density of the Bi melt firstly increases and then decreases as the temperature increases. There is a maximum density value of 10.002 g/cm3 at 310℃, about 39℃ above the melting point. The temperature dependence of the Sb melt is well fitted with the expression ρ= 6.8590-5.8105×10-4T, and that of the Bi melt is fitted with ρ=10.3312-1.18×10-3T. The results were discussed from a microstructure viewpoint.

  14. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data.

  15. Eigenstates of the time-dependent density-matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, M. [Kyorin University School of Medicine, 181-8611, Mitaka, Tokyo (Japan); Schuck, P. [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, F-91406, Orsay Cedex (France)

    2004-02-01

    An extended time-dependent Hartree-Fock theory, known as the time-dependent density-matrix theory (TDDM), is solved as a time-independent eigenvalue problem for low-lying 2{sup +} states in {sup 24}O to understand the foundation of the rather successful time-dependent approach. It is found that the calculated strength distribution of the 2{sup +} states has physically reasonable behavior and that the strength function is practically positive definite though the non-Hermitian Hamiltonian matrix obtained from TDDM does not guarantee it. A relation to an Extended RPA theory with hermiticity is also investigated. It is found that the density-matrix formalism is a good approximation to the Hermitian Extended RPA theory. (orig.)

  16. Stochasticity and Determinism: How Density-Independent and Density-Dependent Processes Affect Population Variability

    OpenAIRE

    Jan Ohlberger; Rogers, Lauren A.; Nils Chr. Stenseth

    2014-01-01

    A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a lif...

  17. Stochasticity and determinism: how density-independent and density-dependent processes affect population variability.

    Science.gov (United States)

    Ohlberger, Jan; Rogers, Lauren A; Stenseth, Nils Chr

    2014-01-01

    A persistent debate in population ecology concerns the relative importance of environmental stochasticity and density dependence in determining variability in adult year-class strength, which contributes to future reproduction as well as potential yield in exploited populations. Apart from the strength of the processes, the timing of density regulation may affect how stochastic variation, for instance through climate, translates into changes in adult abundance. In this study, we develop a life-cycle model for the population dynamics of a large marine fish population, Northeast Arctic cod, to disentangle the effects of density-independent and density-dependent processes on early life-stages, and to quantify the strength of compensatory density dependence in the population. The model incorporates information from scientific surveys and commercial harvest, and dynamically links multiple effects of intrinsic and extrinsic factors on all life-stages, from eggs to spawners. Using a state-space approach we account for observation error and stochasticity in the population dynamics. Our findings highlight the importance of density-dependent survival in juveniles, indicating that this period of the life cycle largely determines the compensatory capacity of the population. Density regulation at the juvenile life-stage dampens the impact of stochastic processes operating earlier in life such as environmental impacts on the production of eggs and climate-dependent survival of larvae. The timing of stochastic versus regulatory processes thus plays a crucial role in determining variability in adult abundance. Quantifying the contribution of environmental stochasticity and compensatory mechanisms in determining population abundance is essential for assessing population responses to climate change and exploitation by humans.

  18. Density-dependent population dynamics in larvae of the dragonfly Pachydiplax longipennis: a field experiment.

    Science.gov (United States)

    Van Buskirk, J

    1987-05-01

    Several features of dragonfly population biology suggest that population regulation occurs in the larval stage. This study was designed to determine if density-dependent interactions among larval odonates can affect survival, growth and emergence. First-instar larvae of the dragonfly Pachydiplax longipennis were raised in outdoor experimental ponds at initial densities of 38, 152, and 608 larvae · m(-2), under two levels of food availability. Food availability was supplemented in half the pools by volumetric addition of zooplankton every other day. Pools in the low food treatment did not receive the zooplankton supplement.There was a strong negative effect of density on the mean growth rate of survivors, which included both emerging tenerals and individuals overwintering in the larval stage. A higher proportion emerged from low density than high density pools. Metamorphs from high density populations were smaller and emerged slightly later than those from low density, but the absolute number of metamorphs did not differ significantly among density treatments. Food supplementation significantly increased the proportion of overwintering larvae. There were no significant food-by-density interactions, indicating that food and density acted independently on larval population dynamics. Density-dependent mechanisms can clearly contribute to odonate population regulation, especially by controlling the number of larvae which emerge and the average age at reproduction. Population-level responses to density may be a result of interference among larvae.

  19. Saturating interactions in /sup 4/He with density dependence

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, S.D.; Resler, D.A.; Moszkowski, S.A.

    1989-05-03

    With the advent of larger and faster computers, as well as modern shell model codes, nuclear structure calculations for the light nuclei (A<16) which include full 2/bar h/..omega.. model spaces are quite feasible. However, there can be serious problems in the mixing of 2/bar h/..omega.. and higher excitations into the low-lying spectra if the effective interaction is non-saturating. Furthermore, effective interactions which are both saturating and density dependent have not generally been used in previous nuclear structure calculations. Therefore, we have undertaken studies of /sup 4/He using two-body potential interactions which incorporate both saturation and density-dependence. Encouraging initial results in remedying the mixing of 0 and 2/bar h/..omega.. excitations have been obtained. We have also considered the effects of our interaction on the /sup 4/He compressibility and the centroid of the breathing mode strength. First indications are that a saturating effective interaction, with a short-range density dependent part and a long-range density independent part, comes close to matching crude predictions for the compressibility of /sup 4/He. 11 refs., 6 tabs.

  20. Density-functional perturbation theory goes time-dependent

    OpenAIRE

    Gebauer, Ralph; Rocca, Dario; Baroni, Stefano

    2009-01-01

    The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...

  1. Density dependent growth in adult brown frogs Rana arvalis and Rana temporaria - A field experiment

    Science.gov (United States)

    Loman, Jon; Lardner, Björn

    2009-11-01

    In species with complex life cycles, density regulation can operate on any of the stages. In frogs there are almost no studies of density effects on the performance of adult frogs in the terrestrial habitat. We therefore studied the effect of summer density on the growth rate of adult frogs during four years. Four 30 by 30 m plots in a moist meadow were used. In early summer, when settled after post-breeding migration, frogs ( Rana arvalis and Rana temporaria that have a very similar ecology and potentially compete) were enclosed by erecting a fence around the plots. Frogs were captured, measured, marked and partly relocated to create two high density and two low density plots. In early autumn the frogs were again captured and their individual summer growth determined. Growth effects were evaluated in relation to two density measures: density by design (high/low manipulation), and actual (numerical) density. R. arvalis in plots with low density by design grew faster than those in high density plots. No such effect was found for R. temporaria. For none of the species was growth related to actual summer density, determined by the Lincoln index and including the density manipulation. The result suggests that R. arvalis initially settled according to an ideal free distribution and that density had a regulatory effect (mediated through growth). The fact that there were no density effects on R. temporaria (and a significant difference in its response to that of R. arvalis) suggests it is a superior competitor to R. arvalis during the terrestrial phase. There were no density effects on frog condition index, suggesting that the growth rate modifications may actually be an adaptive trait of R. arvalis. The study demonstrates that density regulation may be dependent on resources in frogs' summer habitat.

  2. The dependence of natural graphite anode performance on electrode density

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joongpyo; Striebel, Kathryn A.

    2003-11-01

    The effect of electrode density for lithium intercalation and irreversible capacity loss on the natural graphite anode in lithium ion batteries was studied by electrochemical methods. Both the first-cycle reversible and irreversible capacities of the natural graphite anode decreased with an increase in the anode density though compression. The reduction in reversible capacity was attributed to a reduction in the chemical diffusion coefficient for lithium though partially agglomerated particles with a larger stress. For the natural graphite in this study the potentials for Li (de)insertion shifted between the first and second formation cycles and the extent of this shift was dependent on electrode density. The relation between this peak shift and the irreversible capacity loss are probably both due to the decrease in graphite surface area with compression.

  3. Density-dependent potential for multi-neutron halo nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuang; CHU Yan-Yun; REN Zhong-Zhou

    2009-01-01

    We apply a simple density-dependent potential model to the three-body calculation of the ground-state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are in better agreement with experimental data than the results calculated from the standard Woods-Saxon and Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function can not exactly describe the density distribution of the drip-line nuclei.

  4. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview

    Directory of Open Access Journals (Sweden)

    Hojun Song

    2011-01-01

    Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.

  5. Limit Theorems for Competitive Density Dependent Population Processes

    CERN Document Server

    Parsons, Todd L

    2010-01-01

    Near the beginning of the century, Wright and Fisher devised an elegant, mathematically tractable model of gene reproduction and replacement that laid the foundation for contemporary population genetics. The Wright-Fisher model and its extensions have given biologists powerful tools of statistical inference that enabled the quantification of genetic drift and selection. Given the utility of these tools, we often forget that their model - for mathematical, and not biological reasons - makes assumptions that are violated in most real-world populations. In this paper, I consider an alternative framework that merges P. A. P. Moran's continuous-time Markov chain model of allele frequency with the density dependent models of ecological competition proposed by Gause, Lotka and Volterra, that, unlike Moran's model allow for a stochastically varying -- but bounded -- population size. I require that allele numbers vary according to a density-dependent population process, for which the limiting law of large numbers is a...

  6. Temperature and temporal dependence of neutral density transmittance standards

    Science.gov (United States)

    Koo, A.; Hamlin, J. D.

    2012-04-01

    The Schott series of NG glasses are frequently used to manufacture neutral density transmittance standards for validation of spectrophotometer systems as well as for comparisons of regular spectral transmittance scales. A study has been made of the temperature and temporal dependence of transmittance in these types of filters. The temperature dependence of transmittance is found to scale as -ln(T). The filter transmittance was found to vary significantly with time shortly after manufacture but appears to be stabilizing nine months after beginning measurements.

  7. Numerical density-to-potential inversions in time-dependent density functional theory.

    Science.gov (United States)

    Jensen, Daniel S; Wasserman, Adam

    2016-08-01

    We treat the density-to-potential inverse problem of time-dependent density functional theory as an optimization problem with a partial differential equation constraint. The unknown potential is recovered from a target density by applying a multilevel optimization method controlled by error estimates. We employ a classical optimization routine using gradients efficiently computed by the discrete adjoint method. The inverted potential has both a real and imaginary part to reduce reflections at the boundaries and other numerical artifacts. We demonstrate this method on model one-dimensional systems. The method can be straightforwardly extended to a variety of numerical solvers of the time-dependent Kohn-Sham equations and to systems in higher dimensions.

  8. Leaf damage and density-dependent effects on six Inga species in a neotropical forest

    Directory of Open Access Journals (Sweden)

    Tania Brenes-Arguedas

    2012-12-01

    Full Text Available Many models have been proposed to explain the possible role of pests in the coexistence of a high diversity of plant species in tropical forests. Prominent among them is the Janzen-Connell model. This model suggests that specialized herbivores and pathogens limit tree recruitment as a function of their density or proximity to conspecifics. A large number of studies have tested the predictions of this model with respect to patterns of recruitment and mortality at different life stages, yet only a few have directly linked those density or distance-dependent effects to pest attack. If pest-attack is an important factor in density or distance-dependent mortality, there should be spatial heterogeneity in pest pressure. I studied the spatial distribution of leaf damage in saplings of six common Inga species (Fabaceae: Mimosoideae in the 50ha forest dynamic plot of Barro Colorado Island, Panama. The percent leaf damage of Inga saplings was not heterogeneous in space, and the density of conspecific, congener or confamilial neighbors was uncorrelated with the observed damage levels in focal plants. One of the focal species did suffer density-dependent mortality, suggesting that spatial variation in plant performance in these species is not directly driven by leaf damaging agents. While multiple studies suggest that density-dependent effects on performance are common in tropical plant communities, our understanding of the mechanisms that drive those effects is still incomplete and the underlying assumption that these patterns result from differential herbivore attack deserves more scrutiny.

  9. Approximate particle number projection for finite range density dependent forces

    CERN Document Server

    Valor, A; Robledo, L M

    1996-01-01

    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei ^{164}Er and ^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.

  10. Does spacecraft potential depend on the ambient electron density?

    Science.gov (United States)

    Lai, S. T.; Martinez-Sanchez, M.; Cahoy, K.; Thomsen, M. F.; Shprits, Y.; Lohmeyer, W. Q.; Wong, F.

    2014-12-01

    In a Maxwellian space plasma model, the onset of spacecraft charging at geosynchronous altitudes is due to the ambient electron, ambient ions, and secondary electrons. By using current balance, one can show that the onset of spacecraft charging depends not on the ambient electron density but instead on the critical temperature of the ambient electrons. If the ambient plasma deviates significantly from equilibrium, a non-Maxwellian electron distribution results. For a kappa distribution, the onset of spacecraft charging remains independent of ambient electron density. However, for double Maxwellian distributions, the densities do have a role in the onset of spacecraft charging. For a dielectric spacecraft in sunlight, the trapping of photoelectrons on the sunlit side enhances the local electron density. Using the coordinated environmental satellite data from the Los Alamos National Laboratory geosynchronous satellites, we have obtained results that confirm that the observed spacecraft potential is independent of the ambient electron density during eclipse and that in sunlight charging the low-energy population around the sunlit side of the spacecraft is enhanced by photoelectrons trapped inside the potential barrier.

  11. Density dependence of the /s-wave repulsion in pionic atoms

    Science.gov (United States)

    Friedman, E.

    2002-11-01

    Several mechanisms of density dependence of the s-wave repulsion in pionic atoms, beyond the conventional model, are tested by parameter fits to a large (106 points) set of data from 16O to 238U, including 'deeply bound' states in 205Pb. Special attention is paid to the proper choice of nuclear density distributions. A density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant is introduced and found to account for most of the so-called anomalous repulsion. The presence of such an effect might indicate partial chiral symmetry restoration in dense matter. The anomalous repulsion is fully accounted for when an additional relativistic impulse approximation term is included in the potential.

  12. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    Science.gov (United States)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  13. Time-dependent density functional theory for quantum transport.

    Science.gov (United States)

    Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing

    2010-09-21

    Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.

  14. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    Science.gov (United States)

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other

  15. Implementation Strategies for Orbital-dependent Density Functionals

    Science.gov (United States)

    Bento, Marsal E.; Vieira, Daniel

    2016-12-01

    The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.

  16. Implementation Strategies for Orbital-dependent Density Functionals

    Science.gov (United States)

    Bento, Marsal E.; Vieira, Daniel

    2016-10-01

    The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.

  17. Exploration of a modified density dependence in the Skyrme functional

    CERN Document Server

    Erler, J; Reinhard, P -G

    2010-01-01

    A variant of the basic Skyrme-Hartree-Fock (SHF) functional is considered dealing with a new form of density dependence. It employs only integer powers and thus will allow a more sound basis for projection schemes (particle number, angular momentum). We optimize the new functional with exactly the same adjustment strategy as used in an earlier study with a standard Skyrme functional. This allows direct comparisons of the performance of the new functional relative to the standard one. We discuss various observables: bulk properties of finite nuclei, nuclear matter, giant resonances, super-heavy elements, and energy systematics. The new functional performs at least as well as the standard one, but offers a wider range of applicability (e.g. for projection) and more flexibility in the regime of high densities.

  18. Time-dependent density-functional description of nuclear dynamics

    CERN Document Server

    Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro

    2016-01-01

    We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...

  19. The pasta phase within density dependent hadronic models

    CERN Document Server

    Avancini, S S; Marinelli, J R; Peres-Menezes, D; Watanabe de Moraes, M M; Providência, C; Santos, A M

    2008-01-01

    In the present paper we investigate the onset of the pasta phase with different parametrisations of the density dependent hadronic model and compare the results with one of the usual parametrisation of the non-linear Walecka model. The influence of the scalar-isovector virtual delta meson is shown. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in beta-equilibrium are studied. We compare our results with restrictions imposed on the the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  20. Quark Matter at High Density based on Extended Confined-isospin-density-dependent-mass Model

    CERN Document Server

    Qauli, A I

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include Coulomb term in scalar density form, SQM equation of state (EOS) at high densities is stiffer but if we include Coulomb term in vector density form is softer than that of standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported in Ref.~\\cite {ref:isospin}, we found the stiffness of SQM EOS is controlled by the interplay among the the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 $M_\\odot$ pulsars can constrain the parameter of oscillator harmonic $\\kappa_1$ $\\approx 0.53$ in the case Coulomb term excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM ...

  1. Perspective: Fundamental aspects of time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2016-06-01

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  2. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  3. Time-dependent density functional theory: Causality and other problems

    Energy Technology Data Exchange (ETDEWEB)

    Ruggenthaler, Michael; Bauer, Dieter [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    2007-07-01

    Time-dependent density functional theory (TDDFT) is a reformulation of the time dependent many-body problem in quantum mechanics which is capable of reducing the computational cost to calculate, e.g., strongly driven many-electron systems enormously. Recent developments were able to overcome fundamental problems associated with ionization processes. Still vital issues have to be clarified. Besides the construction of the underlying functionals we investigate the causality problem of TDDFT by general considerations and by studying a exactly solvable system of two correlated electrons in an intense laser-pulse. For the latter system, the two alternative approaches to the construction of the action functional or a constrained functional derivative by van Leeuwen and Gal, respectively, are explored.

  4. Density dependence in a recovering osprey population: demographic and behavioural processes.

    Science.gov (United States)

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.

  5. Altitude dependence of plasma density in the auroral zone

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We study the altitude dependence of plasma depletions above the auroral region in the 5000–30 000 km altitude range using five years of Polar spacecraft potential data. We find that besides a general decrease of plasma density with altitude, there frequently exist additional density depletions at 2–4 RE radial distance, where RE is the Earth radius. The position of the depletions tends to move to higher altitude when the ionospheric footpoint is sunlit as compared to darkness. Apart from these cavities at 2–4 RE radial distance, separate cavities above 4 RE occur in the midnight sector for all Kp and also in the morning sector for high Kp. In the evening sector our data remain inconclusive in this respect. This holds for the ILAT range 68–74. These additional depletions may be substorm-related. Our study shows that auroral phenomena modify the plasma density in the auroral region in such a way that a nontrivial and interesting altitude variation results, which reflects the nature of the auroral acceleration processes.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere–ionosphere interactions

  6. Stochastic Time-Dependent Current-Density Functional Theory

    Science.gov (United States)

    D'Agosta, Roberto

    2008-03-01

    Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.

  7. Development and application of a density dependent matrix ...

    Science.gov (United States)

    Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using

  8. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    Science.gov (United States)

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high

  9. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations.

    Directory of Open Access Journals (Sweden)

    Miguel R Branco

    2006-05-01

    Full Text Available After mitosis, mammalian chromosomes partially decondense to occupy distinct territories in the cell nucleus. Current models propose that territories are separated by an interchromatin domain, rich in soluble nuclear machinery, where only rare interchromosomal interactions can occur via extended chromatin loops. In contrast, recent evidence for chromatin mobility and high frequency of chromosome translocations are consistent with significant levels of chromosome intermingling, with important consequences for genome function and stability. Here we use a novel high-resolution in situ hybridization procedure that preserves chromatin nanostructure to show that chromosome territories intermingle significantly in the nucleus of human cells. The degree of intermingling between specific chromosome pairs in human lymphocytes correlates with the frequency of chromosome translocations in the same cell type, implying that double-strand breaks formed within areas of intermingling are more likely to participate in interchromosomal rearrangements. The presence of transcription factories in regions of intermingling and the effect of transcription impairment on the interactions between chromosomes shows that transcription-dependent interchromosomal associations shape chromosome organization in mammalian cells. These findings suggest that local chromatin conformation and gene transcription influence the extent with which chromosomes interact and affect their overall properties, with direct consequences for cell-type specific genome stability.

  10. Superdeformed rotational bands with density dependent pairing interactions

    Energy Technology Data Exchange (ETDEWEB)

    Terasaki, J. [Service de Physique Nucleaire Theorique, Brussels (Belgium); Heenen, P.H. [Service de Physique Nucleaire Theorique, Brussels (Belgium); Bonche, P. [SPhT - CE Saclay, 91191 Gif-sur-Yvette Cedex (France); Dobaczewski, J. [Institute of Theoretical Physics, Warsaw University, Hoza 69, PL-00-681 Warsaw (Poland); Flocard, H. [Division de Physique Theorique, Institut de Physique Nucleaire, 91406 Orsay Cedex (France)

    1995-10-09

    The cranked Hartree-Fock-Bogoliubov method, applied in a previous study to SD bands of even Hg and Pb isotopes, is extended by including pairing correlations described by a zero-range density-dependent interaction. This more realistic description of the pairing channel modifies the balance between the neutron and proton pairing energies and introduces an orbital variation of the pairing gaps. This results in a retarded alignment, significantly improving the agreement with data in both the A=150 and 190 mass regions. The behavior expected for SD bands in odd-N or odd-Z nuclei is discussed on the basis of the quasiparticle routhians calculated for the even-even isotopes. (orig.).

  11. Superdeformed rotational bands with density dependent pairing interactions

    Science.gov (United States)

    Terasaki, J.; Heenen, P.-H.; Bonche, P.; Dobaczewski, J.; Flocard, H.

    1995-02-01

    The cranked Hartree-Fock-Bogoliubov method, applied in a previous study to SD bands of even Hg and Pb isotopes, is extended by including pairing correlations described by a zero-range density-dependent interaction. This more realistic description of the pairing channel modifies the balance between the neutron and proton pairing energies and introduces an orbital variation of the pairing gaps. This results in a retarded alignment, significantly improving the agreement with data in both the A = 150 and 190 mass regions. The behavior expected for SD bands in odd- N or odd- Z nuclei is discussed on the basis of the quasiparticle routhians calculated for the even-even isotopes.

  12. Density-functional perturbation theory goes time-dependent

    Directory of Open Access Journals (Sweden)

    Gebauer, Ralph

    2008-05-01

    Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.

  13. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  14. Bayesian Inference on the Effect of Density Dependence and Weather on a Guanaco Population from Chile

    Science.gov (United States)

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510

  15. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  16. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  17. Experimental examination of intraspecific density-dependent competition during the breeding period in monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    D T Tyler Flockhart

    Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.

  18. Experimental Examination of Intraspecific Density-Dependent Competition during the Breeding Period in Monarch Butterflies (Danaus plexippus)

    Science.gov (United States)

    Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan

    2012-01-01

    A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614

  19. Is contextual-potentiated eating dependent on caloric density of food?

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Aranda

    2009-01-01

    Full Text Available One experiment tested whether a specific context could elicit eating in rats as a result of Pavlovian conditioning and whether this effect depended on the caloric density of food. Thirty two deprived rats experienced two contexts. They had access to food in context A, but no food was available in context B. During conditioning, half of the animals received high density caloric food (HD groups whereas the other half, low density caloric food (LD groups. Then, half of the rats in each type of food group was tested in context A and the other half in context B. The results demonstrated an effect of context conditioning only in HD groups. These findings suggest the relevance of both contextual conditioning and caloric density of food in eating behaviour. Implications for the aetiology of binge eating will be discussed.

  20. Quorum sensing and density-dependent dispersal in an aquatic model system.

    Directory of Open Access Journals (Sweden)

    Simon Fellous

    Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.

  1. Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine

    NARCIS (Netherlands)

    Brouwer, Lyanne; Tinbergen, Joost M.; Both, Christiaan; Bristol, Rachel; Richardson, David S.; Komdeur, Jan; Sauer, J.R.

    Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is

  2. Truncation scheme of time-dependent density-matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay Cedex (France); Laboratoire de Physique et de Modelisation des Milieux Condenses et Universite Joseph Fourier, Grenoble Cedex 9 (France)

    2014-04-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by the antisymmetrized products of two-body density matrices, is proposed. This truncation scheme is tested for three model Hamiltonians. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  3. Charge transfer in time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2017-10-01

    Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.

  4. A density-dependent endochronic plasticity for powder compaction processes

    Science.gov (United States)

    Bakhshiani, A.; Khoei, A. R.; Mofid, M.

    This paper is concerned with the numerical modeling of powder cold compaction process using a density-dependent endochronic plasticity model. Endochronic plasticity theory is developed based on a large strain plasticity to describe the nonlinear behavior of powder material. The elastic response is stated in terms of hypoelastic model and endochronic plasticity constitutive equations are stated in unrotated frame of reference. A trivially incrementally objective integration scheme for rate constitutive equations is established. Algorithmic modulus consistent with numerical integration algorithm of constitutive equations is extracted. It is shown how the endochronic plasticity describes the behavior of powder material from the initial stage of compaction to final stage, in which material behaves as solid metals. It is also shown that some commonly used plasticity models for powder material can be derived as special cases of the proposed endochronic theory. Finally, the numerical schemes are examined for efficiency in the modeling of a plain bush, a rotational-flanged and a shaped tablet powder compaction component.

  5. Simple preconditioning for time-dependent density functional perturbation theory

    Science.gov (United States)

    Lehtovaara, Lauri; Marques, Miguel A. L.

    2011-07-01

    By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states — such as the Sternheimer method — as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.

  6. Density-dependent role of an invasive marsh grass, Phragmites australis, on ecosystem service provision

    Science.gov (United States)

    Puckett, Brandon J.; Theuerkauf, Kathrynlynn W.; Theuerkauf, Ethan J.; Eggleston, David B.

    2017-01-01

    Invasive species can positively, neutrally, or negatively affect the provision of ecosystem services. The direction and magnitude of this effect can be a function of the invaders’ density and the service(s) of interest. We assessed the density-dependent effect of an invasive marsh grass, Phragmites australis, on three ecosystem services (plant diversity and community structure, shoreline stabilization, and carbon storage) in two oligohaline marshes within the North Carolina Coastal Reserve and National Estuarine Research Reserve System (NCNERR), USA. Plant species richness was equivalent among low, medium and high Phragmites density plots, and overall plant community composition did not vary significantly by Phragmites density. Shoreline change was most negative (landward retreat) where Phragmites density was highest (-0.40 ± 0.19 m yr-1 vs. -0.31 ± 0.10 for low density Phragmites) in the high energy marsh of Kitty Hawk Woods Reserve and most positive (soundward advance) where Phragmites density was highest (0.19 ± 0.05 m yr-1 vs. 0.12 ± 0.07 for low density Phragmites) in the lower energy marsh of Currituck Banks Reserve, although there was no significant effect of Phragmites density on shoreline change. In Currituck Banks, mean soil carbon content was approximately equivalent in cores extracted from low and high Phragmites density plots (23.23 ± 2.0 kg C m-3 vs. 22.81 ± 3.8). In Kitty Hawk Woods, mean soil carbon content was greater in low Phragmites density plots (36.63 ± 10.22 kg C m-3) than those with medium (13.99 ± 1.23 kg C m-3) or high density (21.61 ± 4.53 kg C m-3), but differences were not significant. These findings suggest an overall neutral density-dependent effect of Phragmites on three ecosystem services within two oligohaline marshes in different environmental settings within a protected reserve system. Moreover, the conceptual framework of this study can broadly inform an ecosystem services-based approach to invasive species management

  7. Density-dependent role of an invasive marsh grass, Phragmites australis, on ecosystem service provision.

    Science.gov (United States)

    Theuerkauf, Seth J; Puckett, Brandon J; Theuerkauf, Kathrynlynn W; Theuerkauf, Ethan J; Eggleston, David B

    2017-01-01

    Invasive species can positively, neutrally, or negatively affect the provision of ecosystem services. The direction and magnitude of this effect can be a function of the invaders' density and the service(s) of interest. We assessed the density-dependent effect of an invasive marsh grass, Phragmites australis, on three ecosystem services (plant diversity and community structure, shoreline stabilization, and carbon storage) in two oligohaline marshes within the North Carolina Coastal Reserve and National Estuarine Research Reserve System (NCNERR), USA. Plant species richness was equivalent among low, medium and high Phragmites density plots, and overall plant community composition did not vary significantly by Phragmites density. Shoreline change was most negative (landward retreat) where Phragmites density was highest (-0.40 ± 0.19 m yr-1 vs. -0.31 ± 0.10 for low density Phragmites) in the high energy marsh of Kitty Hawk Woods Reserve and most positive (soundward advance) where Phragmites density was highest (0.19 ± 0.05 m yr-1 vs. 0.12 ± 0.07 for low density Phragmites) in the lower energy marsh of Currituck Banks Reserve, although there was no significant effect of Phragmites density on shoreline change. In Currituck Banks, mean soil carbon content was approximately equivalent in cores extracted from low and high Phragmites density plots (23.23 ± 2.0 kg C m-3 vs. 22.81 ± 3.8). In Kitty Hawk Woods, mean soil carbon content was greater in low Phragmites density plots (36.63 ± 10.22 kg C m-3) than those with medium (13.99 ± 1.23 kg C m-3) or high density (21.61 ± 4.53 kg C m-3), but differences were not significant. These findings suggest an overall neutral density-dependent effect of Phragmites on three ecosystem services within two oligohaline marshes in different environmental settings within a protected reserve system. Moreover, the conceptual framework of this study can broadly inform an ecosystem services-based approach to invasive species management.

  8. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il [Department of Physics, Kangwon National University, Chuncheon (Korea, Republic of)

    2012-10-15

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  9. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  10. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  11. Continuous Dependence on the Density for Stratified Steady Water Waves

    Science.gov (United States)

    Chen, Robin Ming; Walsh, Samuel

    2016-02-01

    There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.

  12. Selective modulation of cellular voltage dependent calcium channels by hyperbaric pressure - a suggested HPNS partial mechanism

    Directory of Open Access Journals (Sweden)

    Ben eAviner

    2014-05-01

    Full Text Available Professional deep sea divers experience motor and cognitive impairment, known as High Pressure Neurological Syndrome (HPNS, when exposed to pressures of 100 msw (1.1MPa and above, considered to be the result of synaptic transmission alteration. Previous studies have indicated modulation of presynaptic Ca2+ currents at high pressure. We directly measured for the first time pressure effects on the currents of voltage dependent Ca2+ channels (VDCCs expressed in Xenopus oocytes. Pressure selectivity augmented the current in CaV1.2 and depressed it in CaV3.2 channels. Pressure application also affected the channels' kinetics, such as ƮRise, ƮDecay. Pressure modulation of VDCCs seems to play an important role in generation of HPNS signs and symptoms.

  13. Studies of Spuriously Time-dependent Resonances in Time-dependent Density Functional Theory

    CERN Document Server

    Luo, Kai; Maitra, Neepa T

    2016-01-01

    Adiabatic approximations in time-dependent density functional theory (TDDFT) will in general yield unphysical time-dependent shifts in the resonance positions of a system driven far from its ground-state. This spurious time-dependence is rationalized in [J. I. Fuks, K. Luo, E. D. Sandoval and N. T. Maitra, Phys. Rev. Lett. {\\bf 114}, 183002 (2015)] in terms of the violation of an exact condition by the non-equilibrium exchange-correlation kernel of TDDFT. Here we give details on the derivation and discuss reformulations of the exact condition that apply in special cases. In its most general form, the condition states that when a system is left in an arbitrary state, in the absence of time-dependent external fields nor ionic motion, the TDDFT resonance position for a given transition is independent of the state. Special cases include the invariance of TDDFT resonances computed with respect to any reference interacting stationary state of a fixed potential, and with respect to any choice of appropriate stationa...

  14. Cell-density dependent effects of low-dose ionizing radiation on E. coli cells.

    Science.gov (United States)

    Alipov, E D; Shcheglov, V S; Sarimov, R M; Belyaev, I Ya

    2003-01-01

    The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.

  15. Density-dependent expression of keratins in transformed rat liver cell lines.

    Science.gov (United States)

    Troyanovsky, S M; Bannikov, G A; Montesano, R; Vasiliev, J M

    1986-04-01

    Immunomorphological examination of the distribution of three keratins in cultured rat liver-derived epithelial cell lines of the IAR series was performed in order to find out the effects of neoplastic evolution on the expression of these epithelium-specific markers. Specific monoclonal antibodies were used to reveal various intermediate filament proteins: keratins with molecular masses of 55, 49 or 40 kD (K55, K49 or K40), and vimentin. The expression of keratins was negligible in sparse and dense cultures of non-transformed lines, which had typical epithelial morphology. The examined keratins were also absent in the sparse cultures of transformed lines, which have lost partially or completely the morphological features of epithelia. However, cells in dense cultures of most transformed lines contained numerous keratin filaments. It is suggested that the paradoxical increase of keratin expression after transformation is due to increased saturation density of transformed cultures; this high density favours the expression. As shown by the experiments with culture wounding, the effects of density are local and reversible. While K55 was present in all the cells of dense cultures, the expression of the other two keratins was dependent on the cell position within these cultures. It is suggested that the expression of the latter two keratins, besides high cell density, also requires the presence (K40) or the absence (K49) of cell-substratum contacts. Possible mechanisms of the effects of cell density on the expression of keratins are discussed.

  16. Density-dependent vulnerability of forest ecosystems to drought

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades

  17. Exact conditions on the temperature dependence of density functionals

    CERN Document Server

    Burke, Kieron; Grabowski, Paul E; Pribram-Jones, Aurora

    2015-01-01

    Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.

  18. Exact conditions on the temperature dependence of density functionals

    Science.gov (United States)

    Burke, K.; Smith, J. C.; Grabowski, P. E.; Pribram-Jones, A.

    2016-05-01

    Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.

  19. Quantum Drude friction for time-dependent density functional theory

    Science.gov (United States)

    Neuhauser, Daniel; Lopata, Kenneth

    2008-10-01

    way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.

  20. Density-dependent effects on physical condition and reproduction in North American elk: an experimental test.

    Science.gov (United States)

    Kelley M. Stewart; R. Terry Bowyer; Brian L. Dick; Bruce K. Johnson; John G. Kie

    2005-01-01

    Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density...

  1. Invariant Hermitian Operator and Density Operator for the Adiabatically Time-Dependent System

    Institute of Scientific and Technical Information of China (English)

    YAN Feng-Li; YANG Lin-Guang

    2001-01-01

    The density operator is approximately expressed as a function of the invariant Hermitian operator for the adiabatically time-dependent system. Using this method, the calculation of the density operator for the Heisenberg spin system in a weakly time-dependent magnetic field is exemplified. By virtue of the density operator, we obtain equilibrium.``

  2. Redox-Dependent Conformational Changes in Cytochrome c Oxidase Suggest a Gating Mechanism for Proton Uptake

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling; Liu, Jian; Mills, Denise A.; Proshlyakov, Denis A.; Hiser, Carrie; Ferguson-Miller, Shelagh; (MSU)

    2009-08-05

    A role for conformational change in the coupling mechanism of cytochrome c oxidase is the subject of controversy. Relatively small conformational changes have been reported in comparisons of reduced and oxidized crystal structures of bovine oxidase but none in bacterial oxidases. Comparing the X-ray crystal structures of the reduced (at 2.15 {angstrom} resolution) and oxidized forms of cytochrome c oxidase from Rhodobacter sphaeroides, we observe a displacement of heme a3 involving both the porphyrin ring and the hydroxyl farnesyl tail, accompanied by protein movements in nearby regions, including the mid part of helix VIII of subunit I which harbors key residues of the K proton uptake path, K362 and T359. The conformational changes in the reduced form are reversible upon reoxidation. They result in an opening of the top of the K pathway and more ordered waters being resolved in that region, suggesting an access path for protons into the active site. In all high-resolution structures of oxidized R. sphaeroides cytochrome c oxidase, a water molecule is observed in the hydrophobic region above the top of the D path, strategically positioned to facilitate the connection of residue E286 of subunit I to the active site or to the proton pumping exit path. In the reduced and reduced plus cyanide structures, this water molecule disappears, implying disruption of proton conduction from the D path under conditions when the K path is open, thus providing a mechanism for alternating access to the active site.

  3. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  4. Age-specific density-dependent survival in Mediterranean Gulls Larus melanocephalus

    NARCIS (Netherlands)

    te Marvelde, Luc; Meininger, Peter L.; Flamant, Renaud; Dingemanse, Niels J.

