WorldWideScience

Sample records for density current deposits

  1. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    Science.gov (United States)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  2. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    Science.gov (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  3. Estimation of the exchange current density and comparative analysis of morphology of electrochemically produced lead and zinc deposits

    Directory of Open Access Journals (Sweden)

    Nikolić Nebojša D.

    2017-01-01

    Full Text Available The processes of lead and zinc electrodeposition from the very dilute electrolytes were compared by the analysis of polarization characteristics and by the scanning electron microscopic (SEM analysis of the morphology of the deposits obtained in the galvanostatic regime of electrolysis. The exchange current densities for lead and zinc were estimated by comparison of experimentally obtained polarization curves with the simulated ones obtained for the different the exchange current density to the limiting diffusion current density ratios. Using this way for the estimation of the exchange current density, it is shown that the exchange current density for Pb was more than 1300 times higher than the one for Zn. In this way, it is confirmed that the Pb electrodeposition processes are considerably faster than the Zn electrodeposition processes. The difference in the rate of electrochemical processes was confirmed by a comparison of morphologies of lead and zinc deposits obtained at current densities which corresponded to 0.25 and 0.50 values of the limiting diffusion current densities. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172046

  4. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    Science.gov (United States)

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain

  5. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  6. Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA)

    Science.gov (United States)

    Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas

    2016-07-01

    Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain ( 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were

  7. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    International Nuclear Information System (INIS)

    Sarac, U; Kaya, M; Baykul, M C

    2016-01-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density. (paper)

  8. A closer look at the pyroclastic density current deposits of the May 18, 1980 eruption of Mt St Helens

    Science.gov (United States)

    Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.

    2010-12-01

    Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow

  9. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    Science.gov (United States)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  10. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  11. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  12. Diameter dependent failure current density of gold nanowires

    International Nuclear Information System (INIS)

    Karim, S; Maaz, K; Ali, G; Ensinger, W

    2009-01-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 x 10 12 A m -2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  13. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  14. Comparing Pyroclastic Density Current (PDC) deposits at Colima (Mexico) and Tungurahua (Ecuador) volcanoes

    Science.gov (United States)

    Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.

    2010-05-01

    Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its

  15. Degradation of solid oxide cells during co-electrolysis of H2O and CO2: Carbon deposition under high current densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2012-01-01

    conversions of the reactants were no more than 66.8 %. Ni-YSZ electrode delamination and carbon nano-fibers could be observed after test at the Ni-YSZ | YSZ electrolyte interface for two of the cells. Thermodynamic calculation shows that the reactant conversion needed for carbon formation is above 99 %, far...... above the experimental conversions. The observed carbon formation may be caused by the gas diffusion limitations at high current densities. Carbon nano-fibers were only observed close to the YSZ electrolyte indicating a large overpotential gradient at the TPBs close to the electrolyte......During co-electrolysis of H2O and CO2 using solid oxide cells (SOCs) the risk of carbon deposition in the Ni-YSZ electrode under high current densities (∼ 2.0 A/cm2) was studied in this work. Five galvanostatic tests were performed at current density between 1.5 and 2.25 A/cm2 and the average...

  16. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  17. Residual Defect Density in Random Disks Deposits.

    Science.gov (United States)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.

  18. Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ashutosh; Bhattacharya, Sumit; Das, Siddhartha; Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.in

    2014-01-30

    Bulk polycrystalline tin films have been processed by pulse electrodeposition technique from a simple solution containing triammonium citrate and stannous chloride. The cathodic investigations have been carried out by galvanostatic methods. As deposited samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis of the deposited films shows microcrystalline grains having β-Sn form. The surface morphology is very rough at lower current density, but becomes smooth at higher current density, and exhibits pyramid type morphology at all the current densities. The effect of current density on microhardness, melting behavior, and electrical resistivity are also reported here.

  19. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    field has a dual effect on the packing density of particles in the deposits formed by .... Saturated calomel electrode (SCE) and a platinum wire mesh were used as .... density of the deposit, the smaller the volume of liquid phase, which should be.

  20. X-ray diffraction characterization of electrodeposited Ni–Al composite coatings prepared at different current densities

    International Nuclear Information System (INIS)

    Cai, Fei; Jiang, Chuanhai; Wu, Xueyan

    2014-01-01

    Highlights: • Different X-ray diffraction techniques were applied to characterize the Ni–Al composite coatings. • Al 2 O 3 formed on the coating surface after potentiostatic polarization experiments. • The relationship between corrosion and the Al content and the texture were also investigated. - Abstract: Ni–Al composite coatings were prepared at different applied current densities (1–8 A/dm 2 ) from a conventional Watt bath. The influences of current densities on the texture, grain size, microstrain, residual stress of the Ni–Al composite coating were investigated with X-ray diffraction method, which includes texture coefficients (TC) and pole figures, Voigt method, classical sin 2 ψ X-ray diffraction method and the Multi-reflection grazing incidence geometry (referred to as MGIXD) method. The morphology, composition, anti-corrosion properties and friction coefficients at 200 °C of the coating were also studied. The results showed that the texture of coating deposited at higher current densities evolved from the (2 0 0) preferred orientation with fiber texture to random orientation with reducing current density. Al particle content increased with reducing current density, grain size decreased with the reducing current density, while the microstrain and the tensile residual stresses increased. The MGIXD result showed stress gradient on the near-surface of the coating. Potentiodynamic polarization results demonstrated that the Ni–Al coating deposited at 2 A/dm 2 exhibited the best anti-corrosion which was contributed by the formation of Al 2 O 3 on the surface. The minimum friction coefficient of 0.57 was also observed for coating deposited at 4 A/dm 2

  1. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  2. Electrodeposition Behavior of U into Liquid Cd Cathode at Low Current Density

    International Nuclear Information System (INIS)

    Kim, Si Hyung; Kim, Gha-Young; Sim, Jun-Bo; Paek, Seungwoo; Ahn, Do-Hee

    2015-01-01

    According to the U-Cd phase diagram, U and UCd 11 are, respectively, present as a stable phase above and below 473 .deg. C when both U and Cd elements coexist at such temperatures. U metals deposited on the surface of the LCC around 500 .deg. C tends to form a dendrite shape having a large surface area and the U dendrites floating on the surface of the LCC have a role of a solid cathode, and from that time, co-deposition of U and TRU can be hampered. If the UCd 11 phase does not have a dendrite form during electrodeposition, this phase may sink into the liquid Cd. This can be a good method to simplify the equipment configuration through the omission of the stirring tool. In this study, the deposition behavior of U metal was observed when electrodeposition using a LCC was carried out at 450 and 500 .deg. C at low current density. To observe the deposition behavior of U when using a liquid cadmium cathode (LCC), several deposition experiments were conducted in the LiCl- KCl-UCl 3 salt at a current density of 50 mA/cm 2 at 450 and 500 .deg.C. At 500 .deg. C, the U metal deposited on the LCC grew in the form of a dendrite shape having a large surface area, and thus it was not sunk into the liquid Cd even though the density of U was much larger than that of liquid Cd. On the other hand, the UCd 11 phase was stable according to the U-Cd phase diagram at 450 .deg. C

  3. Formation of a spatter-rich pyroclastic density current deposit in a Neogene sequence of trachytic-mafic igneous rocks at Mason Spur, Erebus volcanic province, Antarctica

    Science.gov (United States)

    Martin, A. P.; Smellie, J. L.; Cooper, A. F.; Townsend, D. B.

    2018-01-01

    Erosion has revealed a remarkable section through the heart of a volcanic island, Mason Spur, in the southwestern Ross Sea, Antarctica, including an unusually well-exposed section of caldera fill. The near-continuous exposure, 10 km laterally and > 1 km vertically, cuts through Cenozoic alkalic volcanic rocks of the Erebus volcanic province (McMurdo Volcanic Group) and permits the study of an ancient volcanic succession that is rarely available due to subsequent burial or erosion. The caldera filling sequence includes an unusual trachytic spatter-rich lapilli tuff (ignimbrite) facies that is particularly striking because of the presence of abundant black fluidal, dense juvenile spatter clasts of trachytic obsidian up to 2 m long supported in a pale cream-coloured pumiceous lapilli tuff matrix. Field mapping indicates that the deposit is an ignimbrite and, together with petrological considerations, it is suggested that mixing of dense spatter and pumiceous lapilli tuff in the investigated deposit occurred during emplacement, not necessarily in the same vent, with the mixed fragmental material emplaced as a pyroclastic density current. Liquid water was not initially present but a steam phase was probably generated during transport and may represent water ingested during passage of the current as it passed over either wet ground, stream, shallow lake or (possibly) snow. Well-exposed caldera interiors are uncommon and that at Mason Spur is helping understand eruption dynamics associated with a complex large island volcano. The results of our study should help to elucidate interpretations of other, less well exposed, pyroclastic density current deposits elsewhere in Antarctica and globally.

  4. Three-Dimensional Grain Shape-Fabric from Unconsolidated Pyroclastic Density Current Deposits: Implications for Extracting Flow Direction and Insights on Rheology

    Science.gov (United States)

    Hawkins, T. T.; Brand, B. D.; Sarrochi, D.; Pollock, N.

    2016-12-01

    One of the greatest challenges volcanologists face is the ability to extrapolate information about eruption dynamics and emplacement conditions from deposits. Pyroclastic density current (PDC) deposits are particularly challenging given the wide range of initial current conditions, (e.g., granular, fluidized, concentrated, dilute), and rapid flow transformations due to interaction with evolving topography. Analysis of particle shape-fabric can be used to determine flow direction, and may help to understand the rheological characteristics of the flows. However, extracting shape-fabric information from outcrop (2D) apparent fabric is limited, especially when outcrop exposure is incomplete or lacks context. To better understand and quantify the complex flow dynamics reflected in PDC deposits, we study the complete shape-fabric data in 3D using oriented samples. In the field, the prospective sample is carved from the unconsolidated deposit in blocks, the dimensions of which depend on the average clast size in the sample. The sample is saturated in situ with a water-based sodium silicate solution, then wrapped in plaster-soaked gauze to form a protective cast. The orientation of the sample is recorded on the block faces. The samples dry for five days and are then extracted in intact blocks. In the lab, the sample is vacuum impregnated with sodium silicate and cured in an oven. The fully lithified sample is first cut along the plan view to identify orientations of the long axes of the grains (flow direction), and then cut in the two plains perpendicular to grain elongation. 3D fabric analysis is performed using high resolution images of the cut-faces using computer assisted image analysis software devoted to shape-fabric analysis. Here we present the results of samples taken from the 18 May 1980 PDC deposit facies, including massive, diffuse-stratified and cross-stratified lapilli tuff. We show a relationship between the strength of iso-orientation of the elongated

  5. Thermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy)

    Science.gov (United States)

    Giordano, G.; Zanella, E.; Trolese, M.; Baffioni, C.; Vona, A.; Caricchi, C.; De Benedetti, A. A.; Corrado, S.; Romano, C.; Sulpizio, R.; Geshi, N.

    2018-05-01

    Pyroclastic density currents (PDCs) can have devastating impacts on urban settlements, due to their dynamic pressure and high temperatures. Our degree of understanding of the interplay between these hot currents and the affected infrastructures is thus fundamental not only to implement our strategies for risk reduction, but also to better understand PDC dynamics. We studied the temperature of emplacement of PDC deposits that destroyed and buried the Villa dei Papiri, an aristocratic Roman edifice located just outside the Herculaneum city, during the AD79 plinian eruption of Mt Vesuvius (Italy) by using the thermal remanent magnetization of embedded lithic clasts. The PDC deposits around and inside the Villa show substantial internal thermal disequilibrium. In areas affected by convective mixing with surface water or with collapsed walls, temperatures average at around 270 °C (min 190 °C, max 300 °C). Where the deposits show no evidence of mixing with external material, the temperature is much higher, averaging at 350 °C (min 300 °C; max 440 °C). Numerical simulations and comparison with temperatures retrieved at the very same sites from the reflectance of charcoal fragments indicate that such thermal disequilibrium can be maintained inside the PDC deposit for time-scales well over 24 hours, i.e. the acquisition time of deposit temperatures for common proxies. We reconstructed in detail the history of the progressive destruction and burial of Villa dei Papiri and infer that the rather homogeneous highest deposit temperatures (average 350 °C) were carried by the ash-sized fraction in thermal equilibrium with the fluid phase of the incoming PDCs. These temperatures can be lowered on short time- (less than hours) and length-scales (meters to tens of meters) only where convective mixing with external materials or fluids occurs. By contrast, where the Villa walls remained standing the thermal exchange was only conductive and very slow, i.e. negligible at 50 cm

  6. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  7. Power deposition profile during lower hybrid current drive in Tore Supra

    International Nuclear Information System (INIS)

    Pecquet, A.L.; Moreau, D.; Fall, T.; Lasalle, J.; Lecoustey, P.; Mattioli, M.; Peysson, Y.; Auge, N.; Rodriguez, L.; Talvard, M.; Hubbard, A.; Moret, J.M.

    1991-01-01

    Lower hybrid current drive (LHCD) experiments have been performed in Tore Supra in various density regimes. The total power coupled to the plasma reached 4MW and a strong electron heating has been observed. To investigate the power deposition mechanism on the electrons, r.f power modulation experiments have been performed. These experiments allow us to estimate the power deposition profiles on both thermal and non-thermal electrons and also to study their respective time responses. From these studies it is possible to deduce a thermal heating scenario which agrees with the experimental results

  8. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Harry, KJ; Higa, K; Srinivasan, V; Balsara, NP

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabled estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.

  9. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    Science.gov (United States)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these

  10. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    Science.gov (United States)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  11. The effect of electrodeposition process parameters on the current density distribution in an electrochemical cell

    Directory of Open Access Journals (Sweden)

    R. M. STEVANOVIC

    2001-02-01

    Full Text Available Cell voltage – current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.

  12. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    Directory of Open Access Journals (Sweden)

    Leandro Trinta de Farias

    2008-03-01

    Full Text Available Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00, with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition potential, an experimental central composite design 2² was employed, and three current density intervals (0.11 to 0.60, 0.50 to 1.98 and 2.44 to 9.94 mA.cm-2 were chosen from the polarization curves for this purpose. The results indicated that the current density (mainly in the range between 0.11 and 0.60 mA.cm-2 affected significantly all the studied variables. In the intermediate range (0.50 to 1.98 mA.cm-2, only the average potential was influenced by the current density. On the other hand, the mechanical stirring had a significant effect only on the copper content, for both the lowest (0.11 to 0.60 mA.cm-2 and the highest current density range (2.44 to 9.94 mA.cm-2. Indeed, in the last range, none of the studied deposition parameters presented significant influence on the studied variables, except for the copper content. This could probably be explained by the direct incorporation of Cu-Citrate complexes in the coating, which was enhanced at high current values.

  13. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  14. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  15. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature

  16. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    Science.gov (United States)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  17. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  18. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2002-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bar e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  19. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.; Murakami, S.; Yamazaki, K.

    2003-01-01

    Energy confinement and heat transport of net current-free NBI-heated plasmas in the Large Helical Device (LHD) are discussed with an emphasis on density dependence. Although the apparent density dependence of the energy confinement time has been demonstrated in a wide parameter range in LHD, the loss of this dependence has been observed in the high density regime under the specific condition. Broad heat deposition due to off-axis alignment and shallow penetration of neutral beams degrades the global energy confinement while the local heat transport maintains a clear temperature dependence lying between Bohm and gyro-Bohm characteristics. The central heat deposition inclines towards an intrinsic density dependence like τ E ∝(n-bars e /P) 0.6 from the saturated state. The broadening of the temperature profile due to the broad heat deposition profile contrasts with the invariant property which has observed widely as profile consistency and stiffness in tokamak experiments. (author)

  20. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    Science.gov (United States)

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    master teacher.” The 1980 eruption and studies both before and after 1980 played a major role in the establishment of the modern U.S. Geological Survey Volcano Hazards Program and our understanding of flank collapses, debris avalanches, cryptodomes, blasts, pyroclastic density currents, and lahars, as well as the dynamics of magma ascent and eruption.

  1. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    International Nuclear Information System (INIS)

    Góral, Anna; Nowak, Marek; Berent, Katarzyna; Kania, Bogusz

    2014-01-01

    Highlights: • Current density of the electrodeposition affects the incorporation of Al 2 O 3 in Ni matrix. • Ni/Al 2 O 3 composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al 2 O 3 coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al 2 O 3 nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al 2 O 3 particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix

  2. Current deposition profiles in advanced geometries

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.; Bonoli, P.T.

    1997-01-01

    In advanced toroidal devices, plasma shaping can have a significant effect on quantities of interest, including the radio frequency (RF) deposited power and current. Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization is derived from a ray-tracing model in a low-beta model equilibrium. There are difficulties in applying it to a spectrum of waves, and it cannot account for multiple resonances and coherency effects between the electrons and the waves. By evaluating a formulation of the quasilinear diffusion coefficient in an arbitrary inhomogenous geometry with the fields from a full wave code, we address the effects of wave spectra, plasma inhomogeneity, and plasma profile on the evaluation of current deposition profiles. Current profiles are calculated directly from the quasilinear diffusion using the adjoint formulation, with the magnetic equilibrium specified consistently in both the adjoint routine and the full wave code. Results are benchmarked by comparing a power deposition calculation from conductivity to one from the quasilinear expression. RF driven current profiles for various devices, including tokamaks with different aspect ratios, will be presented. copyright 1997 American Institute of Physics

  3. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Dunne, Michael G.

    2014-01-01

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  4. Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, Michael G.

    2014-02-15

    The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.

  5. Current interruption by density depression

    International Nuclear Information System (INIS)

    Wagner, J.S.; Tajima, T.; Akasofu, S.I.

    1985-04-01

    Using a one-dimensional electrostatic particle code, we examine processes associated with current interruption in a collisionless plasma when a density depression is present along the current channel. Current interruption due to double layers was suggested by Alfven and Carlqvist (1967) as a cause of solar flares. At a local density depression, plasma instabilities caused by an electron current flow are accentuated, leading to current disruption. Our simulation study encompasses a wide range of the parameters in such a way that under appropriate conditions, both the Alfven and Carlqvist (1967) regime and the Smith and Priest (1972) regime take place. In the latter regime the density depression decays into a stationary structure (''ion-acoustic layer'') which spawns a series of ion-acoustic ''solitons'' and ion phase space holes travelling upstream. A large inductance of the current circuit tends to enhance the plasma instabilities

  6. Boiling-over dense pyroclastic density currents during the formation of the 100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis

    Science.gov (United States)

    Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo

    2018-01-01

    A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the

  7. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    Science.gov (United States)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  8. Structure and x-ray density of electrochemically deposited rhenium films

    International Nuclear Information System (INIS)

    Petrovich, V.A.; Fedenkov, A.L.; Shepurev, S.Yu.

    1988-01-01

    The electrodeposition of rhenium was carried out at a constant cathode-current density and room temperature. The backing was grade KEF-0.02 single-crystal silicon. The absorption coefficient μ of the film was determined for the K α radiation of the copper line. The investigation enabled us to conclude that electrochemically deposited rhenium films can be used as a material for the masking coatings of x-ray patterns, since the absorption coefficients of the x-ray radiation of the resultant films are superior to the similar parameters of traditionally employed materials, and surpass these materials in terms of corrosion resistance and simplicity of production

  9. Current distribution tomography for determination of internal current density distributions

    International Nuclear Information System (INIS)

    Gailey, P.C.

    1993-01-01

    A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields

  10. Hydrogen retention properties of co-deposition under high-density plasmas in TRIAM-1M

    International Nuclear Information System (INIS)

    Tokitani, M.; Miyamoto, M.; Tokunaga, K.; Fujiwara, T.; Yoshida, N.; Sakamoto, M.; Zushi, H.; Hanada, K.; TRIAM Group,; Nagata, S.; Tsuchiya, B.

    2007-01-01

    Retention of hydrogen in co-deposits formed under high-density plasma discharge in TRIAM-1M was studied. In order to quantify the retained hydrogen, material probe experiments were performed under the high-density (n at e ∼10 19 m -3 ) discharges. After the exposure to the plasma, the quantitative analysis of deposition, hydrogen retention, and microscopic modification of specimens were performed by means of ion beam analysis and transmission electron microscopy. The co-deposits mainly consisted of Mo. The deposition rate of Mo was about ten times higher than that of the low-density discharge case. The hydrogen concentrations (H/Mo) retained in the co-deposits were 0.06-0.17, which was much higher than that in bulk-Mo and almost equal to the low-density case. These results indicate that as long as the co-deposition layers are continuously formed, strong wall pumping in TRIAM-1M is maintained during the discharges

  11. Density-Driven Currents and Deposition of Fine Materials

    DEFF Research Database (Denmark)

    Saremi, Sina

    Dredging is a key element in river, ports, coastal and offshore development. In general dredging is conducted for excavation at the river,lake or seabed, relocation of the material, maintenance of the navigation channels, mining underwater deposits, land reclamation or cleaning up the environment...... and the local conditions determine the level of environmental interference and the impacts caused by the dredging projects. Sediment spillage from hopper overflow constitutes a source for sediment plumes and can also impact the turbidity of aquatic environments. The overflowing mixture is often different from...... the mixture pumped into the hopper (the inflow), because the mixture undergoes compositional transformation as a result of different timescales in the segregation of the various sediment fractions. A proper description of the compositional transformation during filling and subsequent overflow stages can...

  12. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  13. The Impact of Beam Deposition on Bootstrap Current of Fast Ion Produced by Neutral Beam Tangential Injection

    International Nuclear Information System (INIS)

    Huang Qian-Hong; Gong Xue-Yu; Lu Xing-Qiang; Yu Jun; Cao Jin-Jia

    2015-01-01

    The density profile of fast ions arising from a tangentially injected diffuse neutral beam in tokamak plasma is calculated. The effects of mean free paths and beam tangency radius on the density profile are discussed under typical HL-2A plasmas parameters. The results show that the profile of fast ions is strongly peaked at the center of the plasma when the mean free path at the maximum deuteron density is larger than the minor radius, while the peak value decreases when the mean free path at the maximum deuteron density is larger than twice that of the minor radius due to the beam transmission loss. Moreover, the bootstrap current of fast ions for various mean free paths at the maximum deuteron density is calculated and its density is proved to be closely related to the deposition of the neutral beam. With the electron return current considered, the net current density obviously decreases. Meanwhile, the peak central fast ion density increases when the beam tangency radius approaches the major radius, and the net bootstrap current increases rapidly with the increasing beam tangency radius. (paper)

  14. Fabrication of multi-emitter array of CNT for enhancement of current density

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, Vijay, E-mail: vchouhan@post.kek.jp [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); Noguchi, Tsuneyuki [High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan); Kato, Shigeki [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan)

    2011-11-11

    We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm{sup 2} was achieved at an electric field of 8 V/{mu}m from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.

  15. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...

  16. The effect of current density and saccharin addition on the grain size of nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating.

  17. The effect of current density and saccharin addition on the grain size of nickel coatings

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating

  18. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  19. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    Science.gov (United States)

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  20. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    International Nuclear Information System (INIS)

    Vasina, P; Hytkova, T; Elias, M

    2009-01-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  1. Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods

    International Nuclear Information System (INIS)

    Chávez-Valdez, Alejandra; Boccaccini, Aldo R.

    2012-01-01

    This review summarizes emerging developments in the field of alternating current (AC) and pulsed direct current (DC) electrophoretic deposition (EPD) in aqueous or organic media. Numerous applications of AC-EPD are discussed including two major groups of investigations: (i) AC-EPD to suppress water hydrolysis at high voltages in inorganic (ceramic) coatings and (ii) AC-EPD for deposition of biological entities. The deposition, purification and manipulation of carbon nanotubes and nanoparticles by AC-EPD to form specific arrays, for development of sensors and other electronic devices and the application of AC-EPD as method for separation of particles according to their shape or size are also presented. Other applications reviewed relate to the fabrication by AC-EPD of toxic gas sensors from oxides and superconducting layers. The main materials being examined by AC-EPD are inorganic, including carbon nanotubes, TiO 2 nanoparticles, Al 2 O 3 , Si, SnO 2 , ZnO and WO 3 and biological entities, e.g. bacteria cells. For pulsed EPD, the applications reviewed are divided in pulsed current and pulsed voltage EPD. Among the applications of pulsed EPD, the formation of thick films from aqueous suspensions without water decomposition, the fabrication of multilayer and composite materials and the size-selective deposition of ceramic nanoparticles are the most important investigated to date, based on the quality of the coatings and deposits obtained and their relevance for applications.

  2. Effects of current density and electrolyte temperature on the volume expansion factor of anodic alumina formed in oxalic acid

    International Nuclear Information System (INIS)

    Zhou, F.; Baron-Wiecheć, A.; Garcia-Vergara, S.J.; Curioni, M.; Habazaki, H.; Skeldon, P.; Thompson, G.E.

    2012-01-01

    The formation of porous anodic alumina in 0.4 M oxalic acid is investigated over a range of current density and electrolyte temperature using sputtering-deposited substrates containing tungsten tracer layers. The findings reveal volume expansion factors and efficiencies of film growth that increase with the increase of the current density and decrease of the temperature. Pore generation by the flow of the anodic alumina in the barrier layer toward the pore walls is proposed to dominate at relatively high current densities (above ∼2 mA cm −2 ), with tungsten tracer species being retained within films. Conversely, losses of tungsten species occur at lower current densities, possibly due to increased field-assisted ejection of Al 3+ ions and/or field-assisted dissolution of the anodic alumina.

  3. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits

    Science.gov (United States)

    Belousov, Alexander; Voight, Barry; Belousova, Marina

    2007-01-01

    We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3 . The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the

  4. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  5. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, PengFei; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-03-15

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  6. Problems related to the determination of mass densities of evaporated reference deposits

    Science.gov (United States)

    Tagziria, H.; Pauwels, J.; Verdonk, J.; Van Gestel, J.; Eykens, R.; Gilliam, D. M.; Scott, R. D.; Byrne, J.; Dawber, P.

    1991-05-01

    The accurate characterization of the surface density (nuclei/cm 2) of thin isotopic deposits is of highest importance in certain experiments. If accuracies better than ± 0.5% are to be quoted, careful consideration of seemingly minor effects is necessary, as these effects may generate serious errors. The radial surface density distribution in the central region of the target disks, the thickness profile at the edges, and the evaluation of effective deposit diameters are discussed for the case of measurements and observations made during the preparation and characterization of 6LiF and 10B reference deposits, which were employed in a recent determination of the free neutron lifetime. Theoretical calculations are in excellent agreement with the experimental results.

  7. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  8. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films

  9. Effect of coating current density on the wettability of electrodeposited copper thin film on aluminum substrate

    Directory of Open Access Journals (Sweden)

    Arun Augustin

    2016-09-01

    Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.

  10. Problems related to the determination of mass densities of evaporated reference deposits

    International Nuclear Information System (INIS)

    Tagziria, H.; Pauwels, J.; Verdonk, J.; Gestel, J. van; Eykens, R.; Gilliam, D.M.; Scott, R.D.; Byrne, J.; Dawber, P.

    1991-01-01

    The accurate characterization of the surface density (nuclei/cm 2 ) of thin isotopic deposits is of highest importance in certain experiments. If accuracies better than ±0.5% are to be quoted, careful consideration of seemingly minor effects is necessary, as these effects may generate serious errors. The radial surface density distribution in the central region of the target disks, the thickness profile at the edges, and the evaluation of effective deposit diameters are discussed for the case of measurements and observations made during the preparation and characterization of 6 LiF and 10 B reference deposits, which were employed in a recent determination of the free neutron lifetime. Theoretical calculations are in excellent agreement with the experimental results. (orig.)

  11. Problems related to the determination of mass densities of evaporated reference deposits

    Energy Technology Data Exchange (ETDEWEB)

    Tagziria, H.; Pauwels, J.; Verdonk, J.; Gestel, J. van; Eykens, R. (Commission of the European Communities, Joint Research Centre, Central Bureau for Nuclear Measurements, Geel (Belgium)); Gilliam, D.M. (National Inst. of Standards and Tech., Gaithersburg, MD (USA)); Scott, R.D. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Byrne, J.; Dawber, P. (School of Mathematical and Physical Sciences, Univ. of Sussex, Brighton (UK))

    1991-05-15

    The accurate characterization of the surface density (nuclei/cm{sup 2}) of thin isotopic deposits is of highest importance in certain experiments. If accuracies better than {+-}0.5% are to be quoted, careful consideration of seemingly minor effects is necessary, as these effects may generate serious errors. The radial surface density distribution in the central region of the target disks, the thickness profile at the edges, and the evaluation of effective deposit diameters are discussed for the case of measurements and observations made during the preparation and characterization of {sup 6}LiF and {sup 10}B reference deposits, which were employed in a recent determination of the free neutron lifetime. Theoretical calculations are in excellent agreement with the experimental results. (orig.).

  12. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  13. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    OpenAIRE

    Leandro Trinta de Farias; Aderval Severino Luna; Dalva Cristina Baptista do Lago; Lilian Ferreira de Senna

    2008-01-01

    Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00), with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition p...

  14. High critical current density YBCO films and fabrication of dc-SQUIDs

    CERN Document Server

    Kuriki, S; Kawaguchi, Y; Matsuda, M; Otowa, T

    2002-01-01

    In order to improve the sensitivity of SQUID magnetometers made of high-T sub c films, we have studied the conditions of pulsed-laser deposition of YBCO films. Among the different deposition parameters examined, extensive degassing of the vacuum chamber before and precise control of the substrate temperature during the film deposition were found effective for obtaining high critical temperature T sub c and high critical current density J sub c. It was also found that the residual-resistance ratio has a clear correlation with J sub c , indicating that it can be a good, and easy to measure, index of the film quality. Films having T sub c approx 89-90 K and J sub c >= 5x10 sup 6 A cm sup - sup 2 at 77 K were used to fabricate SQUIDs without a pickup loop. Grain-boundary junctions formed on bicrystal substrates with a 30 deg. misorientation angle exhibited I sub c R sub n values of more than 100 mu V at 77 K. The well-known scaling behaviour of the relation I sub c R sub n propor to (J sup G sup B sub c) sup 1 su...

  15. Current density profile evolution in JET

    International Nuclear Information System (INIS)

    Stubberfield, P.M.; Balet, B.; Campbell, D.; Challis, C.D.; Cordey, J.G.; O'Rourke, J.; Hammett, G.; Schmidt, G.L.

