WorldWideScience

Sample records for density chemical composition

  1. Chemically and Thermally Stable High Energy Density Silicone Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 ? 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed effort...

  2. Optical density and chemical composition of microfilled and microhybrid composite resins

    Directory of Open Access Journals (Sweden)

    Ana Paula Braun

    2008-04-01

    Full Text Available This study evaluated the optical density of two microfilled and two microhybrid resins, as well as the composition of these materials with regard to their optical density. Cavities prepared in 12 2-mm- or 4-mm-thick acrylic plastic plates were filled with Z250 (3M-ESPE, A110 (3M-ESPE, Charisma (Heraeus-Kulzer and DurafillVS (Heraeus-Kulzer. The resin increments (2-mm-thick were light-cured for 40 s. Three 0.12-s radiographic exposures were made of each #2 acrylic plastic plate. DenOptix system optical plates were used to obtain the digital images. Three readings of the composite resin surface were made in each radiograph, totalizing 216 readings. The mean of highest and lowest grey-scale values was obtained. Two specimens of each composite resin were prepared for SEM analysis of the chemical elements related to optical density, using energy dispersive x-ray analysis (EDX. The results were subjected to Shapiro-Wilk's test, ANOVA, Tukey's test at 1% level of significance and Pearson's correlation. The mean grey-scale values at 2 mm and 4 mm were: Z250 = 154.27a and 185.33w; A110 = 46.77b and 63.05y; Charisma = 163.40c and 200.46z; DurafillVS = 43.92b and 58.99x, respectively. Pearson's test did not show any positive correlation between optical density and percentage weight of optical density chemical elements. It was concluded that the microhybrid resins had higher optical density means than the microfilled resins; among the evaluated resins, Charisma had the highest optical density means.

  3. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Science.gov (United States)

    Chávez-Aguilera, N.; Torres-García, E.; Mitsoura, E.

    2011-03-01

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ( 137Cs) and HDR ( 192Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of 137Cs and 192Ir. The absorbed dose was computed within each voxel of 2×2×3 mm 3. Four materials were considered in the VP—air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of 192Ir is more irregular than that of 137Cs but spatially better defined.

  4. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Aguilera, N. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Departamento de Fisica Medica, Instituto Estatal de Cancerologia ' Dr. Arturo Beltran Ortega' , Acapulco, Guerrero (Mexico); Torres-Garcia, E., E-mail: etorresg@uaemex.m [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Mitsoura, E. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico)

    2011-03-15

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ({sup 137}Cs) and HDR ({sup 192}Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of {sup 137}Cs and {sup 192}Ir. The absorbed dose was computed within each voxel of 2x2x3 mm{sup 3}. Four materials were considered in the VP-air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of {sup 192}Ir is more irregular than that of {sup 137}Cs but spatially better defined.

  5. Spatial and temporal changes of density and chemical composition of heavy oils of Eurasia

    Directory of Open Access Journals (Sweden)

    Y.M. Polishchuk, I.G. Yashchenko

    2011-07-01

    Full Text Available Paper is devoted to analytical review of regularities of spatial and temporal changes of chemical composition and density of heavy oils of Eurasia, which are envisaged as main reserve of world’s oil production industry for future years. The contents of sulfur, paraffin, resin, asphaltene and light fraction in heavy oils and their density were analysed statistically with use the global database on petrochemistry created by Institute of petroleum chemistry. The database includes above 3,660 samples of heavy oils from 62 principal oil-bearing basins in Eurasia. The basic regularities of regional distribution of heavy oils are considered. It is shown that the heaviest oils of Eurasia are in oil-bearing basins of Southern Europe and Southern Asia. The regularities of heavy oil density changes depending on occurrence depth are given. It is shown oil density decreases with depth growth. Maximum values of density of heavy oils are observed in Cenozoic rocks and their minimum values are in Proterozoic rocks. In average, heavy oils are sulfur, high resin, high asphaltenes ones containing small paraffin and small light fractions.

  6. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    Science.gov (United States)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  7. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    Science.gov (United States)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  8. Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density

    Energy Technology Data Exchange (ETDEWEB)

    Bellin, Marie-France; Meric, Jean-Baptiste [AP-HP, Department of Radiology, Hopital Paul-Brousse, Villejuif Cedex (France); Renard-Penna, Raphaelle; Grenier, Philippe [AP-HP, Department of Radiology, Hopital Pitie-Salpetriere, Paris Cedex 13 (France); Conort, Pierre; Richard, Francois [AP-HP, Department of Urology, Hopital Pitie-Salpetriere, Paris Cedex 13 (France); Bissery, Anne; Mallet, Alain [AP-HP, Department of Biostatistics, Hopital Pitie-Salpetriere, Paris Cedex 13 (France); Daudon, Michel [AP-HP, Department of Biochemistry, Hopital Necker, Paris Cedex 15 (France)

    2004-11-01

    The aim of this study was to evaluate the efficacy of helical CT using a combination of CT-attenuation values and visual assessment of stone density as well as discriminant linear analysis to predict the chemical composition of urinary calculi. One hundred human urinary calculi were obtained from a stone-analysis laboratory and placed in 20 excised pig kidneys. They were scanned at 80, 120 and 140 kV with 3-mm collimation. Average, highest and lowest CT-attenuation values and CT variability were recorded. The internal calculus structure was assessed using a wide window setting, and visual assessment of stone density was recorded. A stepwise discriminant linear analysis was performed. The following three variables were discriminant: highest CT-attenuation value, visual density, and highest CT-attenuation value/area ratio, all at 80 kV. The probability of correctly classifying stone composition with these three variables was 0.64, ranging from 0.54 for mixed calculi to 0.69 for pure calculi. The probabilities of correctly classifying calculus composition were: 0.91 for calcium oxalate monohydrate and brushite, 0.89 for cystine, 0.85 for uric acid, 0.11 for calcium oxalate dihydrate, 0.10 for hydroxyapatite, and 0.07 for struvite calculi. When the first two ranks of highest probability for the accurate classification of each calculus type were taken into account, 81% of the calculi were correctly classified. Assessment at 80 kV of the highest CT-attenuation value, visual density and the highest CT-attenuation value/area ratio accurately predicts the chemical composition of 64-81% of urinary calculi. When the first two ranks of highest probability for the accurate classification of each calculus type were taken into account, all cystine, calcium oxalate monohydrate and brushite calculi were correctly classified. (orig.)

  9. Density Functionals of Chemical Bonding

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2008-06-01

    Full Text Available The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR analysis for basic atomic and molecular systems.

  10. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions.

    Science.gov (United States)

    Kurudirek, Murat; Aygun, Murat; Erzeneoğlu, Salih Zeki

    2010-06-01

    The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients (mu/rho), photon interaction cross sections (sigma(t)), effective atomic numbers (Z(eff)) and effective electron densities (N(e)) by using X-rays at 22.1, 25keV and gamma-rays at 88keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition.

  11. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  12. Changes in chemical composition and physico-chemical properties of chick low- and high-density lipoproteins induced by supplementation of coconut oil to the diet.

    Science.gov (United States)

    Talavera, E M; Zafra, M F; Gil-Villarino, A; Pérez, M I; Alvarez-Pez, J M; García-Peregrín, E

    1997-06-01

    Supplementation of coconut oil to the diet for 1-2 weeks produced a significant hypercholesterolemia in 14-day-old chicks. Changes in plasma fatty acid composition correlated positively with those of diets. In this study, we have shown a different response of low- and high-density lipoprotein (LDL and HDL) fractions to dietary saturated fat (coconut oil) rich in lauric and myristic acids. Although all the components of these particles seemed to increase, the percentages of increases found in total (TC), free (FC) and esterified cholesterol (EC) were higher in LDL than in HDL. TC/phospholipid (PL) ratio, considered as an inverse index of membrane fluidity, also increased with the dietary regimen in LDL, while no significant differences were found in HDL. These results suggest that supplementation of coconut oil to the diet decreased the fluidity of LDL. The EC/triglycerides (TG) ratio was also significantly increased in LDL, corroborating the main atherogenic function of this lipoprotein fraction in response to lauric and myristic acids. We have also estimated the lipidic order parameter, S, from the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labelled low- and high-density lipoproteins. In LDL, temperature dependence of S shows two different behaviour zones at about 20 degrees C. In HDL, the plot of S values versus T is linear. DPH anisotropy and S increased in both LDL and HDL from treated chicks. This increase becomes more evident as temperature rises and also with dietary treatment.

  13. Influence of plasma density on the chemical composition and structural properties of pulsed laser deposited TiAlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Quiñones-Galván, J. G.; Camps, Enrique [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, México D.F. C.P. 11801 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, México D.F. C.P. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Apdo. Postal 307, C.P. 45101 Zapopan, Jalisco (Mexico); Campos-González, E. [Departamento de Física, CINVESTAV-IPN, Apdo. Postal 14-740, México D.F. 07360 (Mexico)

    2014-05-15

    Incorporation of substitutional Al into the TiN lattice of the ternary alloy TiAlN results in a material with improved properties compared to TiN. In this work, TiAlN thin films were grown by the simultaneous ablation of Ti and Al targets in a nitrogen containing reactive atmosphere. The deposit was formed on silicon substrates at low deposition temperature (200 °C). The dependence of the Al content of the films was studied as a function of the ion density of the plasma produced by the laser ablation of the Al target. The plasma parameters were measured by means of a planar Langmuir probe and optical emission spectroscopy. The chemical composition of the films was measured by energy dispersive X-ray spectroscopy. The results showed a strong dependence of the amount of aluminum incorporated in the films with the plasma density. The structural characterization of the deposits was carried out by Raman spectroscopy, X-ray diffraction, and transmission electron microscopy, where the substitutional incorporation of the Al into the TiN was demonstrated.

  14. Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains.

    Science.gov (United States)

    Wang, B; Luo, Y; Myung, K H; Liu, J X

    2014-06-01

    This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures (5°C, 15°C, 25°C, and 35°C) and four durations (0, 1, 2, and 3 d) were arranged in a 4×4 factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as 25°C and 35°C. Nutrients contents decreased concomitantly with prolonged storage times (pyeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds 35°C, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above 35°C during summer.

  15. Method of forming a chemical composition

    Science.gov (United States)

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  16. Influence of density and chemical composition of soils in the neutrons probes answer; Influencia da densidade e da composicao quimica dos solos na resposta de sondas de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall`Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Carneiro, Clemente J. Gusmao [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil`s chemical composition; soils physical parameters; neutrons` energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil 2 tabs., 3 figs.

  17. The Chemical Composition of Honey

    Science.gov (United States)

    Ball, David W.

    2007-01-01

    Honey is a supersaturated sugar solution, created by bees, and used by human beings as a sweetener. However, honey is more than just a supersaturated sugar solution; it also contains acids, minerals, vitamins, and amino acids in varying quantities. In this article, we will briefly explore the chemical composition of honey. (Contains 2 figures and…

  18. Chemical recycling of scrap composites

    Science.gov (United States)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  19. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Science.gov (United States)

    Schwarzova, Ivana; Cigasova, Julia; Stevulova, Nadezda

    2016-12-01

    The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution) and physically (by ultrasonic procedure) treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  20. Response function of an HPGe detector simulated through MCNP 4A varying the density and chemical composition of the matrix; Funcion respuesta de un detector HPGe simulada mediante MCNP 4A variando la densidad y composicion quimica de la matriz

    Energy Technology Data Exchange (ETDEWEB)

    Leal A, B.; Mireles G, F.; Quirino T, L.; Pinedo, J.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico)]. e-mail: bleal79@yahoo.com.mx

    2005-07-01

    In the area of the Radiological Safety it is required of a calibrated detection system in energy and efficiency for the determination of the concentration in activity in samples that vary in chemical composition and by this in density. The area of Nuclear Engineering requires to find the grade of isotopic enrichment of the uranium of the Sub-critic Nuclear Chicago 9000 Mark. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the range of energy of 80 keV to 1400 keV varying the density of the matrix and the chemical composition by means of the application of the Monte Carlo code MCNP-4A. The obtained results in the simulation of the response function of the detector show a grade of acceptance in the range from 500 to 1400 keV energy, with a smaller percentage discrepancy to 10%, in the range of low energy that its go from 59 to 400 keV, the percentage discrepancy varies from 17% until 30%, which is manifested in the opposing isotopic relationship for 5 fuel rods of the Sub critic nuclear assemble. (Author)

  1. Chemical composition of Pechora Sea crude oil

    Directory of Open Access Journals (Sweden)

    Derkach S. R.

    2017-03-01

    Full Text Available The physicochemical properties of the Pechora Sea shelf oil and its chemical composition have been studied using the methods of refractometry, titrimetry, viscometry, rheometry and standard methods for the analysis of oil and petroleum products. The fractionation of oil is held at atmospheric pressure, some fractions boiling at the temperature below and above 211 °C have been received. Chemical structural-group composition of oil and its components has been investigated using a Fourier infrared (IR spectroscopy method. The density of oil has been obtained, it is equal to 24.2 API. The chemical composition analysis shows that water content in the investigated oil sample is about 0.03 % (by weight. The oil sample contains hydrocarbons (including alkanes, naphthenes, arenes and asphaltenes with resins; their content is equal to 89 and 10 % (by weight respectively. Alkane content is about 66 %, including alkanes of normal structure – about 37 %. The solidification temperature of oil sample is equal to –43 °C. This low temperature testifies obliquely low content of solid alkanes (paraffin. Bearing in mind the content of asphaltenes with resins we can refer the investigated oil sample to resinous oils. On the other hand spectral coefficient values (aromaticity quotient and aliphaticity quotient show that oil sample belongs to naphthenic oils. According to the data of Fourier IR spectroscopy contents of naphthenes and arenes are 5.9 and 17.8 % respectively. Thus, the obtained data of chemical structural-group composition of crude oil and its fractions indicate that this oil belongs to the heavy resinous naphthenic oils. The rheological parameters obtained at the shear deformation conditions characterize the crude oil as a visco-plastic medium.

  2. Chemical composition of interstellar dust

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    physical parameters of interstellar medium (ISM). To mimic exact interstellar condition, gas grain interactions via accretion from gas phase and desorption (thermal evaporation, photo-evaporation and non-thermal evaporation) from grain surface are considered. We find that chemical composition of interstellar grain mantle is highly dependent on physical parameters associated with a molecular cloud. Interstellar photons are seen to play an important role towards growth and structure of interstellar grain mantle. We consider effects of interstellar photons (photo-dissociation and photo-evaporation) in our simulation under various interstellar circumstances.

  3. Properties of dried distillers grains with solubles, Paulownia wood, and pine wood reinforced high density polyethylene composites: Effect of maleation, chemical modification, and the mixing of fillers

    Science.gov (United States)

    There is a need to identify usable lignocellulosic materials that can be blended with thermoplastic resins to produced commercial lignocellulosic plastic composites (LPC) at lower costs with improved performance. The core objectives of this study are to: 1) evaluate the use of dried distillers grai...

  4. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    K Pramoda; S Suresh; H S S Ramakrishna Matte; A Govindaraj

    2013-08-01

    Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

  5. Thermal Stress Effect on Density Changes of Hemp Hurds Composites

    Directory of Open Access Journals (Sweden)

    Schwarzova Ivana

    2016-12-01

    Full Text Available The aim of this article is to study the behavior of prepared biocomposites based on hemp hurds as a filling agent in composite system. In addition to the filler and water, an alternative binder, called MgO-cement was used. For this objective were prepared three types of samples; samples based on untreated hemp hurds as a referential material and samples based on chemically (with NaOH solution and physically (by ultrasonic procedure treated hemp hurds. The thermal stress effect on bulk density changes of hemp hurds composites was monitored. Gradual increase in temperature led to composites density reduction of 30-40 %. This process is connected with mass loss of the adsorbed moisture and physically bound water and also with degradation of organic compounds present in hemp hurds aggregates such as pectin, hemicelluloses and cellulose. Therefore the changes in the chemical composition of treated hemp hurds in comparison to original sample and its thermal decomposition were also studied.

  6. From Density Contrast to Compositional Difference on Pluto and Charon

    Science.gov (United States)

    Bierson, C. J.; Nimmo, F.; McKinnon, W. B.

    2016-12-01

    Leading up to the New Horizons encounter, modeling work suggested that if Pluto and Charon formed in a giant impact Charon would be more ice rich than Pluto [1,2]. Conversely, if Pluto and Charon both formed in-situ they should have the same bulk composition. New Horizons has confirmed that Pluto and Charon have distinct bulk densities, 1854 ± 11 kg m-3 and 1701 ± 33 kg m-3 respectively [3]. The question is whether this density contrast necessarily implies a compositional difference. We investigate if differences in the porous structure of Pluto and Charon could explain this observed density contrast. We couple a thermal model [4] with a model of viscous pore closure [5]. We include both the temperature dependence and the effect of porosity on thermal conductivity of the ice mantle. Due to the both lower gravity and lower heat flux, Charon can maintain a thicker porous layer over the age of the solar system. This effect however, only produces a bulk density contrast between Pluto and Charon of 60 kg m-3 , compared with the observed density contrast of 153±44 kg m-3. Other factors such as a modern ocean on Pluto, larger compression in Pluto's interior, and chemical water-rock interactions are also considered. None of these processes, even when combined, can explain the observed density contrast. From this we conclude that Pluto and Charon must be compositionally distinct. We will discuss the implications this compositional difference has for the formation and evolution of the Pluto-Charon system. References: [1] Canup, Science (2005). [2] Canup, The Astronomical Journal (2010). [3] Nimmo et al. arXiv preprint (2016). [4] Robuchon and Nimmo. Icarus (2011) [5] Besserer et al. JGR: Planets (2013)

  7. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  8. Chemical composition and mutagenic assessment of petrochemical ...

    African Journals Online (AJOL)

    Aghomotsegin

    their chemical composition and genotoxic effects on cell reproduction. Two petrochemicals, air liquid ... some potentially mutagenic heavy metals. The effects of the ... shows good correlation with mammalian test systems. (Fiskesjö, 1985a).

  9. Chemical composition of Earth-like planets

    CERN Document Server

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  10. Density of the continental roots: Compositional and thermal contributions

    Science.gov (United States)

    Kaban, M.K.; Schwintzer, P.; Artemieva, I.M.; Mooney, W.D.

    2003-01-01

    The origin and evolution of cratonic roots has been debated for many years. Precambrian cratons are underlain by cold lithospheric roots that are chemically depleted. Thermal and petrologic data indicate that Archean roots are colder and more chemically depleted than Proterozoic roots. This observation has led to the hypothesis that the degree of depletion in a lithospheric root depends mostly on its age. Here we test this hypothesis using gravity, thermal, petrologic, and seismic data to quantify differences in the density of cratonic roots globally. In the first step in our analysis we use a global crustal model to remove the crustal contribution to the observed gravity. The result is the mantle gravity anomaly field, which varies over cratonic areas from -100 to +100 mGal. Positive mantle gravity anomalies are observed for cratons in the northern hemisphere: the Baltic shield, East European Platform, and the Siberian Platform. Negative anomalies are observed over cratons in the southern hemisphere: Western Australia, South America, the Indian shield, and Southern Africa. This indicates that there are significant differences in the density of cratonic roots, even for those of similar age. Root density depends on temperature and chemical depletion. In order to separate these effects we apply a lithospheric temperature correction using thermal estimates from a combination of geothermal modeling and global seismic tomography models. Gravity anomalies induced by temperature variations in the uppermost mantle range from -200 to +300 mGal, with the strongest negative anomalies associated with mid-ocean ridges and the strongest positive anomalies associated with cratons. After correcting for thermal effects, we obtain a map of density variations due to lithospheric compositional variations. These maps indicate that the average density decrease due to the chemical depletion within cratonic roots varies from 1.1% to 1.5%, assuming the chemical boundary layer has the same

  11. Chemical composition of Achatina fulica

    Directory of Open Access Journals (Sweden)

    Aboua, F.

    1990-01-01

    Full Text Available Proximate composition and mineral content were determined in snail without and with shell and shell atone from Achatina fulica. This snail has high protein (above 40 %, low fat (less than 3 % and is a relatively good source of macrominerals, including calcium, phosphorus, magnesium, potassium and sodium. Achatina fulica is an excellent source of iron but is poor in copper, zinc and manganese. The snail is very rich in calcium but very poor in phosphorus, potassium and magnesium.

  12. Binary stars: Mass transfer and chemical composition

    Science.gov (United States)

    Lambert, D. L.

    1982-01-01

    It is noted that mass exchange (and mass loss) within a binary system should produce observable changes in the surface chemical composition of both the mass losing and mass gaining stars as a stellar interior exposed to nucleosyntheses is uncovered. Three topics relating mass exchange and/or mass loss to nucleosynthesis are sketched: the chemical composition of Algol systems; the accretion disk of a cataclysmic variable fed by mass from a dwarf secondary star; and the hypothesis that classical Ba II giants result from mass transfer from a more evolved companion now present as a white dwarf.

  13. Chemical composition of selected Saudi medicinal plants

    Directory of Open Access Journals (Sweden)

    Ihsanullah Daur

    2015-05-01

    Full Text Available Medicinal plants are important in traditional medicine and modern pharmaceutical drugs; therefore, the interest in the analysis of their chemical composition is increasing. In this study, selected medicinal plants including Achillea fragrantissima (Forssk Sch., Amaranthus viridis L., Asteriscus graveolens (Forssk. Less., Chenopodium album L., and Conyza bonariensis (L. Cronquist were collected from the rangeland of western regions (Bahra and Hada areas of Saudi Arabia to study their chemical composition. Eight minerals (Mg, Ca, Cr, Mn, Fe, Co, Cu, and Zn, total phenolic contents, antioxidant activity, and free-radical scavenging ability were examined in order to evaluate the medicinal potential of these plants. All the plants were found to be rich sources of minerals and antioxidants, although there were significant differences (p < 0.05 in their chemical composition, which may provide a rationale for generating custom extracts from specific plants depending on the application. The findings of this study will thus facilitate herbalists in their efforts to incorporate these plants into various formulations based on their chemical composition.