    2009-01-01

    Survival and reproductive rates often decrease with increasing population density. Such negative density dependence reflects a changing net balance between the benefits and costs of presence of others with increasing density. When densities are low, however, survival and reproductive rates might

  5. Age-specific density-dependent survival in Mediterranean Gulls Larus melanocephalus

    NARCIS (Netherlands)

    te Marvelde, Luc; Meininger, Peter L.; Flamant, Renaud; Dingemanse, Niels J.

    2009-01-01

    Survival and reproductive rates often decrease with increasing population density. Such negative density dependence reflects a changing net balance between the benefits and costs of presence of others with increasing density. When densities are low, however, survival and reproductive rates might inc

  6. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.

    Directory of Open Access Journals (Sweden)

    Judit Vas

    Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  7. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  8. Long-term persistence, density dependence and effects of climate change on rosyside dace (Cyprinidae)

    Science.gov (United States)

    Gary D. Grossman; Gary Sundin; Robert E. Ratajczak

    2016-01-01

    SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...

  9. Dependence of Reaction Rate Constants on Density in Supercritical Fluids

    Institute of Scientific and Technical Information of China (English)

    WANGTao; SHENZhongyao

    2002-01-01

    A new method,which correlates rate constants of chemical reactions and density or pressure in supercritical fluids,was developed.Based on the transition state theory and thermodynamic principles, the rate constant can be reasonably correlated with the density of the supercritical fluid,and a correlation equation was obtained. Coupled with the equation of state (EOS) of a supercritical solvent,the effect of pressure on reaction rate constant could be represented.Two typical systems were used to test this method.The result indicates that this method is suitable for dilute supercritical fluid solutions.

  10. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  11. Quantifying Correlations Between Isovector Observables and the Density Dependence of Nuclear Symmetry Energy away from Saturation Density

    CERN Document Server

    Fattoyev, F J; Li, Bao-An

    2014-01-01

    According to the Hugenholtz-Van Hove theorem, the nuclear symmetry energy $S(\\rho)$ and its slope $L(\\rho)$ at arbitrary densities can be decomposed in terms of the density and momentum dependence of the single-nucleon potentials in isospin-asymmetric nuclear matter which are potentially accessible to experiment. We quantify the correlations between several well-known isovector observables and $L(\\rho)$ to locate the density range in which each isovector observable is most sensitive to the density dependence of the $S(\\rho)$. We then study the correlation coefficients between those isovector observables and all the components of the $L(\\rho)$. The neutron skin thickness of $^{208}$Pb is found to be strongly correlated with the $L(\\rho)$ at a subsaturation density of $\\rho = 0.59 \\rho_0$ through the density dependence of the first-order symmetry potential. Neutron star radii are found to be strongly correlated with the $L(\\rho)$ over a wide range of supra-saturation densities mainly through both the density an...

  12. Effects of density dependence in a temperate forest in northeastern China

    Science.gov (United States)

    Yao, Jie; Zhang, Xinna; Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus

    2016-09-01

    Negative density dependence may cause reduced clustering among individuals of the same species, and evidence is accumulating that conspecific density-dependent self-thinning is an important mechanism regulating the spatial structure of plant populations. This study evaluates that specific density dependence in three very large observational studies representing three successional stages in a temperate forest in northeastern China. The methods include standard spatial point pattern analysis and a heterogeneous Poisson process as the null model to eliminate the effects of habitat heterogeneity. The results show that most of the species exhibit conspecific density-dependent self-thinning. In the early successional stage 11 of the 16 species, in the intermediate successional stage 18 of the 21 species and in the old growth stage all 21 species exhibited density dependence after removing the effects of habitat heterogeneity. The prevalence of density dependence thus varies among the three successional stages and exhibits an increase with increasing successional stage. The proportion of species showing density dependence varied depending on whether habitat heterogeneity was removed or not. Furthermore, the strength of density dependence is closely related with species abundance. Abundant species with high conspecific aggregation tend to exhibit greater density dependence than rare species.

  13. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  14. Extended density-dependent mortality in mature conifer forests: causes and implications for ecosystem management.

    Science.gov (United States)

    Gendreau-Berthiaume, Benoit; Macdonald, S Ellen; Stadt, J John

    2016-07-01

    Understanding processes driving mortality in forests is important for comprehension of natural stand dynamics and for informing natural disturbance-based ecosystem management. There has been considerable study of mortality in forests during the self-thinning phase but we know much less about processes driving mortality in stands at later successional stages. We addressed this through study of five 1-ha spatially explicit permanent plots in mature (111-186 yr old in 2012) Pinus contorta stands in the Canadian Rocky Mountains using data from repeated measurements over a 45-yr period, dendrochronological information, and point pattern analysis. We tested the hypothesis that these stands had completed the self-thinning/density-dependent mortality stage of succession. Contrary to our expectations, the self-thinning phase can persist for more than 140 yr following stand establishment. Our findings suggest this was attributable to prolonged post-fire establishment periods due to surface fires in three of the plots while in the other two plots moist conditions and slow growth most likely delayed the onset of competition. Several pieces of evidence indicated the importance of density-dependent mortality in these stands over the study period: (1) The diameter distribution of individuals changed from initially right-skewed toward normality as a result of mortality of smaller-diameter stems. (2) Individuals of lower canopy positions were proportionally more affected by mortality. (3) When compared to the pre-mortality pattern, surviving stems in all stands had an increasingly uniform spatial distribution. In two of the plots, recent windthrow and/or ingrowth initially hindered our ability to detect density-dependent mortality but our dendrochronological sampling and permanent plot data allowed us to untangle the different processes at play; in doing so we demonstrate for the first time how density-independent processes can mask underlying density-dependent mortality

  15. Stocking density-dependent growth of Dover sole (Solea solea)

    NARCIS (Netherlands)

    Schram, E.; Heul, van der J.W.; Kamstra, A.; Verdegem, M.C.J.

    2006-01-01

    Dover sole were reared at 6 different stocking densities between 0.56 and 12.6 kg/m2 with duplicate tanks for each treatment. The experiment lasted for 55 days. Water quality effects on growth were minimised by making the flow rate per tank proportional to the feeding load. Individual initial and

  16. Magnetic field dependence of the threshold electric field in unconventional charge density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2002-04-01

    Many experiments suggest that the unidentified low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4 is most likely unconventional charge density wave (UCDW). To further extend this identification we present our theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature phase diagram is very similar to those in a d-wave superconductor. The optical conductivity shows clear features characteristic to both UDW and magnetic field. We find a rather strong field dependence of the threshold electric field, which shows qualitatively good agreement with the experimental data.

  17. Time-dependent density functional theory for open quantum systems with unitary propagation.

    Science.gov (United States)

    Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán

    2010-01-29

    We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.

  18. Dependence of the critical current density on the first matching field density

    Energy Technology Data Exchange (ETDEWEB)

    Obaidat, I.M. [Department of Physics, United Arab Emirates University, Al-Ain 17551 (United Arab Emirates)], E-mail: iobaidat@uaeu.ac.ae; Benkraouda, M.; Khawaja, U. Al [Department of Physics, United Arab Emirates University, Al-Ain 17551 (United Arab Emirates)

    2008-10-01

    Molecular dynamic simulations were carried out to investigate the properties of the critical depinning force in high temperature superconductors at several vortex densities at the first matching field. The study was conducted on samples with periodic square arrays of vortices and pinning sites. The variables in the simulations were the vortex density, the pinning sites density, the temperature, the pinning strength, the size of pinning sites. The critical depinning force is found to decrease with temperature for all first matching field densities. The rate of this decrease was found to be slower as the pinning strength and size of pinning site gets larger. At low temperatures and for large pinning strengths, the critical depinning force was found to decrease with increasing the first matching field density. But very interesting results were obtained at moderate temperatures where the critical depinning force was found to increase as the first matching field density increases. The same behavior of the critical depinning force was found at low temperatures, for small pinning strengths. These unexpected results were attributed to a vortex structural phase transition from a disordered state to an ordered state.

  19. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  20. Density-dependent photoabsorption cross sections of atomic Xe

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Guang

    2009-01-01

    The evolution of the photoabsorption cross sections of atomic xenon with number densities varying from ideal gas to condensed matter has been studied by an alternative view in the present work. The alternative expressions of the photoabsorption cross sections presented by Sun et al recently were used with the local field models that has proven to be generalized easily to multiatomic systems including molecules and condensed phase systems. The present results show that the variation of the photoabsorption cross sections of atomic xenon in the giant resonance region from the isolated to the condensed conditions is very small, which agrees well with the variation law of the solid and gas experiments.

  1. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts.

    Science.gov (United States)

    Gotham, Steven; Song, Hojun

    2013-11-01

    Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with

  2. Predictions of Taylor's power law, density dependence and pink noise from a neutrally modeled time series.

    Science.gov (United States)

    Keil, Petr; Herben, Tomás; Rosindell, James; Storch, David

    2010-07-07

    There has recently been increasing interest in neutral models of biodiversity and their ability to reproduce the patterns observed in nature, such as species abundance distributions. Here we investigate the ability of a neutral model to predict phenomena observed in single-population time series, a study complementary to most existing work that concentrates on snapshots in time of the whole community. We consider tests for density dependence, the dominant frequencies of population fluctuation (spectral density) and a relationship between the mean and variance of a fluctuating population (Taylor's power law). We simulated an archipelago model of a set of interconnected local communities with variable mortality rate, migration rate, speciation rate, size of local community and number of local communities. Our spectral analysis showed 'pink noise': a departure from a standard random walk dynamics in favor of the higher frequency fluctuations which is partly consistent with empirical data. We detected density dependence in local community time series but not in metacommunity time series. The slope of the Taylor's power law in the model was similar to the slopes observed in natural populations, but the fit to the power law was worse. Our observations of pink noise and density dependence can be attributed to the presence of an upper limit to community sizes and to the effect of migration which distorts temporal autocorrelation in local time series. We conclude that some of the phenomena observed in natural time series can emerge from neutral processes, as a result of random zero-sum birth, death and migration. This suggests the neutral model would be a parsimonious null model for future studies of time series data.

  3. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs

    Directory of Open Access Journals (Sweden)

    Lampert Winfried

    2005-04-01

    Full Text Available Abstract Background In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD with Costs". An experiment has been designed to test the density (competition dependence of the vertical distribution as this is a basic assumption of IFD theory. Results Experiments were performed in large, indoor mesocosms (Plankton Towers with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors. Conclusion The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.

  4. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory.

    Science.gov (United States)

    Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert

    2015-05-27

    In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons.

  5. Electronic density of states in sequence dependent DNA molecules

    Science.gov (United States)

    de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-09-01

    We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.

  6. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  7. The importance of spatial models for estimating the strength of density dependence

    DEFF Research Database (Denmark)

    Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper;

    2014-01-01

    Identifying the existence and magnitude of density dependence is one of the oldest concerns in ecology. Ecologists have aimed to estimate density dependence in population and community data by fitting a simple autoregressive (Gompertz) model for density dependence to time series of abundance...... for an entire population. However, it is increasingly recognized that spatial heterogeneity in population densities has implications for population and community dynamics. We therefore adapt the Gompertz model to approximate local densities over continuous space instead of population-wide abundance......, and to allow productivity to vary spatially. Using simulated data generated from a spatial model, we show that the conventional (nonspatial) Gompertz model will result in biased estimates of density dependence, e.g., identifying oscillatory dynamics when not present. By contrast, the spatial Gompertz model...

  8. Gravity-dependent nystagmus and inner-ear dysfunction suggest anterior and posterior inferior cerebellar artery infarct.

    Science.gov (United States)

    Shaikh, Aasef G; Miller, Benjamin R; Sundararajan, Sophia; Katirji, Bashar

    2014-04-01

    Cerebellar lesions may present with gravity-dependent nystagmus, where the direction and velocity of the drifts change with alterations in head position. Two patients had acute onset of hearing loss, vertigo, oscillopsia, nausea, and vomiting. Examination revealed gravity-dependent nystagmus, unilateral hypoactive vestibulo-ocular reflex (VOR), and hearing loss ipsilateral to the VOR hypofunction. Traditionally, the hypoactive VOR and hearing loss suggest inner-ear dysfunction. Vertigo, nausea, vomiting, and nystagmus may suggest peripheral or central vestibulopathy. The gravity-dependent modulation of nystagmus, however, localizes to the posterior cerebellar vermis. Magnetic resonance imaging in our patients revealed acute cerebellar infarct affecting posterior cerebellar vermis, in the vascular distribution of the posterior inferior cerebellar artery (PICA). This lesion explains the gravity-dependent nystagmus, nausea, and vomiting. Acute onset of unilateral hearing loss and VOR hypofunction could be the manifestation of inner-ear ischemic injury secondary to the anterior inferior cerebellar artery (AICA) compromise. In cases of combined AICA and PICA infarction, the symptoms of peripheral vestibulopathy might masquerade the central vestibular syndrome and harbor a cerebellar stroke. However, the gravity-dependent nystagmus allows prompt identification of acute cerebellar infarct. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Phase-Space Explorations in Time-Dependent Density Functional Theory

    OpenAIRE

    Rajam, Arun K.; Hessler, Paul; Gaun, Christian; Maitra, Neepa T.

    2009-01-01

    We discuss two problems which are particularly challenging for approximations in time-dependent density functional theory (TDDFT) to capture: momentum-distributions in ionization processes, and memory-dependence in real-time dynamics. We propose an extension of TDDFT to phase-space densities, discuss some formal aspects of such a "phase-space density functional theory" and explain why it could ameliorate the problems in both cases. For each problem, a two-electron model system is exactly nume...

  10. Stocking density affects the growth performance of broilers in a sex-dependent fashion.

    Science.gov (United States)

    Zuowei, S; Yan, L; Yuan, L; Jiao, H; Song, Z; Guo, Y; Lin, H

    2011-07-01

    The effects of stocking density, sex, and dietary ME concentration on live performance, footpad burns, and leg weakness of broilers were investigated. A total of 876 male and 1,020 female 1-d-old chicks were placed in 24 pens to simulate final stocking density treatments of 26 kg (LSD; 10 males or 12 females/m(2)) and 42 kg (HSD; 16 males or 18 females/m(2)) of BW/m(2) floor space. Two series of experimental diets with a 150 kcal/kg difference in ME concentration (2,800, 2,900, and 3,000 or 2,950, 3,050, and 3,150 kcal of ME/kg) were compared in a 3-phase feeding program. The HSD treatment significantly decreased BW gain and feed conversion ratio (FCR). The HSD chickens consumed less feed by 35 d of age; thereafter, the reverse was true. Male chickens had significantly higher feed intake (FI), BW gain, and FCR compared with females. A significant interaction was found of stocking density and age for FI, BW gain, and FCR. Compared with LSD treatment, HSD broilers had a higher FI and a lower FCR from 36 to 42 d of age. Stocking density, sex, and age had a significant interaction for BW gain and FCR. Female broilers had worse BW gain and FCR when stocked at high density from 36 to 42 d of age. Stocking density had no significant influence on breast, thigh, or abdominal fat yield. Female broilers had significantly higher breast yield and abdominal fat. Male broilers and HSD treatment had high footpad burn and gait scores. A low ME diet increased footpad burn score but had no effect on gait score. The result indicated that stocking density had a more severe effect on the growth of male broilers before 35 d of age. Female broilers need more space than males at similar BW per square meter near marketing age. The incidence and severity of leg weakness are associated with sex, diet, and stocking density. This result suggests that the deteriorated effect of high stocking density is sex and age dependent.

  11. Increased transvascular low density lipoprotein transport in insulin dependent diabetes

    DEFF Research Database (Denmark)

    Kornerup, Karen; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2003-01-01

    BACKGROUND: The increased risk of atherosclerosis associated with diabetes cannot be explained by conventional cardiovascular risk factors alone. We hypothesized that transvascular lipoprotein transport may be increased in patients with diabetes, possibly explaining increased intimal lipoprotein ...... be increased in patients with type 1 diabetes. This suggests that lipoprotein flux into the arterial wall is increased in people with type 1 diabetes, possibly explaining accelerated development of atherosclerosis....

  12. Size-dependent error of the density functional theory ionization potential in vacuum and solution.

    Science.gov (United States)

    Sosa Vazquez, Xochitl A; Isborn, Christine M

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  13. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    Energy Technology Data Exchange (ETDEWEB)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  14. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver

    DEFF Research Database (Denmark)

    Buitenwerf, R; Bond, WJ; Stevens, N;

    2012-01-01

    have been ascribed to changes in the disturbance regime (fire and herbivores) or rainfall. Increased atmospheric CO2 concentrations may also contribute, by increasing growth rates of trees relative to grasses. This hypothesis is still heavily debated because usually potential CO2 effects are confounded...... density doubled from the mid 1990s to 2010. Interpretation of the causes is confounded by population recovery after clearing, but aerial photograph analysis on adjacent non-cleared areas showed an accompanying 48% increase in woody cover. Increased CO2 concentrations are consistent with increased woody...... density while other global drivers (rainfall) remained constant over the duration of the experiments. The absence of a response in one semiarid savanna could be explained by a smaller carbon sink capacity of the dominant species, which would therefore benefit less from increased CO2. Understanding how...

  15. Digging for answers: contributions of density- and frequency-dependent factors on ectoparasite burden in a social mammal.

    Science.gov (United States)

    Archer, Elizabeth K; Bennett, Nigel C; Faulkes, Chris G; Lutermann, Heike

    2016-02-01

    Due to the density-dependent nature of parasite transmission parasites are generally assumed to constrain the evolution of sociality. However, evidence for a correlation between group size and parasite burden is equivocal, particularly for mammals. Host contact rates may be modified by mobility of the host and parasite as well as social barriers. In the current study, we used the common mole-rat (Cryptomys hottentotus hottentotus), a social subterranean rodent, as a model system to investigate the effect of host density and frequency of contact rates on ectoparasite burdens. To address these factors we used a study species that naturally varies in population densities and intergroup contact rates across its geographic range. We found that ectoparasite prevalence, abundance and species richness decreased with increasing host density at a regional scale. At the same time, measures of parasite burden increased with intergroup contact rates. Ectoparasite burdens decreased with colony size at the group level possibly as a result of increased grooming rates. Equating group size with population density might be too simplistic an approach when assessing parasite distributions in social mammals. Our data suggest that frequency-dependent mechanisms may play a much greater role at a population level than density-dependent mechanisms in determining parasite distributions in social species. We suggest that future studies should explicitly consider behavioural mechanisms that may affect parasite distribution.

  16. Leaf damage and density-dependent effects on six Inga species in a neotropical forest

    Directory of Open Access Journals (Sweden)

    Tania Brenes-Arguedas

    2012-12-01

    Full Text Available Many models have been proposed to explain the possible role of pests in the coexistence of a high diversity of plant species in tropical forests. Prominent among them is the Janzen-Connell model. This model suggests that specialized herbivores and pathogens limit tree recruitment as a function of their density or proximity to conspecifics. A large number of studies have tested the predictions of this model with respect to patterns of recruitment and mortality at different life stages, yet only a few have directly linked those density or distance-dependent effects to pest attack. If pest-attack is an important factor in density or distance-dependent mortality, there should be spatial heterogeneity in pest pressure. I studied the spatial distribution of leaf damage in saplings of six common Inga species (Fabaceae: Mimosoideae in the 50ha forest dynamic plot of Barro Colorado Island, Panama. The percent leaf damage of Inga saplings was not heterogeneous in space, and the density of conspecific, congener or confamilial neighbors was uncorrelated with the observed damage levels in focal plants. One of the focal species did suffer density-dependent mortality, suggesting that spatial variation in plant performance in these species is not directly driven by leaf damaging agents. While multiple studies suggest that density-dependent effects on performance are common in tropical plant communities, our understanding of the mechanisms that drive those effects is still incomplete and the underlying assumption that these patterns result from differential herbivore attack deserves more scrutiny.Se han propuesto muchos modelos para explicar la coexistencia de una alta diversidad de especies de árboles en bosques tropicales. Prominente, entre estos modelos es el de Janzen-Connell, que sugiere que los herbívoros especialistas limitan la colonización de árboles en función de la densidad o proximidad de con-específicos. Si este efecto es en realidad el

  17. Analyzing Density Operator in Thermal State for Complicated Time-Dependent Optical Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2014-01-01

    Full Text Available Density operator of oscillatory optical systems with time-dependent parameters is analyzed. In this case, a system is described by a time-dependent Hamiltonian. Invariant operator theory is introduced in order to describe time-varying behavior of the system. Due to the time dependence of parameters, the frequency of oscillation, so-called a modified frequency of the system, is somewhat different from the natural frequency. In general, density operator of a time-dependent optical system is represented in terms of the modified frequency. We showed how to determine density operator of complicated time-dependent optical systems in thermal state. Usually, density operator description of quantum states is more general than the one described in terms of the state vector.

  18. Density-dependent predation influences the evolution and behavior of masquerading prey.

    Science.gov (United States)

    Skelhorn, John; Rowland, Hannah M; Delf, Jon; Speed, Michael P; Ruxton, Graeme D

    2011-04-19

    Predation is a fundamental process in the interaction between species, and exerts strong selection pressure. Hence, anti-predatory traits have been intensively studied. Although it has long been speculated that individuals of some species gain protection from predators by sometimes almost-uncanny resemblances to uninteresting objects in the local environment (such as twigs or stones), demonstration of antipredatory benefits to such "masquerade" have only very recently been demonstrated, and the fundamental workings of this defensive strategy remain unclear. Here we use laboratory experiments with avian predators and twig-mimicking caterpillars as masqueraders to investigate (i) the evolutionary dynamics of masquerade; and (ii) the behavioral adaptations associated with masquerade. We show that the benefit of masquerade declines as the local density of masqueraders relative to their models (twigs, in our system) increases. This occurs through two separate mechanisms: increasing model density both decreased predators' motivation to search for masqueraders, and made masqueraders more difficult to detect. We further demonstrated that masquerading organisms have evolved complex microhabitat selection strategies that allow them to best exploit the density-dependent properties of masquerade. Our results strongly suggest the existence of opportunity costs associated with masquerade. Careful evaluation of such costs will be vital to the development of a fuller understanding of both the distribution of masquerade across taxa and ecosystems, and the evolution of the life history strategies of masquerading prey.

  19. Memoirs of a locust: density-dependent behavioral change as a model for learning and memory.

    Science.gov (United States)

    Geva, N; Guershon, M; Orlova, M; Ayali, A

    2010-02-01

    A locust outbreak is a stupendous natural phenomenon that remains in the memory of whoever has been lucky (or unlucky) enough to witness it. Recent years have provided novel and important insights into the neurobiology of locust swarming. However, the central nervous system processes that accompany and perhaps even lie at the basis of locust phase transformation are still far from being fully understood. Our current work deals with the memory of a locust outbreak from a new perspective: that of the individual locust. We take locust density-dependent phase transformation - a unique example of extreme behavioral plasticity, and place it within the context of the accepted scheme of learning and memory. We confirm that a short time period of exposure to a small crowd of locusts is sufficient to induce a significant behavioral change in a previously solitary locust. Our results suggest that part of the behavioral change is due to long-term habituation of evasive and escape responses. We further demonstrate that the memory of a crowding event lasts for at least 24h, and that this memory is sensitive to a protein synthesis blocker. These findings add much to our understanding of locust density-dependent phase polyphenism. Furthermore, they offer a novel and tractable model for the study of learning and memory-related processes in a very distinctive behavioral context. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Determining the functional form of density dependence: deductive approaches for consumer-resource systems having a single resource.

    Science.gov (United States)

    Abrams, Peter A

    2009-09-01

    Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.

  1. Remarks on the use of projected densities in the density-dependent part of Skyrme or Gogny functionals

    Science.gov (United States)

    Robledo, L. M.

    2010-06-01

    I discuss the inadequacy of the 'projected density' prescription to be used in density-dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that, at least for the restoration of spatial symmetries like rotations, translations or parity, the above prescription yields catastrophic results for the energy that drive the intrinsic wave-function to configurations with infinite deformation, thereby preventing its use both in projection after and before variation.

  2. Remarks on the use of projected densities in the density dependent part of Skyrme or Gogny functionals

    CERN Document Server

    Robledo, L M

    2010-01-01

    I discuss the inadequacy of the "projected density" prescription to be used in density dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that at least for the restoration of spatial symmetries like rotations, translations or parity the above prescription yields catastrophic results for the energy that drive the intrinsic wave function to configurations with infinite deformation, preventing thereby its use both in projection after and before variation.

  3. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    Science.gov (United States)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  4. Nuclear Density-Dependent Effective Coupling Constants in the Mean-Field Theory

    CERN Document Server

    Lee, J H; Lee, S J; Lee, Jae Hwang; Lee, Young Jae; Lee, Suk-Joon

    1996-01-01

    It is shown that the equation of state of nuclear matter can be determined within the mean-field theory of $\\sigma \\omega$ model provided only that the nucleon effective mass curve is given. We use a family of the possible nucleon effective mass curves that reproduce the empirical saturation point in the calculation of the nuclear binding energy curves in order to obtain density-dependent effective coupling constants. The resulting density-dependent coupling constants may be used to study a possible equation of state of nuclear system at high density or neutron matter. Within the constraints used in this paper to $M^*$ of nuclear matter at saturation point and zero density, neutron matter of large incompressibility is strongly bound at high density while soft neutron matter is weakly bound at low density. The study also exhibits the importance of surface vibration modes in the study of nuclear equation of state.

  5. Regional differences in density-dependent mortality and reproduction in Finnish reindeer

    Directory of Open Access Journals (Sweden)

    Ilpo Kojola

    1993-10-01

    Full Text Available Reindeer in the southern and central regions of reindeer husbandry in Finland feed on arboreal lichens or are given supplementary rations from midwinter whereas in the northern region reindeer use snow-covered forage throughout winter. Rates of mortality and reproduction were examined using data from population crashes of semi-domesticated reindeer that occurred in Northern Finland during 1960-1987. The mortality and reproductive rate were density-dependent in the southern region and the mortality was density-dependent in the central region. The density-dependence was most probably due to food competition in forest cutting areas where reindeer gather to feed on arboreal lichens from felled trees. In the northern region mortality was not density-dependent indicating that where reindeer feed on over-utilized winter range the effects of increased feeding competition are masked by very large changes in the availability of forage.

  6. Negative density-dependent emigration of males in an increasing red deer population

    National Research Council Canada - National Science Library

    Leif Egil Loe; Atle Mysterud; Vebjørn Veiberg; Rolf Langvatn

    2009-01-01

    ...), possibly caused by increasing saturation of deer in areas surrounding the marking sites. Our study highlights that pattern of density dependence in dispersal rates may differ markedly between sexes in highly polygynous species...

  7. Density-dependent resistance of the gypsy moth, Lymantria dispar, to its nucleopolyhedrovirus

    Science.gov (United States)

    James R. Reilly; Ann E. Hajek

    2007-01-01

    The processes controlling disease resistance can strongly influence the population dynamics of insect outbreaks. Evidence that disease resistance is density-dependent is accumulating, but the exact form of this relationship is highly variable from species to species.

  8. Density dependence and population dynamics of black rhinos (Diceros bicornis michaeli) in Kenya's rhino sanctuaries

    NARCIS (Netherlands)

    Ouma, B.O.; Amin, R.; Langevelde, van F.; Leader-Williams, N.

    2010-01-01

    Density-dependent feedback mechanisms provide insights into the population dynamics and interactions of large herbivores with their ecosystem. Sex ratio also has particularly important implications for growth rates of many large mammal populations through its influence on reproductive potential.

  9. Remark on compressible Navier-Stokes equations with density-dependent viscosity and discontinuous initial data

    Science.gov (United States)

    Zhang, Ting; Fang, Daoyuan

    2008-03-01

    In this paper, we study the free boundary problem for 1D compressible Navier-Stokes equations with density-dependent viscosity. We focus on the case where the viscosity coefficient vanishes on vacuum. We prove the global existence and uniqueness for discontinuous solutions to the Navier-Stokes equations when the initial density is a bounded variation function, and give a decay result for the density as t-->+[infinity].

  10. Density-dependent nerve growth factor regulation of Gs-alpha RNA in pheochromocytoma 12 cells.

    Science.gov (United States)

    Tjaden, G; Aguanno, A; Kumar, R; Benincasa, D; Gubits, R M; Yu, H; Dolan, K P

    1990-01-01

    Nerve growth factor (NGF) affects levels of the alpha subunit of the stimulatory G protein (Gs-alpha) in pheochromocytoma 12 cells in a bidirectional, density-dependent manner. Cells grown at high density responded to NGF treatment with increased levels of Gs-alpha mRNA and protein. Conversely, in cells grown in low-density cultures, levels of this mRNA were lowered by NGF treatment. Images PMID:2160599

  11. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species.

    Science.gov (United States)

    LaManna, Joseph A; Walton, Maranda L; Turner, Benjamin L; Myers, Jonathan A

    2016-06-01

    Conspecific negative density dependence is thought to maintain diversity by limiting abundances of common species. Yet the extent to which this mechanism can explain patterns of species diversity across environmental gradients is largely unknown. We examined density-dependent recruitment of seedlings and saplings and changes in local species diversity across a soil-resource gradient for 38 woody-plant species in a temperate forest. At both life stages, the strength of negative density dependence increased with resource availability, becoming relatively stronger for rare species during seedling recruitment, but stronger for common species during sapling recruitment. Moreover, negative density dependence appeared to reduce diversity when stronger for rare than common species, but increase diversity when stronger for common species. Our results suggest that negative density dependence is stronger in resource-rich environments and can either decrease or maintain diversity depending on its relative strength among common and rare species.

  12. An evaluation of density-dependent and density-independent influences on population growth rates in Weddell seals

    Science.gov (United States)

    Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.

    2009-01-01

    Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both

  13. Explaining density-dependent regulation in earthworm populations using life-history analysis

    NARCIS (Netherlands)

    Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.

    2003-01-01

    At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for

  14. Isospin effects and the density dependence of the nuclear symmetry energy

    CERN Document Server

    Souza, S R; Carlson, B V; Donangelo, R; Lynch, W G; Steiner, A W

    2009-01-01

    The density dependence of the nuclear symmetry energy is inspected using the Statistical Multifragmentation Model with Skyrme effective interactions. The model consistently considers the expansion of the fragments' volumes at finite temperature at the freeze-out stage. By selecting parameterizations of the Skyrme force that lead to very different equations of state for the symmetry energy, we investigate the sensitivity of different observables to the properties of the effective forces. Our results suggest that, in spite of being sensitive to the thermal dilation of the fragments' volumes, it is difficult to distinguish among the Skyrme forces from the isoscaling analysis. On the other hand, the isotopic distribution of the emitted fragments turns out to be very sensitive to the force employed in the calculation.

  15. Population-level consequences of heterospecific density-dependent movements in predator-prey systems

    OpenAIRE

    2013-01-01

    In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of th...

  16. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    Science.gov (United States)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  17. Habitat- and density-dependent demography of a colonial raptor in Mediterranean agro-ecosystems

    OpenAIRE

    2016-01-01

    Agricultural intensification is considered the major cause of decline in farmland bird populations, especially in the Mediterranean region. Food shortage increased by the interaction between agricultural intensification and density-dependent mechanisms could influence the population dynamics of colonial birds.Weused demographic data on lesser kestrels (Falco naumanni), a key species of Mediterranean pseudo-steppes, to understand the importance of land-use changes and density-dependent mechani...

  18. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  19. Assessing the impact of density dependence in field populations of Aedes aegypti.

    Science.gov (United States)

    Walsh, R K; Facchinelli, L; Ramsey, J M; Bond, J G; Gould, F

    2011-12-01

    Although many laboratory studies of intra-specific competition have been conducted with Ae. aegypti, there have been few studies in natural environments and none that examined density dependence in natural containers at normal field densities. Additionally, current mathematical models that predict Ae. aegypti population dynamics lack empirically-based functions for density-dependence. We performed field experiments in Tapachula, Mexico, where dengue is a significant public health concern. Twenty-one containers with natural food and water that already contained larvae were collected from local houses. Each container was divided in half and the naturally occurring larvae were apportioned in a manner that resulted in one side of the container (high density) having four times the density of the second side (low density). Larvae were counted and pupae were removed daily. Once adults emerged, wing span was measured to estimate body size. Density had a significant impact on larval survival, adult body size, and the time taken to transition from 4(th) instar to pupation. Increased density decreased larval survival by 20% and decreased wing length by an average of 0.19 mm. These results provide a starting point for a better understanding of density dependence in field populations of Ae. aegypti.

  20. The role of landscape features and density dependence in growth and fledging rates of Piping Plovers in North Dakota, USA

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Sherfy, Mark H.; Shaffer, Terry L.; Pearse, Aaron T.

    2014-01-01

    For species with precocial young, survival from hatching to fledging is a key factor influencing recruitment. Furthermore, growth rates of precocial chicks are an indicator of forage quality and habitat suitability of brood-rearing areas. We examined how growth and fledging rates of Piping Plover (Charadrius melodus) chicks were influenced by landscape features, such as hatchling density (hatchlings per hectare of remotely sensed habitat [H ha-1]), island vs. mainland, and wind fetch (exposure to waves) at 2-km segments (n ¼ 15) of Lake Sakakawea, North Dakota, during 2007–2008. Hatchling growth was comparable with published estimates for other habitats. Models for fledging rate (fledged young per segment) assuming density dependence had more support (wi ¼ 96%) than those assuming density independence (wi ¼ 4%). Density-dependent processes appeared to influence fledging rate only at densities .5 H ha-1, which occurred in 19% of the segments we sampled. When areas with densities .5 H ha-1 were excluded, density-dependence and density-independence models were equally supported (wi ¼ 52% and 48%, respectively). Fledging rate declined as the wind fetch of a segment increased. Fledging rate on mainland shorelines was 4.3 times greater than that on islands. Previous work has indicated that plovers prefer islands for nesting, but our results suggest that this preference is not optimal and could lead to an ecological trap for chicks. While other researchers have found nesting-habitat requirements to be gravelly areas on exposed beaches without fine-grain substrates, our results suggest that chicks fledge at lower rates in these habitats. Thus, breeding plovers likely require complexes of these nesting habitats along with protected areas with fine, nutrient-rich substrate for foraging by hatchlings.

  1. Parents benefit from eating offspring: density-dependent egg survivorship compensates for filial cannibalism.

    Science.gov (United States)

    Klug, Hope; Lindström, Kai; St Mary, Colette M

    2006-10-01

    Why should animals knowingly consume their own young? It is difficult to imagine many circumstances in which eating one's own young (i.e., filial cannibalism) actually increases an individual's fitness; however, filial cannibalism commonly co-occurs with parental care in fishes. The evolutionary significance of filial cannibalism remains unclear. The most commonly accepted explanation is that filial cannibalism is a mechanism by which caring males gain energy or nutrients that they reinvest into future reproduction, thereby increasing net reproductive success. There is mixed support for this hypothesis and, at best, it can only explain filial cannibalism in some species. A recent alternative hypothesis suggests that filial cannibalism improves the survivorship of remaining eggs by increasing oxygen availability, and thus increases current reproductive success. This theory has received little attention as of yet. We evaluated the hypothesis of oxygen-mediated filial cannibalism in the sand goby by examining the effect of oxygen and egg density on the occurrence of filial cannibalism, evaluating the effects of partial clutch cannibalism on the survivorship of remaining eggs, and comparing potential costs and benefits of filial cannibalism related to the net number of eggs surviving. Indeed, we found that oxygen level and egg density affected the occurrence of cannibalism and that simulated partial clutch cannibalism improved survivorship of the remaining eggs. Additionally, because increased egg survivorship, stemming from partial egg removal, compensated for the cost of cannibalism (i.e., number of eggs removed) at a range of cannibalism levels, filial cannibalism potentially results in no net losses in reproductive success. However, oxygen did not affect egg survivorship. Thus, we suggest a more general hypothesis of filial cannibalism mediated by density-dependent egg survivorship.