    1989-01-01

    Simulation studies have been made of the current density profile evolution in discharges where the bootstrap current is expected to be significant. The changes predicted in the total current profile have been confirmed by comparison with experimental results. (author) 8 refs., 6 figs

  16. Study of Chromium Multilayers Properties Obtained by Pulsed Current Density: Residual Stress and Microhardness

    Directory of Open Access Journals (Sweden)

    Julieta TORRES-GONZÁLEZ

    2010-12-01

    Full Text Available Chromium multilayers deposits were obtained from three different bath solutions, they were prepared by switching current density between 10 and 70 Adm-2. Two temperatures were studied, 35°C and 55°C. At 35°C two different microstructures are alternated: columnar obtained at 10 Adm-2 and equiaxial obtained at 70 Adm-2. At 55°C only the columnar type microstructure is present, at 10 and 70 Adm-2, the only difference among the layers is a slight disorientation of grains. The properties of these chromium multilayers were characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD. In general the deposits are microcracked with a high microhardness, high residual stress and a small grain size.

  17. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  18. 'Anomalous electron transport' with 'Giant Current Density' at room temperature observed with nanogranular materials

    International Nuclear Information System (INIS)

    Koops, Hans W.P.

    2013-01-01

    Focused electron beam induced deposition is a novel bottom up nano-structurization technology. An electron beam of high power density is used to generate nano- structures with dimensions > 20 nm, but being composed from amorphous or nanogranular materials with crystals of 2 to 5 nm diameter embedded in a Fullerene matrix. Those compounds are generated in general by secondary or low energy electrons in layers of inorganic, organic, organometallic compounds absorbed to the sample. Those are converted into nanogranular materials by the electron beam following chemical and physical laws, as given by 'Mother Nature'. Metals and amorphous mixtures of chemical compounds from metals are normal resistors, which can carry a current density J 2 . Nanogranular composites like Au/C or Pt/C with metal nanocrystals embedded in a Fullerene matrix have hopping conduction with 0-dimensional Eigen-value characteristics and show 'anomalous electron transport' and can carry 'Giant Current Densities' with values from > 1 MA/cm 2 to 0.1 GA/cm 2 without destruction of the materials. However the area connecting the nanogranular material with a metal with a 3-dimensional electron gas needs to be designed, that the flowing current is reduced to the current density values which the 3-D metal can support without segregation. The basis for a theoretical explanation of the phenomenon can be geometry quantization for Coulomb blockade, of electron surface orbitals around the nanocrystals, hopping conduction, and the limitation of the density of states for phonons in geometry confined non percolated granular materials with strong difference in mass and orientation. Several applications in electronics, signal generators, light sources, detectors, and solar energy harvesting are suggested. (author)

  19. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  20. Preliminary evaluation of uranium deposits. A geostatistical study of drilling density in Wyoming solution fronts

    International Nuclear Information System (INIS)

    Sandefur, R.L.; Grant, D.C.

    1976-01-01

    Studies of a roll-front uranium deposit in Shirley Basin Wyoming indicate that preliminary evaluation of the reserve potential of an ore body is possible with less drilling than currently practiced in industry. Estimating ore reserves from sparse drilling is difficult because most reserve calculation techniques do not give the accuracy of the estimate. A study of several deposits with a variety of drilling densities shows that geostatistics consistently provides a method of assessing the accuracy of an ore reserve estimate. Geostatistics provides the geologist with an additional descriptive technique - one which is valuable in the economic assessment of a uranium deposit. Closely spaced drilling on past properties provides both geological and geometric insight into the occurrence of uranium in roll-front type deposits. Just as the geological insight assists in locating new ore bodies and siting preferential drill locations, the geometric insight can be applied mathematically to evaluate the accuracy of a new ore reserve estimate. By expressing the geometry in numerical terms, geostatistics extracts important geological characteristics and uses this information to aid in describing the unknown characteristics of a property. (author)

  1. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  2. Effect of current density on the anodization of zircaloy-2

    International Nuclear Information System (INIS)

    Bhaskar Reddy, P.; Panasa Reddy, A.

    2005-01-01

    The effect of current density on the kinetics of anodization of Zircaloy-2 in 0.1 M potassium tartarate have been studied at various constant current densities ranging from 2 to 10 mA.cm -2 and at room temperature to investigate the exponential dependence of ionic current density on the field across the oxide. The rate of anodic film formation (dV/dt), the current efficiency the differential field of formation (F) and the ionic current density (i i ) were calculated. It was found that all these parameters were increased with increase of current density. The induction period was decreased with the increase of current density. It was also found that the plot of log (ionic current density) vs differential field gave fairly a linear relationship. The kinetic parameters, half jump distance (a) and height of the energy barrier (W) were calculated. (author)

  3. The properties of chromium electrodeposited with programmed currents. Part II. Reversing current

    Directory of Open Access Journals (Sweden)

    TANJA M. KOSTIC

    2000-01-01

    Full Text Available The electrodeposition of chromium in programmed reversing current (RC, was investigated in the regime of high cathodic current density (77 A dm-2 and anodic current density (55 A dm-2. The ratio of the cathodic and anodic time (60 : 1 was used. Chromium was deposed on a steel substrate from a chromic-sulphuric acid solution, during one hour. Anode and cathode were suited in a system of parallel plates. Basic properties of deposits, like thickness, morphology, microhardness, brightness were examined. Surface distribution of the deposits was obtained from the measurements of the thicknesses of the deposits (between 32 and 67 µm. A ferromagnetic non-destructive method was used in the measurements. Based on the results, graphic models of deposit surface distribution were made. Two ranges of the thickness could be seen on the model (range 1 - average thickness 35.1 µm and range 2 - average thickness 57.81 µm. These results were statisticaly analysed by colums, rows and by the whole surface. For the whole specimens, the average thickness was 45.39 µm with a coefficient of variation of 0.2582. The basic properties of the deposits did not change with a variation of the thickness. Because of this, the coatings deposited with the reversing current could be much more considered reliable in wear and corrosion protection systems than ones deposited by direct current.

  4. The impact of triggering mechanism on flow dynamics and depositional geometry: results from an experimental study of non-conservative density currents; Influencia do mecanismo de iniciacao na dinamica dos fluxos e na geometria dos depositos gerados: observacoes obtidas a partir de estudo experimental de correntes de densidade nao-conservativas

    Energy Technology Data Exchange (ETDEWEB)

    Manica, Rafael [Rio Grande do Sul Univ., Porto Alegre (Brazil). Inst. de Pesquisas Hidraulicas. Nucleo de Estudos de Correntes de Densidade]. E-mail: rmanica@portoweb.com.br; Del Rey, Antonio Cosme; Maestri, Rogerio Dornelles; Borges, Ana Luiza de Oliveira; Viana, Adriano Roessler

    2005-05-01

    This study presents 28 physical simulations of non-conservative density currents used to evaluate their depositional patterns. Two different triggering mechanisms were used: lock gate and fluid injection. The impact of specific gravity, material type and grain size on the mixture were also checked. Dynamic and geometric features, such as head velocity and head/body height, were recorded. Results show flow velocity increase as concentration grows; deposition volumes present a general tendency to exponential decline with distance; the grain size range of the deposits decreases towards the distal portion of the channel. The results obtained have showed the efficiency of physical modeling in the study of turbidites in allowing correlations to be defined between currents and deposition patterns. (author)

  5. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  6. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  7. Superconducting toroidal field coil current densities for the TFCX

    International Nuclear Information System (INIS)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm 2 with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm 3 for the nominal design and 50 MW/cm 3 for an advanced design. This study developed justification for these current density and nuclear heat load limits

  8. Current Density and Plasma Displacement Near Perturbed Rational Surface

    International Nuclear Information System (INIS)

    Boozer, A.H.; Pomphrey, N.

    2010-01-01

    The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.

  9. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  10. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  11. Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

    Directory of Open Access Journals (Sweden)

    Andrei E. Surdu

    2011-12-01

    Full Text Available The effect of depositing FeO nanoparticles with a diameter of 10 nm onto the surface of MgB2 thin films on the critical current density was studied in comparison with the case of uncoated MgB2 thin films. We calculated the superconducting critical current densities (Jc from the magnetization hysteresis (M–H curves for both sets of samples and found that the Jc value of FeO-coated films is higher at all fields and temperatures than the Jc value for uncoated films, and that it decreases to ~105 A/cm2 at B = 1 T and T = 20 K and remains approximately constant at higher fields up to 7 T.

  12. Spin-Density Functionals from Current-Density Functional Theory and Vice Versa: A Road towards New Approximations

    International Nuclear Information System (INIS)

    Capelle, K.; Gross, E.

    1997-01-01

    It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society

  13. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  14. Derivation of 137Cs deposition density from measurement of 137Cs inventories in undisturbed soils

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Huy, N.Q.; Binh, N.T.; Hai, P.S.; Long, N.Q.; Bac, V.T

    2012-01-01

    The 137 Cs inventories in undisturbed soils were measured for 292 locations across the territory of Vietnam. the logarithmic inventory values were regressed against characteristics of sampling sites, such as geographical coordinates, annual rainfall and physico-chemical parameters of soil. The regression model containing latitude and annual rainfall as determinants could explain 76% of the variations in logarithmic inventory values across the territory. The model part was interpreted as the logarithmic 137 Cs deposition density. At the 95% confidence level, 137 Cs deposition density could be predicted be the model ± 7% relative uncertainty. the latitude mean 137 Cs deposition density increases northward from 237 Bq m -2 to 1097 Bq m -2 , while the corresponding values derived from the UNSCEAR (1969) global pattern are 300 Bq m -2 and 600 Bq m -2 . High 137 Cs inputs were found in high-rainfall areas in northern and central parts of the territory. (author)

  15. Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system

    International Nuclear Information System (INIS)

    Lim, Sung Hoon; Park, Kyu Chang; Moon, Jong Hyun; Yoon, Hyun Sik; Pribat, Didier; Bonnassieux, Yvan; Jang, Jin

    2006-01-01

    We report on the growth mechanism and density control of vertically aligned carbon nanotubes using a triode plasma enhanced chemical vapor deposition system. The deposition reactor was designed in order to allow the intermediate mesh electrode to be biased independently from the ground and power electrodes. The CNTs grown with a mesh bias of + 300 V show a density of ∼ 1.5 μm -2 and a height of ∼ 5 μm. However, CNTs do not grow when the mesh electrode is biased to - 300 V. The growth of CNTs can be controlled by the mesh electrode bias which in turn controls the plasma density and ion flux on the sample

  16. Bottom current deposition in the Antarctic Wilkes Land margin during the Oligocene

    Science.gov (United States)

    Salabarnada, Ariadna; Escutia, Carlota; Nelson, Hans C.; Evangelinos, Dimitris; López-Quirós, Adrián

    2017-04-01

    Sediment cores collected from the Antarctic Wilkes Land continental rise at IODP site 1356 provide evidence for bottom current sedimentation taking place since the early Oligocene (i.e., 33.6 Ma) (Escutia et al., 2011). Correlation between site 1356 sediments and the regional grid of multichannel seismic reflection profiles, complemented with bathymetric data, allow us to differentiate a variety of contourite deposits resulting from the interaction between bottom currents and seafloor paleomorphologies. Contourite deposits are identified based on the seismic signature, reflector configuration and geometry of the depositional bodies as elongated-mounded drifts, giant mounded drifts, confined drifts, infill drifts, plastered drifts, sediment waves, and moats. Based on the spatial and temporal distribution of these deposits, we differentiate three phases in contourite deposition in this margin: Phase 1) from 33.6-28 Ma sheeted drift morphologies dominate, related to high-energy deposits associated with fast flowing currents during the early Oligocene; Phase 2) At around 28 Ma, mounded drift morphologies and moat channels start forming. Continued intensification of contour currents results in larger contourite morphologies such as giant mounded drifts and moats forming around structural heights present in the Wilkes Land basin (e.g, the Adelie Rift Block). Phase 3) A shift in current configuration is recorded at around 15 Ma above regional unconformity WL-U5, which marks the Oligocene-Miocene Transition. This change is shown by a migration to the North of the drift crests and by a dominance of down-slope sedimentation processes that is indicated by mass transport deposits and channel levee formation. We interpret the evolution of the contourite deposits during the Oligocene in this margin to be driven by changes in the intensity of bottom current activity over time resulting from ice sheet growth, evolution of bottom morphology and related changes in paleoceanographic

  17. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    Science.gov (United States)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  18. Experimental Investigation of the Electro Co-deposition of (Zinc-Nickel Alloy

    Directory of Open Access Journals (Sweden)

    Ekhlas Abdulrahman Salman

    2018-02-01

    Full Text Available abstract An experimental investigation has been carried out for zinc-nickel (Zn-Ni electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM. Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX. It has been found that the best bath temperature was 40˚C, specifically at a concentration of 73 g/L of NiCl2.6H2O, has a milestone influence on the nickel composition and structure of the deposits. The potential is a major factor influencing the deposition coating alloy which is adjusted by the operations of the cathodic polarization; rather than the standard potential of the two metals as determined by the e.m.f. series. The anomalous deposition was obtained at a current density lower than 0.8 A/dm2, while normal deposition occurred at current densities less than 1.2 A/dm2. Corrosion behavior was exhibited by the bath and for performance was carried out, and it shows that the best corrosion performance was for nickel composition of 10-12.6 wt%.

  19. Critical current densities amd pinning mechanisms of high-Tc films on single crystalline and technologically relevant substrates. Final report

    International Nuclear Information System (INIS)

    Adrian, H.

    1995-12-01

    The report deals with six project tasks: (1) Effects of impurity additions at atomic level on the pinning behaviour and the critical current densities, examined in epitactic YBA 2 (Cu 1-x Ni x ) 3 O 7 films. It could be proven that the Ni atoms increase the activation energy for flux movement and the critical current density in a concentration range of 0 2 Sr 2 Ca n-1 Cu n O 2n+4+δ films (n = 2 and 3) with good crystalline properties, high critical currents, and high current densities were prepared. Thin YBa 2 Cu 3 O 7 films of high quality could be grown on saphire substrates, both by the MO-CVD process and by MBE. The aim of depositing biaxially textured YBa 2 Cu 3 O 7 films with high critical current densities on polycrystalline, metallic substrates was achieved by the IBAD process combined with MBE. The buffer layer was YSZ. Heterostructures of the layer sequence YBa 2 Cu 3 O 7 /CeO 2 /Y 0.3 Pr 0.7 Ba 2 Cu 3 O 7 /YBa 2 Cu 3 O 7 and YBa 2 Cu 3 O 7 /CeO 2 /Au were prepared by laser ablation and sputtering processes, in order to examine Josephson ramp contacts and superconducting field-effect transistors. (orig./MM) [de

  20. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation, Eddy County, New Mexico inferred by comparison to settling and sorting experiments

    Science.gov (United States)

    Motanated, Kannipa; Tice, Michael M.

    2016-05-01

    Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co

  1. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  2. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Dunne, M.G.; McCarthy, P.J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.

    2012-01-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications. (paper)

  3. Density currents as a desert dust mobilization mechanism

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2012-11-01

    Full Text Available The formation and propagation of density currents are well studied processes in fluid dynamics with many applications in other science fields. In the atmosphere, density currents are usually meso-β/γ phenomena and are often associated with storm downdrafts. These storms are responsible for the formation of severe dust episodes (haboobs over desert areas. In the present study, the formation of a convective cool pool and the associated dust mobilization are examined for a representative event over the western part of Sahara desert. The physical processes involved in the mobilization of dust are described with the use of the integrated atmospheric-air quality RAMS/ICLAMS model. Dust is effectively produced due to the development of near surface vortices and increased turbulent mixing along the frontal line. Increased dust emissions and recirculation of the elevated particles inside the head of the density current result in the formation of a moving "dust wall". Transport of the dust particles in higher layers – outside of the density current – occurs mainly in three ways: (1 Uplifting of preexisting dust over the frontal line with the aid of the strong updraft (2 Entrainment at the upper part of the density current head due to turbulent mixing (3 Vertical mixing after the dilution of the system. The role of the dust in the associated convective cloud system was found to be limited. Proper representation of convective processes and dust mobilization requires the use of high resolution (cloud resolving model configuration and online parameterization of dust production. Haboob-type dust storms are effective dust sources and should be treated accordingly in dust modeling applications.

  4. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    International Nuclear Information System (INIS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-01-01

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T e measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D

  5. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com; Austin, M. E. [Institute for Fusion Studies, University of Texas at Austin, MS 13-505, 3483 Dunhill St, San Diego, CA 92121-1200 (United States); Petty, C. C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  6. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  7. Magnetic Method to Characterize the Current Densities in Breaker Arc

    International Nuclear Information System (INIS)

    Machkour, Nadia

    2005-01-01

    The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing

  8. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....

  9. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  10. Dependences of microstructure and critical current density on the thickness of YBa2Cu3O7-x film prepared by pulsed laser deposition on buffered Ni–W tape

    International Nuclear Information System (INIS)

    Xu, Da; Wang, Ying; Liu, Linfei; Li, Yijie

    2013-01-01

    YBa 2 Cu 3 O 7−x (YBCO) films with different thicknesses were fabricated on buffered Ni–W tapes by pulsed laser deposition. The thickness dependences of microstructure and critical current density (J c ) of YBCO film were systematically investigated. The microstructure and surface morphology of YBCO film were characterized by X-ray diffraction, optical microscopy, field emission scanning electron microscopy and atomic force microscopy. And the critical current (I c ) of YBCO film was measured by the conventional four-probe method. We found that the full width at half maximum values of both omega and phi scan rocking curves, the content of a-axis oriented grain, and surface roughness of YBCO film all increased with augmenting the thickness of YBCO film. It was also found that with increasing the thickness of YBCO film from 0.3 μm to 1.5 μm, the I c of YBCO film increased from 72 A/cm to 248 A/cm and yet J c of YBCO film decreased from 2.1 × 10 6 A/cm 2 to 1.6 × 10 6 A/cm 2 . Our results indicated that the microstructure and J c of YBCO film were largely dependent on the thickness of YBCO film under the optimized deposition condition of substrate temperature. - Highlights: ► YBa 2 Cu 3 O 7−x (YBCO) films with different thicknesses were grown on metallic tapes. ► The texture and critical current were dependent on the thickness of YBCO film. ► Thickness effect was weakened by fabricating YBCO film layer by layer

  11. Correlations between critical current density, jc, critical temperature, Tc, and structural quality of Y1B2Cu3O7-x thin superconducting films

    International Nuclear Information System (INIS)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-01-01

    Correlations between critical current density (j c ) critical temperature (T c ) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO 3 single crystals. Distinct maxima in j c as a function of the linewidths of the (00 ell) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j c indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical current density. T c increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j c and the density of edge dislocations N D was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N D ∼1-2 x 10 9 /cm 2

  12. Deposition and interception of radionuclides. Current knowledge and future requirements

    International Nuclear Information System (INIS)

    1998-12-01

    Following an accidental or routine release of radionuclides into the environment, a good knowledge of deposition processes is necessary in order to accurately predict the radiation dose to members of the public. In order to understand the environmental impact of released radionuclides and their transfer through the environment, including the food chain to man, there have been numerous studies on deposition of radionuclides to a range of surfaces such as bare soil, crops, forests, water bodies and urban surfaces. The RADREM committee provides a forum for liaison on UK research and monitoring in the areas of radioactive substances and radioactive waste management. RADREM has set up four sub-committees to cover issues related to radioactivity in the atmospheric, terrestrial and aquatic environments as well as those related radioactive waste management. One of the sub-committee tasks is to organise seminars and workshops on specific topics of interest. The first of these was the workshop on 'Deposition and Interception of Radionuclides: Current knowledge and future requirements' organised last year by the Ministry of Agriculture, Fisheries and Food (MAFF), acting as secretariat for the Terrestrial Environment Sub-Committee (TESC) of RADREM. The intent of this workshop was to provide an opportunity to exchange information on deposition-related aspects between representatives from various interested parties including government, regulatory bodies, industry and research organisations. Through presentations and discussions, this workshop addressed current developments in the areas of deposition and interception of radionuclides by various surfaces and served to identify areas which need further research. Papers were presented on various aspects of deposition and interception of radionuclides including deposition into grass, fruits and other crops as well as deposition into urban areas and forests

  13. ECH power deposition at 3rd harmonic in high elongation TCV discharges sustained by 2nd harmonic current profile broadening

    International Nuclear Information System (INIS)

    Pochelon, A. . E-mail : Antoine.Pochelon@epfl.ch; Arnoux, G.; Camenen, Y.

    2003-01-01

    This paper summarises the present effort aimed at developing high elongation heated discharges and testing their confinement properties at normalised currents for which the highest ideal MHD β-limits are predicted. 2nd harmonic (X2) far off-axis ECH/CD is used to stabilise the plasma vertically at high elongation by broadening the current profile in stationary conditions (during the current flat top and over several current diffusion times). Current broadening is maximal for a power deposition in a narrow region (∼a/5), for a finite toroidal injection angle and for high plasma density using upper lateral launchers to minimise refraction. In these discharges which are twice X2 overdense in the centre, 3rd harmonic (X3) is injected from a top launcher to deposit power in the centre and increase the central pressure, simultaneously with far off-axis X2. Using modulated X3, full absorption is measured by the diamagnetic probe. Absorption higher than calculated by thermal ray tracing is occasionally found, indicating absorption on the electron bulk as well as in the suprathermal electron population sometimes with a hollow deposition profile. The high sensitivity of the power coupling to the beam angle stresses the need for developing a mirror feedback scheme to increase the coupling efficiency in transient heating scenarios. (author)

  14. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  15. Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents

    Energy Technology Data Exchange (ETDEWEB)

    Moravej, Maryam [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgy and Materials Engineering and University Hospital Research Center, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); Department of Mining, Metallurgy and Materials Engineering, Pavillon Adrien-Pouliot, 1065 avenue de la Medecine, Local 1745-E, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); Amira, Sofiene [Aluminium Technology Centre, Industrial Materials Institute, National Research Council Canada, 501, boul. de l' Universite Est, Saguenay, Que. G7H 8C3 (Canada); Prima, Frederic [Laboratory for Physical Metallurgy, Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, Paris 6 (France); Rahem, Ahmed [Aluminium Technology Centre, Industrial Materials Institute, National Research Council Canada, 501, boul. de l' Universite Est, Saguenay, Que. G7H 8C3 (Canada); Fiset, Michel [Department of Mining, Metallurgy and Materials Engineering, Pavillon Adrien-Pouliot, 1065 avenue de la Medecine, Local 1745-E, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); and others

    2011-12-15

    Pure iron has become one of the most interesting candidate materials for degradable metallic stents due to its high mechanical properties and moderate degradation. In this work we studied the effect of electrodeposition current density on microstructure and degradation of pure iron films electrodeposited on Ti alloy substrate for degradable metallic stent application. Iron sheets were produced by electrodeposition using four different current densities 1, 2, 5 and 10 A dm{sup -2}. The films were then studied by SEM (scanning electron microscope) and EBSD (electron backscatter diffraction) to observe the surface morphology, grain size and orientation. Potentiodynamic polarization and static immersion tests were used to determine the corrosion rate and to study the degradation behavior of iron films, respectively. The current density was found to significantly influence the texture, the grain size and the grain shape of the electrodeposited iron. At current densities of 1, 5 and 10 A dm{sup -2}, weak textures corresponding to Left-Pointing-Angle-Bracket 1 0 1 Right-Pointing-Angle-Bracket , Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 1 1 2 Right-Pointing-Angle-Bracket in the normal (electrodeposition) direction were obtained, respectively. At these current densities, average grain sizes smaller than 3 {mu}m were also obtained. However, at 2 A dm{sup -2}, a strong Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket //ND texture with density of 7.4 MUD was obtained with larger average grain size of 4.4 {mu}m. The microstructure of iron samples changed after annealing at 550 Degree-Sign C because of the induced recrystallization. Different corrosion rates were obtained from potentiodynamic polarization curves of iron films deposited at different current densities because of their microstructures. Fe-2 showed the lowest corrosion rate due to its larger grains size and its texture. The corrosion rates of all

  16. PVD processes of thin films deposition using Hall-current discharge

    International Nuclear Information System (INIS)

    Svadkovskij, I.V.

    2007-01-01

    Results of research and developments in the field of PVD processes of thin films deposition using Hall-current discharge have been summarized. Effects of interaction of ions with surface during deposition have been considered. Also features of application and prospects of devices based on ion beam and magnetron sputtering systems in thin films technologies have been analyzed. The aspects in the field plasma physics, technology and equipment plasma PVD processes of thin films deposition have been systematized, on the base of investigations made by author and other scientists. (authors)

  17. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  18. Oxide cathodes produced by plasma deposition

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Pi, T.; Umstattd, R.; Brown, I.; Montiero, O.

    1997-01-01

    These are two distinct applications for high-current-density, long-life thermionic cathodes. The first application is as a substitute for explosive emission cathodes used in high-power microwave (HPM) devices being developed for Air Force programs. The second application is in SLAC's X-band klystrons for the Next Linear Collider (NLC). SLAC, UCD, and LBL are developing a plasma deposition process that eliminates the problems with binders, carbonate reduction, peeling, and porosity. The emission layer is deposited using plasma deposition of metallic barium in vacuum with an oxygen background gas. An applied bias voltage drives the oxide plasma into the nickel surface. Since the oxide is deposited directly, it does not have problems with poisoning from a hydrocarbon binder. The density of the oxide layer is increased from the 40--50% for standard oxide cathodes to nearly 100% for plasma deposition

  19. A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-03-01

    Full Text Available Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m−2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM in conjunction with Energy Dispersive X-Ray Analysis (EDX, and Electrochemical Impedance Spectroscopy (EIS. At cathodic current densities of 50–100 mA·m−2 where corrosion was still occurring, a clear correlation existed between the iron containing corrosion product and the overlying magnesium hydroxide layer. This revealed that the mapping of magnesium rich areas on a steel surface can be used in the identification of local corrosion sites. At current densities of 150–200 mA·m−2, a layered deposit was shown to occur consisting of an inner magnesium-containing layer and an outer calcium-containing layer. At current densities of 300–400 mA·m−2, intense hydrogen bubbling through macroscopic pores in the deposits gave rise to cracking of the deposited film. Under such conditions deposits do not have a well-defined double layer structure. There is also preferential formation of magnesium-rich compounds near the steel surface at the early stages of polarisation and within the developing pores and cracks of calcareous deposits later on. Based on SEM/EDX investigation of calcareous depositions the impedance model was proposed and used to monitor in situ variations in steel corrosion resistance, and to calculate the thickness of formed deposits using the length of oxygen diffusion paths.

  20. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  1. High current density magnets for INTOR and TIBER

    International Nuclear Information System (INIS)

    Miller, J.R.; Henning, C.D.; Kerns, J.A.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.

    1986-12-01

    The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm 2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER

  2. Regional absolute conductivity reconstruction using projected current density in MREIT

    International Nuclear Information System (INIS)

    Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In

    2012-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a non-invasive technique for imaging the internal conductivity distribution in tissue within an MRI scanner, utilizing the magnetic flux density, which is introduced when a current is injected into the tissue from external electrodes. This magnetic flux alters the MRI signal, so that appropriate reconstruction can provide a map of the additional z-component of the magnetic field (B z ) as well as the internal current density distribution that created it. To extract the internal electrical properties of the subject, including the conductivity and/or the current density distribution, MREIT techniques use the relationship between the external injection current and the z-component of the magnetic flux density B = (B x , B y , B z ). The tissue studied typically contains defective regions, regions with a low MRI signal and/or low MRI signal-to-noise-ratio, due to the low density of nuclear magnetic resonance spins, short T 2 or T* 2 relaxation times, as well as regions with very low electrical conductivity, through which very little current traverses. These defective regions provide noisy B z data, which can severely degrade the overall reconstructed conductivity distribution. Injecting two independent currents through surface electrodes, this paper proposes a new direct method to reconstruct a regional absolute isotropic conductivity distribution in a region of interest (ROI) while avoiding the defective regions. First, the proposed method reconstructs the contrast of conductivity using the transversal J-substitution algorithm, which blocks the propagation of severe accumulated noise from the defective region to the ROI. Second, the proposed method reconstructs the regional projected current density using the relationships between the internal current density, which stems from a current injection on the surface, and the measured B z data. Combining the contrast conductivity distribution in the entire imaging

  3. High current density M-type cathodes for vacuum electron devices

    International Nuclear Information System (INIS)

    Li Ji; Yu Zhiqiang; Shao Wensheng; Zhang Ke; Gao Yujuan; Yuan Haiqing; Wang Hui; Huang Kaizhi; Chen Qilue; Yan Suqiu; Cai Shaolun

    2005-01-01

    We investigated high current density emission capabilities of M-type cathodes used for vacuum electron devices (VEDs). The experimental results of emission and lifetime evaluating in both close-spaced diode structure and electron gun testing vehicles are given. Emission current densities measured in the diode structure at 1020 deg. C Br in the CW mode were above 10 A/cm 2 ; while in electron gun testing vehicles, emission current densities were above 8 A/cm 2 in CW mode and above 32 A/cm 2 in pulsed mode, respectively. The current density above 94 A/cm 2 has been acquired in no. 0306 electron gun vehicle while the practical temperature is 1060 deg. C Br . For a comparison some of the data from I-scandate cathodes are presented. Finally, several application examples in practical travelling wave tubes (TWTs) and multi beam klystrons (MBKs) are also reported

  4. The heat current density correlation function: sum rules and thermal conductivity

    International Nuclear Information System (INIS)

    Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S

    2006-01-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed

  5. The heat current density correlation function: sum rules and thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)

    2006-02-01

    Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.

  6. Computation of the current density in nonlinear materials subjected to large current pulses

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.

    1991-01-01

    This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments

  7. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  8. Response functions of cold neutron matter: density, spin and current fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)

    2014-07-01

    We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.

  9. Numerical prediction of a dip effect in the critical current density

    International Nuclear Information System (INIS)

    Al Khawaja, U.; Benkraouda, M.; Obaidat, I.M.