  14. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    aneldavh

    narrow leaf lupins (Lupinus angustifolius; n = 8), faba beans (Vicia faba; ... characteristics (thousand seed and hectolitre mass), chemical composition ... therefore, that the nutritional potential of alternative plant protein feeds, such as ... (L. luteus, L. albus and L. angustifolius), faba beans and narbon beans for ..... Food Agric.

  15. [Investigation of chemical composition of propolis extract].

    Science.gov (United States)

    Majiene, Daiva; Trumbeckaite, Sonata; Grūnoviene, Danguole; Ivanauskas, Liudas; Gendrolis, Antanas

    2004-01-01

    Propolis is a natural product, produced by bees and containing exudates from plants, mixed with bee wax. Propolis and its ethanolic extract are usually used for treatment and prevention of different diseases. Propolis has antibacterial, antiviral, antifungal, anti-inflammatory, anesthetic and immunomodulating properties. Till now there is no data about chemical composition of Lithuanian propolis. Thus, the aim of our work was to investigate the chemical composition of Lithuanian propolis and its ethanolic extract by using gas chromatography / mass spectrometry. We found, that the main structural types of compounds were terpenoids, aromatic and aliphatic acid esters. The most of terpenoids were mono- and sesquiterpens: azulene, alpha-bisabolol, citral, valerenol, etc. Thus, our data show, that the composition of propolis is various and depends on the origin of plants, from where propolis was collected.

  16. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  17. The North American upper mantle: density, composition, and evolution

    Science.gov (United States)

    Mooney, Walter D.; Kaban, Mikhail K.

    2010-01-01

    . The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.

  18. Impact of oil on groundwater chemical composition

    Science.gov (United States)

    Brakorenko, N. N.

    2015-11-01

    The objective of the paper is to characterize the chemical composition of groundwater samples from the monitoring wells drilled in the petrol station areas within the vicinity of Tomsk. The level of contamination has increased since many macro - and microcomponent concentrations (such as petroleum products, chlorine, sulphates, carbon dioxide and lead, etc.) in groundwater samples of the present study is higher than that in previous period samples.

  19. The Chemical Composition of the Sun

    Science.gov (United States)

    Asplund, Martin; Grevesse, Nicolas; Sauval, A. Jacques; Scott, Pat

    2009-09-01

    The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System. Furthermore, it is an essential reference standard against which the elemental contents of other astronomical objects are compared. In this review, we evaluate the current understanding of the solar photospheric composition. In particular, we present a redetermination of the abundances of nearly all available elements, using a realistic new three-dimensional (3D), time-dependent hydrodynamical model of the solar atmosphere. We have carefully considered the atomic input data and selection of spectral lines, and accounted for departures from local thermodynamic equilibrium (LTE) whenever possible. The end result is a comprehensive and homogeneous compilation of the solar elemental abundances. Particularly noteworthy findings are significantly lower abundances of C, N, O, and Ne compared to the widely used values of a decade ago. The new solar chemical composition is supported by a high degree of internal consistency between available abundance indicators, and by agreement with values obtained in the Solar Neighborhood and from the most pristine meteorites. There is, however, a stark conflict with standard models of the solar interior according to helioseismology, a discrepancy that has yet to find a satisfactory resolution.

  20. Ultra-Low-Density (ULD) Polymer Matrix Composites (PMCs) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR proposal seeks to demonstrate a new class of ultra-low-density (ULD) polymer matrix composites of high specific modulus and specific strength...

  1. Chemical Composition of Different Varieties of Linseed

    Directory of Open Access Journals (Sweden)

    M. Laiq Khan*, M. Sharif, M. Sarwar, Sameea1 and M. Ameen

    2010-04-01

    Full Text Available The present study was conducted to investigate chemical composition of six varieties of linseed (Chandni, LS-29, LS-49, LS-70, LS-75 and LS-76. Proximate composition, mineral profile and cyanogenic glycosides (linamarin were determined. Average proximate composition values for linseed i.e. crude protein, ether extract, crude fiber, ash and nitrogen free extract were 24.18, 37.77, 4.78, 3.50 and 25.86%, respectively. Higher values of crude protein, ether extract, crude fiber and nitrogen free extract were observed in varieties LS-49, LS-70, LS-29 and Chandni, respectively. Average mineral contents in linseed i.e. Ca, Mg, K, Na, Cl, P, Cu, Fe, Mn and Zn were 0.39, 0.09, 1.41, 0.05, 0.08, 0.89, 4.67, 50.56, 8.29 and 13.55 ppm, respectively. Among micro minerals, varieties LS-29 and LS-70 were higher in Cu contents; LS-75 was higher in Fe content, while LS-49 was higher in Mn and Zn contents. Among macro minerals, level of Ca was higher in LS-70, levels of Mg, K and Na were higher in Chandni, while P was higher in LS-49. Average amount of linamarin in linseed was 31.05mg/100 gm DM. The variety LS-75 had the highest (35.22 mg/100 gm linamarin content, while variety LS-70 had least (26.22 mg/100 gm amount of linamarin. In conclusion, there is significant difference in chemical composition among linseed varieties. The varieties LS-49 showed higher crude protein content, LS-70 showed greater oil content, while LS-75 had higher content of linamarin.

  2. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; Morrison, David (Technical Monitor)

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  3. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data.

  4. Influence of light energy density on heat generation during photoactivation of dental composites with different dentin and composite thickness

    Directory of Open Access Journals (Sweden)

    Ricardo Danil Guiraldo

    2009-08-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the influence of different energy densities on the heat generated during photoactivation of Filtek Z250 (3M/ESPE and Z100 (3M/ESPE composite resins with different dentin and composite thickness. MATERIAL AND METHODS: The temperature increase was registered with a type-K thermocouple connected to a digital thermometer (Iopetherm 46. A chemically polymerized acrylic resin base was prepared to serve as a guide for the thermocouple and as a support for 0.5-, 1.0-, and 1.5-mm-thick bovine dentin discs. Circular elastomer molds (1.0 mm-height x 3.0-mm diameter or 2.0-mm height x 3.0-mm diameter were adapted on the acrylic resin base to standardize the composite resin thickness. A conventional halogen light-curing unit (XL 2500, 3M/ESPE was used with light intensity of 700 mW/cm². Energy density was calculated by the light intensity applied during a certain time with values of 28 J/cm² for Z100 and 14 J/cm² for Filtek Z250. The temperature change data were subjected to three-way ANOVA and Tukey's test at 5% level. RESULTS: The higher energy density (Z100 promoted greater temperature increase (p<0.05 than the lower energy density (Filtek Z250. For both composites and all composite thicknesses, the lowest dentin thickness (0.5 mm yielded significantly higher (p<0.05 temperature increase than the other two dentin thicknesses. The 1-mm-thick composite resin layer yielded significantly higher (p<0.05 temperature changes for both composites and all dentin thicknesses. CONCLUSIONS: Temperature increase was influenced by higher energy density and dentin/composite thickness.

  5. Chemical reactivity in the framework of pair density functional theories.

    Science.gov (United States)

    Otero, Nicolás; Mandado, Marcos

    2012-05-15

    Chemical reactivity descriptors are derived within the framework of the pair density functional theory. These indices provide valuable information about bonding rearrangements and activating mechanisms upon electrophilic or nucleophilic reactions. Indices derived and tested in this work represent nonlocal counterparts of the local reactivity indices derived in the context of conceptual density functional theory (CDFT) and frequently used in reactivity studies; the Fukui function, the local softness and the dual descriptor. In this work, we show how these nonlocal indices provide a quantum chemical basis to explain the success of qualitative resonance models in chemical reactivity predictions. Also, local information is implicitly contained as CDFT indices are obtained by simple integration. As illustrative examples, we have considered in this work the Markovnikov's rule, the reactivity of enolate anion, the nucleophilic conjugate addition to α,β-unsaturated compounds and the electrophilic aromatic substitution of benzene derivatives. The densities used in this work were obtained with Hartree-Fock, Kohn-Sham DFT, and singles and doubles configuration interaction (CISD) approaches. Copyright © 2012 Wiley Periodicals, Inc.

  6. The mechanical properties of density graded hemp/polyethylene composites

    Science.gov (United States)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  7. Chemical Composition and Antibacterial Effects of

    Directory of Open Access Journals (Sweden)

    SS Saei Dehkordi

    2009-10-01

    Full Text Available Introduction & Objective: Rosmarinus officinalis L. as a member of the Lamiaceae family and lysozyme as a natural antibacterial agent is important in food microbiology, because of its characteristics. The aim of the present study was to determine the chemical composition and anti-listerial activity of Rosmarinus officinalis essential oil (REO alone and in combination with lysozyme for enhancement of anti-listerial activity of both substances. Materials & Methods: Rosmarinus officinalis L. was purchased from a local grocery store at Shahrekord and was identified by the Institute of Medicinal Plants, ACECR. The air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus to obtain essential oil and yielded oil was analyzed by GC/MS. Antibacterial activity (on basis of Minimum Inhibitory Concentration (MIC of REO was studied separately and in combination with unheated lysozyme (L and heat-treated lysozyme (HTL on Listeria monocytogenes at different pH (5, 6 and 7 by a micro-broth dilution assay. The collected data were analyzed by SPSS software. Results: In the current study, 98.05% of constituents of the essential oil were identified. The major components were α-pinene (14.06%, 1,8-cineole (13.62%, verbenone (11.2%, camphor (10.51%, borneol (7.3%, 3-octanone (7.02%, camphene (5.46% and linalool (5.07%. The inhibitory action of REO was stronger at lower pH especially 5 (MIC=225 μg/mL. Inhibition by L at pH 5 was 640 μg/mL but no inhibition was seen at pH 7. HTL resulted in more effective inhibition than L, especially at pH 5 and heat-treatment 80˚C (MIC: 160 μg/mL. Conclusion: Combination of L + REO and particularly HTL + REO was led to enhancement of bacterial inhibition. It was concluded that REO by the identified chemical composition was effective alone or in combination with L or HTL on Listeria monocytogenes as a food-borne pathogen.

  8. On-line chemical composition analyzer development

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Garrison, A.A.; Muly, E.C.; Moore, C.F.

    1992-02-01

    The energy consumed in distillation processes in the United States represents nearly three percent of the total national energy consumption. If effective control of distillation columns can be accomplished, it has been estimated that it would result in a reduction in the national energy consumption of 0.3%. Real-time control based on mixture composition could achieve these savings. However, the major distillation processes represent diverse applications and at present there does not exist a proven on-line chemical composition sensor technology which can be used to control these diverse processes in real-time. This report presents a summary of the findings of the second phase of a three phase effort undertaken to develop an on-line real-time measurement and control system utilizing Raman spectroscopy. A prototype instrument system has been constructed utilizing a Perkin Elmer 1700 Spectrometer, a diode pumped YAG laser, two three axis positioning systems, a process sample cell land a personal computer. This system has been successfully tested using industrially supplied process samples to establish its performance. Also, continued application development was undertaken during this Phase of the program using both the spontaneous Raman and Surface-enhanced Raman modes of operation. The study was performed for the US Department of Energy, Office of Industrial Technologies, whose mission is to conduct cost-shared R D for new high-risk, high-payoff industrial energy conservation technologies. Although this document contains references to individual manufacturers and their products, the opinions expressed on the products reported do not necessarily reflect the position of the Department of Energy.

  9. Chemical compositions of four barium stars

    CERN Document Server

    Liang, Y C; Chen, Y Q; Qiu, H M; Zhang, B

    2003-01-01

    Chemical compositions of four barium stars HD 26886, HD 27271, HD 50082 and HD 98839 are studied based on high resolution, high signal-to-noise Echelle spectra. Results show that all of them are disk stars. Their \\alpha and iron peak elements are similar to the solar abundances. The neutron-capture process elements are overabundant relative to the Solar. The heavy-element abundances of the strong Ba star HD 50082 are higher than those of other three mild Ba stars. Its mass is 1.32Msun (+0.28,-0.22Msun), and is consistent with the average mass of strong Ba stars (1.5Msun). For mild Ba star HD 27271 and HD 26886, the derived masses are 1.90Msun (+0.25,-0.20Msun) and 2.78Msun (+0.75,-0.78M_sun), respectively, which are consistent with the average mass of mild Ba stars. We also calculate the theoretical abundances of Ba stars by combining the AGB stars nucleosynthesis and wind accretion formation scenario of Ba binary systems. The comparisons between the observed abundance patterns of the sample stars with the th...

  10. Chemical Composition of Ceramic Tile Glazes

    Science.gov (United States)

    Anufrik, S. S.; Kurian, N. N.; Zhukova, I. I.; Znosko, K. F.; Belkov, M. V.

    2016-11-01

    We have carried out laser emission and x-ray fluorescence spectral analysis of glaze before and after its application to ceramic tile produced by Keramin JSC (Belarus). We have studied the internal microstructure of the ceramic samples. It was established that on the surface and within the bulk interior of all the samples, there are micropores of sizes ranging from a few micrometers to tens of micrometers and microcracks as long as several hundred micrometers. The presence of micropores on the surface of the ceramic tile leads to an increase in the water absorption level and a decrease in frost resistance. It was found that a decrease in the surface tension of ceramic tile coatings is promoted by substitution of sodium by potassium, silica by boric anhydride, magnesium and barium by calcium, CaO by sodium oxide, and SiO2 by chromium oxide. We carried out a comparative analysis of the chemical composition of glaze samples using S4 Pioneer and ElvaX x-ray fluorescence spectrometers and also an LIBS laser emission analyzer.

  11. Measurement of cosmic ray chemical composition at Mt. Chacaltaya

    Energy Technology Data Exchange (ETDEWEB)

    Ogio, S.; Kakimoto, F.; Harada, D.; Tokunou, H.; Burgoa, O.; Tsunesada, Y. [Institute of Technology, Dept. of Physics, Tokuo (Japan); Shirasaki, Y. [National Space Development Agency of Japan, Tsukuba (Japan); Gotoh, E.; Nakatani, H.; Shimoda, S.; Nishi, K.; Tajima, N.; Yamada, Y. [The Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kaneko, T. [Okayama University, Dept. of Physics, Oakayama (Japan); Matsubara, Y. [Nagoya University, Solar-Terrestrial Environment Laboratory, Nagoya, Aichi (Japan); Miranda, P.; Velarde, A. [Universidad Mayor de San Andres, Institute de Investigaciones Fisicas, La Paz (Bolivia); Mizumoto, T. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Yoshii, H.; Morizawa, A. [Ehime University, Dept. of Physics, Matsuyama, Ehime (Japan); Murakami, K. [Nagoya University of Foreign Studies, Nissin, Aichi (Japan); Toyoda, Y. [Fukui University of Technology, Faculty of General Education, Fukui (Japan)

    2001-10-01

    BASJE group has measured the chemical composition of primary cosmic rays with energies around the knee with several methods. These measurements show that the averaged mass number of cosmic ray particles increases with energy up to the knee. In order to measure the chemical composition in much wider energy range, it was started a new experiment at Mt. Chacaltaya in 2000.

  12. Chemical determination of human body density in vivo: relevance to hydrodensitometry.

    Science.gov (United States)

    Heymsfield, S B; Wang, J; Kehayias, J; Heshka, S; Lichtman, S; Pierson, R N

    1989-12-01

    A chemical approach to establishing human body density in vivo was developed by combining recently developed noninvasive methods. Four compartments were measured: protein (P; prompt-gamma neutron activation), water (A; 3H2O dilution), mineral (M; dual-photon absorptiometry and delayed-gamma neutron activation), and fat (F; dual-photon absorptiometry). By this model body weight is equal to P + A + M + F. This approach was applied to 13 healthy adults (8 females and 5 males). The four compartments accounted for greater than 97% actual body weight. Calculated density based upon composition agreed within 0.6 +/- 0.4% (mean +/- SD) with density (D) measured by hydrodensitometry [calculated D (g/cc) = 0.86 measured D +0.15; r = 0.94, p less than 0.001]. The average calculated lean (P + A + M) density of 1.096 +/- 0.007 g/cc agreed closely with three classic human cadaver studies (1.100 g/cc). This multicompartment approach provides a new opportunity to estimate human body density in vivo and to refine body composition methods based upon an assumed but inadequately validated constant lean density.

  13. Benchmarking Density Functionals for Chemical Bonds of Gold

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark...... against 51 experimental bond enthalpies of AuX systems and seven additional polyatomic and cationic molecules. Twelve density functionals were tested, covering meta functionals, hybrids with variable HF exchange, double-hybrid, dispersion-corrected, and nonhybrid GGA functionals. The defined benchmark...... bonds between gold and noble gases. Zero-point vibrational corrections are relatively small for Au-X bonds, ∼ 11-12 kJ/mol except for Au-H bonds. Dispersion typically provides ∼5 kJ/mol of the total bond enthalpy but grows with system size and is 10 kJ/mol for AuXe and AuKr. HF exchange and LYP...

  14. Compositional, physical and chemical modification of polylactide

    Directory of Open Access Journals (Sweden)

    M. Żenkiewicz

    2010-11-01

    Full Text Available Purpose: The purpose of this article was to review some of the modification methods applied to improve mechanical, barrier and/or surface properties of polylactide (PLA.Design/methodology/approach: The presented modification methods were classified into three groups due to the dominant role of compositional, physical or chemical factor effecting the most PLA properties.Findings: It was found that incorporation of small amounts of montmorillonite up to 5% leads to formation of a nanocomposite with enhanced tensile strength and improved barrier properties. Corona treatment of pure PLA and PLA contained MMT nanofiller causes a significant decrease in the water contact angle and does not essentially affect the diiodomethane contact angle. This treatment leads to an increase in surface free energy that is much more significant for pure PLA than for PLA containing MMT nanofiller. It was also found that with increasing number up to 1000 of laser pulses of energies 5 mJ/cm2 an increase in surface free energy was observed, while the next laser pulses caused decrease of this energy. The determination and comparison of the influence of 3 wt.% of trimethylopropane trimethacylate (TMPTA and 3 wt.% of trially isocyanurate (TAIC crosslinking agents on the thermomechanical properties of electron beam irradiated PLA was reported.Research limitations/implications: A number of various modification methods are widely reported in literature. In this article a review of only such modification methods is presented, which are in line with the newest trends in polymer industry and science.Practical implications: There are a number of PLA properties, which need to be improved to satisfy specific application conditions. For that reasons researches are leading to find suitable modification methods to improve selected properties of PLA.Originality/value: This article presents some of modification methods, which are in line with the newest trends in polymer industry and

  15. THE STUDY OF CHEMICAL COMPOSITION FOR ANIMAL FATS DURING STORAGE

    OpenAIRE

    Flavia Pop; Cornel Laslo

    2009-01-01

    In this article the chemical composition for 3 types of animal fats (pork fat, beef tallow and buffalo tallow), following the variation of saturated and unsaturated fatty acids proportion during freezing storage was studied. Determination of chemical composition of animal fats is important in establishing organoleptic and physico-chemical parameters, the variation of them in time, nature and proportion of fatty acids conferring specific characteristics to them. For pork fat was determined the...

  16. Simulation of cold atmospheric plasma component composition and particle densities in air

    Science.gov (United States)

    Kirsanov, Gennady; Chirtsov, Alexander; Kudryavtsev, Anatoliy

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was divided into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  17. Modeling reservoir density underflow and interflow from a chemical spill

    Science.gov (United States)

    Gu, R.; McCutcheon, S.C.; Wang, P.-F.

    1996-01-01

    An integral simulation model has been developed for understanding and simulating the process of a density current and the transport of spilled chemicals in a stratified reservoir. The model is capable of describing flow behavior and mixing mechanisms in different flow regimes (plunging flow, underflow, and interflow). It computes flow rate, velocity, flow thickness, mixing parameterized by entrainment and dilution, depths of plunging, separation and intrusion, and time of travel. The model was applied to the Shasta Reservoir in northern California during the July 1991 Sacramento River chemical spill. The simulations were used to assist in the emergency response, confirm remediation measures, and guide data collection. Spill data that were available after the emergency response are used to conduct a postaudit of the model results. Predicted flow parameters are presented and compared with observed interflow intrusion depth, travel time, and measured concentrations of spilled chemicals. In the reservoir, temperature difference between incoming river flow and ambient lake water played a dominant role during the processes of flow plunging, separation, and intrusion. With the integral approach, the gross flow behavior can be adequately described and information useful in the analysis of contaminated flow in a reservoir after a spill is provided.

  18. Propolis chemical composition and honeybee resistance against Varroa destructor.

    Science.gov (United States)

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  19. Composição bromatológica de silagens de híbridos de sorgo cultivados em diferentes densidades de plantas Chemical composition of silage sorghum hybrids grown at different densities

    Directory of Open Access Journals (Sweden)

    Poliana Mendes Avelino

    2011-03-01

    chemical composition of the silages.

  20. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari

    2013-01-01

    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  1. Physico-Chemical, Functional and Rheological Characterization of Biodegradable Pellets and Composite Sheets

    OpenAIRE

    Jan Kulsum; Jan Shumaila; Riar CS; Saxena DC

    2016-01-01

    Deoiled rice bran, paddy husk, cashew nut shell liquid and glycerol were extruded into pellets and further pressed into composites. Processing and plasticizer type had significant effect on physico-chemical, functional, rheological and morphological properties of pellets and composites. Specific mechanical energy of the pellets containing cashew nut shell liquid as plasticizer was higher than those containing glycerol. The maximum hardness and bulk density were obtained for pellets prepared f...

  2. Reducing chemical vapour infiltration time for ceramic matrix composites.

    Science.gov (United States)

    Timms, L. A.; Westby, W.; Prentice, C.; Jaglin, D.; Shatwell, R. A.; Binner, J. G. P.