  2. Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity

    Science.gov (United States)

    Duan, Ran; Guo, Ai; Zhu, Changjiang

    2017-04-01

    We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient μ (ρ) = 1 +ρα and heat conductivity coefficient κ (θ) =θβ for all α ∈ [ 0 , ∞) and β ∈ (0 , + ∞).

  3. Density-dependent productivity depression in Pyrenean Bearded Vultures: implications for conservation.

    Science.gov (United States)

    Carrete, Martina; Donázar, José A; Margalida, Antoni

    2006-10-01

    The main objective of many conservation programs is to increase population size by improving a species' survival and reproduction. However, density dependence of demographic parameters may confound this approach. In this study we used a 25-year data set on Bearded Vultures (Gypaetus barbatus) in Spain to evaluate the consequences of population growth on reproductive performance. Unlike its coefficient of variation (cv), mean annual productivity decreased with increasing population size. After controlling for territorial heterogeneity, productivity also was negatively related to the distance to the nearest conspecific breeding pair and to supplementary feeding points where floaters congregate. These results suggest that vulture populations are regulated as posited by the site-dependency hypothesis: as the population increases, average productivity decreases because progressively poorer territories are used. The combined effects of the shrinkage of territories and the presence of floaters around supplementary feeding points seem to be the main causes of productivity decline and are therefore the main determinants of territory quality. This has conservation implications, especially concerning the role of supplementary feeding points. Supplementary feeding should be reviewed given that its usefulness in reducing preadult mortality has not yet been proved and its effect on productivity, as our results suggest, is negative.

  4. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules

    Science.gov (United States)

    van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J.

    1998-12-01

    In this paper we present time-dependent density functional calculations on frequency-dependent first (β) and second (γ) hyperpolarizabilities for the set of small molecules, N2, CO2, CS2, C2H4, NH3, CO, HF, H2O, and CH4, and compare them to Hartree-Fock and correlated ab initio calculations, as well as to experimental results. Both the static hyperpolarizabilities and the frequency dispersion are studied. Three approximations to the exchange-correlation (xc) potential are used: the widely used Local Density Approximation (LDA), the Becke-Lee-Yang-Parr (BLYP) Generalized Gradient Approximation (GGA), as well as the asymptotically correct Van Leeuwen-Baerends (LB94) potential. For the functional derivatives of the xc potential the Adiabatic Local Density Approximation (ALDA) is used. We have attempted to estimate the intrinsic quality of these methods by using large basis sets, augmented with several diffuse functions, yielding good agreement with recent numerical static LDA results. Contrary to claims which have appeared in the literature on the basis of smaller studies involving basis sets of lesser quality, we find that the static LDA results for β and γ are severely overestimated, and do not improve upon the (underestimated) Hartree-Fock results. No improvement is provided by the BLYP potential which suffers from the same incorrect asymptotic behavior as the LDA potential. The results are however clearly improved upon by the LB94 potential, which leads to underestimated results, slightly improving the Hartree-Fock results. The LDA and BLYP potentials overestimate the frequency dependence as well, which is once again improved by the LB94 potential. Future improvements are expected to come from improved models for asymptotically correct exchange-correlation potentials. Apart from the LB94 potential used in this work, several other asymptotically correct potentials have recently been suggested in the literature and can also be expected to improve considerably

  5. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    CERN Document Server

    Rebolini, Elisa

    2015-01-01

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of four small molecules: N2, CO2, H2CO, and C2H4. The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  6. Alcohol dependence-related increase of glial cell density in the anterior cingulate cortex of suicide completers.

    Science.gov (United States)

    Hercher, Christa; Parent, Martin; Flores, Cecilia; Canetti, Lilian; Turecki, Gustavo; Mechawar, Naguib

    2009-07-01

    Suicide is the most serious consequence of major depressive disorder (MDD). Although the anterior cingulate cortex (ACC; Brodmann area [BA] 24) has been increasingly investigated for its role in the etiology of MDD, there is surprisingly very little information about the possible implication of this brain region in suicide. We hypothesized that changes in BA24 cell densities occur in depressed individuals who commit suicide, possibly reflecting an altered state of cortical plasticity that is thought to occur in depression. We investigated cell densities and sizes in BA24 among suicide completers and matched sudden-death controls. We examined a 1-cm(3) tissue block from BA24a of the supracallosal ACC in 26 human postmortem brain specimens (13 depressed individuals who committed suicide and 13 controls). We assessed neuronal and glial cell densities as well as neuronal soma sizes in the upper and lower cortical layers using optical fractionator and nucleator 3-dimensional stereological probes. Glial densities, neuronal densities and soma sizes measured in BA24a did not differ significantly between controls and suicide completers. Secondary analyses showed a significant and robust increase in glial cell densities in BA24a of alcohol-dependent depressed suicide completers compared with depressed suicide completers who were not alcohol-dependent (38%) and, to a lesser extent, controls (30%). Our study, conducted with tissue samples from men only, made use of a nonspecific stain that does not distinguish between neuronal or glial cell subtypes. Furthermore, the quantitative analysis concerned upper and lower cortical contours rather than individual cortical layers. Our results indicate that in BA24, glial density, neuronal density and soma size are not affected in MDD and suicide. They also suggest that alcohol dependence has an important influence on glial densities in this key limbic structure.

  7. Listeria monocytogenes differential transcriptome analysis reveals temperature-dependent Agr regulation and suggests overlaps with other regulons.

    Science.gov (United States)

    Garmyn, Dominique; Augagneur, Yoann; Gal, Laurent; Vivant, Anne-Laure; Piveteau, Pascal

    2012-01-01

    Listeria monocytogenes is a ubiquitous, opportunistic pathogenic organism. Environmental adaptation requires constant regulation of gene expression. Among transcriptional regulators, AgrA is part of an auto-induction system. Temperature is an environmental cue critical for in vivo adaptation. In order to investigate how temperature may affect AgrA-dependent transcription, we compared the transcriptomes of the parental strain L. monocytogenes EGD-e and its ΔagrA mutant at the saprophytic temperature of 25°C and in vivo temperature of 37°C. Variations of transcriptome were higher at 37°C than at 25°C. Results suggested that AgrA may be involved in the regulation of nitrogen transport, amino acids, purine and pyrimidine biosynthetic pathways and phage-related functions. Deregulations resulted in a growth advantage at 37°C, but affected salt tolerance. Finally, our results suggest overlaps with PrfA, σB, σH and CodY regulons. These overlaps may suggest that through AgrA, Listeria monocytogenes integrates information on its biotic environment.

  8. Temperature dependence of Hall electron density of GaN-based heterostructures

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin-Feng; Zhang Jin-Cheng; Hao Yue

    2004-01-01

    The theoretic calculation and analysis of the temperature dependence of Hall electron density of a sample AlGaN/GaN heterostructure has been carried out in the temperature range from 77 to 300K. The densities of the twodimensional electron gas and the bulk electrons are solved by self-consistent calculation of one-dimensional Schrodinger and Poisson equations at different temperatures, which allow for the variation of energy gap and structure strain, and are used for evaluation of the temperature dependence of Hall electron density. The calculated Hall electron density agrees with the measured one quite well with the appropriate bulk mobility data. Analysis revealed that for the temper ature range considered, even in the heterostructures with a small bulk conductance the factors that determine the Hall mobility and electron density could be of different sources, and not just the two-dimensional electron gas as generally supposed.

  9. A coarse-grain force field for RDX: Density dependent and energy conserving

    Science.gov (United States)

    Moore, Joshua D.; Barnes, Brian C.; Izvekov, Sergei; Lísal, Martin; Sellers, Michael S.; Taylor, DeCarlos E.; Brennan, John K.

    2016-03-01

    We describe the development of a density-dependent transferable coarse-grain model of crystalline hexahydro-1,3,5-trinitro-s-triazine (RDX) that can be used with the energy conserving dissipative particle dynamics method. The model is an extension of a recently reported one-site model of RDX that was developed by using a force-matching method. The density-dependent forces in that original model are provided through an interpolation scheme that poorly conserves energy. The development of the new model presented in this work first involved a multi-objective procedure to improve the structural and thermodynamic properties of the previous model, followed by the inclusion of the density dependency via a conservative form of the force field that conserves energy. The new model accurately predicts the density, structure, pressure-volume isotherm, bulk modulus, and elastic constants of the RDX crystal at ambient pressure and exhibits transferability to a liquid phase at melt conditions.

  10. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate......Ecology has long been troubled by the controversy over how populations are regulated(1,2). Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central(3-6). The relative importance of both processes is still hotly debated......, but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...

  11. Density dependence in an age-structured population of great tits: identifying the critical age classes.

    Science.gov (United States)

    Gamelon, Marlène; Grøtan, Vidar; Engen, Steinar; Bjørkvoll, Eirin; Visser, Marcel E; Saether, Bernt-Erik

    2016-09-01

    Classical approaches for the analyses of density dependence assume that all the individuals in a population equally respond and equally contribute to density dependence. However, in age-structured populations, individuals of different ages may differ in their responses to changes in population size and how they contribute to density dependence affecting the growth rate of the whole population. Here we apply the concept of critical age classes, i.e., a specific scalar function that describes how one or a combination of several age classes affect the demographic rates negatively, in order to examine how total density dependence acting on the population growth rate depends on the age-specific population sizes. In a 38-yr dataset of an age-structured great tit (Parus major) population, we find that the age classes, including the youngest breeding females, were the critical age classes for density regulation. These age classes correspond to new breeders that attempt to take a territory and that have the strongest competitive effect on other breeding females. They strongly affected population growth rate and reduced recruitment and survival rates of all breeding females. We also show that depending on their age class, females may differently respond to varying density. In particular, the negative effect of the number of breeding females was stronger on recruitment rate of the youngest breeding females. These findings question the classical assumptions that all the individuals of a population can be treated as having an equal contribution to density regulation and that the effect of the number of individuals is age independent. Our results improve our understanding of density regulation in natural populations.

  12. Density-dependent coral recruitment displays divergent responses during distinct early life-history stages.

    Science.gov (United States)

    Doropoulos, Christopher; Evensen, Nicolas R; Gómez-Lemos, Luis A; Babcock, Russell C

    2017-05-01

    Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions.

  13. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction".

    Science.gov (United States)

    Muschol, Martin; Kosterin, Paul; Ichikawa, Michinori; Salzberg, B M

    2003-12-10

    Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.

  14. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  15. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  16. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality.

    Science.gov (United States)

    Bruggeman, Jason E; Swem, Ted; Andersen, David E; Kennedy, Patricia L; Nigro, Debora

    2015-10-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve-Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  17. Negative density dependence of seed dispersal and seedling recruitment in a neotropical palm.

    Science.gov (United States)

    Jansen, Patrick A; Visser, Marco D; Joseph Wright, S; Rutten, Gemma; Muller-Landau, Helene C

    2014-09-01

    Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a wide range of population density on Barro Colorado Island in Panama and assessed its consequences for seed distributions. We found that frugivore visitation, seed removal and dispersal distance all declined with population density of A. butyracea, demonstrating NDD of seed dispersal due to competition for dispersers. Furthermore, as population density increased, the distances of seeds from the nearest adult decreased, conspecific seed crowding increased and seedling recruitment success decreased, all patterns expected under poorer dispersal. Unexpectedly, however, our analyses showed that NDD of dispersal did not contribute substantially to these changes in the quality of the seed distribution; patterns with population density were dominated by effects due solely to increasing adult and seed density.

  18. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  19. Dependence of the appearance-based perception of criminality, suggestibility, and trustworthiness on the level of pixelation of facial images.

    Science.gov (United States)

    Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis

    2012-10-01

    While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility.

  20. Anatomy of a population cycle: the role of density dependence and demographic variability on numerical instability and periodicity.

    Science.gov (United States)

    Row, Jeffrey R; Wilson, Paul J; Murray, Dennis L

    2014-07-01

    Determining the causes of cyclic fluctuations in population size is a central tenet in population ecology and provides insights into population regulatory mechanisms. We have a firm understanding of how direct and delayed density dependence affects population stability and cyclic dynamics, but there remains considerable uncertainty in the specific processes contributing to demographic variability and consequent change in cyclic propensity. Spatiotemporal variability in cyclic propensity, including recent attenuation or loss of cyclicity among several temperate populations and the implications of habitat fragmentation and climate change on this pattern, highlights the heightened need to understand processes underlying cyclic variation. Because these stressors can differentially impact survival and productivity and thereby impose variable time delays in density dependence, there is a specific need to elucidate how demographic vital rates interact with the type and action of density dependence to contribute to population stability and cyclic variation. Here, we address this knowledge gap by comparing the stability of time series derived from general and species-specific (Canada lynx: Lynx canadensis; small rodents: Microtus, Lemmus and Clethrionomys spp.) matrix population models, which vary in their demographic rates and the direct action of density dependence. Our results reveal that density dependence acting exclusively on survival as opposed to productivity is destabilizing, suggesting that a shift in the action of population regulation toward reproductive output may decrease cyclic propensity and cycle amplitude. This result was the same whether delayed density dependence was pulsatile and acted on a single time period (e.g. t-1, t-2 or t-3) vs. more constant by affecting a successive range of years (e.g. t-1,…, t-3). Consistent with our general models, reductions in reproductive potential in both the lynx and small rodent systems led to notably large drops in

  1. Larval density dependence in Anopheles gambiae s.s., the major African vector of malaria

    Science.gov (United States)

    Muriu, Simon M.; Coulson, Tim; Mbogo, Charles M.; Godfray, H. Charles J.

    2017-01-01

    Summary Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size.Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access.In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density).In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance).The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed PMID:23163565

  2. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.;

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...

  3. Nuclear matter symmetry energy from generalized polarizabilities: dependences on momentum, isospin, density and temperature

    CERN Document Server

    Braghin, F L

    2004-01-01

    Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.

  4. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family

    Directory of Open Access Journals (Sweden)

    Rothblatt Jonathan

    2008-07-01

    Full Text Available Abstract Background In contrast to the three mammalian p53 family members, p53, which is generally involved in DNA damage responses, and p63 and p73 which are primarily needed for developmental regulation, cep-1 encodes for the single C. elegans p53-like gene. cep-1 acts as a transcription activator in a primordial p53 pathway that involves CEP-1 activation and the CEP-1 dependent transcriptional induction of the worm BH3 only domain encoding genes egl-1 and ced-13 to induce germ cell apoptosis. EGL-1 and CED-13 proteins inactivate Bcl-2 like CED-9 to trigger CED-4 and CED-3 caspase dependent germ cell apoptosis. To address the function of p53 in global transcriptional regulation we investigate genome-wide transcriptional responses upon DNA damage and cep-1 deficiency. Results Examining C. elegans expression profiles using whole genome Affymetrix GeneChip arrays, we found that 83 genes were induced more than two fold upon ionizing radiation (IR. None of these genes, with exception of an ATP ribosylase homolog, encode for known DNA repair genes. Using two independent cep-1 loss of function alleles we did not find genes regulated by cep-1 in the absence of IR. Among the IR-induced genes only three are dependent on cep-1, namely egl-1, ced-13 and a novel C. elegans specific gene. The majority of IR-induced genes appear to be involved in general stress responses, and qRT-PCR experiments indicate that they are mainly expressed in somatic tissues. Interestingly, we reveal an extensive overlap of gene expression changes occurring in response to DNA damage and in response to bacterial infection. Furthermore, many genes induced by IR are also transcriptionally regulated in longevity mutants suggesting that DNA damage and aging induce an overlapping stress response. Conclusion We performed genome-wide gene expression analyses which indicate that only a surprisingly small number of genes are regulated by CEP-1 and that DNA damage induced apoptosis via the

  5. Density Relaxation in Time-Dependent Density Functional Theory: Combining Relaxed Density Natural Orbitals and Multireference Perturbation Theories for an Improved Description of Excited States.

    Science.gov (United States)

    Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara

    2014-09-09

    Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.

  6. Time-dependent quantum fluid density functional theory of hydrogen molecule under intense laser fields

    Indian Academy of Sciences (India)

    Amita Wadehra; B M Deb

    2007-09-01

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on the femtosecond dynamics of the electron density in the hydrogen molecule interacting with high-intensity laser fields. For this purpose, the GNLSE is solved numerically for many time-steps over a total interaction time of 100 fs, by employing a finite-difference scheme. Various time-dependent (TD) quantities, namely, electron density, ground-state survival probability and dipole moment have been obtained for two laser wavelengths and four different intensities. The high-order harmonics generation (HHG) is also examined. The present approach goes beyond the linear response formalism and, in principle, calculates the TD electron density to all orders of change.

  7. Polarization dependence of the quasi-Talbot effect of the high-density grating.

    Science.gov (United States)

    Teng, Shuyun; Guo, Wenzhen; Cheng, Chuanfu

    2010-03-01

    Diffractions by the one-dimensional high-density grating in the near field with TM and TE polarization illuminations are studied, and the diffraction intensity distributions are calculated with the finite-difference time-domain technique. The calculation results show that the diffractions of the high-density grating with different polarization illuminations are different. The quasi-Talbot image of the grating depends on the polarization of the incident wave, and the existence condition of the quasi-Talbot image of the grating in the near field also changes with the polarization of the incident wave. We present explanations based on the vector distribution of the energy flow density. These studies on the polarization dependence of the quasi-Talbot imaging of the high-density grating are helpful for the application of the grating to near-field photolithography.

  8. On the density dependent hadron field theory at finite temperature and its thermodynamical consistency

    CERN Document Server

    Avancini, S S; Chiapparini, M; Peres-Menezes, D

    2004-01-01

    In this work we study in a formal way the density dependent hadron field theory at finite temperature for nuclear matter. The thermodynamical potential and related quantities, as energy density and pressure are derived in two different ways. We first obtain the thermodynamical potential from the grand partition function, where the Hamiltonian depends on the density operator and is truncated at first order. We then reobtain the thermodynamical potential by calculating explicitly the energy density in a Thomas-Fermi approximation and considering the entropy of a fermi gas. The distribution functions for particles and antiparticles are the output of the minimization of the thermodynamical potential. It is shown that in the mean field theory the thermodynamical consistency is achieved. The connection with effective chiral lagrangians with Brown-Rho scaling is discussed.

  9. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... applied a Bayesian state-space model to a 72-year time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited strong potential to grow from low density (β0 = 0.26; Bayesian credible...... interval based on 95% of the highest posterior density: BCI = 0.19 to 0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (βfebaprtemp1 = 0.09, BCI = 0.04 to 0.14), much more so...

  10. Lower within-community variance of negative density dependence increases forest diversity.

    Directory of Open Access Journals (Sweden)

    António Miranda

    Full Text Available Local abundance of adult trees impedes growth of conspecific seedlings through host-specific enemies, a mechanism first proposed by Janzen and Connell to explain plant diversity in forests. While several studies suggest the importance of this mechanism, there is still little information of how the variance of negative density dependence (NDD affects diversity of forest communities. With computer simulations, we analyzed the impact of strength and variance of NDD within tree communities on species diversity. We show that stronger NDD leads to higher species diversity. Furthermore, lower range of strengths of NDD within a community increases species richness and decreases variance of species abundances. Our results show that, beyond the average strength of NDD, the variance of NDD is also crucially important to explain species diversity. This can explain the dissimilarity of biodiversity between tropical and temperate forest: highly diverse forests could have lower NDD variance. This report suggests that natural enemies and the variety of the magnitude of their effects can contribute to the maintenance of biodiversity.

  11. Lower within-community variance of negative density dependence increases forest diversity.

    Science.gov (United States)

    Miranda, António; Carvalho, Luís M; Dionisio, Francisco

    2015-01-01

    Local abundance of adult trees impedes growth of conspecific seedlings through host-specific enemies, a mechanism first proposed by Janzen and Connell to explain plant diversity in forests. While several studies suggest the importance of this mechanism, there is still little information of how the variance of negative density dependence (NDD) affects diversity of forest communities. With computer simulations, we analyzed the impact of strength and variance of NDD within tree communities on species diversity. We show that stronger NDD leads to higher species diversity. Furthermore, lower range of strengths of NDD within a community increases species richness and decreases variance of species abundances. Our results show that, beyond the average strength of NDD, the variance of NDD is also crucially important to explain species diversity. This can explain the dissimilarity of biodiversity between tropical and temperate forest: highly diverse forests could have lower NDD variance. This report suggests that natural enemies and the variety of the magnitude of their effects can contribute to the maintenance of biodiversity.

  12. Density-dependent benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Zhou, Aiming; Kuang, Beiqing; Gao, Yingrui; Liang, Guangwen

    2015-01-01

    Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level.

  13. Density-dependent selection on mate search and evolution of Allee effects.

    Science.gov (United States)

    Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M

    2017-02-27

    Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness

  14. Density-mediated, context-dependent consumer-resource interactions between ants and extrafloral nectar plants.

    Science.gov (United States)

    Chamberlain, Scott A; Holland, J Nathaniel

    2008-05-01

    Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant

  15. Density dependent magnetic field and the equation of state of hyperonic matter

    CERN Document Server

    Casali, Rudiney Hoffmann

    2013-01-01

    We are interested on the effects, caused by strong variable density dependent magnetic fields, on hyperonic matter, its symmetry energy, equations of state and mass-radius relations. The inclusion of the anomalous magnetic moment of the particles involved in a stellar system is performed, and some results are compared with the cases that do not take this correction under consideration. The Lagrangian density used follows the nonlinear Walecka model plus the leptons subjected to an external magnetic field.

  16. Density-dependent prey mortality is determined by the spatial scale of predator foraging.

    Science.gov (United States)

    McCarthy, Erin K; White, J Wilson

    2016-02-01

    Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.

  17. Temperature dependence of the liquid eutectic lead-lithium alloy density

    Institute of Scientific and Technical Information of China (English)

    Alchagirov; Boris; B.; Mozgovoi; Alexandr; G.; Taova; Tamara; M.

    2005-01-01

    Lead-lithium alloys are of great interest for practice as the advanced materials to be used in new technique, nuclear energetics, and so forth. Terefore, study on the physico-chemical properties of the latter is of major significance. An analysis of the available literature shows that there are a few works, devoted to study of Pb-Li alloys densities. However, temperature dependence of the density ρ(T), and its temperature coefficientK=dρ/dT for eutectic alloy were obtained by either extrapolation of the density data up to the eutectic alloy's composition, or calculation method. There is a certain discrepancy amounting to as high as 4%, while the allowable error in the density measurements is less than 0.5%. The discrepancy between the results for the temperature coefficients of density amounts to 80%.In this work we present the experimental data on the temperature dependence of Ph0.83 Li0.17 eutectic alloy's density in the temperature range 520K to 643 K. The alloys were prepared using Pb and Li with 99. 999% and 99.8% contents of the basic elements, respectively. We use the improved device, which permits to get the results with error less than 0. 15%. The results of 115 measurements of density in 520K to 643K temperature range were processed by the least-square method. Density polytherm of Pb0.83 Li0. 17 eutectic alloy is described by linear equation ρ(T) =9507.89-0. 79813(T-508) , kg/m3 ,where T is the absolute temperature by K. Mearsurement error was 0. 12% at 95% reliability.Discrepancy in the temperature coefficient data was 1.08%.Thus, the temperature dependence of the Pb-Li eutectic alloy density was studied by the precise two-capillary method. The obtained results may be recommended as the most reliable reference data.

  18. -selection, -selection, effectiveness, and tolerance in competition: density-dependent selection revisited

    Indian Academy of Sciences (India)

    Amitabh Joshi; N. G. Prasad; Mallikarjun Shakarad

    2001-08-01

    In the Drosophila literature, selection for faster development and selection for adapting to high density are often confounded, leading, for example, to the expectation that selection for faster development should also lead to higher competitive ability. At the same time, results from experimental studies on evolution at high density do not agree with many of the predictions from classical density-dependent selection theory. We put together a number of theoretical and empirical results from the literature, and some new experimental results on Drosophila populations successfully subjected to selection for faster development, to argue for a broader interpretation of density-dependent selection. We show that incorporating notions of -selection, and the division of competitive ability into effectiveness and tolerance components, into the concept of density-dependent selection yields a formulation that allows for a better understanding of the empirical results. We also use this broader formulation to predict that selection for faster development in Drosophila should, in fact, lead to the correlated evolution of decreased competitive ability, even though it does lead to the evolution of greater efficiency and higher population growth rates at high density when in monotypic culture.

  19. Dependence of ion-induced Pd-silicide formation on nuclear energy deposition density

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Matsunami, Noriaki; Itoh, Noriaki

    1986-05-01

    Pd/sub 2/Si formation at the Pd-Si interface induced by irradiation with ions having a wide range of nuclear energy of deposition density has been investigated. It is found that the thickness of the silicide layer formed by irradiation is proportional to the ion fluence for irradiation with ions having low energy-deposition densities, while it is proportional to the square root of the fluence for irradiation with ions having energy-deposition densities. The results indicate that Pd/sub 2/Si formation is reaction limited when the energy-deposition density at the interface is low and is diffusion limited when it is high. The results are compared with the phenomenological theory developed by Horino et al. and it is shown that such a dependence of the limiting processes on the energy depositon density is induced when the diffusion is thermally activated while the reaction at the interface is radiation-enhanced.

  20. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas;

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  1. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties.

    Science.gov (United States)

    Bhambure, Rahul; Angelo, James M; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2017-07-14

    The effect of ligand density was studied on protein adsorption and transport behavior in tentacular cation-exchange sorbents at different ionic strengths. Results were obtained for lysozyme, lactoferrin and a monoclonal antibody (mAb) in order to examine the effects of protein size and charge. The combination of ligand density and ionic strength results in extensive variability of the static and dynamic binding capacities, transport rate and binding affinity of the proteins. Uptake and elution experiments were performed to quantify the transport behavior of selected proteins, specifically to estimate intraparticle protein diffusivities. The observed trend of decreasing uptake diffusivities with an increase in ligand density was correlated to structural properties of the ligand-density variants, particularly the accessible porosity. Increasing the ionic strength of the equilibration buffer led to enhanced mass transfer during uptake, independent of the transport model used, and specifically for larger proteins like lactoferrin and mAb, the most significant effects were evident in the sorbent of the highest ligand density. For lysozyme, higher ligand density leads to higher static and dynamic binding capacities whereas for lactoferrin and the mAb, the binding capacity is a complex function of accessible porosity due to ionic strength-dependent changes. Ligand density has a less pronounced effect on the elution rate, presumably due to ionic strength-dependent changes in the pore architecture of the sorbents. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    CERN Document Server

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the harmonic approximation. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, excellent agreement with TD-DFT calculations using local functionals was achieved.

  3. Time-dependent renormalized Redfield theory II for off-diagonal transition in reduced density matrix

    Science.gov (United States)

    Kimura, Akihiro

    2016-09-01

    In our previous letter (Kimura, 2016), we constructed time-dependent renormalized Redfield theory (TRRT) only for diagonal transition in a reduced density matrix. In this letter, we formulate the general expression for off-diagonal transition in the reduced density matrix. We discuss the applicability of TRRT by numerically comparing the dependencies on the energy gap of the exciton relaxation rate by using the TRRT and the modified Redfield theory (MRT). In particular, we roughly show that TRRT improves MRT for the detailed balance about the excitation energy transfer reaction.

  4. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    OpenAIRE

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...

  5. Radial oscillations of magnetized proto strange stars in temperature- and density-dependent quark mass model

    Indian Academy of Sciences (India)

    V K Gupta; Asha Gupta; S Singh; J D Anand

    2003-10-01

    We report on the study of the mass–radius (–) relation and the radial oscillations of magnetized proto strange stars. For the quark matter we have employed the very recent modification, the temperature- and density-dependent quark mass model of the well-known density-dependent quark mass model. We find that the effect of magnetic field, both on the maximum mass and radial frequencies, is rather small. Also a proto strange star, whether magnetized or otherwise, is more likely to evolve into a strange star rather than transform into a black hole.

  6. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest.

    Directory of Open Access Journals (Sweden)

    Julien Fattebert

    Full Text Available Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the 'mate competition', 'resource competition' and 'resident fitness' hypotheses predict density-dependent dispersal patterns, while the 'inbreeding avoidance' hypothesis posits density-independent dispersal. In a leopard (Panthera pardus population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km generally dispersed further than females (2.7 ± 0.4 km, some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration. Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved

  7. Linear-response time-dependent density-functional theory with pairing fields.

    Science.gov (United States)

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  8. Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions

    Science.gov (United States)

    Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.

    2008-07-01

    We derive an analytic form of the Wang-Govind-Carter (WGC) [Wang , Phys. Rev. B 60, 16350 (1999)] kinetic energy density functional (KEDF) with the density-dependent response kernel. A real-space aperiodic implementation of the WGC KEDF is then described and used in linear scaling orbital-free density functional theory (OF-DFT) calculations.

  9. Density dependence of avian clutch size in resident and migrant species: is there a constraint on the predictability of competitor density?

    NARCIS (Netherlands)

    Both, C.

    2000-01-01

    The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One

  10. Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps.

    Directory of Open Access Journals (Sweden)

    Karsten Schönrogge

    Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.

  11. Population-level consequences of heterospecific density-dependent movements in predator-prey systems.

    Science.gov (United States)

    Sjödin, Henrik; Brännström, Ke; Söderquist, Mårten; Englund, Göran

    2014-02-07

    In this paper we elucidate how small-scale movements, such as those associated with searching for food and avoiding predators, affect the stability of predator-prey dynamics. We investigate an individual-based Lotka-Volterra model with density-dependent movement, in which the predator and prey populations live in a very large number of coupled patches. The rates at which individuals leave patches depend on the local densities of heterospecifics, giving rise to one reaction norm for each of the two species. Movement rates are assumed to be much faster than demographics rates. A spatial structure of predators and prey emerges which affects the global population dynamics. We derive a criterion which reveals how demographic stability depends on the relationships between the per capita covariance and densities of predators and prey. Specifically, we establish that a positive relationship with prey density and a negative relationship with predator density tend to be stabilizing. On a more mechanistic level we show how these relationships are linked to the movement reaction norms of predators and prey. Numerical results show that these findings hold both for local and global movements, i.e., both when migration is biased towards neighbouring patches and when all patches are reached with equal probability. © 2013 Published by Elsevier Ltd. All rights reserved.

  12. Sea lice as a density-dependent constraint to salmonid farming.

    Science.gov (United States)

    Jansen, Peder A; Kristoffersen, Anja B; Viljugrein, Hildegunn; Jimenez, Daniel; Aldrin, Magne; Stien, Audun

    2012-06-22

    Fisheries catches worldwide have shown no increase over the last two decades, while aquaculture has been booming. To cover the demand for fish in the growing human population, continued high growth rates in aquaculture are needed. A potential constraint to such growth is infectious diseases, as disease transmission rates are expected to increase with increasing densities of farmed fish. Using an extensive dataset from all farms growing salmonids along the Norwegian coast, we document that densities of farmed salmonids surrounding individual farms have a strong effect on farm levels of parasitic sea lice and efforts to control sea lice infections. Furthermore, increased intervention efforts have been unsuccessful in controlling elevated infection levels in high salmonid density areas in 2009-2010. Our results emphasize host density effects of farmed salmonids on the population dynamics of sea lice and suggest that parasitic sea lice represent a potent negative feedback mechanism that may limit sustainable spatial densities of farmed salmonids.

  13. Density-dependent state-space model for population-abundance data with unequal time intervals.

    Science.gov (United States)

    Dennis, Brian; Ponciano, José Miguel

    2014-08-01

    The Gompertz state-space (GSS) model is a stochastic model for analyzing time-series observations of population abundances. The GSS model combines density dependence, environmental process noise, and observation error toward estimating quantities of interest in biological monitoring and population viability analysis. However, existing methods for estimating the model parameters apply only to population data with equal time intervals between observations. In the present paper, we extend the GSS model to data with unequal time intervals, by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical maximization of an explicit multivariate normal likelihood, and so the extension allows for easy bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing of density dependence, and selection among sub-models using information criteria. Ecologists and managers previously drawn to models lacking density dependence or observation error because such models accommodated unequal time intervals (for example, due to missing data) now have an alternative analysis framework incorporating density dependence, process noise, and observation error.

  14. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.;

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...

  15. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    2005-01-01

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both interba

  16. Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei

    NARCIS (Netherlands)

    Hofmann, F. Keil; Lenske, H.

    2001-01-01

    Published in: Phys. Rev. C 64 (2001) , pp.034314 citations recorded in [Science Citation Index] Abstract: The density dependent relativistic hadron field (DDRH) theory is applied to strongly asymmetric nuclear matter and finite nuclei far off stability. A new set of in-medium meson-nucleon vertices

  17. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both

  18. Plant diversity increases with the strength of negative density dependence at the global scale

    Science.gov (United States)

    Joseph A. LaManna; Scott A. Mangan; Alfonso Alonso; Norman A. Bourg; Warren Y. Brockelman; Sarayudh Bunyavejchewin; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Keith Clay; Richard Condit; Susan Cordell; Stuart J. Davies; Tucker J. Furniss; Christian P. Giardina; I. A. U. Nimal Gunatilleke; C. V. Savitri Gunatilleke; Fangliang He; Robert W. Howe; Stephen P. Hubbell; Chang-Fu Hsieh; Faith M. Inman-Narahari; David Janík; Daniel J. Johnson; David Kenfack; Lisa Korte; Kamil Král; Andrew J. Larson; James A. Lutz; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Anuttara Nathalang; Vojtech Novotny; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; I-Fang Sun; J. Sebastián Tello; Duncan W. Thomas; Benjamin L. Turner; Dilys M. Vela Díaz; Tomáš Vrška; George D. Weiblen; Amy Wolf; Sandra Yap; Jonathan A. Myers

    2017-01-01

    Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only...

  19. Investigation of a growth model incorporating density dependence for the mackerel management plan simulations

    NARCIS (Netherlands)

    Brunel, T.P.A.

    2015-01-01

    This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in t

  20. Investigation of a growth model incorporating density dependence for the mackerel management plan simulations

    NARCIS (Netherlands)

    Brunel, T.P.A.

    2015-01-01

    This report presents a framework to model density dependent growth for the North East Atlantic mackerel. The model used is the classical von Bertalanffy equation, but modified so that growth is reduced when stock size increases. The model developed was able to reproduce quite closely the trends in

  1. Density dependent state space model for population abundance data with unequal time intervals

    Science.gov (United States)

    Dennis, Brian; Ponciano, José Miguel

    2014-01-01

    The Gompertz state-space (GSS) model is a stochastic model for analyzing time series observations of population abundances. The GSS model combines density dependence, environmental process noise, and observation error toward estimating quantities of interest in biological monitoring and population viability analysis. However, existing methods for estimating the model parameters apply only to population data with equal time intervals between observations. In the present paper, we extend the GSS model to data with unequal time intervals, by embedding it within a state-space version of the Ornstein-Uhlenbeck process, a continuous-time model of an equilibrating stochastic system. Maximum likelihood and restricted maximum likelihood calculations for the Ornstein-Uhlenbeck state-space model involve only numerical maximization of an explicit multivariate normal likelihood, and so the extension allows for easy bootstrapping, yielding confidence intervals for model parameters, statistical hypothesis testing of density dependence, and selection among sub-models using information criteria. Ecologists and managers previously drawn to models lacking density dependence or observation error because such models accommodated unequal time intervals (for example, due to missing data) now have an alternative analysis framework incorporating density dependence, process noise and observation error. PMID:25230459

  2. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  3. The Keldysh formalism applied to time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Gidopoulos, NI; Wilson, S

    2003-01-01

    In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this

  4. A spatial interpretation of the density dependence model in industrial demography

    NARCIS (Netherlands)

    van Wissen, L

    2004-01-01

    In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper explor

  5. Energy and Centrality Dependences of Charged Multiplicity Density in Relativistic Nuclear Collisions

    Institute of Scientific and Technical Information of China (English)

    SA; Ben-hao; Bonasera; A; TAI; An

    2002-01-01

    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of chargedparticle pseudo rapidity density in relativistic nuclear collisions were studied. Within the framework ofthis model, both the relativistic p + p experimental data and the PHOBOS and PHENIX Au + Au data at

  6. A spatial interpretation of the density dependence model in industrial demography

    NARCIS (Netherlands)

    van Wissen, L

    2004-01-01

    In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper explor

  7. Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm

    NARCIS (Netherlands)

    Jansen, Patrick A.; Visser, Marco D.; Wright, S. Joseph; Rutten, Gemma; Muller-Landau, Helene C.