    2007-01-01

    We have conducted extensive series of molecular dynamic simulations on the properties of the critical current density in systems with periodic square arrays of pinning sites. The density of the pinning sites was kept fixed while the density of vortices, pinning strength, and temperature were varied several times. At zero temperature, we have observed a substantial dip in the critical current density that occurs only at a fixed value of the vortex density and for specific values of pinning strength. We have found that the occurrence of the dip depends mainly on the initial positions of the vortices with respect to the positions of the pinning sites. At the dip, we have found that the interstitial vortices form moving channels leading to the observed drop in the critical current density

  10. A study of direct- and pulse-current chromium electroplating on rotating cylinder electrode (RCE)

    International Nuclear Information System (INIS)

    Chang, J.H.; Hsu, F.Y.; Liao, M.J.; Huang, C.A.

    2007-01-01

    Direct- and pulse-current (DC and PC) chromium electroplating on Cr-Mo steel were performed in a sulfate-catalyzed chromic acid solution at 50 deg. C using a rotating cylinder electrode (RCE). The electroplating cathodic current densities were at 30, 40, 50 and 60 A dm -2 , respectively. The relationship between electroplating current efficiency and the rotating speed of the RCE was studied. The cross-sectional microstructure of Cr-deposit was examined by transmission electron microscope (TEM). Results showed that DC-plating exhibited higher current efficiency than the PC-plating under the same conditions of electroplating current density and the rotating speed. We found the critical rotating speed of RCE used in the chromium electroplating, above this rotating speed the chromium deposition is prohibited. At the same plating current density, the critical rotating speed for DC-plating was higher than that for PC-plating. The higher plating current density is, the larger difference in critical rotating speeds appears between DC- and PC-electroplating. Equiaxed grains, in a nanoscale size with lower dislocation density, nucleate on the cathodic surface in both DC- and PC-electroplating. Adjacent to the equiaxed grains, textured grains were found in other portion of chromium deposit. Fine columnar grains were observed in the DC-electroplated deposit. On the other hand, very long slender grains with high degree of preferred orientation were detected in PC-electroplated deposit

  11. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  12. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...

  13. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao

    2014-08-05

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  14. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E.

    2014-01-01

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  15. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  16. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  17. Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.

  18. Electrochemical behavior of TIO{sub 2} deposited stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Yamamoto, S. [Toshiba Corp., Kawasaki-city, Kanagawa (Japan); Urata, H.; Takagi, J. [Toshiba Corp., Yokohama-city, Kanagawa (Japan)

    2010-07-01

    It has previously been confirmed that the electrochemical corrosion potential (ECP) of stainless steel (SS) shifts in the negative direction by deposition of TiO{sub 2}. Recently we showed that TiO{sub 2} could decrease the ECP of SS in the absence of UV irradiation. In this study we measured the anodic polarization curve in high temperature water under UV irradiation and none irradiation condition and considered the mechanism of the ECP shift by TiO{sub 2} deposition. The anodic current density of the specimen increased with increasing the UV irradiation intensity and with increasing the amount of TiO{sub 2} deposition under none UV irradiation. Furthermore the oxide film of the specimen affects on the anodic current density was clarified. It was verified the ECP shift is caused by the anodic current density increasing with TiO{sub 2} deposition under both conditions of UV and none UV irradiation. (author)

  19. Magnetic imaging of superconducting tapes to determine current flow

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G. W. (Geoffrey W.); Hawley, M. E. (Marilyn E.); Foltyn, S. R. (Stephen R.); Mueller, F. M. (Fred M.)

    2001-01-01

    We have developed a magnetic imaging system that uses magnetoresistive read heads from computer hard disk drives to map the transport-current-induced magnetic field at the surface of superconducting tapes at liquid nitrogen temperature. Transport current pathways are determined from the 2-dimensional magnetic field maps using established inversion schemes. We examined the current flow in pulsed-laser-deposited YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} a films patterned on single crystal SrTiO{sub 3} substrates and on a textured yttria-stabilized-zirconia layer deposited on an Inconel ribbon by ion beam assisted deposition. The transport current densities in all cases were consistent with the Critical State Model. For the Inconel-based sample, the transport current density maps have allowed us to observe defects and determine the region that limits the current carrying capacity of the structure.

  20. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  1. Merging field mapping and modeling to interpret the lithofacies variations from unsteady ash-rich pyroclastic density currents on uneven topography

    Science.gov (United States)

    Doronzo, Domenico; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico

    2017-04-01

    In order to obtain significant volcanological results from computer simulations of explosive eruptions, one either needs a systematic statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions that generated ash-rich pyroclastic density currents, interacting with the high topographic obstacle of the La Fossa Caldera rim. We demonstrate that by merging field data with 3D numerical simulation it is possible to highlight the details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2s at the bed load can still be sheared by the overlying current, producing tractional structures in the deposit. Instead, a sedimentation rate in excess of that threshold can preclude the formation of tractional structures, producing thick massive deposits. We think that the approach used in this study could be applied to other case studies to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  2. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  3. Structure, morphology and thermal stability of electrochemically obtained Ni-Co deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rafailovic, L.D. [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Artner, W. [Centre of Electrochemical Surface Technology (CEST), Viktor-Kaplan-Strasse 2, A-2700 Wr. Neustadt (Austria); Nauer, G.E. [Centre of Electrochemical Surface Technology (CEST), Viktor-Kaplan-Strasse 2, A-2700 Wr. Neustadt (Austria); Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria); Minic, D.M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade (Serbia)

    2009-12-10

    Nanostructured nickel-cobalt alloy powder deposits were obtained electrochemically on Cu substrates in the current density range 40-400 mA cm{sup -2}. The influence of the current density and of the Ni{sup 2+}/Co{sup 2+} ratio in the bath on the microstructure and phase composition of the Ni-Co deposits was studied by SEM and X-ray diffraction methods. Both the bath composition and the current density strongly influence the deposit growth mechanism as well as the deposit composition, microstructure, grain size and surface morphology. If the concentration ratio in the electrolyte is Ni{sup 2+}/Co{sup 2+} = 4, the deposit has a cauliflower structure with mean grain size of 13 nm. In contrast, the particles deposited from the electrolyte with Ni{sup 2+}/Co{sup 2+} = 0.25 show platelet structure with preferred orientations and mean grain size of 20 nm. When electrodeposition was performed at high overpotentials, far from equilibrium conditions, face-centered cubic (FCC) solid solutions of Ni and Co were generated while at low overpotentials, as well as at higher content of cobalt in the electrolyte, hexagonal-close packed (HCP) Co was formed. The structure of nanocrystalline deposits exhibits a strong tendency to structural changes under annealing. DSC of the alloy deposits shows a stepwise process of structural changes in the temperature range from 393 to 823 K. It was found that under annealing, HCP {yields} FCC phase transformation occurs in nanocrystalline deposit obtained from electrolyte with a concentration ratio Ni{sup 2+}/Co{sup 2+} = 0.25.

  4. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  5. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    International Nuclear Information System (INIS)

    Liu, Yang; Plate, Paul; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina; Bartsch, Peter; Fiechter, Sebastian; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2017-01-01

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  6. Orbital functionals in density-matrix- and current-density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, N

    2006-05-15

    Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized

  7. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  8. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  9. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  10. Orbital currents and charge density waves in a generalized Hubbard ladder

    International Nuclear Information System (INIS)

    Fjaerestad, J.O.; Marston, J.B.; Schollwoeck, U.

    2006-01-01

    We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2k F and 4k F for the currents and densities, where 2k F = π (1 - δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities

  11. Microstructure and critical current density in high-Tc metal oxide superconductors

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.

    1992-03-01

    Superconductor powders in the U-Ba-Cu-O (YBCO) and Bi-Pb-Sr-Ca-Cu-O (BSCCO) systems were synthesized by freeze-drying. Powders were characterized, and processed into samples for evaluation of superconducting behavior. Freeze-drying is attractive because the powders have high purity, are homogeneous, have a small size and are active. YBCO powders can be sintered to high density at 890 degrees C. Many compositions, processing approaches and heat treatments were explored in an effort to understand relations between microstructure and critical density, and to improve the critical current density. Powders were also formed into sputtering targets for coating preparation at Stanford University. The highest critical current density achieved with the YBCO powders was ∼15,000 A/cm 2 at 4.2K and 0.5T using powders treated to prevent carbon contamination. The BSCCO materials with the highest critical current density, ∼30,000 A/cm 2 at the same conditions were formed by heat treating melted and quenched samples. All critical current density measurements were made by Stanford University, a subcontractor to this effort. Stanford University also prepared coatings by off-axis magnetron sputtering

  12. Microstructural factors influencing critical-current densities of high-temperature superconductors

    International Nuclear Information System (INIS)

    Suenaga, M.

    1992-01-01

    Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced? and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices? Only the case where the applied field is parallel to the c-axis is considered here

  13. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  14. Critical current density in railgrun accelerators with composite electrodes

    International Nuclear Information System (INIS)

    Stankevich, S.V.; Shvetsov, G.A.

    1995-01-01

    The present paper is intended to study the possibilities of increasing the critical current density in railgun accelerators using composite electrodes of various structure. Before proceeding to the analysis this way, it should be noted that the requirements for materials selected for the rails go beyond the values of the current density. In real practice account should be taken of the technological problems concerned with the production of the electrodes, as well as of those concerned with the railgun performance, including the multishot life

  15. Current density distribution during disruptions and sawteeth in a simple model of plasma current in a tokamak

    International Nuclear Information System (INIS)

    Stefanovskii, A. M.

    2011-01-01

    The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.

  16. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  17. Definition of current density in the presence of a non-local potential.

    Science.gov (United States)

    Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian

    2008-04-16

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.

  18. Definition of current density in the presence of a non-local potential

    International Nuclear Information System (INIS)

    Li Changsheng; Wan Langhui; Wei Yadong; Wang Jian

    2008-01-01

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J c = (e/2m)([(p-eA)ψ]*ψ-ψ*[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., ∇ . J c ≠ 0 in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Buettiker formula. Examples are given to demonstrate our results

  19. Optical spectroscopy of the density of gap states in ETP-deposited a-Si:H

    NARCIS (Netherlands)

    Willekens, J.; Brinza, M.; Güngör, T.; Adriaenssens, G.J.; Nesladek, M.; Kessels, W.M.M.; Smets, A.H.M.; Sanden, van de M.C.M.

    2004-01-01

    The distribution and density of localized states in the band gap of hydrogenated amorphous silicon, as deposited by the expanding thermal plasma technique, were studied by means of a combined use of the constant photocurrent method (CPM), photothermal deflection spectroscopy (PDS) and time-of-flight

  20. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, Hsiang-Cheng; Hou, Kung-Hsu; Lu, Chen-En; Ger, Ming-Der

    2014-01-01

    In this study, the trivalent Cr–C coatings were electroplated on stainless steel 304 (SS304) substrates for an application in bipolar plates (BPPs) that was because of coating's excellent electric conductivity and corrosion resistance. The images of scanning electron microscope showed that the thickness of the coatings was between 1.4 and 11.4 μm, which increased with increase of coating current density. The surface morphology of Cr–C plated at coating current density of 10 A/dm 2 was smooth, crack- and pinhole-free, while cracks and pinholes appearing in networks were observed apparently in the deposits plated at a higher coating current density. Additionally, the C content in the coating decreased with increasing the coating current density. Moreover, the polarization curve with different coating current densities (10, 30, 50 A/dm 2 ) exhibited the coating prepared at 10 A/dm 2 and 10 min possessing the best corrosion resistance (I corr = 9.360 × 10 −8 A/cm 2 ). The contact resistance of Cr–C plated at coating current density of 10 A/dm 2 was the lowest (16.54 mΩ cm 2 at 150 N cm −2 ), which showed great potential of application. The single cell test with Cr–C coated SS304 prepared at coating current density of 10 A/dm 2 as BPPs showed the highest current density (about 791.532 mA/cm 2 ) and power density (about 270.150 mW/cm 2 ). - Highlights: • The Cr–C coatings on steel are electroplated for utilization as bipolar plate. • The electrical conductivity and corrosion resistance increase with carbon content. • The power density of Cr–C coated steel is superior to the bare steel

  1. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Cheng [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Hou, Kung-Hsu, E-mail: khou@ndu.edu.tw [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Lu, Chen-En [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China); Ger, Ming-Der [Department of Applied Chemistry and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan (China)

    2014-11-03

    In this study, the trivalent Cr–C coatings were electroplated on stainless steel 304 (SS304) substrates for an application in bipolar plates (BPPs) that was because of coating's excellent electric conductivity and corrosion resistance. The images of scanning electron microscope showed that the thickness of the coatings was between 1.4 and 11.4 μm, which increased with increase of coating current density. The surface morphology of Cr–C plated at coating current density of 10 A/dm{sup 2} was smooth, crack- and pinhole-free, while cracks and pinholes appearing in networks were observed apparently in the deposits plated at a higher coating current density. Additionally, the C content in the coating decreased with increasing the coating current density. Moreover, the polarization curve with different coating current densities (10, 30, 50 A/dm{sup 2}) exhibited the coating prepared at 10 A/dm{sup 2} and 10 min possessing the best corrosion resistance (I{sub corr} = 9.360 × 10{sup −8} A/cm{sup 2}). The contact resistance of Cr–C plated at coating current density of 10 A/dm{sup 2} was the lowest (16.54 mΩ cm{sup 2} at 150 N cm{sup −2}), which showed great potential of application. The single cell test with Cr–C coated SS304 prepared at coating current density of 10 A/dm{sup 2} as BPPs showed the highest current density (about 791.532 mA/cm{sup 2}) and power density (about 270.150 mW/cm{sup 2}). - Highlights: • The Cr–C coatings on steel are electroplated for utilization as bipolar plate. • The electrical conductivity and corrosion resistance increase with carbon content. • The power density of Cr–C coated steel is superior to the bare steel.

  2. Deposition and characterisation of copper for high density interconnects

    International Nuclear Information System (INIS)

    McCusker, N.

    1999-09-01

    Copper has been deposited by sputtering and investigated for application as high density interconnects, with a view to maximising its performance and reliability. A sputter deposition process using gettering has been developed, which produces consistently pure, low resistivity films. A relationship between film thickness and resistivity has been explained by studying the grain growth process in copper films using atomic force microscopy. The Maydas-Shatzkes model has been used to separate the contributions of grain boundary and surface scattering to thin film resistivity, in copper and gold. Stress and texture in copper film have been studied. Annealing has been used to promote grain growth and texture development. Electromigration has been studied in copper and aluminium interconnects using a multi-line accelerated test set-up. A difference in failure distributions and void morphologies has been explained by an entirely different damage mechanism. The importance of surface/interface migration in electromigration damage of copper lines has been established and explained using a grain boundary-grooving model. A tantalum overlayer was found to extend the lifetime of copper lines. A composite sputtering target has been used to deposit copper/zirconium alloy films. The composition of the alloys was studied by Rutherford backscattering, Auger and secondary neutral mass spectrometry. The alloy films had an improved electromigration lifetime. A surface controlled mechanism is proposed to explain the advantage. A metal oxide semiconductor (MOS) capacitor technique is used to investigate barrier reliability. Tungsten is shown to be an effective diffusion barrier for copper, up to 700 deg. C. (author)

  3. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  4. Response of temperature and density profiles to heat deposition profile and its impact on global scaling in LHD

    International Nuclear Information System (INIS)

    Yamada, H.

    2002-01-01

    Significant density dependence of the energy confinement time as described in the ISS95 scaling has been demonstrated in the extended parameter regimes in LHD. However, recent experiments have indicated that this density dependence is lost at a certain density under specific conditions. This paper discusses the cause of this saturation and related characteristics of anomalous transport. The saturation of the energy confinement time is observed in the density ramp-up phase of NBI heated plasmas. In contrast to the global energy confinement time, the local heat conduction coefficient still indicates the temperature dependence which is a companion to the density dependence of the energy confinement time. The apparent contradiction between the global confinement and the local transport can be attributed to the change of the heat deposition profile. Through this study, the response of temperature and density profiles to the heat deposition profile is highlighted, which is contrasted to the concept of stiffness or profile consistency observed in tokamaks. The major anomalous transport models based on ITG/TEM and interchange/ballooning modes are assessed. (author)

  5. The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Foltyn, Stephen R [Los Alamos National Laboratory; Wang, Haiyan [Los Alamos National Laboratory; Civale, Leonardo [Los Alamos National Laboratory; Maiorov, Boris A [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory

    2009-01-01

    The critical current density (J{sub c}) of YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} (YBCO) films can approach 10 MA/cm{sup 2} at 77 K in self field , but only for very thin films. We have shown previously that strong thickness dependence results if J{sub c} is enhanced near the film-substrate interface. In the present work we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO{sub 3} substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. Interestingly, we find that the 'on' state is accompanied by interfacial misfit dislocations, establishing an unambiguous correlation between enhanced J{sub c} and dislocations at the film-substrate interface.

  6. Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands)

    Science.gov (United States)

    White, James D. L.; Schmincke, Hans-Ulrich

    1999-12-01

    In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards

  7. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    Science.gov (United States)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  8. History and current status of commercial pulsed laser deposition equipment

    International Nuclear Information System (INIS)

    Greer, James A

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm 2 up to 10 m 2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R and D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications. (paper)

  9. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    Science.gov (United States)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  10. Control of the current density profile with lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1

  11. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi; Liu Baoting

    2009-01-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  12. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu Baoting, E-mail: xyzh66@ysu.edu.c [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  13. Current transport and capacitance-voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique

    Science.gov (United States)

    Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.

    2018-04-01

    In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.

  14. Neutrons and gamma transport in atmosphere by Tripoli-2 code. Energy deposit and electron current time function

    International Nuclear Information System (INIS)

    Vergnaud, T.; Nimal, J.C.; Ulpat, J.P.; Faucheux, G.

    1988-01-01

    The Tripoli-2 computer code has been adapted to calculate, in addition to energy deposit in matter by neutrons (Kerma) the energy deposit by gamma produced in neutronic impacts and the induced recoil electron current. The energy deposit conduces at air ionization, consequently at a conductibility. This knowledge added at that of electron current permit to resolve the Maxwell equations of electromagnetic field. The study is realized for an atmospheric explosion 100 meters high. The calculations of energy deposit and electron current have been conducted as far as 2.5km [fr

  15. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    Science.gov (United States)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  16. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas

    Science.gov (United States)

    Betsuin, Toshiki; Tanaka, Yasunori; Arai, T.; Uesugi, Y.; Ishijima, T.

    2018-03-01

    This paper describes the application of an Ar/CH4/H2 inductively coupled thermal plasma with and without coil current modulation to synthesise diamond films. Induction thermal plasma with coil current modulation is referred to as modulated induction thermal plasma (M-ITP), while that without modulation is referred to as non-modulated ITP (NM-ITP). First, spectroscopic observations of NM-ITP and M-ITP with different modulation waveforms were made to estimate the composition in flux from the thermal plasma by measuring the time evolution in the spectral intensity from the species. Secondly, we studied polycrystalline diamond film deposition tests on a Si substrate, and we studied monocrystalline diamond film growth tests using the irradiation of NM-ITP and M-ITP. From these tests, diamond nucleation effects by M-ITP were found. Finally, following the irradiation results, we attempted to use a time-series irradiation of M-ITP and NM-ITP for polycrystalline diamond film deposition on a Si substrate. The results indicated that numerous larger diamond particles were deposited with a high population density on the Si substrate by time-series irradiation.

  17. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    Science.gov (United States)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  18. Current density profile inside q=1 on Tore Supra

    International Nuclear Information System (INIS)

    Joffrin, E.; Desgranges, C.; Sabot, R.; Dubois, M.A.

    1995-01-01

    The Tore Supra polarimeter used to measure the poloidal field distribution is described. The current density profiles are computed in two different ways using the interferometric and polarimetric data in conjunction with the magnetic data and the location of the inversion radius determined by the soft X-ray camera. The current density inside the q=1 surface is investigated for normal and monster sawteeth. Its variation are also measured by the polarimeter and compared with that predicted by the current diffusion equation assuming complete reconnection. Finally, the safety factor profile is compared with that obtained with the striation data of the pellet ablation. The results of the evolution of the q profile during sawteeth are in good agreement with those obtained in other devices. (author) 9 refs.; 4 figs

  19. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  20. Modeling and control of the current density profile in Tokamaks and its relation to electron transport

    International Nuclear Information System (INIS)

    Zucca, C.

    2009-04-01

    The current density in tokamak plasmas strongly affects transport phenomena, therefore its understanding and control represent a crucial challenge for controlled thermonuclear fusion. Within the vast framework of tokamak studies, three topics have been tackled in the course of the present thesis: first, the modelling of the current density evolution in electron Internal Transport Barrier (eITB) discharges in the Tokamak à Configuration Variable (TCV); second, the study of current diffusion and inversion of electron transport properties observed during Swing Electron Cyclotron Current Drive (Swing ECCD) discharges in TCV; third, the analysis of the current density tailoring obtained by local ECCD driven by the improved EC system for sawtooth control and reverse shear scenarios in the International Thermonuclear Experimental Reactor (ITER). The work dedicated to the study of eITBs in TCV has been undertaken to identify which of the main parameters, directly related to the current density, played a relevant role in the confinement improvement created during these advanced scenarios. In this context, the current density has to be modeled, there being no measurement currently available on TCV. Since the Rebut-Lallia-Watkins (RLW) model has been validated on TCV ohmic heated plasmas, the corresponding scaling factor has often been used as a measure of improved confinement on TCV. The many interpretative simulations carried on different TCV discharges have shown that the thermal confinement improvement factor, H RLW , linearly increases with the absolute value of the minimum shear outside ρ > 0.3, ρ indicating a normalized radial coordinate. These investigations, performed with the transport code ASTRA, therefore confirmed a general observation, formulated through previous studies, that the formation of the transport barrier is correlated with the magnetic shear reversal. This was, indeed, found to be true in all cases studied, regardless of the different heating and

  1. Accurate characterization and understanding of interface trap density trends between atomic layer deposited dielectrics and AlGaN/GaN with bonding constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, North Carolina 27695 (United States)

    2015-06-15

    Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps with a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.

  2. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  3. Operation of a semiconductor opening switch at ultrahigh current densities

    International Nuclear Information System (INIS)

    Lyubutin, S. K.; Rukin, S. N.; Slovikovsky, B. G.; Tsyranov, S. N.

    2012-01-01

    The operation of a semiconductor opening switch (SOS diode) at cutoff current densities of tens of kA/cm 2 is studied. In experiments, the maximum reverse current density reached 43 kA/cm 2 for ∼40 ns. Experimental data on SOS diodes with a p + -p-n-n + structure and a p-n junction depth from 145 to 180 μm are presented. The dynamics of electron-hole plasma in the diode at pumping and current cutoff stages is studied by numerical simulation methods. It is shown that current cutoff is associated with the formation of an electric field region in a thin (∼45 μm) layer of the structure’s heavily doped p-region, in which the acceptor concentration exceeds 10 16 cm −3 , and the current cutoff process depends weakly on the p-n junction depth.

  4. An all-field-range description of the critical current density in superconducting YBCO films

    International Nuclear Information System (INIS)

    Golovchanskiy, I A; Pan, A V; Shcherbakova, O V; Fedoseev, S A; Dou, S X

    2011-01-01

    A new critical current density (J c ) model for high-quality YBCO (YBa 2 Cu 3 O 7 ) thin films has been proposed, combining thermally activated flux creep with a vortex pinning potential for columnar defects. The pinning for thermally activated vortices has been described as strong pinning on chains of individual edge dislocations that form low-angle domain boundaries in high-quality YBCO thin films. The model yields an adequate description of the J c behaviour over the whole applied field range, as verified by direct measurements of J c in YBCO thin films grown by pulsed-laser deposition. It also indicates that the effective pinning landscape changes under the influence of the external conditions. Remarkably, the pinning potential obtained from the model is consistent with the values obtained for columnar defects, which confirms the validity of the overall approach.

  5. Current density and continuity in discretized models

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  6. Technique of Critical Current Density Measurement of Bulk Superconductor with Linear Extrapolation Method

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.

    2000-01-01

    Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density

  7. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    International Nuclear Information System (INIS)

    Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V

    2009-01-01

    We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.

  8. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu

    2009-05-15

    We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.

  9. Evaluation of variables which affect the hardness of nickel plate deposited from watts-type baths

    International Nuclear Information System (INIS)

    Petit, G.S.; Wright, R.R.; Neff, W.A.

    1976-01-01

    In the course of the Cascade Improvement Program, many component equipment parts will be electroplated with nickel for corrosion protection. The maximum hardness which will be acceptable in the electroplated deposit is specified in Union Carbide's Job Specification JS-1396, Revision 3, entitled Electroplated Nickel Coatings on Steel Parts. The hardness specification is intended primarily as a control over both organic and inorganic impurities in the deposit. This report covers a study evaluating several of the numerous controllable variables which influence the hardness of the nickel plate deposited from a Watts-type bath. The variables tested were: 1) bath composition, 2) pH, 3) current density, 4) anode-cathode area ratio, and 5) bath temperature. Within the tested ranges of the variables studied, the pH and current density had the most influence on the plate hardness. The softest deposit was obtained with a bath pH of 1.5, a current density of 30 to 40 amperes/square foot, and with the anode-cathode area ratio in the range of 3:1 to 1:1

  10. Current distribution and enhancement of the engineering critical current density in multifilament Bi-2223 tapes

    DEFF Research Database (Denmark)

    Wang, W.G.; Jensen, M.B.; Kindl, B.

    2000-01-01

    The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...

  11. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...... implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications...

  12. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  13. Modeling high-density-plasma deposition of SiO{sub 2} in SiH{sub 4}/O{sub 2}/Ar

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Larson, R.S. [Sandia National Labs., Livermore, CA (United States); Ho, P.; Apblett, C. [Sandia National Labs., Albuquerque, NM (United States); Han, S.M.; Edelberg, E.; Aydil, E. [Univ. of California, Santa Barbara, CA (United States)

    1997-03-01

    The authors have compiled sets of gas-phase and surface reactions for use in modeling plasma-enhanced chemical vapor deposition of silicon dioxide from silane, oxygen and argon gas mixtures in high-density-plasma reactors. They have applied the reaction mechanisms to modeling three different kinds of high-density plasma deposition chambers, and tested them by comparing model predictions to a variety of experimental measurements. The model simulates a well mixed reactor by solving global conservation equations averaged across the reactor volume. The gas-phase reaction mechanism builds from fundamental electron-impact cross section data available in the literature, and also includes neutral-molecule, ion-ion, and ion-molecule reaction paths. The surface reaction mechanism is based on insight from attenuated total-reflection Fourier-transform infrared spectroscopy experiments. This mechanism describes the adsorption of radical species on an oxide surface, ion-enhanced reactions leading to species desorption from the surface layer, radical abstractions competing for surface sites, and direct energy-dependent ion sputtering of the oxide material. Experimental measurements of total ion densities, relative radical densities as functions of plasma operating conditions, and net deposition-rate have been compared to model predictions to test and modify the chemical kinetics mechanisms. Results show good quantitative agreement between model predictions and experimental measurements.

  14. Critical current density for spin transfer torque switching with composite free layer structure

    OpenAIRE

    You, Chun-Yeol

    2009-01-01

    Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...

  15. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    Science.gov (United States)

    Rusi; Majid, S R

    2016-01-01

    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.

  16. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    Directory of Open Access Journals (Sweden)

    Rusi

    Full Text Available Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN6 electrolyte.

  17. Magneto-optical imaging of transport current densities in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Welp, U.; Gunter, D.O.; Zhong, W.; Balachandran, U.; Haldar, P.; Sokolowski, R.S.; Vlasko-Vlasov, V.K.; Nikitenko, V.I.

    1995-01-01

    Direct imaging of the paths of transport currents in superconductors creates many new possibilities for exploring the basic features of vortex pinning mechanisms and for improving the performance of superconducting materials. A technique for imaging the path and magnitude of the transport current density flowing in superconductors is described. Results are given for a 37-filament BSCCO 2223 powder-in-tube wire, showing a highly inhomogeneous current path within the filaments

  18. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  19. Top-gated chemical vapor deposition grown graphene transistors with current saturation.

    Science.gov (United States)

    Bai, Jingwei; Liao, Lei; Zhou, Hailong; Cheng, Rui; Liu, Lixin; Huang, Yu; Duan, Xiangfeng

    2011-06-08

    Graphene transistors are of considerable interest for radio frequency (rf) applications. In general, transistors with large transconductance and drain current saturation are desirable for rf performance, which is however nontrivial to achieve in graphene transistors. Here we report high-performance top-gated graphene transistors based on chemical vapor deposition (CVD) grown graphene with large transconductance and drain current saturation. The graphene transistors were fabricated with evaporated high dielectric constant material (HfO(2)) as the top-gate dielectrics. Length scaling studies of the transistors with channel length from 5.6 μm to 100 nm show that complete current saturation can be achieved in 5.6 μm devices and the saturation characteristics degrade as the channel length shrinks down to the 100-300 nm regime. The drain current saturation was primarily attributed to drain bias induced shift of the Dirac points. With the selective deposition of HfO(2) gate dielectrics, we have further demonstrated a simple scheme to realize a 300 nm channel length graphene transistors with self-aligned source-drain electrodes to achieve the highest transconductance of 250 μS/μm reported in CVD graphene to date.

  20. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  1. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  2. Spatial and Temporal Characteristics of Insulator Contaminations Revealed by Daily Observations of Equivalent Salt Deposit Density

    Directory of Open Access Journals (Sweden)

    Ling Ruan

    2015-01-01

    Full Text Available The accurate estimation of deposits adhering on insulators is of great significance to prevent pollution flashovers which cause huge costs worldwide. Researchers have developed sensors using different technologies to monitor insulator contamination on a fine time scale. However, there is lack of analysis of these data to reveal spatial and temporal characteristics of insulator contamination, and as a result the scheduling of periodical maintenance of power facilities is highly dependent on personal experience. Owing to the deployment of novel sensors, daily Equivalent Salt Deposit Density (ESDD observations of over two years were collected and analyzed for the first time. Results from 16 sites distributed in four regions of Hubei demonstrated that spatial heterogeneity can be seen at both the fine and coarse geographical scales, suggesting that current polluted area maps are necessary but are not sufficient conditions to guide the maintenance of power facilities. Both the local emission and the regional air pollution condition exert evident influences on deposit accumulation. A relationship between ESDD and PM10 was revealed by using regression analysis, proving that air pollution exerts influence on pollution accumulations on insulators. Moreover, the seasonality of ESDD was discovered for the first time by means of time series analysis, which could help engineers select appropriate times to clean the contamination. Besides, the trend component shows that the ESDD increases in a negative exponential fashion with the accumulation date (ESDD = a − b × exp(−time at a long time scale in real environments.