    2001-02-01

    Conventional routes to producing ceramic matrix composites (CMCs) require the use of high temperatures to sinter the individual ceramic particles of the matrix together. Sintering temperatures are typically much higher than the upper temperature limits of the fibres. This paper details preliminary work carried out on producing a CMC via chemical vapour infiltration (CVI), a process that involves lower processing temperatures, thus avoiding fibre degradation. The CVI process has been modified and supplemented in an attempt to reduce the CVI process time and to lower the cost of this typically expensive process. To this end microwave-enhanced CVI (MECVI) has been chosen, along with two alternative pre-infiltration steps: electrophoretic infiltration and vacuum bagging. The system under investigation is based on silicon carbide fibres within a silicon carbide matrix (SiCf/SiC). The results demonstrate that both approaches result in an enhanced initial density and a consequent significant reduction in the time required for the MECVI processing step. Dual energy X-ray absorptiometry was used as a non-destructive, density evaluation technique. Initial results indicate that the presence of the SiC powder in the pre-form changes the deposition profile during the MECVI process.

  3. Physio-chemical, mineral composition and antioxidant properties of ...

    African Journals Online (AJOL)

    Physio-chemical, mineral composition and antioxidant properties of Roselle ... The roselle extract has a unique red colour, good flavour, low sugar and high acidic ... human body from several diseases attributed to the reactions of free radicals.

  4. Chemical composition and antioxidant activity of essential oil ...

    African Journals Online (AJOL)

    LACPREENE

    2012-08-12

    Aug 12, 2012 ... The chemical composition of C. ladanifer essential oil was characterized by high ... Analysis of essential oils was carried out by GC–MS using a .... with literature shows important qualitative and quantita- tive differences in ...

  5. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    patrick

    2015-03-25

    Mar 25, 2015 ... chemical composition of the species of Algerian citrus. (Baaliouamer, 1987). ... Osbeck), Bigaradier (Citrus aurantium), lemon (Citrus limonum) and ..... The fungi anti capacities of essential oils of the Algerian citrus proved to ...

  6. Chemical, electrochemical, and structural stability of low-density self-assembled monolayers.

    Science.gov (United States)

    Peng, David K; Lahann, Joerg

    2007-09-25

    The stability of low-density self-assembled monolayers of mercaptohexadecanoic acid on gold is studied under a variety of storage conditions--air at room temperature, argon at room temperature and 4 degrees C, and ethanol at room temperature. The structural monotony of the low-density monolayers was assessed by monitoring the alkyl chains of LDSAMs by grazing-angle Fourier transform infrared spectroscopy as a function of time. Independently of the storage conditions, both symmetric and asymmetric methylene stretches at 2923 and 2852 cm-1 decreased after 4 weeks to 2919 and 2849 cm-1, respectively. These data suggest an increased ordering of the alkyl chains that is distinctly different from that of conventional high-density monolayers of mercaptohexadecanoic acid included as a reference in this study. As a further extension of this observation, the electrochemical barrier properties of the low-density monolayers were assessed by electrochemical impedance spectroscopy and did not change significantly for any of the storage conditions over a period of 4 weeks. Moreover, X-ray photoelectron spectroscopy was used to assess the chemical changes in the low-density monolayers over time. The chemical composition was essentially unaltered for all storage conditions. Specifically, oxidation of the sulfur headgroup, a common cause of monolayer degradation, was excluded for all test conditions on the basis of XPS analysis. This study confirms excellent storage stability for low-density monolayers under commonly used storage conditions and bridges an important technological gap between these systems and conventional high-density systems.

  7. Chemical composition of upper crust in eastern China

    Institute of Scientific and Technical Information of China (English)

    鄢明才; 迟清华; 顾铁新; 王春书

    1997-01-01

    In an area of 3. 3 ×106 km" within eastern China, 28 253 rock samples were collected systematically and combined into 2 718 composite samples which were analyzed by 15 reliable methods using national preliminary certified reference materials (CRMs) for data quality monitoring. The average chemical compositions of the exposed crust, the sedimentary cover and the exposed basement as well as the upper crust for 76 chemical elements in eastern China are given.

  8. Honey: Chemical composition, stability and authenticity.

    Science.gov (United States)

    da Silva, Priscila Missio; Gauche, Cony; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Fett, Roseane

    2016-04-01

    The aim of this review is to describe the chemical characteristics of compounds present in honey, their stability when heated or stored for long periods of time and the parameters of identity and quality. Therefore, the chemical characteristics of these compounds were examined, such as sugars, proteins, amino acids, enzymes, organic acids, vitamins, minerals, phenolic and volatile compounds present in honey. The stability of these compounds in relation to the chemical reactions that occur by heating or prolonged storage were also discussed, with increased understanding of the behavior regarding the common processing of honey that may compromise its quality. In addition, the identity and quality standards were described, such as sugars, moisture, acidity, ash and electrical conductivity, color, 5-HMF and diastase activity, along with the minimum and maximum limits established by the Codex Alimentarius.

  9. Chemical composition of the early universe

    NARCIS (Netherlands)

    Harwit, M; Spaans, M

    2003-01-01

    A prediction of standard inflationary cosmology is that the elemental composition of the medium out of which the earliest stars and galaxies condensed consisted primarily of hydrogen and helium (4)He, with small admixtures of deuterium, lithium (7)Li, and (3)He. The most redshifted quasars,

  10. The chemical composition of the Galileian satellites

    CERN Document Server

    Celebonovic, V

    1998-01-01

    Using the semiclassical theory of dense matter proposed by P.Savic and R.Kasanin,the mean molecular masses of the Galilean satellites of Jupiter are determined.The calculated values are fitted by plausible combinations of chemical elements,and the results are in good agreement with the observations by "Galileo".Possible cosmogonical explanations are briefly discussed.

  11. Composição bromatológica de silagens de milho produzidas com diferentes densidades de compactação Chemical composition of maize silages with different packing densities

    Directory of Open Access Journals (Sweden)

    João Pedro Velho

    2007-10-01

    Full Text Available O experimento foi conduzido em delineamento completamente casualizado com o objetivo de avaliar o efeito da densidade de compactação, 500 kg (médio e 600 kg (alto de matéria verde por metro cúbico de massa ensilada, na qualidade final da silagem em relação ao material original. A ensilagem de milho safrinha foi realizada no dia 18/05/2004 em minissilos, com quatro repetições por grau de compactação, quando os grãos de milho se encontravam no estádio ½ leitoso ½ farináceo. As densidades de compactação afetaram significativamente os teores de açúcares solúveis (1,60 ´ 2,15% da MS, matéria orgânica do resíduo insolúvel em etanol a 80% (76,02 ´ 71,53% da MS, carboidratos não-estruturais (39,21 ´ 41,70% dos carboidratos totais, fibra em detergente neutro corrigida para cinzas e proteína (52,57 ´ 50,37% da MS, lignina em detergente ácido (2,74 ´ 2,57% da MS e nitrogênio amoniacal (4,35 ´ 3,84% do nitrogênio total. A maior densidade de compactação resultou em melhor conservação dos glicídios solúveis, em menor alteração dos carboidratos estruturais e em menor proteólise na silagem de milho.The experiment in a complete randomized design aimed to test the effect of two packing densities, 500 kg (medium and 600 kg (high of silage mass per cubic meter, on silage quality as compared to the original fresh material. Silages were prepared on May 18th, 2004 from a late season harvest of a maize crop at the half milky half dough kernel stage. Chopped materials with 1.2 cm theoretical particle size were packed manually in 30 liters mini-silos, in four replicates for each packing density, immediately after harvest. The different packing densities affected significantly the concentration of soluble sugars (1.60 vs. 2.15% of DM, 80% ethanol insoluble organic matter (76.02 vs. 71.53% of DM, non-structural carbohydrates (39.21 vs. 41.70% of total carbohydrates, neutral detergent fiber corrected for ash and protein (52.57 vs

  12. Reinforced polypropylene composites: effects of chemical compositions and particle size.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2010-04-01

    In this work, the effects of wood species, particle sizes and hot-water treatment on some physical and mechanical properties of wood-plastic composites were studied. Composites of thermoplastic reinforced with oak (Quercus castaneifolia) and pine (Pinus eldarica) wood were prepared. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as the polymer matrix and coupling agent, respectively. The results showed that pine fiber had significant effect on the mechanical properties considered in this study. This effect is explained by the higher fiber length and aspect ratio of pine compared to the oak fiber. The hot-water treated (extractive-free) samples, in both wood species, improved the tensile, flexural and impact properties, but increased the water absorption for 24h. This work clearly showed that lignocellulosic materials in both forms of fiber and flour could be effectively used as reinforcing elements in PP matrix. Furthermore, extractives have marked effects on the mechanical and physical properties.

  13. Geometrical Description in Binary Composites and Spectral Density Representation

    Directory of Open Access Journals (Sweden)

    Enis Tuncer

    2010-01-01

    Full Text Available In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ = (εe − εm(εi − εm−1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell

  14. Chemical modification of flax reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available ) and ∆Ea is the activation energy for the relaxation. The slope of Arrhenius plot obtained by plotting log f versus 1/T will give the activation energy for that process. Table 3 presents the activation energy of the composites and it can be observed... at the temperature where the loss modulus is maximum indicating a relaxation phenomenon. The increase in loss modulus is attributed to the increase in energy absorption caused by the addition of fibres. 5.4.1.3 Mechanical damping factor (tan δ) Page 9 of 26...

  15. Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly

    Science.gov (United States)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2015-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program

  16. Porosity prediction of calcium phosphate cements based on chemical composition.

    Science.gov (United States)

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan

    2015-07-01

    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

  17. Chemical composition of the circumstellar disk around AB Aurigae

    Science.gov (United States)

    Pacheco-Vázquez, S.; Fuente, A.; Agúndez, M.; Pinte, C.; Alonso-Albi, T.; Neri, R.; Cernicharo, J.; Goicoechea, J. R.; Berné, O.; Wiesenfeld, L.; Bachiller, R.; Lefloch, B.

    2015-06-01

    Aims: Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is paramount for understanding the chemical evolution of the gas in warm disks. Methods: We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (a chemical survey of Sun-like star-forming regions). These data were complemented with interferometric observations of the HCO+ 1→0 and C17O 1→0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results: Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN, and CS, were detected. In addition, we detected the SO 54→33 and 56→45 lines, confirming the previously tentative detection. Compared to other T Tauri and Herbig Ae disks, AB Aur presents low HCN 3→2/HCO+ 3→2 and CN 2→1/HCN 3→2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far, and its detection is consistent with interpretation of this disk being younger than those associated with T Tauri stars. Conclusions: We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 M⊙, Rin = 110 AU, Rout = 550 AU, a surface density radial index of 1.5, and an inclination of 27°. The intensities and line profiles were reproduced within a factor of ˜2 for most lines. This agreement is reasonable considering the simplicity of our model that neglects any structure within the disk. However, the HCN 3→2 and CN 2→1 line intensities were predicted to be more intense by a factor of >10. We discuss several scenarios to explain this

  18. Cometary coma chemical composition (C4) mission. [Abstract only

    Science.gov (United States)

    Carle, G. C.; Clark, B. C.; Niemann, H. B.; Alexander, M.; Knocke, P. C.; O'Hara, B. J.

    1994-01-01

    Cometary missions are of enormous fundamental importance for many different space science disciplines, including exobiology. Comets are presumed relics of the earliest, most primitive material in the solar nebula and are related to the planetesimals. They undoubtedly provided a general enrichment of volatiles to the inner solar system (contributing to atmospheres and oceans) and may have been key to the origin of life. A Discovery class, comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, was selected for further study by NASA earlier this year. The C4 Mission is a highly focused and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission, concentrating exclusively on measurements which will lead to an understanding of the chemical composition and make-up of the cometary nucleus. The scientific goals of the Cometary Coma Chemical Composition (C4) Mission are to rendezvous with a short-period comet and (1) to determine the elemental, chemical, and isotopic composition of the nucleus and (2) to characterize the chemical and isotopic nature of its atmosphere. Further, it is a goal to obtain preliminary data on the development of the coma (dust and gas composition) as a function of time and orbital position.

  19. Chemical composition of Hanford Tank SY-102

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

  20. Major element chemical compositions of chondrules in unequilibrated chondrites

    Science.gov (United States)

    Ikeda, Y.

    1984-01-01

    The chemical compositions (except for metals and sulfides in chondrules) of more than 500 chondrules from unequilibrated E, H, L, LL, and C chondrites were measured using a broad beam of an electron-probe microanalyzer. The compositions of chondrules can be represented by various mixtures of normative compositions of olivine, low-Ca pyroxene, plagioclase, and high-Ca pyroxene with minor amounts of spinel, feldspathoid, SiO2-minerals, etc., indicating that the chondrule precursor materials consisted of aggregates of these minerals. The Al, Na, and K contents of most chondrules reflect the compositions of the ternary feldspar (An-Ab-Kf) of the chondrule precursor materials, and chemical types of chondrules (KF, SP, IP, and CP) are defined on the basis of the atomic proportion of Al, Na, and K.

  1. Sensory properties and chemical composition of Sharri cheese from Kosovo

    Directory of Open Access Journals (Sweden)

    Agim Rysha

    2014-11-01

    Full Text Available Food sensory properties, analyses and chemical composition are very important because they provide information about product quality and end-user acceptance or preferences. An assessment of sensory characteristics and chemical composition of mountain sheep and cow’s-milk cheese from shepherd’s huts and industrial manufacturers in Kosovo was carried out. Consumer-oriented tests using a 9 point hedonic scale were conducted in order to determine Sharri cheese acceptability. Chemical parameters (fat content, fat content of dry matter, acidity, protein, dry matter, mineral and water content and sodium chloride content of 45-day brine cheese samples were also analyzed. Chemical and sensory assessment demonstrated large property differences. A recommendation stems from the results showing that the standardization of both artisanal and industrial production of Sharri cheese is required.

  2. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE.

  3. Fuel options from microalgae with representative chemical compositions

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, D. A.

    1984-07-01

    Representative species of microalgae are examined with respect to their reported chemical compositions. Each species is analyzed under a variety of culture conditions, with the objective being to characterize an optimum mixture of fuel products (e.g., methane, ethanol, methylester) which should be produced by the particular species. Historically the emphasis has been on the entire algal cell mass. Using the reported chemical composition for the representative species under specific sets of growth conditions, some conclusions can be drawn about the preferred fuel product conversion routes that could be employed. 10 references, 7 figures, 12 tables.

  4. Factors affecting the microbial and chemical composition of silage. IV. Effect of wilting on maize silage.

    Science.gov (United States)

    Mahmoud, S A; Abdel-Hafez, A; Zaki, M M; Saleh, E A

    1979-01-01

    The effect of wilting on the microbial and chemical composition of ensiled maize plants was studied. Wilting stimulated high densities of lactic acid bacteria, with the decrease in counts of undesirable flora, i.e., yeasts, moulds, proteolytic and saccharolytic anaerobes, causing spoilage of silage. Moreover, wilting decreased the losses of dry matter, total acidity, and butyric acid content of silage. Accordingly, wilting proved to be a favourable treatment for the production of good quality silage from maize plants.

  5. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  6. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  7. An investigation into the chemical composition of alternative invertebrate prey

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Dierenfeld, E.S.

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches (Grompha

  8. Composition and Thermodynamic Properties of Air in Chemical Equilibrium

    Science.gov (United States)

    Moeckel, W E; Weston, Kenneth C

    1958-01-01

    Charts have been prepared relating the thermodynamic properties of air in chemical equilibrium for temperatures to 15,000 degrees k and for pressures 10(-5) to 10 (plus 4) atmospheres. Also included are charts showing the composition of air, the isentropic exponent, and the speed of sound. These charts are based on thermodynamic data calculated by the National Bureau of Standards.

  9. Relationship between bacterial density and chemical composition of ...

    African Journals Online (AJOL)

    TUOYO

    ml as the sewage moved through the oxidation pond into the receiving stream. A similar decrease ... On the other hand, both the silica and dissolved oxygen content of the sewage gradually ... inorganic materials such as carbon dioxide, water,.

  10. Chemically produced tungsten-praseodymium oxide composite sintered by spark plasma sintering

    Science.gov (United States)

    Ding, Xiao-Yu; Luo, Lai-Ma; Lu, Ze-Long; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2014-11-01

    Pr2O3 doped W composite were synthesized by a novel wet chemical method and spark plasma sintering. The grain size, relative density and the Vicker hardness HV0.2 of Pr2O3/W samples were 4 μm, 98.3% and 377.2, respectively. The tensile strength values of Pr2O3/W were higher than those of pure W. As the temperature rises from 25 °C to 800 °C, the conductivity of pure W and W-1 wt% Pr2O3 composites decreased with the same trend, was above 150 W/m K.

  11. Diffusion in plasma: the Hall effect, compositional waves, and chemical spots

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the electric current and the Hall effect, and argue that such diffusion can form inhomogeneities of the chemical composition in plasma. The considered mechanism can be responsible for a formation of element spots in laboratory and astrophysical plasmas. This current-driven diffusion can be accompanied by propagation of a particular type waves in which the impurity number density oscillate alone. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure,

  12. Interpreting chemical compositions of small scale basaltic systems: A review

    Science.gov (United States)

    McGee, Lucy E.; Smith, Ian E. M.

    2016-10-01

    Small scale basaltic magmatic systems occur in all of the major tectonic environments of planet Earth and are characteristically expressed at the Earth's surface as fields of small monogenetic cones. The chemical compositions of the materials that make up these cones reflect processes of magma generation and differentiation that occur in their plumbing system. The volumes of magmas involved are very small and significantly their compositional ranges reveal remarkably complex processes which are overwhelmed or homogenized in larger scale systems. Commonly, compositions are basaltic, alkalic and enriched in light rare earth elements and large ion lithophile elements, although the spectrum extends from highly enriched nephelinites to subalkalic and tholeiitic basalts. Isotopic analyses of rocks from volcanic fields almost always display compositions which can only be explained by the interaction of two or more mantle sources. Ultimately their basaltic magmas originate by small scale melting of mantle sources. Compositional variety is testament to melting processes at different depths, a range of melting proportions, a heterogeneous source and fractionation, magma mixing and assimilation within the plumbing system that brings magmas to the surface. The fact that such a variety of compositions is preserved in a single field shows that isolation of individual melting events and their ascent is an important and possibly defining feature of monogenetic volcanism, as well as the window their chemical behavior provides into the complex process of melt generation and extraction in the Earth's upper mantle.

  13. Achieving tunable sensitivity in composite high-energy density materials

    Science.gov (United States)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Rashkeev, Sergey

    2017-01-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural point defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  14. Physico-Chemical, Functional and Rheological Characterization of Biodegradable Pellets and Composite Sheets

    Directory of Open Access Journals (Sweden)

    Jan Kulsum

    2016-01-01

    Full Text Available Deoiled rice bran, paddy husk, cashew nut shell liquid and glycerol were extruded into pellets and further pressed into composites. Processing and plasticizer type had significant effect on physico-chemical, functional, rheological and morphological properties of pellets and composites. Specific mechanical energy of the pellets containing cashew nut shell liquid as plasticizer was higher than those containing glycerol. The maximum hardness and bulk density were obtained for pellets prepared from cashew nut shell liquid. Water binding capacity and water solubility index of both pellets and composites were highest for samples containing glycerol as plasticizer. A significant change in functional properties during processing was observed among raw materials, pellets and the final product (composite sheets.

  15. Surface chemical composition analysis of heat-treated bamboo

    Science.gov (United States)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  16. Composition and placement process for oil field chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, L.A.; Yost, M.E.

    1991-01-22

    This patent describes a process for the continuous release of an oil field chemical within a subterranean hydrocarbon bearing formation or wellbore penetrating such formation. It comprises placing the oil field chemical in a polymeric microcapsule; dispersing such polymeric microcapsules; introducing the wellbore fluid containing the microcapsules into a well bore or subterranean formation through a wellbore; then allowing water and temperature at formation conditions to degrade; continuously releasing the chemical from the degraded microcapsules. This patent describes a composition comprising an oil field chemical incorporated in a polymeric microcapsule comprising the condensation product of hydroxyacetic acid monomer or hydroxyacetic acid co-condensed with up to 15 percent by weight of other hydroxy-, carboxylic acid-, or hydroxycarboxylic acid- containing moieties. The product has a number average molecular weight of from about 200 to about 4000.

  17. Date fruit: chemical composition, nutritional and medicinal values, products.

    Science.gov (United States)

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed.

  18. Features of a chemical composition of dry leaves of Steviavebaudiana

    Directory of Open Access Journals (Sweden)

    Irina Borisovna Krasina

    2016-05-01

    Full Text Available This work is dedicated to the study of a chemical composition of dry leaves of Stevia. Dry leaves of Stevia contain diterpene glycosides that contribute to their sweet taste, which makes possible the use of Stevia as a sugar substitute in a production of flour confectionery products. The evaluation of amino acid composition of dried leaves of Stevia showed that their composition includes 7 essential amino acids, among them the limiting amino acid is valine.During experimental researches it was established that they are containing in a sufficient quantity water-soluble and fat-soluble vitamins in their composition. We have studied the effect of processing conditions on the degree of milling of dry leaves of Stevia. It was revealed that the pressure of 5 MPa in the contact zone of the working elements do not guarantee a product with a desired degree of milling. Milling of dried leaves of Stevia at a pressure equal to 10 MPa, allows achieving a high degree of size reduction with a simultaneous formation of the main physical and chemical characteristics of amilledproduct. It was established that granulometric composition of dry leaves of Stevia, obtained by milling in a rotor-roller disintegrator, presents the highest content of particles with a size from 5 to 30 μm, ensuring high consumer properties of the obtained biologically active additives (BAA.