    2014-01-01

    Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a

  8. Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm

    NARCIS (Netherlands)

    Jansen, Patrick A.; Visser, Marco D.; Wright, S. Joseph; Rutten, Gemma; Muller-Landau, Helene C.

    2014-01-01

    Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a

  9. A spatial interpretation of the density dependence model in industrial demography

    NARCIS (Netherlands)

    van Wissen, L

    2004-01-01

    In this paper the density dependence model, which was developed in organizational ecology, is compared to the economic-geographical notion of agglomeration economies. There is a basic resemblance: both involve some form of positive feedback between size of the population and growth. The paper

  10. Maxwell equation violation by density dependent magnetic fields in neutron stars

    CERN Document Server

    Menezes, Débora P

    2016-01-01

    We show that the widely used density dependent magnetic field prescriptions, necessary to account for the variation of the field intensity from the crust to the core of neutron stars violate one of the Maxwell equations. We estimate how strong the violation is when different equations of state are used and check for which cases the pathological problem can be cured.

  11. Density dependence and population dynamics of black rhinos (Diceros bicornis michaeli) in Kenya's rhino sanctuaries

    NARCIS (Netherlands)

    Ouma, B.O.; Amin, R.; Langevelde, van F.; Leader-Williams, N.

    2010-01-01

    Density-dependent feedback mechanisms provide insights into the population dynamics and interactions of large herbivores with their ecosystem. Sex ratio also has particularly important implications for growth rates of many large mammal populations through its influence on reproductive potential. The

  12. Controlled suppression of the photoluminescence superlinear dependence on excitation density in quantum dots.

    Science.gov (United States)

    Bietti, Sergio; Sanguinetti, Stefano

    2012-10-04

    : We have shown that it is possible to tune, up to complete suppression, the photoluminescence superlinear dependence on the excitation density in quantum dot samples at high temperatures by annealing treatments. The effect has been attributed to the reduction of the defectivity of the material induced by annealing.

  13. Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm

    NARCIS (Netherlands)

    Jansen, Patrick A.; Visser, Marco D.; Wright, S. Joseph; Rutten, Gemma; Muller-Landau, Helene C.

    Negative density dependence (NDD) of recruitment is pervasive in tropical tree species. We tested the hypotheses that seed dispersal is NDD, due to intraspecific competition for dispersers, and that this contributes to NDD of recruitment. We compared dispersal in the palm Attalea butyracea across a

  14. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    , but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...

  15. BONE-DENSITY IN NON-INSULIN-DEPENDENT DIABETES-MELLITUS - THE ROTTERDAM STUDY

    NARCIS (Netherlands)

    VANDAELE, PLA; STOLK, RP; BURGER, H; ALGRA, D; GROBBEE, DE; HOFMAN, A; BIRKENHAGER, JC; POLS, HAP

    1995-01-01

    Objective: To investigate the relation between noninsulin-dependent diabetes mellitus and bone mineral density at the lumbar spine and hip. Design: Population-based study with a cross-sectional survey, Setting: A district of Rotterdam, the Netherlands. Participants: 5931 residents (2481 men, 3450

  16. Asymmetry energy of nuclear matter: Temperature and density dependence, and validity of semi-empirical formula

    CERN Document Server

    Bordbar, G H; Taghizade, M

    2015-01-01

    In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of o...

  17. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...... applied a Bayesian state-space model to a 72-year time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited strong potential to grow from low density (β0 = 0.26; Bayesian credible...

  18. Hybrid stars Spin polarised nuclear matter and density dependent quark masses

    CERN Document Server

    Maheswari, V S U; Samaddar, S K

    1998-01-01

    The possibility of formation of a droplet phase (DP) inside a star and its consequences on the structural properties of the star are investigated. For nuclear matter (NM), an equation of state (EOS) based on finite range, momentum and density dependent interaction, and which predicts that neutron matter undergoes ferromagnetic transition at densities realisable inside the neutron star is employed. An EOS for quark matter (QM) with density dependent quark masses, the so-called effective mass model, is constructed by correctly treating the quark chemical potentials. It is then found that a droplet phase consisting of strange quark matter and unpolarised nuclear matter sandwiched between a core of polarised nuclear matter and a crust containing unpolarised nuclear matter exists. Moreover, we could explain the mass and surface magnetic field satisfactorily, and as well allow, due to the presence of a droplet phase, the direct URCA process to happen.

  19. Density dependence of microscopic nucleon optical potential in first order Brueckner theory

    Science.gov (United States)

    Saliem, S. M.; Haider, W.

    2002-06-01

    In the present work we apply the lowest order Brueckner theory of infinite nuclear matter to obtain nucleon-nucleus optical potential for p-40Ca elastic scattering at 200 MeV using Urbana V14 soft core internucleon potential. We have investigated the effect of target density on the calculated nucleon-nucleus optical potential. We find that the calculated optical potentials depend quite sensitively on the density distribution of the target nucleus. The important feature is that the real part of calculated central optical potential for all densities shows a wine-bottle-bottom type behaviour at this energy. We also discuss the effect of our new radial dependent effective mass correction. Finally, we compare the prediction of our calculated nucleon optical potential using V14 with the prediction using older hard core Hamada-Johnston internucleon potential for p-40Ca elastic scattering at 200 MeV.

  20. Determination of Doping Density in GaAs Semiconductor by Wavelength-Dependent Photoacoustic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jongtae; Choi, Oklim; Boo, Doo Wan; Choi, Joonggill [Yonsei Univ., Seoul (Korea, Republic of)

    2014-03-15

    The wavelength dependence of the photoacoustic signal for n-type GaAs semiconductors in the region of the band-gap energies was investigated. The significant changes in the phase and amplitude of the photoacoustic signal near the band-gap absorption wavelengths were observed to occur when the Si-doping densities in GaAs were varied. Particularly, the first derivatives of the photoacoustic phase vs. wavelength graphs were evaluated and fitted with single Gaussian functions. The peak centers and the widths of the Gaussian curves clearly showed linear relationships with the log values of the Si-doping densities in n-type GaAs semiconductors. It is proposed that the wavelength-dependent PA spectroscopy can be used as a simple and nondestructive method for measuring the doping densities in bulk semiconductors.

  1. Shape-dependence of transmission, reflection and absorption eigenvalue densities in disordered waveguides with dissipation

    CERN Document Server

    Yamilov, A; Sarma, R; Cao, H

    2015-01-01

    The universal bimodal distribution of transmission eigenvalues in lossless diffusive systems un- derpins such celebrated phenomena as universal conductance fluctuations, quantum shot noise in condensed matter physics and enhanced transmission in optics and acoustics. Here, we show that in the presence of absorption, density of the transmission eigenvalues depends on the confinement geometry of scattering media. Furthermore, in an asymmetric waveguide, densities of the reflection and absorption eigenvalues also depend of the side from which the waves are incident. With increas- ing absorpotion, the density of absorption eigenvalues transforms from single-peak to double-peak function. Our findings open a new avenue for coherent control of wave transmission, reflection and absorption in random media.

  2. Half lives of spherical proton emitters using density dependent M3Y interaction

    CERN Document Server

    Chowdhury, P R; Basu, D N

    2005-01-01

    The proton radioactivity lifetimes of spherical proton emitters from the ground and the isomeric states are calculated using the microscopic nucleon-nucleus interaction potentials. The daughter nuclei density distributions are folded with a realistic density dependent M3Y effective interaction supplemented by a zero-range pseudo-potential. The density dependence parameters of the interaction are extracted from the nuclear matter calculations. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe-Weizsacker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi-Wapstra-Thibault atomic mass table by minimizing the mean square deviation. The quantum mechanical tunneling probability is calculated within the WKB approximation. Spherical charge distributions are used for calculating the Coulomb interaction potentials. These calculations provide good estimates for the observed pro...

  3. Competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$ interaction

    CERN Document Server

    Isaka, M; Rijken, T h A

    2016-01-01

    Competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$-interaction in $\\Lambda$ binding energies $B_\\Lambda$ of hypernuclei are studied systematically on the basis of the baryon-baryon interaction model ESC including many-body effects. By using the $\\Lambda\\!N$ G-matrix interaction derived from ESC, we perform microscopic calculations of $B_\\Lambda$ in $\\Lambda$ hypernuclei within the framework of the antisymmetrized molecular dynamics under the averaged-density approximation. The calculated values of $B_\\Lambda$ reproduce experimental data within a few hundred keV in the wide mass regions from 9 to 51. It is found that competitive effects of nuclear deformation and density dependence of $\\Lambda\\!N$-interaction work decisively for fine tuning of $B_\\Lambda$ values.

  4. Nuclear level density of even-even nuclei with temperature-dependent pairing energy

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, V.; Alavi, S.A. [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of)

    2016-10-15

    The influence of using a temperature-dependent pairing term on the back-shifted Fermi gas (BSFG) model of nuclear level density of some even-even nuclei has been investigated. We have chosen an approach to determine the adjustable parameters from theoretical calculations, directly. The exact Ginzburg-Landau (EGL) theory was used to determine the temperature-dependent pairing energy as back-shifted parameter of the BSFG model. The level density parameter of the BSFG model has been determined through the Thomas-Fermi approximation. The level densities of {sup 96}Mo, {sup 106,112}Cd, {sup 106,108}Pd, {sup 164}Dy, {sup 232}Th, {sup 238}U and heat capacities of {sup 96}Mo and {sup 164}Dy nuclei were calculated. Good agreement between theory and experiment was observed. (orig.)

  5. Density matrix based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    CERN Document Server

    Wang, H; Kühn, O

    2016-01-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic time scales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter time scale. Using density matrix based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p$\\rightarrow$3d) excited states of a prototypical Fe(II) complex. This process occurs on a time scale, which is faster than that of Auger decay ($\\sim$4\\,fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its cont...

  6. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout

    Science.gov (United States)

    Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.

    2016-01-01

    Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.

  7. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study.

    Science.gov (United States)

    Ma, Haibo; Ma, Jing

    2011-08-07

    Molecular dynamics simulation have been performed with a wide range of densities along a near critical isotherm of supercritical water (SCW) in order to study the density dependence of the structure order and hydrogen bonding (HB). It is revealed that the translational structure order is nearly invariant while the orientational tetrahedral structure order is very sensitive to the bulk density under supercritical conditions. Meanwhile, some energetically unfavorable intermediate water dimer structures are found to appear under supercritical conditions due to the reduced energy difference and the enhanced energy fluctuation. As a consequence, a general geometrical criterion or the inclusion of a energy-based criterion instead of currently widely adopted pure r(OH)-based geometric criterion is suggested to be used in the HB statistics under supercritical conditions. It is found that the average HB number per H(2)O molecule (n(HB)) reduces with the decreasing SCW bulk density although a given pair of H(2)O molecules are shown to have a stronger ability to form a hydrogen bond under lower SCW bulk densities. Accordingly, the orientational tetrahedral structure order q decreases with the reducing bulk density under supercritical conditions. However, when the fluid is dilute with ρ ≤ 0.19ρ(c) (ρ(c) = 0.322 g/cm(3)), the energy fluctuation increases sharply and the short-range order is destroyed, signifying the supercritical fluid (SCF)-gas state transition. Accordingly, the orientational tetrahedral structure order q gets reversal around ρ = 0.19ρ(c) and approaches zero under very dilute conditions. The sensitivity of the orientational order to the density implies the microscopic origin of the significant dependence of SCF's physicochemical properties on the pressure.

  8. Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices

    Science.gov (United States)

    Gui, Yang; Yuanhong, Li; Fengying, Zhang; Yuqi, Li

    2012-09-01

    A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes.

  9. Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices

    Institute of Scientific and Technical Information of China (English)

    Yang Gui; Li Yuanhong; Zhang Fengying; Li Yuqi

    2012-01-01

    A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices.Driven by the DC bias,the system exhibits selfsustained current oscillations induced by the period motion of the unstable electric field domain,and an electrical hysteresis in the loop of current density voltage curve is deduced.It is found that the hysteresis range strongly depends on the doping density,and the width of the hysteresis loop increases with increasing the doping density.By adding an external driving ac voltage,more complicated nonlinear behaviors are observed including quasiperiodicity,period-3,and the route of an inverse period-doubling to chaos when the driving frequency changes.

  10. From density to interface fluctuations: the origin of wavelength dependence in surface tension.

    Science.gov (United States)

    Hiester, Thorsten

    2008-12-01

    The height-height correlation function for a fluctuating interface between two coexisting bulk phases is derived by means of general equilibrium properties of the corresponding density-density correlation function. A wavelength-dependent surface tension gamma(q) can be defined and expressed in terms of the direct correlation function c(r,r;{'}) , the equilibrium density profile rho_{0}(r) , and an operator which relates density to surface configurations. Neither the concept of an effective interface Hamiltonian nor the difference in pressure is needed to determine the general structure of the height-height correlations or gamma(q) , respectively. This result generalizes the Mecke-Dietrich surface tension gamma_{MD}(q) [Phys. Rev. E 59, 6766 (1999)] and modifies recently published criticism concerning gamma_{MD}(q) [Tarazona, Checa, and Chacón, Phys. Rev. Lett. 99, 196101 (2007)].

  11. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  12. The impacts of marijuana dispensary density and neighborhood ecology on marijuana abuse and dependence.

    Science.gov (United States)

    Mair, Christina; Freisthler, Bridget; Ponicki, William R; Gaidus, Andrew

    2015-09-01

    As an increasing number of states liberalize cannabis use and develop laws and local policies, it is essential to better understand the impacts of neighborhood ecology and marijuana dispensary density on marijuana use, abuse, and dependence. We investigated associations between marijuana abuse/dependence hospitalizations and community demographic and environmental conditions from 2001 to 2012 in California, as well as cross-sectional associations between local and adjacent marijuana dispensary densities and marijuana hospitalizations. We analyzed panel population data relating hospitalizations coded for marijuana abuse or dependence and assigned to residential ZIP codes in California from 2001 through 2012 (20,219 space-time units) to ZIP code demographic and ecological characteristics. Bayesian space-time misalignment models were used to account for spatial variations in geographic unit definitions over time, while also accounting for spatial autocorrelation using conditional autoregressive priors. We also analyzed cross-sectional associations between marijuana abuse/dependence and the density of dispensaries in local and spatially adjacent ZIP codes in 2012. An additional one dispensary per square mile in a ZIP code was cross-sectionally associated with a 6.8% increase in the number of marijuana hospitalizations (95% credible interval 1.033, 1.105) with a marijuana abuse/dependence code. Other local characteristics, such as the median household income and age and racial/ethnic distributions, were associated with marijuana hospitalizations in cross-sectional and panel analyses. Prevention and intervention programs for marijuana abuse and dependence may be particularly essential in areas of concentrated disadvantage. Policy makers may want to consider regulations that limit the density of dispensaries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT).

    Science.gov (United States)

    Pernal, Katarzyna; Giesbertz, Klaas J H

    2016-01-01

    Recent advances in reduced density matrix functional theory (RDMFT) and linear response time-dependent reduced density matrix functional theory (TD-RDMFT) are reviewed. In particular, we present various approaches to develop approximate density matrix functionals which have been employed in RDMFT. We discuss the properties and performance of most available density matrix functionals. Progress in the development of functionals has been paralleled by formulation of novel RDMFT-based methods for predicting properties of molecular systems and solids. We give an overview of these methods. The time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting practical and generally useful functionals which would work within the adiabatic approximation. In this chapter we concentrate on the formulation of TD-RDMFT response equations and various adiabatic approximations. None of the adiabatic approximations is fully satisfactory, so we also discuss a phase-dependent extension to TD-RDMFT employing the concept of phase-including-natural-spinorbitals (PINOs). We focus on applications of the linear response formulations to two-electron systems, for which the (almost) exact functional is known.

  14. Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory.

    Science.gov (United States)

    Krykunov, Mykhaylo; Autschbach, Jochen

    2007-01-14

    We report implementations and results of time-dependent density functional calculations (i) of the frequency-dependent magnetic dipole-magnetic dipole polarizability, (ii) of the (observable) translationally invariant linear magnetic response, and (iii) of a linear intensity differential (LID) which includes the dynamic dipole magnetizability. The density functional calculations utilized density fitting. For achieving gauge-origin independence we have employed time-periodic magnetic-field-dependent basis functions as well as the dipole velocity gauge, and have included explicit density-fit related derivatives of the Coulomb potential. We present the results of calculations of static and dynamic magnetic dipole-magnetic dipole polarizabilities for a set of small molecules, the LID for the SF6 molecule, and dispersion curves for M-hexahelicene of the origin invariant linear magnetic response as well as of three dynamic polarizabilities: magnetic dipole-magnetic dipole, electric dipole-electric dipole, and electric dipole-magnetic dipole. We have also performed comparison of the linear magnetic response and magnetic dipole-magnetic dipole polarizability over a wide range of frequencies for H2O and SF6.

  15. A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2017-01-01

    Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.

  16. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  17. Temperature dependence of the optical properties of high-density GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ryan P.; Kim, Jongsu [Yeungnam University, Gyeongsan (Korea, Republic of); Lee, Sangjun; Noh, Samkyu [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Jinsoo [Chonbuk National University, Jeonju (Korea, Republic of); Leem, Jaeyoung [Inje University, Gimhae (Korea, Republic of); Song, Jindong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-05-15

    We investigate the effect of the quantum dot (QD) density on the thermal escape and the retrapping processes of carriers for unstrained GaAs/AlGaAs QDs through temperature-dependent photoluminescence measurements. We fabricated high-density GaAs QDs (8.4 x 10{sup 10}/cm{sup 2}, dot-dot distance ∼34 nm) on an Al{sub 0.3}Ga{sub 0.7}As/GaAs (111)A surface by using droplet epitaxy. The average lateral size and height of the GaAs QDs are 24 and 6 nm, respectively. Temperature-dependent photoluminescence (PL) studies show that high-density GaAs QDs undergo a sigmoidal-shape energy shift. The sigmoidal dependence of the PL peak energy can be explained by thermal escaping of carriers followed by re-trapping by QDs. Our analysis indicates that the re-trapping probability of thermally-escaped carriers increases with decreasing dot-to-dot distance (corresponding to an increase in the QD density).

  18. Towards time-dependent current-density-functional theory in the non-linear regime.

    Science.gov (United States)

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  19. Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density

    Science.gov (United States)

    Jackson, Aaron P.; Calder, Alan C.; Townsley, Dean M.; Chamulak, David A.; Brown, Edward F.; Timmes, F. X.

    2010-09-01

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of 56Ni in thermonuclear supernova (SN) explosions (Type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear SNe with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of 56Ni masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of 56Ni and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range (1-3) ×107 g cm-3. We find a quadratic dependence of the NSE yield on the log of the transition density, which is determined by the competition between plume rise and stellar expansion. By considering the effect of metallicity on the transition density, we find the NSE yield decreases by 0.055 ± 0.004 M sun for a 1 Z sun increase in metallicity evaluated about solar metallicity. For the same change in metallicity, this result translates to a 0.067 ± 0.004 M sun decrease in the 56Ni yield, slightly stronger than that due to the variation in electron fraction from the initial composition. Observations testing the dependence of the yield on metallicity remain somewhat ambiguous, but the dependence we find is comparable to that inferred from some studies.

  20. Hard scale dependent gluon density, saturation and forward-forward dijet production at the LHC

    CERN Document Server

    Kutak, Krzysztof

    2014-01-01

    We propose a method to introduce Sudakov effects to unintegrated gluon density promoting it to be hard scale dependent. The advantage of proposed approach is that it guarantees that the gluon density is positive definite and that on integrated level the Sudakov effects cancel. Besides that the method to introduce the Sudakov effects is convenient since it does not need evaluation of cross section in the process of imposing the effects. As a case study we apply the method to calculate angular correlations in production of forward-forward dijet and $R_{pA}$ ratio for p+p vs. p+Pb collision.

  1. Application of Time-Dependent Density-Functional Theory to C6

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-Lin; BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong

    2004-01-01

    @@ We employ a real-space pseudopotential method to determine the ground state structure of the carbon cluster C6 via simulated annealing and the corresponding optical absorption spectra from the adiabatic time-dependent density-functional theory (TDDFT) and the local density approximation (TDLDA). It is found that the ground state structure of the carbon cluster C6 belongs to a monocyclic D3h structure and the calculated spectra exhibit a variety of features that can be used for comparison against future experimental investigations.

  2. Strange matter equation of state in the quark mass-density-dependent model

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G. (Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina)); Lugones, G. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina))

    1995-02-15

    We study the properties and stability of strange matter at [ital T]=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide stability window'' for the values of the parameters ([ital C],[ital M][sub [ital s]0]) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and [ital not] shifted away as stated before; nevertheless, at these densities the velocity of sound is [approx]50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities.

  3. Survival of diurnally sub periodic Wuchereria bancrofti in Downsiomyia nivea (Diptera: Culicidae: a density dependent factor from Andaman & Nicobar Islands

    Directory of Open Access Journals (Sweden)

    A N Shriram

    2014-01-01

    Full Text Available Background & objectives: In India, diurnally sub periodic Wuchereria bancrofti transmitted by Downsiomyia nivea is prevalent only in the Nicobar district of Andaman and Nicobar Islands. The ongoing LF elimination programme aims at transmission interruption by bringing down the microfilarie (mf load in the community, which has implication on the parasite load in mosquito vector. Therefore, understanding density dependent constraints on transmission assumes significance from control perspective. The present study was undertaken in Teressa Island to understand the density dependent parasite mortality and survival probability of the parasite Do. nivea. Methods: The entomological data collected from Teressa Island, endemic for the diurnally sub periodic form of W. bancrofti were used to examine the parasite loss and its survival up to infectivity. Patterns of parasite distribution in Do. nivea were examined. Results: Distribution patterns of microfilariae were found to be over dispersed in Do. nivea. The later stages of the parasite in the vector were randomly distributed. Distribution pattern of various filarial larval stages suggested that the loss of parasites occurred as development progressed and was maximal between the first and second stages. Further, both the prevalence of infection and the degree of parasite aggregation in the vector population have fallen significantly with development of parasite stage. Interpretation & conclusions: Results indicate the operation of parasite density dependent mortality of vectors or parasite loss or combination of both. The present study with Aedes transmitted filariasis conducted before launching LF elimination programme in the study area indicates a comparable level of parasite regulation in the vector which has similar implications on the transmission threshold. Thus, the consideration of Aedes with Culex in deriving the critical level of antigen positive for making decisions on cessation of mass drug

  4. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile

    DEFF Research Database (Denmark)

    Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás

    2014-01-01

    on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km², with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting...

  5. Frontostriatal Involvement in Task Switching Depends on Genetic Differences in D2 Receptor Density

    NARCIS (Netherlands)

    Stelzel, C.; Basten, U.; Montag, C.; Reuter, M.; Fiebach, C.J.

    2010-01-01

    Recent studies suggest an association of dopamine D2 receptor (DRD2) availability with flexibility in reward-based learning. We extend these results by demonstrating an association of genetically based differences in DRD2 density with the ability to intentionally switch between nonrewarded tasks:

  6. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile

    DEFF Research Database (Denmark)

    Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás

    2014-01-01

    on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km², with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting...

  7. Shifting gears: Thermodynamics of genetic information storage suggest stress-dependence of mutation rate, which can accelerate adaptation

    CERN Document Server

    Hilbert, Lennart

    2011-01-01

    Background: Acceleration of adaptation dynamics by stress-induced hypermutation has been found experimentally. Evolved evolvability is a prominent explanation. We investigate a more generally applicable explanation by a physical constraint. Methods and Results: A generic thermodynamical analysis of genetic information storage obviates physical constraints on the integrity of genetic information. The capability to employ metabolic resources is found as a major determinant of mutation probability in stored genetic information. Incorporation into a non-recombinant, asexual adaptation toy model predicts cases of markedly accelerated adaptation, driven by a transient increase of mutation rate. No change in the mutation rate as a genetic trait is required. The mutation rate of one and the same genotype varies dependent on stress level. Implications: Stress-dependent mutation rates are physically necessary and challenge a condition-independent genotype to mutation rate mapping. This holds implications for evolutiona...

  8. Energy and centrality dependences of charged multiplicity pseudorapidity density in relativistic nuclear collisions

    CERN Document Server

    Zhou Dai Mei; Sá Ben-Hao; Li Zhong Dao

    2002-01-01

    Using a hadron and string cascade model, JPCIAE, and the corresponding Monte Carlo events generator, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p anti p experimental data and the PHOBOS and PHENIX Au + Au data could be reproduced fairly well without retuning the model parameters. The author shows that since is not a well defined physical variable both experimentally and theoretically, the charged particle pseudorapidity density per participant pair can increase and also can decrease with increasing of , so it may be hard to use charged particle pseudorapidity density per participant pair as a function of to distinguish various theoretical models for particle production

  9. Warm unstable asymmetric nuclear matter: Critical properties and the density dependence of the symmetry energy

    Science.gov (United States)

    Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.

    2017-05-01

    The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.

  10. Optoelectronic Properties of Carbon Nanorings: Excitonic Effects from Time-Dependent Density Functional Theory

    CERN Document Server

    Wong, Bryan M

    2009-01-01

    The electronic structure and size-scaling of optoelectronic properties in cycloparaphenylene carbon nanorings are investigated using time-dependent density functional theory (TDDFT). The TDDFT calculations on these molecular nanostructures indicate that the lowest excitation energy surprisingly becomes larger as the carbon nanoring size is increased, in contradiction with typical quantum confinement effects. In order to understand their unusual electronic properties, I performed an extensive investigation of excitonic effects by analyzing electron-hole transition density matrices and exciton binding energies as a function of size in these nanoring systems. The transition density matrices allow a global view of electronic coherence during an electronic excitation, and the exciton binding energies give a quantitative measure of electron-hole interaction energies in the nanorings. Based on overall trends in exciton binding energies and their spatial delocalization, I find that excitonic effects play a vital role...

  11. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  12. Towards efficient orbital-dependent density functionals for weak and strong correlation

    CERN Document Server

    Zhang, Igor Ying; Perdew, John P; Scheffler, Matthias

    2016-01-01

    We present a new paradigm for the design of exchange-correlation functionals in density-functional theory. Electron pairs are correlated explicitly by means of the recently developed second order Bethe-Goldstone equation (BGE2) approach. Here we propose a screened BGE2 (sBGE2) variant that efficiently regulates the coupling of a given electron pair. sBGE2 correctly dissociates H$_2$ and H$_2^+$, a problem that has been regarded as a great challenge in density-functional theory for a long time. The sBGE2 functional is then taken as a building block for an orbital-dependent functional, termed ZRPS, which is a natural extension of the PBE0 hybrid functional. While worsening the good performance of sBGE2 in H$_2$ and H$_2^{+}$, ZRPS yields a remarkable and consistent improvement over other density functionals across various chemical environments from weak to strong correlation.

  13. Density dependent exchange contribution to partial differential mu/ partial differential n and compressibility in graphene.

    Science.gov (United States)

    Hwang, E H; Hu, Ben Yu-Kuang; Das Sarma, S

    2007-11-30

    We calculate partial differentialmu/ partial differentialn (where mu=chemical potential and n=electron density), which is associated with the compressibility, in graphene as a function of n, within the Hartree-Fock approximation. The exchange-driven Dirac-point logarithmic singularity in the quasiparticle velocity of intrinsic graphene disappears in the extrinsic case. The calculated renormalized partial differentialmu/ partial differentialn in extrinsic graphene on SiO2 has the same n;{-(1/2)} density dependence but is 20% larger than the inverse bare density of states, a relatively weak effect compared to the corresponding parabolic-band case. We predict that the renormalization effect can be enhanced to about 50% by changing the graphene substrate.

  14. Mass dependence of pion-induced fission cross sections on the level density parameter

    Institute of Scientific and Technical Information of China (English)

    Zafar Yasin; Warda Iram; M.Ikram Shahzad

    2012-01-01

    Fission probabilities and fission cross sections strongly depend on the mass number of the target and energy of the projectile.In this research work,a cascade-exciton model (using CEM95 computer code) has been implemented to observe the dependence of pion-induced fission cross sections and fission probabilities on the target mass and ratio of the level density parameter in fission to neutron emission.The analysis has been performed for both the positive and negative pions as the projectile at 80,100 and 150 MeV energies.The computed cross sections satisfactorily reproduced the experimental findings when compared with the available experimental data in the literature.We observed a smooth dependence at 150 MeV,and a sharper dependence at 80 and 100 MeV pion energy,in the fissility region above 29.44.

  15. Adiabatic approximation of time-dependent density matrix functional response theory.

    Science.gov (United States)

    Pernal, Katarzyna; Giesbertz, Klaas; Gritsenko, Oleg; Baerends, Evert Jan

    2007-12-07

    Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed response equations, in which a coupling matrix K(omega) features, analogous to the well-known time-dependent density functional theory (TDDFT) case. An adiabatic approximation is needed to solve these equations, but the adiabatic approximation is much more critical since there is not a good "zero order" as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences serve this purpose. We discuss a simple approximation proposed earlier which uses only results from static calculations, called the static approximation (SA), and show that it is deficient, since it leads to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the omega-->0 limit. An improved adiabatic approximation (AA) is formulated. The two-electron system affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting analytical comparison of the adiabatic approximation with the exact equations. For the two-electron system also, the exact density matrix functional (2-matrix in terms of 1-matrix) is known, enabling testing of the static and adiabatic approximations unobscured by approximations in the functional. The two-electron HeH(+) molecule shows that at the equilibrium distance, SA consistently underestimates the frequency-dependent polarizability alpha(omega), the adiabatic TDDFT overestimates alpha(omega), while AA improves upon SA and, indeed, AA produces the correct alpha(0). For stretched HeH(+), adiabatic density matrix functional theory corrects the too low first excitation energy and overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality CCSD ("exact") results over a large omega range.

  16. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    Science.gov (United States)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  17. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding.

    Science.gov (United States)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-14

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  18. The current density in quantum electrodynamics in time-dependent external potentials and the Schwinger effect

    CERN Document Server

    Zahn, Jochen

    2015-01-01

    In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. For sub-critical peak field strengths, or results agree very well with the general expression derived by Serber for the linearization in the external field. In particular, the expectation value of the current density at intermediate times can be much greater than at asymptotic times. We comment on consequences of these findings for recent proposals to test the Schwinger effect with high intensity lasers using processes at intermediate times.

  19. Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.

    Science.gov (United States)

    Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua

    2013-12-14

    Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.

  20. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...... simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g4(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) extracted from the small......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...

  1. Magnetic circular dichroism in real-time time-dependent density functional theory

    CERN Document Server

    Lee, K -M; Bertsch, G F

    2010-01-01

    We apply the adiabatic time-dependent density functional theory to magnetic ci the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find the real time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and interpreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C-60 using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.

  2. Study of Proto Strange Stars (PSS) in Temperature and Density Dependent Quark Mass Model

    CERN Document Server

    Gupta, V K; Singh, S; Anand, J D; Gupta, Asha

    2003-01-01

    We report on the study of the mass-radius (M-R) relation and the radial oscillations of proto strange stars. For the quark matter we have employed the well known density dependent quark mass model and its very recent modification, the temperature and density dependent quark mass model. We find that the maximum mass the star can support increases significantly with the temperature of the star in this model which implies that transition to a black hole at the early stage of formation of the star is inhibited. As for the neutrinos, we find, contrary to the expectation that the M-R and oscillation frequencies are almost independent of the neutrino chemical potentials.

  3. Postcatastrophe population dynamics and density dependence of an endemic island duck

    Science.gov (United States)

    Seavy, N.E.; Reynolds, M.H.; Link, W.A.; Hatfield, J.S.

    2009-01-01

    Laysan ducks (Anas laysanensis) are restricted to approximately 9 km2 in the Northwestern Hawaiian Islands, USA. To evaluate the importance of density dependence for Laysan ducks, we conducted a Bayesian analysis to estimate the parameters of a Gompertz model and the magnitude of process variation and observation error based on the fluctuations in Laysan duck abundance on Laysan Island from 1994 to 2007. This model described a stationary distribution for the population at carrying capacity that fluctuates around a long-term mean of 456 ducks and is between 316 to 636 ducks 95% of the time. This range of expected variability can be used to identify changes in population size that warn of catastrophic events. Density-dependent population dynamics may explain the recovery of Laysan duck from catastrophic declines and allow managers to identify population monitoring thresholds.

  4. Density dependence and risk of extinction in a small population of sea otters

    Science.gov (United States)

    Gerber, L.R.; Buenau, K.E.; VanBlaricom, G.

    2004-01-01

    Sea otters (Enhydra lutris (L.)) were hunted to extinction off the coast of Washington State early in the 20th century. A new population was established by translocations from Alaska in 1969 and 1970. The population, currently numbering at least 550 animals, A major threat to the population is the ongoing risk of majour oil spills in sea otter habitat. We apply population models to census and demographic data in order to evaluate the status of the population. We fit several density dependent models to test for density dependence and determine plausible values for the carrying capacity (K) by comparing model goodness of fit to an exponential model. Model fits were compared using Akaike Information Criterion (AIC). A significant negative relationship was found between the population growth rate and population size (r2=0.27, F=5.57, df=16, pgrowth rate (??). The elasticity values indicate the population is most sensitive to changes in survival rates (particularly adult survival).

  5. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Ezumi, N. [Nagano National College of Technology, Nagano-city, Nagano (Japan); Sawada, K. [Shinshu University, Nagano-city, Nagano (Japan); Tanaka, Y. [Kanazawa University, Kakuma-cho, Kanzawa-city, Ishikawa (Japan); Tanaka, M.; Nishimura, K. [National Insitute for Fusion Science, Toki-city, Gifu (Japan)

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  6. Frequency-dependent response of a pinned charge-density wave

    Science.gov (United States)

    Vinokur, Valerii; Fogler, Michael

    2003-03-01

    Recent theoretical advances in the theory of collective pinning [M. M. Fogler, Phys. Rev. Lett. 88, 186402 (2002)] enable us to go beyond the usual phenomenology in the theory of a finite-frequency response of a pinned charge-density wave (CDW) and to calculate ω and T dependences of the complex dielectric function without additional assumptions. According to our estimates, in typical electrical experiments on CDW, the dominant process is a thermal activation over atypically shallow barriers. It gives rise to a novel T^3/4-dependence of the linear response, in agreement with the experiment. A close analogy with acoustic attenuation in glassy dielectrics is noted.

  7. Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)

    2017-05-01

    The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.

  8. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    Science.gov (United States)

    Saptono Duryat, Rahmat; Kim, Choong-Un

    2016-04-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces.

  9. Density dependence of electron mobility in the accumulation mode for fully depleted SOI films

    Energy Technology Data Exchange (ETDEWEB)

    Naumova, O. V., E-mail: naumova@isp.nsc.ru; Zaitseva, E. G.; Fomin, B. I.; Ilnitsky, M. A.; Popov, V. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The electron mobility µ{sub eff} in the accumulation mode is investigated for undepleted and fully depleted double-gate n{sup +}–n–n{sup +} silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFET). To determine the range of possible values of the mobility and the dominant scattering mechanisms in thin-film structures, it is proposed that the field dependence of the mobility µ{sub eff} be replaced with the dependence on the density N{sub e} of induced charge carriers. It is shown that the dependences µ{sub eff}(N{sub e}) can be approximated by the power functions µ{sub eff}(N{sub e}) ∝ N{sub e}{sup -n}, where the exponent n is determined by the chargecarrier scattering mechanism as in the mobility field dependence. The values of the exponent n in the dependences µ{sub eff}(N{sub e}) are determined when the SOI-film mode near one of its surfaces varies from inversion to accumulation. The obtained results are explained from the viewpoint of the electron-density redistribution over the SOI-film thickness and changes in the scattering mechanisms.