  3. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  4. Induced critical current density limit of Ag sheathed Bi-2223 tape conductor

    International Nuclear Information System (INIS)

    Ogiwara, H.; Satou, M.; Yamada, Y.; Kitamura, T.; Hasegawa, T.

    1994-01-01

    The authors have already reported the best critical current density of 66,000 A/cm 2 with an Ag sheathed Bi-2223 tape conductor. The Brick-wall model is for explaining the current transport mechanism of this conductor. The model has its roots in the fact that the Bi-2223 tape core is a complicated stack of crystals which have a mica-flake structure. The orientation of the crystals which have a mica-flake structure. The orientation of the crystals seriously affects the current transport capability. Moreover, the contacts between the stacking crystals are very important. The transport current flows dividing into many branch paths. Under high magnetic field, the different paths experienced different electromagnetic forces. Differences between the electromagnetic forces on the different crystals can affect the contacts so as to increase resistivity and decrease overall critical current density of the tape. This effect can foretell the limit of the critical current density obtainable with these kinds of conductors

  5. The study of dynamics of electrons in the presence of large current densities

    International Nuclear Information System (INIS)

    Garcia, G.

    2007-11-01

    The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and

  6. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  7. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  8. Effects of Electron Flow Current Density on Flow Impedance of Magnetically Insulated Transmission Lines

    International Nuclear Information System (INIS)

    He Yong; Zou Wen-Kang; Song Sheng-Yi

    2011-01-01

    In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load. The circuit parameters of MITLs are well understood by employing the concept of flow impedance derived from Maxwell's equations and pressure balance across the flow. However, the electron density in an MITL is always taken as constant in the application of flow impedance. Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected. We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other. It is found that the assumption of constant electron density profile in the calculation of the flow impedance is not always valid. The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL. The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly by experiments and theories in the future. (nuclear physics)

  9. Interrelationship of density and lithological characteristics of intersaline deposits of the Pripyatskiy basin

    Energy Technology Data Exchange (ETDEWEB)

    Anpilogov, A.P.; Bulyga, V.Kh.; Ksenofontov, V.A.; Ur' yev, I.I.

    1980-01-01

    Based on materials of lithological study and zoning of the lower Zadonskiy, upper Zadonskiy and Yeletskiy deposits of the Pripyatskiy basin with regard for the depth of occurrence of the rocks, a map was compiled for isodensities of the intersaline complex. Variability in the values of density over the area and the total correspondence of the configuration of isodens to the extent of the lithological fields and the main geostructural elements are established.

  10. Tuning the architectures of lead deposits on metal substrates by electrodeposition

    International Nuclear Information System (INIS)

    Yao Chenzhong; Liu Meng; Zhang Peng; He Xiaohui; Li Gaoren; Zhao Wenxia; Liu Peng; Tong Yexiang

    2008-01-01

    Different morphologies of lead (Pb) deposited on different metal substrates have been prepared via electrochemical deposition in aqueous solution. The morphologies of as-deposited lead were determined by scanning electron microscope (SEM). It is found that the various morphologies of the products are dependent on the electrodeposition conditions, including the deposition current densities, concentration of additives, substrates and deposition time. X-ray diffraction (XRD) and transmission electron microscope (TEM) results reveal that all these lead deposits with different morphologies can be assigned to the space group Fm-3m (2 2 5)

  11. Blue functions: probability and current density propagators in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Withers, L P Jr

    2011-01-01

    Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)

  12. Lower-hybrid counter current drive for edge current density modification in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.

    1994-01-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n e and T e , and launched wave spectrum will also be shown

  13. Epitaxial YBa2Cu3O7 on biaxially textured (001) Ni: An approach to high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Norton, D.P.; Goyal, A.; Budai, J.D.

    1997-01-01

    In-plane aligned, c-axis oriented YBa 2 Cu 3 O 7 (YBCO) films with superconducting critical current densities, J c , as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermo-mechanically, rolled-textured (001) Ni tapes using pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured Ni, formed by recrystallization of cold-rolled pure Ni, enables the growth of 1.5 micrometer-thick YBCO films with superconducting properties that are comparable to those observed for epitaxial films on single crystal oxide substrates. This result represents a viable approach for producing long-length superconducting tapes for high current, high field applications at 77 kelvin

  14. Engineering Critical Current Density Improvement in Ag- Bi-2223 Tapes

    DEFF Research Database (Denmark)

    Wang, W. G.; Seifi, Behrouz; Eriksen, Morten

    2000-01-01

    Ag alloy sheathed Bi-2223 multifilament tapes were produced by the powder-in-tube method. Engineering critical current density improvement has been achieved through both enhancement of critical current density by control of the thermal behavior of oxide powder and by an increase of the filling...... factor of the tapes. Phase evolution at initial sintering stage has been studied by a quench experiment in Ag-Bi-2223 tapes. The content, texture, and microstructure of various phases were determined by XRD and SEM. A novel process approach has been invented in which square wire was chosen rather than...

  15. First direct observations linking confined supercritical turbidity currents to their depositional architecture and facies characteristics

    Science.gov (United States)

    Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.

    2017-12-01

    Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally

  16. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  17. Temperature-dependent leakage current behavior of epitaxial Bi0.5Na0.5TiO3-based thin films made by pulsed laser deposition

    Science.gov (United States)

    Hejazi, M. M.; Safari, A.

    2011-11-01

    This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.

  18. Exploration of one-dimensional plasma current density profile for K-DEMO steady-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Byun, C.-S.; Na, D.H.; Na, Y.-S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-11-01

    Highlights: • One-dimensional current density and its optimization for the K-DEMO are explored. • Plasma current density profile is calculated with an integrated simulation code. • The impact of self and external heating profiles is considered self-consistently. • Current density is identified as a reference profile by minimizing heating power. - Abstract: Concept study for Korean demonstration fusion reactor (K-DEMO) is in progress, and basic design parameters are proposed by targeting high magnetic field operation with ITER-sized machine. High magnetic field operation is a favorable approach to enlarge relative plasma performance without increasing normalized beta or plasma current. Exploration of one-dimensional current density profile and its optimization process for the K-DEMO steady-state operation are reported in this paper. Numerical analysis is conducted with an integrated plasma simulation code package incorporating a transport code with equilibrium and current drive modules. Operation regimes are addressed with zero-dimensional system analysis. One-dimensional plasma current density profile is calculated based on equilibrium, bootstrap current analysis, and thermal transport analysis. The impact of self and external heating profiles on those parameters is considered self-consistently, where thermal power balance and 100% non-inductive current drive are the main constraints during the whole exploration procedure. Current and pressure profiles are identified as a reference steady-state profile by minimizing the external heating power with desired fusion power.

  19. Diagnostic development for current density profile control at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); University of Science and Technology, Daejeon 34113 (Korea, Republic of); Chung, J. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Messmer, M.C.C. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-11-01

    Highlights: • The motional Stark effect (MSE) diagnostic installed at KSTAR. • Engineering challenges and solutions on the design and fabrication of the front optics housing and filter modules. • Characterization of the bandpass filters and the responses to polarized light. - Abstract: The current density profile diagnostics are critical for the control of the steady-state burning plasma operations. A multi-channel motional Stark effect (MSE) diagnostic system has been implemented for the measurements of the internal magnetic field structures that constrain the magnetic equilibrium reconstruction to accurately produce the tokamak safety factor and current density profiles for the Korea Superconducting Tokamak Advanced Research (KSTAR). This work presents the design and fabrication of the front optics and the filter modules and the calibration activities for the MSE diagnostic at KSTAR.

  20. Morphology of silver deposits produced by non-stationary steady regimes

    International Nuclear Information System (INIS)

    Popovski, Orce

    2002-01-01

    Morphology of silver electro deposits produced by periodical reversing of d.c. pulses was studied. Employing usual electrorefining conditions it is not possible to deposit compact silver layers from Ag non-complexing salts. This is due, mainly, to the high value of silver exchange current density and to the silver crystallographic peculiarity. In order to counteract this phenomenon, instead of usual, (stationer) potential-current regimes, non-stationary one was applied in this study. The effect of phosphate ions in the electrolyte was further clarified. A set of experimental conditions was applied so that silver was electrodeposited under mixed electrochemical and diffusion control. The primar cathodic pulse causes silver to nucleate with high density and nuclei to start to grow. The subsequent anodic pulse (current reversal) lowers the gradient of silver ion concentration and dissolves the most active growth centers as well. The combination of cathodic and anodic pulses diminishes the dendritic growth and helps smoothing of deposit surface to occur. Fine-grained and more compact deposits are produced, as compared to the ones grown in purely potentiostatic conditions. It was found that the addition of phosphate ions as well as the application of intensive electrolyte stirring change the Ag- grain morphology in favor of poli crystal whisker structure. (Author)

  1. Particle-bearing currents in uniform density and two-layer fluids

    Science.gov (United States)

    Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher

    2018-02-01

    Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.

  2. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  3. Relationship between plasma parameters and film microstructure in radio frequency magnetron sputter deposition of barium strontium titanate

    Science.gov (United States)

    Panda, B.; Dhar, A.; Nigam, G. D.; Bhattacharya, D.; Ray, S. K.

    1998-01-01

    Radio frequency magnetron sputtered Ba0.8Sr0.2TiO3 thin films have been deposited on silicon and Si/SiO2/SiN/Pt substrates. The analysis of plasma discharge has been carried out using the Langmuir probe technique. Both the pressure and power have been found to influence the ion density and self-bias of the target. Introduction of oxygen into the discharge effectively decreases the ion density. The structural and electrical properties have been investigated using x-ray diffraction, atomic force microscopy of deposited films and capacitance-voltage, conductance-voltage, and current density-electric field characteristics of fabricated capacitors. The growth and orientation of the films have been found to depend upon the type of substrates and deposition temperatures. The texture in the film is promoted at a pressure 0.25 Torr with a moderately high value of ion density and low ion bombardment energy. Films deposited on Si/SiO2/SiN/Pt substrate have shown higher dielectric constant (191) and lower leakage current density (2.8×10-6 A/cm2 at 100 kV/cm) compared to that on silicon.

  4. Characteristics of PEMFC operating at high current density with low external humidification

    International Nuclear Information System (INIS)

    Fan, Linhao; Zhang, Guobin; Jiao, Kui

    2017-01-01

    Highlights: • PEMFC with low humidity and high current density is studied by numerical simulation. • At high current density, water production lowers external humidification requirement. • A steady anode circulation status without external humidification is demonstrated. • The corresponding detailed internal water transfer path in the PEMFC is illustrated. • Counter-flow is superior to co-flow at low anode external humidification. - Abstract: A three-dimensional multiphase numerical model for proton exchange membrane fuel cell (PEMFC) is developed to study the fuel cell performance and water transport properties with low external humidification. The results show that the sufficient external humidification is necessary to prevent the polymer electrolyte dehydration at low current density, while at high current density, the water produced in cathode CL is enough to humidify the polymer electrolyte instead of external humidification by flowing back and forth between the anode and cathode across the membrane. Furthermore, a steady anode circulation status without external humidification is demonstrated in this study, of which the detailed internal water transfer path is also illustrated. Additionally, it is also found that the water balance under the counter-flow arrangement is superior to co-flow at low anode external humidification.

  5. The peculiarities of electrochemical deposition and morphology of ZnMn alloy coatings obtained from pyrophosphate electrolyte

    Directory of Open Access Journals (Sweden)

    Bučko Mihael M.

    2011-01-01

    Full Text Available The first successful attempt to electrodeposit ZnMn alloy coatings from alkaline bath was made only a few years ago. In this kind of solution, potassium pyrophosphate (K4P2O7 serves both as a complexing agent and as the basic electrolyte. The aim of this work was to study the electrodeposition process and properties of ZnMn alloy coatings deposited from pyrophosphate solution, with a new kind of alkaline pyrophosphate bath. Namely, chloride salts were used as the source of metal ions and ascorbic acid was used as reducing agent. The composition of the plating solution was as follows: 1 mol dm-3 K4P2O7 + 0.017 mol dm-3 ascorbic acid + 0.05 mol dm-3 ZnCl2 + 0.05 mol dm-3 MnCl2•4H2O. Cathodic processes during the alloy electrodeposition were investigated using linear voltammetry. The influence of addition of small amounts of ascorbic acid on the cathodic processes was established. It was shown that this substance inhibits hydrogen evolution and increases the current efficiency of alloy deposition. The current efficiency in the plating bath examined was in the range of 25 and 30%, which was quite higher as compared to the results reported in the literature for electrodeposition of ZnMn alloy from pyrophosphate bath. Electrodeposition of ZnMn alloys was performed galvanostatically on steel panels, at current densities of 20120 mA cm-2. The coatings with the best appearance were obtained at current densities between 30 and 80 mA cm-2. The surface morphology studies, based on atomic force microscopy measurements, showed that morphology of the deposits is highly influenced by deposition current density. ZnMn coating deposited at 30 mA cm-2 was more compact and possessed more homogeneous structure (more uniform agglomeration size than the coating deposited at 80 mA cm-2. Such dependence of morphology on the current density could be explained by the high rate of hydrogen evolution reaction during the electrodeposition process.

  6. Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1990-01-01

    Effects of the additives MnCl2, sulfide, and their combined influence on aluminum deposition and dissolution inNaAlCl4 saturated with NaCl have been studied by polarization measurements, galvanostatic deposition, and current reversalchronopotentiometry (CRC). The solubility of MnCl2 was found...... to be 0.086 ± 0.006 m/o in the melt at 175°C. Aluminum-manganesealloys can be deposited in NaAlCl4 saturated with both NaCl and MnCl2, resulting in a slight increase incathodic overpotentials. The codeposition of the binary alloys at current densities below 4 mA/cm2 gave rise to formationof deposits so...

  7. Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing, E-mail: xiabing@njfu.edu.cn [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037 (China); Shi, Jisen; Dong, Chen; Zhang, Wenyi; Lu, Ye [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Guo, Ping [Nanjing College of Information Technology, Nanjing 210023 (China)

    2014-02-15

    Covalently assembly of low molecular weight poly(ethyleneimine) was introduced to glass surfaces via glutaraldehyde crosslinking, with focus on its application on protein immobilization or bacteria attachment. Characterizations of Fourier transform infrared spectroscopy and ellipsometry measurement revealed a stepwise growth of poly(ethyleneimine) films by layer-by-layer deposition. After fluorescein isothiocyanate labelling, photoluminescence spectroscopy measurement indicated that the amount of surface accessible amine groups had been gradually enhanced with increasing poly(ethyleneimine) layers deposition. As compared with traditional aminosilanized surfaces, the surface density of amine groups was enhanced by ∼11 times after five layers grafting, which resulted in ∼9-time increasing of surface density of immobilized bovine serum albumin. Finally, these as-prepared PEI multi-films with excellent biocompatibility were adopted as culture substrates to improve Escherichia coli adherence, which showed that their surface density had been increased by ∼251 times.

  8. Effect of via depth on the TSV filling process for different current densities

    Science.gov (United States)

    Wang, Feng; Zhao, Zhipeng; Nie, Nantian; Wang, Fuliang; Zhu, Wenhui

    2018-04-01

    Through-silicon-via (TSV) filling with optimum electrodeposition parameters is still a challenge in the industry, especially for via with different depths. Herein, the effects of via depth on optimum current density and filling patterns were investigated. It was found that the deeper the via, the lower the optimum current density. At low current density (4 mA cm-2), the via depth only affects the size of the defect, but does not change the filling pattern. However, at medium current density (7 mA cm-2), the filling pattern changes from super-conformal filling to sub-conformal filling with the increase of via depth, the pinch-off position remaining constant at a depth of about 70 µm from the top surface. Simulations of the TSV filling process using COMSOL modeling software revealed that the local concentration of additives, which is affected by the via depth, determine the morphology of the electrodeposition, matching well the experimental results.

  9. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    OpenAIRE

    I. Steinke; C. Hoose; O. Möhler; P. Connolly; T. Leisner

    2014-01-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol ...

  10. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  11. Increased field-emission site density from regrown carbon nanotube films

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Gupta, S.; Liang, M.; Nemanich, R.J.

    2005-01-01

    Electron field-emission properties of as-grown, etched, and regrown carbon nanotube thin films were investigated. The aligned carbon nanotube films were deposited by the microwave plasma-assisted chemical vapor deposition technique. The surface of the as-grown film contained a carbon nanotube mat of amorphous carbon and entangled nanotubes with some tubes protruding from the surface. Hydrogen plasma etching resulted in the removal of the surface layer, and regrowth on the etched surface displayed the formation of a new carbon nanotube mat. The emission site density and the current-voltage dependence of the field emission from all of the samples were analyzed. The results showed that the as-grown sample had a few strong emission spots and a relatively high emission current density (∼20 μA/cm 2 at 1 V/μm), while the regrown sample exhibited a significantly increased emission site density

  12. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system

    Energy Technology Data Exchange (ETDEWEB)

    Hu Ren [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Department of Biology, College of Life Science, Xiamen University, Xiamen, Fujian 361005 (China); Lin Changjian, E-mail: cjlin@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Shi Haiyan; Wang Hui [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2009-06-15

    In this work, the electrochemical deposition behavior of calcium phosphate coating from an aqueous electrolyte containing very dilute calcium and phosphorus species (Ca-P) was studied. The effects of three process parameters, i.e. temperature, current density and duration, were systematically investigated and the underlying mechanism was thoroughly analyzed. It was observed that the coating is mainly composed of hydroxyapatite (HA) in a wide range of temperature and current densities. The temperature had a significant effect on the deposition velocity. An apparent activation energy of 174.9 kJ mol{sup -1} was subsequently derived, indicating the mass-transfer control mechanism for the coating formation. The current density was identified to be an important parameter for structure controllability. The results of DR-FTIR/Raman spectroscopic studies of the initial deposition phase strongly suggested that the HA coating was instantaneously and directly precipitated on the substrate; neither induction period nor precursor was detected in this dilute Ca-P electrolyte system. Finally, a phase diagram of the Ca-P electrolyte system was constructed, which offered a thermodynamic reason for the direct single-phase HA precipitation observed only in this system, but not in conventional concentrated systems.

  13. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system

    International Nuclear Information System (INIS)

    Hu Ren; Lin Changjian; Shi Haiyan; Wang Hui

    2009-01-01

    In this work, the electrochemical deposition behavior of calcium phosphate coating from an aqueous electrolyte containing very dilute calcium and phosphorus species (Ca-P) was studied. The effects of three process parameters, i.e. temperature, current density and duration, were systematically investigated and the underlying mechanism was thoroughly analyzed. It was observed that the coating is mainly composed of hydroxyapatite (HA) in a wide range of temperature and current densities. The temperature had a significant effect on the deposition velocity. An apparent activation energy of 174.9 kJ mol -1 was subsequently derived, indicating the mass-transfer control mechanism for the coating formation. The current density was identified to be an important parameter for structure controllability. The results of DR-FTIR/Raman spectroscopic studies of the initial deposition phase strongly suggested that the HA coating was instantaneously and directly precipitated on the substrate; neither induction period nor precursor was detected in this dilute Ca-P electrolyte system. Finally, a phase diagram of the Ca-P electrolyte system was constructed, which offered a thermodynamic reason for the direct single-phase HA precipitation observed only in this system, but not in conventional concentrated systems.

  14. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  15. Influence of the anodic etching current density on the morphology of the porous SiC layer

    Directory of Open Access Journals (Sweden)

    Anh Tuan Cao

    2014-03-01

    Full Text Available In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.

  16. Effect of strain on the critical-current density of Cu-Nb composites

    International Nuclear Information System (INIS)

    Klein, J.D.; Rose, R.M.

    1987-01-01

    Microfilamentary superconducting composites of Nb fibers in Cu matrices prepared by the stack and draw method were tested for tensile critical-current performance at 4.2 K. The superconducting critical-current densities increased exponentially under the influence of an applied mechanical strain until the onset of Nb fiber plastic deformation. In the elastic range, the critical-current densities conformed to log 10 J/sub c/ = m (strain)+b. In several tests the critical current was increased by more than an order of magnitude by the applied strain. This behavior is consistent with an increase in the upper critical field of the Nb fibers by the applied stress

  17. Studies of micromorphology and current efficiency of zinc electrodeposited from flowing chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mc Vay, Laura [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1986-05-01

    Results of a study of the micromorphology and current efficiency of zinc electrodeposited from flowing, acidic chloride solutions are reported. The effects of six variables were examined: flow rate, current density, zinc and hydrogen ion concentration, concentrations of nickel, iron and cadmium impurity ions, and the nature of the substrate. The development of micromorphology was studied in-situ by means of videomicrography and ex-situ by means of scanning electron microscopy. This investigation focused on the formation of grooved deposits, which are found under a wide range of deposition conditions. The major conclusions of this study are: the most important variable determining whether grooved deposits form is the interfacial concentration; large protrusions orient themselves parallel to the flow direction with the orientation starting upstream and progressing downstream; large protrusions become ridges due to growth of the highest current density portions of the electrode under mass transport control. The current efficiency was measured using EDTA titration and weight measurements. The fraction of the current taken by zinc deposition increased with zinc concentration, ranging up to 100%, and decreased with pH. The efficiency of zinc deposition was affected by the flow rate and the substrate employed. Impurities lowered the current efficiency.

  18. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  19. The actual current density of gas-evolving electrodes—Notes on the bubble coverage

    International Nuclear Information System (INIS)

    Vogt, H.

    2012-01-01

    All investigations of electrochemical reactors with gas-evolving electrodes must take account of the fact that the actual current density controlling cell operation commonly differs substantially from the nominal current density used for practical purposes. Both quantities are interrelated by the fractional bubble coverage. This parameter is shown to be affected by a large number of operational quantities. However, available relationships of the bubble coverage take account only of the nominal current density. A further essential insufficiency is their inconsistency with reality for very large values of the bubble coverage being of relevance for operation conditions leading to anode effects. An improved relationship applicable to the total range is proposed.

  20. Correlations between critical current density, j{sub c}, critical temperature, T{sub c}, and structural quality of Y{sub 1}B{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, J.; Xing, W.B.; Atlan, D. [Simon Fraser Univ., British Columbia (Canada)] [and others

    1994-12-31

    Correlations between critical current density (j{sub c}) critical temperature (T{sub c}) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO{sub 3} single crystals. Distinct maxima in j{sub c} as a function of the linewidths of the (00{ell}) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j{sub c} indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical current density. T{sub c} increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j{sub c} and the density of edge dislocations N{sub D} was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N{sub D}{approximately}1-2 x 10{sup 9}/cm{sup 2}.

  1. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  2. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  3. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  4. Measurement of the absolute tunneling current density in field emission from tungsten(110)

    International Nuclear Information System (INIS)

    Ehrlich, C.D.; Plummer, E.W.

    1978-01-01

    The phenomenon of quantum-mechanical tunneling of an electron through a barrier in the potential energy has been well established in a variety of experiments. The quantity which is usually measured in these experiments is the rate of change of tunneling current and not the absolute current density. This paper reports on a direct measurement of the tunneling current density, which is found to be in good agreement with free-electron theory for W

  5. Control of ordered mesoporous titanium dioxide nanostructures formed using plasma enhanced glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Child, David, E-mail: david.child@uws.ac.uk [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Song, Shigeng; Zhao, Chao [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Alajiani, Yahya [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of West of Scotland, Paisley, PA1 2BE (United Kingdom); Department of Physics, Faculty of Science, Jazan University, Jazan (Saudi Arabia); Waddell, Ewan [Thin Film Solutions Ltd, West of Scotland Science Park, Glasgow, G20 0TH (United Kingdom)

    2015-10-01

    Three dimensional nanostructures of mesoporous (pore diameter between 2-50 nm) nanocrystalline titania (TiO{sub 2}) were produced using glancing angle deposition combined with plasma ion assisted deposition, providing plasma enhanced glancing angle deposition eliminating the need for post-annealing to achieve film crystallinity. Electron beam evaporation was chosen to deposit nanostructures at various azimuthal angles, achieving designed variation in three dimensional nanostructure. A thermionic broad beam hollow cathode plasma source was used to enhance electron beam deposition, with ability to vary in real time ion fluxes and energies providing a means to modify and control TiO{sub 2} nanostructure real time with controlled density and porosity along and lateral to film growth direction. Plasma ion assisted deposition was carried out at room temperature using a hollow cathode plasma source, ensuring low heat loading to the substrate during deposition. Plasma enhanced glancing angle TiO{sub 2} structures were deposited onto borosilicate microscope slides and used to characterise the effects of glancing angle and plasma ion energy distribution function on the optical and nanostructural properties. Variation in TiO{sub 2} refractive index from 1.40 to 2.45 (@ 550 nm) using PEGLAD is demonstrated. Results and analysis of the influence of plasma enhanced glancing angle deposition on evaporant path and resultant glancing angle deviation from standard GLAD are described. Control of mesoporous morphology is described, providing a means of optimising light trapping features and film porosity, relevant to applications such as fabrication of dye sensitised solar cells. - Highlights: • Plasma assistance during glancing angle deposition enables control of morphology. • Ion energy variation during glancing angle deposition varies columnar angle • Column thickness of glancing angle deposition dependant on ion current density • Ion current density variation during

  6. Anisotropy and intergrain current density in oriented grained bulk YBa2Cu3Ox superconductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The intergrain transport current density and its anisotropy have been studied in oriented grained bulk YBa 2 Cu 3 O x superconductors fabricated by the liquid phase processing method. Current density measurements were performed on oriented grained samples with the transport current aligned at different angles to the a-b plane. In these measurements, the transport current passed through several oriented grain boundaries. The results indicate that the critical current density drops rapidly when the transport current flows at small angles to the a-b plane and then decreases slowly at larger angles. At 77 K and zero magnetic field, an anisotropy ratio of about 25 is observed between J c along a-b plane and that perpendicular to the plane. Further, the critical current density in these samples is found to depend weakly on magnetic field even though the current crosses grain boundaries. These results support the notion that grain boundaries of these superconductors are different in nature from those of solid-state sintered samples.

  7. Effect of current density on the anodic behaviour of zircaloy-4 and niobium: a comparative study

    International Nuclear Information System (INIS)

    Raghunath Reddy, G.; Lavanya, A.; Ch Anjaneyulu

    2004-01-01

    The kinetics of anodic oxidation of zircaloy-4 and niobium have been studied at current densities ranging from 2 to 14 mA.cm -2 at room temperature in order to investigate the dependence of ionic current density on the field across the oxide film. Thickness of the anodic films were estimated from capacitance data. The formation rate, current efficiency and differential field were found to increase with increase in the ionic current density for both zircaloy-4 and niobium. Plots of the logarithm of formation rate vs. logarithm of the current density are fairly linear. From linear plots of logarithm of ionic current density vs. differential field, and applying the Cabrera-Mott theory, the half-jump distance and the height of the energy barrier are deduced and compared. (author)

  8. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    Science.gov (United States)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  9. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film

    International Nuclear Information System (INIS)

    Vikram, S.

    1999-01-01

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation

  10. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, S.

    1999-01-20

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

  11. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  12. PYFLOW_2.0: a computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data

    Science.gov (United States)

    Dioguardi, Fabio; Mele, Daniela

    2018-03-01

    This paper presents PYFLOW_2.0, a hazard tool for the calculation of the impact parameters of dilute pyroclastic density currents (DPDCs). DPDCs represent the dilute turbulent type of gravity flows that occur during explosive volcanic eruptions; their hazard is the result of their mobility and the capability to laterally impact buildings and infrastructures and to transport variable amounts of volcanic ash along the path. Starting from data coming from the analysis of deposits formed by DPDCs, PYFLOW_2.0 calculates the flow properties (e.g., velocity, bulk density, thickness) and impact parameters (dynamic pressure, deposition time) at the location of the sampled outcrop. Given the inherent uncertainties related to sampling, laboratory analyses, and modeling assumptions, the program provides ranges of variations and probability density functions of the impact parameters rather than single specific values; from these functions, the user can interrogate the program to obtain the value of the computed impact parameter at any specified exceedance probability. In this paper, the sedimentological models implemented in PYFLOW_2.0 are presented, program functionalities are briefly introduced, and two application examples are discussed so as to show the capabilities of the software in quantifying the impact of the analyzed DPDCs in terms of dynamic pressure, volcanic ash concentration, and residence time in the atmosphere. The software and user's manual are made available as a downloadable electronic supplement.

  13. Depositional turbidity currents in diapiric minibasins on the continental slope: Formulation and theory

    OpenAIRE

    Toniolo, Horacio; Lamb, Michael; Parker, Gary

    2006-01-01

    The northern continental slope of the Gulf of Mexico is riddled with numerous subsiding diapiric minibasins bounded by ridges, many but not all of which are connected by channels created by turbidity currents. The region is economically relevant in that many of these diapiric minibasins constitute focal points for the deposition of sand. Some of these sandy deposits in turn serve as excellent reservoirs for hydrocarbons. A better understanding of the "fill and spill" process by which minibasi...

  14. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  15. Effects of stocking density on lipid deposition and expression of lipid-related genes in Amur sturgeon (Acipenser schrenckii).

    Science.gov (United States)

    Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang; He, Feng; Ni, Meng

    2017-12-01

    To investigate the correlation between lipid deposition variation and stocking density in Amur sturgeon (Acipenser schrenckii) and the possible physiological mechanism, fish were conducted in different stocking densities (LSD 5.5 kg/m 3 , MSD 8.0 kg/m 3 , and HSD 11.0 kg/m 3 ) for 70 days and then the growth index, lipid content, lipase activities, and the mRNA expressions of lipid-related genes were examined. Results showed that fish subjected to higher stocking density presented lower final body weights (FBW), specific growth ratio (SGR), and gonad adipose tissue index (GAI) (P density lipoprotein cholesterol (HDL-C) decreased significantly with increasing stocking density, while no significant change was observed for low-density lipoprotein cholesterol (LDL-C). Furthermore, the cDNAs encoding lipoprotein lipase (LPL) and hepatic lipase (HL) were isolated in Amur sturgeon, respectively. The full-length LPL cDNA was composed of 1757 bp with an open reading frame of 501 amino acids, while the complete nucleotide sequences of HL covered 1747 bp encoding 499 amino acids. In the liver, the activities and mRNA levels of LPL were markedly lower in HSD group, which were consistent with the variation tendency of HL. Fish reared in HSD group also presented lower levels of activities and mRNA expression of LPL in the muscle and gonad. Moreover, the expressions of peroxisome proliferator-activated receptor α (PPARα) in both the liver and skeletal muscle were significantly upregulated in HSD group. Overall, the results indicated that high stocking density negatively affects growth performance and lipid deposition of Amur sturgeon to a certain extent. The downregulation of LPL and HL and the upregulation of PPARα may be responsible for the lower lipid distribution of Amur sturgeon in higher stocking density.