  19. Surface chemical composition analysis of heat-treated bamboo

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fan-dan, E-mail: fandan_meng@163.com [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Yu, Yang-lun, E-mail: yuyanglun@caf.ac.cn [Research Institute of Wood Industry, Chinese Academy of Forestry, No 1 Dongxiaofu, Haidian District, Beijing 100091 (China); Zhang, Ya-mei, E-mail: zhangyamei@caf.ac.cn [Research Institute of Wood Industry, Chinese Academy of Forestry, No 1 Dongxiaofu, Haidian District, Beijing 100091 (China); Yu, Wen-ji, E-mail: yuwenji@caf.ac.cn [Research Institute of Wood Industry, Chinese Academy of Forestry, No 1 Dongxiaofu, Haidian District, Beijing 100091 (China); Gao, Jian-min, E-mail: gaojm@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2016-05-15

    Highlights: • Investigate the detailed chemical components contents change of bamboo due to heating. • Chemical analysis of bamboo main components during heating. • Identify the connection between the oxygen to carbon atomic ratio changes and chemical degradation. - Abstract: In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  20. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  1. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    The chemical composition of Danish household waste was determined by two approaches: a direct method where the chemical composition (61 substances) of 48 material fractions was determined after hand sorting of about 20 tonnes of waste collected from 2200 households; and an indirect method where...... batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...... method, because of the larger quantities included and the more homogenous material to sample from. Differences between the direct and the direct methods led to corrections in the of heavy metal concentration of a few fractions. The majority of the energy content of the waste originates from organic waste...

  2. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Melinda NAGY

    2017-05-01

    Full Text Available Over the last decades, the consumption of mushrooms has significantly increased due to the scientific evidence of their ability to help the organism in the combat and prevention of several diseases (Kalac, 2009. Fruiting bodies of mushrooms are consumed as a delicacy for their texture and flavour, but also for their nutritional properties that makes them even more attractable (Heleno S. 2015. In this paper data were collected from several scientific studies with the aim to characterize the chemical composition and content of bioactive compounds of various mushrooms species: Agaricus bisporus, Boletus edulis, Cantharellus cibarius, Pleurotus ostreatus, Lactarius piperatus. The chemical composition of 5 wild edible studied mushrooms, including moisture, ash, total carbohydrates, total sugars, crude fat, crude protein and energy were determined according to AOAC procedures.

  3. Parboiled rice: chemical composition and the occurrence of mycotoxins

    Directory of Open Access Journals (Sweden)

    Giniani Carla Dors

    2011-03-01

    Full Text Available The objective of this work was to evaluate the incidence of aflatoxin B1 (AFB B1, deoxynivalenol (DON, ochratoxin A (OTA, and zearalenone (ZEA in parboiled rice with respect to its chemical composition. Eight lots from five different brands of parboiled rice were collected in four samplings, at different seasons, until the amount of 32 lots. It was observed that: DON was present in 22% of the samples (from 180 to 400 ppb; ZEA in 19% (from 317 to 396 ppb; OTA in 12.5% (from 13 and 26 ppb; and AFB B1 in 9% (from 11 to 74 ppb. The results of the chemical composition were not different from those previously mentioned in the literature concerning parboiled rice. The ash and phenol levels in the contaminated parboiled rice samples suggested that those compounds had a relation to the occurrence of OTA, DON and ZEA mycotoxins.

  4. Chemical Composition of Essential Oil from Marrubium Vulgare L. Leaves

    OpenAIRE

    Bayir, Burcu; Gündüz, Hatice; Usta, Tuba; Şahin, Esma; Özdemir, Zeynep; Kayır, Ömer; Sen, Özkan; Akşit, Hüseyin; Elmastaş, Mahfuz; Erenler, Ramazan

    2014-01-01

    – The essential oils are significant for pharmaceutical, food and cosmetic industries. Marrubium vulgare L. has been used as a traditional medicine to treat the various illnesses. The chemical composition of the essential oil from leaves of Marrubium vulgare L.was obtained by steam distillation using the Clevenger apparatus. The oil was analyzed by gas chromatography and mass spectrometry (GC-MS). The main constituent of the oil was α-pinene (28.85%)

  5. Seasonal variation in the chemical composition of two tropical seaweeds.

    Science.gov (United States)

    Marinho-Soriano, E; Fonseca, P C; Carneiro, M A A; Moreira, W S C

    2006-12-01

    The chemical composition of red seaweed Gracilaria cervicornis and brown seaweed Sargassum vulgare from Brazil was investigated. In this study, the relationship between the nutritive components of each species and the environment was established. Protein content varied from 23.05+/-3.04% to 15.97+/-3.04%. The highest value was found in G. cervicornis. The protein levels were positively correlated with nitrogen content and negatively with water temperature and salinity. Carbohydrate contents of both species varied significantly (prelated to environment.

  6. Chemical composition and biological activity of the plum seed extract

    OpenAIRE

    Savić, Ivan M.; Nikolić, Vesna D.; Savić-Gajić, Ivana M.; Kundaković, Tatjana D.; Stanojković, Tatjana P.; Najman, Stevo J.; id_orcid 0000-0002-2411-9802

    2016-01-01

    The aim of this paper was to estimate the biological activity of the plum seed extract and to define the chemical composition by using the ESI-MS method. During the investigation of the antioxidant activity, the extract showed a better ability to inhibit DPPH radicals compared with amygdalin standard. The results of the antimicrobial study indicate that the extract has a greater effect on Gram-negative bacteria compared with amygdalin. Gram-positive bacteria and fungi remained resistant in bo...

  7. The chemical composition at a galactocentric distance of 13 KPC

    Science.gov (United States)

    Rolleston, W. R. J.; Dufton, P. L.; Fitzsimmons, A.

    1994-04-01

    High-resolution observations of two very sharp-lined, main-sequence B-type stars, associated with the H II region S 285, have been obtained using the ISIS spectrograph on the William Herschel Telescope. The spectroscopic data have been analysed using local thermodynamic equilibrium (LTE) model-atmosphere techniques to derive the stellar atmospheric parameters, chemical compositions and a mean distance of 4.3 kpc. As the lifetimes for these stars were calculated to be less than 6 Myrs, their photospheric abundances should reflect that of their natal interstellar material. Individual element abundances deduced for both stars were generally in excellent agreement (differing on average by less than 0.1 dex), although there is some evidence to suggest that the stars formed from material which had different nitrogen abundances. Both stars appear to have chemical compositions similar to that found in the solar neighborhood, which is consistent with a zero abundance gradient over these galactocentric distances. The chemical compositions of the stars associated with S 285 have also been compared with three other clusters at similar galactocentric distances (Bochum 1, NGC 1893 and Dolidze 25). From a differential analysis, Dolidze 25 appears to have a mean metal deficiency of approximately 0.7 dex, with oxygen being less underabundant, while the other two clusters have similar abundances to S 285. We conclude that these results are inconsistent with the concept of a linear galactic abundance gradient, that the chemical composition is not unique and that there are significant abundance variations over distance scales of 1 kpc at these large galactocentric distances.

  8. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  9. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  10. Interfacial studies of chemical-vapor-infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.J. (United Technologies Research Center, East Hartford, CT (USA))

    1990-06-15

    The objective of this program was to investigate the fiber-matrix interfacial chemistry in chemical-vapor-infiltrated SiC matrix composites utilizing NICALON SiC and Nextel 400 mullite fibers and how this interface influences composite properties such as strength, toughness and environmental stability. The SiC matrix was deposited using three different reactants: methyldichlorosilane, methyltrichlorosilane and dimethyldichlorosilane. It was found that by varying the reactant gas flow rates, the ratio of carrier gas to reactant gas, the type of carrier gas (hydrogen or argon), the flushing gas used in the reactor prior to deposition (hydrogen or argon) or the type of silane reactant gas used, the composition of the deposited SiC could be varied from very silicon rich (75 at.%) to carbon rich (60%) to almost pure carbon. Stoichiometric SiC was found to bond very strongly to both NICALON and Nextel fibers, resulting in a weak and brittle composite. A thin carbon interfacial layer deposited either deliberately by the decomposition of methane or inadvertently by the introduction of argon into the reactor prior to silane flow resulted in a weakly bonded fiber-matrix interface and strong and tough composites. However, composites with this type of interface were not oxidatively stable. Preliminary results point ot the use of a carbon-rich SiC (mixture of carbon plus SiC) interfacial zone to achieve a relatively weak, crack-deflecting fiber-matrix bond but also exhibiting oxidative stability. (orig.).

  11. Chemical composition of the clays as indicator raw material sources

    Directory of Open Access Journals (Sweden)

    Khramchenkova Rezida Kh

    2014-06-01

    Full Text Available The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high calcium content corresponds to the addition of river shells, the high content of silicon results from sand addition. A more interesting picture has been revealed in the course of studies of the so-called “trace elements” (microelements. Nine groups of ceramics with different elemental set have been distinguished. The first two groups consist of imported ceramics; other groups have demonstrated a rather pronounced elemental composition. The most notable variations are observed in chromium, vanadium and nickel content. Similar microelement composition variety has been observed in clays from deposits of different localization, while the concentration of the mentioned elements in a variety of clays also differs considerably. Therefore, marker elements typical of different clays have been identified. A comparative analysis of the data obtained for clay raw materials and ceramics has been conducted. The results demonstrate the potential of studying the elemental composition in order to determine the localization of the raw material sources for ceramic production.

  12. "Prospecting Asteroids: Indirect technique to estimate overall density and inner composition"

    Science.gov (United States)

    Such, Pamela

    2016-07-01

    Spectroscopic studies of asteroids make possible to obtain some information on their composition from the surface but say little about the innermost material, porosity and density of the object. In addition, spectroscopic observations are affected by the effects of "space weathering" produced by the bombardment of charged particles for certain materials that change their chemical structure, albedo and other physical properties, partly altering their chances of identification. Data such as the mass, size and density of the asteroids are essential at the time to propose space missions in order to determine the best candidates for space exploration and is of great importance to determine a priori any of them remotely from Earth. From many years ago its determined masses of largest asteroids studying the gravitational effects they have on smaller asteroids when they approach them (see Davis and Bender, 1977; Schubart and Matson, 1979; School et al 1987; Hoffman, 1989b, among others), but estimates of the masses of the smallest objects is limited to the effects that occur in extreme close encounters to other asteroids of similar size. This paper presents the results of a search for approaches of pair of asteroids that approximate distances less than 0.0004 UA (50,000 km) of each other in order to study their masses through the astrometric method and to estimate in a future their densities and internal composition. References Davis, D. R., and D. F. Bender. 1977. Asteroid mass determinations: search for futher encounter opportunities. Bull. Am. Astron. Soc. 9, 502-503. Hoffman, M. 1989b. Asteroid mass determination: Present situation and perspectives. In asteroids II (R. P. Binzel, T. Gehreis, and M. S. Matthews, Eds.), pp 228-239. Univ. Arizona Press, Tucson. School, H. L. D. Schmadel and S. Roser 1987. The mass of the asteroid (10) Hygiea derived from observations of (829) Academia. Astron. Astrophys. 179, 311-316. Schubart, J. And D. L. Matson 1979. Masses and

  13. On the chemical composition of Titan's dry lakebed evaporites

    CERN Document Server

    Cordier, Daniel; Ferreira, Abel

    2013-01-01

    Titan, the main satellite of Saturn, has an active cycle of methane in its troposphere. Among other evidence for a mechanism of evaporation at work on the ground, dry lakebeds have been discovered. Recent Cassini infrared observations of these empty lakes have revealed a surface composition poor in water ice compared to that of the surrounding terrains --- suggesting the existence of organic evaporites deposits. The chemical composition of these possible evaporites is unknown. In this paper, we study evaporite composition using a model that treats both organic solids dissolution and solvent evaporation. Our results suggest the possibility of large abundances of butane and acetylene in the lake evaporites. However, due to uncertainties of the employed theory, these determinations have to be confirmed by laboratory experiments.

  14. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Directory of Open Access Journals (Sweden)

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  15. Preliminary study of chemical compositional data from Amazon ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rosimeiritoy@yahoo.com.br; Neves, Eduardo G. [Museu de Arqueologia e Etnolgia, Sao Paulo, SP (Brazil)]. E-mail: egneves@usp.br; Oliveira, Paulo M.S. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Inst. de Matematica e Estatistica]. E-mail: poliver@usp.br

    2005-07-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  16. Peculiarities of chemical composition of sainfoin seeds powder

    Directory of Open Access Journals (Sweden)

    Natalia Aleksandrovna Tarasenko

    2015-09-01

    Full Text Available This paper is devoted to studying chemical composition of the powder of the seeds of non-traditional legume, sainfoin. The experimental studies showed that crushed seeds of sainfoin make a flowing fine powder of light brown color with a pleasant unpronounced specific smell with floral notes. The taste is grassy with the after-taste typical for legumes. The chemical composition of sainfoin seeds is dominated by proteins and fiber, and fat content does not exceed 8%. The total content of amino-acids is 26.94/100 g of the product, with the share of indispensable ones being 37.85%. The limiting amino acid is tryptophan (48.0 %. By the composition of essential amino acids, proteins of sainfoin seeds are slightly inferior to the proteins of soybean seeds, but are better than the proteins of peanut seeds. The composition of fatty acid of the lipid complex of sainfoin seeds is dominated by (over 40% of the total linolenic ω-3 acid with sufficiently low (less than 20% of the total content of linoleic ω-6 acid. The lipid composition of sainfoin seeds, along with triacylglycerols, contains about 40% of related lipids, which are dominated by sterols, aliphatic alcohols, phospholipids and tocopherols. All this makes the lipid complex of sainfoin seed a promising means of adjusting fatty acids composition in food products of functional and specialized purpose, dietary supplements, and a valuable raw material for creating pharmaceutical substances and preparations. Adding sainfoin seeds powder into the nutritive medium has no inhibitory effect on development of the tested organism. At the same time, 58% of the organism's physiological need for protein is satifsied, as compared to caseine.

  17. Triacylglycerols Composition and Volatile Compounds of Virgin Olive Oil from Chemlali Cultivar: Comparison among Different Planting Densities

    Science.gov (United States)

    Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar

    2012-01-01

    The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139

  18. Triacylglycerols Composition and Volatile Compounds of Virgin Olive Oil from Chemlali Cultivar: Comparison among Different Planting Densities

    Directory of Open Access Journals (Sweden)

    Mokhtar Guerfel

    2012-01-01

    Full Text Available The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali grown in four planting densities (156, 100, 69, and 51 trees ha−1. Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270 all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E-2-hexenal (20.3%. Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils.

  19. Glandular trichome density and essential oil composition in leaves and inflorescences of Lippia origanoides Kunth (Verbenaceae in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Luiz R.S. Tozin

    2015-06-01

    Full Text Available The essential oils from leaves and inflorescences of Lippia origanoides Kunth present aromatic and medicinal potential and have been used to treat several diseases, including melanoma. In Brazil, L. origanoides is commonly found in campo cerrado and cerrado stricto sensu, physiognomies featured mainly by the differential light conditions to which short and medium-sized plants are subjected. Our aim was to investigate the glandular trichome density and the yield and chemical composition of the essential oils in leaves and inflorescences of L. origanoides from campo cerrado and cerrado stricto sensu. For glandular density analysis, leaves and inflorescences were processed according to conventional techniques for scanning electron microscopy. The essential oils of leaves and inflorescences were obtained by hydrodistillation and identified with gas chromatography. Bracts and sepals showed the highest glandular density, followed by petals and leaves. The glandular density in the abaxial leaf surface was higher in individuals from the campo cerrado. In both populations the essential oil yield was higher in inflorescences than in leaves. The chemical composition of the essential oils varied among individuals from different areas and inside a same population. Our results demonstrated the chemical plasticity of L. origanoides suggesting the importance of monitoring its popular use.

  20. Glandular trichome density and essential oil composition in leaves and inflorescences of Lippia origanoides Kunth (Verbenaceae) in the Brazilian Cerrado.

    Science.gov (United States)

    Tozin, Luiz R S; Marques, Marcia O M; Rodrigues, Tatiane M

    2015-01-01

    The essential oils from leaves and inflorescences of Lippia origanoides Kunth present aromatic and medicinal potential and have been used to treat several diseases, including melanoma. In Brazil, L. origanoides is commonly found in campo cerrado and cerrado stricto sensu, physiognomies featured mainly by the differential light conditions to which short and medium-sized plants are subjected. Our aim was to investigate the glandular trichome density and the yield and chemical composition of the essential oils in leaves and inflorescences of L. origanoides from campo cerrado and cerrado stricto sensu. For glandular density analysis, leaves and inflorescences were processed according to conventional techniques for scanning electron microscopy. The essential oils of leaves and inflorescences were obtained by hydrodistillation and identified with gas chromatography. Bracts and sepals showed the highest glandular density, followed by petals and leaves. The glandular density in the abaxial leaf surface was higher in individuals from the campo cerrado. In both populations the essential oil yield was higher in inflorescences than in leaves. The chemical composition of the essential oils varied among individuals from different areas and inside a same population. Our results demonstrated the chemical plasticity of L. origanoides suggesting the importance of monitoring its popular use.

  1. Effects of Preform Density on Structure and Property of C/C-SiC Composites Fabricated by Gaseous Silicon Infiltration

    Directory of Open Access Journals (Sweden)

    CAO Yu

    2016-07-01

    Full Text Available The 3-D needled C/C preforms with different densities deposited by chemical vapor infiltration (CVI method were used to fabricate C/C-SiC composites by gaseous silicon infiltration (GSI. The porosity and CVI C thickness of the preforms were studied, and the effects of preform density on the mechanical and thermal properties of C/C-SiC composites were analyzed. The results show that with the increase of preform density, the preform porosity decreases and the CVI C thickness increases from several hundred nanometers to several microns. For the C/C-SiC composites, as the preform density increases, the residual C content increases while the density and residual Si content decreases. The SiC content first keeps at a high level of about 40% (volume fraction, which then quickly reduces. Meanwhile, the mechanical properties increase to the highest values when the preform density is 1.085g/cm3, with the flexure strength up to 308.31MP and fracture toughness up to 11.36MPa·m1/2, which then decrease as the preform density further increases. The thermal conductivity and CTE of the composites, however, decrease with the increase of preform density. It is found that when the preform porosity is too high, sufficient infiltration channels lead to more residual Si, and thinner CVI C thickness results in the severe corrosion of the reinforcing fibers by Si and lower mechanical properties. When the preform porosity is relatively low, the contents of Si and SiC quickly reduce since the infiltration channels are rapidly blocked, resulting in the formation of large closed pores and not high mechanical properties.

  2. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  3. Magnesium Matrix Composite Foams-Density, Mechanical Properties, and Applications

    Science.gov (United States)

    2012-07-24

    published studies and plotted in Figure 9 [10,13,14,39–46]. Composites of A2011-T6 alloys show the highest plastic stress, followed by 7075-T6 and 6061 ...R.; Rohatgi, P.; Nath, D. Preparation of aluminium -fly ash particulate composite by powder metallurgy technique. J. Mater. Sci. 1997, 32, 3971–3974

  4. A Model of Foam Density Prediction for Expanded Perlite Composites

    Directory of Open Access Journals (Sweden)

    Arifuzzaman Md

    2015-01-01

    Full Text Available Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15 – 0.5 g/cm3 produced with a range of compaction ratios (1.5 – 3.5, a range of sodium silicate contents (0.05 – 0.35 g/ml in dilution, a range of expanded perlite particle sizes (1 – 4 mm, and various perlite densities (such as skeletal, material, bulk, and envelope densities. A close agreement between predictions and experimental results was found.

  5. A bootstrap estimation scheme for chemical compositional data with nondetects

    Science.gov (United States)

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  6. Chemical composition of the sediment from Lake 20 (Antarctica

    Directory of Open Access Journals (Sweden)

    Daria ROSSI

    2000-02-01

    Full Text Available Lake 20 (19,000 m2 is located on the coast of the Ross Sea, in the North-Central part of Victoria Land, and its surface is ice-free between the end of December and early February. Within the framework of the Italian National Research Programme in Antarctica, a study was made of the chemical composition of sediments from the lake, with the intention of using this information to contribute to a better understanding of the processes involved in the long range transport of pollutants and their role in global changes. A sediment core from Lake 20 (Antarctica, 18 cm long, was collected in 1994, sliced into 2 cm sections and analysed using X Ray fluorescence spectrometry for 17 elements (Si, Al, Ca, K, Fe, Mg, Ti, S, P, Pb, Zn, Cu, Ni, Mn, Cr, Na, Cl, by CHN Elemental Analyser for C and N, by Flameless Atomic Absorption Spectrometry for As, and by Cold Vapour Atomic Absorption Spectrometry for Hg. The chemical composition of the sediments is consistent with the known geochemical characteristics of the drainage basin. While the chemical analyses reveal that sedimentation in Lake 20 has changed through time, the variations along the core are most probably related to the climatic evolution of the area, to the consequent changes in weathering processes, and possibly to an increase in the primary productivity of the lake, rather than to anthropogenic influences on the biogeochemical cycles of the elements.

  7. Density-controlled growth of well-aligned ZnO nanowires using chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Well-aligned ZnO nanowires were grown on Si substrate by chemical vapor deposition.The experimental results showed that the density of nanowires was related to the heating process and growth temperature.High-density ZnO nanowires were obtained under optimal conditions.The growth mechanism of the ZnO nanowires was presented as well.

  8. Photons from a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density

    Institute of Scientific and Technical Information of China (English)

    HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang

    2005-01-01

    @@ We study hard photon production in a chemically equilibrating quark-gluon plasma at finite baryon density based on the Jüttner distribution of partons of the system. We find that the photon yield is a strongly increasing function of the initial quark chemical potential.