  10. Analysis of Time-Dependent Density Functional Theory of Transition Wavelengths of Thioaldehydes and Thioketones

    Institute of Scientific and Technical Information of China (English)

    HE Xiang; WANG Fan

    2006-01-01

    @@ Thioaldehydes and thioketones are candidates of new photoluminescence materials. The time-dependent density functional theory is applied to calculate the absorption and emission wavelengths of ten thiocarbonyl compounds using both B3LYP and PBE0 functionals. The theoretical results are in agreement with the measurable ones.Furthermore, it is found that the maximum absorption and emission wavelengths are linearly correlated to the C-S bond lengths.

  11. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    quantitatively and non-empirically within the framework of time-dependent density functional theory (TDDFT), using the recently-developed optimally-tuned...showing that fundamental gaps and optical spectra of molecular solids can be predicted quantitatively and non-empirically within the framework of...II. THEORETICAL AND COMPUTATIONAL APPROACH A. Optimally-tuned range-separated hybrid functionals In the range-separated hybrid (RSH) method, the

  12. Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene)

    OpenAIRE

    Tanase, C; Blom, PWM; De Leeuw, DM; de Meijer, EJ

    2004-01-01

    The hole transport in various poly(p-phenylene vinylene) (PPV) derivatives has been investigated in field-effect transistors (FETs) and light-emitting diodes (LEDs) as a function of temperature and applied bias. The discrepancy between the experimental hole mobilities extracted from FETs and LEDs based on a single disordered polymeric semiconductor originates from the strong dependence of the hole mobility on the charge carrier density. The microscopic charge transport parameters are directly...

  13. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from ...... indicating that in addition to linear defects also the twin boundaries are very important flux pinning sites. (c) 2005 Elsevier B.V. All rights reserved....

  14. Time-dependent relativistic density functional study of Yb and YbO

    Institute of Scientific and Technical Information of China (English)

    XU WenHua; ZHANG Yong; LIU WenJian

    2009-01-01

    The low-lying electronic states of Yb and YbO are investigated by using time-dependent relativistic density functional theory,which is based on the newly developed exact two-component Hamiltonian resulting from symmetrized elimination of the small component.The nature of the excited states is analyzed by using the full molecular symmetry.The calculated results support the previous experimental assignment of the ground and excited states of YbO.

  15. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-04-05

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.

  16. Temperature and field dependence of the mobility in 1D for a Gaussian density of states

    Science.gov (United States)

    Pasveer, W. F.; Bobbert, P. A.; Michels, M. A. J.

    2004-01-01

    The temperature and field-dependent mobility of a charge carrier in a gaussian density of states has been analyzed, based on a numerically exact solution of the Master equation. In this way we get a microscopic insight into the origin of the mobility and find some new features pointing to relevance of the Fermi level and of variable-range hopping to sites further away than nearest ones.

  17. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li

    2011-04-01

    The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb.

  18. A resprouter herb reduces negative density-dependent effects among neighboring seeders after fire

    Science.gov (United States)

    Raventós, José; Wiegand, Thorsten; Maestre, Fernando T.; de Luis, Martín

    2012-01-01

    Plant communities are often composed of species belonging to different functional groups, but relatively few studies to date have explicitly linked their spatial structure to the outcome of the interaction among them. We investigated if mortality of seeder species during their establishment after fire is influenced by the proximity of the resprouter herb Brachypodium retusum. The study was conducted in a Mediterranean shrubland (00°39' W; 38°43' N), 40 km northwest of Alicante (Spain) with Ulex parviflorus, Cistus albidus, Helianthemum marifolium, and Ononis fruticosa as dominant obligate seeder species and a herbaceous layer is dominated by the resprouter B. retusum. We followed the fate of mapped seedlings and the biomass of B. retusum one, two, three and nine years after an experimental fire. We used point pattern analyses to evaluate the spatial pattern of mortality of seeder species at these years in relation to the biomass of B. retusum. We hypothesize that B. retusum may initially have a positive impact on seeder survival. We implemented this hypothesis as a point process model that maintains the overall number of dead seeder plants, but seeder survival varied proportionally to the biomass of B. retusum in its neighborhood. We then contrasted this hypothesis with a previous analysis based on a random mortality hypothesis. Our data were consistent with the hypothesis that proximity of B. retusum reduced the mortality of seeder plants at their establishment phase (i.e., 2 yrs after fire). However, we found no evidence that B. retusum influenced seeder mortality when plants grow to maturity. We also found that, under the more stressful conditions (fire + erosion scenario), B. retusum had a lower impact on the performance of seeder species. Our results suggest that B. retusum may reduce negative density-dependent effects among neighboring seeder plants during the first years after fire.

  19. A mass-dependent density profile for dark matter haloes including the influence of galaxy formation

    CERN Document Server

    Di Cintio, Arianna; Dutton, Aaron A; Macciò, Andrea V; Stinson, Greg S; Knebe, Alexander

    2014-01-01

    We introduce a mass dependent density profile to describe the distribution of dark matter within galaxies, which takes into account the stellar-to-halo mass dependence of the response of dark matter to baryonic processes. The study is based on the analysis of hydrodynamically simulated galaxies from dwarf to Milky Way mass, drawn from the MaGICC project, which have been shown to match a wide range of disk scaling relationships. We find that the best fit parameters of a generic double power-law density profile vary in a systematic manner that depends on the stellar-to-halo mass ratio of each galaxy. Thus, the quantity Mstar/Mhalo constrains the inner ($\\gamma$) and outer ($\\beta$) slopes of dark matter density, and the sharpness of transition between the slopes($\\alpha$), reducing the number of free parameters of the model to two. Due to the tight relation between stellar mass and halo mass, either of these quantities is sufficient to describe the dark matter halo profile including the effects of baryons. The ...

  20. Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line

    Institute of Scientific and Technical Information of China (English)

    Robert A. Van Gorder

    2012-01-01

    We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics (amongst other areas). In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions (in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature). The resulting boundary value problem is solved on the real line subject to conditions at z →±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods (designed for initial and boundary value problems, respectively) and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence (which is governed by a power-law parameter m) on oscillations of the travelling wave solutions.

  1. Tri-trophic interactions affect density dependence of seed fate in a tropical forest palm.

    Science.gov (United States)

    Visser, Marco D; Muller-Landau, Helene C; Wright, S Joseph; Rutten, Gemma; Jansen, Patrick A

    2011-11-01

    Natural enemies, especially host-specific enemies, are hypothesised to facilitate the coexistence of plant species by disproportionately inflicting more damage at increasing host abundance. However, few studies have assessed such Janzen-Connell mechanisms on a scale relevant for coexistence and no study has evaluated potential top-down influences on the specialized pests. We quantified seed predation by specialist invertebrates and generalist vertebrates, as well as larval predation on these invertebrates, for the Neotropical palm Attalea butyracea across ten 4-ha plots spanning 20-fold variation in palm density. As palm density increased, seed attack by bruchid beetles increased, whereas seed predation by rodents held constant. But because rodent predation on bruchid larvae increased disproportionately with increasing palm density, bruchid emergence rates and total seed predation by rodents and bruchids combined were both density-independent. Our results demonstrate that top-down effects can limit the potential of host-specific insects to induce negative-density dependence in plant populations.

  2. Behavioral signature of intraspecific competition and density dependence in colony-breeding marine predators.

    Science.gov (United States)

    Breed, Greg A; Don Bowen, W; Leonard, Marty L

    2013-10-01

    In populations of colony-breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density-dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population-level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 (o)N 60.0 (o)W). These data were first analyzed using a behaviorally switching state-space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young-of-year juveniles (YOY) were likely displaced from foraging areas near (less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark-resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism

  3. Dependability of the Exemplary Technical System for Assumed Functions of Defect Density

    Directory of Open Access Journals (Sweden)

    Stępień Sławomir

    2016-12-01

    Full Text Available The analysis of structural dependability of technical system, especially determining the change in dependability over time, requires knowledge on density function or the understanding of cumulative distribution function of components belonging to the structure. Based on previously registered data concerning component defect, it is relatively easy to establish the average uptime of component as well as the standard deviation for this time. However, defining distribution shape gives rise to some difficulties. Usually, we do not have the sufficient number of data at our disposal to verify the hypothesis regarding the distribution shape. Due to this fact, it is a common practice, depending on the case under consideration, to apply the function of defect density. However, the question arises: Does the incorrect determination of types of distributions of components leads to the big error of estimation results of dependability and system durability? This article will not respond to this question in whole, but one will conduct a comparison of calculation results for a few cases. The calculations were conducted for the exemplary technical system.

  4. Compound nucleus evaporative decay as a probe for the isospin dependence of the level density

    Energy Technology Data Exchange (ETDEWEB)

    Moro, R.; Brondi, A.; La Rana, G.; Vardaci, E. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Gelli, N. [Istituto Nazionale di Fisica Nucleare, Firenze (Italy); Barbui, M.; Lunardon, M.; Montagnoli, G. [Dipartimento di Fisica, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Padova (Italy); Boiano, A.; Di Nitto, A.; Ordine, A.; Trotta, M. [Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Cinausero, M.; Fioretto, E.; Prete, G.; Rizzi, V. [Laboratori Nazionali di Legnaro dell' Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); Fabris, D. [Istituto Nazionale di Fisica Nucleare, Padova (Italy); Lucarelli, F. [Dipartimento di Fisica, Firenze (Italy); Istituto Nazionale di Fisica Nucleare, Firenze (Italy)

    2012-11-15

    The evaporative decay of the compound nucleus {sup 139}Eu produced by the 180MeV {sup 32}S + {sup 107}Ag reaction was studied with the aim to test the empirical isospin expressions of the level density, recently appeared in the literature. We measured light charged particle spectra and angular correlations in coincidence with the evaporation residues and the invariant velocity distribution of the evaporation residues. In addition, an independent experiment was performed on the reaction {sup 32}S + {sup 109}Ag at the same incident energy. Evaporation residue angular distribution was measured and the fusion-evaporation cross-section was determined. All the measured quantities are compared with the predictions of different level density prescriptions: (a) isospin independence, (b) a dependence from N - Z and (c) a dependence from Z-Z{sub 0} as proposed by Al-Quraishi et al. Results show that the predictions of the Z-Z{sub 0} dependence are far off the experimental data for all the measured observables. Regarding the isospin independent prescription and the N - Z dependence, although no great differences appear between their predictions the N - Z prescription seems to better describe the experimental data. (orig.)

  5. Survival kinetics of starving bacteria is biphasic and density-dependent.

    Directory of Open Access Journals (Sweden)

    Andy Phaiboun

    2015-04-01

    Full Text Available In the lifecycle of microorganisms, prolonged starvation is prevalent and sustaining life during starvation periods is a vital task. In the literature, it is commonly assumed that survival kinetics of starving microbes follows exponential decay. This assumption, however, has not been rigorously tested. Currently, it is not clear under what circumstances this assumption is true. Also, it is not known when such survival kinetics deviates from exponential decay and if it deviates, what underlying mechanisms for the deviation are. Here, to address these issues, we quantitatively characterized dynamics of survival and death of starving E. coli cells. The results show that the assumption--starving cells die exponentially--is true only at high cell density. At low density, starving cells persevere for extended periods of time, before dying rapidly exponentially. Detailed analyses show intriguing quantitative characteristics of the density-dependent and biphasic survival kinetics, including that the period of the perseverance is inversely proportional to cell density. These characteristics further lead us to identification of key underlying processes relevant for the perseverance of starving cells. Then, using mathematical modeling, we show how these processes contribute to the density-dependent and biphasic survival kinetics observed. Importantly, our model reveals a thrifty strategy employed by bacteria, by which upon sensing impending depletion of a substrate, the limiting substrate is conserved and utilized later during starvation to delay cell death. These findings advance quantitative understanding of survival of microbes in oligotrophic environments and facilitate quantitative analysis and prediction of microbial dynamics in nature. Furthermore, they prompt revision of previous models used to analyze and predict population dynamics of microbes.

  6. Resampling method for applying density-dependent habitat selection theory to wildlife surveys.

    Directory of Open Access Journals (Sweden)

    Olivia Tardy

    Full Text Available Isodar theory can be used to evaluate fitness consequences of density-dependent habitat selection by animals. A typical habitat isodar is a regression curve plotting competitor densities in two adjacent habitats when individual fitness is equal. Despite the increasing use of habitat isodars, their application remains largely limited to areas composed of pairs of adjacent habitats that are defined a priori. We developed a resampling method that uses data from wildlife surveys to build isodars in heterogeneous landscapes without having to predefine habitat types. The method consists in randomly placing blocks over the survey area and dividing those blocks in two adjacent sub-blocks of the same size. Animal abundance is then estimated within the two sub-blocks. This process is done 100 times. Different functional forms of isodars can be investigated by relating animal abundance and differences in habitat features between sub-blocks. We applied this method to abundance data of raccoons and striped skunks, two of the main hosts of rabies virus in North America. Habitat selection by raccoons and striped skunks depended on both conspecific abundance and the difference in landscape composition and structure between sub-blocks. When conspecific abundance was low, raccoons and striped skunks favored areas with relatively high proportions of forests and anthropogenic features, respectively. Under high conspecific abundance, however, both species preferred areas with rather large corn-forest edge densities and corn field proportions. Based on random sampling techniques, we provide a robust method that is applicable to a broad range of species, including medium- to large-sized mammals with high mobility. The method is sufficiently flexible to incorporate multiple environmental covariates that can reflect key requirements of the focal species. We thus illustrate how isodar theory can be used with wildlife surveys to assess density-dependent habitat selection

  7. Relativistic time-dependent density functional calculations for the excited states of the cadmium dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama, E-mail: kullie@uni-kassel.de [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel (Germany)

    2013-03-29

    Highlights: ► The achievement of CAMB3LYP functional for excited states in framework of TD-DFT. ► Relativistic 4-components calculations for the excited states of the Cd{sub 2} dimer. ► Relativistic Spin-Free calculations for the excited states of Cd{sub 2} dimer. ► A comparison of the achievements of different types of DFT approximations upon Cd{sub 2}. - Abstract: In this paper we present a time-dependent density functional study for the ground-state as well the 20-lowest laying excited states of the cadmium dimer Cd{sub 2}, we analyze its spectrum obtained from all electrons calculations performed with time-depended density functional for the relativistic Dirac-Coulomb- and relativistic spin-free-Hamiltonian as implemented in DIRAC-PACKAGE. The calculations were obtained with different density functional approximations, and a comparison with the literature is given as far as available. Our result is very encouraging, especially for the lowest excited states of this dimer, and is expected to be enlightened for similar systems. The result shows that only long-range corrected functionals such as CAMB3LYP, gives the correct asymptotic behavior for the higher states. A comparable but less satisfactory results were obtained with B3LYP and PBE0 functionals. Spin-free-Hamiltonian is shown to be very efficient for systems containing heavy elements such as Cd{sub 2} in frameworks of (time-dependent) density functional without introducing large errors.

  8. Dependency of the Cusp Density Anomaly on the Variability of Forcing Inside and Outside the Cusp

    Science.gov (United States)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2014-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs largely determine the neutral density structure in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown a region of strong enhanced density attributed to the combination of cusp particle and Joule heating. The Streak mission (325-123 km), on the other hand, observed a relative depletion in density in the cusp. While particle precipitation in the cusp is comparatively well constrained, the characteristics of the steady and fluctuating components of the electric field in the cusp are poorly constrained. Also, the significance of harder particle precipitation in areas adjacent to the cusp in particular at lower altitudes has not been addressed as it relates to the cusp density anomaly. We address the response of the cusp region to a range electrodynamical forcing with our high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model. We take advantage of our model's high resolution and focus on a more typical cusp width of 2 degrees in latitude. Earlier simulations have also shown a significant contribution from soft particle precipitation. We simulate the atmospheric response to a range of realizable magnitudes of the fluctuating and steady components of the electric field to examine the dependence of the magnitude of the cusp density anomaly on a large range of observed characteristics of the electrodynamical forcing and examine, in particular, the importance of particle heating relative to Joule heating. In addition we investigate the role of harder particle precipitation in areas adjacent to the cusp in determining the lower altitude cusp density and wind structure. We compare

  9. Differential tolerance to direct and indirect density-dependent costs of viral infection in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Israel Pagán

    2009-07-01

    Full Text Available Population density and costs of parasite infection may condition the capacity of organisms to grow, survive and reproduce, i.e. their competitive ability. In host-parasite systems there are different competitive interactions: among uninfected hosts, among infected hosts, and between uninfected and infected hosts. Consequently, parasite infection results in a direct cost, due to parasitism itself, and in an indirect cost, due to modification of the competitive ability of the infected host. Theory predicts that host fitness reduction will be higher under the combined effects of costs of parasitism and competition than under each factor separately. However, experimental support for this prediction is scarce, and derives mostly from animal-parasite systems. We have analysed the interaction between parasite infection and plant density using the plant-parasite system of Arabidopsis thaliana and the generalist virus Cucumber mosaic virus (CMV. Plants of three wild genotypes grown at different densities were infected by CMV at various prevalences, and the effects of infection on plant growth and reproduction were quantified. Results demonstrate that the combined effects of host density and parasite infection may result either in a reduction or in an increase of the competitive ability of the host. The two genotypes investing a higher proportion of resources to reproduction showed tolerance to the direct cost of infection, while the genotype investing a higher proportion of resources to growth showed tolerance to the indirect cost of infection. Our findings show that the outcome of the interaction between host density and parasitism depends on the host genotype, which determines the plasticity of life-history traits and consequently, the host capacity to develop different tolerance mechanisms to the direct or indirect costs of parasitism. These results indicate the high relevance of host density and parasitism in determining the competitive ability of a

  10. BMP-2 Dependent Increase of Soft Tissue Density in Arthrofibrotic TKA.

    Science.gov (United States)

    Pfitzner, Tilman; Röhner, Eric; Krenn, Veit; Perka, Carsten; Matziolis, Georg

    2012-01-01

    Arthrofibrosis after total knee arthroplasty (TKA) is difficult to treat, as its aetiology remains unclear. In a previous study, we established a connection between the BMP-2 concentration in the synovial fluid and arthrofibrosis after TKA. The hypothesis of the present study was, therefore, that the limited range of motion in arthrofibrosis is caused by BMP-2 induced heterotopic ossifications, the quantity of which is dependent on the BMP-2 concentration in the synovial fluid.Eight patients with arthrofibrosis after TKA were included. The concentration of BMP-2 in the synovial fluid from each patient was determined by ELISA. Radiologically, digital radiographs were evaluated and the grey scale values were determined as a measure of the tissue density of defined areas. Apart from air, cutis, subcutis and muscle, the soft-tissue density in the area of the capsule of the suprapatellar pouch was determined. The connection between the BMP-2 concentration and the soft-tissue density was then investigated.The average BMP-2 concentration in the synovial fluid was 24.3 ± 6.9 pg/ml. The density of the anterior knee capsule was on average 136 ± 35 grey scale values. A linear correlation was shown between the BMP-2 concentration in the synovial fluid and the radiological density of the anterior joint capsule (R=0.84, p = 0.009).We were able to show that there is a connection between BMP-2 concentration and soft-tissue density in arthrofibrosis after TKA. This opens up the possibility of conducting a prophylaxis against arthrofibrosis in risk patients by influencing the BMP-2 pathway.

  11. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  12. Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast.

    Science.gov (United States)

    Keifenheim, Daniel; Sun, Xi-Ming; D'Souza, Edridge; Ohira, Makoto J; Magner, Mira; Mayhew, Michael B; Marguerat, Samuel; Rhind, Nicholas

    2017-05-22

    Proper cell size is essential for cellular function. Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell-size homeostasis are largely mysterious [1]. Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range and returns the population average to that range if it is perturbed [1, 2]. Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition [3], whereas bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average [4-6]. Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size-dependent expression of the mitotic activator Cdc25. cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cells grow and providing a mechanism for cells to trigger cell division when they reach a threshold concentration of Cdc25. Because regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a widespread solution to the problem of size control in eukaryotes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  14. Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density

    CERN Document Server

    Jackson, Aaron P; Townsley, Dean M; Chamulak, David A; Brown, Edward F; Timmes, F X

    2010-01-01

    We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence ...

  15. Is the prevalence of Taenia taeniaeformis in Microtus arvalis dependent on population density?

    Science.gov (United States)

    Fichet-Calvet, Elisabeth; Giraudoux, Patrick; Quéré, Jean-Pierre; Ashford, Richard William; Delattre, Pierre

    2003-12-01

    Populations of common voles Microtus arvalis were studied as hosts of the tapeworm Taenia taeniaeformis during a 14-yr survey. They were monitored in spring, summer, and autumn in a pastoral ecosystem in eastern France. A total of 7,574 voles were sampled during 2 multiannual population fluctuations. A third fluctuation was sampled during the increase phase only. Overall prevalence was lowest in summer (0.6%), increased by 3 times in autumn (1.5%) and a further 5 times in spring (7.8%). Analysis of prevalence, based on 7,384 voles, by multiple logistic regression revealed that extrinsic factors such as season and intrinsic factors such as host age and host density have a combined effect. In the longer term, host age and host density were positively associated with prevalence in summer. Host density was strongly associated with autumn prevalence. There was no association between the fluctuation phase and prevalence. The study shows that a long timescale (here a multiannual survey) is necessary to demonstrate the positive effect of host density on the prevalence of this indirectly transmitted parasite. The demonstration of this relationship depends on the rodents being intermediate rather than definitive hosts.

  16. Time-dependent density functional theory study on direction-dependent electron and hole transfer processes in molecular systems.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kaghazchi, Payam

    2017-04-15

    We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a strong infrared-active molecular vibrations of the dimer with one negatively charged monomer. This results in a strong coupling between the electrons and the nuclei motion which eventually leads to S8 ring opening before the electron transfer process is completed. The open-ring structure is found to be stable. The similar infrared-active peak in the case of hole transfer, however, is shown to be very weak and hence no significant scattering by the nuclei is possible. The presented approach to study the charge transfer processes in sulfur has direct applications in the increasingly growing research field of charge transport in molecular systems. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Localized operator partitioning method for electronic excitation energies in the time-dependent density functional formalism

    CERN Document Server

    Nagesh, Jayashree; Brumer, Paul; Izmaylov, Artur F

    2016-01-01

    We extend the localized operator partitioning method (LOPM) [J. Nagesh, A.F. Izmaylov, and P. Brumer, J. Chem. Phys. 142, 084114 (2015)] to the time-dependent density functional theory (TD-DFT) framework to partition molecular electronic energies of excited states in a rigorous manner. A molecular fragment is defined as a collection of atoms using Stratman-Scuseria-Frisch atomic partitioning. A numerically efficient scheme for evaluating the fragment excitation energy is derived employing a resolution of the identity to preserve standard one- and two-electron integrals in the final expressions. The utility of this partitioning approach is demonstrated by examining several excited states of two bichromophoric compounds: 9-((1-naphthyl)-methyl)-anthracene and 4-((2-naphthyl)-methyl)-benzaldehyde. The LOPM is found to provide nontrivial insights into the nature of electronic energy localization that are not accessible using simple density difference analysis.

  18. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    CERN Document Server

    Li, Xiao-Dong; Forero-Romero, Jaime E; Kim, Juhan

    2014-01-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the Universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter $\\Omega_m$ or the dark energy equation of state $w$ are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the Universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without...

  19. Bone mineral density in patients with noninsulin-dependent diabetes mellitus by dual photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Kao, C.H.; Tsou, C.T.; Chen, C.C.; Wang, S.J. (Taichung Veterans General Hospital, Taiwan (China))

    1993-05-01

    Bone mineral density (BMD) in 38 male patients with noninsulin-dependent diabetes mellitus (NIDDM) was measured by dual photon absorptiometry (DPA) using a M and SE Osteo Tech 300 scanner. The BMD of the second to fourth lumbar vertebrae was measured and the mean density was presented as g cm[sup -2]. The patients were distinguished according to the following three criteria: (1) blood sugar control was good or poor; (2) the duration of diabetes was long or short; (3) renal function was evaluated by effective renal plasma flow (ERPF) as good or poor. The results showed about half the cases of NIDDM had lower BMD. The patients with poor blood sugar control, longer disease duration and poor renal function had lower BMD. However, the difference between any two groups distinguished by the three criteria is not significant. We think that the causes of osteoporosis in patients with NIDDM may not be explained by only a single factor. (author).

  20. Verdict: Time-Dependent Density Functional Theory "Not Guilty" of Large Errors for Cyanines.

    Science.gov (United States)

    Jacquemin, Denis; Zhao, Yan; Valero, Rosendo; Adamo, Carlo; Ciofini, Ilaria; Truhlar, Donald G

    2012-04-10

    We assess the accuracy of eight Minnesota density functionals (M05 through M08-SO) and two others (PBE and PBE0) for the prediction of electronic excitation energies of a family of four cyanine dyes. We find that time-dependent density functional theory (TDDFT) with the five most recent of these functionals (from M06-HF through M08-SO) is able to predict excitation energies for cyanine dyes within 0.10-0.36 eV accuracy with respect to the most accurate available Quantum Monte Carlo calculations, providing a comparable accuracy to the latest generation of CASPT2 calculations, which have errors of 0.16-0.34 eV. Therefore previous conclusions that TDDFT cannot treat cyanine dyes reasonably accurately must be revised.

  1. Effective electron displacements: A tool for time-dependent density functional theory computational spectroscopy

    Science.gov (United States)

    Guido, Ciro A.; Cortona, Pietro; Adamo, Carlo

    2014-03-01

    We extend our previous definition of the metric Δr for electronic excitations in the framework of the time-dependent density functional theory [C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, J. Chem. Theory Comput. 9, 3118 (2013)], by including a measure of the difference of electronic position variances in passing from occupied to virtual orbitals. This new definition, called Γ, permits applications in those situations where the Δr-index is not helpful: transitions in centrosymmetric systems and Rydberg excitations. The Γ-metric is then extended by using the Natural Transition Orbitals, thus providing an intuitive picture of how locally the electron density changes during the electronic transitions. Furthermore, the Γ values give insight about the functional performances in reproducing different type of transitions, and allow one to define a "confidence radius" for GGA and hybrid functionals.

  2. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes

    DEFF Research Database (Denmark)

    Thorson, James T.; Rindorf, Anna; Gao, Jin

    2016-01-01

    The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution...... marine regions, to determine whether the BM or PDM provides a better description for sea-bottom-associated fishes. We fit a spatio-temporal model and estimate changes in effective area occupied and abundance, and combine results to estimate the average abundance–area relationship as well as variability...... for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea...

  3. Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems.

    Science.gov (United States)

    Giesbertz, K J H; Pernal, K; Gritsenko, O V; Baerends, E J

    2009-03-21

    Time-dependent density functional theory in its current adiabatic implementations exhibits three striking failures: (a) Totally wrong behavior of the excited state surface along a bond-breaking coordinate, (b) lack of doubly excited configurations, affecting again excited state surfaces, and (c) much too low charge transfer excitation energies. We address these problems with time-dependent density matrix functional theory (TDDMFT). For two-electron systems the exact exchange-correlation functional is known in DMFT, hence exact response equations can be formulated. This affords a study of the performance of TDDMFT in the TDDFT failure cases mentioned (which are all strikingly exhibited by prototype two-electron systems such as dissociating H(2) and HeH(+)). At the same time, adiabatic approximations, which will eventually be necessary, can be tested without being obscured by approximations in the functional. We find the following: (a) In the fully nonadiabatic (omega-dependent, exact) formulation of linear response TDDMFT, it can be shown that linear response (LR)-TDDMFT is able to provide exact excitation energies, in particular, the first order (linear response) formulation does not prohibit the correct representation of doubly excited states; (b) within previously formulated simple adiabatic approximations the bonding-to-antibonding excited state surface as well as charge transfer excitations are described without problems, but not the double excitations; (c) an adiabatic approximation is formulated in which also the double excitations are fully accounted for.

  4. Effects of bronchomotor tone and gas density on time dependence of forced expiratory vital capacity maneuver.

    Science.gov (United States)

    D'Angelo, E; Milic-Emili, J; Marazzini, L

    1996-11-01

    It has been shown that in normal subjects and chronic obstructive pulmonary disease (COPD) patients the maximal expiratory flows and FEV1 are significantly higher if the FVC maneuver is preceded by a rapid inspiration without an end-inspiratory pause (maneuver 1) compared with a slow inspiration with an end-inspiratory pause of approximately 5 s (maneuver 2). This time dependency of FVC was attributed primarily to loss of lung recoil (stress relaxation) during breath-holding at TLC, in association with time constant inequality within the lungs, and changes in bronchomotor tone. To examine the role of bronchomotor tone on time dependency of FVC, 11 COPD and 10 asthmatic patients performed FVC maneuvers 1 and 2 before and after administration of a bronchodilator drug (salbutamol). In addition, using the same approach, the effects of changing airway resistance per se were assessed in another group of 10 COPD patients and 10 normal subjects, while breathing air and after equilibration with 80% helium in oxygen. Main findings were: peak expiratory flow (PEF), FEV1, and maximal midexpiratory flow rate (MMF) were significantly larger with maneuver 1 than 2; after salbutamol administration and during helium-oxygen breathing, all indices increased significantly with both maneuvers but the relative differences between maneuvers 1 and 2 were unchanged. We conclude that time dependency of maximal expiratory flow-volume (MEFV) curves, as indexed by PEF, FEV1, and MMF, is largely independent of bronchomotor tone and gas density, and probably reflects mainly stress relaxation of the respiratory tissues. The relevance of time dependency of FVC maneuver in the assessment of bronchodilator response and density dependence is discussed.

  5. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes.

    Science.gov (United States)

    Thorson, James T; Rindorf, Anna; Gao, Jin; Hanselman, Dana H; Winker, Henning

    2016-10-12

    The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution theory) or the basin model (BM; positive abundance-area relationship, supported by density-dependent habitat selection theory). The BM implies that fishes move towards preferred habitat as the population declines. We estimate the average relationship using bottom trawl data for 92 fish species from six marine regions, to determine whether the BM or PDM provides a better description for sea-bottom-associated fishes. We fit a spatio-temporal model and estimate changes in effective area occupied and abundance, and combine results to estimate the average abundance-area relationship as well as variability among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species-region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one-third of combinations (34.6%) are predicted to increase in area more than 1% for every 10% increase in abundance. We therefore infer that population density generally changes faster than effective area occupied during abundance changes. Gadiformes have the strongest estimated relationship (average 1.0% area increase for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea-bottom-associated fishes, and that many individual populations merit cautious management during population declines, because a compressed range may increase the efficiency of harvest.

  6. Density determination of nano-layers depending to the thickness by non-destructive method

    Energy Technology Data Exchange (ETDEWEB)

    Gacem, A. [Département des Sciences Fondamentales, Faculté des Sciences et Sciences de l' Ingénieur, Université 20 Aout.1955, Skikda, BP 26, DZ-21000 Algérie and Laboratoire des Semi-Conducteurs, Département de Physique (Algeria); Doghmane, A.; Hadjoub, Z. [Laboratoire des Semi-Conducteurs, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, BP 12, Annaba, DZ-23000 (Algeria)

    2013-12-16

    Non-destructive tests used to characterize and observe the state of the solids near the surface or at depth, without damaging them or damaging them. Density is frequently used to follow the variations of the physical structure of the samples, as well as in the calculation of quantity of material required to fill a given volume, and it is also used to determine the homogeneity of a sample. However, the measurement of the acoustic properties (density, elastic constants,…) of a thin film whose thickness is smaller than several atomic layers is not easy to perform. For that reason, we expose in this work the effects of the thicknesses of thin films on the evolution of the density, where several samples are analyzed. The samples selected structures are thin films deposited on substrates, these coatings have thicknesses varying from a few atomic layers to ten or so micrometers and can change the properties of the substrate on which they are deposited. To do so, we considered a great number of layers (Cr, Al, SiO{sub 2}, ZnO, Cu, AlN, Si{sub 3}N{sub 4}, SiC) deposited on different substrates (Al{sub 2}O{sub 3}, Cu and Quartz). It is first shown that the density exhibits a dispersive behaviour. Such a behaviour is characterized by an initial increase (or decrease) followed by a saturated region. Further investigations of these dependences led to the determination of a semi-empirical universal relations, ρ=f(h/λ{sub T}), for all the investigated layer/substrate combination. Such expression could be of great importance in the density prediction of even layers thicknesses.

  7. Density dependent mechanical properties and structures of a freeze dried biopharmaceutical excipient--sucrose.

    Science.gov (United States)

    Devi, Sharmila; Williams, Daryl R

    2014-10-01

    Knowledge of the mechanical behaviour of freeze dried biopharmaceutical products is essential for designing of products with physical robustness that will not to crack, crumble or collapse during processing or transportation. The compressive mechanical deformation behaviour for freeze-dried sucrose cakes has been experimentally studied from a relative density (ρf/ρs) of 0.01-0.30 using a novel in-vial indentation test. Cakes exhibited more open like structures at lower densities and more closed structures at higher densities with some faces being present at all densities, as confirmed by SEM. The reduced elastic modulus Ef/Es=0.0044(ρf/ρs)(1) for all cake densities, indicating that face stretching was the dominant deformation mode assuming Gibson and Ashby's closed cell model. This linear scaling for the reduced elastic modulus is in line with various theoretical treatments based on tetrakaidecahedral cells and other experimental studies. Consistently, the wall thickness to cell diameter ratio scaled ρf/ρs with a power constant of 1.05. The maximum crushing stress was given by σmax=3800(ρf/ρs)(1.48) which agrees with a strut bending failure stress, assuming Gibson and Ashby's open cell model. Overall, the freeze dried cakes behaved as neither classic closed cell nor open cell materials, with their compressive elastic moduli reflecting a closed cell elastic response whilst their failure stresses reflecting an open cell failure mode. It was concluded that the mechanical response of freeze dried cellular materials depends upon their complex cellular structures and morphologies, and they cannot be rationalised using simple limiting case models of open or closed cell solids.

  8. Non-formation of vacuum states for Navier-Stokes equations with density-dependent viscosity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We consider the Cauchy problem, free boundary problem and piston problem for one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. Using the reduction to absurdity method, we prove that the weak solutions to these systems do not exhibit vacuum states, provided that no vacuum states are present initially. The essential requirements on the solutions are that the mass and energy of the fluid are locally integrable at each time, and the Lloc1-norm of the velocity gradient is locally integrable in time.

  9. Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps

    CERN Document Server

    Seshadri, S R; Lakshmibala, S

    1999-01-01

    We present some analytic, non-perturbative results for the invariant density rho(x) for noisy one-dimensional maps at fully developed chaos. Under periodic boundary conditions, the Fourier expansion method is used to show precisely how noise makes rho(x) absolutely continuous and smoothens it out. Simple solvable models are used to illustrate the explicit dependence of rho(x) on the amplitude eta of the noise distribution, all the way from the case of zero noise (eta > 0) to the completely noise-dominated limit (eta=1).

  10. Bulk viscosity of strange quark matter in density dependent quark mass model

    Indian Academy of Sciences (India)

    J D Anand; N Chandrika Devi; V K Gupta; S Singh

    2000-05-01

    We have studied the bulk viscosity of strange quark matter in the density dependent quark mass model (DDQM) and compared results with calculations done earlier in the MIT bag model where , masses were neglected and first order interactions were taken into account. We find that at low temperatures and high relative perturbations, the bulk viscosity is higher by 2 to 3 orders of magnitude while at low perturbations the enhancement is by 1–2 order of magnitude as compared to earlier results. Also the damping time is 2–3 orders of magnitude lower implying that the star reaches stability much earlier than in MIT bag model calculations.