  16. Direct current magnetron sputtering deposition of InN thin films

    International Nuclear Information System (INIS)

    Cai Xingmin; Hao Yanqing; Zhang Dongping; Fan Ping

    2009-01-01

    In this paper, InN thin films were deposited on Si (1 0 0) and K9 glass by reactive direct current magnetron sputtering. The target was In metal with the purity of 99.999% and the gases were Ar (99.999%) and N 2 (99.999%). The properties of InN thin films were studied. Scanning electron microscopy (SEM) shows that the film surface is very rough and energy dispersive X-ray spectroscopy (EDX) shows that the film contains In, N and very little O. X-ray diffraction (XRD) and Raman scattering reveal that the film mainly contains hexagonal InN. The four-probe measurement shows that InN film is conductive. The transmission measurement demonstrates that the transmission of InN deposited on K9 glass is as low as 0.5% from 400 nm to 800 nm.

  17. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  18. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  19. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  20. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  1. Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication

    International Nuclear Information System (INIS)

    Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2005-01-01

    The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film

  2. LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tomohiro Miyanishi

    Full Text Available INTRODUCTION: Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN, by using low-resolution brain electromagnetic tomography (LORETA, and neuropsychological performance in subjects with early schizophrenia. METHODS: Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J. RESULTS: Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. CONCLUSIONS: This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.

  3. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  4. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    International Nuclear Information System (INIS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed

  5. Turbostratic-like carbon nitride coatings deposited by industrial-scale direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Louring, S.; Madsen, N.D.; Berthelsen, A.N.; Christensen, B.H.; Almtoft, K.P.; Nielsen, L.P.; Bøttiger, J.

    2013-01-01

    Carbon nitride thin films were deposited by direct current magnetron sputtering in an industrial-scale equipment at different deposition temperatures and substrate bias voltages. The films had N/(N + C) atomic fractions between 0.2 and 0.3 as determined by X-ray photoelectron spectroscopy (XPS). Raman spectroscopy provided insight into the ordering and extension of the graphite-like clusters, whereas nanoindentation revealed information on the mechanical properties of the films. The internal compressive film stress was evaluated from the substrate bending method. At low deposition temperatures the films were amorphous, whereas the film deposited at approximately 380 °C had a turbostratic-like structure as confirmed by high-resolution transmission electron microscopy images. The turbostratic-like film had a highly elastic response when subjected to nanoindentation. When a CrN interlayer was deposited between the film and the substrate, XPS and Raman spectroscopy indicated that the turbostratic-like structure was maintained. However, it was inconclusive whether the film still exhibited an extraordinary elastic recovery. An increased substrate bias voltage, without additional heating and without deposition of an interlayer, resulted in a structural ordering, although not to the extent of a turbostratic-like structure. - Highlights: • Carbon nitride films were deposited by industrial-scale magnetron sputtering. • The deposition temperature and the substrate bias voltage were varied. • A turbostratic-like structure was obtained at an elevated deposition temperature. • The turbostratic-like film exhibited a very high elastic recovery. • The influence of a CrN interlayer on the film properties was investigated

  6. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode....... A current density of -1.5 and -2.0 A/cm2 was applied to the cell and the gas conversion was 45 % and 60 %, respectively. The cells were operated for a period of up to 700 hours. The electrochemical analysis revealed significant performance degradation for the ohmic process, oxygen ion interfacial transfer...

  7. Current status and prospects of uranium geology developments of foreign in-situ leachable sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Wang Zhengbang

    2002-01-01

    Firstly, with emphasis on in-situ leachable sandstone-type uranium deposits, the prospecting history of uranium deposits worldwide and its scientific research development are generally reviewed in four steps, and their basic historical experience is also summarized. Secondly, based on the detailed description of current development status of uranium geology of foreign in-situ leachable sandstone-type uranium deposits the important strategic position of sandstone-type uranium deposits in overall uranium resources all-over-the-world and its classification, spatial-temporal distribution and regulation, and metallogenic condition of sandstone-type uranium deposits are analysed thoroughly in five aspects: techtonics, paleo-climate, hydrogeology, sedimentary facies and lithology, as well as uranium sources: Afterwards, evaluation principles of three type of hyper-genic, epigenetic infiltrated sandstone-type uranium deposits are summarized. Based on sandstone-type uranium deposits located two important countries: the United States and Russia, the current development status of prospecting technology for in-situ leachable sandstone-type uranium deposits in foreign countries is outlined. Finally, according to the prospects of supply-demand development of global uranium resources, the author points out seriously that Chinese uranium geology is faced with a severe challenge, and proposes directly four strategic measures that should be taken

  8. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  9. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-09-01

    Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.

  10. Electrochemical deposition of TiB2 in high temperature molten salts

    International Nuclear Information System (INIS)

    Fastner, U.; Steck, T.; Pascual, A.; Fafilek, G.; Nauer, G.E.

    2008-01-01

    The electrochemical deposition of TiB 2 out of a NaCl-KCl-NaF-KBF 4 -K 2 TiF 6 electrolyte at 600 deg. C was tested on steel and molybdenum substrates using various current programs. The characterisation of the deposited layers has been carried out by X-ray diffraction methods, scanning electron microscopy and microhardness measurements. The pulse sequences and the current densities used influence in a significant way the homogeneity of the layers deposited, the crystal size, the texture and other physical properties like electrical and thermal conductivity. The microhardness range was up to 2900 HV, smooth and dense layers were prepared at a pulse frequency of 100 Hz

  11. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  12. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  13. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  14. Influence of plasma density on the chemical composition and structural properties of pulsed laser deposited TiAlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Quiñones-Galván, J. G.; Camps, Enrique [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, México D.F. C.P. 11801 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, México D.F. C.P. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Apdo. Postal 307, C.P. 45101 Zapopan, Jalisco (Mexico); Campos-González, E. [Departamento de Física, CINVESTAV-IPN, Apdo. Postal 14-740, México D.F. 07360 (Mexico)

    2014-05-15

    Incorporation of substitutional Al into the TiN lattice of the ternary alloy TiAlN results in a material with improved properties compared to TiN. In this work, TiAlN thin films were grown by the simultaneous ablation of Ti and Al targets in a nitrogen containing reactive atmosphere. The deposit was formed on silicon substrates at low deposition temperature (200 °C). The dependence of the Al content of the films was studied as a function of the ion density of the plasma produced by the laser ablation of the Al target. The plasma parameters were measured by means of a planar Langmuir probe and optical emission spectroscopy. The chemical composition of the films was measured by energy dispersive X-ray spectroscopy. The results showed a strong dependence of the amount of aluminum incorporated in the films with the plasma density. The structural characterization of the deposits was carried out by Raman spectroscopy, X-ray diffraction, and transmission electron microscopy, where the substitutional incorporation of the Al into the TiN was demonstrated.

  15. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  16. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  17. Scanning Hall-probe microscopy system for two-dimensional imaging of critical current density in RE-123 coated conductors

    International Nuclear Information System (INIS)

    Higashikawa, K.; Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T.; Izumi, T.

    2011-01-01

    Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 μm in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.

  18. The effect of plasma collisionality on pedestal current density formation in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D M; Leonard, A W; Osborne, T H; Groebner, R J; West, W P; Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2006-05-15

    The evolution and performance limits for the pedestal in H-mode are dependent on the two main drive terms for instability: namely the edge pressure gradient and the edge current density. These terms are naturally coupled though neoclassical (Pfirsch-Schluter and bootstrap) effects. On DIII-D, local measurements of the edge current density are made using an injected lithium beam in conjunction with Zeeman polarimetry and compared with pressure profile measurements made with other diagnostics. These measurements have confirmed the close spatial and temporal correlation that exists between the measured current density and the edge pressure in H- and QH-mode pedestals, where substantial pressure gradients exist. In the present work we examine the changes in the measured edge current for DIII-D pedestals which have a range of values for the ion and electron collisionalities {l_brace}{upsilon}{sub i}*,{upsilon}{sub e}*{r_brace} due to fuelling effects. Such changes in the collisionality in the edge are expected to significantly alter the level of the bootstrap current from the value predicted from the collisionless limit and therefore should correspondingly alter the pedestal stability limits. We find a clear decrease in measured current as {nu} increases, even for discharges having similar edge pressure gradients.

  19. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  20. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  1. Effect of Y2O3 Nanoparticles on Critical Current Density of YBa2Cu3O7-x Thin Films

    International Nuclear Information System (INIS)

    Tran, H. D.; Reddy, Sreekantha; Wie, C. H.; Kang, B.; Oh, Sang Jun; Lee, Sung Ik

    2009-01-01

    Introduction of proper impurity into YBa 2 Cu 3 O 7-x (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of Y 2 O 3 nanoparticles on the critical current density J c of the YBCO thin films. The Y 2 O 3 nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/Y 2 O 3 /LAO or Y 2 O 3 /YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied (780 degree C and 800 degree C) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of 780 degree C created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. J-c values of the YBCO films with Y 2 O 3 particles were either remained nearly the same or decreased for the samples in which YBCO is grown at 780 degree C. On the other hand, J-c values were enhanced for the samples in which YBCO is grown at higher temperature of 800 degree C. The difference in the effect of Y 2 O 3 can be explained by the fact that the higher deposition temperature of 800 degree C reduces intrinsic pinning centers and J c is enhanced by introduction of artificial pinning centers in the form of Y 2 O 3 nanoparticles.

  2. Enhancement of critical current density of YBa2Cu3O7-δ thin films by nanoscale CeO2 pretreatment of substrate surfaces

    International Nuclear Information System (INIS)

    Cui, X.M.; Liu, G.Q.; Wang, J.; Huang, Z.C.; Zhao, Y.T.; Tao, B.W.; Li, Y.R.

    2007-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films were prepared on single-crystal SrTiO 3 substrates with metal-organic deposition using trifluoroacetates (TFA-MOD). Positive results have been acquired in controlled study to investigate the effects of substrate surface modification on the growth-induced flux-pinning nanostructures in YBCO films. Nanoscale CeO 2 particles were applied to single-crystal SrTiO 3 substrate surfaces using pulsed laser deposition before YBCO precursors coating. Superconducting properties of the YBCO films grown on the controlled CeO 2 -modified substrates have shown substantial improvement in the critical current densities (J c ) at 77 K over those grown on untreated substrates in almost all the field (78% increment at 1 T, 77 K). We think the reason is that the CeO 2 nanoparticles act as pinning centers

  3. A note on coarse-grained gravity-flow deposits within proterozoic lacustrine sedimentary rocks, Transvaal sequence, South Africa

    Science.gov (United States)

    Eriksson, P. G.

    A widely developed, thin, coarse-matrix conglomerate occurs within early Proterozoic lacustrine mudrocks in the Transvaal Sequence, South Africa. The poorly sorted tabular chert clasts, alternation of a planar clast fabric with disorientated zones, plus normal and inverse grading in the former rock type suggest deposition by density-modified grain-flow and high density turbidity currents. The lower fan-delta slope palæenvironment inferred for the conglomerate is consistent with the lacustrine interpretation for the enclosing mudrock facies. This intracratonic setting contrasts with the marine environment generally associated with density-modified grain-flow deposits.

  4. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current-density

  5. Influence of Waves and Tides on Upper Slope Turbidity Currents and their Deposits: An Outcrop and Laboratory Study

    Science.gov (United States)

    Daniller-Varghese, M. S.; Smith, E.; Mohrig, D. C.; Goudge, T. A.; Hassenruck-Gudipati, H. J.; Koo, W. M.; Mason, J.; Swartz, J. M.; Kim, J.

    2017-12-01

    Research on interactions of turbidity currents with waves and tides highlight both their importance and complexity. The Elkton Siltstone at Cape Arago, Oregon, USA, preserves rhythmically bedded deposits that we interpret as the product of tidally modified hyperpycnal flows under the influence of water-surface waves. Evidence for the interpretation of tidal influence is taken from couplet thickness measurements consistent with semidiurnal tides arranged into monthly cycles. These deposits were likely sourced from suspended-sediment laden river plumes; thinner, finer-grained beds represent deposition during flood tide, and thicker, coarser-grained beds represent deposition during ebb tide. Sedimentary structures within the rhythmites change from proximal to distal sections, but both sections preserve combined-flow bedforms within the beds, implying wave influence. Our paleo-topographic reconstruction has the proximal section located immediately down-dip of the shelf slope-break and the distal section located 1.5km further offshore in 125m greater water depth. We present experimental results from wave-influenced turbidity currents calling into question the interpretation that combined-flow bedforms necessarily require deposition at or above paleo-wave base. Turbidity currents composed of quartz silt and very fine sand were released into a 10m long, 1.2m deep tank. Currents ran down a 9-degree ramp with a motor driven wave-maker positioned at the distal end of the tank. The currents interacted with the wave field as they travelled downslope into deeper water. While oscillatory velocities measured within the wave-influenced turbidity currents decreased with distance downslope, the maximum oscillatory velocities measured in the combined-flow currents at depth were five to six times larger than those measured under a wave field without turbidity currents. These results suggest that combined-flow turbidity currents can transmit oscillating-flow signals beneath the

  6. Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Mostavan, Afghany [Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I, Department of Mining, Metallurgy and Materials Engineering, the CHU de Québec Research Centre, Québec City, QC G1V 0A6 (Canada); Department of Mining, Metallurgy and Materials Engineering, Laval University, Québec City, QC G1V 0A6 (Canada); Paternoster, Carlo; Tolouei, Ranna [Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I, Department of Mining, Metallurgy and Materials Engineering, the CHU de Québec Research Centre, Québec City, QC G1V 0A6 (Canada); Ghali, Edward; Dubé, Dominique [Department of Mining, Metallurgy and Materials Engineering, Laval University, Québec City, QC G1V 0A6 (Canada); Mantovani, Diego, E-mail: Diego.Mantovani@gmn.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I, Department of Mining, Metallurgy and Materials Engineering, the CHU de Québec Research Centre, Québec City, QC G1V 0A6 (Canada); Department of Mining, Metallurgy and Materials Engineering, Laval University, Québec City, QC G1V 0A6 (Canada)

    2017-01-01

    With its proven biocompatibility and excellent mechanical properties, iron is an excellent source material for clinical cardiac and vascular applications. However, its relatively low degradation rate limits its use for the healing and remodeling of diseased blood vessels. To address these issues, a multi-purpose fabrication process to develop a bilayer alloy composed of electroformed iron (E-Fe) and iron-phosphorus (Fe-P) was employed. Bilayers of Fe/Fe-P were produced in an electrolytic bath. The effects of electrolyte chemical composition and deposition current density (i{sub dep}) on layer structure and chemical composition were assessed by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and X-ray photoelectron spectroscopy. The corrosion rate was determined by potentiodynamic polarization tests. The bilayers showed an increasing amount of P with increasing NaH{sub 2}PO{sub 4}·H{sub 2}O in the electrolyte. Fe-P structure became finer for higher P amounts. Potentiodynamic polarization tests revealed that the corrosion rate was strongly influenced by deposition conditions. For a P amount of ~ 2 wt. %, the corrosion rate was 1.46 mm/year, which confirms the potential of this material to demonstrate high mechanical properties and a suitable corrosion rate for biomedical applications. - Highlights: • A phosphates and Fe chloride electrolyte was used for the fabrication of a multilayer of Fe/FeP. • Up to ~ 14% at. P was deposited by co-deposition of Fe and P. • The corrosion rate for the layer with a ~ 3% at. P was the highest one and equal to 1.46 mm/year. • For a 14% at. P, the FeP alloy shows a texture change, with only (110) reflection visible.

  7. 3-D time-domain induced polarization tomography: a new approach based on a source current density formulation

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.

    2018-04-01

    Induced polarization (IP) of porous rocks can be associated with a secondary source current density, which is proportional to both the intrinsic chargeability and the primary (applied) current density. This gives the possibility of reformulating the time domain induced polarization (TDIP) problem as a time-dependent self-potential-type problem. This new approach implies a change of strategy regarding data acquisition and inversion, allowing major time savings for both. For inverting TDIP data, we first retrieve the electrical resistivity distribution. Then, we use this electrical resistivity distribution to reconstruct the primary current density during the injection/retrieval of the (primary) current between the current electrodes A and B. The time-lapse secondary source current density distribution is determined given the primary source current density and a distribution of chargeability (forward modelling step). The inverse problem is linear between the secondary voltages (measured at all the electrodes) and the computed secondary source current density. A kernel matrix relating the secondary observed voltages data to the source current density model is computed once (using the electrical conductivity distribution), and then used throughout the inversion process. This recovered source current density model is in turn used to estimate the time-dependent chargeability (normalized voltages) in each cell of the domain of interest. Assuming a Cole-Cole model for simplicity, we can reconstruct the 3-D distributions of the relaxation time τ and the Cole-Cole exponent c by fitting the intrinsic chargeability decay curve to a Cole-Cole relaxation model for each cell. Two simple cases are studied in details to explain this new approach. In the first case, we estimate the Cole-Cole parameters as well as the source current density field from a synthetic TDIP data set. Our approach is successfully able to reveal the presence of the anomaly and to invert its Cole

  8. Method of measuring the current density distribution and emittance of pulsed electron beams

    International Nuclear Information System (INIS)

    Schilling, H.B.

    1979-07-01

    This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)

  9. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    Science.gov (United States)

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  10. Use of high current density superconducting coils in fusion devices

    International Nuclear Information System (INIS)

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  11. The charge deposition in the numerical simulation of high-current beam

    International Nuclear Information System (INIS)

    Wang Shijun

    1987-01-01

    A new method of charge deposition of high-current beam, conservation-map method, is given. THe advantages of Neil's and other various methods are adopted. The mistake of Neil's method and the limitation of other various methods is discarded. So the method is accurate without additional assumption. The method not only applies to the case of steady laminar flow but also applies to the case of steady non-laminar flow

  12. External kink mode stability of tokamaks with finite edge current density in plasma outside separatrix

    International Nuclear Information System (INIS)

    Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.

    1996-01-01

    Large pressure gradients and current density at the plasma edge and accompanying edge-localized MHD instabilities are typical for H-mode discharges. Low-n external kink modes are a possible cause of the instabilities. The paper mostly deals with external kink modes driven by a finite current density at the plasma boundary (so called peeling modes). It was shown earlier that for a single axis plasma embedded into vacuum the peeling modes are stabilized when separatrix is approaching the plasma boundary. For doublet configurations a finite current density at the internal separatrix does not necessarily lead to external kink instability when the current density vanishes at the boundary. However, a finite current density at the plasma boundary outside the separatrix can drive outer peeling modes. The stability properties and structure of these modes depend on the plasma equilibrium outside the separatrix. The influence of plasma shear and pressure gradient at the boundary on the stability of the outer peeling modes in doublets is studied. The stability of kink modes in divertor configurations with plasma outside the separatrix is very sensitive to the boundary conditions set at open field lines. The choice of the boundary conditions and kink mode stability calculations for the divertor configurations are discussed. (author) 4 figs., 5 refs

  13. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  14. [Current situation and impact factors of acid deposition in main cites of Shandong Province].

    Science.gov (United States)

    Jia, Hong-yu; Zhang, Qiao-xian; Deng, Hong-bing; Zhao, Jing-zhu; Mu, Jin-bo; Zhang, De-zhi

    2006-12-01

    Based on the monitoring data for years in Shandong Province, current situation of acid rain in every city was assessed, and the temporal distribution of the dry, wet and total sulfur deposition in Jinan and Qingdao were studied. The results showed that Qingdao which had the largest precipitation acidity was the single city whose annul average precipitation pH was below 5. 60. The precipitation acidities in the main cities of Shandong Province were in a descent tendency. The total sulfur desposition in Jinan and Qingdao was basically stable or in a descent tendency, but also reached 10 t/(km(2)x a) or so. Among the total sulfur deposition flux, the dry deposition of sulfur had the greater contribution, and the contribution of SO2 dry deposition was higher than that of SO42- dry deposition. By analyzing the relation between the precipitation acidity and the SO2 discharge intensity, soil acidity and meteorological condition, the impact factors of acid precipitation in the cities of Shandong Province were revealed.

  15. Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics

    Institute of Scientific and Technical Information of China (English)

    Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci

    2005-01-01

    A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.

  16. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  17. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  18. Excimer pulsed laser deposition and annealing of YSZ nanometric films on Si substrates

    International Nuclear Information System (INIS)

    Caricato, A.P.; Barucca, G.; Di Cristoforo, A.; Leggieri, G.; Luches, A.; Majni, G.; Martino, M.; Mengucci, P.

    2005-01-01

    We report experimental results obtained for electrical and structural characteristics of yttria-stabilised zirconia (YSZ) thin films deposited by pulsed laser deposition (PLD) on Si substrates at room temperature. Some samples were submitted to thermal treatments in different ambient atmospheres (vacuum, N 2 and O 2 ) at a moderate temperature. The effects of thermal treatments on the film electrical properties were studied by C-V and I-V measurements. Structural characteristics were obtained by X-ray diffraction (XRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) analyses. The as-deposited film was amorphous with an in-depth non-uniform density. The annealed films became polycrystalline with a more uniform density. The sample annealed in O 2 was uniform over all the thickness. Electrical characterisation showed large hysteresis, high leakage current and positive charges trapped in the oxide in the as-deposited film. Post-deposition annealing, especially in O 2 atmosphere, improved considerably the electrical properties of the films

  19. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices

    Science.gov (United States)

    Gandhi, Om P.; Kang, Gang

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

  20. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices.

    Science.gov (United States)

    Gandhi, O P; Kang, G

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

  1. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  2. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    Science.gov (United States)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  3. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    International Nuclear Information System (INIS)

    Lin, Jianliang; Chistyakov, Roman

    2017-01-01

    Highlights: • Highly orientated AlN films were deposited by DOMS technique. • Controlled ion flux bombardment improved the texture and crystalline quality. • Excessive ion bombardment showed a detrimental effect on the c-axis orientation growth. • Improved c-axis alignment accompanied with stress relaxation with increasing film thickness. - Abstract: Highly c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm"−"2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm"−"2 improved the orientation. Further increasing the peak target current density to above 0.53 Acm"−"2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  4. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianliang, E-mail: Jianliang.lin@swri.org [Southwest Research Institute, San Antonio, TX 78238 (United States); Chistyakov, Roman [Zpulser LLC, Mansfield, MA 02048 (United States)

    2017-02-28

    Highlights: • Highly <0001> orientated AlN films were deposited by DOMS technique. • Controlled ion flux bombardment improved the <0001> texture and crystalline quality. • Excessive ion bombardment showed a detrimental effect on the c-axis orientation growth. • Improved c-axis alignment accompanied with stress relaxation with increasing film thickness. - Abstract: Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm{sup −2}) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm{sup −2} improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm{sup −2} showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  5. Change of the dominant luminescent mechanism with increasing current density in molecularly doped organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhou Liang; Zhang Hongjie; Meng Qingguo; Liu Fengyi; Yu Jiangbo; Deng Ruiping; Peng Zeping; Li Zhefeng; Guo Zhiyong

    2007-01-01

    We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA) 3 phen (x):CBP/BCP/ALQ/LiF/Al, where x is the weight percentage of Eu(TTA) 3 phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Foerster energy transfer participates in EL process. At the current density of 10.0 and 80.0 mA/cm 2 , 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Foerster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Foerster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Foerster energy transfer compared with carrier trapping

  6. Current status and future of developing Upper Cretaceous oil deposits in the Oktyabrskoye field

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshnikova, A.I.; Lapshin, M.Ye.

    1979-01-01

    The Upper Cretaceous deposit at the Oktyabrskoye field was discovered in 1966. Fractured, cavernous limestone, similar to the producing rock of many Upper Cretaceous deposits of the Chechen Ingush ASSR, form the reservoir. The deposit is situated toward a narrow anticlinal fold with angles of rock drop 40-45/sup 0/. Its heighth is 950m; the average capacity of the producing part is 400m; the deposit depth is 4200-5150m; the layer temperature is 150-160/sup 0/C. Exploratory work on the deposit is incomplete. The deposit was brought under industrial development in 1974. The development is conducted based on a refined, technological system, that includes contour flooding to maintain layer pressure in the center to edge part of the deposit at 36.0 MPa. This somewhat increases the pressure of the gas saturated oil, as well as the subsequent increase in layer pressure to 45.9 MPa for assuring wide open well flow during the late stages of development. Currently, the amount of oil obtained somewhat exceeds the planned level but the pumping volume is less than that planned. The deposit has not yet been studied sufficiently. Its boundaries have not been established; the locations of the initial and working water/oil edges are conditional; the structural plan is approximate. Data on the degree of waterflooding in the deposit and the magnitude of the actual oil yield coefficient are lacking inasmuch as the amount of oil already extracted at this time exceeds the calculated reserves. To increase the effectiveness of further development of the deposit and acquisition of the necessary data for calculating oil reserves, the deposit will be studied according to a special plan over a number of new drilling wells.

  7. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  8. Critical current densities in thick yttrium-barium cuprate (1-2-3) films

    International Nuclear Information System (INIS)

    Ryvkina, G.G.; Gorlanov, S.F.; Vedernikov, G.E.; Telegin, A.B.; Ryabin, V.A.; Khodos, M.Ya.

    1993-01-01

    The study of critical current densities j c of oxide superconductors and their thick films is a very important practical task because the value of j c is one of the main criteria for their utilization in modern cryoelectronics. For most devices based on the Josephson effect, the value of j c ∼ 10 2 - 10 3 A/cm 2 is acceptable, which is easily attainable for polycrystalline thick films obtained by stenciling. The study of the current-transport phenomenon involves a number of difficulties, especially for direct current, because both the sample itself and the lead-in contacts are resistance-heated during the measurements, which, in turn, results in lower values of the j c . Measurements with pulsed currents allow one to lower the power that is applied to the sample; the heat that is released in the sample is reduced, in comparison to measurements with direct current, by a factor of the pulsed-current duty cycle. In addition, measurements with direct current detects only the appearance of resistance; it provides no information on the rest of the transition from the normal to the superconductive state, i.e., on the so-called 'tail' of the transition. In this work, the authors studied critical current densities of thick HTSC yttrium-barium cuprate films of the 1-2-3 composition using pulsed current

  9. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  10. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  11. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    Science.gov (United States)

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  13. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  14. Bimodal gate-dielectric deposition for improved performance of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    International Nuclear Information System (INIS)

    Pang Liang; Kim, Kyekyoon

    2012-01-01

    A bimodal deposition scheme combining radiofrequency magnetron sputtering and plasma enhanced chemical vapour deposition (PECVD) is proposed as a means for improving the performance of GaN-based metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs). High-density sputtered-SiO 2 is utilized to reduce the gate leakage current and enhance the breakdown voltage while low-density PECVD-SiO 2 is employed to buffer the sputtering damage and further increase the drain current by engineering the stress-induced-polarization. Thus-fabricated MOSHEMT exhibited a low leakage current of 4.21 × 10 -9 A mm -1 and high breakdown voltage of 634 V for a gate-drain distance of 6 µm, demonstrating the promise of bimodal-SiO 2 deposition scheme for the development of GaN-based MOSHEMTs for high-power application. (paper)

  15. Properties and electrochemical behaviors of AuPt alloys prepared by direct-current electrodeposition for lithium air batteries

    International Nuclear Information System (INIS)

    Zhang, Jinqiu; Li, Da; Zhu, Yiming; Chen, Miaomiao; An, Maozhong; Yang, Peixia; Wang, Peng

    2015-01-01

    AuPt catalyst has a prospective application in a lithium air battery because of its bi-function on catalyzing Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). Electrodeposition is an in-situ convenient technology for catalyst preparation without chemical residue. In an acid electrolyte, AuPt alloy catalysts were electrodeposited on carbon paper. The effect of main salt concentration, electrodeposition time and current density were studied by deposit micromorphology observation, structure analyses and composition testing. Catalytic abilities of AuPt alloys were measured by cyclic voltammetry (CV) in an ionic liquid of EMI-TFSI/Li-TFSI [1- Ethyl - 3- methylimidazolium–bis (trifluoromethanesulphonyl) imide/lithium–bis (trifluoromethanesulphonyl) imide]. The electrochemical behaviors of Au, Pt and AuPt deposits were also measured. An optimized direct-current electrodeposition process of getting high active AuPt catalyst is concluded, which is an aqueous solution containing 6.7∼10 mmol · L −1 HAuCl 4 , 10∼13.3 mmol · L −1 H 2 PtCl 6 and 0.5 mol · L −1 H 2 SO 4 as the electrolyte, current density of 20mA · cm −2 and electrodeposition time of 8∼34 s. The co-deposition of AuPt alloy is an irregular co-deposition controlled by diffusion, while gold atoms enter the platinum’s crystal lattice in the structure of AuPt alloy. The increase of the concentration of H 2 PtCl 6 in the electrolyte, the extension of the electrodeposition time or the raise of the current density can improve the content of Pt in the deposit. The clusters’ diameters of AuPt catalysts decrease to 150∼250 nm by adjusting current densities during electrodeposition

  16. Field mapping measurements to determine spatial and field dependence of critical current density in YBCO tapes

    International Nuclear Information System (INIS)

    Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.

    2013-01-01

    Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed

  17. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly

    2014-04-01

    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  18. Influence of sodium deposits in steam generator tubes on remote field eddy current signals

    Energy Technology Data Exchange (ETDEWEB)

    Thirunavukkarasu, S. [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Rao, B.P.C. [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)], E-mail: bpcrao@igcar.gov.in; Vaidyanathan, S.; Jayakumar, T.; Raj, Baldev [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2008-04-15

    The presence of sodium deposits in defective regions of steam generator (SG) tubes of fast-breeder reactors is expected to influence the remote field eddy current (RFEC) signals. By exposing five SG tubes having uniform wall loss grooves to a sodium environment in a specially designed test vessel, changes in the shape of RFEC signals were observed and it was possible to approximate the volume of sodium deposited in defects. An invariant signal parameter was determined for quantitative characterization of defects despite the presence of sodium in the defects.