  9. Microbial and chemical composition of liquid-associated bacteria in goats' rumen and fermenters.

    Science.gov (United States)

    Abecia, L; Soto, E C; Ramos-Morales, E; Molina-Alcaide, E

    2014-10-01

    This study was undertaken to investigate the relationship between chemical composition and microbial profile of rumen liquid-associated bacteria (LAB) in vivo (Murciano-Granadina goats) and in a rumen simulation system (single-flow continuous-culture fermenters). To achieve this aim, analyses of purine bases along with some molecular techniques (quantitative PCR to assess abundance and DGGE to identify biodiversity and bacterial profile) were carried out. A control diet (AHC) based on alfalfa hay (AH) and concentrate (C) in a 1:1 ratio and two experimental diets (AHCBI and AHCBII), in which concentrate was partially replaced with multinutrient blocks, were used. Diets AHCBI and AHCBII included multinutrient blocks differing in the relative amount of two-stage olive cake and the source of protein (sunflower meal vs. fava beans). We aimed to investigate the effect of these blocks on rumen microbiota to evaluate their potential as safe substitutes of cereal-based concentrates. Similar patterns of response to diet were found for chemical composition, microbial abundances and diversity in LAB isolated from goat's rumen and fermenters. Whereas bacterial density (log10 gene copies/g FM: 11.6 and 9.4 for bacteria and methanogens, respectively, in rumen) and diversity indexes (Shannon index: 3.6) were not affected by diet, DGGE analyses showed that bacterial community profile was affected. The cluster analysis suggested differences in bacterial profile between LAB pellets isolated from the rumen of goat and fermenters. A relationship between chemical composition and bacterial community composition in LAB pellets seems to exist. Changes in the former were reflected in the bacterial community profile. Further research is needed to clarify the relationship between chemical and microbial composition of ruminal bacterial pellets with diets of different quality.

  10. Dynamics of the chemical composition of rainwater throughout Hurricane Irene

    Directory of Open Access Journals (Sweden)

    K. M. Mullaugh

    2013-03-01

    Full Text Available Sequential sampling of rainwater from Hurricane Irene was carried out in Wilmington, NC, USA on 26 and 27 August 2011. Eleven samples were analyzed for pH, major ions (Cl−, NO3−, SO42−, Na+, K+, Mg2+, Ca2+, NH4+, dissolved organic carbon (DOC and hydrogen peroxide (H2O2. Hurricane Irene contributed 16% of the total rainwater and 18% of the total chloride wet deposition received in Wilmington NC during all of 2011. This work highlights the main physical factors influencing the chemical composition of tropical storm rainwater: wind speed, wind direction, back trajectory and vertical mixing, time of day and total rain volume. Samples collected early in the storm, when winds blew out of the east, contained dissolved components indicative of marine sources (salts from sea spray and low DOC. The sea-salt components in the samples had two maxima in concentration during the storm the first of which occurred before the volume of rain had sufficiently washed out sea salt from the atmosphere and the second when back trajectories showed large volumes of marine surface air were lifted. As the storm progressed and winds shifted to a westerly direction, the chemical composition of the rainwater became characteristic of terrestrial storms (high DOC and NH4+ and low sea salt. This work demonstrates that tropical storms are not only responsible for significant wet deposition of marine components to land, but terrestrial components can also become entrained in rainwater, which can then be delivered to coastal waters via wet deposition. This study also underscores why analysis of one composite sample can lead to an incomplete interpretation of the factors that influence the chemically divergent analytes in rainwater during extreme weather events.

  11. Assessment of kidney stone and prevalence of its chemical compositions.

    Science.gov (United States)

    Pandeya, A; Prajapati, R; Panta, P; Regmi, A

    2010-09-01

    Kidney stone analysis is the test done on the stone which cause problems when they block the flow of urine through or out of the kidneys. The stones cause severe pain and are also associated with morbidity and renal damage. There is also no clear understanding on the relative metabolic composition of renal calculi. Hence, the study is aimed to find out the chemical composition of it which can guide treatment and give information that may prevent more stones from forming. The study was carried out on the stones that had been sent to the department of Biochemistry (n = 99; M = 61; F = 38; Mean age: 33.6 +/- 14.4 years) Approximately 98.9% of stones were composed of oxalate, 95.9% of Calcium, 85.8% of phosphate, 62.6% of Urate, 46.4% of Ammonium and very few percentages of Carbonate.

  12. Chemical composition of lipophilic extractives from grey alder (Alnus incana

    Directory of Open Access Journals (Sweden)

    Oskars Bikovens

    2013-02-01

    Full Text Available The chemical composition of the lipophilic extractives in the hexane extracts from grey alder bark, knotwood, and cones has been investigated by gas chromatography and gas chromatography-mass spectrometry. The efficiency of two extraction methods was compared. The highest amount of lipophilic extractives (about 9% of o.d. material was observed in grey alder cone, while the lowest (about 3% was found in knotwood. The three different morphological parts of alder showed significant differences not only in the content but also in composition of extractives, namely fatty acids, triglycerides, and triterpenes. The main identified compounds were triterpenoids (lupen-3-one, lupeol, betulone, betulinol, and betulinic acid in bark, and triglycerides in cones. The major group in knotwood was free fatty acids (mainly linoleic acid, 18:2.

  13. Chemical composition and health effects of Tartary buckwheat.

    Science.gov (United States)

    Zhu, Fan

    2016-07-15

    Tartary buckwheat (Fagopyrum tataricum) contains a range of nutrients including bioactive carbohydrates and proteins, polyphenols, phytosterols, vitamins, carotenoids, and minerals. The unique composition of Tartary buckwheat contributes to their various health benefits such as anti-oxidative, anti-cancer, anti-hypertension, anti-diabetic, cholesterol-lowering, and cognition-improving. Compared with the more widely cultivated and utilised common buckwheat (F. esculentum), Tartary buckwheat tends to contain higher amounts of certain bioactive components such as rutin, therefore, showing higher efficiency in preventing/treating various disorders. This review summarises the current knowledge of the chemical composition of Tartary buckwheat, and their bio-functions as studied by both in vitro and in vivo models. Tartary buckwheat can be further developed as a sustainable crop for functional food production to improve human health.

  14. Analysis of chemical composition of high viscous oils

    Directory of Open Access Journals (Sweden)

    Irina Germanovna Yashchenko

    2014-07-01

    Full Text Available The spatial distribution of viscous oils which are considered as an important reserve for oil-production in future were studied on base of information from global database on oil physical and chemical properties. Changes in chemical composition of viscous oils in different basins and continents were analyzed as well. It is shown, on average, viscous oils are sulfur-bearing, low paraffin, highly resinous oils with an average content of asphaltenes and low content of the fraction boiling at 200 C. Study results of viscous oils peculiarities of Canada, Russia and Venezuela are given. The analysis results can be used to determine the optimal layouts and conditions of oil transportation, to improve the search methods of geochemical exploration, and to solve other problems in the oil chemistry.

  15. [Chemical composition of seeds and testa of Vicia faba L].

    Science.gov (United States)

    Vetter, J

    1995-03-01

    Different chemical components were analysed in the seeds and in testa of Vicia faba. The seeds contain a relatively high crude protein (27.5%), a low crude fat (3.36%) content; and the lignin concentration is low (2.65%). The testa of the seeds has a very high fibre concentration and is a significant Ca-source (1.86 g/kg). The higher macroelement concentrations in the seeds were measured from K, P and Mg. The main microelements (Fe, Mn, Cu, Zn) have significant higher concentrations in the seed than in the testa. The amino acid composition of seeds is positive (compared to data of white lupine), the rate of essential amino acids is good. The concentrations of the examined antinutritive organic constituents, especially of alkaloids, are low. On the basis of chemical analysis, the production and utilisation of seeds of Vicia faba is recommended.

  16. On the Formation and Chemical Composition of Super Earths

    Science.gov (United States)

    Alessi, Matthew; Pudritz, Ralph E.; Cridland, Alex J.

    2016-09-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes (≳ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place within short-lived disks (≲ 2 Myr), whereby the disks are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky ( 30 % ice by mass). The traps play a crucial role in our results, as they dictate where in the disk particular planets can accrete from, and what compositions they are able to acquire.

  17. On the formation and chemical composition of super Earths

    Science.gov (United States)

    Alessi, Matthew; Pudritz, Ralph E.; Cridland, Alex J.

    2017-01-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving discs with core accretion that tracks materials accreted on to planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disc inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in discs with sufficiently long lifetimes (≳4 Myr), all traps produce Jovian planets. In these discs, planet formation in the heat transition and X-ray dead zone produces hot Jupiters, while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 au. Super Earth formation takes place within short-lived discs (≲2 Myr), whereby the discs are photoevaporated while planets are in a slow phase of gas accretion. We find that super Earth compositions range from dry and rocky (30 per cent ice by mass). The traps play a crucial role in our results, as they dictate where in the disc particular planets can accrete from, and what compositions they are able to acquire.

  18. Nepheline structural and chemical dependence on melt composition

    Energy Technology Data Exchange (ETDEWEB)

    Marcial, José; Crum, Jarrod; Neill, Owen; McCloy, John

    2016-02-01

    Nepheline crystallizes upon slow-cooling in some melts concentrated in Na2O and Al2O3, which can result in a residual glass phase of low chemical durability. Nepheline can incorporate many components often found in high-level waste radioactive borosilicate glass, including glass network ions (e.g., Si, Al, Fe), alkali metals (e.g., Cs, K, Na, and possibly Li), alkaline-earth metals (e.g., Ba, Sr, Ca, Mg), and transition metals (e.g., Mn, and possibly Cr, Zn, Ni). When crystallized from melts of different compositions, nepheline chemistry varies as a function of starting glass composition. Five simulated high level nuclear waste borosilicate glasses shown to crystallize large fractions of nepheline on slow cooling, were selected for study. These melts constituted a range of Al2O3, B2O3, CaO, Na2O, K2O, Fe2O3, and SiO2 compositions. Compositional analyses of nepheline crystals in glass by electron probe micro-analysis (EPMA) indicate that boron is unlikely to be present in any significant concentration, if at all, in nepheline. Also, several models are presented for calculating the fraction of vacancies in the nepheline structure.

  19. Stevia rebaudiana Bertoni - chemical composition and functional properties.

    Science.gov (United States)

    Marcinek, Katarzyna; Krejpcio, Zbigniew

    2015-01-01

    Sweetleaf (Stevia rebaudiana Bertoni), currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it "kaa-hee" ("sweet herb"). Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to present nutritional and health-promoting value of the still-little known sweetleaf.

  20. Chemical composition and quality of sweet sorghum and maize silages

    OpenAIRE

    Zbigniew PODKÓWKA; Lucyna PODKÓWKA

    2011-01-01

    Sweet sorghum (Sorghum saccharatum) silage, maize (Zea mays) silage, and sorghum and maize (1:1) silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88%) in sorghum silage and the highest (37.45%) in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre an...

  1. Chemical composition and fatty acid contents in farmed freshwater prawns

    Directory of Open Access Journals (Sweden)

    Carolina de Gasperi Portella

    2013-08-01

    Full Text Available The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.

  2. The Influence of Chemical Composition on LNG Pool Vaporization

    Directory of Open Access Journals (Sweden)

    Yu Zhidong

    2017-01-01

    Full Text Available A model is used to examine the influence of chemical composition on the vaporization rate of LNG during spreading. Calculations have been performed whereby the vaporization rate of the LNG mixtures has been compared to the vaporization of pure methane under the initial conditions. The detailed results indicate that the vaporization rate LNG mixture is different to that of pure methane. LNG as the liquid mixture gets rich in ethane and isobaric latent heat increases rapidly, leading to the rate vaporization of LNG decrease in compared to pure methane.

  3. Stevia rebaudiana Bertoni – chemical composition and functional properties

    Directory of Open Access Journals (Sweden)

    Katarzyna Marcinek

    2015-06-01

    Full Text Available Sweetleaf (Stevia rebaudiana Bertoni, currently investigated by many researchers, has been known and used for more than a thousand years indigenous tribes of South America, who called it “kaa-hee” (“sweet herb”. Thanks to its chemical composition and processability sweetleaf may be an alternative for synthetic sweeteners. Nutritional and health-promoting aspects of Stevia rebaudiana are presently being studied in many research centres. The aim of this study is to present nutritional and health-promoting value of the still-little known sweetleaf.

  4. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  5. MATERIAL COMPOSITIONS AND NUMBER DENSITIES FOR NEUTRONICS CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Thomas

    1996-01-02

    The purpose of this analysis is to calculate the number densities and isotopic weight percentages of the standard materials to be used in the neutronics (criticality and radiation shielding) evaluations by the Waste Package Development Department. The objective of this analysis is to provide material number density information which can be referenced by future neutronics design analyses, such as for those supporting the Conceptual Design Report.

  6. Public Health Risk Conditioned by Chemical Composition of Ground Water

    Science.gov (United States)

    Yankovich, E.; Osipova, N.; Yankovich, K.; Matveenko, I.

    2016-03-01

    The article studies the public health potential risk originated from water consumption and estimated on the basis of the groundwater chemical composition. We have processed the results of chemical groundwater analysis in different aquifers of Tomsk district (Tomsk Oblast, Russia). More than 8400 samples of chemical groundwater analyses were taken during long-term observation period. Human health risk assessment of exposure to contaminants in drinking water was performed in accordance with the risk assessment guidance for public health concerning chemical pollution of the environment (Russian reference number: 2.1.10.1920-04-M, 2004). Identified potential risks were estimated for consuming water of each aquifer. The comparative analysis of water quality of different aquifers was performed on the basis of the risk coefficient of the total non-carcinogenic effects. The non-carcinogenic risk for the health of the Tomsk district population due to groundwater consumption without prior sanitary treatment was admitted acceptable. A rather similar picture is observed for all aquifers, although deeper aquifers show lower hazard coefficients.

  7. Composite reweighting with Imaginary Chemical Potentials in SU(3)

    CERN Document Server

    Crompton, P R

    2002-01-01

    We review the overlap pathology of the Glasgow reweighting method for finite density QCD, and discuss the sampling bias that effects the determination of the ensemble-averaged fugacity polynomial expansion coefficients that form the Grand Canonical Partition function. The expectation of the difference in free energies between canonical partition functions generated with different measures is presented as an indicator of a systematic quark number dependent biasing in the reweighting approach. The advantages of building up an unbiased polynomial expansion for the Grand Canonical Partition function through a series of parallel ensembles generated by reweighting with imaginary chemical potentials are then contrasted with addressing the overlap pathology through a secondary reweighting.

  8. Synthesis of Carbon Nanotube/Graphene Composites by One-Step Chemical Vapor Deposition for Electrodes of Electrochemical Capacitors

    Directory of Open Access Journals (Sweden)

    Chuen-Chang Lin

    2015-01-01

    Full Text Available To control the packing density of carbon nanotubes (CNTs and the number of graphene layers, carbon nanotube/graphene composites are directly grown on cobalt (Co catalysts-coated nickel foam by one-step ambient pressure chemical vapor deposition (CVD at different temperatures and times. The carbon nanotube/graphene composites grown by one-step CVD at 850°C for 10 min possess the highest specific capacitance. Furthermore, a lower growing temperature leads to a higher packing density of CNTs and a smaller number of layers of graphene. A shorter growing time also leads to a smaller number of layers of graphene.

  9. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    CERN Document Server

    Wakelam, V; Hersant, F; Dutrey, A; Semenov, D; Majumdar, L; Guilloteau, S

    2016-01-01

    Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H...

  10. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  11. Relationship between mass density, electron density, and elemental composition of body tissues for Monte Carlo simulation in radiation treatment planning

    CERN Document Server

    Kanematsu, Nobuyuki

    2015-01-01

    Purpose: For Monte Carlo simulation of radiotherapy, x-ray CT number of every system needs to be calibrated and converted to mass density and elemental composition. This study aims to formulate material properties of body tissues for practical two-step conversion from CT number. Methods: We used the latest compilation on body tissues that constitute reference adult male and female. We formulated the relations among mass, electron, and elemental densities into polylines to connect representative tissues, for which we took mass-weighted mean for the tissues in limited density regions. We compared the polyline functions of mass density with a bi-line for electron density and broken lines for elemental densities, which were derived from preceding studies. Results: There was generally high correlation between mass density and the other densities except of C, N, and O for light spongiosa tissues occupying 1% of body mass. The polylines fitted to the dominant tissues and were generally consistent with the bi-line an...

  12. Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2012-11-01

    Full Text Available Wood-plastic composites (WPC have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  13. Glass fiber addition strengthens low-density ablative compositions

    Science.gov (United States)

    Chandler, H. H.

    1974-01-01

    Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.

  14. Chemical Composition of the Essential Oil from Chaerophyllum temulum (Apiaceae).

    Science.gov (United States)

    Stamenković, Jelena G; Stojanović, Gordana S; Radojković, Ivana R; Petrović, Goran M; Zlatković, Bojan K

    2015-08-01

    The present study reports the chemical composition on the essential oil obtained from fresh roots, stems, inflorescences and fruits of Chaerophyllum temulum. In all samples, except the roots, the most dominant components were sesquiterpene hydrocarbons. (Z)-Falcarinol was the principal constituent of the root essential oils (61.7% at the flowering stage and 62.3% at the fruiting stage). The blossom oil was dominated by (Z,E)-α-famesene (23.4%), (E)-β-farnesene (9.0%) and germacrene D-4-ol (9%), whereas the oil from the fruit had germacrene D-4-ol (27.6%) as its main compound, accompanied by (Z,E)-α-famesene (13.4%). Germacrene D was the most abundant component of the stem essential oil (38.4% at the flowering stage and 32.5% at the fruiting stage). The obtained results show that the qualitative composition of the oil depends on the part of the plant which is analyzed, while the quantitative composition of the main components depends on the growing stage of the plant.

  15. Chemical composition of the circumstellar disk around AB Aurigae

    CERN Document Server

    Pacheco-Vázquez, S; Agúndez, M; Pinte, C; Alonso-Albi, T; Neri, R; Cernicharo, J; Goicoechea, J R; Berné, O; Wiesenfeld, L; Bachiller, R; Lefloch, B

    2015-01-01

    Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauri's and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 ...

  16. Regulating continent growth and composition by chemical weathering.

    Science.gov (United States)

    Lee, Cin-Ty Aeolus; Morton, Douglas M; Little, Mark G; Kistler, Ronald; Horodyskyj, Ulyana N; Leeman, William P; Agranier, Arnaud

    2008-04-01

    Continents ride high above the ocean floor because they are underlain by thick, low-density, Si-rich, and Mg-poor crust. However, the parental magmas of continents were basaltic, which means they must have lost Mg relative to Si during their maturation into continents. Igneous differentiation followed by lower crustal delamination and chemical weathering followed by subduction recycling are possible solutions, but the relative magnitudes of each process have never been quantitatively constrained because of the lack of appropriate data. Here, we show that the relative contributions of these processes can be obtained by simultaneous examination of Mg and Li (an analog for Mg) on the regional and global scales in arcs, delaminated lower crust, and river waters. At least 20% of Mg is lost from continents by weathering, which translates into >20% of continental mass lost by weathering (40% by delamination). Chemical weathering leaves behind a more Si-rich and Mg-poor crust, which is less dense and hence decreases the probability of crustal recycling by subduction. Net continental growth is thus modulated by chemical weathering and likely influenced by secular changes in weathering mechanisms.

  17. Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.

    1998-01-01

    Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels

  18. Effect of chemical composition and alumina content on structure and properties of ceramic insulators

    Indian Academy of Sciences (India)

    Arman Sedghi; Nastaran Riahi-Noori; Naser Hamidnezhad; Mohammad Reza Salmani

    2014-04-01

    In the present work, six electrical porcelain compositions with different amount of alumina and silica have been prepared and fired in an industrial furnace at 1300°C. Density, porosity, bending strength and electrical strength were measured in the samples. In order to find a relationship between properties and sample microstructures, samples were analyzed by scanning electron microscope (SEM) and x-ray diffraction (XRD) techniques. The results showed that, with chemical composition of 53.5 wt.% SiO2 and 37.5 wt.% alumina, highest electrical strength of 21.97 kV/mm was achieved in fabricated electrical porcelains. Increasing amount of alumina up to 30 wt.% decreases quartz and cristobalite phases, but increases corundum phase 3 to 5 times. SEM observation revealed that dense particles and uniform distribution of long and thin needle shaped mullite are predominant in sample microstructures with highest electrical strength.