  11. Time-dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Quijada, M. [Departamento de Fisica de Materiales, Facultad de Quimicas UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Borisov, A.G. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Universite Paris-Sud, Laboratoire des Collisions Atomiques et Moleculaires (France); CNRS, UMR 8625, Laboratoire des Collisions Atomiques et Moleculaires, LCAM, Batiment 351, UPS-11, Orsay, 91405 Orsay Cedex (France); Muino, R.D. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa 72, 20018 San Sebastian (Spain)

    2008-06-15

    Time-dependent density functional theory is used to study the interaction between antiprotons and metallic nanoshells. The ground state electronic properties of the nanoshell are obtained in the jellium approximation. The energy lost by the antiproton during the collision is calculated and compared to that suffered by antiprotons traveling in metal clusters. The resulting energy loss per unit path length of material in thin nanoshells is larger than the corresponding quantity for clusters. It is shown that the collision process can be interpreted as the antiproton crossing of two nearly bi-dimensional independent metallic systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Excitons in solids with non-empirical hybrid time-dependent density-functional theory

    Science.gov (United States)

    Ullrich, Carsten; Yang, Zeng-Hui; Sottile, Francesco

    2015-03-01

    The Bethe-Salpeter equation (BSE) accurately describes the optical properties of solids, but is computationally expensive. Time-dependent density-functional theory (TDDFT) is more efficient, but standard functionals do not produce excitons in extended systems. We present a new, non-empirical hybrid TDDFT approach whose computational cost is much less than BSE, while the accuracy for both bound excitons and the continuum spectra is comparable to that of the BSE. Good performance is observed for both small-gap semiconductors and large-gap insulators. Work supported by NSF Grant DMR-1408904.

  13. Excitons in solids with time-dependent density-functional theory: the bootstrap kernel and beyond

    Science.gov (United States)

    Byun, Young-Moo; Yang, Zeng-Hui; Ullrich, Carsten

    Time-dependent density-functional theory (TDDFT) is an efficient method to describe the optical properties of solids. Lately, a series of bootstrap-type exchange-correlation (xc) kernels have been reported to produce accurate excitons in solids, but different bootstrap-type kernels exist in the literature, with mixed results. In this presentation, we reveal the origin of the confusion and show a new empirical TDDFT xc kernel to compute excitonic properties of semiconductors and insulators efficiently and accurately. Our method can be used for high-throughput screening calculations and large unit cell calculations. Work supported by NSF Grant DMR-1408904.

  14. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  15. Superconductivity without dependence on valence electron density in Zn doped YBCO systems

    Institute of Scientific and Technical Information of China (English)

    Li Ping-Lin; Wang Yong-Yong; Tian Yong-Tao; Wang Jing; Niu Xiao-Li; Wang Jun-Xi; Wang Dan-Dan; Wang Xiao-Xia

    2008-01-01

    This paper reports that the YBa2Cu3-xZnxO7-δ(x=0-0.4)samples are researched by means of x-ray diffraction,calculations of binding energy,the positron experiments and variations of oxygen content.The results of simulated calculations,positron experiments and variations of oxygen content support the existence of cluster effect.Moreover,it is concluded that the cluster effect is an important factor on suppression of high-Tc cuprate superconductivity and the Tc does not depend on the density of valence electron directly.

  16. Phase Structure in a Quark Mass Density-and-Temperature-Dependent Model

    Institute of Scientific and Technical Information of China (English)

    WEN Xin-Jian; PENG Guang-Xiong; SHEN Peng-Nian

    2007-01-01

    The phase diagram of bulk quark matter in equilibrium with a finite hadronic gas is studied. Different from previous investigations, we treat the quark phase with the quark rnass density-and-temperature-dependent model to take the strong quark interaction into account, while the hadron phase is treated by hard core repulsion factor. It is found that the phase diagram in this model is, in several aspects, different from those in the conventional MIT bag model, especially at high temperature. The new phase diagram also has strong effects on the mass-radius relation of compact hybrid stars.

  17. Stopping of deuterium in warm dense deuterium from Ehrenfest time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, R.J.; Shulenburger, L.; Baczewski, A.D. [Sandia National Laboratories - Multi-scale Physics 1444 MS 1322, Albuquerque, NM (United States)

    2016-06-15

    In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... in Be and the 11u+ state in the stretched H molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke...

  19. Half-Lives of Proton Emitters With a Deformed Density-Dependent Model

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi-Bin; REN Zhong-Zhou; NI Dong-Dong; SHENG Zong-Qiang

    2010-01-01

    @@ Half-lives of proton radioactivity are investigated with a deformed density-dependent model. The single folding potential which is dependent on deformation and orientation is employed to calculate the proton decay width through the deformed potential barrier. In addition, the spectroscopic factor is taken into account in the calcu-lation, which is obtained in the relativistic mean field theory with NL3. The calculated results of semi-spherical nuclei are found to be in good agreement with the experimental data, and the results of well-deformed nuclei are also satisfactory. Moreover, a formula for the spherical proton emission half-life based on the Gamow quantum tunneling theory is presented.

  20. Time-dependent density-functional theory for open electronic systems

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiao; WANG RuLin

    2014-01-01

    Time-dependent density-functional theory(TDDFT)has been successfully applied to predict excited-state properties of isolated and periodic systems.However,it cannot address a system coupled to an environment or whose number of electrons is not conserved.To tackle these problems,TDDFT needs to be extended to accommodate open systems.This paper provides a comprehensive account of the recent developments of TDDFT for open systems(TDDFT-OS),including both theoretical and practical aspects.The practicality and accuracy of a latest TDDFT-OS method is demonstrated with two numerical examples:the time-dependent electron transport through a series of quasi-one-dimensional atomic chains,and the real-time electronic dynamics on a two-dimensional graphene surface.The advancement of TDDFT-OS may lead to promising applications in various fields of chemistry,including energy conversion and heterogeneous catalysis.

  1. Accurate high-harmonic spectra from time-dependent two-particle reduced density matrix theory

    CERN Document Server

    Lackner, Fabian; Sato, Takeshi; Ishikawa, Kenichi L; Burgdörfer, Joachim

    2016-01-01

    The accurate description of the non-linear response of many-electron systems to strong-laser fields remains a major challenge. Methods that bypass the unfavorable exponential scaling with particle number are required to address larger systems. In this paper we present a fully three-dimensional implementation of the time-dependent two-particle reduced density matrix (TD-2RDM) method for many-electron atoms. We benchmark this approach by a comparison with multi-configurational time-dependent Hartree-Fock (MCTDHF) results for the harmonic spectra of beryllium and neon. We show that the TD-2RDM is very well-suited to describe the non-linear atomic response and to reveal the influence of electron-correlation effects.

  2. A kT-dependent sea-quark density for the CASCADE Monte Carlo event generator

    CERN Document Server

    Hautmann, F; Jung, H

    2012-01-01

    Parton-shower event generators that go beyond the collinear-ordering approximation at small x have so far included only gluon and valence quark channels at transverse momentum dependent level. We describe results of recent work to include effects of the sea-quark distribution with explicit dependence on the transverse quark-momentum.This sea-quark density is then applied to the description of forward Z -production. The qq*->Z matrix element (with one off-shell quark) is calculated in an explicit gauge invariant way, making use of high energy factorization. The kT-factorized result has been implemented into the CCFM Monte-Carlo CASCADE and a numerical comparison with the qg*->Zq matrix element has been carried out.

  3. Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities

    Science.gov (United States)

    Andrade, Xavier; Botti, Silvana; Marques, Miguel A. L.; Rubio, Angel

    2007-05-01

    The authors present an efficient perturbative method to obtain both static and dynamic polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on the solution of a frequency-dependent Sternheimer equation, within the formalism of time-dependent density functional theory, and allows the calculation of the response both in resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens the way to the investigation of response properties of very large molecular systems. To demonstrate the capabilities of this method, they implemented it in a real-space (basis-set-free) code and applied it to benchmark molecules, namely, CO, H2O, and para-nitroaniline. Their results are in agreement with experimental and previous theoretical studies and fully validate their approach.

  4. Sensitivity of the fusion cross section to the density dependence of the symmetry energy

    CERN Document Server

    Reinhard, P -G; Stevenson, P D; Piekarewicz, J; Oberacker, V E; Maruhn, J A

    2016-01-01

    It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities\\,\\cite{balantekin2014}. In practice, we focus on $^{48}$Ca+$^{48}$Ca fusion. We employ three different approaches to calculate fusion cross-sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross-sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. We find a slight preference for forces which deliver a slope of symmetry energy of $L\\approx 50$\\,MeV that corresponds to a neutron-skin thickness of $^{48}$Ca of $R_\\mathrm{skin}\\!=\\!(0.180\\!-\\!0.210)$\\,fm.

  5. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer.

    Science.gov (United States)

    Mori, Masaki; Triboulet, Robinson; Mohseni, Morvarid; Schlegelmilch, Karin; Shrestha, Kriti; Camargo, Fernando D; Gregory, Richard I

    2014-02-27

    Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here, we show that YAP, the downstream target of the tumor-suppressive Hippo-signaling pathway regulates miRNA biogenesis in a cell-density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA-processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding posttranscriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer.

  6. How important is self-consistency for the dDsC density dependent dispersion correction?

    Energy Technology Data Exchange (ETDEWEB)

    Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Golubev, Nikolay [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Steinmann, Stephan N., E-mail: sns25@duke.edu [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.

  7. The role of exchange and correlation in time-dependent density-functional theory for photoionization

    Science.gov (United States)

    Stener, M.; Decleva, P.; Görling, A.

    2001-05-01

    Atomic photoionization cross sections are calculated by time-dependent density-functional (TDDF) methods using different exchange-correlation potentials including the exact one. The exchange-correlation kernel is treated in the adiabatic local density approximation (ALDA). Results for the exact full and the exact exchange-only Kohn-Sham (KS) potential are very similar, the calculated photo cross section agree very well with experimental data. Thus the exact correlation potential seems to have no influence on photoionization and the ALDA for the exchange-correlation kernel seems to be sufficient for most features of the cross sections. The TDDF method employing the exact exchange-only KS potential in combination with the ALDA exchange-correlation kernel therefore is a promising approach to describe photoionization. Deviations from experiment are observed for the widths and shape of the autoionization resonances and have to be attributed to deficiencies of the ALDA exchange-correlation kernel. The calculation of widths and shapes of autoionization resonances therefore may serve as a severe test for new approximate exchange-correlation density-functionals. The asymptotically exact exchange-correlation potential of van Leeuwen and Baerends also leads to quite good photo cross section, which, however, shows deficiencies close to the ionization threshold and in the energetic position of the autoionization resonances. Supplementation of the exact exchange potential with the LDA correlation potential leads to a worsening of the photo cross section because the LDA correlation potential is too attractive.

  8. Wavelet-Based Linear-Response Time-Dependent Density-Functional Theory

    CERN Document Server

    Natarajan, Bhaarathi; Casida, Mark E; Deutsch, Thierry; Burchak, Olga N; Philouze, Christian; Balakirev, Maxim Y

    2011-01-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidaz...

  9. Investigation of density-dependent gas advection of trichloroethylene: Experiment and a model validation exercise

    Science.gov (United States)

    Lenhard, R. J.; Oostrom, M.; Simmons, C. S.; White, M. D.

    1995-07-01

    An experiment was conducted to evaluate whether vapor-density effects are significant in transporting volatile organic compounds (VOC's) with high vapor pressure and molecular mass through the subsurface. Trichloroethylene (TCE) was chosen for the investigation because it is a common VOC contaminant with high vapor pressure and molecular mass. For the investigation, a 2-m-long by 1-m-high by 7.5-cm-thick flow cell was constructed with a network of sampling ports. The flow cell was packed with sand, and a water table was established near the lower boundary. Liquid TCE was placed near the upper boundary of the flow cell in a chamber from which vapors could enter and migrate through the sand. TCE concentrations in the gas phase were measured by extracting 25-μl gas samples with an air-tight syringe and analyzing them with a gas chromatograph. The evolution of the TCE gas plume in the sand was investigated by examining plots of TCE concentrations over the domain for specific times and for particular locations as a function of time. To help in this analysis, a numerical model was developed that can predict the simultaneous movements of a gas, a nonaqueous liquid and water in porous media. The model also considers interphase mass transfer by employing the phase equilibrium assumption. The model was tested with one- and two-dimensional analytical solutions of fluid flow before it was used to simulate the experiment. Comparisons between experimental data and simulation results when vapor-density effects are considered were very good. When vapor-density effects were ignored, agreement was poor. These analyses suggest that vapor-density effects should be considered and that density-driven vapor advection may be an important mechanism for moving VOC's with high vapor pressures and molecular mass through the subsurface.

  10. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation.

    Science.gov (United States)

    Henkel, Marius; Schmidberger, Anke; Vogelbacher, Markus; Kühnert, Christian; Beuker, Janina; Bernard, Thomas; Schwartz, Thomas; Syldatk, Christoph; Hausmann, Rudolf

    2014-08-01

    The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.

  11. Intrinsic temperature-dependent evolutions in the electron-boson spectral density obtained from optical data

    Science.gov (United States)

    Hwang, Jungseek

    2016-03-01

    We investigate temperature smearing effects on the electron-boson spectral density function (I2χ(ω)) obtained from optical data using a maximum entropy inversion method. We start with two simple model input I2χ(ω), calculate the optical scattering rates at selected temperatures using the model input spectral density functions and a generalized Allen’s formula, then extract back I2χ(ω) at each temperature from the calculated optical scattering rate using the maximum entropy method (MEM) which has been used for analysis of optical data of high-temperature superconductors including cuprates, and finally compare the resulting I2χ(ω) with the input ones. From this approach we find that the inversion process can recover the input I2χ(ω) almost perfectly when the quality of fits is good enough and also temperature smearing (or thermal broadening) effects appear in the I2χ(ω) when the quality of fits is not good enough. We found that the coupling constant and the logarithmically averaged frequency are robust to the temperature smearing effects and/or the quality of fits. We use these robust properties of the two quantities as criterions to check whether experimental data have intrinsic temperature-dependent evolutions or not. We carefully apply the MEM to two material systems (one optimally doped and the other underdoped cuprates) and conclude that the I2χ(ω) extracted from the optical data contain intrinsic temperature-dependent evolutions.

  12. Time-dependent density functional theory of open quantum systems in the linear-response regime.

    Science.gov (United States)

    Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-02-21

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

  13. Magnetization of a Current-Carrying Superconducting Disk with B-Dependent Critical Current Density

    Science.gov (United States)

    Sohrabi, Mahdi; Babaei-Brojeny, Ali A.

    2010-11-01

    In the frame work of the critical state model (CSM), the magnetic response of a thin type-II superconducting disk that carries a radial transport current and is subjected to an applied magnetic field have been studied. To this end, we have studied the process of the magnetic flux-penetration. For a disk initially containing no magnetic flux but carrying a radial current, when a perpendicular magnetic field is applied, magnetic flux-penetration occurs in three stages: (1) the magnetic flux gradually penetrates from the edges of the disk until an instability occurs, (2) there is a rapid inflow of magnetic flux into the disk’s central region, which becomes resistive, and (3) magnetic flux continues to enter the disk, while persistent azimuthal currents flow in an outer annular region where the net current density is equal to J c . Also the behavior of a current-carrying disk subjected to an AC magnetic field is calculated. The magnetic flux, the current profiles and the magnetization hysteresis loops are calculated for several commonly used J c ( B) dependences. Finally, the results of the applications of the local field-dependent of the critical current density J c ( B) are compared with those obtained from the Bean model.

  14. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  15. Counterintuitive density-dependent growth in a long-lived vertebrate after removal of nest predators.

    Science.gov (United States)

    Spencer, Ricky-John; Janzen, Fredric J; Thompson, Michael B

    2006-12-01

    Examining the phenotypic and genetic underpinnings of life-history variation in long-lived organisms is central to the study of life-history evolution. Juvenile growth and survival are often density dependent in reptiles, and theory predicts the evolution of slow growth in response to low resources (resource-limiting hypothesis), such as under densely populated conditions. However, rapid growth is predicted when exceeding some critical body size reduces the risk of mortality (mortality hypothesis). Here we present results of paired, large-scale, five-year field experiments to identify causes of variation in individual growth and survival rates of an Australian turtle (Emydura macquarii) prior to maturity. To distinguish between these competing hypotheses, we reduced nest predators in two populations and retained a control population to create variation in juvenile density by altering recruitment levels. We also conducted a complementary split-clutch field-transplant experiment to explore the impact of incubation temperature (25 degrees or 30 degrees C), nest predator level (low or high), and clutch size on juvenile growth and survival. Juveniles in high-recruitment (predator removal) populations were not resource limited, growing more rapidly than young turtles in the control populations. Our experiments also revealed a remarkably long-term impact of the thermal conditions experienced during embryonic development on growth of turtles prior to maturity. Moreover, this thermal effect was manifested in turtles approaching maturity, rather than in turtles closer to hatching, and was dependent on population density in the post-hatching rearing environment. This apparent phenotypic plasticity in growth complements our observation of a strong, positive genetic correlation between individual body size in the experimental and control populations over the first five years of life (rG - +0.77). Thus, these Australian pleurodiran turtles have the impressive capacity to

  16. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  17. Density-Dependent Effects of an Invasive Ant on a Ground-Dwelling Arthropod Community.

    Science.gov (United States)

    Cooling, M; Sim, D A; Lester, P J

    2015-02-01

    It is frequently assumed that an invasive species that is ecologically or economically damaging in one region, will typically be so in other environments. The Argentine ant Linepithema humile (Mayr) is listed among the world's worst invaders. It commonly displaces resident ant species where it occurs at high population densities, and may also reduce densities of other ground-dwelling arthropods. We investigated the effect of varying Argentine ant abundance on resident ant and nonant arthropod species richness and abundance in seven cities across its range in New Zealand. Pitfall traps were used to compare an invaded and uninvaded site in each city. Invaded sites were selected based on natural varying abundance of Argentine ant populations. Argentine ant density had a significant negative effect on epigaeic ant abundance and species richness, but hypogaeic ant abundance and species richness was unaffected. We observed a significant decrease in Diplopoda abundance with increasing Argentine ant abundance, while Coleoptera abundance increased. The effect on Amphipoda and Isopoda depended strongly on climate. The severity of the impact on negatively affected taxa was reduced in areas where Argentine ant densities were low. Surprisingly, Argentine ants had no effect on the abundance of the other arthropod taxa examined. Morphospecies richness for all nonant arthropod taxa was unaffected by Argentine ant abundance. Species that are established as invasive in one location therefore cannot be assumed to be invasive in other locations based on presence alone. Appropriate management decisions should reflect this knowledge. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  19. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism.

    Directory of Open Access Journals (Sweden)

    Derek W Cain

    Full Text Available Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of "emergency" granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis.

  20. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density.

    Science.gov (United States)

    Goldbogen, J A; Calambokidis, J; Oleson, E; Potvin, J; Pyenson, N D; Schorr, G; Shadwick, R E

    2011-01-01

    Lunge feeding by rorqual whales (Balaenopteridae) is associated with a high energetic cost that decreases diving capacity, thereby limiting access to dense prey patches at depth. Despite this cost, rorquals exhibit high rates of lipid deposition and extremely large maximum body size. To address this paradox, we integrated kinematic data from digital tags with unsteady hydrodynamic models to estimate the energy budget for lunges and foraging dives of blue whales (Balaenoptera musculus), the largest rorqual and living mammal. Our analysis suggests that, despite the large amount of mechanical work required to lunge feed, a large amount of prey and, therefore, energy is obtained during engulfment. Furthermore, we suggest that foraging efficiency for blue whales is significantly higher than for other marine mammals by nearly an order of magnitude, but only if lunges target extremely high densities of krill. The high predicted efficiency is attributed to the enhanced engulfment capacity, rapid filter rate and low mass-specific metabolic rate associated with large body size in blue whales. These results highlight the importance of high prey density, regardless of prey patch depth, for efficient bulk filter feeding in baleen whales and may explain some diel changes in foraging behavior in rorqual whales.

  1. Time-dep endent Calculations for Two-proton Decay Width with Schematic Density-dependent Contact Pairing Interaction

    Institute of Scientific and Technical Information of China (English)

    Oishi Tomohiro

    2016-01-01

    We calculate the two-proton decay width of the 6 Be nucleus employing the schematic density-dependent contact potential for the proton-proton pairing interaction. The decay width is calculated with a time-dependent method, in which the two-proton emission is described as a time-evolution of a three-body meta-stable state. Model-dependence of the two-proton decay width has been shown by comparing the results obtained with the two different pairing models, schematic density-dependent contact and Minnesota interactions, which have zero and finite ranges, respectively.

  2. Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures

    Science.gov (United States)

    Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.

    2009-12-01

    The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible

  3. Turing bifurcation in a reaction-diffusion system with density-dependent dispersal

    Science.gov (United States)

    Kumar, Niraj; Horsthemke, Werner

    2010-05-01

    Motivated by the recent finding [N. Kumar, G.M. Viswanathan, V.M. Kenkre, Physica A 388 (2009) 3687] that the dynamics of particles undergoing density-dependent nonlinear diffusion shows sub-diffusive behaviour, we study the Turing bifurcation in a two-variable system with this kind of dispersal. We perform a linear stability analysis of the uniform steady state to find the conditions for the Turing bifurcation and compare it with the standard Turing condition in a reaction-diffusion system, where dispersal is described by simple Fickian diffusion. While activator-inhibitor kinetics are a necessary condition for the Turing instability as in standard two-variable systems, the instability can occur even if the diffusion constant of the inhibitor is equal to or smaller than that of the activator. We apply these results to two model systems, the Brusselator and the Gierer-Meinhardt model.

  4. Time-dependent density functional theory with twist-averaged boundary conditions

    CERN Document Server

    Schuetrumpf, B; Reinhard, P -G

    2016-01-01

    Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, 3D coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a box. For finite quantum systems (atoms, molecules, nuclei), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. These artifacts can be practically cured by introducing absorbing boundary conditions (ABC) through an absorbing potential in a certain boundary region sufficiently far from the described system. But also the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust) suffer artifacts from a finite computational box. In this regime, twist- averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we exte...

  5. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  6. Difficulties in probing density dependent symmetry potential with the H BT interferometry

    Institute of Scientific and Technical Information of China (English)

    LI QingFeng; SHEN CaiWan

    2009-01-01

    Based on the updated UrQMD transport model,the effect of the symmetry potential energy on the two-nucleon HBT correlation is investigated with the help of the coalescence program for constructing clusters,and the CRAB analyzing program of the two-particle HBT correlation.An obvious nonlinear dependence of the neutron-proton (or neutron-neutron) HBT correlation function (Cnp,nn) at small relative momenta on the stiffness factor γ of the symmetry potential energy is found:when γ≤0.8,Cnp,nn Increases rapidly with increasing γ,while it starts to saturate if γ≤0.8.It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.

  7. Difficulties in probing density dependent symmetry potential with the HBT interferometry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the updated UrQMD transport model,the effect of the symmetry potential energy on the two-nucleon HBT correlation is investigated with the help of the coalescence program for constructing clusters,and the CRAB analyzing program of the two-particle HBT correlation.An obvious nonlinear dependence of the neutron-proton(or neutron-neutron) HBT correlation function(Cnp,nn) at small relative momenta on the stiffness factor γ of the symmetry potential energy is found:when γ 0.8,Cnp,nn increases rapidly with increasing γ,while it starts to saturate if γ 0.8.It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.

  8. Measuring the mobility of single crystalline wires and its dependence on temperature and carrier density

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Cleber A; Berengue, Olivia M; Kamimura, Hanay; Chiquito, Adenilson J [NanO LaB-Departamento de Fisica, Universidade Federal de Sao Carlos, CEP 13565-905, CP 676, Sao Carlos, Sao Paulo (Brazil); Leite, Edson R, E-mail: amorim@df.ufscar.br [Laboratorio Interdisciplinar de EletroquImica e Ceramicas, Departamento de Quimica, Universidade Federal de Sao Carlos, CEP 13565-905, CP 676, Sao Carlos, Sao Paulo (Brazil)

    2011-05-25

    Kinetic transport parameters are fundamental for the development of electronic nanodevices. We present new results for the temperature dependence of mobility and carrier density in single crystalline In{sub 2}O{sub 3} samples and the method of extraction of these parameters which can be extended to similar systems. The data were obtained using a conventional Hall geometry and were quantitatively described by the semiconductor transport theory characterizing the electron transport as being controlled by the variable range hopping mechanism. A comprehensive analysis is provided showing the contribution of ionized impurities (low temperatures) and acoustic phonon (high temperatures) scattering mechanisms to the electron mobility. The approach presented here avoids common errors in kinetic parameter extraction from field effect data, serving as a versatile platform for direct investigation of any nanoscale electronic materials.

  9. Time-dependent density functional studies of nuclear quantum dynamics in large amplitudes

    CERN Document Server

    Wen, Kai; Fang, Ni; Nakatsukasa, Takashi

    2015-01-01

    The time-dependent density functional theory (TDDFT) provides a unified description of the structure and reaction. The linear approximation leads to the random-phase approximation (RPA) which is capable of describing a variety of collective motion in a harmonic regime. Beyond the linear regime, we present applications of the TDDFT to nuclear fusion and fission reaction. In particular, the extraction of the internuclear potential and the inertial mass parameter is performed using two different methods. A fusion hindrance mechanism for heavy systems is investigated from the microscopic point of view. The canonical collective variables are determined by the adiabatic self-consistent collective coordinate method. Preliminary results of the spontaneous fission path, the potential, and the collective mass parameter are shown for 8Be --> alpha+alpha.

  10. Are populations of European earwigs, Forficula auricularia, density dependent?

    DEFF Research Database (Denmark)

    Moerkens, R.; Leirs, H; Peusens, G.

    2009-01-01

    and various apple aphid species. Earwigs therefore play an important role in integrated pest management in fruit orchards and are essential in organic top fruit cultures. However, earwig populations are very unstable, showing large between-year variation in densities, which limits their practical use....... Extensive knowledge of regulating processes of populations is therefore crucial for efficient orchard management. A 2-year phenological study in several apple and pear orchards in Belgium showed a significant displacement of third instars during the second brood in relation to the presence of adults. We......-dependent decrease are discussed: (1) migration, (2) pesticides or orchard management, (3) starvation, (4) pathogens, (5) parasites and parasitoids, and (6) predation or cannibalism. If we can identify these regulating processes, specific management activities could be developed to prevent the population crash...

  11. Time-dependent density functional study on the photoisomerization mechanism of azobenzene

    Science.gov (United States)

    Oyama, Norihisa; Tateyama, Yoshitaka; Miyamoto, Yoshiyuki; Ohno, Takahisa

    2004-03-01

    Photochemical reactions in organic molecules have attracted considerable attention in semiconductor physics and also in bioscience. Azobenzene is a simple molecule which shows the reversible photoisomerization at high quantum yields, and can be used as a light-driven molecular switch and so on. However, the photoisomerization process of azobenzene is still an open question because of its femtosecond ultra-fast reaction. In this talk, we present time-dependent density functional calculations for the azobenzene molecule, and discuss the mechanism of photoisomerization induced by S1 and S2 excitations. This research is partially supported by ACT-JST, and also by FSIS and Special Coordination Funds of MEXT of Japanese Government. The calculations were carried out partly using the Numerical Materials Simulator in National Institute for Materials Science, and partly using the NEC-SX5 at Cybermedia Center of Osaka University.

  12. Rotochemical heating of millisecond and classical pulsars with anisotropic and density-dependent superfluid gap models

    CERN Document Server

    González-Jiménez, Nicolás; Reisenegger, Andreas

    2014-01-01

    When a rotating neutron star loses angular momentum, the progressive reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (rotochemical heating). This effect has previously been studied by Fern\\'andez & Reisenegger (2005) for non-superfluid neutron stars and by Petrovich & Reisenegger (2010) for superfluid millisecond pulsars. Both studies found that pulsars reach a quasi-steady state in which the compression driving the matter out of beta equilibrium is balanced by the reactions trying to restore the equilibrium. We extend previous studies by considering the effect of density-dependence and anisotropy of the superfluid energy gaps, for the case in which the dominant reactions are the modified Urca processes, the protons are non-superconducting, and the neutron superfluidity is parametrized by models proposed in the literature. By comparing our prediction...

  13. Fracture behaviors of thin superconducting films with field-dependent critical current density

    Science.gov (United States)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2013-09-01

    The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  14. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid...... and time reversal symmetry on trial vectors to obtain even better reductions in terms of memory and run time, and without invoking approximations. Further reductions are obtained by exploiting point group symmetries for D2h and subgroups in a symmetry scheme where symmetry reductions translate...... into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  15. Time-dependent density functional theory using atomic orbitals and the self-consistent Sternheimer equation

    Science.gov (United States)

    Hübener, Hannes; Giustino, Feliciano

    2014-02-01

    We present the implementation of linear-response time-dependent density functional theory based on the self-consistent Sternheimer equation and employing a basis set of numerical pseudo-atomic orbitals. We demonstrate this method by presenting test calculations on systems of increasing size ranging from benzene to chlorophyll a, and by comparing our results with those obtained within Casida's formalism and with previous calculations. We provide a detailed assessment of the accuracy of this method, both in relation to the use of local orbitals for describing electronic excitations and to the handling of the frequency response using Padé approximants. We establish a simple criterion for estimating a priori the accuracy of the basis set in the calculation of optical spectra. We show that the computational cost of this method scales quadratically with the system size.

  16. Density-Dependent Benefits in Ant-Hemipteran Mutualism? The Case of the Ghost Ant Tapinoma melanocephalum (Hymenoptera: Formicidae) and the Invasive Mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae)

    Science.gov (United States)

    Zhou, Aiming; Kuang, Beiqing; Gao, Yingrui; Liang, Guangwen

    2015-01-01

    Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum), the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level. PMID:25886510

  17. Density-dependent benefits in ant-hemipteran mutualism? The case of the ghost ant Tapinoma melanocephalum (Hymenoptera: Formicidae and the invasive mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae.

    Directory of Open Access Journals (Sweden)

    Aiming Zhou

    Full Text Available Although density-dependent benefits to hemipterans from ant tending have been measured many times, few studies have focused on integrated effects such as interactions between ant tending, natural enemy density, and hemipteran density. In this study, we tested whether the invasive mealybug Phenacoccus solenopsis is affected by tending by ghost ants (Tapinoma melanocephalum, the presence of parasitoids, mealybug density, parasitoid density and interactions among these factors. Our results showed that mealybug colony growth rate and percentage parasitism were significantly affected by ant tending, parasitoid presence, and initial mealybug density separately. However, there were no interactions among the independent factors. There were also no significant interactions between ant tending and parasitoid density on either mealybug colony growth rate or percentage parasitism. Mealybug colony growth rate showed a negative linear relationship with initial mealybug density but a positive linear relationship with the level of ant tending. These results suggest that benefits to mealybugs are density-independent and are affected by ant tending level.

  18. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  19. Understanding spatial distributions : Negative density-dependence in prey causes predators to trade-off prey quantity with quality

    NARCIS (Netherlands)

    Bijleveld, Allert I; MacCurdy, Robert B; Chan, Ying-Chi; Penning, Emma; Gabrielson, Rich M; Cluderay, John; Spaulding, Eric L; Dekinga, Anne; Holthuijsen, Sander; ten Horn, Job; Brugge, Maarten; van Gils, Jan A; Winkler, David W; Piersma, Theunis

    2016-01-01

    Negative density-dependence is generally studied within a single trophic level, thereby neglecting its effect on higher trophic levels. The 'functional response' couples a predator's intake rate to prey density. Most widespread is a type II functional response, where intake rate increases asymptotic

  20. Understanding spatial distributions: negative density-dependence in prey causes predators to trade-off prey quantity with quality

    NARCIS (Netherlands)

    Bijleveld, A.I.; MacCurdy, R.B.; Chan, Y.-C; Penning, E.; Gabrielson, R.M.; Cluderay, J.; Spaulding, E.L.; Dekinga, A.; Holthuijsen, S.; Ten Horn, J.; Brugge, M.; van Gils, J.A.; Winkler, D.W.; Piersma, T.

    2016-01-01

    Negative density-dependence is generally studied within a single trophic level, thereby neglecting its effect on higher trophic levels. The ‘functional response’ couples a predator's intake rate to prey density. Most widespread is a type II functional response, where intake rate increases asymptotic

  1. Global existence of strong solutions to the micro-polar, compressible flow with density-dependent viscosities

    Directory of Open Access Journals (Sweden)

    Chen Mingtao

    2011-01-01

    Full Text Available Abstract This article is concerned with global strong solutions of the micro-polar, compressible flow with density-dependent viscosity coefficients in one-dimensional bounded intervals. The important point in this article is that the initial density may vanish in an open subset.

  2. Understanding spatial distributions: negative density-dependence in prey causes predators to trade-off prey quantity with quality

    NARCIS (Netherlands)

    Bijleveld, A.I.; MacCurdy, R.B.; Chan, Y.-C; Penning, E.; Gabrielson, R.M.; Cluderay, J.; Spaulding, E.L.; Dekinga, A.; Holthuijsen, S.; Ten Horn, J.; Brugge, M.; van Gils, J.A.; Winkler, D.W.; Piersma, T.

    2016-01-01

    Negative density-dependence is generally studied within a single trophic level, thereby neglecting its effect on higher trophic levels. The ‘functional response’ couples a predator's intake rate to prey density. Most widespread is a type II functional response, where intake rate increases

  3. Density-dependent effective baryon-baryon interaction from chiral three-baryon forces

    Science.gov (United States)

    Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram

    2017-01-01

    A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  4. Temperature and composition-dependent density of states in organic small-molecule/polymer blend transistors

    Science.gov (United States)

    Hunter, Simon; Mottram, Alexander D.; Anthopoulos, Thomas D.

    2016-07-01

    The density of trap states (DOS) in organic p-type transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES ADT), the polymer poly(triarylamine) and blends thereof are investigated. The DOS in these devices are measured as a function of semiconductor composition and operating temperature. We show that increasing operating temperature causes a broadening of the DOS below 250 K. Characteristic trap depths of ˜15 meV are measured at 100 K, increasing to between 20 and 50 meV at room-temperature, dependent on the semiconductor composition. Semiconductor films with high concentrations of diF-TES ADT exhibit both a greater density of trap states as well as broader DOS distributions when measured at room-temperature. These results shed light on the underlying charge transport mechanisms in organic blend semiconductors and the apparent freezing-out of hole conduction through the polymer and mixed polymer/small molecule phases at temperatures below 225 K.

  5. Plasmon excitations in sodium atomic planes: a time-dependent density functional theory study.

    Science.gov (United States)

    Wang, Bao-Ji; Xu, Yuehua; Ke, San-Huang

    2012-08-07

    The collective electronic excitation in planar sodium clusters is studied by time-dependent density functional theory calculations. The formation and development of the resonances in photoabsorption spectra are investigated in terms of the shape and size of the two-dimensional (2D) systems. The nature of these resonances is revealed by the frequency-resolved induced charge densities present on a real-space grid. For long double chains, the excitation is similar to that in long single atomic chains, showing longitudinal modes, end and central transverse modes. However, for 2D planes consisting of (n × n) atoms with n being up to 16, new 2D characteristic modes emerge regardless of the symmetries considered. For in-plane excitations, besides the equivalent end mode, mixed modes with contrary polarity occur. The relation between the frequency of the primary modes and the system size is similar to the case of a 2D electron gas but with a correction due to the realistic atomic structure. For excitations perpendicular to the plane there are corner, side center, bulk center, and circuit modes. Our calculation reveals the importance of dimensionality for plasmon excitation and how it evolves from 1D to 2D.