  19. Over 15 MA/cm2 of critical current density in 4.8 µm thick, Zr-doped (Gd,Y)Ba2Cu3Ox superconductor at 30 K, 3T.

    Science.gov (United States)

    Majkic, Goran; Pratap, Rudra; Xu, Aixia; Galstyan, Eduard; Selvamanickam, Venkat

    2018-05-03

    An Advanced MOCVD (A-MOCVD) reactor was used to deposit 4.8 µm thick (Gd,Y)BaCuO tapes with 15 mol% Zr addition in a single pass. A record-high critical current density (J c ) of 15.11 MA/cm 2 has been measured over a bridge at 30 K, 3T, corresponding to an equivalent (I c ) value of 8705 A/12 mm width. This corresponds to a lift factor in critical current of ~11 which is the highest ever reported to the best of author's knowledge. The measured critical current densities at 3T (B||c) and 30, 40 and 50 K, respectively, are 15.11, 9.70 and 6.26 MA/cm 2 , corresponding to equivalent Ic values of 8705, 5586 and 3606 A/12 mm and engineering current densities (J e ) of 7068, 4535 and 2928 A/mm 2 . The engineering current density (J e ) at 40 K, 3T is 7 times higher than that of the commercial HTS tapes available with 7.5 mol% Zr addition. Such record-high performance in thick films (>1 µm) is a clear demonstration that growing thick REBCO films with high critical current density (J c ) is possible, contrary to the usual findings of strong J c degradation with film thickness. This achievement was possible due to a combination of strong temperature control and uniform laminar flow achieved in the A-MOCVD system, coupled with optimization of BaZrO 3 nanorod growth parameters.

  20. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C.K., E-mail: ckchung@mail.ncku.edu.t [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China); Chang, W.T. [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2009-07-01

    Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films has been investigated. The composition, morphology, phase and hardness of the Ni-Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni-Co films codeposited from the fixed sulfamate-chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni-Co films has no eminent change at a pulse frequency of 10-100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni-Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency.

  1. First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data

    Directory of Open Access Journals (Sweden)

    C. Vallat

    2005-07-01

    Full Text Available The inner magnetosphere's current mapping is one of the key elements for current loop closure inside the entire magnetosphere. A method for directly computing the current is the multi-spacecraft curlometer technique, which is based on the application of Maxwell-Ampère's law. This requires the use of four-point magnetic field high resolution measurements. The FGM experiment on board the four Cluster spacecraft allows, for the first time, an instantaneous calculation of the magnetic field gradients and thus a measurement of the local current density. This technique requires, however, a careful study concerning all the factors that can affect the accuracy of the J estimate, such as the tetrahedral geometry of the four spacecraft, or the size and orientation of the current structure sampled. The first part of this paper is thus providing a detailed analysis of the method accuracy, and points out the limitations of this technique in the region of interest. The second part is an analysis of the ring current region, which reveals, for the first time, the large latitudinal extent of the ring current, for all magnetic activity levels, as well as the latitudinal evolution of the perpendicular (and parallel components of the current along the diffuse auroral zone. Our analysis also points out the sharp transition between two distinct plasma regions, with the existence of high diamagnetic currents at the interface, as well as the filamentation of the current inside the inner plasma sheet. A statistical study over multiple perigee passes of Cluster (at about 4 RE from the Earth reveals the azimuthal extent of the partial ring current. It also reveals that, at these distances and all along the evening sector, there isn't necessarily a strong dependence of the local current density value on the magnetic activity level. This is a direct consequence of the ring current morphology evolution, as well as the relative

  2. Thermally stimulated currents in α-HgI2 polycrystalline films

    International Nuclear Information System (INIS)

    Shiu, Y.-T.; Huang, T.-J.; Shih, C.-T.; Su, C.-F.; Lan, S.-M.; Chiu, K.-C.

    2007-01-01

    A study of thermally stimulated currents (TSC) is applied to α-HgI 2 polycrystalline films grown by physical vapour deposition with various thermal boundary conditions. Five TSC peaks are clearly observed and numerically fitted. The activation energy and the density of the trapping centre that corresponds to each TSC peak are then calculated. Finally, the effects of the deposition conditions on the TSC results are discussed

  3. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  4. Clast comminution during pyroclastic density current transport: Mt St Helens

    Science.gov (United States)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  5. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  6. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  7. Merging field mapping and numerical simulation to interpret the lithofacies variations from unsteady pyroclastic density currents on uneven terrain: The case of La Fossa di Vulcano (Aeolian Islands, Italy)

    Science.gov (United States)

    Doronzo, Domenico M.; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico

    2017-01-01

    In order to obtain results from computer simulations of explosive volcanic eruptions, one either needs a statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study via stratigraphy. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions of La Fossa Cone that generated ash-rich pyroclastic density currents, interacting with the topographic high of the La Fossa Caldera rim. One of the simplifications in dealing with well-sorted ash (one particle size in the model) is to highlight the topographic effects on the same pyroclastic material in an unsteady current. We demonstrate that by merging field data with 3D numerical simulation results it is possible to see key details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation (settling) rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2 s at the bed load can still be sheared by the overlying current, producing tractional structures (laminae) in the deposits. Instead, a sedimentation rate higher than that threshold can preclude the formation of tractional structures, producing thicker massive deposits. We think that the approach used in this study could be applied to other case studies (both for active and ancient volcanoes) to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  8. High current density in bulk YBa2Cu3O/sub x/ superconductor

    International Nuclear Information System (INIS)

    Salama, K.; Selvamanickam, V.; Gao, L.; Sun, K.

    1989-01-01

    A liquid phase processing method for the fabrication of bulk YBa 2 Cu 3 O/sub x/ superconductors with large current carrying capacity has been developed. Slow cooling through the peritectic transformation (1030--980 degree C) has been shown to control the microstructure of these superconductors. A cooling rate of 1 degree C/h in this temperature range has yielded a microstructure with long plate type, thick grains oriented over a wide area. Current density up to 18 500 A/cm 2 has been obtained by continuous direct current measurements and in excess of 62 000 A/cm 2 with pulse current of 10 ms duration and 75 000 A/cm 2 using 1 ms pulse. The strong magnetic field dependence observed in sintered bulk 1-2-3 superconductors is also minimized to a large extent where a current density in excess of 37 000 A/cm 2 is obtained in a field of 6000 G

  9. Non-aqueous electrochemical deposition of lead zirconate titanate films for flexible sensor applications

    Science.gov (United States)

    Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji

    2017-11-01

    Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.

  10. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  11. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    International Nuclear Information System (INIS)

    Jiao, Shuhong; University of Science and Technology of China, Hefei; Zheng, Jianming; Li, Qiuyan; Li, Xing

    2017-01-01

    We report that lithium (Li) metal batteries (LMBs) have recently attracted extensive interest in the energy-storage field after silence from the public view for several decades. However, many challenges still need to be overcome before their practical application, especially those that are related to the interfacial instability of Li metal anodes. Here, we reveal for the first time that the thickness of the degradation layer on the metallic Li anode surface shows a linear relationship with Li areal capacity utilization up to 4.0 mAh cm -2 in a practical LMB system. The increase in Li capacity utilization in each cycle causes variations in the morphology and composition of the degradation layer on the Li anode. Under high Li capacity utilization, the current density for charge (i.e., Li deposition) is identified to be a key factor controlling the corrosion of the Li metal anode. Lastly, these fundamental findings provide new perspectives for the development of rechargeable LMBs.

  12. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Science.gov (United States)

    Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  13. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Yang Shiqin; Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2009-01-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  14. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing; Gong Chunzhi; Yang Shiqin [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tian Xiubo [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Fu, Ricky K. Y.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-12-15

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  15. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Impurities, temperature, and density in a miniature electrostatic plasma and current source

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.

    1996-10-01

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications

  17. Nanoscale leakage current measurements in metal organic chemical vapor deposition crystalline SrTiO3 films

    International Nuclear Information System (INIS)

    Rozier, Y.; Gautier, B.; Hyvert, G.; Descamps, A.; Plossu, C.; Dubourdieu, C.; Ducroquet, F.

    2009-01-01

    The properties of SrTiO 3 thin films, grown by liquid injection metal organic chemical vapor deposition on Si/SiO 2 , using a mixture of precursors, have been investigated at the nanoscale using an Atomic Force Microscope in the so-called Conductive Atomic Force Microscopy mode. Maps of the leakage currents with a nanometric resolution have been obtained on films elaborated at different temperatures and stoichiometries in order to discriminate the role of each parameter on the onset of leakage currents in the resulting layers. It appears that the higher the deposition temperature, the higher the leakage currents of the films. The mapping with a nanometric precision allows to show a heterogeneous behaviour of the surface with leaky grains and insulating boundaries. The study of films elaborated at the same temperature with different compositions supports the assumption that the leakage currents on Ti-rich layers are far higher than on Sr-rich layers

  18. Luminescence property and large-scale production of ZnO nanowires by current heating deposition

    International Nuclear Information System (INIS)

    Singjai, P.; Jintakosol, T.; Singkarat, S.; Choopun, S.

    2007-01-01

    Large-scale production for ZnO nanowires has been demonstrated by current heating deposition. Based on the use of a solid-vapor phase carbothermal sublimation technique, a ZnO-graphite mixed rod was placed between two copper bars and gradually heated by passing current through it under constant flowing of argon gas at atmospheric pressure. The product seen as white films deposited on the rod surface was separated for further characterizations. The results have shown mainly comb-like structures of ZnO nanowires in diameter ranging from 50 to 200 nm and length up to several tens micrometers. From optical testing, ionoluminescence spectra of as-grown and annealed samples have shown high green emission intensities centered at 510 nm. In contrast, the small UV peak centered at 390 nm was observed clearly in the as-grown sample which almost disappeared after the annealing treatment

  19. Influences of arc current on composition and properties of MgO thin films prepared by cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Zhu Daoyun; Zheng Changxi; Wang Mingdong; Liu Yi; Chen Dihu; He Zhenhui; Wen Lishi; Cheung, W.Y.

    2010-01-01

    MgO thin films with high optical transmittances (more than 90%) were prepared by cathodic vacuum arc deposition technique. With the increase of arc current from 40 to 80 A, the deposition pressure decreases and the film thickness increases; the atomic ratio of Mg/O in MgO thin films (obtained by RBS) increases from 0.97 to 1.17, giving that deposited at 50 A most close to the stoichiometric composition of the bulk MgO; the grains of MgO thin films grow gradually as shown in SEM images. XRD patterns show that MgO (1 1 0) orientation is predominant for films prepared at the arc currents ranged from 50 to 70 A. The MgO (1 0 0) orientation is much enhanced and comparable to that of MgO (1 1 0) for films prepared at the arc current of 80 A. The secondary electron emission coefficient of MgO thin film increases with arc current ranged from 50 to 70 A.

  20. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    Energy Technology Data Exchange (ETDEWEB)

    Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-05-15

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.

  1. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  2. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  3. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  4. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  5. ICRF power-deposition profiles and heating in monster sawtooth and peaked-density profile discharges in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Taroni, A.; Ellis, J.J.; Jacquinot, J.; Stuart, D.F.

    1989-01-01

    In this paper, we compare experimental results of electron and ion-heating in discharges that feature monster sawtooth with those in pellet-produced peaked-density profile discharges which were heated with ICRF. Also we carry out a comprehensive analysis of ICRF-heated peaked-density profile discharges by a transport code to simulate the evolution of JET discharges and to provide an insight into the improved heating and confinement found in these discharges. In this analysis, the ICRF power-deposition profile in the minority-heating scenario is computed by the ray-tracing code BRAYCO that self-consistently takes the finite antenna geometry, its radiation spectrum and the hot-plasma damping into account. The power delivered to ions and electrons is calculated based on Stix model. (author) 10 refs., 5 figs

  6. Effects of slope on the formation of dunes in dilute, turbulent pyroclastic currents: May 18th, 1980 Mt. St. Helens eruption

    Science.gov (United States)

    Bendana, Sylvana; Brand, Brittany D.; Self, Stephen

    2014-05-01

    The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the

  7. Determination of plasma density from data on the ion current to cylindrical and planar probes

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.; Mankelevich, Yu. A.; Rakhimova, T. V. [Moscow State University, Skobeltsyn Nuclear Physics Institute (Russian Federation)

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.

  8. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  9. Electron cyclotron current drive in the Wendelstein 7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Maassberg, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Rome, M [I.N.F.N., I.N.F.M., Dipartimento di Fisica, Universita degli Studi, I-20133 Milan (Italy); Erckmann, V [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Geiger, J [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Laqua, H P [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Marushchenko, N B [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2005-08-01

    High power electron cyclotron current drive (ECCD) experiments in the W7-AS stellarator are analysed. In these net-current-free discharges, the ECCD and the bootstrap current are feedback controlled by an inductive current. Based on the measured density and temperature profiles, the neoclassical predictions of the bootstrap (with the ambipolar radial electric field taken into account) and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated. For stationary conditions, the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. Low-frequency MHD mode activity is obtained for strong co-ECCD, and for counter-ECCD a ' {iota}-bar approx.= 0 feature' with complete loss of the central confinement is found. The linear ECCD prediction is in reasonable agreement with the current balance except for low-density discharges with highly peaked on-axis deposition, where the ECCD predicted from linear theory exceeds by a factor of about 2 the one from the current balance. Since the bootstrap current is well balanced by the inductive current without ECCD, the linear ECCD overestimate is compared with nonlinear Fokker-Planck (FP) simulations, where two different power loss models are used to reach steady state. These volume-averaged FP simulations cannot describe the ECCD degradation at the low densities.

  10. Electron cyclotron current drive in the Wendelstein 7-AS stellarator

    International Nuclear Information System (INIS)

    Maassberg, H; Rome, M; Erckmann, V; Geiger, J; Laqua, H P; Marushchenko, N B

    2005-01-01

    High power electron cyclotron current drive (ECCD) experiments in the W7-AS stellarator are analysed. In these net-current-free discharges, the ECCD and the bootstrap current are feedback controlled by an inductive current. Based on the measured density and temperature profiles, the neoclassical predictions of the bootstrap (with the ambipolar radial electric field taken into account) and the inductive current densities as well as the ECCD from the linear adjoint approach with trapped particles included are calculated. For stationary conditions, the current balance is checked. Launch-angle scans at fixed density as well as density scans at fixed launch-angle are described. Low-frequency MHD mode activity is obtained for strong co-ECCD, and for counter-ECCD a ' ι-bar approx.= 0 feature' with complete loss of the central confinement is found. The linear ECCD prediction is in reasonable agreement with the current balance except for low-density discharges with highly peaked on-axis deposition, where the ECCD predicted from linear theory exceeds by a factor of about 2 the one from the current balance. Since the bootstrap current is well balanced by the inductive current without ECCD, the linear ECCD overestimate is compared with nonlinear Fokker-Planck (FP) simulations, where two different power loss models are used to reach steady state. These volume-averaged FP simulations cannot describe the ECCD degradation at the low densities

  11. Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Baek, S. G.; Chilenksi, M. A.; Hubbard, A.; Hughes, J. W.; Terry, J. L.; Shiraiwa, S.; Walk, J. R.; Wallace, G. M.; Whyte, D. G. [MIT Plasma Science and Fusion Center, Cambridge, MA USA (United States); Edlund, E. [Princeton Plasma Physics Laboratory, Princeton, NJ USA (United States)

    2015-12-10

    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 · 1020 [m{sup −3}]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n{sub ||}-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS.

  12. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  13. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ningbo; Zhang, Yingchun, E-mail: zycustb@163.com; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-15

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  14. Application of a substrate bias to control the droplet density on Cu(In,Ga)Se{sub 2} thin films grown by Pulsed Electron Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rampino, S. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Pattini, F., E-mail: rampino@imem.cnr.it [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Malagù, C.; Pozzetti, L. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1-44122 Ferrara (Italy); Stefancich, M. [LENS Laboratory, Masdar Institute of Science and Technology, Masdar City, PO Box 54224, Abu Dhabi (United Arab Emirates); Bronzoni, M. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, 43124 Parma (Italy)

    2014-07-01

    One of the main shortcomings in the fabrication of thin-film solar cells by pulsed high-energy deposition techniques (i.e. Pulsed Laser Deposition or Pulsed Electron Deposition — PED), is the presence of a significant number of particulates on the film surface. This affects the morphological properties of the cell active layers and, ultimately, the performance of the final device. To reduce the density of these defects, we deposited a Cu(In,Ga)Se{sub 2} (CIGS) thin film by PED and studied the effect on the film morphology when a DC bias was applied between the substrate and the target. Our results show that a negative substrate voltage, comprised between 0 and − 300 V, can not only reduce the droplet density on the CIGS film surface of about one order of magnitude with respect to the standard unbiased case (from 6 × 10{sup 5} to 5 × 10{sup 4} cm{sup −2}), but also lower the maximum particulate size and the surface smoothness. When a positive voltage is applied, we observed that a significant increase in the droplet surface density (up to 10{sup 8} cm{sup −2}) occurs. The abrupt change in the preferred crystal orientation (switching from (112) to (220)/(204) by applying negative and positive biases, respectively) is also a direct consequence of the applied DC voltage. These results confirm that the external DC bias could be used as an additional parameter to control the physical properties of thin films grown by PED. - Highlights: • Cu(In,Ga)Se{sub 2} (CIGS) films were grown by Pulsed Electron Deposition (PED). • Positive and negative DC biases were applied between the target and the substrate. • The droplet density can be reduced by one order of magnitude by DC negative bias. • Chemical composition and grain orientation of CIGS are influenced by the DC bias. • The DC bias can be an additional parameter of PED for controlling the film properties.

  15. Measurements of current density distribution in shaped e-beam writers

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav

    2016-01-01

    Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016

  16. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    Science.gov (United States)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  17. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  18. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  19. Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn-Ag-Cu Developed by Electrodeposition: Effect of Current Density Investigation

    Directory of Open Access Journals (Sweden)

    Sakinah Mohd Yusof

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Nanostructured lead-free solder Sn-Ag-Cu (SAC was developed by electrodeposition method at room temperature. Electrolite bath which comprised of the predetermined quantity of tin methane sulfonate, copper sulfate and silver sulfate were added sequentially to MSA solution. The methane sulphonic acid (MSA based ternary Sn-Ag-Cu bath was developed by using tin methane sulfonate as a source of Sn ions while the Cu+ and Ag+ ions were obtained from their respective sulfate salts. The rate of the electrodeposition was controlled by variation of current density. The addition of the buffer, comprising of sodium and ammonium acetate helped in raising the pH solution. During the experimental procedure, the pH of solution, composition of the electrolite bath, and the electrodeposition time were kept constant. The electrodeposited rate, deposit composition and microstructure were investigated as the effect of current density. The electrodeposited solder alloy was characterized for their morphology using Field Emission Scanning Electron Microscope (FESEM. In conclusion, vary of current density will play significant role in the surface morphology of nanostructured lead-free solder SAC developed. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New

  20. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Monte Carlo simulation of lower hybrid current drive in tokamaks

    International Nuclear Information System (INIS)

    Sipilae, S.K.; Heikkinen, J.A.

    1994-01-01

    In the report a method for noninductive current drive studies based on three-dimensional simulation of test particle orbits is presented. A Monte Carlo momentum diffusion operator is developed to model the wave-particle interaction. The scheme can be utilised in studies of current drive efficiency as well as in examining the current density profiles caused by waves with a finite parallel wave number spectrum and a nonuniform power deposition profile in a toroidal configuration space of arbitrary shape. Calculations performed with a uniform poorer deposition profile of lower hybrid waves for axisymmetric magnetic configurations having different aspect ratios and poloidal cross-section shape confirm the semianalytic estimates for the current drive efficiency based on the solutions of the flux surface averaged Fokker-Planck equation for configurations with circular poloidal cross section. The consequences of the combined effect of radial diffusion, magnetic trapping and radially nonhomogeneous power deposition and background plasma parameter profiles are investigated

  2. Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications

    International Nuclear Information System (INIS)

    Rim, Y.S.; Kim, H.J.; Kim, K.H.

    2010-01-01

    The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates using the facing targets sputtering (FTS) system. The electrical, optical and structural properties of the IZO thin films deposited as functions of sputtering parameters on the glass and PES substrates. An optimal IZO deposition condition is fabricated for organic light-emitting device (OLED) based on glass and PES. The amorphous IZO anode-based OLEDs show superior current density and luminance characteristics.

  3. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    International Nuclear Information System (INIS)

    Bao Quanhe; Chen Chuanzhong; Wang Diangang; Liu Junming

    2008-01-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 4 3- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA

  4. Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2008-01-01

    The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded

  5. Atmospheric transport and deposition of pesticides: An assessment of current knowledge

    DEFF Research Database (Denmark)

    Pul, W.A.J. van; Bidleman, T.F.; Brorström-Lunden, E.

    1999-01-01

    The current knowledge on atmospheric transport and deposition of pesticides is reviewed and discussed by a working group of experts during the Workshop on Fate of pesticides in the atmosphere; implications for risk assessment, held in Driebergen, the Netherlands, 22-24 April, 1998. In general...... in the exchange processes at the interface between air and soil/water/vegetation. In all process descriptions the uncertainty in the physicochemical properties play an important role. Particularly those in the vapour pressure, Henry's law constant and its temperature dependency. More accurate data...

  6. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  7. Development of high current density neutral beam injector with a low energy for interaction of plasma facing materials

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi

    1991-01-01

    A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)

  8. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  9. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  10. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  11. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  12. Numerical investigations on contactless methods for measuring critical current density in HTS: application of modified constitutive-relation method

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Itoh, T.; Ikuno, S.

    2011-01-01

    A fast method is proposed for calculating the shielding current density in an HTS. The J-E constitutive relation is modified so as not to change the solution. A numerical code is developed on the basis of the proposed method. The permanent magnet method is successfully simulated by means of the code. A fast method has been proposed for calculating the shielding current density in a high-temperature superconducting thin film. An initial-boundary-value problem of the shielding current density cannot be always solved by means of the Runge-Kutta method even when an adaptive step-size control algorithm is incorporated to the method. In order to suppress an overflow in the algorithm, the J-E constitutive relation is modified so that its solution may satisfy the original constitutive relation. A numerical code for analyzing the shielding current density has been developed on the basis of this method and, as an application of the code, the permanent magnet method for measuring the critical current density has been investigated numerically.

  13. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    International Nuclear Information System (INIS)

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-01

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures

  14. BATTERY RECYCLING: EFFECT OF CURRENT DENSITY ON MANGANESE RECOVERY THROUGH ELECTROLYTIC PROCESS

    Directory of Open Access Journals (Sweden)

    E. R. R. Roriz

    Full Text Available Abstract This work aims to verify the possibility of using depleted batteries as a source of manganese dioxide applying the electrolytic process. An electrolyte solution containing the following metal ions was used: Ca (270 mgL-1, Ni (3.000 mgL-1, Co (630 mgL-1, Mn (115.3 mgL-1, Ti (400 mgL-1 and Pb (20 mgL-1. The production of electrolytic manganese dioxide (EMD was performed through electrolysis at 98 °C (± 2 °C applying different current densities (ranging from 0.61 A.dm-2 to 2.51 A.dm-2. The materials obtained were analyzed through X-ray fluorescence spectrometry, X-ray diffraction, specific surface area (BET and scanning electron microscopy (SEM. The best results regarding the current efficiency, purity grade and specific surface area were obtained with a current density ranging between 1.02 A.dm-2 and 1.39 A.dm-2. The allotropic εMnO2 variety was found in all tests.

  15. Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating

    International Nuclear Information System (INIS)

    Bobzin, K; Bagcivan, N; Theiß, S; Brugnara, R; Bibinov, N; Awakowicz, P

    2017-01-01

    Reactive sputter deposition of (Cr,Al)N coatings in DC magnetron plasmas containing Ar/Kr/N 2 mixtures is characterized by applying a combination of voltage–current measurement, optical emission spectroscopy (OES) and numerical simulation. Theoretical and experimental methods supplement each other and their combination permits us to obtain the most reliable information about the processes by physical vapor deposition. Gas temperature ( T g ) and plasma parameters, namely electron density n e and electron temperature T e are determined by spatial resolved measurements of molecular nitrogen photoemission. Steady-state densities of Cr and Al atoms are measured using OES. The sputtering of Cr and Al atoms is simulated using the TRIDYN code, measured electric current and applied voltage. Transport of sputtered atoms through the plasma volume is simulated by adopting a Monte-Carlo code. In order to quantify the ‘poisoning’ of the target surface with nitrogen, simulated steady state densities of Al and Cr atoms at different states of poisoning and at different distances from the target are compared with the measured densities. In addition, simulated fluxes of Cr and Al atoms to the substrate are compared with the measured deposition rates of the (Cr,Al)N coating. (paper)

  16. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    Science.gov (United States)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic

  17. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  18. Polarization, propagation, and deposition measurements during ECCD experiments on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Lin-Liu, Y.R.; Lohr, J.; Prater, R.; Austin, M.E.

    1999-03-01

    The power deposition profiles for different poloidal and toroidal launch angles have been determined by modulating the ECH power and measuring the electron temperature response. The peak of the measured power density follows the poloidal steering of the ECH launcher, and perpendicular launch gives a narrower deposition profile than does oblique (current drive) launch. The difference in wave refraction between X-mode and O-mode allows positive identification of an unwanted O-mode component of the launched beam

  19. Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)

    2010-02-15

    In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.

  20. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    International Nuclear Information System (INIS)

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ''hollow'' profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m 2 /sec

  1. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming

    degradation of cell components in relation to the loss of electrochemical performance specific to the mode of operation. Thus descriptive microstructure characterization methods are required in combination with electrochemical characterization methods to decipher degradation mechanisms. In the present work......High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  2. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  3. Assessment of Global Mercury Deposition through Litterfall.

    Science.gov (United States)

    Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin

    2016-08-16

    There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.

  4. Microstructural comparison of Yba2Cu3O7-x thin films laser deposited in O2 and O2/Ar ambient

    DEFF Research Database (Denmark)

    Verbist, K.; Kyhle, Anders; Vasiliev, A.L.

    1996-01-01

    The use of a diluted O-2/Ar atmosphere-for laser deposition of YBa2Cu3O7-x thin films results in a strong decrease of the surface outgrowth density as compared to deposition in pure O-2. The smoother films need a longer oxygenation period and show slightly lower critical current densities; though...... still in excess of 10(6) A cm(-2) at 77 K. Electron microscopy revealed that the outgrowths mainly consist of a large copper-oxide grain connected to Y2O3 grains. Y2O3 nano-scale inclusions are present irrespective of the deposition atmosphere, however at remarkably low densities compared to other...... literature data. We find that the twin plane density is lower and the twin structure more homogeneous in the case of films deposited in a mixture of O-2/Ar. This we ascribe to the absence of surface outgrowths which seem to block regular twin structure formation. Possibly the differences in necessary post...

  5. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    Science.gov (United States)

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  6. Exact joint density-current probability function for the asymmetric exclusion process.

    Science.gov (United States)

    Depken, Martin; Stinchcombe, Robin

    2004-07-23

    We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society

  7. Inverse anisotropic conductivity from internal current densities

    International Nuclear Information System (INIS)

    Bal, Guillaume; Guo, Chenxi; Monard, François

    2014-01-01

    This paper concerns the reconstruction of a fully anisotropic conductivity tensor γ from internal current densities of the form J = γ∇u, where u solves a second-order elliptic equation ∇ · (γ∇u) = 0 on a bounded domain X with prescribed boundary conditions. A minimum number of n + 2 such functionals known on Y⊂X, where n is the spatial dimension, is sufficient to guarantee a unique and explicit reconstruction of γ locally on Y. Moreover, we show that γ is reconstructed with a loss of one derivative compared to errors in the measurement of J in the general case and no loss of derivatives in the special case where γ is scalar. We also describe linear combinations of mixed partial derivatives of γ that exhibit better stability properties and hence can be reconstructed with better resolution in practice. (paper)

  8. Critical current densities and vortex dynamics in FeTexSe1-x single crystals

    International Nuclear Information System (INIS)

    Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.

    2010-01-01

    The critical current density and the normalized relaxation rate are reported in FeTe 0.59 Se 0.41 single crystal. Critical current density is of order of 10 5 A/cm 2 , which is comparable to that in Co-doped BaFe 2 As 2 . In low temperature and low field region, the vortex dynamics of this system is well defined by the collective creep theory, which is quite similar to Co-doped BaFe 2 As 2 reported before. We also discuss the origin of the anomaly in the field dependence of the relaxation rate.

  9. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery

    Science.gov (United States)

    Hua, Kang; Li, Xiujuan; Fang, Dong; Yi, Jianhong; Bao, Rui; Luo, Zhiping

    2018-07-01

    Lithium vanadate nanowires have been electrodeposited onto a titanium (Ti) foil by a direct current electrodeposition without template. The morphology, crystal structure, and the effects of deposition voltage, temperature and time on the prepared samples were tested and presented. The as-prepared lithium vanadate nanowires/Ti composite can be used as electrode for lithium-ion battery. Electrochemical measurements showed that the electrode displayed a specific discharge capacitance as high as 235.1 mAh g-1 after 100 cycles at a current density of 30 mA g-1. This research provides a new pathway to explore high tap density vanadates nanowires on metals with enhanced electrochemical performance.

  10. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  11. A measurement of perpendicular current density in an aurora

    International Nuclear Information System (INIS)

    Bering, E.A.; Mozer, F.S.

    1975-01-01

    A Nike Tomahawk sounding rocket was launched into a 400-γ auroral substorm on February 7, 1972, from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir probe plasma velocity detector and a double-probe electric field detector. Above 140-km altitude the electric field deduced from the ion flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth of 276degree. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward

  12. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus

    Science.gov (United States)

    L. Braga, F.

    2013-10-01

    The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.