  19. Effect of chemical composition of sheep’s milk on the chemical composition of Livno and Travnik cheese

    Directory of Open Access Journals (Sweden)

    Amina Hrković

    2011-06-01

    Full Text Available Bosnia and Herzegovina has a centuries-old tradition in the family dairy products, among which 2-3 types of cheeses dominate. Well known dairy products in BiH are indigenous Livno and Travnik cheese, a group of cheeses produced from thermally untreated raw sheep milk. The aim of this study was assessing the effects of certain parameters on the chemical composition of the milk composition of indigenous cheeses - Livno and Travnik. Two manufacturers within two different locations (Livno and Travnik during summer grazing of sheep, were selected for this research. The study included 117sheep (Livno 57 sheep, Travnik 60 sheep. The cheese milk was used for determination of fat, protein and lactose content. Six samples were taken from obtained cheeses: 3 samples of Livno and 3samples of Travnik cheese, which means one for each sampling period. In cheese dry matter content, water, fat, fat in dry matter and acidity (pH were determined, and then correlation between the constituents of milk and cheese ingredients content was set. The most common causes of such phenomenon is non-standard production, storage and ripening. On Travnik area, the content of fat and milk protein varied according to sampling period, which can be attributed to the already mentioned diet and stage of lactation. At the same time the protein content decreased mainly by the end of lactating period. Lactose content has proven to be the most stable parameter of milk. In both investigated cheese samples slightly higher water content was found compared to normal values for these two local cheese, while the proportion of fat and dry matter varied within the sampling period. Variation of certain parameters of the chemical composition of investigated samples of Livno and Travnik cheese, as well as their correlation with parameters of milk is primarily a consequence of changing the chemical composition of milk as the basic raw materials and/or significant variations in technology that could

  20. Effect of different input management on weed composition, diversity and density of corn field

    Directory of Open Access Journals (Sweden)

    Surur Khoramdel

    2016-04-01

    Full Text Available In order to investigate the effects of input intensity on species diversity, composition and density of weeds in corn (Zea mays L., an experiment was conducted based on a randomized complete block design with three replications at the Agricultural Research Station, Ferdowsi University of Mashhad, Iran during the year 2009. Treatments included low input, medium input and high input systems. Low input received 30 tonha-1or 30 tonha-1 compost, zero tillage and hand weeding (twice. Medium input was based on 15 tonha-1 manure, 150 kgha-1 urea as chemical fertilizer, twice tillage operations and 2, 4-D (1.5 Lha-1, at five leaves emergence as an herbicide and hand weeding (once. High input received 300 kgha-1 urea, four tillage operations and Paraquat (2 Lha-1, after planting and 2, 4-D (1.5 Lha-1, at five leaves emergence. Manure and compost were applied in the planting time. Weed samplings were done in three stages (early, mid and late growing season. Results indicated that the highest and the lowest weed species diversity and density were observed in low input based on manure and high input systems, respectively. The highest range of weed relative density was obtained for black nightshade (Solanum nigrum with 9.09-75.00%. The highest number of species was observed in low input based on manure. Also, management practices affected weed dry matter and diversity indices. The highest and the lowest amounts of weed dry matter were observed in low input based on manure and high input systems, respectively. In the first, second and the third stages of sampling, the maximum and the minimum amounts of Margalef index were observed in low input based on manure (with 5.3, 5.4 and 3.3, respectively and high input systems (with 0.8, 2.3 and 2.6, respectively. In the first, second and the third stages of sampling, the highest and the lowest values of Shannon index were observed in low input based on manure (with 0.6, 0.7 and 0.5 respectively and high input (with 0

  1. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  2. Chemical descriptors, convexity and structure of density matrices in molecular systems

    CERN Document Server

    Bochicchio, Roberto C

    2015-01-01

    The electron energy and density matrices in molecular systems are convex in respect of the number of particles. So that, the chemical descriptors based on their derivatives present the hamper of discontinuities for isolated systems and consequently higher order derivatives are undefined. The introduction of the interaction between the physical domain with an environment induces a coherent structure for the density matrix in the grand-canonical formulation suppressing the discontinuities leading to the proper definitions of the descriptors.

  3. Solution of Equations of Internal Ballistics for the Composite Charge Using Lagrange Density Approximation

    Directory of Open Access Journals (Sweden)

    D. K. Narvilkar

    1979-07-01

    Full Text Available In the present paper, the equations of internal ballistics of composite charge consisting of N component charge with quadratic form are solved. Largange density approximation and hydrodynamic flow behaviour, have been assumed and the solutions are obtained for the composite charge for these assumptions.

  4. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Science.gov (United States)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  5. Chemical composition of Chenopodium botrys L. (Chenopodiaceae essential oil

    Directory of Open Access Journals (Sweden)

    Ljubica Adji Andov

    2014-08-01

    Full Text Available Chemical composition of essential oil isolated from aerial parts of Chenopodium botrys L. (Chenopodiaceae collected from five different locations in the Republic of Macedonia was analysed by GC/FID/MS. Seventy five compounds were identified representing 90.02- 91.24% of the oil. The analysis has shown that the oils were rich in sesquiterpenе components (83.18-87.54% comprising elemol acetat (9.88%-21.98%, seline-11-en-4α-ol (9.81%-13.5%, selina-3,11-dien-6α-ol (6.42%-9.71% and elemol (5.57%-9.49% as major oxygen containing sesquiterpenes, followed by lower content of α-eudesmol acetat (3.24%-4.11%, α-chenopodiol (2.42%-5.43%, botrydiol (1.87-5.73% and α-chenopodiol-6-acetat (1.9%-4.73%.

  6. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    Science.gov (United States)

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  7. Chemical vapor infiltration of TiB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and test the materials in a static bath and lab-scale Hall cell.

  8. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  9. Rapid fabrication of ceramic composite tubes using chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering; Besmann, T.M.; Stinton, D.P.; McLaughlin, J.C.; Matlin, W.M. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Ceramic composite tubes can be fabricated with silicon carbide matrix and Nicalon fiber reinforcement using forced flow-thermal gradient chemical vapor infiltration (FCVI). The process model GTCVI is used to design the equipment configuration and to identify conditions for rapid, uniform densification. The initial injector and mandrel design produced radial and longitudinal temperature gradients too large for uniform densification. Improved designs have been evaluated with the model. The most favorable approach utilizes a free-standing preform and an insulated water-cooled gas injector. Selected process conditions are based on the temperature limit of the fiber, matrix stoichiometry and reagent utilization efficiency. Model runs for a tube 12 inches long, 4 inches OD and 1/4 inch wall thickness show uniform densification in approximately 15 hours.

  10. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    OpenAIRE

    Jaqueline Albano de Morais; Renan Gadioli; Marco-Aurelio De Paoli

    2016-01-01

    Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate), EVA, to recover the impact resistance of high density polyethylene, ...

  11. High-density polyethylene-based composites with pressure-treated wood fibers

    OpenAIRE

    Lu Shang; Guangping Han,; Fangzheng Zhu; Jiansheng Ding; Todd Shupe; Qingwen Wang; Qinglin Wu

    2012-01-01

    High-Density Polyethylene (HDPE)-based composites with alkaline copper quaternary (ACQ)- and micronized copper quaternary (MCQ)-treated wood fibers were manufactured through injection molding. The mechanical properties, water absorption, and biological resistance properties of the fabricated composites with different coupling treatments were investigated. Composites with ACQ- and MCQ-treated wood had mechanical properties comparable with those made of untreated wood. The different coupling ag...

  12. On the Formation and Chemical Composition of Super Earths

    CERN Document Server

    Alessi, Matthew; Cridland, Alex J

    2016-01-01

    Super Earths are the largest population of exoplanets and are seen to exhibit a rich diversity of compositions as inferred through their mean densities. Here we present a model that combines equilibrium chemistry in evolving disks with core accretion that tracks materials accreted onto planets during their formation. In doing so, we aim to explain why super Earths form so frequently and how they acquire such a diverse range of compositions. A key feature of our model is disk inhomogeneities, or planet traps, that act as barriers to rapid type-I migration. The traps we include are the dead zone, which can be caused by either cosmic ray or X-ray ionization, the ice line, and the heat transition. We find that in disks with sufficiently long lifetimes ($\\gtrsim$ 4 Myr), all traps produce Jovian planets. In these disks, planet formation in the heat transition and X-ray dead zone produces hot Jupiters while the ice line and cosmic ray dead zones produce Jupiters at roughly 1 AU. Super Earth formation takes place wi...

  13. Yield and chemical composition of fractions from fermented shrimp biowaste.

    Science.gov (United States)

    Narayan, Bhaskar; Velappan, Suresh Puthanveetil; Zituji, Sakhare Patiram; Manjabhatta, Sachindra Nakkerike; Gowda, Lalitha Ramakrishna

    2010-01-01

    Chemical composition of chitinous residue and fermentation liquor fractions, obtained from fermented shrimp biowaste, was evaluated in order to explore their potential for further utilization. Lyophilization of the liquor fraction obtained after fermentation resulted in a powder rich in both protein (30%) and carotenoids (217.18 +/- 2.89 microg/g). The yield of chitinous residue was 44% (w/w) whereas the yield of lyophilized powder was >25% (w/v). About 69% of total carotenoids were recovered by fermentation. Fermentation resulted in the removal of both protein as well as ash content from the shrimp biowaste, as indicated by approximately 92% deproteination and >76% demineralization, respectively. Post fermentation, the residue had a chitin content of >90%. The lyophilized liquor fraction had all the essential amino acids (except threonine) in quantities comparable to Food & Agriculture Organization/World Health Organization reference protein. The composition of fermentation liquor is indicative of its potential for application as an amino acid supplement in aquaculture feed formulations.

  14. [Chemical composition and biological quality of defatted hazelnut flour].

    Science.gov (United States)

    Villarroel, M; Biolley, E; Schneeberger, R; Ballester, D; Santibáñez, S

    1989-06-01

    The results of the chemical composition and biological quality of deffated hazel nut flour are shown. The samples analyzed contained significant amounts of proteins (19%) comparable to legume flour, higher than cereals and lower than deffated oleaginous flours. The oil extracted from the seed was analyzed and the average results obtained were the following: Refraction index, 1.47; saponification No. 184.8; iodine No. 85.0. The average composition of the fatty acids obtained by gas liquid chromatography was: Palmitic acid 2.3% Palmitoleic acid 37.0% Stearic acid 0.5% Oleic acid 39.5% Linoleic acid 6.9% Linolenic acid 1.1% Eicosanoic acid 2.3% Eicosaenoic acid 4.6% Docosenoic acid 3.4% Tetraeicosanoic acid 0.3% These results indicate a good-quality oil due to the low content of linolenic acid. The nutritive value of the deffated meal measured in the rats gave a net protein ratio (NPR) of 3.58, lower than the corresponding casein value (4.10). The true protein digestibility measured in the rat gave a value of 7.3%, compared to 95% for casein. The amounts of iron and phosphorous are comparatively lower than those reported for rape-seed meal and sunflower meal.

  15. Chemical Composition of Iran's Pistacia atlantica Cold-Pressed Oil

    Directory of Open Access Journals (Sweden)

    M. Saber-Tehrani

    2013-01-01

    Full Text Available The lipid fraction of Pistacia atlantica seeds was extracted for the first time by means of cold-press technique and analyzed for its chemical composition. The fatty acids, sterols, triacylglycerols (TAG, tocopherols, polyphenols, and pigments were identified and their concentrations were determined by means of reversed-phase high-performance liquid chromatography (RP-HPLC and gas chromatography (GC. Because of its high content of unsaturated fatty acids, it might prove to be of value in diets and it may be used as edible cooking or salad oils or for margarine manufacture. Pistacia atlantica seed oil has the unique sterols and tocopherols content providing source of natural antioxidants. The main triacylglycerols were SLL + PLO, SOL + POO, OOLn + PLL, OOO, and SOO. This paper examined the phenolic fraction of Pistacia atlantica seed oil. Moreover, caffeic acid followed by cinnamic acid, pinoresinol, vanillin, p-Coumaric acid, ferulic acid, and o-Coumaric acid was also determined. This paper presents the first investigation of chlorophyll's and carotene's composition in Pistacia atlantica seed oil. Furthermore, pheophytin a was the major component, followed by luteoxanthin, neoxanthin, violaxanthin, lutein, lutein isomers, chlorophyll a, chlorophyll a′, and pheophytin a′ were also determined.

  16. Evolution of South Atlantic density and chemical stratification across the last deglaciation.

    Science.gov (United States)

    Roberts, Jenny; Gottschalk, Julia; Skinner, Luke C; Peck, Victoria L; Kender, Sev; Elderfield, Henry; Waelbroeck, Claire; Vázquez Riveiros, Natalia; Hodell, David A

    2016-01-19

    Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected δ(18)O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer δ(13)C and foraminifer/coral (14)C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.

  17. Chemical Composition and Antioxidant Capacity of Three Plum Cultivars

    Directory of Open Access Journals (Sweden)

    Sandra Voća

    2009-12-01

    Full Text Available The aim of this study was to determine the chemical composition and antioxidants capacity of three plum cultivars, namely ‘Top’, ‘Elena’ and ‘Bistrica’. Fruits were harvested and following parameters were determined: dry matter, total acids (TA, total soluble solids (TSS, pH, vitamin C, total phenols, nonflavonoids and antioxidant capacity. Differences between cultivars for most of the chemical parameters were observed. The cultivar ‘Bistrica’ showed higher values of dry matter, TSS, vitamin C and pH value, while ‘Top’ had higher total acids value and lowest TSS, dry matter, vitamin C and pH. Total phenolics content varied from 157.70 mg in ‘Elena’ to 344.10 mg in ‘Bistrica’, expressed as gallic acid equivalents (GAE, on fresh weight basis. ‘Top’ contains the highest amount of non-flavonoids among cultivars studied. Therefore, ‘Bistrica’ and ‘Top’ show the highest antioxidant capacity, as well. There were significant differences between total phenolics and non-flavonoids content between ‘Elena’ and other two cultivars, while antioxidant capacity showed no significant difference (p ≤ 0.05. Total antioxidant capacity of fruits ranged from 3.10 mmol/kg in ‘Elena’ to 3.17 mmol/kg in ‘Top’ and ‘Bistrica’.

  18. Chemical Composition Measurements of LAWA44 Glass Samples

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-15

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has requested that the Savannah River National Laboratory (SRNL) provide expert evaluation and experimental work in support of the River Protection Project vitrification technology development. DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. The low-activity waste (LAW) fraction will be partitioned from the high-level waste (HLW). Both the LAW and HLW will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass while conforming to processing requirements and product quality regulations. DOE-ORP has requested that SRNL support the advancement of glass formulations and process control strategies in key technical areas, as defined in the Task Technical and Quality Assurance Plan (TTQAP). One of these areas is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, SRNL provides chemical analysis results for several samples of a simulated LAW glass, designated LAWA44, provided by Pacific Northwest National Laboratory (PNNL) as part of an ongoing development task. The objective of the PNNL task is to determine the durability of this glass using EPA Method 1313, which will include test participants at Vanderbilt University and the University of Sheffield. A report on the compositions of similar glasses (referred to as the EPA-series glasses) was issued in March 2016.

  19. Polymerization contraction of resin composite vs. energy and power density of light-cure.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-10-01

    This study measured the polymerization contraction of a resin composite cured at three levels of energy density, each attained at six different levels of power density. The polymerization contraction of the composite was recorded by the method of the deflecting disc (n = 5) for 1 h following the start of irradiation. Power densities of 50, 100, 200, 400, 800 and 1,000 mW cm(-2), as measured on a dental radiometer, were obtained by variation of distance and supply voltage of a commercial light-curing unit. The spectral distribution at each power density was recorded using a spectrophotometer. The absorption spectrum of camphorquinone was also recorded, and the efficiency of the radiation at each power density was calculated as the integral over wavelength of the product of absorption and emission. From the slope of the contraction curves, an approximation to the initial rate of polymerization, Rp, was calculated and was taken as an alternative measure of power density. Statistical analyses showed that polymerization contraction increased significantly with increasing levels of energy density received by the resin composite, and, for each level of energy density, that the contraction decreased significantly with increasing power density.

  20. A New Mathematical Formulation of the Governing Equations for the Chemical Compositional Simulation

    CERN Document Server

    Bekbauov, Bakhbergen E; Berdyshev, Abdumauvlen

    2015-01-01

    It is the purpose of this work to develop new approach for chemical compositional reservoir simulation, which may be regarded as a sequential method. The development process can be roughly divided into the following two stages: (1) development of a new mathematical formulation for the sequential chemical compositional reservoir simulation, (2) implementation of a sequential solution approach for chemical compositional reservoir simulation based on the formulation described in this paper. This paper addresses the first stage of the development process by presenting a new mathematical formulation of the chemical compositional reservoir flow equations for the sequential simulation. The newly developed mathematical formulation is extended from the model formulation used in existing chemical compositional simulators. During the model development process, it was discovered that the currently used chemical compositional model estimates the adsorption effect on the transport of a component reasonably well but it viol...

  1. Experimental determination of elemental compositions and densities of several common liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Barquero, Leonor, E-mail: l.barquero@ciemat.e [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avenida Complutense, 22, 28040 Madrid (Spain); Los Arcos, Jose M., E-mail: jm.losarcos@ciemat.e [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avenida Complutense, 22, 28040 Madrid (Spain)

    2010-07-15

    New accurate data for the density and the elemental composition of several common liquid scintillators have been determined in this work. These data can be used to correctly determine or calculate the counting efficiency of radio-nuclides as well as to evaluate more accurately the uncertainties in LSC measurements due to variability on the composition of scintillators. The discrepancy between nominal densities at 20{sup o}C and the real densities at 20{sup o}C or 16{sup o}C can reach up to 4% among different batches of commercial scintillators all having the same nominal composition. Also significant differences in the elemental composition of commercial cocktails have been found compared to the nominal values. These differences range from 2% up to 260% depending on the element and the scintillator being measured.

  2. Impact of chabazite SSZ-13 textural properties and chemical composition on CO 2 adsorption applications

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Vemuri, Rama S.; Varga, Tamas; Peter McGrail, B.; Motkuri, Radha Kishan; Derewinski, Miroslaw A.

    2016-01-01

    Chabazite SSZ-13 samples with varying silica content (Si/Al from 6 to 35) were synthesized in both stirring and static conditions to obtain material with changing particle size and morphology and thoroughly analysed with various characterization techniques. The role of particle size and chemical compositions of SSZ-13 chabazite on CO2 and N2 adsorption measurements was investigated. The Si/Al ratio played a major role for CO2 adsorption with Al-rich SSZ-13 showing a higher CO2 uptake than Al-poor material. This was attributed to the high density of active charged species in the chabazite cage. Particle size also played an important role in the sorption capacities with smaller particles, obtained in stirring conditions, showing enhanced CO2 uptakes compared to larger particles of same chemical composition. This was associated with an increased density of surface active sites and shorter diffusion pathways.

  3. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    NARCIS (Netherlands)

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W. A.; Bultinck, Patrick

    2016-01-01

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is us

  4. Chemical composition of atmospheric aerosols resolved via positive matrix factorization

    Science.gov (United States)

    Äijälä, Mikko; Junninen, Heikki; Heikkinen, Liine; Petäjä, Tuukka; Kulmala, Markku; Worsnop, Douglas; Ehn, Mikael

    2017-04-01

    Atmospheric particulate matter is a complex mixture of various chemical species such as organic compounds, sulfates, nitrates, ammonia, chlorides, black carbon and sea salt. As aerosol chemical composition strongly influences aerosol climate effects (via cloud condensation nucleus activation, hygroscopic properties, aerosol optics, volatility and condensation) as well as health effects (toxicity, carcinogenicity, particle morphology), detailed understanding of atmospheric fine particle composition is widely beneficial for understanding these interactions. Unfortunately the comprehensive, detailed measurement of aerosol chemistry remains difficult due to the wide range of compounds present in the atmosphere as well as for the miniscule mass of the particles themselves compared to their carrier gas. Aerosol mass spectrometer (AMS; Canagaratna et al., 2007) is an instrument often used for characterization of non-refractive aerosol types: the near-universal vaporization and ionisation technique allows for measurement of most atmospheric-relevant compounds (with the notable exception of refractory matter such as sea salt, black carbon, metals and crustal matter). The downside of the hard ionisation applied is extensive fragmentation of sample molecules. However, the apparent loss of information in fragmentation can be partly offset by applying advanced statistical methods to extract information from the fragmentation patterns. In aerosol mass spectrometry statistical analysis methods, such as positive matrix factorization (PMF; Paatero, 1999) are usually applied for aerosol organic component only, to keep the number of factors to be resolved manageable, to retain the inorganic components for solution validation via correlation analysis, and to avoid inorganic species dominating the factor model. However, this practice smears out the interactions between organic and inorganic chemical components, and hinders the understanding of the connections between primary and

  5. Mechanical properties of uniaxial natural fabric Grewia tilifolia reinforced epoxy based composites: Effects of chemical treatment

    CSIR Research Space (South Africa)

    Jayaramudu, J

    2014-07-01

    Full Text Available The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix...

  6. Chemical composition of olive oils of the cultivar Colombaia

    Directory of Open Access Journals (Sweden)

    Zunin, P.

    2005-12-01

    Full Text Available The chemical composition of monovarietal olive oils from the cultivar Colombaia was studied. Free acidity, peroxide value and UV absorbance attested to the good quality of the analyzed oils. Their fatty acid composition appeared to be quite different from the typical fatty acid profile of olive oils from Liguria but met the limits reported in the EC Regulations for olive oils. On the contrary, the amounts of Δ7-stigmastenol were often higher than the 0.5 % limit set by EC Regulations and total ß-sitosterol was below the minimum 93 % limit. The composition of polar compounds and of the volatile fraction was representative of the peculiar organoleptic character of these oils. Thus, the anomalous sterol composition of the monovarietal oils from the cultivar Colombaia calls for blending with other oils. Moreover, the use of these oils for the production of PDO oils “Riviera Ligure” must also be carefully controlled because it changes their nutritional and sensorial featuresEn este trabajo se ha estudiado la composición química de aceites de oliva mono-varietales de la variedad Colombaia. La acidez libre, el índice de peróxidos y la absorción UV confirmaron la buena calidad de los aceites analizados. Su composición en ácidos grasos resultó bastante diferente del perfil típico de ácidos grasos de los aceites de oliva virgen de la región de Liguria, pero se mantuvo dentro de los límites establecidos por los Reglamentos EC para aceites de oliva. Por otro lado, las cantidades de Δ7-estigmastenol resultaron normalmente superiores al 0.5 % del límite fijado por los Reglamentos EC y el ß-sitosterol total fue inferior al 93 % del límite mínimo. La composición en compuestos polares y de la fracción volátil confirmó las características organolépticas peculiares de estos aceites. Por tanto, la composición esterólica anómala de los aceites mono-varietales de la variedad Colombaia hace necesaria una mezcla con otros

  7. Chemical bonding and charge density distribution analysis of undoped and lanthanum doped barium titanate ceramics

    Indian Academy of Sciences (India)

    J MANGAIYARKKARASI; R SARAVANAN; MUKHLIS M ISMAIL

    2016-12-01

    A-site deficient, Lanthanum substituted Ba1−xLa2x/3TiO3 (x=0.000, 0.005, 0.015, 0.020 and 0.025) ceramics have been synthesized by chemical route. The effects of lanthanum dopant on the BaTiO3 lattice and the electron density distributions in the unit cell of the samples were investigated. Structural studies suggested the reduction in cell parameters and shrinkage in cell volume with the increase in lanthanum content. Chemical bonding and electron density distributions were examined through high resolution maximum entropy method (MEM). The mid bond electron density values revealed the enhancement of covalent nature between titanium and oxygen ions and predominant ionic nature between barium and oxygen ions. Average grain sizes were estimated for the undoped and doped samples. SEM investigations showed the existence of smaller grains with large voids in between them.