  6. Reversal of density dependence of juvenile Littorina littorea (Gastropoda) growth in response to periphyton nutrient status

    Science.gov (United States)

    Sommer, Ulrich

    2001-05-01

    Experimental periphyton communities were grown in aquaria receiving media of differently enriched seawater (fully enriched, without Si enrichment, without N and P enrichment) and supplied differently with medium (batch and weekly replacement). Periphyton was subject to grazing by 1-6 individuals of juvenile Littorina littorea. Periphyton biomass was higher in the replacement aquaria than in the batch aquaria and higher in the full and the -Si medium than in the -NP medium. The N:C ratio of the periphyton increased with Littorina number in the batch aquaria and was unaffected by Littorina number in the replacement aquaria. Diatoms were most dominant in the -NP treatments and rarest in the -Si treatments. Chlorophytes were dominant in the -Si and the fully enriched treatments, but also Cyanobacteria contributed significantly to periphyton biomass in those treatments under nutrient replacement. Somatic growth of Littorina was negatively correlated to Littorina density in the replacement aquaria and positively density dependent in the batch aquaria. The latter is explained by improved food quality under stronger grazing pressure.

  7. Density-dependent analysis of nonequilibrium paths improves free energy estimates II. A Feynman-Kac formalism.

    Science.gov (United States)

    Minh, David D L; Vaikuntanathan, Suriyanarayanan

    2011-01-21

    The nonequilibrium fluctuation theorems have paved the way for estimating equilibrium thermodynamic properties, such as free energy differences, using trajectories from driven nonequilibrium processes. While many statistical estimators may be derived from these identities, some are more efficient than others. It has recently been suggested that trajectories sampled using a particular time-dependent protocol for perturbing the Hamiltonian may be analyzed with another one. Choosing an analysis protocol based on the nonequilibrium density was empirically demonstrated to reduce the variance and bias of free energy estimates. Here, we present an alternate mathematical formalism for protocol postprocessing based on the Feynmac-Kac theorem. The estimator that results from this formalism is demonstrated on a few low-dimensional model systems. It is found to have reduced bias compared to both the standard form of Jarzynski's equality and the previous protocol postprocessing formalism.

  8. Temperature and Magnetic Field Dependence of Critical Current Density of YBCO with Varying Flux Pinning Additions (POSTPRINT)

    Science.gov (United States)

    2010-03-01

    AFRL-RZ-WP-TP-2010-2083 TEMPERATURE AND MAGNETIC FIELD DEPENDENCE OF CRITICAL CURRENT DENSITY OF YBCO WITH VARYING FLUX PINNING ADDITIONS...MAGNETIC FIELD DEPENDENCE OF CRITICAL CURRENT DENSITY OF YBCO WITH VARYING FLUX PINNING ADDITIONS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...20 ‒ 77 K. Films were prepared with pulsed laser deposition by (M/ YBCO )N multilayer or ( YBCO )1-x Mx single-target methods, for different M phases

  9. He 2++ molecular ion in a strong time-dependent magnetic field: a current-density functional study.

    Science.gov (United States)

    Vikas

    2011-08-01

    The He 2++ molecular ion exposed to a strong ultrashort time-dependent (TD) magnetic field of the order of 10(9) G is investigated through a quantum fluid dynamics (QFD) and current-density functional theory (CDFT) based approach using vector exchange-correlation (XC) potential and energy density functional that depend not only on the electronic charge-density but also on the current density. The TD-QFD-CDFT computations are performed in a parallel internuclear-axis and magnetic field-axis configuration at the field-free equilibrium internuclear separation R = 1.3 au with the field-strength varying between 0 and 10(11) G. The TD behavior of the exchange- and correlation energy of the He 2++ is analyzed and compared with that obtained using a [B-TD-QFD-density functional theory (DFT)] approach based on the conventional TD-DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge-density alone. The CDFT based approach yields TD exchange- and correlation energy and TD electronic charge-density significantly different from that obtained using the conventional TD-DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT-based approach is traced to the TD current-density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He 2++ molecular ion is elucidated by treating electronic charge density as an electron-"fluid" in the terminology of QFD.

  10. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  11. Δ (1232 ) effects in density-dependent relativistic Hartree-Fock theory and neutron stars

    Science.gov (United States)

    Zhu, Zhen-Yu; Li, Ang; Hu, Jin-Niu; Sagawa, Hiroyuki

    2016-10-01

    The density-dependent relativistic Hartree-Fock (DDRHF) theory is extended to include Δ isobars for the study of dense nuclear matter and neutron stars. To this end, we solve the Rarita-Schwinger equation for spin-3/2 particle. Both the direct and exchange terms of the Δ isobars' self-energies are evaluated in detail. In comparison with the relativistic mean field theory (Hartree approximation), a weaker parameter dependence is found for DDRHF. An early appearance of Δ isobars is recognized at ρB˜0.28 fm-3, comparable with that of hyperons. Also, we find that the Δ isobars' softening of the equation of state is mainly due to the reduced Fock contributions from the coupling of the isoscalar mesons, while the pion contributions are negligibly small. We finally conclude that with typical parameter sets, neutron stars with Δ isobars in their interiors could be as heavy as the two massive pulsars whose masses are precisely measured, with slightly smaller radii than normal neutron stars.

  12. $\\Delta$ (1232) effects in density-dependent relativistic Hartree-Fock theory and neutron stars

    CERN Document Server

    Zhu, Zhen-Yu; Hu, Jin-Niu; Sagawa, Hiroyuki

    2016-01-01

    The density-dependent relativistic Hartree-Fock (DDRHF) theory is extended to include $\\Delta$-isobars for the study of dense nuclear matter and neutron stars. To this end, we solve the Rarita-Schwinger equation for spin-3/2 particle. Both the direct and exchange terms of the $\\Delta$-isobars' self-energies are evaluated in details. In comparison with the relativistic mean field theory (Hartree approximation), a weaker parameter dependence is found for DDRHF. An early appearance of $\\Delta$-isobars is recognized at $\\rho_B\\sim0.27$fm$^{-3}$, comparable with that of hyperons. Also, we find that the $\\Delta$-isobars' softening of the equation of state is found to be mainly due to the reduced Fock contributions from the coupling of the isoscalar mesons, while the pion contributions are found negligibly small. We finally conclude that with typical parameter sets, neutron stars with $\\Delta$-isobars in their interiors could be as heavy as the two massive pulsars whose masses are precisely measured, with slightly s...

  13. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  14. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  15. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  16. A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling Molecules

    Science.gov (United States)

    Jilkine, Alexandra; Angenent, Sigurd B.; Wu, Lani F.; Altschuler, Steven J.

    2011-01-01

    Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered “off” state is desired? And, what limits the spread of clusters when an “on” state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the “neutral drift polarity model.” Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization. PMID:22102805

  17. Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass.

    Science.gov (United States)

    Välimäki, Kaisa; Lindén, Andreas; Lehikoinen, Aleksi

    2016-05-01

    A multitude of studies confirm that species have changed their distribution ranges towards higher elevations and towards the poles, as has been predicted by climate change forecasts. However, there is large interspecific variation in the velocity of range shifts. From a conservation perspective, it is important to understand which factors explain variation in the speed and the extent of range shifts, as these might be related to the species' extinction risk. Here, we study shifts in the mean latitude of occurrence, as weighted by population density, in different groups of landbirds using 40 years of line transect data from Finland. Our results show that the velocity of such density shifts differed among migration strategies and increased with decreasing body size of species, while breeding habitat had no influence. The slower velocity of large species could be related to their longer generation time and lower per capita reproduction that can decrease the dispersal ability compared to smaller species. In contrast to some earlier studies of range margin shifts, resident birds and partial migrants showed faster range shifts, while fully migratory species were moving more slowly. The results suggest that migratory species, especially long-distance migrants, which often show decreasing population trends, might also have problems in adjusting their distribution ranges to keep pace with global warming.

  18. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  19. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Science.gov (United States)

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  20. Orbital-Dependent-Functionals within Density Functional Theory: Methodology and Applications

    Science.gov (United States)

    Makmal, Adi

    I have designed and implemented a new numerical scheme for solving Kohn-Sham (KS) equations for diatomic systems, together with a full solution of the OEP equation. The equations are solved on a real-space prolate spheroidal coordinate grid, such that all the system's electrons are taken into account. The OEP equation is solved via the S-iteration scheme. This newly developed software package is called DARSEC (DiAtomic Real-Space Electronic structure Calculations). It involves no approximation except for the one inherent in the XC functional. Thus it is especially suitable for examining new functionals of any kind, and ODFs in particular. It is also an ideal tool for assessing the validity of commonly used approximations, for the same reasons. One case for which this uniqueness of DARSEC was exploited in this thesis is the examination of the validity of the pseudopotential approximation for KS gaps that are calculated with EXX OEP (xOEP). Before this study, use of the pseudopotential approximation in such calculations was called into question. I have shown that KS gaps obtained with pseudopotentials that have been constructed in a manner consistent with the exact-exchange functional agree with the all-electron results (i.e. without the pseudopotential approximation), for the cases studied. This confirmed the reliability of the pseudopotential approximation for ODFs such as EXX. Explicit density-dependent XC functionals traditionally fail to obtain atomization-energy as well as charge-dissociation curves that are, at least qualitatively, correct for diatomic systems. On the other hand, Hartree-Fock (HF) theory encounters no such problem. Hence, an additional goal of this research was to study the performances of the EXX functional (being the DFT counterpart of HF) in describing binding energies and charge dissociations for stretched diatomic molecules. Moreover, I wanted to investigate the special features of the resulting single and local EXX KS potential, as

  1. Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-12-01

    Full Text Available Programmed cell death 4 (PDCD4 is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.

  2. Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes.

    Science.gov (United States)

    Eikeset, Anne Maria; Dunlop, Erin S; Heino, Mikko; Storvik, Geir; Stenseth, Nils C; Dieckmann, Ulf

    2016-12-27

    The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.

  3. High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggest chronic stress at high rearing densities in farmed rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Laursen, Danielle Caroline; Silva, P.I.M.; Larsen, Bodil Katrine;

    2013-01-01

    of a previous study,where levels of crowding where determined using the spatial distribution of fish in two-tank systems. An un-crowded low density of 25 kg m−3, the highest density accepted by the fish without showing indications of crowding stress of 80 kg m−3 as the intermediate density, and the highest...... density accepted by the fish showing indications of crowding stress of 140 kg m−3 as the high density were investigated. The aimof the present study was to examine the effect of being held at these densities on indicators of welfare. This was achieved through oxygen consumption measurements using...... automated respirometry, recording fin erosion, determining scale loss and analysing plasma cortisol and brain serotonergic activity levels. The results obtained in the present study indicated that at the lowest density the fish had the space and opportunity to display their natural aggressive behaviour...

  4. A relativistic time-dependent density functional study of the excited states of the mercury dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama, E-mail: kullie@uni-kassel.de, E-mail: ossama.kullie@unistra.fr [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg, France and Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel, D-34127 Kassel (Germany)

    2014-01-14

    In previous works on Zn{sub 2} and Cd{sub 2} dimers we found that the long-range corrected CAMB3LYP gives better results than other density functional approximations for the excited states, especially in the asymptotic region. In this paper, we use it to present a time-dependent density functional (TDDFT) study for the ground-state as well as the excited states corresponding to the (6s{sup 2} + 6s6p), (6s{sup 2} + 6s7s), and (6s{sup 2} + 6s7p) atomic asymptotes for the mercury dimer Hg{sub 2}. We analyze its spectrum obtained from all-electron calculations performed with the relativistic Dirac-Coulomb and relativistic spinfree Hamiltonian as implemented in DIRAC-PACKAGE. A comparison with the literature is given as far as available. Our result is excellent for the most of the lower excited states and very encouraging for the higher excited states, it shows generally good agreements with experimental results and outperforms other theoretical results. This enables us to give a detailed analysis of the spectrum of the Hg{sub 2} including a comparative analysis with the lighter dimers of the group 12, Cd{sub 2}, and Zn{sub 2}, especially for the relativistic effects, the spin-orbit interaction, and the performance of CAMB3LYP and is enlightened for similar systems. The result shows, as expected, that spinfree Hamiltonian is less efficient than Dirac-Coulomb Hamiltonian for systems containing heavy elements such as Hg{sub 2}.

  5. Effect of measurement error on tests of density dependence of catchability for walleyes in northern Wisconsin angling and spearing fisheries

    Science.gov (United States)

    Hansen, M.J.; Beard, T.D.; Hewett, S.W.

    2005-01-01

    We sought to determine how much measurement errors affected tests of density dependence of spearing and angling catchability for walleye Sander vitreus by quantifying relationships between spearing and angling catch rates (catch/h) and walleye population density (number/acre) in northern Wisconsin lakes. The mean measurement error of spearing catch rates was 43.5 times greater than the mean measurement error of adult walleye population densities, whereas the mean measurement error of angling catch rates was only 5.6 times greater than the mean measurement error of adult walleye population densities. The bias-corrected estimate of the relationship between spearing catch rate and adult walleye population density was similar to the ordinary-least-squares regression estimate but differed significantly from the geometric mean (GM) functional regression estimate. In contrast, the bias-corrected estimate of the relationship between angling catch rate and total walleye population density was intermediate between ordinary-least-squares and GM functional regression estimates. Catch rates of walleyes in both spearing and angling fisheries were not linearly related to walleye population density, which indicated that catch rates in both fisheries were hyperstable in relation to walleye population density. For both fisheries, GM functional regression overestimated the degree of hyperdepletion in catch rates and ordinary-least-squares regression overestimated the degree of hyperstability in catch rates. However, ordinary-least-squares regression induced significantly less bias in tests of density dependence than GM functional regression, so it may be suitable for testing the degree of density dependence in fisheries for which fish population density is estimated with mark-recapture methods similar to those used in our study. ?? Copyright by the American Fisheries Society 2005.

  6. Predicting population survival under future climate change: density dependence, drought and extraction in an insular bighorn sheep.

    Science.gov (United States)

    Colchero, Fernando; Medellin, Rodrigo A; Clark, James S; Lee, Raymond; Katul, Gabriel G

    2009-05-01

    1. Our understanding of the interplay between density dependence, climatic perturbations, and conservation practices on the dynamics of small populations is still limited. This can result in uninformed strategies that put endangered populations at risk. Moreover, the data available for a large number of populations in such circumstances are sparse and mined with missing data. Under the current climate change scenarios, it is essential to develop appropriate inferential methods that can make use of such data sets. 2. We studied a population of desert bighorn sheep introduced to Tiburon Island, Mexico in 1975 and subjected to irregular extractions for the last 10 years. The unique attributes of this population are absence of predation and disease, thereby permitting us to explore the combined effect of density dependence, environmental variability and extraction in a 'controlled setting.' Using a combination of nonlinear discrete models with long-term field data, we constructed three basic Bayesian state space models with increasing density dependence (DD), and the same three models with the addition of summer drought effects. 3. We subsequently used Monte Carlo simulations to evaluate the combined effect of drought, DD, and increasing extractions on the probability of population survival under two climate change scenarios (based on the Intergovernmental Panel on Climate Change predictions): (i) increase in drought variability; and (ii) increase in mean drought severity. 4. The population grew from 16 individuals introduced in 1975 to close to 700 by 1993. Our results show that the population's growth was dominated by DD, with drought having a secondary but still relevant effect on its dynamics. 5. Our predictions suggest that under climate change scenario (i), extraction dominates the fate of the population, while for scenario (ii), an increase in mean drought affects the population's probability of survival in an equivalent magnitude as extractions. Thus, for the

  7. A revised electronic Hessian for approximate time-dependent density functional theory.

    Science.gov (United States)

    Ziegler, Tom; Seth, Michael; Krykunov, Mykhaylo; Autschbach, Jochen

    2008-11-14

    Time-dependent density functional theory (TD-DFT) at the generalized gradient level of approximation (GGA) has shown systematic errors in the calculated excitation energies. This is especially the case for energies representing electron transitions between two separated regions of space or between orbitals of different spatial extents. It will be shown that these limitations can be attributed to the electronic ground state Hessian G(GGA). Specifically, we shall demonstrate that the Hessian G(GGA) can be used to describe changes in energy due to small perturbations of the electron density (Deltarho), but it should not be applied to one-electron excitations involving the density rearrangement (Deltarho) of a full electron charge. This is in contrast to Hartree-Fock theory where G(HF) has a trust region that is accurate for both small perturbations and one-electron excitations. The large trust radius of G(HF) can be traced back to the complete cancellation of Coulomb and exchange terms in Hartree-Fock (HF) theory representing self-interaction (complete self-interaction cancellation, CSIC). On the other hand, it is shown that the small trust radius for G(GGA) can be attributed to the fact that CSIC is assumed for GGA in the derivation of G(GGA) although GGA (and many other approximate DFT schemes) exhibits incomplete self-interaction cancellation (ISIC). It is further shown that one can derive a new matrix G(R-DFT) with the same trust region as G(HF) by taking terms due to ISIC properly into account. Further, with TD-DFT based on G(R-DFT), energies for state-to-state transitions represented by a one-electron excitation (psi(i)-->psi(a)) are approximately calculated as DeltaE(ai). Here DeltaE(ai) is the energy difference between the ground state Kohn-Sham Slater determinant and the energy of a Kohn-Sham Slater determinant where psi(i) has been replaced by psi(a). We make use of the new Hessian in two numerical applications involving charge-transfer excitations. It is

  8. Density functional approaches to collective phenomena in nuclei: Time-dependent density-functional theory for perturbative and non-perturbative nuclear dynamics

    CERN Document Server

    Nakatsukasa, Takashi

    2012-01-01

    We present the basic concepts and our recent developments in the density functional approaches with the Skyrme functionals for describing nuclear dynamics at low energy. The time-dependent density-functional theory (TDDFT) is utilized for the exact linear response with an external perturbation. For description of collective dynamics beyond the perturbative regime, we present a theory of a decoupled collective submanifold to describe for a slow motion based on the TDDFT. Selected applications are shown to demonstrate the quality of their performance and feasibility. Advantages and disadvantages in the numerical aspects are also discussed.

  9. A [11C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced α5 benzodiazepine receptors in limbic regions.

    Science.gov (United States)

    Lingford-Hughes, Anne; Reid, Alastair G; Myers, James; Feeney, Adrian; Hammers, Alexander; Taylor, Lindsay G; Rosso, Lula; Turkheimer, Federico; Brooks, David J; Grasby, Paul; Nutt, David J

    2012-02-01

    Preclinical evidence suggests the α5 subtype of the GABA-benzodiazepine receptor is involved in some of the actions of alcohol and in memory. The positron emission tomography (PET) tracer, [(11)C]Ro15 4513 shows relative selectivity in labelling the α5 subtype over the other GABA-benzodiazepine receptor subtypes in limbic regions of the brain. We used this tracer to investigate the distribution of α5 subtype availability in human alcohol dependence and its relationship to clinical variables. Abstinent (>6 weeks) alcohol-dependent men and healthy male controls underwent an [(11)C]Ro15 4513 PET scan. We report [(11)C]Ro15 4513 brain uptake for 8 alcohol-dependent men and 11 healthy controls. We found a significant reduction in [(11)C]Ro15 4513 binding in the nucleus accumbens, parahippocampal gyri, right hippocampus and amygdala in the alcohol-dependent compared with the healthy control group. Levels of [(11)C]Ro15 4513 binding in both hippocampi were significantly and positively associated with performance on a delayed verbal memory task in the alcohol-dependent but not the control group. We speculate that the reduced limbic [(11)C]Ro15 4513 binding seen here results from the effects of alcohol, though we cannot currently distinguish whether they are compensatory in nature or evidence of brain toxicity.

  10. Density-dependence in space and time: opposite synchronous variations in population distribution and body condition in the Baltic Sea sprat (Sprattus sprattus over three decades.

    Directory of Open Access Journals (Sweden)

    Michele Casini

    Full Text Available Spatio-temporal density-dependent processes are crucial regulatory factors for natural populations. However, there is a lack of studies addressing spatial density-dependence in fish growth. A previous investigation has suggested spatio-temporal density-dependence in body condition of Baltic sprat. Here, we used different techniques, such as centre of gravity, distance, and homogeneity indices, to better characterize the spatial and temporal variations in sprat density and body condition in the Baltic Proper. Our results evidenced a negative spatio-temporal co-variation between the centres of gravity of density and maximum condition. In the 1980s-early 1990s both centres were located in the middle of the Baltic Proper. From the mid 1990s the centres progressively separated in space, as the sprat population moved towards the north-eastern Baltic Proper, and the centre of maximum condition towards the south-western areas. Moreover, at low abundances, sprat density and condition were homogeneously distributed in space, whereas at high abundances both density and condition showed pronounced geographical gradients. The ecological processes potentially explaining the observed patterns were discussed in the light of the Ideal Free Distribution theory. We provide evidence that the shift in the spatial distribution of cod, the main predator of sprat, has been the main factor triggering the overall spatial changes in sprat density, and thus condition, during the past thirty years. The spatial indices shown here, synthesizing the spatio-temporal patterns of fish distribution, can support the implementation of the EU Marine Strategy Framework Directive.

  11. Density-dependence in space and time: opposite synchronous variations in population distribution and body condition in the Baltic Sea sprat (Sprattus sprattus) over three decades.

    Science.gov (United States)

    Casini, Michele; Rouyer, Tristan; Bartolino, Valerio; Larson, Niklas; Grygiel, Włodzimierz

    2014-01-01

    Spatio-temporal density-dependent processes are crucial regulatory factors for natural populations. However, there is a lack of studies addressing spatial density-dependence in fish growth. A previous investigation has suggested spatio-temporal density-dependence in body condition of Baltic sprat. Here, we used different techniques, such as centre of gravity, distance, and homogeneity indices, to better characterize the spatial and temporal variations in sprat density and body condition in the Baltic Proper. Our results evidenced a negative spatio-temporal co-variation between the centres of gravity of density and maximum condition. In the 1980s-early 1990s both centres were located in the middle of the Baltic Proper. From the mid 1990s the centres progressively separated in space, as the sprat population moved towards the north-eastern Baltic Proper, and the centre of maximum condition towards the south-western areas. Moreover, at low abundances, sprat density and condition were homogeneously distributed in space, whereas at high abundances both density and condition showed pronounced geographical gradients. The ecological processes potentially explaining the observed patterns were discussed in the light of the Ideal Free Distribution theory. We provide evidence that the shift in the spatial distribution of cod, the main predator of sprat, has been the main factor triggering the overall spatial changes in sprat density, and thus condition, during the past thirty years. The spatial indices shown here, synthesizing the spatio-temporal patterns of fish distribution, can support the implementation of the EU Marine Strategy Framework Directive.

  12. A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets

    Science.gov (United States)

    Thorvaldsen, Andreas J.; Ruud, Kenneth; Kristensen, Kasper; Jørgensen, Poul; Coriani, Sonia

    2008-12-01

    A general method is presented for the calculation of molecular properties to arbitrary order at the Kohn-Sham density functional level of theory. The quasienergy and Lagrangian formalisms are combined to derive response functions and their residues by straightforward differentiation of the quasienergy derivative Lagrangian using the elements of the density matrix in the atomic orbital representation as variational parameters. Response functions and response equations are expressed in the atomic orbital basis, allowing recent advances in the field of linear-scaling methodology to be used. Time-dependent and static perturbations are treated on an equal footing, and atomic basis sets that depend on the applied frequency-dependent perturbations may be used, e.g., frequency-dependent London atomic orbitals. The 2n+1 rule may be applied if computationally favorable, but alternative formulations using higher-order perturbed density matrices are also derived. These may be advantageous in order to minimize the number of response equations that needs to be solved, for instance, when one of the perturbations has many components, as is the case for the first-order geometrical derivative of the hyperpolarizability.

  13. A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets.

    Science.gov (United States)

    Thorvaldsen, Andreas J; Ruud, Kenneth; Kristensen, Kasper; Jørgensen, Poul; Coriani, Sonia

    2008-12-07

    A general method is presented for the calculation of molecular properties to arbitrary order at the Kohn-Sham density functional level of theory. The quasienergy and Lagrangian formalisms are combined to derive response functions and their residues by straightforward differentiation of the quasienergy derivative Lagrangian using the elements of the density matrix in the atomic orbital representation as variational parameters. Response functions and response equations are expressed in the atomic orbital basis, allowing recent advances in the field of linear-scaling methodology to be used. Time-dependent and static perturbations are treated on an equal footing, and atomic basis sets that depend on the applied frequency-dependent perturbations may be used, e.g., frequency-dependent London atomic orbitals. The 2n+1 rule may be applied if computationally favorable, but alternative formulations using higher-order perturbed density matrices are also derived. These may be advantageous in order to minimize the number of response equations that needs to be solved, for instance, when one of the perturbations has many components, as is the case for the first-order geometrical derivative of the hyperpolarizability.

  14. A genome-wide association study of monozygotic twin-pairs suggests a locus related to variability of serum high-density lipoprotein cholesterol

    DEFF Research Database (Denmark)

    Surakka, Ida; Whitfield, John B; Perola, Markus

    2012-01-01

    in serum lipid and apolipoprotein levels. We report data for 1,720 monozygotic female twin-pairs from GenomEUtwin project with 2.5 million SNPs, imputed or genotyped, and measured serum lipid fractions for both twins. We found one locus associated with intra-pair differences in high-density lipoprotein...

  15. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    Science.gov (United States)

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Analysis of physical mechanisms underlying density-dependent transport in porous media

    OpenAIRE

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Furthermore, density effects play a role in many other groundwater applications, such as salt water intrusion. Density gradients mainly affect the flow field and mass transport in two ways: by fluid volum...

  17. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival.

    Science.gov (United States)

    Comita, Liza S; Queenborough, Simon A; Murphy, Stephen J; Eck, Jenalle L; Xu, Kaiyang; Krishnadas, Meghna; Beckman, Noelle; Zhu, Yan; Gómez-Aparicio, Lorena

    2014-07-01

    The Janzen-Connell hypothesis proposes that specialist natural enemies, such as herbivores and pathogens, maintain diversity in plant communities by reducing survival rates of conspecific seeds and seedlings located close to reproductive adults or in areas of high conspecific density. Variation in the strength of distance- and density-dependent effects is hypothesized to explain variation in plant species richness along climatic gradients, with effects predicted to be stronger in the tropics than the temperate zone and in wetter habitats compared to drier habitats.We conducted a comprehensive literature search to identify peer-reviewed experimental studies published in the 40+ years since the hypothesis was first proposed. Using data from these studies, we conducted a meta-analysis to assess the current weight of evidence for the distance and density predictions of the Janzen-Connell hypothesis.Overall, we found significant support for both the distance- and density-dependent predictions. For all studies combined, survival rates were significantly reduced near conspecifics compared to far from conspecifics, and in areas with high densities of conspecifics compared to areas with low conspecific densities. There was no indication that these results were due to publication bias.The strength of distance and density effects varied widely among studies. Contrary to expectations, this variation was unrelated to latitude, and there was no significant effect of study region. However, we did find a trend for stronger distance and density dependence in wetter sites compared to sites with lower annual precipitation. In addition, effects were significantly stronger at the seedling stage compared to the seed stage.Synthesis. Our study provides support for the idea that distance- and density-dependent mortality occurs in plant communities world-wide. Available evidence suggests that natural enemies are frequently the cause of such patterns, consistent with the Janzen

  18. Density-dependent effective baryon-baryon interaction from chiral three-baryon forces

    CERN Document Server

    Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram

    2016-01-01

    A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...

  19. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    Science.gov (United States)

    Huizer, Sebastian; Bierkens, Marc; Oude Essink, Gualbert

    2015-04-01

    The prospect of sea level rise and increase in extreme weather conditions has led to a new focus on coastal defense in the Netherlands. As an innovative solution for coastal erosion a mega-nourishment named the Sand Motor (or Sand Engine) has been constructed at the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents; keeping the coastal defense structures in place and creating a unique, dynamic environment with changing morphology over time. The large size and position of the Sand Motor might lead to a substantial increase of fresh ground water resources. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied. The preliminary model calculations show that in a period of 20 years volume of fresh water gradually increases to ca. 12 Mm3. In the nearby dune area 7-8 Mm3 is abstracted yearly, therefore the first results are promising in increasing fresh groundwater resources. More model calculations will be performed to investigate the sensitivity of the change in the fresh, brackish and salt water distribution.

  20. Delineating effects of tensor force on the density dependence of nuclear symmetry energy

    CERN Document Server

    Xu, Chang; Li, Bao-An

    2012-01-01

    In this talk, we report results of our recent studies to delineate effects of the tensor force on the density dependence of nuclear symmetry energy within phenomenological models. The tensor force active in the isosinglet neutron-proton interaction channel leads to appreciable depletion/population of nucleons below/above the Fermi surface in the single-nucleon momentum distribution in cold symmetric nuclear matter (SNM). We found that as a consequence of the high momentum tail in SNM the kinetic part of the symmetry energy $E^{kin}_{sym}(\\rho)$ is significantly below the well-known Fermi gas model prediction of approximately $12.5 (\\rho/\\rho_0)^{2/3}$. With about 15% nucleons in the high momentum tail as indicated by the recent experiments at J-Lab by the CLAS Collaboration, the $E^{kin}_{sym}(\\rho)$ is negligibly small. It even becomes negative when more nucleons are in the high momentum tail in SNM. These features have recently been confirmed by three independent studies based on the state-of-the-art micros...

  1. Modeling Changing Morphology and Density Dependent Groundwater Flow in a Dynamic Environment: case study

    Science.gov (United States)

    Huizer, S.; Bierkens, M. F.; Oude Essink, G.

    2014-12-01

    In many coastal regions around the world climate change will lead to a sea level rise and an increase in extreme weather conditions. This prospect has resulted in a new focus on coastal protection in the Netherlands, resulting in the initiation of an innovative coastal defence project called the Sand Motor. In this project a large body of sand or so-called mega-nourishment has been constructed along the Dutch coast. This body of sand will be distributed slowly along the coastline by wind, waves and currents. Keeping the coastal defence structures in place and creating a unique, dynamic environment with changing morphology over time. Because of the large size of the body of sand (21.5 million m3) and the position at the coastline and near coastal dunes, the Sand Motor might cause a substantial increase of the fresh water availability by increasing the volume fresh water lens underneath the dunes. This creates an opportunity to combine coastal protection with an increase of fresh water resources in coastal regions. With a three dimensional, density dependent, groundwater model the effects of changing morphology over time and the potential increase in fresh water availability have been studied.

  2. A density-dependent matrix model and its applications in optimizing harvest schemes

    Institute of Scientific and Technical Information of China (English)

    Guofan Shao; WANG Fei; DAI Limin; BAI Jianwei; LI Yingshan

    2006-01-01

    Based on temporal data collected from 36 re-measured plots, transition probabilities of trees from a diameter class to a higher class were analyzed for the broadleaved-Korean pine forest in the Changbai Mountains. It was found that the transition probabilities were related not only to diameter size but also to the total basal area of trees with the diameter class. This paper demonstrates the development of a density-dependent matrix model, DM2, and a series of simulations with it for forest stands with different conditions under different harvest schemes. After validations with independent field data, this model proved a suitable tool for optimization analysis of harvest schemes on computers. The optimum harvest scheme(s) can be determined by referring to stand growth, total timbers harvested, and size diversity changes over time. Three user-friendly interfaces were built with a forest management decision support system FORESTAR(R) for easy operations of DM2 by forest managers. This paper also summarizes the advantages and disadvantages of DM2.

  3. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    Science.gov (United States)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  4. Negative density dependence regulates two tree species at later life stage in a temperate forest.

    Directory of Open Access Journals (Sweden)

    Tiefeng Piao

    Full Text Available Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height ≥2 cm using the pair-correlation g(r function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa and shade-intolerant (Quercus serrata species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study.

  5. Negative density dependence regulates two tree species at later life stage in a temperate forest.

    Science.gov (United States)

    Piao, Tiefeng; Chun, Jung Hwa; Yang, Hee Moon; Cheon, Kwangil

    2014-01-01

    Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study.

  6. Time dependentdensity functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  7. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation

    Energy Technology Data Exchange (ETDEWEB)

    Franco de Carvalho, F. [Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Tavernelli, I. [IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon (Switzerland)

    2015-12-14

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.

  8. Real time propagation of the exact two component time-dependent density functional theory

    Science.gov (United States)

    Goings, Joshua J.; Kasper, Joseph M.; Egidi, Franco; Sun, Shichao; Li, Xiaosong

    2016-09-01

    We report the development of a real time propagation method for solving the time-dependent relativistic exact two-component density functional theory equations (RT-X2C-TDDFT). The method is fundamentally non-perturbative and may be employed to study nonlinear responses for heavy elements which require a relativistic Hamiltonian. We apply the method to several group 12 atoms as well as heavy-element hydrides, comparing with the extensive theoretical and experimental studies on this system, which demonstrates the correctness of our approach. Because the exact two-component Hamiltonian contains spin-orbit operators, the method is able to describe the non-zero transition moment of otherwise spin-forbidden processes in non-relativistic theory. Furthermore, the two-component approach is more cost effective than the full four-component approach, with similar accuracy. The RT-X2C-TDDFT will be useful in future studies of systems containing heavy elements interacting with strong external fields.

  9. Fracture behaviors of thin superconducting films with field-dependent critical current density

    Energy Technology Data Exchange (ETDEWEB)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn

    2013-09-15

    Highlights: • The fracture behaviors of superconducting films for the Kim model are studied. • The profile of stress intensity factor is generally the same as magnetostriction. • The crack problem of two collinear cracks is also researched for the Kim model. -- Abstract: The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  10. Time-Dependent Density Functional Theory Beyond Kohn-Sham Slater Determinants

    CERN Document Server

    Fuks, Johanna I; Ruggenthaler, Michael; Maitra, Neepa T

    2016-01-01

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50:50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle...

  11. Long-term diffusion of U(VI) in bentonite: Dependence on density.

    Science.gov (United States)

    Joseph, Claudia; Mibus, Jens; Trepte, Paul; Müller, Christa; Brendler, Vinzenz; Park, Dan M; Jiao, Yongqin; Kersting, Annie B; Zavarin, Mavrik

    2017-01-01

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca2UO2(CO3)3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3mm, 1.5mm, and 1mm into the clay plug at ρ=1.3, 1.6, and 1.9g/cm(3), respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uranium contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, De and Da, decreased with increasing dry density. The Da values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, Da values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). The results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.

  12. Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI

    Science.gov (United States)

    Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam

    2017-04-01

    White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and

  13. Time-dependent transition density matrix for visualizing charge-transfer excitations in photoexcited organic donor-acceptor systems

    Science.gov (United States)

    Li, Yonghui; Ullrich, Carsten

    2013-03-01

    The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651

  14. Effects of density dependent larval competition on the life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae)

    OpenAIRE

    Sampa Banerjee; Soujita Pramanik; Soumyajit Banerjee; Goutam K Saha; Gautam Aditya

    2017-01-01

    Consequences of larval competition at the population level provide explanation for the differences in relative abundance of Aedes aegypti and Aedes albopictus in different geographical regions. The outcome of competition is assessed through the estimates of the life history traits as a response to varying density and resource available for larval development. In the present study, variations in the life history traits due to density-dependent intra- and inter- specific competition involving A...

  15. Age-specific, density-dependent and environment-based mortality of a short-lived perennial herb

    OpenAIRE

    Picó, F Xavier; Retana, Javier

    2008-01-01

    Density-independent and density-dependent processes affect plant mortality. Although less well understood, age-specific mortality can also play an important role in plant mortality. The goal of this study was to analyse sev- eral factors accounting for mortality in the Mediterranean short-lived peren- nial herb Lobularia maritima. We followed three cohorts of plants (from emergence to death) during 4 years in field conditions. We collected data on plant mortality ...