  13. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  14. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  15. Hydrogen Permeation, and Mechanical and Tribological Behavior, of CrNx Coatings Deposited at Various Bias Voltages on IN718 by Direct Current Reactive Sputtering

    Directory of Open Access Journals (Sweden)

    Egor B. Kashkarov

    2018-02-01

    Full Text Available In the current work, the microstructure, hydrogen permeability, and properties of chromium nitride (CrNx thin films deposited on the Inconel 718 superalloy using direct current reactive sputtering are investigated. The influence of the substrate bias voltage on the crystal structure, mechanical, and tribological properties before and after hydrogen exposure was studied. It was found that increasing the substrate bias voltage leads to densification of the coating. X-ray diffraction (XRD results reveal a change from mixed fcc-CrN + hcp-Cr2N to the approximately stoichiometric hcp-Cr2N phase with increasing substrate bias confirmed by wavelength-dispersive X-ray spectroscopy (WDS. The texture coefficients of (113, (110, and (111 planes vary significantly with increasing substrate bias voltage. The hydrogen permeability was measured by gas-phase hydrogenation. The CrN coating deposited at 60 V with mixed c-CrN and (113 textured hcp-Cr2N phases exhibits the lowest hydrogen absorption at 873 K. It is suggested that the crystal orientation is only one parameter influencing the permeation resistance of the CrNx coating together with the film structure, the presence of mixing phases, and the packing density of the structure. After hydrogenation, the hardness increased for all coatings, which could be related to the formation of a Cr2O3 oxide film on the surface, as well as the defect formation after hydrogen loading. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient by up to 40%. The lowest value of 0.25 ± 0.02 was reached for the CrNx coating deposited at 60 V after hydrogenation.

  16. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  17. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  18. Critical current density and upper critical field of the PbMo6S8 Chevrel phase

    International Nuclear Information System (INIS)

    Seeber, B.; Decroux, M.; Fischer, O.

    1988-01-01

    A detailed discussion of critical current density and upper critical field for PbMo 6 S 8 (PMS) is given. It is shown that PMS bulk as well as wire samples can be prepared with sufficient quality to observe the scaling law for the volume pinning force. Using the scaling law an estimation for the critical current density as a function of field and temperature was made. The study also indicates that a substantial improvement of the critical current density can be expected by optimizing the upper critical field without changing the microstructure. It is shown that the availability of high quality samples of EuMo 6 S 8 , to which PMS is similar, makes it possible to study separately the different physical parameters which determine the upper critical field in PMS

  19. Effect of Current Density on Optical Properties of Anisotropic Photoelectrochemical Etched Silicon (110)

    Science.gov (United States)

    Amirhoseiny, M.; Hassan, Z.; Ng, S. S.

    2012-08-01

    Photoelectrochemical etched Si layers were prepared on n-type (110) oriented silicon wafer. The photoluminescence (PL), Fourier transformed infrared (FTIR) absorption and Raman spectroscopies of etched Si (110) at two different current densities were studied. Both samples showed PL peak in the visible spectral range situated from 650 nm to 750 nm. The corresponding changes in Raman spectra at different current density are discussed. The blue shift in the PL and Raman peaks is consequent of the quantum confinement effect and defect states of surface Si nanocrystallites complexes and hydrogen atoms of the photoelectrochemical etched Si (110) samples. The attenuated total reflection (ATR) results show both hydrogen and oxygen related IR modes in the samples which can be used to explain the PL effect.

  20. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  1. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  2. Confinement bifurcation by current density profile perturbation in TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.

    2001-01-01

    In the recent experiments performed on TUMAN-3M the possibility to switch on/off the H-mode by current density profile perturbations has been shown. The j(r) perturbations were created by fast Current Ramp Up/Down or by Magnetic Compression produced by a fast increase of the toroidal magnetic field. It was found that the Current Ramp Up (CRU) and Magnetic Compression (MC) are useful means for H-mode triggering. The Current Ramp Down (CRD) triggers H-L transition. The difference in the j(r) behavior in these experiments suggests the peripheral current density may not be the critical parameter controlling L-H and H-L transitions. Confinement bifurcation in the above experiments could be explained by the unified mechanism: variation of a turbulent transport resulting from radial electric field emerging near the edge in the conditions of alternating toroidal electric field Ej and different electron and ion collisionalities. According to the suggested model the toroidal field E φ arising in the periphery during the CRU and MC processes amplifies Ware drift, which mainly influences electron component. As a result the favorable for the transition negative (inward directed) E r emerges. In the CRD scenario, when E φ is opposite to the total plasma current direction, the mechanism should generate positive E r , which is thought to be unfavorable for the H-mode. The experimental data on L-H and H-L transitions in various scenarios and the results of the modeling of E r emerging in the CRU experiment are presented in the paper. (author)

  3. Liquid-phase-deposited SiO2 on AlGaAs and its application

    International Nuclear Information System (INIS)

    Lee, Kuan-Wei; Huang, Jung-Sheng; Lu, Yu-Lin; Lee, Fang-Ming; Lin, Hsien-Cheng; Huang, Jian-Jun; Wang, Yeong-Her

    2011-01-01

    The silicon dioxide (SiO 2 ) on AlGaAs prepared by liquid phase deposition (LPD) at 40 °C has been explored. The LPD-SiO 2 film deposition rate is about 67 nm h −1 for the first hour. The leakage current density is about 1.21 × 10 −6 A cm −2 at 1 MV cm −1 . The interface trap density (D it ) and the flat-band voltage shift (ΔV FB ) are 1.28 × 10 12 cm −2 eV −1 and 0.5 V, respectively. After rapid thermal annealing in the N 2 ambient at 300 °C for 1 min, the leakage current density, D it , and ΔV FB can be improved to 4.24 × 10 −7 A cm −2 at 1 MV cm −1 , 1.7 × 10 11 cm −2 eV −1 , and 0.2 V, respectively. Finally, this study demonstrates the application of the LPD-SiO 2 film to the AlGaAs/InGaAs pseudomorphic high-electron-mobility transistor

  4. Particulate deposition in the human lung under lunar habitat conditions.

    Science.gov (United States)

    Darquenne, Chantal; Prisk, G Kim

    2013-03-01

    Lunar dust may be a toxic challenge to astronauts. While deposition in reduced gravity is less than in normal gravity (1 G), reduced gravitational sedimentation causes particles to penetrate deeper in the lung, potentially causing more harm. The likely design of the lunar habitat has a reduced pressure environment and low-density gas has been shown to reduce upper airway deposition and increase peripheral deposition. Breathing air and a reduced-density gas approximating the density of the proposed lunar habitat atmosphere, five healthy subjects inhaled 1 -microm diameter aerosol boluses at penetration volumes (V(p)) of 200 ml (central airways), 500 ml, and 1000 ml (lung periphery) in microgravity during parabolic flight, and in 1 G. Deposition in the lunar habitat was significantly less than for Earth conditions (and less than in 1 G with the low-density gas) with a relative decrease in deposition of -59.1 +/- 14.0% (-46.9 +/- 11.7%), -50.7 +/- 9.2% (-45.8 +/- 11.2%), and -46.0 +/- 8.3% (-45.3 +/- 11.1%) at V(p) = 200, 500, and 1000 ml, respectively. There was no significant effect of reduced density on deposition in 1 G. While minimally affected by gas density, deposition was significantly less in microgravity than in 1 G for both gases, with a larger portion of particles depositing in the lung periphery under lunar conditions than Earth conditions. Thus, gravity, and not gas properties, mainly affects deposition in the peripheral lung, suggesting that studies of aerosol transport in the lunar habitat need not be performed at the low density proposed for the atmosphere in that environment.

  5. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  6. Cross-field dynamics of the homogenization of the pellet deposited material in Tore Supra

    International Nuclear Information System (INIS)

    Sakamoto, R.; Pégourié, B.; Clairet, F.; Géraud, A.; Gil, C.; Hacquin, S.; Köchl, F.

    2013-01-01

    For investigating the damping effect of low-order rational surfaces on the drift of pellet deposited plasmoids, a safety factor (q) profile scan experiment was performed in Tore Supra, on a series of discharges with identical temperature and density profiles. Fast time-resolved density measurements show that the position of the deposition peak does not move smoothly during the ablation/homogenization phase but changes step by step, each step being located close to an integer or half-integer q value. This behaviour is well reproduced by time-dependent simulations with the pellet ablation/deposition code HPI2, which takes into account the braking of the plasmoid drift by external currents flowing along field lines in the background plasma. The key feature of this damping mechanism is a modulation as a function of the local safety factor, the braking being more effective in the vicinity of simple rational q values. The overall agreement between measurements and code predictions for a significant range of edge safety factors is fully consistent with the fact that the limitation of the plasmoid polarization by parallel currents is the dominant damping process of the ∇B-induced drift in tokamaks. (paper)

  7. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    Science.gov (United States)

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior.

  8. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    Science.gov (United States)

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  9. Accounting of 131l decomposition under retrospective assessment of its deposition on the basis of determination of 129l deposition

    Directory of Open Access Journals (Sweden)

    Gavrilin Yu.l.

    2013-12-01

    given article aimed a justification of approaches to account of radioactive decay of 131l in the course of determination of its ground deposition density on the basis of determination of the ground deposition density of 129l at the late stage after the accident.

  10. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  11. Fundamental aspects of plating technology. 5. The effect of strongly adsorbed species on the morphology of metal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Popov, K I; Rodaljevic, Z P; Krstajic, N V; Novakovic, S D

    1985-07-01

    It is shown that the improvement in the quality of electrodeposits obtained from CdSO/sub 4/ solution in the presence of strongly adsorbed species compared with that of deposits obtained in the absence of such species is due to a decrease in the exchange current density and an increase in the Tafel slope for the deposition process in the former case.

  12. Cobalt coatings: deposition on a nickel substrate and electrocatalytic activity for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, L. (Inst. de Recherche d' Hydro-Quebec (IREQ), Varennes, Quebec (Canada))

    1992-02-01

    The deposition of cobalt on a nickel substrate in 30 wt% KOH aqueous solution containing dissolved cobalt was investigated. The effect of the applied cathodic current density (i{sub a}) and the dissolved-cobalt concentration in the electrolyte on the deposition rate suggests that the rate-determining step is the diffusion of the dissolved cobalt in the solution. The faradic efficiency of the cobalt deposition reaction and the coating morphology are linked to i{sub a}, while the evolution rate of both oxygen and hydrogen in 30 wt% KOH at 70degC is dependent on the coating morphology. (orig.).

  13. Ultrathin silicon dioxide layers with a low leakage current density formed by chemical oxidation of Si

    Science.gov (United States)

    Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru

    2002-10-01

    Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.

  14. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  15. Critical temperature gradient and critical current density in thin films of a type I superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Heubener, R P

    1968-12-16

    Measurements of the critical temperature gradient and the critical current density in superconducting lead films in a transverse magnetic field indicate that the critical current flows predominantly along the surface of the films and that the critical surface currents contribute only very little to the Lorentz force on a fluxoid.

  16. Multipole lenses with implicit poles and with harmonic distribution of current density in a coil

    International Nuclear Information System (INIS)

    Skachkov, V.S.

    1984-01-01

    General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed

  17. Improved critical current densities and compressive strength in porous superconducting structures containing calcium

    International Nuclear Information System (INIS)

    Walsh, D; Hall, S R; Wimbush, S C

    2008-01-01

    Templated control of crystallization by biopolymers is a new technique in the synthesis of high temperature superconducting phases. By controlling the way YBa 2 Cu 3 O 7-δ (Y123) materials crystallize and are organized in three dimensions, the critical current density can be improved. In this work, we present the results of doping superconducting sponges with calcium ions, which result in higher critical current densities (J c ) and improved compressive strength compared to that of commercially available Y123, in spite of minor reductions in T c . Y123 synthesis using the biopolymer dextran achieves not only an extremely effective oxygenation of the superconductor but also an in situ template-directing of the crystal morphology producing high J c , homogeneous superconducting structures with nano-scale crystallinity

  18. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  19. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  20. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  1. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current

  2. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  3. Effects of gas residence time of CH4/H2 on sp2 fraction of amorphous carbon films and dissociated methyl density during radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Sugiura, Hirotsugu; Jia, Lingyun; Kondo, Hiroki; Ishikawa, Kenji; Tsutsumi, Takayoshi; Hayashi, Toshio; Takeda, Keigo; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Quadruple mass spectrometric measurements of CH3 density during radical-injection plasma-enhanced chemical vapor deposition to consider the sp2 fraction of amorphous carbon (a-C) films were performed. The sp2 fraction of the a-C films reached a minimum of 46%, where the CH3 density was maximum for a residence time of 6 ms. The sp2 fraction of the a-C films was tailored with the gaseous phase CH3 density during the deposition. This knowledge is useful for understanding the formation mechanism of bonding structures in the a-C films, which enables the precise control of their electronic properties.

  4. Geochemical Identification of Windblown Dust Deposits in the Upper Permian Brushy Canyon Formation, Southern New Mexico

    Science.gov (United States)

    Tice, M. M.; Motanated, K.; Weiss, R.

    2009-12-01

    Windblown dust is a potentially important but difficult-to-quantify source of siliciclastics for sedimentary basins worldwide. Positively identifying windblown deposits requires distinguishing them from other low density suspension transport deposits. For instance, laminated very fine grained sandstones and siltstones of the Upper Permian Brushy Canyon Formation have been variously interpreted as 1) the deposits of slow-moving, low-density turbidity currents, 2) distal overbank deposits of turbidity currents, 3) the deposits of turbulent suspensions transported across a pycnocline (interflows), and 4) windblown dust. This facies forms the bulk of Brushy Canyon Formation slope deposits, so understanding its origin is critical to understanding the evolution of the basin as a whole. We use a geochemical mapping technique (x-ray fluorescence microscopy) to show that these rocks are up to two times enriched in very fine sand sized zircon and rutile grains relative to Bouma A divisions of interbedded turbidites, suggesting substantial turbulence during transport. However, in contrast with the A divisions, the laminated sandstones and siltstones never show evidence of scour or amalgamation, implying that flow turbulence did not interact with underlying beds. Moreover, proximal loess deposits are often characterized by elevated Zr/Al2O3. These observations are most consistent with windblown interpretations for Brushy Canyon Formation slope sediments, and suggest that evolution of this early deepwater slope system was controlled largely by short-distance aeolian transport of very fine sand and silt from the coast. Heavy mineral incorporation into Brushy Canyon Formation slope deposits as reflected in laminae-scale bulk Zr and Ti abundances may preserve a long-term record of local wind intensity during the Upper Permian.

  5. YBa2Cu3O7-x thin films prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Apetrii, Claudia

    2009-01-01

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa 2 Cu 3 O 7-x (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T c -superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths ΔT c of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J c of ∼3.5 MA/cm 2 shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J c (B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J c (B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J c (B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J c (B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  6. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    Science.gov (United States)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  7. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    Energy Technology Data Exchange (ETDEWEB)

    Pervikov, A. V. [Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, 2/4, pr. Akademicheskii, 634021 Tomsk, Russia and Department of High Voltage Electrophysics and High Current Electronics, Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2016-06-15

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  8. Coating material innovation in conjunction with optimized deposition technologies

    International Nuclear Information System (INIS)

    Stolze, M.; Leitner, K.

    2009-01-01

    Concentrating on physical vapour deposition methods several examples of recently developed coating materials for optical applications were studied for film deposition with optimized coating technologies: mixed evaporation materials for ion assisted deposition with modern plasma ion sources, planar metal and oxide sputter targets for Direct Current (DC) and Mid-Frequency (MF) pulsed sputter deposition and planar and rotatable sputter targets of transparent conductive oxides (TCO) for large-area sputter deposition. Films from specially designed titania based mixed evaporation materials deposited with new plasma ion sources and possible operation with pure oxygen showed extended ranges of the ratio between refractive index and structural film stress, hence there is an increased potential for the reduction of the total coating stress in High-Low alternating stacks and for coating plastics. DC and MF-pulsed sputtering of niobium metal and suboxide targets for optical coatings yielded essential benefits of the suboxide targets in a range of practical coating conditions (for absent in-situ post-oxidation ability): higher refractive index and deposition rate, better reproducibility and easier process control, and the potential for co-deposition of several targets. Technological progress in the manufacture of rotatable indium tin oxide (ITO) targets with regard to higher wall-thickness and density was shown to be reflected in higher material stock and coater up-time, economical deposition rates and stable process behaviour. Both for the rotatable ITO targets and higher-dense aluminum-doped zinc oxide (AZO) planar targets values of film transmittance and resistivity were in the range of the best values industrially achieved for films from the respective planar targets. The results for the rotatable ITO and planar AZO targets point to equally optimized process and film properties for the optimized rotatable AZO targets currently in testing

  9. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  10. Progress on a high current density low cost Niobium3Tin conductor scaleable to modern niobium titanium production

    Science.gov (United States)

    Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.

    2002-05-01

    A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.

  11. Confinement studies of a high current density RFP in the Extrap T1 Upgrade device

    International Nuclear Information System (INIS)

    Drake, J.R.; Brzozowski, J.H.; Brunsell, P.; Hellblom, G.; Karlsson, P.; Mazur, S.; Nordlund, P.; Welander, A.; Zastrow, K.D.

    1992-01-01

    Confinement studies have been carried out on the Extrap T1 device operated in the reversed field pinch (RFP) mode. Extrap T1 is a small device with a major radius of R=0.5 m and a high aspect ratio, R/a=8.9. For these experiments, the device has been operated with a resistive shell with measured, toroidally-averaged flux penetration times of τ sv = 500μs (vertical) and τ sR =300μs (radial). The pulse lengths are about 600 μs, which is slightly longer than the shell penetration time. The purpose of these experiments is to study energy confinement in a high aspect-ratio, high current-density RFP device with a resistive shell. The device can be operated with high current densities which exceed 20 MAm -2 on axis. For these discharges, the average electron density is relatively high, ≅ 1x10 20 m -3 . Therefore, although the average current density exceeds 5 MAm -2 , the important parameter / ≅ I/N is maintained less than 1x10 -13 Am, where N is the line density. The plasma diagnostics for the device include a single chord CO 2 laser interferometer ( ), single point Thomson scattering (T e , n o ), VUV and visible spectroscopy (T e , Z eff ) surface barrier diodes for soft X-ray measurements (T e ), bolometry (P rad ), surface probes (Γ p ,T i ) and comprehensive magnetic diagnostics for both equilibrium and magnetic fluctuation studies. (author) 5 refs., 1 fig., 1 tab

  12. Effect of Applied Current Density on Cavitation-Erosion Characteristics for Anodized Al Alloy.

    Science.gov (United States)

    Lee, Seung-Jun; Kim, Seong-Jong

    2018-02-01

    Surface finishing is as important as selection of material to achieve durability. Surface finishing is a process to provide surface with the desired performance and features by applying external forces such as thermal energy or stress. This study investigated the optimum supply current density for preventing from cavitation damages by applying to an anodizing technique that artificially forms on the surface an oxide coating that has excellent mechanical characteristics, such as hardness, wear resistance. Result of hardness test, the greater hardness was associated with greater brittleness, resulting in deleterious characteristics. Consequently, under conditions such as the electrolyte concentration of 10 vol.%, the processing time of 40 min, the electrolyte temperature of 10 °C, and the current density of 20 mA/cm2 were considered to be the optimum anodizing conditions for improvement of durability in seawater.

  13. Pyroclastic density currents at Etna volcano, Italy: The 11 February 2014 case study

    Science.gov (United States)

    Andronico, Daniele; Di Roberto, Alessio; De Beni, Emanuela; Behncke, Boris; Bertagnini, Antonella; Del Carlo, Paola; Pompilio, Massimo

    2018-05-01

    On 11 February 2014, a considerable volume (0.82 to 1.29 × 106 m3) of unstable and hot rocks detached from the lower-eastern flank of the New Southeast Crater (NSEC) at Mt. Etna, producing a pyroclastic density current (PDC). This event was by far the most extensive ever recorded at Mt. Etna since 1999 and has attracted the attention of the scientific community and civil protection to this type of volcanic phenomena, usually occurring without any clear volcanological precursor and especially toward the mechanisms which led to the crater collapse, the PDC flow dynamics and the related volcanic hazard. We present here the results of the investigation carried out on the 11 February 2014 collapse and PDC events; data were obtained through a multidisciplinary approach which includes the analysis of photograph, images from visible and thermal surveillance cameras, and the detailed stratigraphic, textural and petrographic investigations of the PDC deposits. Results suggest that the collapse and consequent PDC was the result of a progressive thermal and mechanical weakening of the cone by repeated surges of magma passing through it during the eruptive activity prior to the 11 February 2014 events, as well as pervasive heating and corrosion by volcanic gas. The collapse of the lower portion of the NSEC was followed by the formation of a relatively hot (up to 750 °C) dense flow which travelled about 2.3 km from the source, stopping shortly after the break of the slope and emplacing the main body of the deposit which ranges between 0.39 and 0.92 × 106 m3. This flow was accompanied a relatively hot cloud of fine ash that dispersed over a wider area. The results presented may contribute to the understanding of this very complex type of volcanic phenomena at Mt. Etna and in similar volcanic settings of the world. In addition, results will lay the basis for the modeling of crater collapse and relative PDC events and consequently for the planning of hazard assessment strategies

  14. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.

    Science.gov (United States)

    Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan

    2017-03-15

    Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (k S ) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm -2 and the highest Γ of (23.6±0.9)pmolcm -2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest k S of (79.4±4.6)s -1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Critical current density of strained multilayer thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G.

    1990-01-01

    The superconducting transport properties of strained multilayer thin films of YBa 2 Cu 3 O 7-δ / Nd 1.83 Ce 0.17 CuO x , grown heteroepitaxially by laser ablation deposition, are reported. For individual layer thicknesses below a critical layer thickness of about 250 A, coherency strain removes the orthorhombic distortion in the YBa 2 Cu 3 O 7-δ layers and makes them twin-free. Zero-field critical current densities as high as 1.1x10 7 A/cm 2 at 77 K have been measured for the YBa 2 Cu 3 O 7-δ layers. Flux pinning energies at zero temperature and zero magnetic field in the range of 80--140 meV have been found

  16. Measurement of current density fluctuations and ambipolar particle flux due to magnetic fluctuations in MST

    International Nuclear Information System (INIS)

    Shen, Weimin.

    1992-08-01

    Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence

  17. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  18. Effect of magnetic flux-densities of up to 0.1 Tesla on copper electrodeposition

    International Nuclear Information System (INIS)

    Cifuentes, L.; Artigas, M.; Riveros, G.; Warczok, A.

    2003-01-01

    The effect of magnetic flux densities (B) between 0.0 and 0.1 Tesla on cathode and anode over potentials, cell voltage and electro deposit quality was determined fro a lab-scale copper electrowinning cell which operates at industrial current, density values. Cell voltage decreases with increasing B. The cathodic overpotential decreases by 30% when B increases from 0.0 to 0.1 T. The anodic overpotential also decreases with increasing B, but this effect is six times less than the corresponding effect on the cathodic overpotential. Cathodic effects can be predicted by an expression derived from electrochemical kinetics and magnetohydrodynamic theory. Anodic effects cannot be predicted in the same way. The size of grains and intergranular voids decreases and the surface of the electro deposit becomes smoother as B increases, which means that, in the studied conditions, the quality of the produced copper deposits improves. (Author) 26 refs

  19. Relationship between blood flow, bone structure, and 239Pu deposition in the mouse skeleton

    International Nuclear Information System (INIS)

    Humphreys, E.R.; Green, D.; Howells, G.R.; Thorne, M.C.

    1982-01-01

    The rate at which blood is supplied to several bones in female CBA mice was calculated from 18 F measurements in bone and blood. Blood flow measurements were compared with plutonium uptake in whole bone and on endosteal and periosteal bone surfaces. The results showed that: the rate at which blood is supplied to bone determines the rate of deposition of plutonium; there is a threshold rate of blood supply below which plutonium is not deposited; and the rate of blood supply determines the density of plutonium deposition on endosteal but not on periosteal bone surfaces. These results are discussed in the light of the current bone blood supply hypotheses. (orig.)

  20. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  1. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  2. Solar cell of 6.3% efficiency employing high deposition rate (8 nm/s) microcrystalline silicon photovoltaic layer

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Yasushi; Nishino, Mitsutoshi; Fukumori, Taiga; Kurihara, Masanori; Higuchi, Takuya; Nakano, Shinya; Toyama, Toshihiko; Okamoto, Hiroaki [Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Machikaneyama-cho 1-3, Osaka 560-8531 (Japan)

    2009-06-15

    Microcrystalline silicon ({mu}c-Si) films deposited at high growth rates up to 8.1 nm/s prepared by very-high-frequency-plasma-enhanced chemical vapor deposition (VHF-PECVD) at 18-24 Torr have been investigated. The relation between the deposition rates and input power revealed the depletion of silane. Under high-pressure deposition (HPD) conditions, the structural properties were improved. Furthermore, applying {mu}c-Si to n-i-p solar cells, short-circuit current density (J{sub SC}) was increased in accordance with the improvement of microstructure of i-layer. As a result, a conversion efficiency of 6.30% has been achieved employing the i-layer deposited at 8.1 nm/s under the HPD conditions. (author)

  3. Electro-deposition of nickel, on reactor seal discs

    International Nuclear Information System (INIS)

    Vernekar, R.B.; Bhide, G.K.

    1977-01-01

    The effect of plating variables, acidity, current density and temperature on hardness of nickel deposited from purified nickel sulfamate bath has been investigated and optimum conditions for electrodeposition of nickel plating of hardness 160-170 VHN on reactor seal discs are established. Sodium lauryl sulfate was added as a wetting agent to the bath to overcome pitting tendency of the deposit. Factors affecting hydrogen absorption by electrodeposited nickel are also discussed. It is observed that : (1) at a pH 3.5 - 4.0 the decomposition rate of sulfamate salt is almost negligible and is the best value for bath operation, (2) at 15 A/dm 2 the hardness value is consistently around 160-170 VHN, (3) the temperatures less than 50 0 C give harder deposits and the bath is best operated at temperature 50-60 0 C and (4) annealing of the plated discs substantially reduces the hardness. (M.G.B.)

  4. The Influence of Electrophoretic Deposition for Fabricating Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 film was deposited on fluorine-doped tin oxide (FTO glass substrate by electrophoretic deposition method (EPD. TiO2 films were prepared with different I2 dosages, electric field intensities and deposition time (D.T., electrophotic deposition times. By different I2 dosages, electric field intensities, deposition time, electrophotic deposition times fabricated TiO2 films and compared photoelectric characteristics of TiO2 films to find optimal parameters which were the highest photovoltaic conversion efficiency. And use electrochemical impedance spectroscopy (EIS to measure the Nyquist plots under different conditions and analyze the impendence of dye-sensitized solar cells at the internal heterojunction. According to the experimental results, the I2 dosage was 0.025 g which obtained the optimal characteristic parameters. Thickness of TiO2 film was 10.6 μm, the open-circuit voltage (Voc was 0.77 V, the short-circuit current density (Jsc was 7.20 mA/cm2, the fill factor (F.F. was 53.41%, and photovoltaic conversion efficiency (η was 2.96%.

  5. Real-time control of the current density and pressure profiles in Jet

    International Nuclear Information System (INIS)

    Mazon, D.; Moreau, D.; Litaudon, X.; Joffrin, E.; Laborde, L.; Zabeo, L.; Crisanti, F.; Riva, M.; Felton, R.; Murari, A.; Tala, T.

    2003-01-01

    In order to ultimately control internal transport barriers during advanced operation scenarios, new algorithms using a truncated singular value decomposition of a linearized model operator have been implemented in the JET real-time controller, with the potentiality of retaining the distributed nature of plasma parameter profiles. First experiments using the simplest, lumped-parameter, version of this technique have been dedicated to the feedback control of the current density profile in a negative shear plasma using three heating and current drive actuators, namely neutral beam injection (NBI), ion cyclotron resonant frequency heating (ICRH) and lower hybrid current drive (LHCD). Successful control of the safety factor profile has been achieved on the time scale of the current redistribution time, first during an extended preheat phase with only LHCD as actuator and, then, in quasi steady-state conditions during the main heating phase of a discharge, using the three heating and current drive actuators

  6. Progress towards internal transport barriers at high plasma density sustained by pure electron heating and current drive in the FTU tokamak

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.; Barbato, E.; Buratti, P.

    2003-01-01

    Strong electron Internal Transport Barriers (ITBs) are obtained in FTU by the combined injection of Lower Hybrid (LH, up to 1.9 MW) and Electron Cyclotron (EC up to 0.8 MW) radio frequency waves. ITBs occur during either the current plateau or the ramp up phase, and both in full and partial current drive (CD) regimes, up to peak densities n e0 >1.2·10 20 m -3 , relevant to ITER operation. Central electron temperatures T e0 >11 keV, at n e0 ∼0.8·10 20 m -3 are sustained longer than 6 confinement times. The ITB extends over a region where a slightly reversed magnetic shear is established by off-axis LHCD and can be as wide as r/a=0.5. The EC power, instead, is used either to benefit from this improved confinement by heating inside the ITB, or to enhance the peripheral LH power deposition and CD with off axis resonance. Collisional ion heating is also observed, but thermal equilibrium with the electrons cannot be attained since the e-i equipartition time is always 4-5 times longer than the energy confinement time. The transport analysis performed with both ASTRA and JETTO codes shows a very good relation between the foot of the barrier and the weak/reversed shear region, which in turn depends on the LH deposition profile. The Bohm-gyroBohm model accounts for the electron transport until T e0 <6 keV, but is pessimistic at higher temperatures, where often also a reduction in the ion thermal conductivity is observed, provided any magneto hydrodynamic activity is suppressed. (author)

  7. Smooth YBa2Cu3O7-x thin films prepared by pulsed laser deposition in O2/Ar atmosphere

    DEFF Research Database (Denmark)

    Kyhle, Anders; Skov, Johannes; Hjorth, Søren

    1994-01-01

    We report on pulsed laser deposition of YBa2Cu3O7-x in a diluted O2/Ar gas resulting in thin epitaxial films which are almost outgrowth-free. Films were deposited on SrTiO3 or MgO substrates around 800-degrees-C at a total chamber pressure of 1.0 mbar, varying the argon partial pressure from 0 to 0.......6 mbar. The density of boulders and outgrowths usual for laser deposited films varies strongly with Ar pressure: the outgrowth density is reduced from 1.4 x 10(7) to 4.5 x 10(5) cm-2 with increasing Ar partial pressure, maintaining a critical temperature T(c,zero) almost-equal-to 90 K and a transport...... critical current density J(c)(77 K) greater-than-or-equal-to 10(6) A/cm2 by extended oxygenation time during cool down....