  8. The high density region of QCD in a large mass and chemical potential model

    CERN Document Server

    De Pietri, R; Seiler, E; Stamatescu, I O; Pietri, Roberto De; Feo, Alessandra; Seiler, Erhard; Stamatescu, Ion-Olimpiu

    2005-01-01

    We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion. The model still acknowledges the sign problem peculiar to non-zero chemical potential, but it permits the development of refined algorithms which ensure a good overlap of the Monte Carlo ensemble with the true one. We review the main features of the model, including the most explicit form of the resumed expansion, and present calculations concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the diquark susceptibility, which may be used to characterize the various phases expected at high baryonic density.

  9. Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties

    National Research Council Canada - National Science Library

    Silva-Cristobal, L; Osorio-Díaz, P; Tovar, J; Bello-Pérez, L. A

    2010-01-01

    .... The cooked seeds of three Mexican pulses (black bean, chickpea, and lentil) were evaluated regarding their chemical composition, in vitro starch digestibility, polyphenols content and antioxidant capacity...

  10. Quantification of aerosol chemical composition using continuous single particle measurements

    Science.gov (United States)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis sulphate

  11. High-Tc superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Science.gov (United States)

    Bhadrakumari, S.; Predeep, P.

    2006-08-01

    A series of composite samples of YBa2Cu3O7-x and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  12. Composição química e digestibilidade 'in vitro' de silagens de milho com distintos teores de umidade e níveis de compactação Chemical composition and 'in vitro' digestibility of maize silages with different maturities and packing densities

    Directory of Open Access Journals (Sweden)

    Clóvis Clenio Diesel Senger

    2005-12-01

    , ocorrendo o inverso na fração B2. A fração C aumentou apenas nos tratamentos com 28 % MS. Não houve variação significativa tanto na DIVMS quanto na DIVMO das silagens em relação à forragem fresca.An experiment was carried out to evaluate the chemical composition and 'in vitro' digestibility of maize silages and their respective original materials, harvested at three maturities (20, 26 and 28 % DM, and ensiled with high or low packing density in a 3 x 2 factorial arrangement with six replicates. Protein and carbohydrate fractions were determined to supply mechanistic models of intake and performance predictions. Effluent was produced (61,2 liters ton-1 only in treatment with higher moisture and higher packing density. IVDMD varied from 46,2 to 57,9 %, and increased significantly with increasing DM level. IVOMD (44,5 - 54,2 % was smaller only in 20 % DM silages. Soluble crude protein (SCP ranged between 44,8 - 54,3 % of crude protein (CP, and NPN reached 67 - 91 % of SCP. NDIP was 16,2 - 25,1 % of CP and ADIP varied between 6,7 - 12,8 % of CP. The higher values of ADIP were obtained in silages with lower DM. Fraction A of carbohydrates varied between 5,3 - 10 % DM being significantly higher in 28 % DM silage with higher packing. B1 fraction (13,1 - 25,8 % DM increased significantly with increasing DM content. B2 fraction (40,2 - 50,3 % DM and were not affected with increasing DM content. Fraction C varied from 8,8 to 11,9 % DM. When silages were compared with original forages, an increasing level of ADIP and SCP, a decreasing level of NDIP and similar values for NPN as a percentage of SCP were observed, except in high packed 20 % DM silage. Within the carbohydrates fraction a decrease in fraction A content was observed for all treatments, except for the 28 % DM high packing density silage. An increasing level in B1 fraction in 26 and 28 % DM treatments, and similar values in 20 % DM were observed. The opposite was observed in B2 fraction. Fraction C increased only

  13. The Relationship of Culture Media Composition and Chemical Composition on Spirulina sp for Metal Ion Adsorbent

    Directory of Open Access Journals (Sweden)

    Hilda Zulkifli

    2016-12-01

    Full Text Available The analysis relationship of Spirulina sp medium with chemical composition has been conducted. Chemical analysis was performed using X-Ray Fluorescence analysis. Furthermore, potention of Spirulina sp as adsorbent of metal ions was analyzed using FTIR spectroscopy. The results showed that metals such as Zn, Fe, Mn, Ca, Cu, and Mo were mainly metals in Spirulina sp. These metals were not correlated with cultivated medium of Spirulina sp. Analysis of potention Spirulina sp as metal ions adsorbent showed that Spirulina sp has functional groups –C=O and –OH as ligand. Intercation of metal ions Cu(II and Cr(III with Spirulina sp indicated that metal ions bond to –C=O functional group.

  14. Effect of composition on the density of multi-component molten nitrate salts.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.

    2009-12-01

    The density of molten nitrate salts was measured to determine the effects of the constituents on the density of multi-component mixtures. The molten salts consisted of various proportions of the nitrates of potassium, sodium, lithium and calcium. Density measurements ere performed using an Archimedean method and the results were compared to data reported in the literature for the individual constituent salts or simple combinations, such as the binary Solar Salt mixture of NaNO3 and KNO3. The addition of calcium nitrate generally ncreased density, relative to potassium nitrate or sodium nitrate, while lithium nitrate decreased density. The temperature dependence of density is described by a linear equation regardless of composition. The molar volume, and thereby, density of multi-component mixtures an be calculated as a function of temperature using a linear additivity rule based on the properties of the individual constituents.

  15. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  16. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 (Mexico); Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Gázquez, José L., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340 (Mexico); Vela, Alberto, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx [Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), Av. Instituto Politécnico Nacional 2508, México, D.F. 07360 (Mexico)

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  17. Numerical simulation of isothermal chemical vapor infiltration process in fabrication of carbon-carbon composites by finite element method

    Institute of Scientific and Technical Information of China (English)

    李克智; 李贺军; 姜开宇

    2000-01-01

    The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material. Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict the process parameters, density, porosity, etc. According to the characteristics of CVI process, the basic principle of FEM and mass transport, the finite element model has been established. Incremental finite element equations and the elemental stiffness matrices have been derived for the first time. The finite element program developed by the authors has been used to simulate the ICVI process in fabrication of carbon-carbon composites. Computer color display of simulated results can express the densification and distributions of density and porosity in preform clearly. The influence of process parameters on the densification of prefo

  18. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  19. Chemical Composition of Urban Street Sediments and Its Sources

    Institute of Scientific and Technical Information of China (English)

    Cen Kuang; Hou Min; Thomas Neumann; Stefan Norra; Doris Stüben

    2004-01-01

    The distribution and the concentrations of various chemical elements in street sediments were investigated along a rural-urban boundary in Beijing, China. The statistical factor analysis of the data concerned identifies two anthropogenic sources responsible for the contamination of Beijing air. The first source is a steel factory in the western part of Beijing. From this source, Mn, Fe and Ti were emitted into the atmosphere through chimneys and by wind from coal heaps used as the primary energy source for the factory. The second source is a combination of traffic, domestic heating and some small factories in the center of Beijing urban area discharging Cu, Pb, Zn and Sn. Grain-size analyses show that most of the metals in the road dust have higher concentrations in the small grain-size fraction <0.125 mm, which is the severest case because these small particles with larger specific surface area and high heavy metal contents fly up easily and float in the air for a long time. Besides the anthropogenic contamination, such elements as Y, Zr, Nb, Ce and Rb are derived mainly both from natural soils and from the deserts. This is supported by mineral-phase analysis, which shows a clear imprint of materials in road dusts coming from the west China deserts. Our results clearly show that the chemical compositions of the urban road dusts can be used to identify distinctive sources responsible for the contamination mentioned above. The study shows that the chemistry of road dusts is an important monitor to assess the contamination in the urban environment.

  20. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    OpenAIRE

    2014-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + x M1 – x O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially re...

  1. Investigations of microphysical and chemical composition of aerosol in near-water layer of the atmosphere over the White Sea

    Science.gov (United States)

    Panchenko, Mikhail V.; Kozlov, Valerii S.; Pol'kin, Victor V.; Golobokova, Lyudmila P.; Pogodaeva, Tatyana V.; Khodzher, Tamara V.; Lisitzin, Alexander P.; Shevchenko, Vladimir P.

    2006-11-01

    The peculiarities of spatial-temporal variability of the submicron aerosol number density N Σ (cm -3), particle size distribution in the diameter range 0.4 to 10 μm, mass concentration of submicron aerosol Ma (μg/m 3) and the mass concentration of black carbon (soot, BC) Ms (μg/m 3), as well as chemical composition of particles (ion composition of aerosol soluble fraction) in different regions of White Sea are considered in this paper. The effect of continental and marine sources on formation of the near-water aerosol characteristics is estimated.

  2. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005

    NARCIS (Netherlands)

    Prank, M.; Sofiev, M.; Tsyro, S.; Hendriks, C.; Semeena, V.; Francis, X.V.; Butler, T.; Gon, H.D. van der; Friedrich, R.; Hendricks, J.; Kong, X.; Lawrence, M.; Righi, M.; Samaras, Z.; Sausen, R.; Kukkonen, J.; Sokhi, R.

    2016-01-01

    Four regional chemistry transport models were applied to simulate the concentration and composition of particulate matter (PM) in Europe for 2005 with horizontal resolution 20 km. The modelled concentrations were compared with the measurements of PM chemical composition by the European Monitoring

  3. Soursop (Annona muricata) vinegar production and its chemical compositions

    Science.gov (United States)

    Ho, Chin Wai; Lazim, Azwan Mat; Fazry, Shazrul; Zaki, Umi Kalsum Hj Hussain; Lim, Seng Joe

    2016-11-01

    Vinegar is a liquid product that undergoes double fermentations, which are alcoholic and acetous fermentation. Sugar source was converted to ethanol in alcoholic fermentation, meanwhile ethanol was oxidised to acetic acid during acetous fermentation. Soursop (Annona muricata) was the starting material in this study, as it is easily available in Malaysia. Its highly aromatic, juicy and distinctive flavours enables the production of high quality vinegar. The objective of this research is to produce good quality soursop vinegar as an innovative method to preserve and utilise the soursop fruit in Malaysia and to determine its chemical compositions. It was found that the sugar content reduces over time, and it is inversely proportional to the ethanol concentration, due to the production of ethanol from sugar. Acetic acid was also found to increase with increasing fermentation time. pH showed no significant difference (p>0.05) in the reduction of sugar and the production of ethanol. However, significantly higher (p 0.05) in Vitamin C contents in all soursop vinegar samples produced using different treatments.

  4. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  5. Chemical compositions of two different Thymus species essential oils

    Directory of Open Access Journals (Sweden)

    Samira Jaberi

    2015-06-01

    Full Text Available Thymus is one of the most important members of Lamiaceae family. Aerial parts of the plant have been widely used in medicine. It has been reported that most of these effects are related to phenolic compounds especially thymol and carvacrol in Thymus essential oil. In this study, aerial parts of Thymus daenensis and Thymus lancifolius were collected from Kohgiluyeh and Boyer-Ahmad, Iran. Essential oils of aerial parts of these plants were gained by the hydrodistillation method and the chemical compositions were analyzed by gas chromatography/ Mass spectrometry (GC/MS. The major components of the essential oil of T. daenensis were thymol (39.91%, carvacrol (29.93%, linalool (5.55%, caryophyllene (3.5% and geraniol (3.09%, whereas the major components of the essential oil of T. lancifolius were: carvacrol (25.55%, thymol (20.79%, linalool (16.8%, α-terpineol (6.34%, borneol (4.00%, caryophyllene (3.98%, p-cymene (3.38% and cis-linalool oxide (3.21%. Linalool was reported as another major component in T. lancifolius

  6. Chemical composition and quality of sweet sorghum and maize silages

    Directory of Open Access Journals (Sweden)

    Zbigniew PODKÓWKA

    2011-10-01

    Full Text Available Sweet sorghum (Sorghum saccharatum silage, maize (Zea mays silage, and sorghum and maize (1:1 silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88% in sorghum silage and the highest (37.45% in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre and acid detergent fibre were the highest in sorghum silage and the lowest in maize silage. The silages were dominated by lactic acid, with trace amounts of butyric acid. Maize silage was higher lactic acid and higher total acids than others. All silages were of very good quality according to Flieg-Zimmer scale. Silage pH ranged from 4.20 to 4.31. Sorghum silage was characterized by higher aerobic stability (81h compared to the other silages from maize (74h and sorghum and maize 1:1 (69h.

  7. Chemical composition of biomass from tall perennial tropical grasses

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M. [Univ. of Florida, Gainesville, FL (United States); Stricker, J.A. [Polk County Extension Office, Bartow, FL (United States); Anderson, D.L. [Everglades Research and Education Center, Belle Glade, FL (United States)] [and others

    1995-11-01

    The tall perennial tropical grasses, elephantgrass (Pennisetum purpureum Schum.), sugarcane and energycane (Saccharum sp.) and erianthus (Erianthus arundenaceum (Retz) Jesw.) have given very high oven dry biomass yields in Florida and the warm Lower South USA. No good complete analyses of the chemical composition of these grasses for planning potential energy use was available. We sampled treatments of several tall grass demonstrations and experiments containing high-biomass yielding genotypes of the above tall grass crops at several locations in Florida over the two growing seasons, 1992 and 1993. These samples were analyzed for crude protein, NDF, ADF, cellulose, hemicellulose, lignin, and IVDMD or IVOMD. The analysis for the above constituents are reported, along with biomass yields where available, for the tall grass accessions in the various demonstrations and experiments. Particular attention is given to values obtained from the high-yielding tall grasses grown on phosphatic clays in Polk County, FL, the area targeted by a NREL grant to help commercialize bioenergy use from these crops.

  8. Chemical composition and antibacterial activity of Gongronema latifolium

    Institute of Scientific and Technical Information of China (English)

    ELEYINMI Afolabi F.

    2007-01-01

    Chemical composition of Gongronema latifolium leaves was determined using standard methods. Aqueous and methanol G. latifolium extracts were tested against thirteen pathogenic bacterial isolates. Crude protein, lipid extract, ash, crude fibre and nitrogen free extractives obtained are: 27.2%, 6.07%, 11.6%, 10.8% and 44.3% dry matter respectively. Potassium,sodium, calcium, phosphorus and cobalt contents are 332, 110, 115, 125 and 116 mg/kg respectively. Dominant essential amino acids are leucine, valine and phenylalanine. Aspartic acid, glutamic acid and glycine are 13.8%, 11.9% and 10.3% respectively of total amino acid. Saturated and unsaturated fatty acids are 50.2% and 39.4% of the oil respectively. Palmitic acid makes up 36% of the total fatty acid. Extracts show no activity against E. faecalis, Y. enterolytica, E. aerogenes, B. cereus and E. agglomerans.Methanol extracts were active against S. enteritidis, S. cholerasius ser typhimurium and P. aeruginosa (minimum inhibitory concentration (MIC) 1 mg; zone of growth inhibition 7, 6.5 and 7 mm respectively). Aqueous extracts show activity against E. coli (MIC 5 mg) and P. aeruginosa (MIC 1 mg) while methanol extracts are active against P. aeruginosa and L. monocytogenes. G.latifolium has potential food and antibacterial uses.

  9. Tea tree oil: contact allergy and chemical composition.

    Science.gov (United States)

    de Groot, Anton C; Schmidt, Erich

    2016-09-01

    In this article, contact allergy to, and the chemical composition of, tea tree oil (TTO) are reviewed. This essential oil is a popular remedy for many skin diseases, and may be used as neat oil or be present in cosmetics, topical pharmaceuticals and household products. Of all essential oils, TTO has caused most (published) allergic reactions since the first cases were reported in 1991. In routine testing, prevalences of positive patch test reactions have ranged from 0.1% to 3.5%. Nearly 100 allergic patients have been described in case reports and case series. The major constituents of commercial TTO are terpinen-4-ol, γ-terpinene, 1,8-cineole, α-terpinene, α-terpineol, p-cymene, and α-pinene. Fresh TTO is a weak to moderate sensitizer, but oxidation increases its allergenic potency. The major sensitizers appear to be ascaridole, terpinolene, α-terpinene, 1,2,4-trihydroxymenthane, α-phellandrene, and limonene. The clinical picture of allergic contact dermatitis caused by TTO depends on the products used. Most reactions are caused by the application of pure oil; cosmetics are the culprits in a minority of cases. Patch testing may be performed with 5% oxidized TTO. Co-reactivity to turpentine oil is frequent, and there is an overrepresentation of reactions to fragrance mix I, Myroxylon pereirae, colophonium, and other essential oils.

  10. Chemical composition and antigenotoxic properties of Lippia alba essential oils

    Directory of Open Access Journals (Sweden)

    Molkary Andrea López

    2011-01-01

    Full Text Available The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS analysis. The major compounds encountered being citral (33% geranial and 25% neral, geraniol (7% and trans-β-caryophyllene (7% for L. alba specimen COL512077, and carvone (38%, limonene (33% and bicyclosesquiphellandrene (8% for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.

  11. Brazilian kefir: structure, microbial communities and chemical composition

    Directory of Open Access Journals (Sweden)

    Karina Teixeira Magalhães

    2011-06-01

    Full Text Available Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5% were the major isolated group identified, followed by yeasts (30.6% and acetic acid bacteria (8.9%. Lactobacillus paracasei (89 isolates, Lactobacillus parabuchneri (41 isolates, Lactobacillus casei (32 isolates, Lactobacillus kefiri (31 isolates, Lactococcus lactis (24 isolates, Acetobacter lovaniensis (32 isolates, Kluyveromyces lactis (31 isolates, Kazachstania aerobia (23 isolates, Saccharomyces cerevisiae (41 isolates and Lachancea meyersii (15 isolates were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.

  12. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  13. Anisotropy vs chemical composition at ultra-high energies

    CERN Document Server

    Lemoine, Martin

    2009-01-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E_{thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E_{thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55EeV is not a statistical accident, and that no significant anisotropy has been observed at energies 10^{45}Z^{-2}erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data...

  14. Brazilian kefir: structure, microbial communities and chemical composition

    Science.gov (United States)

    Magalhães, Karina Teixeira; de Melo Pereira, Gilberto Vinícius; Campos, Cássia Roberta; Dragone, Giuliano; Schwan, Rosane Freitas

    2011-01-01

    Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5%) were the major isolated group identified, followed by yeasts (30.6%) and acetic acid bacteria (8.9%). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml. PMID:24031681

  15. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    Science.gov (United States)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  16. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  17. Chemical compositions of precipitation and scavenging of particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    HU Min; ZHANG Jing; WU Zhijun

    2005-01-01

    Totally 23 precipitation samples were collected in Beijing from May to November in 2003. In order to investigate the chemical composition of precipitation samples, pH, conductivity, concentrations of water-soluble ions and organic acids were analyzed. The average pH of precipitations is 6.18, belonging to the neutral range; the average conductivity is 52.23 (S/cm, which indicates that precipitations in Beijing are obviously polluted; are the most abundant anions with the average concentrations of 521 and 174 μeq·L-1, respectively; the average equivalent ratio is 3.1, which decreases by about 15% compared with the result of 1994; and Ca2+ are the most abundant cations with the average concentrations of 376 and 397 μeq·L-1, respectively; formic acid, acetic acid and oxalic acid are the main organic acids with the average concentrations of 4.62, 4.60 and 1.17 μeq·L-1, respectively, accounting for 2% of the overall anions. Obvious differences between concentrations before and after precipitation are also observed by SJAC (Steam Jet Aerosol Collector), which shows the removal of particles from the atmosphere by precipitation.

  18. Microbial population, chemical composition and silage fermentation of cassava residues.

    Science.gov (United States)

    Napasirth, Viengsakoun; Napasirth, Pattaya; Sulinthone, Tue; Phommachanh, Kham; Cai, Yimin

    2015-09-01

    In order to effectively use the cassava (Manihot esculenta Crantz) residues, including cassava leaves, peel and pulp for livestock diets, the chemical and microbiological composition, silage preparation and the effects of lactic acid bacteria (LAB) inoculants on silage fermentation of cassava residues were studied. These residues contained 10(4) to 10(5) LAB and yeasts, 10(3) to 10(4) coliform bacteria and 10(4) aerobic bacteria in colony forming units (cfu) on a fresh matter (FM) basis. The molds were consistently at or below the detectable level (10(2) cfu of FM) in three kinds of cassava residues. Dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) content of cassava residues were 17.50-30.95%, 1.30-16.41% and 25.40-52.90% on a DM basis, respectively. The silage treatments were designed as control silage without additive (CO) or with LAB inoculants Chikuso-1 (CH, Lactobacillus plantarum) and Snow Lacto (SN, Lactobacillus rhamnosus) at a rate of 5 mg/kg of FM basis. All silages were well preserved with a low pH (below 4.0) value and when cassava residues silage treated with inoculants CH and SN improved fermentation quality with a lower pH, butyric acid and higher lactic acid than control silage.