  16. Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients

    Science.gov (United States)

    Si, Xin; Ye, Xia

    2016-10-01

    This paper concerns an initial-boundary value problem of the inhomogeneous incompressible MHD equations in a smooth bounded domain. The viscosity and resistivity coefficients are density-dependent. The global well-posedness of strong solutions is established, provided the initial norms of velocity and magnetic field are suitably small in some sense, or the lower bound of the transport coefficients are large enough. More importantly, there is not any smallness condition on the density and its gradient.

  17. Temperature and electron density dependence of spin relaxation in GaAs/AlGaAs quantum well

    Directory of Open Access Journals (Sweden)

    Han Lifen

    2011-01-01

    Full Text Available Abstract Temperature and carrier density-dependent spin dynamics for GaAs/AlGaAs quantum wells (QWs with different structural symmetries have been studied by using time-resolved Kerr rotation technique. The spin relaxation time is measured to be much longer for the symmetrically designed GaAs QW comparing with the asymmetrical one, indicating the strong influence of Rashba spin-orbit coupling on spin relaxation. D'yakonov-Perel' mechanism has been revealed to be the dominant contribution for spin relaxation in GaAs/AlGaAs QWs. The spin relaxation time exhibits non-monotonic-dependent behavior on both temperature and photo-excited carrier density, revealing the important role of non-monotonic temperature and density dependence of electron-electron Coulomb scattering. Our experimental observations demonstrate good agreement with recently developed spin relaxation theory based on microscopic kinetic spin Bloch equation approach.

  18. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival.

  19. Carrier-Density-Dependent Electron Spin Relaxation in GaAs/AlGaAs Multi Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    SHOU Qian; WU Yu; LIU Lu-Ning; WEN Jin-Hui; LAI Tian-Shu; LIN Wei-Zhu

    2005-01-01

    @@ The carrier-density-dependent electron spin relaxation processes in GaAs/AlGaAs multi quantum wells are investigated by a femtosecond pump probe experiment. The spin relaxation time presents two distinguishable trends with the increasing excitation density. It increases from 60ps to 70ps with carrier densities from 1 × 1017 cm-3to 5 × 1017 cm-3 and gradually saturates up to ~80ps at 4 × 1018 cm-3. The experimental results are attributed to the combined competition between collision intensification and scattering potential screening and provide a good experimental confirmation for the theoretical D'yakonov-Perel' mechanism descriptions.

  20. Curvature Dependence of Interfacial Properties for Associating Lennard-Jones Fluids: A Density Functional Study

    Institute of Scientific and Technical Information of China (English)

    SUN Zong-Li; KANG Yan-Shuang

    2011-01-01

    Classical density functional theory is used to study the associating Lennard Jones fluids in contact with spherical hard wall of different curvature radii. The interfacial properties including contact density and fluid-solid interfacial tension are investigated. The influences of associating energy, curvature of hard wall and the bulk density of Huids on these properties are analyzed in detail. The results may provide helpful clues to understand the interfacial properties of other complex fluids.%@@ Classical density functional theory is used to study the associating Lennard Jones fluids in contact with spherical hard wall of different curvature radii.The interfacial properties including contact density and fluid-solid intcrfacial tension are investigated.The influences of associating energy, curvature of hard wall and the hulk density of fluids on these properties are analyzed in detail.The results may provide helpful clues to understand the interfacial properties of other complex fluids.

  1. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding.

    Science.gov (United States)

    Jay, Anthony G; Chen, Alexander N; Paz, Miguel A; Hung, Justin P; Hamilton, James A

    2015-02-20

    The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.

  2. CARMA Survey Toward Infrared-bright Nearby Galaxies (STING). III. The Dependence of Atomic and Molecular Gas Surface Densities on Galaxy Properties

    CERN Document Server

    Wong, Tony; Bolatto, Alberto D; Leroy, Adam K; Blitz, Leo; Rosolowsky, Erik; Bigiel, Frank; Fisher, David B; Ott, Jürgen; Rahman, Nurur; Vogel, Stuart N; Walter, Fabian

    2013-01-01

    We investigate the correlation between CO and HI emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the HI column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee & Krumholz, which balances H_2 formation and dissociation. The observed HI column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe HI column densities much larger than predicted, as might be expected were there a diffuse HI component that did not contribute to H_2 shielding. We also find that the H_2 column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stella...

  3. α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease.

    Science.gov (United States)

    Rostovtseva, Tatiana K; Gurnev, Philip A; Protchenko, Olga; Hoogerheide, David P; Yap, Thai Leong; Philpott, Caroline C; Lee, Jennifer C; Bezrukov, Sergey M

    2015-07-24

    Participation of the small, intrinsically disordered protein α-synuclein (α-syn) in Parkinson disease (PD) pathogenesis has been well documented. Although recent research demonstrates the involvement of α-syn in mitochondrial dysfunction in neurodegeneration and suggests direct interaction of α-syn with mitochondria, the molecular mechanism(s) of α-syn toxicity and its effect on neuronal mitochondria remain vague. Here we report that at nanomolar concentrations, α-syn reversibly blocks the voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane that controls most of the metabolite fluxes in and out of the mitochondria. Detailed analysis of the blockage kinetics of VDAC reconstituted into planar lipid membranes suggests that α-syn is able to translocate through the channel and thus target complexes of the mitochondrial respiratory chain in the inner mitochondrial membrane. Supporting our in vitro experiments, a yeast model of PD shows that α-syn toxicity in yeast depends on VDAC. The functional interactions between VDAC and α-syn, revealed by the present study, point toward the long sought after physiological and pathophysiological roles for monomeric α-syn in PD and in other α-synucleinopathies.

  4. Density-dependent sex ratio adjustment and the allee effect: a model and a test using a sex-changing fish.

    Science.gov (United States)

    Walker, Stefan P W; Thibaut, Loïc; McCormick, Mark I

    2010-09-01

    Positive density dependence (i.e., the Allee effect; AE) often has important implications for the dynamics and conservation of populations. Here, we show that density-dependent sex ratio adjustment in response to sexual selection may be a common AE mechanism. Specifically, using an analytical model we show that an AE is expected whenever one sex is more fecund than the other and sex ratio bias toward the less fecund sex increases with density. We illustrate the robustness of this pattern, using Monte Carlo simulations, against a range of body size-fecundity relationships and sex-allocation strategies. Finally, we test the model using the sex-changing polygynous reef fish Parapercis cylindrica; positive density dependence in the strength of sexual selection for male size is evidenced as the causal mechanism driving local sex ratio adjustment, hence the AE. Model application may extend to invertebrates, reptiles, birds, and mammals, in addition to over 70 reef fishes. We suggest that protected areas may often outperform harvest quotas as a conservation tool since the latter promotes population fragmentation, reduced polygyny, a balancing of the sex ratio, and hence up to a 50% decline in per capita fecundity, while the former maximizes polygyny and source-sink potential.

  5. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion.

    Science.gov (United States)

    Hogarth, Marshall W; Garton, Fleur C; Houweling, Peter J; Tukiainen, Taru; Lek, Monkol; Macarthur, Daniel G; Seto, Jane T; Quinlan, Kate G R; Yang, Nan; Head, Stewart I; North, Kathryn N

    2016-03-01

    A common null polymorphism (R577X) in ACTN3 causes α-actinin-3 deficiency in ∼ 18% of the global population. There is no associated disease phenotype, but α-actinin-3 deficiency is detrimental to sprint and power performance in both elite athletes and the general population. However, despite considerable investigation to date, the functional consequences of heterozygosity for ACTN3 are unclear. A subset of studies have shown an intermediate phenotype in 577RX individuals, suggesting dose-dependency of α-actinin-3, while others have shown no difference between 577RR and RX genotypes. Here, we investigate the effects of α-actinin-3 expression level by comparing the muscle phenotypes of Actn3(+/-) (HET) mice to Actn3(+/+) [wild-type (WT)] and Actn3(-/-) [knockout (KO)] littermates. We show reduction in α-actinin-3 mRNA and protein in HET muscle compared with WT, which is associated with dose-dependent up-regulation of α-actinin-2, z-band alternatively spliced PDZ-motif and myotilin at the Z-line, and an incremental shift towards oxidative metabolism. While there is no difference in force generation, HET mice have an intermediate endurance capacity compared with WT and KO. The R577X polymorphism is associated with changes in ACTN3 expression consistent with an additive model in the human genotype-tissue expression cohort, but does not influence any other muscle transcripts, including ACTN2. Overall, ACTN3 influences sarcomeric composition in a dose-dependent fashion in mouse skeletal muscle, which translates directly to function. Variance in fibre type between biopsies likely masks this phenomenon in human skeletal muscle, but we suggest that an additive model is the most appropriate for use in testing ACTN3 genotype associations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Wilderness experience quality: Effects of use density depend on how experience is conceived

    Science.gov (United States)

    David N. Cole; Troy E. Hall

    2012-01-01

    Different conceptions of experience and experience quality can explain ambiguous relationships among use density, crowding, experience and experience quality. We employed multiple methods to quantify experiential dimensions at a popular lake in the Alpine Lakes Wilderness, WA. Comparing weekdays to weekends, when use density is typically four times as high, we assessed...

  7. Analysis of physical mechanisms underlying density-dependent transport in porous media

    NARCIS (Netherlands)

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Further

  8. Demonstration of the density dependence of x-ray flux in a laser-driven hohlraum.

    Science.gov (United States)

    Young, P E; Rosen, M D; Hammer, J H; Hsing, W S; Glendinning, S G; Turner, R E; Kirkwood, R; Schein, J; Sorce, C; Satcher, J H; Hamza, A; Reibold, R A; Hibbard, R; Landen, O; Reighard, A; McAlpin, S; Stevenson, M; Thomas, B

    2008-07-18

    Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta2O5 foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)10.1103/PhysRevE.72.056403]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall.

  9. Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Central Density

    CERN Document Server

    Krueger, Brendan K; Calder, Alan C; Townsley, Dean M; Brown, Edward F; Timmes, Francis X

    2012-01-01

    We present a study exploring a systematic effect on the brightness of type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition, and considered its impact on the explosion yield, particularly the production and distribution of radioactive Ni-56, which powers the light curve. We performed a suite of two-dimensional simulations with randomized initial conditions, allowing us to characterize the statistical trends that we present. The simulations indicate that production of Fe-group material is statistically independent of progenitor central density, but the mass of stable Fe-group isotopes is tightly correlated with central density, with a decrease in the production of Ni-56 at higher central densities. These results imply progenitors with higher central densities produce dimmer events. We provide details of the post-explosion distribution of Ni-56 in the models, including the lack of a consi...

  10. Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors.

    Science.gov (United States)

    Kroes, Anneke; van Loon, Joop J A; Dicke, Marcel

    2015-01-01

    In nature, plants are exposed to attacks by multiple herbivore species at the same time. To cope with these attacks, plants regulate defenses with the production of hormones such as salicylic acid (SA) and jasmonic acid (JA). Because herbivore densities are dynamic in time, this may affect plant-mediated interactions between different herbivores attacking at the same time. In Arabidopsis thaliana, feeding by Brevicoryne brassicae aphids interferes with induced defenses against Plutella xylostella caterpillars. This is density dependent: at a low aphid density, the growth rate of P. xylostella was increased, whereas caterpillars feeding on plants colonized by aphids at a high density have a reduced growth rate. Growth of P. xylostella larvae was unaffected on sid2-1 or on dde2-2 mutant plants when feeding simultaneously with a low or high aphid density. This shows that aphid interference with caterpillar-induced defenses requires both SA and JA signal transduction pathways. Transcriptional analysis revealed that simultaneous feeding by caterpillars and aphids at a low density induced the expression of the SA transcription factor gene WRKY70 whereas expression of WRKY70 was lower in plants induced with both caterpillars and a high aphid density. Interestingly, the expression of the JA transcription factor gene MYC2 was significantly higher in plants simultaneously attacked by aphids at a high density and caterpillars. These results indicate that a lower expression level of WRKY70 leads to significantly higher MYC2 expression through SA-JA cross-talk. Thus, plant-mediated interactions between aphids and caterpillars are density dependent and involve phytohormonal cross-talk and differential activation of transcription factors.

  11. Cell density-dependent stimulation of PAI-1 and hyaluronan synthesis by TGF-β in orbital fibroblasts.

    Science.gov (United States)

    Galgoczi, Erika; Jeney, Florence; Gazdag, Annamaria; Erdei, Annamaria; Katko, Monika; Nagy, Domonkos M; Ujhelyi, Bernadett; Steiber, Zita; Gyory, Ferenc; Berta, Eszter; Nagy, Endre V

    2016-05-01

    During the course of Graves' orbitopathy (GO), orbital fibroblasts are exposed to factors that lead to proliferation and extracellular matrix (ECM) overproduction. Increased levels of tissue plasminogen activator inhibitor type 1 (PAI-1 (SERPINE1)) might promote the accumulation of ECM components. PAI-1 expression is regulated by cell density and various cytokines and growth factors including transforming growth factorβ(TGF-β). We examined the effects of increasing cell densities and TGF-β on orbital fibroblasts obtained from GO patients and controls. Responses were evaluated by the measurement of proliferation, PAI-1 expression, and ECM production. There was an inverse correlation between cell density and the per cell production of PAI-1. GO orbital, normal orbital, and dermal fibroblasts behaved similarly in this respect. Proliferation rate also declined with increasing cell densities. Hyaluronan (HA) production was constant throughout the cell densities tested in all cell lines. In both GO and normal orbital fibroblasts, but not in dermal fibroblasts, TGF-β stimulated PAI-1 production in a cell density-dependent manner, reaching up to a five-fold increase above baseline. This has been accompanied by increased HA secretion and pericellular HA levels at high cell densities. Increasing cell density is a negative regulator of proliferation and PAI-1 secretion both in normal and GO orbital fibroblasts; these negative regulatory effects are partially reversed in the presence of TGF-β. Cell density-dependent regulation of PAI-1 expression in the orbit, together with the local cytokine environment, may have a regulatory role in the turnover of the orbital ECM and may contribute to the expansion of orbital soft tissue in GO.

  12. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    Science.gov (United States)

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  13. Effects of density dependent larval competition on the life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Sampa Banerjee

    2017-06-01

    Full Text Available Consequences of larval competition at the population level provide explanation for the differences in relative abundance of Aedes aegypti and Aedes albopictus in different geographical regions. The outcome of competition is assessed through the estimates of the life history traits as a response to varying density and resource available for larval development. In the present study, variations in the life history traits due to density-dependent intra- and inter- specific competition involving A. aegypti and A. albopictus were assessed following the minimalist model. The instar-I larvae (0-day old F2 generation of both Aedes species were reared to the adult stages using the initial rearing density of 1, 2, 4 and 6 (individuals/10ml in multiple replicates. The age at pupation, pupal weight, adult weight and adult wing length of the individuals were considered as the response variables and surrogates of estimating the competitive interactions. Density dependent variations in the competitive interactions were evident for both the mosquitoes with reference to the selected life history traits. In A. aegypti, the life history traits varied with the levels of competition, which was not observed for A. albopictus. Although the density levels considered in the present instance were lower than in earlier studies, the observations were similar, with A. albopictus being competitively superior. It appears that irrespective of the density levels, interspecific competition affects A. aegypti and thus may bear population level consequences and overall abundance in the areas where both species are present.

  14. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae

    Directory of Open Access Journals (Sweden)

    Flávia Freitas Coelho

    2005-09-01

    Full Text Available Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant’s vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one. Rev. Biol. Trop. 53(3-4: 369-376. Epub 2005 Oct 3.Pistias strariotes es una macrófita acuática que crece en charcas estacionales en el Pantanal sureño de Brasil. Se reproduce tanto sexual como asexualmente y se obsrva generalmente que forma densas parches sobre la superficie del agua, una condicion que favorecida por la reproduccion vegetativa de la

  15. Density dependence of relaxation dynamics in glass formers, and the dependence of their fragility on the softness of inter-particle interactions

    Indian Academy of Sciences (India)

    ANSHUL D S PARMAR; PALLABI KUNDU; SRIKANTH SASTRY

    2017-07-01

    Fragility, quantifying the rapidity of variation of relaxation times, is analysed for a series of model glass formers, which differ in the softness of their interparticle interactions. In an attempt to rationalize experimental observations in colloidal suspensions that softer interactions lead to stronger (less fragile) glassformers, we study the variation of relaxation dynamics with density, rather than temperature, as a control parameter.We employ density-temperature scaling, analyzed in recent studies, to address the question.We find that while employing inverse density in place of temperature leads to the conclusion that softer interactions lead to stronger behaviour, the use of scaled variables involving temperature and density lead to the opposite conclusion, similarly to earlier investigations where temperature variation of relaxation dynamics was analysed for the same systems. We rationalize our results by considering the Adam-Gibbs (AG) fragility, which incorporates the density dependence of the configurational entropy and an activation energy that may arise from other propertiesof a glass former.Within the framework of the Adam-Gibbs relation, by employing density temperature scaling for the analysis, we find that softer particles make more fragile glasses, as deduced from dynamical quantities, which is found to be consistent with the Adam-Gibbs fragility.

  16. Universal One-Parametric Dependence of Dielectric Water and Water Steam Permeability on Density-Temperature Ratio

    OpenAIRE

    Yu. V. Mulev; K. M. Arefiev; O. V. Beliayeva; M. Yu. Mulev; T. A/ Zaiats

    2011-01-01

    Available experimental data on dielectric permeability of water and water steam have been analyzed in the paper. The paper presents an universal one-parametric dependence of dielectric water and water steam permeability in single-phase areas and also on boundary curves on density -temperature ratio.

  17. Universal One-Parametric Dependence of Dielectric Water and Water Steam Permeability on Density-Temperature Ratio

    Directory of Open Access Journals (Sweden)

    Yu. V. Mulev

    2011-01-01

    Full Text Available Available experimental data on dielectric permeability of water and water steam have been analyzed in the paper. The paper presents an universal one-parametric dependence of dielectric water and water steam permeability in single-phase areas and also on boundary curves on density -temperature ratio.

  18. Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure.

    NARCIS (Netherlands)

    Eijden, T.M. van; Ruijven, L.J. van; Giesen, E.B.W.

    2004-01-01

    Variation in the apparent stiffness of cancellous bone is generally ascribed to variation in cancellous structure and density, while the bone tissue stiffness is assumed to be constant. The purpose of the present study was to examine whether the bone tissue stiffness is dependent on the direction an

  19. Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry

    NARCIS (Netherlands)

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula; Filippi, Claudia; Casida, Mark E.

    2008-01-01

    We present a mixed time-dependent density-functional theory (TDDFT)/classical trajectory surface hopping (SH) study of the photochemical ring opening in oxirane. Previous preparatory work limited to the symmetric CC ring-opening pathways of oxirane concluded that the Tamm-Dancoff approximation (TDA)

  20. An analysis of the temperature dependence of the electron density in CdGeAs sub 2

    CERN Document Server

    Borisenko, S I

    2001-01-01

    Analysis of temperature dependence of electron density in single crystals grown by a new method has been performed. Values of concentration of intrinsic defects and the energy of activation is calculated. It is shown, that the energy of activation has a resonant character, and concentration of intrinsic defects in the investigated range of temperatures 10-500 K considerably exceeds the concentration of electrons

  1. Tuning of the excited state properties of phenylenevinylene oligomers : A time-dependent density functional theory study

    NARCIS (Netherlands)

    Grozema, FC; Telesca, R; Snijders, JG; Siebbeles, LDA

    2003-01-01

    This paper discusses a time-dependent density functional theory study of the effect of molecular structure on the excited state polarizability of conjugated molecules. A short phenylenevinylene oligomer containing three phenyl rings (PV2, distyryl benzene) is taken as a model system. Introduction of

  2. Gray Matter Density Negatively Correlates with Duration of Heroin Use in Young Lifetime Heroin-Dependent Individuals

    Science.gov (United States)

    Yuan, Yi; Zhu, Zude; Shi, Jinfu; Zou, Zhiling; Yuan, Fei; Liu, Yijun; Lee, Tatia M. C.; Weng, Xuchu

    2009-01-01

    Numerous studies have documented cognitive impairments and hypoactivity in the prefrontal and anterior cingulate cortices in drug users. However, the relationships between opiate dependence and brain structure changes in heroin users are largely unknown. In the present study, we measured the density of gray matter (DGM) with voxel-based…

  3. Competing effects of nuclear deformation and density dependence of the Λ N interaction in BΛ values of hypernuclei

    Science.gov (United States)

    Isaka, M.; Yamamoto, Y.; Rijken, Th. A.

    2016-10-01

    Competitive effects of nuclear deformation and density dependence of Λ N interaction in Λ binding energies BΛ of hypernuclei are studied systematically on the basis of the baryon-baryon interaction model ESC (extended soft core) including many-body effects. By using the Λ N G -matrix interaction derived from ESC, we perform microscopic calculations of BΛ in Λ hypernuclei within the framework of the antisymmetrized molecular dynamics under the averaged-density approximation. The calculated values of BΛ reproduce experimental data within a few hundred keV in the wide mass regions from 9 to 51. It is found that competitive effects of nuclear deformation and density dependence of Λ N interaction work decisively for fine-tuning of BΛ values.

  4. Relativistic time-dependent density functional theory, a study of the ground and excited states of the zinc dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama [CNRS et Universite de Strasbourg, Institut de Chimie, Laboratoire de Chimie Quantique, 1 Rue Blaise Pascal, F- 67008 Strasbourg cedex (France)

    2012-07-01

    In this poster I present a (time-dependent) density functional study of the 20 low-lying excited states as well the ground states of the zinc dimer Zn{sub 2}. I analyze the spectrum of the dimer obtained form all electrons calculations which are performed using time-depended density functional with a relativistic 4-components-, and spin-free-Hamiltonian. I show results for different well-known density functional approximations, in comparing with literature and experimental values, the results are very encouraging, especially for the lowest excited states of these dimers. However, the results show that only the long-range corrected functionals such CAMB3LYP gives the correct asymptotic behavior for the higher states, for which the best result is obtained, and a comparable result is obtained from PBE0 functional.

  5. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  6. Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach

    Science.gov (United States)

    Zhang, Xing; Herbert, John M.

    2015-02-01

    We revisit the formalism for analytic derivative couplings between excited states in time-dependent density functional theory (TDDFT). We derive and implement these couplings using quadratic response theory, then numerically compare this response-theory formulation to couplings implemented previously based on a pseudo-wavefunction formalism and direct differentiation of the Kohn-Sham determinant. Numerical results, including comparison to full configuration interaction calculations, suggest that the two approaches perform equally well for many molecular systems, provided that the underlying DFT method affords accurate potential energy surfaces. The response contributions are found to be important for certain systems with high symmetry, but can be calculated with only a moderate increase in computational cost beyond what is required for the pseudo-wavefunction approach. In the case of spin-flip TDDFT, we provide a formal proof that the derivative couplings obtained using response theory are identical to those obtained from the pseudo-wavefunction formulation, which validates our previous implementation based on the latter formalism.

  7. Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach.

    Science.gov (United States)

    Zhang, Xing; Herbert, John M

    2015-02-14

    We revisit the formalism for analytic derivative couplings between excited states in time-dependent density functional theory (TDDFT). We derive and implement these couplings using quadratic response theory, then numerically compare this response-theory formulation to couplings implemented previously based on a pseudo-wavefunction formalism and direct differentiation of the Kohn-Sham determinant. Numerical results, including comparison to full configuration interaction calculations, suggest that the two approaches perform equally well for many molecular systems, provided that the underlying DFT method affords accurate potential energy surfaces. The response contributions are found to be important for certain systems with high symmetry, but can be calculated with only a moderate increase in computational cost beyond what is required for the pseudo-wavefunction approach. In the case of spin-flip TDDFT, we provide a formal proof that the derivative couplings obtained using response theory are identical to those obtained from the pseudo-wavefunction formulation, which validates our previous implementation based on the latter formalism.

  8. The effects of density-dependent form factors for (e, e'p) reaction in quasi-elastic region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S. [Korea Aerospace University, School of Liberal Arts and Science, Goyang (Korea, Republic of); Cheoun, Myung-Ki [Soongsil University, Department of Physics, Seoul (Korea, Republic of); Kim, Hungchong [Kookmin University, Department of General Education, Seoul (Korea, Republic of); So, W.Y. [Kangwon National University at Dogye, Department of Radiological Science, Samcheok (Korea, Republic of)

    2016-04-15

    Within the framework of a relativistic single particle model, the effects of density-dependent electromagnetic form factors on the exclusive (e, e'p) reaction are investigated in the quasi-elastic region. The density-dependent electromagnetic form factors are generated from a quark-meson coupling model and used to calculate the cross sections in two different densities, either at the normal density of ρ{sub 0} ∝ 0.15 fm{sup -3} or at the lower density, 0.5ρ{sub 0}. Then these cross sections are analyzed in the two different kinematics: One is that the momentum of the outgoing nucleon is along the momentum transfer. The other is that the angle between the momentum of the outgoing nucleon and the momentum transfer is varied at fixed magnitude of the momentum of the outgoing nucleon. Our theoretical differential reduced cross sections are compared with the NIKHEF data for the {sup 208}Pb(e, e'p) reaction, which is related to the probability that a bound nucleon from a given orbit can be knocked-out of the nucleus. The effects of the density-dependent form factors increase the differential cross sections for both knocked-out proton and neutron by an amount of a few percent. Moreover they are shown to be almost the same within only a few percent, i.e., nearly independent of the shell location of knockout nucleons. These results are quite consistent with the characteristics of double magic nuclei which have relatively sharp smearing in the density distribution. (orig.)

  9. Anomalous temperature dependence of liquid state density for Ni50Ti50 alloy investigated under electrostatic levitation state

    Science.gov (United States)

    Zou, P. F.; Wang, H. P.; Yang, S. J.; Hu, L.; Wei, B.

    2017-08-01

    The density of liquid Ni-Ti alloys were measured by electrostatic levitation technique and the maximum reduced undercooling of ΔT/TL reaches 0.23. Quite different from the linear relationship between density and temperature for liquid Ni45Ti55 and Ni55Ti45 alloys, the density of liquid Ni50Ti50 alloy displays a nonlinear dependence on temperature. Interestingly, the density increasing tendency of liquid Ni50Ti50 alloy rises more rapidly with the decrease of temperature, which results from the more severe shrinking of the distance among atoms at lower temperatures. In addition, the thermal expansion coefficient of liquid Ni50Ti50 alloy increases linearly with the decrease of temperature.

  10. Impact of density-dependent symmetry energy and Coulomb interactions on the evolution of intermediate mass fragments

    Indian Academy of Sciences (India)

    Karan Singh Vinayak; Suneel Kumar

    2014-03-01

    Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.

  11. Dependence of intermittent density fluctuations on collisionality in TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Kyle; Garland, Stephen; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnikund Plasmatechnologie, Universitaet Stuttgart (Germany); Manz, Peter [Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany)

    2016-07-01

    Particle and heat transport losses due to edge turbulence are well known phenomena commonly seen in toroidal magnetic confinement devices. Furthermore in the scrape-off layer (SOL), turbulent density fluctuations are often observed to be intermittent and dominate particle transport to the vessel walls. In the adiabatic limit (small collisionality), of the two-field Hasegawa-Wakatani model, simulated turbulent density fluctuations are observed to couple to potential fluctuations and exhibit Gaussian behavior. However, in the hydrodynamic limit (large collisionality) the density and potential decouple. As a result, the density becomes passively advected, evolves towards the vorticity, and exhibits intermittent behavior. The relationship between collisionality and intermittency is investigated experimentally at the stellarator TJ-K. To vary the plasma collisionality, which is related to electron density and temperature, parameters such as gas type, neutral gas pressure, magnetic field, and heating power are varied. Radial profiles of plasma density, temperature, floating potential, and vorticity are recorded via a scanning 7-tip Langmuir probe array. First results are presented.

  12. Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak

    CERN Document Server

    Neyrinck, Mark C; McCullagh, Nuala; Szalay, Alex; Falck, Bridget; Wang, Jie

    2016-01-01

    The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. We find that the full run of the BAO peak location with density is best revealed when slicing on a $\\sim$40 Mpc/$h$ filtered density. But slicing on a $\\sim100$ Mpc/$h$ filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are shifted by a substantial $\\sim$5 Mpc/$h$ at $z...

  13. Comparison of real-time and linear-response time-dependent density functional theories for molecular chromophores ranging from sparse to high densities of states

    Energy Technology Data Exchange (ETDEWEB)

    Tussupbayev, Samat; Govind, Niranjan; Lopata, Kenneth A.; Cramer, Christopher J.

    2015-03-10

    We assess the performance of real-time time-dependent density functional theory (RT-TDDFT) for the calculation of absorption spectra of 12 organic dye molecules relevant to photovoltaics and dye sensitized solar cells with 8 exchange-correlation functionals (3 traditional, 3 global hybrids, and 2 range-separated hybrids). We compare the calculations with traditional linear-response (LR) TDDFT. In addition, we demonstrate the efficacy of the RT-TDDFT approach to calculate wide absorption spectra of two large chromophores relevant to photovoltaics and molecular switches.

  14. Dispersal-mediated effect of microhabitat availability and density dependence determine population dynamics of a forest floor web spider.

    Science.gov (United States)

    Takada, Mayura B; Miyashita, Tadashi

    2014-09-01

    Landscapes in nature can be viewed as a continuum of small total habitable area with high fragmentation to widely spreading habitats. The dispersal-mediated rescue effect predominates in the former landscapes, while classical density-dependent processes generally prevail in widely spread habitats. A similar principle should be applied to populations of organisms utilizing microhabitats in limited supply. To test this hypothesis, we examined the population dynamics of a web spider, Neriene brongersmai, in 16 populations with varying degrees of microhabitat availability, and we explored whether: (i) high microhabitat availability improves survival rate during density-independent movement, while the resultant high density reduces survival rate in a density-dependent manner; and (ii) temporal population stability increases with microhabitat availability at the population level. Furthermore, we conducted two types of field experiments to verify whether high microhabitat availability actually reduces mortality associated with web-site movement. Field observations revealed that demographic change in N. brongersmai populations was affected by three factors at different stages, namely the microhabitat limitation from the early to late juvenile stages, the density dependence from the late juvenile to adult stages and the food limitation from the adult to the next early juvenile stages. In addition, there was a tendency for a positive association between population stability and microhabitat availability at the population level. A small-scale experiment, where the frequency of spider web relocation was equalized artificially, revealed that high microhabitat availability elevated the survival rate during a movement event between web-sites. The larger spatiotemporal scale experiment also revealed an improved spider survival rate following treatment with high microhabitat availability, even though spider density was kept at a relatively low level. The population dynamics of N

  15. Density and habitat dependent effects of crab burrows on sediment erodibility

    Science.gov (United States)

    Needham, Hazel R.; Pilditch, Conrad A.; Lohrer, Andrew M.; Thrush, Simon F.

    2013-02-01

    Despite biological interactions being highlighted as a key process in determining particle fluxes, relatively few studies have attempted to establish the links between burrow building bioturbators and sediment stability. The mud crab Austrohelice crassa, is a key burrowing species in New Zealand estuaries that has shown context-specific interactions with its environment. Here we use annular flumes to test if sediment stability and erodibility were altered as a function of A. crassa burrow density in two contrasting sediment types: a cohesive sandy-mud and a non-cohesive sand. Three burrow density treatments (n = 3) reflecting the natural density range in each sediment type (sand; 0-100 m- 2, sandy-mud; 0-400 m- 2), were collected from the field and subjected to sequential increases in water flow velocity. Flow profiles were measured and bed shear stresses were calculated for each treatment. Increasing burrow density reduced the mass of sediment eroded at 0.35 m s- 1(ME-35, g m- 2) in cohesive sandy-mud, while in non-cohesive sand a unimodal pattern was observed, whereby erosion rates were greatest at the lowest burrow density (19 m- 2). In the cohesive sediment, the linear decrease in erodibility with increasing burrow density was likely affected by the sluicing of fine particulates (silt-clay) from burrows when the tide was out creating both a smoothing and consolidating effect on the sediment surface. A reduction in flow velocity due to the increased presence of surficial pellets and greater trapping of bedload transported material was attributed to the reduction in the mass of sediment eroded in sand at high burrow densities. This study demonstrates that burrow builders influence sediment transport by more than just vertical particle mixing and highlights some of the complexities of small-scale sediment processes. Knowledge of different organism-sediment interactions among sediment types and spatial scales will enhance the accuracy of sediment transport models.

  16. Time-Local Equation for the Exact Optimized Effective Potential in Time-Dependent Density Functional Theory

    Science.gov (United States)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-06-01

    A long-standing challenge in the time-dependent density functional theory is to efficiently solve the exact time-dependent optimized effective potential (TDOEP) integral equation derived from orbital-dependent functionals, especially for the study of nonadiabatic dynamics in time-dependent external fields. In this Letter, we formulate a completely equivalent time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham and effective memory orbitals. The time-local formulation is numerically implemented, with the incorporation of exponential memory loss to address the unaccounted for correlation component in the exact-exchange-only functional, to enable the study of the many-electron dynamics of a one-dimensional hydrogen chain. It is shown that the long time behavior of the electric dipole converges correctly and the zero-force theorem is fulfilled in the current implementation.

  17. More than just halo mass: Modelling how the red galaxy fraction depends on multiscale density in a HOD framework

    CERN Document Server

    Phleps, Stefanie; Zibetti, Stefano; Budavári, Tamás

    2013-01-01

    The fraction of galaxies with red colours depends sensitively on environment, and on the way in which environment is measured. To distinguish competing theories for the quenching of star formation, a robust and complete description of environment is required, to be applied to a large sample of galaxies. The environment of galaxies can be described using the density field of neighbours on multiple scales - the multiscale density field. We are using the Millennium simulation and a simple HOD prescription which describes the multiscale density field of Sloan Digital Sky Survey DR7 galaxies to investigate the dependence of the fraction of red galaxies on the environment. Using a volume limited sample where we have sufficient galaxies in narrow density bins, we have more dynamic range in halo mass and density for satellite galaxies than for central galaxies. Therefore we model the red fraction of central galaxies as a constant while we use a functional form to describe the red fraction of satellites as a function ...

  18. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  19. Time dependent human hip joint lubrication for periodic motion with stochastic asymmetric density function.

    Science.gov (United States)

    Wierzcholski, Krzysztof

    2014-01-01

    The present paper is concerned with the calculation of the human hip joint parameters for periodic, stochastic unsteady, motion with asymmetric probability density function for gap height. The asymmetric density function indicates that the stochastic probabilities of gap height decreasing are different in comparison with the probabilities of the gap height increasing. The models of asymmetric density functions are considered on the grounds of experimental observations. Some methods are proposed for calculation of pressure distributions and load carrying capacities for unsteady stochastic conditions in a super thin layer of biological synovial fluid inside the slide biobearing gap limited by a spherical bone acetabulum. Numerical calculations are performed in Mathcad 12 Professional Program, by using the method of finite differences. This method assures stability of numerical solutions of partial differential equations and gives proper values of pressure and load carrying capacity forces occurring in human hip joints.

  20. Direct evaluation of the position dependent diffusion coefficient and persistence time from the equilibrium density profile in anisotropic fluids.

    Science.gov (United States)

    Olivares-Rivas, Wilmer; Colmenares, Pedro J; López, Floralba

    2013-08-21

    We derive expressions for the transverse diffusion coefficient D(z) and the average persistence time τ(z; L) within a layer of width L, for particles of a non-homogeneous fluid enclosed in a planar nanopore. The method allows the direct evaluation of these position-dependent dynamical quantities from the equilibrium local particle density profile. We use results for the density and persistence time profiles from the virtual layer molecular dynamics method to numerically assess the significance of the Smoluchowski approximation.