  8. Depairing current density of Ba0.5K0.5Fe1.95Co0.05As2 microbridges with nanoscale thickness

    International Nuclear Information System (INIS)

    Li, Jun; Yuan, Jie; Ge, Jun-Yi; Ji, Min; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Vanacken, Johan; Yamaura, Kazunari; Wang, Hua-Bing

    2014-01-01

    Highlights: • The critical current density of Ba 0.5 K 0.5 Fe 1.95 Co 0.05 As 2 microbridges is 7.9 MA/cm 2 at 21 K. • The critical current is in consistence with the Ginzburg–Landau depairing limit. • The depairing current density is less than that of impurity-free crystal. - Abstract: We investigated the depairing current density of Ba 0.5 K 0.5 Fe 1.95 Co 0.05 As 2 microbridges with width of 2 μm and thickness of 150 nm. The current vs. voltage characteristics of the microbridges show a Josephson-like behavior with the obvious hysteresis. The critical current density was observed as J c = 7.9 MA/cm 2 at temperature 21 K, which is consistent with the Ginzburg–Landau depairing limit. However, the depairing current density is less than that of impurity-free crystal, although the Co ions provide additional pinning centers within the superconducting Fe 2 As 2 layers. The Co impurity also enhances the anisotropic factor of the critical current density by 1.3 (1 T) or 1.7 (3 T)

  9. Stress-induced leakage current characteristics of PMOS fabricated by a new multi-deposition multi-annealing technique with full gate last process

    International Nuclear Information System (INIS)

    Wang Yanrong; Yang Hong; Xu Hao; Luo Weichun; Qi Luwei; Zhang Shuxiang; Wang Wenwu; Zhu Huilong; Zhao Chao; Chen Dapeng; Ye Tianchun; Yan Jiang

    2017-01-01

    In the process of high- k films fabrication, a novel multi deposition multi annealing (MDMA) technique is introduced to replace simple post deposition annealing. The leakage current decreases with the increase of the post deposition annealing (PDA) times. The equivalent oxide thickness (EOT) decreases when the annealing time(s) change from 1 to 2. Furthermore, the characteristics of SILC (stress-induced leakage current) for an ultra-thin SiO 2 /HfO 2 gate dielectric stack are studied systematically. The increase of the PDA time(s) from 1 to 2 can decrease the defect and defect generation rate in the HK layer. However, increasing the PDA times to 4 and 7 may introduce too much oxygen, therefore the type of oxygen vacancy changes. (paper)

  10. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    Science.gov (United States)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  11. Migrational polarization in high-current density molten salt electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Vallet, C.E.

    1977-01-01

    Electrochemical flux equations based on the thermodynamics of irreversible processes have been derived in terms of experimental transport coefficients for binary molten salt mixtures analogous to those proposed for high temperature batteries and fuel cells. The equations and some numerical solutions indicate steady state composition gradients of significant magnitude. The effects of migrational separation must be considered along with other melt properties in the characterization of electrode behavior, melt composition, operating temperatures and differences of phase stability, wettability and other physicochemical properties at positive and negative electrodes of high current density devices with mixed electrolytes.

  12. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO3 capacitor application

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2008-01-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO 3 (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of ± 2.5 MV/cm and a leakage current density of about 1 x 10 -5 A/cm 2 at an applied field of ± 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO 2 /Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors

  13. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  14. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    Science.gov (United States)

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  15. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  16. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  17. Room-temperature deposition of diamond-like carbon field emitter on flexible substrates

    International Nuclear Information System (INIS)

    Chen, H.; Iliev, M.N.; Liu, J.R.; Ma, K.B.; Chu, W.-K.; Badi, N.; Bensaoula, A.; Svedberg, E.B.

    2006-01-01

    Room-temperature fabrication of diamond-like carbon electron field emitters on flexible polyimide substrate is reported. These thin film field emitters are made using an Ar gas cluster ion beam assisted C 6 vapor deposition method. The bond structure of the as-deposited diamond-like carbon film was studied using Raman spectroscopy. The field emission characteristics of the deposited films were also measured. Electron current densities over 15 mA/cm 2 have been recorded under an electrical field of about 65 V/μm. These diamond-like carbon field emitters are easy and inexpensive to fabricate. The results are promising for flexible field-emission fabrication without the need of complex patterning and tip shaping as compared to the Spindt-type field emitters

  18. CdTeO3 Deposited Mesoporous NiO Photocathode for a Solar Cell

    Directory of Open Access Journals (Sweden)

    Chuan Zhao

    2014-01-01

    Full Text Available Semiconductor sensitized NiO photocathodes have been fabricated by successive ionic layer adsorption and reaction (SILAR method depositing CdTeO3 quantum dots onto mesoscopic NiO films. A solar cell using CdTeO3 deposited NiO mesoporous photocathode has been fabricated. It yields a photovoltage of 103.7 mV and a short-circuit current density of 0.364 mA/cm2. The incident photon to current conversion efficiency (IPCE value is found to be 12% for the newly designed NiO/CdTeO3 solar cell. It shows that the p-type NiO/CdTeO3 structure could be successfully utilized to fabricate p-type solar cell.

  19. Factors associated with the deposition of Cladophora on Lake Michigan beaches in 2012

    Science.gov (United States)

    Riley, Stephen C.; Tucker, Taaja R.; Adams, Jean V.; Fogarty, Lisa R.; Lafrancois, Brenda Moraska

    2015-01-01

    Deposition of the macroalgae Cladophora spp. was monitored on 18 beaches around Lake Michigan during 2012 at a high temporal frequency. We observed a high degree of spatial variability in Cladophora deposition among beaches on Lake Michigan, even within local regions, with no clear regional pattern in the intensity of Cladophora deposition. A strong seasonal pattern in Cladophora deposition was observed, with the heaviest deposition occurring during mid-summer. Several beaches exhibited high temporal variability in Cladophora deposition over short time scales, suggesting that drifting algal mats may be extremely dynamic in nearshore environments of the Great Lakes. Cladophora deposition on Lake Michigan beaches was primarily related to the presence of nearshore structures, local population density, and nearshore bathymetry. There was relatively little evidence that waves, winds, or currents were associated with Cladophora deposition on beaches, but this may be due to the relatively poor resolution of existing nearshore hydrodynamic data. Developing a predictive understanding of beach-cast Cladophora dynamics in Great Lakes environments may require both intensive Cladophora monitoring and fine-scale local hydrodynamic modeling efforts.

  20. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  1. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems.

    Science.gov (United States)

    Feng, Huajun; Tang, Chenyi; Wang, Qing; Liang, Yuxiang; Shen, Dongsheng; Guo, Kun; He, Qiaoqiao; Jayaprada, Thilini; Zhou, Yuyang; Chen, Ting; Ying, Xianbin; Wang, Meizhen

    2018-04-01

    This study reports a high-performance 3D stainless-steel photoanode (3D SS photoanode) for bioelectrochemical systems (BESs). The 3D SS photoanode consists of 3D carbon-coated SS felt bioactive side and a flat α-Fe 2 O 3 -coated SS plate photoactive side. Without light illumination, the electrode reached a current density of 26.2 ± 1.9 A m -2 , which was already one of the highest current densities reported thus far. Under illumination, the current density of the electrode was further increased to 46.5 ± 2.9 A m -2 . The mechanism of the photo-enhanced current production can be attributed to the reduced charge-transfer resistance between electrode surface and the biofilm with illumination. It was also found that long-term light illumination can enhance the biofilm formation on the 3D SS photoanode. These findings demonstrate that using the synergistic effect of photocatalysis and microbial electrocatalysis is an efficient way to boost the current production of the existing high-performance 3D anodes for BESs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Correlation among ESDD, NSDD and leakage current in distribution insulators

    International Nuclear Information System (INIS)

    Montoya, G.; Ramirez, I.; Montoya, J.I.

    2004-01-01

    The maintenance of distribution networks is more effective if the insulation contamination levels are known. The selection of measuring methods of pollution levels is then crucial. The relationship between several evaluation methods of pollution levels and the operating behaviour of several insulator profiles in a polluted zone is described. Laboratory tests were carried out to reproduce pollution levels found in the field. The quantity of non-soluble materials deposited over the insulators' surface affect the magnitude of the leakage current generated over a contaminated insulator. The relationship that defines leakage current with respect to the equivalent salt deposit density (ESDD) level for a specific non-soluble material level is almost linear, from which it is possible to develop a relationship between them for each insulator. (author)

  3. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  4. Mechanical, tribological and corrosion properties of CrBN films deposited by combined direct current and radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Jahodova, Vera; Ding, Xing-zhao; Seng, Debbie H.L.; Gulbinski, W.; Louda, P.

    2013-01-01

    Cr–B–N films were deposited on stainless steel substrates by a combined direct current and radio frequency (RF) reactive unbalanced magnetron sputtering process using two elemental Cr and one compound BN targets. Boron content in the as-deposited films was qualitatively analyzed by time-of-flight secondary ion mass spectroscopy. Films' microstructure, mechanical and tribological properties were characterized by X-ray diffraction, nanoindentation and pin-on-disk tribometer experiments. Corrosion behavior of the Cr–B–N films was evaluated by electrochemical potentiodynamic polarization method in a 3 wt.% NaCl solution. All the films were crystallized into a NaCl-type cubic structure. At lower RF power applied on the BN target (≤ 600 W), films are relatively randomly oriented, and films' crystallinity increased with increasing RF power. With increasing RF power further (≥ 800 W), films became (200) preferentially oriented, and films' crystallinity decreased gradually. With incorporation of a small amount of boron atoms into the CrN films, hardness, wear- and corrosion-resistance were all improved evidently. The best wear and corrosion resistance was obtained for the film deposited with 600 W RF power applied on the BN target. - Highlights: • CrBN films deposited by direct current and radio frequency magnetron sputtering. • CrBN exhibited higher hardness, wear- and corrosion-resistance than pure CrN. • The best wear- and corrosion-resistant film was deposited with 600 W RF power

  5. Critical current density of four-CuO2-layer T1Ba2Ca3Cu4O11-δ

    International Nuclear Information System (INIS)

    Zhang, L.; Liu, J.Z.; Shelton, R.N.

    1998-01-01

    Full text: A key requirement for technological application is to have superconductors with high critical current density at practical operating temperatures and magnetic fields. The critical current density is strongly related to underlying properties of high T c superconductors, such as layering, anisotropy and other intrinsic material structures. The thallium-based superconductors attracted much attention at early stage mainly due to their high superconducting transitions. Recent studies show that these materials appear to be a better choice for achieving higher critical current density because of a stronger interlayer coupling between superconducting layers. Single crystals of TlBa 2 Ca 3 Cu 4 O 11-δ were grown by a self-flux method. This material is a strong-layered superconductor with four-CuO 2 -planes in a unit cell and a superconducting transition temperature of 128K. Our experimental results show that TlBa 2 Ca 3 Cu 4 O 11-δ crystals have high irreversibility line, large critical current density and high upper critical field. The impact of layering and the number of Cu-O layers on flux pinning, critical current density and other magnetic properties will also be discussed

  6. Geometric and compositional factors on critical current density in YBa2Cu3O7‑δ films containing nanorods

    Science.gov (United States)

    Horide, Tomoya; Nagao, Sho; Izutsu, Ryosuke; Ishimaru, Manabu; Kita, Ryusuke; Matsumoto, Kaname

    2018-06-01

    Critical current density (J c) was investigated in YBa2Cu3O7‑δ films containing nanorods prepared with various nanorod materials, with variation of nanorod content, substrate temperature, and oxidization condition. Three types of compositional situation were realized: films containing strain induced oxygen vacancies; fully oxidized films containing cation compositional deviation; and oxygen deficient films. Normalized J c‑B behavior was determined via the matching field, which is a geometric factor, regardless of the compositional details. A J c‑critical temperature (T c) relation depending on distribution and fraction of compositional deviation (cation compositional deviation and strain induced oxygen vacancies) was found: the J c values decreased with decreasing T c due to the effect of T c on nanorod pinning strength in the fully oxidized films; J c decreased with decreasing oxygen pressure in the film cooling process after film deposition in spite of T c remaining almost the same, due to reduction of the effective area for current flow in the oxygen deficient films. Thus, a J c landscape based on geometric and compositional factors was obtained. The study highlights the importance of the J c‑T c analysis in the understanding of J c in YBa2Cu3O7‑δ films containing nanorods.

  7. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  8. Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt

    Science.gov (United States)

    Jiang, Fan

    2016-02-01

    Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.

  9. PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D

    International Nuclear Information System (INIS)

    PETTY, C.C.; PRATER, R.; LUCE, T.C.; ELLIS, R.A.; HARVEY, R.W.; KINSEY, J.E.; LAO, L.L.; LOHR, J.; MAKOWSKI, M.A.

    2002-01-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage

  10. Recent progress in lower hybrid current drive theory and experiments

    International Nuclear Information System (INIS)

    Barbato, E.

    1998-01-01

    In this paper lower hybrid current drive (LHCD) experimental milestones paving the way for future experiments are briefly summarized. The current drive efficiency scaling with the electron temperature is discussed. The role of wave propagation in determining the power deposition profile is stressed and methods are discussed to control the current density profile. Modelling of negative central shear configurations, experimentally obtained by LHCD, are reported. A good agreement is found between the modelling results and the experimental findings, thus showing that a good degree of understanding has been achieved in LHCD theory. (author)

  11. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei Caixia; Liao Yingmin; Feng Zude, E-mail: zdfeng@xmu.edu.c [College of Materials, Xiamen University, Xiamen 361005 (China)

    2009-06-15

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm{sup -2} to 10 mA cm{sup -2}) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  12. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents - current status

    Energy Technology Data Exchange (ETDEWEB)

    Stojanov, Dragan [University of Nis, Faculty of Medicine, Nis (Serbia); Center for Radiology, Nis (Serbia); Aracki-Trenkic, Aleksandra [Center for Radiology, Nis (Serbia); Benedeto-Stojanov, Daniela [University of Nis, Faculty of Medicine, Nis (Serbia)

    2016-05-15

    Gadolinium-based contrast agents (GBCAs) have been used clinically since 1988 for contrast-enhanced magnetic resonance imaging (CE-MRI). Generally, GBCAs are considered to have an excellent safety profile. However, GBCA administration has been associated with increased occurrence of nephrogenic systemic fibrosis (NSF) in patients with severely compromised renal function, and several studies have shown evidence of gadolinium deposition in specific brain structures, the globus pallidus and dentate nucleus, in patients with normal renal function. Gadolinium deposition in the brain following repeated CE-MRI scans has been demonstrated in patients using T1-weighted unenhanced MRI and inductively coupled plasma mass spectroscopy. Additionally, rodent studies with controlled GBCA administration also resulted in neural gadolinium deposits. Repeated GBCA use is associated with gadolinium deposition in the brain. This is especially true with the use of less-stable, linear GBCAs. In spite of increasing evidence of gadolinium deposits in the brains of patients after multiple GBCA administrations, the clinical significance of these deposits continues to be unclear. Here, we discuss the current state of scientific evidence surrounding gadolinium deposition in the brain following GBCA use, and the potential clinical significance of gadolinium deposition. There is considerable need for further research, both to understand the mechanism by which gadolinium deposition in the brain occurs and how it affects the patients in which it occurs. (orig.)

  13. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO{sub 3} capacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-Y. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Wang, S.-C. [Department of Mechanical Engineering, Southern Taiwan University of Technology, No. 1, Nantai St, Yung-Kang City, Tainan, Taiwan (China); Chen, J.-S. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Huang, J.-L. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China)], E-mail: jlh888@mail.ncku.edu.tw

    2008-09-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO{sub 3} (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of {+-} 2.5 MV/cm and a leakage current density of about 1 x 10{sup -5} A/cm{sup 2} at an applied field of {+-} 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO{sub 2}/Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors.

  14. Influences of the current density on the performances of the chrome-plated layer in deterministic electroplating repair

    Science.gov (United States)

    Xia, H.; Shen, X. M.; Yang, X. C.; Xiong, Y.; Jiang, G. L.

    2018-01-01

    Deterministic electroplating repair is a novel method for rapidly repairing the attrited parts. By the qualitative contrast and quantitative comparison, influences of the current density on performances of the chrome-plated layer were concluded in this study. The chrome-plated layers were fabricated under different current densities when the other parameters were kept constant. Hardnesses, thicknesses and components, surface morphologies and roughnesses, and wearability of the chrome-plated layers were detected by the Vickers hardness tester, scanning electron microscope / energy dispersive X-ray detector, digital microscope in the 3D imaging mode, and the ball-milling instrument with profilograph, respectively. In order to scientifically evaluate each factor, the experimental data was normalized. A comprehensive evaluation model was founded to quantitative analyse influence of the current density based on analytic hierarchy process method and the weighted evaluation method. The calculated comprehensive evaluation indexes corresponding to current density of 40A/dm2, 45A/dm2, 50A/dm2, 55A/dm2, 60A/dm2, and 65A/dm2 were 0.2246, 0.4850, 0.4799, 0.4922, 0.8672, and 0.1381, respectively. Experimental results indicate that final optimal option was 60A/dm2, and the priority orders were 60A/dm2, 55A/dm2, 45A/dm2, 50A/dm2, 40A/dm2, and 65A/dm2.

  15. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    Science.gov (United States)

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.

  16. A study on current density distribution reproduction by bounded-eigenfunction expansion for a tokamak plasma

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1997-11-01

    Plasma current density distribution is one of the most important controlled variables to determine plasma performance of energy confinement and stability in a tokamak. However, its reproduction by using magnetic measurements solely is recognized to yield an ill-posed problem. A method to presume the formulas giving profiles of plasma pressure and current has been adopted to regularize the ill-posedness, and hence it has been reported the current density distribution can be reproduced as a solution of Grad-Shafranov equation within a certain accuracy. In order to investigate its strict reproducibility from magnetic measurements in this inverse problem, a new method of 'bounded-eigenfunction expansion' is introduced, and it was found that the reproducibility directly corresponds to the independence of a series of the special function. The results from various investigations in an aspect of applied mathematics concerning this inverse problem are presented in detail. (author)

  17. Critical current density measurement of thin films by AC susceptibility based on the penetration parameter h

    DEFF Research Database (Denmark)

    Li, Xiao-Fen; Grivel, Jean-Claude; Abrahamsen, Asger B.

    2012-01-01

    We have numerically proved that the dependence of AC susceptibility χ of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical...... current density Jc of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of Jc from a normally...

  18. Development of Bi-based high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Swaminathan, G.

    1995-01-01

    In order to achieve the aim of developing suitable superconducting materials the main emphasis has to be made in the following areas viz., synthesizing powders, detailed study of sintering and phase conversion process in relation to the critical current density (J c ) on pellets and optimising of tape processing parameters. The bismuth system has been found to be more favourable for making wires and tapes because of its high transition temperature, good stability, does not require oxygen on cooling and is non-toxic. These have been the most convenient properties which made the BiSCO material the most popular one

  19. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  20. Enhanced lower hybrid current drive experiments on HT-7 tokamak

    International Nuclear Information System (INIS)

    Shen Weici; Kuang Guangli; Liu Yuexiu; Ding Bojiang; Shi Yaojiang

    2003-01-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement experiments in higher plasma parameters (I p >200 kA, n e >2 x 10 13 cm -3 , T e ≥1 keV) have been curried out in optimized LH wave spectrum and plasma parameters in HT-7 superconducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasma density (anti n e ) and toroidal magnetic field B T has been obtained under optimal conditions. A good CD efficiency was obtained at higher plasma current and higher electron density. The improvement of the energy confinement time is accompanied with the increase in line averaged electron density, and in ion and electron temperatures. The highest current driving efficiency reached η CD =I p (anti n e )R/P RF ≅1.05 x 10 19 Am -2 /W. Wave-plasma coupling was sustained in a good state and the reflective coefficient was less than 5%. The experiments have also demonstrated the ability of LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporal distribution of plasma parameter shows that lower hybrid leads to a broader profile in plasma parameter. The LH power deposition profile and the plasma current density profile were modeled with a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detector array

  1. Sub-aerial tailings deposition

    International Nuclear Information System (INIS)

    Knight, R.B.; Haile, J.P.

    1984-01-01

    The sub-aerial technique involves the systematic deposition of tailings in thin layers and allowing each layer to settle, drain and partially air dry prior to covering with a further layer. Underdrainage produces densities in excess of those achieved by sub-aqueous deposition and any air-drying serves to preconsolidate each layer with a resulting further increase in density. The low permeability of the tailings surface resulting from this deposition technique results in high runoff coefficients and, by decanting the runoff component of direct precipitation, a net evaporation condition can be achieved even in high rainfall areas. An underdrainage system prevents the build-up of excess pore-pressures within the tailings mass and at decommissioning the tailings are fully consolidated and drained thereby eliminating the possibility of any long term seepage. This paper presents a general description of these design concepts, and details of two projects where the concepts have been applied

  2. Entrainment, transport and deposition of sediment by saline gravity currents

    Science.gov (United States)

    Zordan, Jessica; Juez, Carmelo; Schleiss, Anton J.; Franca, Mário J.

    2018-05-01

    Few studies have addressed simultaneously the feedback between the hydrodynamics of a gravity current and the geomorphological changes of a mobile bed. Hydrodynamic quantities such as turbulent and mean velocities, bed shear stress and turbulent stresses undoubtedly govern the processes of entrainment, transport and deposition. On the other hand, the incorporation of entrained sediment in the current may change its momentum by introducing extra internal stresses, introducing thus a feedback process. These two main questions are here investigated. Laboratory experiments of saline gravity currents, produced by lock-exchange, flowing over a mobile bed channel reach, are here reported. Different initial buoyancies of the current in the lock are tested together with three different grain sizes of the non-coherent sediment that form the erodible bed. Results from velocity measurements are combined with the visualization of the sediment movement in the mobile reach and with post-test topographic and photo surveys of the geomorphology modifications of the channel bed. Mean and turbulent velocities are measured and bed shear stress and Reynolds stresses are estimated. We show that the mean vertical component of the velocity and bed shear stress are highly correlated with the first instants of sediment entrainment. Vertical turbulent velocity is similarly related to entrainment, although with lower correlation values, contributing as well to the sediment movement. Bed shear stress and Reynolds shear stress measured near the bed are correlated with sediment entrainment for longer periods, indicating that these quantities are associated to distal transport as well. Geomorphological changes in the mobile bed are strongly related to the impulse caused by the bed shear stress on the sediment. On the other hand, we show that the nature of the grain of the mobile bed reach influences the hydrodynamics of the current which means that a feedback mechanisms between both occurs during

  3. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  4. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  5. Large-area few-layer MoS 2 deposited by sputtering

    KAUST Repository

    Huang, Jyun-Hong

    2016-06-06

    Direct magnetron sputtering of transition metal dichalcogenide targets is proposed as a new approach for depositing large-area two-dimensional layered materials. Bilayer to few-layer MoS2 deposited by magnetron sputtering followed by post-deposition annealing shows superior area scalability over 20 cm(2) and layer-by-layer controllability. High crystallinity of layered MoS2 was confirmed by Raman, photo-luminescence, and transmission electron microscopy analysis. The sputtering temperature and annealing ambience were found to play an important role in the film quality. The top-gate field-effect transistor by using the layered MoS2 channel shows typical n-type characteristics with a current on/off ratio of approximately 10(4). The relatively low mobility is attributed to the small grain size of 0.1-1 mu m with a trap charge density in grain boundaries of the order of 10(13) cm(-2).

  6. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  7. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  8. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  9. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  10. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Density limits in Tokamaks

    International Nuclear Information System (INIS)

    Tendler, M.

    1984-06-01

    The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)

  12. Electrodynamic wear of rails in high current density rail gun discharges

    International Nuclear Information System (INIS)

    Edwards, W.T.; Caldwell, S.G.

    1984-01-01

    Significant advances in high current, high speed power sources, has in recent years allowed rail guns to produce very high velocity (> 10 km/sec) macroscopic particles (> 1/10 grams). A continuing problem is the structural integrity of the components under these loadings and in particular, the rail wear due to the high current density plasma contacts. In this investigation a small bore rail gun (6x5 mm) was used with a 10.6 kjoule capacitor energy source to examine the modes of rail damage. The rails were constructed of 110 copper base material. These rails were used in an uncoated condition and also with plasma sprayed coatings of W and W/WC. The resulting surface wear was characterized by standard metallurgical techniques and analyzed for the various coatings

  13. Numerical versus analytical Ic(H) patterns in Josephson junctions with periodically alternating critical current density

    International Nuclear Information System (INIS)

    Lazarides, N

    2004-01-01

    An analytical expression for the magnetic-field-dependent critical current I c (H) of Josephson junctions with periodically alternating critical current density J c (x) is derived within the uniform field approximation. Comparison with numerically calculated I c (H) patterns for junctions with identical, thick, periodically arranged defects with the corresponding analytical expression reveals fair agreement for a wide range of parameters, due to increased characteristic length. Based on qualitative arguments, we give the dependence of the new characteristic length on the geometrical parameters of the junction, which is in agreement with self-consistent calculations with the static sine-Gordon equation. The analytical expression captures the observed qualitative features of the I c (H) patterns, while it is practically exact for short junctions or high fields. It also produces the shift of the major peak from the zero-field position of the standard Fraunhofer pattern to another position related to the periodicity of the critical current density in φ-junctions

  14. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    Science.gov (United States)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  15. Research and development of an aimed magnetic lead current density-magnetic field diagnostic. Final report

    International Nuclear Information System (INIS)

    1985-01-01

    A diagnostics survey was made to provide a clear definition of advanced diagnostic needs and the limitations of current approaches in addressing those needs. Special attention was given to the adequacy with which current diagnostics are interfaced to signal processing/data acquisition devices and systems. Critical evaluations of selected alternative diagnostic techniques for future R and D activities are presented. The conceptual basis of the Aimed Magnetic Lead Gradiometric system as a current density/magnetic field diagnostic is established

  16. Discharge cleaning of carbon deposits

    International Nuclear Information System (INIS)

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  17. GIS supported calculations of 137Cs deposition in Sweden based on precipitation data

    International Nuclear Information System (INIS)

    Almgren, S.; Nilsson, E.; Isaksson, M.; Erlandsson, B.

    2005-01-01

    137 Cs deposition maps were made using Kriging interpolation in a Geographical Information System (GIS). Quarterly values of 137 Cs deposition density per unit precipitation (Bq/m 2 /mm) at three reference sites and quarterly precipitation at 62 weather stations distributed over Sweden were used in the calculations of Nuclear Weapons Fallout (NWF). The deposition density of 137 Cs, resulting from the Chernobyl accident, was calculated for western Sweden using precipitation data from 46 stations. The lowest levels of NWF 137 Cs deposition density were noted in the northeastern and eastern Sweden and the highest levels in the western parts of Sweden. The Chernobyl 137 Cs deposition density is highest along the coast in the selected area and the lowest in the southeastern part and along the middle. The sum of the calculated deposition density from NWF and Chernobyl in western Sweden was compared to accumulated activities in soil samples at 27 locations. Comparisons between the predicted values of this study show a good agreement with measured values

  18. YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films prepared by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Apetrii, Claudia

    2009-11-25

    The discovery of superconductivity in ceramic materials by Bednorz and Mueller in early 1987, immediately followed by Wu et al., who showed that YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) becomes superconducting (92 K) well above the boiling point of nitrogen (77 K) created a great excitement in superconductivity research. Potential applications of high T{sub c}-superconductors require large critical currents and high-applied magnetic fields. Effective ways to increase the critical current density at high magnetic fields in YBCO are the introduction of nanoparticles and chemical substitution of yttrium by other rare earth elements. Since low costs and environmental compatibility are essential conditions for the preparation of long length YBCO films, the cost effective chemical solution deposition (CSD) procedure was selected, given that no vacuum technology is required. To reveal the flexibility and the good optimization possibilities of the CSD approach two main processes were chosen for comparison: a fluorine-free method, namely the polymer-metal precursor technique, and a fluorine-based method, the metalorganic deposition (MOD) using the trifluoroacetates (TFA) technique. Sharp transition temperature widths {delta}T{sub c} of 1.1 K for the polymer metal method, 0.8 K for TFA method and critical current densities J{sub c} of {approx}3.5 MA/cm{sup 2} shows that high quality YBCO thin films can be produced using both techniques. Especially interesting is the magnetic field dependence of the critical current density J{sub c}(B) of the Y(Dy)BCO (80 %) films showing that for the lower magnetic fields the critical current density J{sub c}(B) is higher for a standard YBCO film, but at fields higher than 4.5 T the critical current density J{sub c}(B) of Y(Dy)BCO is larger than that for the YBCO. Above 8 T, J{sub c}(B) of the Y(Dy)BCO film is more than one order of magnitude higher than in pure YBCO film. (orig.)

  19. Spectral Unmixing Modeling of the Aristarchus Pyroclastic Deposit: Assessing the Eruptive History of Glass-Rich Regional Lunar Pyroclastic Deposits

    Science.gov (United States)

    Jawin, E. R.; Head, J. W., III; Cannon, K.

    2017-12-01

    The Aristarchus pyroclastic deposit in central Oceanus Procellarum is understood to have formed in a gas-rich explosive volcanic eruption, and has been observed to contain abundant volcanic glass. However, the interpreted color (and therefore composition) of the glass has been debated. In addition, previous analyses of the pyroclastic deposit have been performed using lower resolution data than are currently available. In this work, a nonlinear spectral unmixing model was applied to Moon Mineralogy Mapper (M3) data of the Aristarchus plateau to investigate the detailed mineralogic and crystalline nature of the Aristarchus pyroclastic deposit by using spectra of laboratory endmembers including a suite of volcanic glasses returned from the Apollo 15 and 17 missions (green, orange, black beads), as well as synthetic lunar glasses (orange, green, red, yellow). Preliminary results of the M3 unmixing model suggest that spectra of the pyroclastic deposit can be modeled by a mixture composed predominantly of a featureless endmember approximating space weathering and a smaller component of glass. The modeled spectra were most accurate with a synthetic orange glass endmember, relative to the other glasses analyzed in this work. The results confirm that there is a detectable component of glass in the Aristarchus pyroclastic deposit which may be similar to the high-Ti orange glass seen in other regional pyroclastic deposits, with only minimal contributions of other crystalline minerals. The presence of volcanic glass in the pyroclastic deposit, with the low abundance of crystalline material, would support the model that the Aristarchus pyroclastic deposit formed in a long-duration, hawaiian-style fire fountain eruption. No significant detection of devitrified black beads in the spectral modeling results (as was observed at the Apollo 17 landing site in the Taurus-Littrow pyroclastic deposit), suggests the optical density of the eruptive plume remained low throughout the

  20. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.