  19. Chemical composition and antigenotoxic properties of Lippia alba essential oils.

    Science.gov (United States)

    López, Molkary Andrea; Stashenko, Elena E; Fuentes, Jorge Luis

    2011-07-01

    The present work evaluated the chemical composition and the DNA protective effect of the essential oils (EOs) from Lippia alba against bleomycin-induced genotoxicity. EO constituents were determined by Gas Chromatography/Mass Spectrometric (GC-MS) analysis. The major compounds encountered being citral (33% geranial and 25% neral), geraniol (7%) and trans-β-caryophyllene (7%) for L. alba specimen COL512077, and carvone (38%), limonene (33%) and bicyclosesquiphellandrene (8%) for the other, COL512078. The genotoxicity and antigenotoxicity of EO and the compounds citral, carvone and limonene, were assayed using the SOS Chromotest in Escherichia coli. The EOs were not genotoxic in the SOS chromotest, but one of the major compound (limonene) showed genotoxicity at doses between 97 and 1549 mM. Both EOs protected bacterial cells against bleomycin-induced genotoxicity. Antigenotoxicity in the two L. alba chemotypes was related to the major compounds, citral and carvone, respectively. The results were discussed in relation to the chemopreventive potential of L. alba EOs and its major compounds.

  20. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    Science.gov (United States)

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at Pcontemporary and ballet dancers had lower body fat percentages than controls (Pdance type and more scientific methods of dance training are needed.

  1. Chemically produced tungsten–praseodymium oxide composite sintered by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiao-Yu [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai-Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Engineering Research Center of Powder Metallurgy of Anhui Province, Hefei 230009 (China); Lu, Ze-Long [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Engineering Research Center of Powder Metallurgy of Anhui Province, Hefei 230009 (China)

    2014-11-15

    Highlights: • Wet chemical method was used to prepare highly uniform Pr{sub 2}O{sub 3} doped W–Pr{sub 2}O{sub 3} powder. • The Pr{sub 2}O{sub 3} particles significantly refine the grain size of tungsten alloy. • The tensile strength of Pr{sub 2}O{sub 3}/W samples were higher than those of pure W samples. - Abstract: Pr{sub 2}O{sub 3} doped W composite were synthesized by a novel wet chemical method and spark plasma sintering. The grain size, relative density and the Vicker hardness HV{sub 0.2} of Pr{sub 2}O{sub 3}/W samples were 4 μm, 98.3% and 377.2, respectively. The tensile strength values of Pr{sub 2}O{sub 3}/W were higher than those of pure W. As the temperature rises from 25 °C to 800 °C, the conductivity of pure W and W–1 wt% Pr{sub 2}O{sub 3} composites decreased with the same trend, was above 150 W/m K.

  2. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.

  3. A density functional theory-based chemical potential equalisation approach to molecular polarizability

    Indian Academy of Sciences (India)

    Amita Wadehra; Swapan K Ghosh

    2005-09-01

    The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.

  4. Predicting Chemical Reactivity from the Charge Density through Gradient Bundle Analysis: Moving beyond Fukui Functions.

    Science.gov (United States)

    Morgenstern, Amanda; Wilson, Timothy R; Eberhart, M E

    2017-06-08

    Predicting chemical reactivity is a major goal of chemistry. Toward this end, atom condensed Fukui functions of conceptual density functional theory have been used to predict which atom is most likely to undergo electrophilic or nucleophilic attack, providing regioselectivity information. We show that the most probable regions for electrophilic attack within each atom can be predicted through analysis of gradient bundle volumes, a property that depends only on the charge density of the neutral molecules. We also introduce gradient bundle condensed Fukui functions to compare the stereoselectivity information obtained from gradient bundle volume analysis. We demonstrate this method using the test set of molecular fluorine, oxygen, nitrogen, carbon monoxide, and hydrogen cyanide.

  5. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Science.gov (United States)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  6. Seminar for hydrocarbon detection with composite geophysical/geo-chemical techniques

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    “Seminar for hydrocarbon detection with composite geophy sical/geo-chemical techniques”,jointly organized by China petroleum Exploration & Production Company and Exploration Geophysical Committee of CGS and supported by the Composite Geophysical/geo-chemical Departement of Oriental Geophysical Company and China Exploration&Development Research Instiute,

  7. Chemical composition analysis of simulated waste glass T10-G-16A

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  8. α MnMoO₄/graphene hybrid composite: high energy density supercapacitor electrode material.

    Science.gov (United States)

    Ghosh, Debasis; Giri, Soumen; Moniruzzaman, Md; Basu, Tanya; Mandal, Manas; Das, Chapal Kumar

    2014-07-28

    A unique and cost effective hydrothermal procedure has been carried out for the synthesis of hexahedron shaped α MnMoO4 and its hybrid composite with graphene using three different weight percentages of graphene. Characterization techniques, such as XRD, Raman and FTIR analysis, established the phase and formation of the composite. The electrochemical characterization of the pseudocapacitive MnMoO4 and the MnMoO4/graphene composites in 1 M Na2SO4 displayed highest specific capacitances of 234 F g(-1) and 364 F g(-1), respectively at a current density of 2 A g(-1). Unlike many other pseudocapacitive electrode materials our prepared materials responded in a wide range of working potentials of (-)1 V to (+)1 V, which indeed resulted in a high energy density without substantial loss of power density. The highest energy densities of 130 Wh kg(-1) and 202.2 Wh kg(-1) were achieved, respectively for the MnMoO4 and the MnMoO4/graphene composite at a constant power delivery rate of 2000 W kg(-1). The synergistic effect of the graphene with the pseudocapacitive MnMoO4 caused an increased cycle stability of 88% specific capacitance retention after 1000 consecutive charge discharge cycles at 8 A g(-1) constant current density, which was higher than the virgin MnMoO4 with 84% specific capacitance retention.

  9. On the relation between chemical composition and optical properties of detonation nanodiamonds

    KAUST Repository

    Kirmani, Ahmad R.

    2015-06-23

    The morphology and presence of impurities strongly influence mechanical, optical, electrical, and thermal properties of detonation nanodiamonds (DNDs). Here we report insights on the chemical composition and its effect on the optical properties of the DNDs obtained by rate-zonal density gradient ultracentrifugation. Herein, for the first time, a detailed valence band structure of as-prepared and oxidized DNDs is reported. Photoemission spectroscopy (PES) measurements demonstrate that the defects, originating from fullerene-like C bonding in the sp2 shells of the DNDs, are governing the literature-reported loss of the emission spectral features arising from the nitrogen-vacancy (NV) center excitations. X-ray photoelectron spectroscopy (XPS) measurements reveal that nitrogen is present in the DNDs in the form of N–O bonded species located at the surface region/sp2 shells, while in core of the DND it is in the form of N–C/N=C species.

  10. Chemical composition of tomato (Solanum lycopersicum) stalk and suitability in the particleboard production.

    Science.gov (United States)

    Guuntekin, Ergun; Uner, Birol; Karakus, Beyhan

    2009-09-01

    This study examined chemical composition of tomato stalks and their possible feasibility in the production of particleboard. Three-layer experimental particleboards with density of 0.53, 0.63, and 0.73 g cm(-3) were manufactured from tomato stalks using certain ratios of urea formaldehyde (UF) and melamine urea formaldehyde (MUF) adhesives. Modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), thickness swelling (TS) properties of the boards were evaluated, and a statistical analysis was performed in order to examine possible feasibility of these stalks in commercial particleboard manufacturing. The experimental results have shown that production of general purpose particleboard used in dry conditions using tomato stalks is technically viable. The results of the study demonstrate that tomato stalks can be an alternative raw material source for particleboard industry. Use of agricultural waste such as tomato stalk can help solving waste management problems and contribute conservation of natural resources.

  11. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Golden yellow rare earths chemical conversion coating was obtained on the surface of magnesium alloy by immersing in cerium sulfate solution.The corrosion resistance of RE conversion coating was evaluated using immersion test and potentiodynamic polarization measurements in 3.5%NaCl solution.The morphologies of samples before corrosion and after corrosion were observed by SEM.The structures and compositions of the RE conversion coating were studied by means of XPS.XRD and IR.The results show that,the conversion coating consists of mainly two kinds of element Ce and O,the valences of cerium are+3 and+4.and OH exists in the coating.The anti-corrosion property of magnesium alloy is increased obviously by rare earths conversion coating,Its self-corrosion current density decreases and the coating has self-repairing capability in the corrosion process in 3.5%NaCl solution.

  12. High Density Hydrogen Storage in Metal Hydride Composites with Air Cooling

    OpenAIRE

    Dieterich, Mila; Bürger, Inga; Linder, Marc

    2015-01-01

    INTRODUCTION In order to combine fluctuating renewable energy sources with the actual demand of electrical energy, storages are essential. The surplus energy can be stored as hydrogen to be used either for mobile use, chemical synthesis or reconversion when needed. One possibility to store the hydrogen gas at high volumetric densities, moderate temperatures and low pressures is based on a chemical reaction with metal hydrides. Such storages must be able to absorb and desorb the hydrogen qu...

  13. Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Mihai V., E-mail: mvputz@cbg.uvt.ro [Laboratory of Physical and Computational Chemistry, Chemistry Department, West University of Timisoara, Str. Pestalozzi No. 16, 300115 Timisoara, Romania and Theoretical Physics Institute, Free University Berlin, Arnimallee 14, 14195 Berlin (Germany)

    2015-01-22

    Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registered either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.

  14. A Molecular Electron Density Theory Study of the Chemical Reactivity of Cis- and Trans-Resveratrol.

    Science.gov (United States)

    Frau, Juan; Muñoz, Francisco; Glossman-Mitnik, Daniel

    2016-12-01

    The chemical reactivity of resveratrol isomers with the potential to play a role as inhibitors of the nonenzymatic glycation of amino acids and proteins, both acting as antioxidants and as chelating agents for metallic ions such as Cu, Al and Fe, have been studied by resorting to the latest family of Minnesota density functionals. The chemical reactivity descriptors have been calculated through Molecular Electron Density Theory encompassing Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices, the dual descriptor f ( 2 ) ( r ) and the electrophilic and nucleophilic Parr functions. The validity of "Koopmans' theorem in DFT" has been assessed by means of a comparison between the descriptors calculated through vertical energy values and those arising from the HOMO and LUMO values.

  15. ChemicalVia: a CERN-patented technology for use in high-density circuits

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    High-density multilayer printed circuits such as those pictured here are found in miniaturized modern equipment from video cameras to mobile phones. Adjacent layers in these circuits are electrically connected by microvias, consisting of a small-diameter hole (usually 50 µm) with a thin metal-deposited surface covering their cylindrical walls to ensure local conductivity between the two layers. ChemicalVia is a new method, patented by CERN, to make microvias on high-density multilayer printed circuits using chemicals rather than complex laser, plasma or photoimaging technology. The process is compatible with all standard printed-circuit assembly lines, and has the advantages of low initial investment and reduced manufacturing costs. http://www.cern.ch/ttdatabase

  16. High-density polyethylene-based composites with pressure-treated wood fibers

    Directory of Open Access Journals (Sweden)

    Lu Shang

    2012-11-01

    Full Text Available High-Density Polyethylene (HDPE-based composites with alkaline copper quaternary (ACQ- and micronized copper quaternary (MCQ-treated wood fibers were manufactured through injection molding. The mechanical properties, water absorption, and biological resistance properties of the fabricated composites with different coupling treatments were investigated. Composites with ACQ- and MCQ-treated wood had mechanical properties comparable with those made of untreated wood. The different coupling agents worked well for the treated wood materials. Similar water absorption behaviors were observed for the HDPE composites containing treated wood and those containing untreated wood. The results of the termite test showed that the composites containing untreated wood had slightly more weight loss. The decay test revealed that the composites containing treated wood had less decay fungal growth on the surfaces, compared with samples from untreated wood, indicating enhanced decay resistance for the composites from the treated material. The stable mechanical properties and improved biological performances of the composites containing treated wood demonstrated the feasibility of making wood-plastic composites with pressure-treated wood materials, and thus offered a practical way to recycle treated wood into value-added composites.

  17. Research on the suitability of organosolv semi-chemical triticale fibers as reinforcement for recycled HDPE composites

    Directory of Open Access Journals (Sweden)

    Nour-Eddine El Mansouri

    2012-11-01

    Full Text Available The main objective of this research was to study the feasibility of incorporating organosolv semi-chemical triticale fibers as the reinforcing element in recycled high density polyethylene (HDPE. In the first step, triticale fibers were characterized in terms of chemical composition and compared with other biomass species (wheat, rye, softwood, and hardwood. Then, organosolv semi-chemical triticale fibers were prepared by the ethanolamine process. These fibers were characterized in terms of its yield, kappa number, fiber length/diameter ratio, fines, and viscosity; the obtained results were compared with those of eucalypt kraft pulp. In the second step, the prepared fibers were examined as a reinforcing element for recycled HDPE composites. Coupled and non-coupled HDPE composites were prepared and tested for tensile properties. Results showed that with the addition of the coupling agent maleated polyethylene (MAPE, the tensile properties of composites were significantly improved, as compared to non-coupled samples and the plain matrix. Furthermore, the influence of MAPE on the interfacial shear strength (IFSS was studied. The contributions of both fibers and matrix to the composite strength were also studied. This was possible by the use of a numerical iterative method based on the Bowyer-Bader and Kelly-Tyson equations.

  18. Studies on tautomerism in tetrazole: comparison of Hartree Fock and density functional theory quantum chemical methods

    Science.gov (United States)

    Mazurek, A. P.; Sadlej-Sosnowska, N.

    2000-11-01

    A comparison of the ab initio quantum chemical methods: Hartree-Fock (HF) and hybrid density functional theory (DFT)/B3LYP for the treatment of tautomeric equilibria both in the gas phase and in the solution is made. The solvent effects were investigated in terms of the self-consistent reaction field (SCRF). Ionization potentials (IP), calculated by DFT/B3LYP, are also compared with those calculated previously within the HF frame.

  19. RESEARCH REGARDING THE CHEMICAL COMPOSITION AT VINEGAR TYPES

    OpenAIRE

    Liviu Giurgiulescu; Olimpia Mihaela Hoban

    2009-01-01

    In this article are presented some physico-chemical applied vinegar, to see some chemical properties of vinegar suchas total acidity, volatile and fixed, by colorimetric determination of iron content in the vinegar, the extract andresidue determination dry.

  20. Brazilian Propolis: Correlation between Chemical Composition and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Kelly Salomão

    2008-01-01

    Full Text Available The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp, B (B. dracunculifolia and C (Araucaria spp. Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM and 3-(4-hydroxy-3-(oxo-butenyl-phenylacrylic acid (DHCA1 and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4 and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN. When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF and dicaffeoylquinic acid 3 (CAFQ3, of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2 and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis.

  1. Chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Several natural compounds have been identified for the treatment ofleishmaniasis. Due to a few safe drugs and the side effects caused by available chemotherapy, some new drugs for treatment of leishmaniasis are requested.  The genus Pulicaria (Asteraceae is represented in the flora of Iran by five species. Phytochemical studies on Pulicaria species have revealed some flavonoids and terpenoids with leishmanicidal activity. In the present investigation chemical composition and leishmanicidal activity of Pulicaria gnaphalodes essential oil have been studied. Methods: The essential oil of the aerial parts of the plant was obtained by Clevenger apparatus and was analyzed by GC/MS. Antileishmanil activity was assessed against promastigoes of Leishmania major. Results:The major components from P. gnaphalodes essential oil have been reported to be geraniol, 1,8-cineole, chrysanthenone, α-pinene, chrystanthenone, α-terpineol and filifolone. The alcohol monoterpenes with contribution of 25.04% constituted the major portion of the essential oil, while hydrocarbon monoterpenes and hydrocarbon sesquiterpenes with contribution of 7.08% and 2.38%, respectively occupied the next rates.In the present experiment the essential oil of P. gnaphalodes progressively inhibited Leishmania major growth in concentrations ranging from 0.125 to 50 µL/mL (parasite culture in 24 h. The essential oil at 50 µL/mL eliminated the promastigotes at the beginning of treatment. It showed antileishmanial activity in concentration of 1.06 µL/mL and destroyed all parasits in 24 h.  Conclusion: Pulicaria gnaphalodes antileishmanial activity, could suggest the species and constituents as possible lead structures for antileishmanial drug discovery.

  2. Chemical composition and antioxidant activity of berry fruits

    Directory of Open Access Journals (Sweden)

    Stajčić Slađana M.

    2012-01-01

    Full Text Available The main chemical composition, contents of total phenolic (TPh, total flavonoid (TF, and total monomeric anthocyianin (TMA, as well as the antioxidant activity of two raspberry cultivars (Meeker and Willamette, two blackberry cultivars (Čačanska bestrna and Thornfree and wild bilberry were studied. The raspberry cultivars had the highest total solids among fruits investigated. Bilberry fruits had the highest sugar-to-acid ratio. Blackberry fruits were richer in crude fibers (cellulose in comparison to raspberry and bilberry fruits. The content of pectic substances was highest in the bilberry. Also, bilberry had a highest content of TPh (808.12 mg GAE/100 g FW, TF (716.31 mg RE/100 g FW and TMA (447.83 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as the EC50 value (in mg of fresh weight of berry fruit per ml of the reaction mixture, of bilberry (0.3157 ± 0.0145 mg/ml was the highest. These results also showed that the antioxidant value of 100 g FW bilberry, raspberry - Willamette, raspberry - Meeker, blackberry - Čačanska bestrna and blackberry - Thornfree is equivalent to 576.50 mg, 282.74 mg, 191.58 mg, 222.28 mg and 272.01 mg of vitamin C, respectively. There was a significant positive correlation between the antioxidant activities and content of total phenolics (RTPh 2=0.9627, flavonoids (RTF 2=0.9598 and anthocyanins (RTMA 2=0.9496 in berry fruits. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  3. Chemical composition of buckwheat plant parts and selected buckwheat products

    Directory of Open Access Journals (Sweden)

    Petra Vojtíšková

    2014-11-01

    Full Text Available Chemical composition plant parts (roots, stalks, leaves, blossoms of common buckwheat (Fagopyrum esculentum Moench and selected products made from its seeds (peels, whole seed, wholemeal flour, broken seeds, crunchy products Natural and Cocoa, flour, and pasta was determined. Samples were dried and ground to a fine powder. All analyses were performed according to the Commission Regulation no. 152/2009, while rutin concentration was determined by the modified HPLC method. The lowest content of moisture was found in roots (4.3% and in peels (almost 8% and the highest moisture (nearly 11% was discovered in seeds. The lowest amount of crude protein (3.5% was found in peels, the highest crude protein amount (>13% in both flours and leaves (23%. The starch content (>50% in dry matter differs from one sample to another. Only in peels the content of starch was about 3.5%. From all examined samples, the lowest content of fat was found in crunchy products Cocoa, 1.7%. The lowest amount of histidine was determined in all studied samples, except peels, the highest content of glutamic acid was determined in almost all samples, except peels. Whole-meal flour is very rich source of Ca and Fe. The content of these elements was 1172 mg.kg-1 and 45.9 mg.kg-1, respectively. On the other hand, the highest content of Pb (>1 mg.kg-1 was found in broken seeds. The greatest concentration of rutin was determined in blossoms and leaves (83.6 and 69.9 mg.g-1, respectively. On the other hand, the lowest concentrations of rutin were found in buckwheat products (generally less then 1 mg.g-1, i.e. in wholemeal flour, 702 μg.kg-1, the lowest almost 10 μg.kg-1 in pasta.

  4. The effect of ultrasonic pre-treatment on nucleation density of chemical vapor deposition diamond

    Science.gov (United States)

    Tang, Chi; Ingram, David C.

    1995-11-01

    Using statistical design of experiments, the effect of ultrasonic pre-treatment on the nucleation density of diamond was studied. The parameters investigated included ultrasonic excitation power, concentration of diamond powder in water, duration of ultrasonic excitation, and duration of cleaning with water after ultrasonic excitation. Diamond films were deposited on silicon (100) substrates using microwave assisted plasma chemical vapor deposition. The nucleation density varied from 106 nuclei/cm2 to 109 nuclei/cm2. The results illustrated that the dominant effect in ultrasonic pre-treatment was seeding. Moreover, scratches caused by the seeds during the treatment enabled more seeds to be retained on the surface. Based on these results, an optimized ultrasonic pretreatment has been developed. The new procedure yields a uniform nucleation density of 109 nuclei/cm2 on silicon (100) substrates.

  5. Role of initial cell density of algal bioassay of toxic chemicals.

    Science.gov (United States)

    Singh, Prashant Kumar; Shrivastava, Alok Kumar

    2016-07-01

    A variety of toxicants such as, metal ions, pesticides, dyes, etc. are continuously being introduced anthropogenically in the environment and adversely affect to the biotic component of the ecosystem. Therefore, the assessment of negative effects of these toxicants is required. However, toxicity assessment anticipated by chemical analysis are extremely poor, therefore the application of the living systems for the same is an excellent approach. Concentration of toxicant as well as cell density both influenced the result of the algal toxicity assay. Here, Scenedesmus sp, a very fast growing green microalgae was selected for study the effects of initial cell densities on the toxicity of Cu(II), Cd(II), Zn(II), paraquat and 2,4-D. Results demonstrated concentration dependent decrease in biomass and specific growth rate of Scenedesmus sp. on exposure of abovesaid toxicants. Paraquat and 2,4-D emerged as extremely toxic to the test alga which reflected from the lowest EC value and very steep decline in biomass was evident with increasing concentration of paraquat and 2,4-D in the medium. Result also demonstrated that initial cell density is a very important parameter than specific growth rate for algal bioassay of various toxicants. Present study clearly illustrated that the use of smaller cell density is always recommended for assaying toxicity of chemicals in algal assays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hybrid density functional study on lattice vibration, thermodynamic properties, and chemical bonding of plutonium monocarbide

    Science.gov (United States)

    Rong, Yang; Bin, Tang; Tao, Gao; BingYun, Ao

    2016-06-01

    Hybrid density functional theory is employed to systematically investigate the structural, magnetic, vibrational, thermodynamic properties of plutonium monocarbide (PuC and PuC0.75). For comparison, the results obtained by DFT, DFT + U are also given. For PuC and PuC0.75, Fock-0.25 hybrid functional gives the best lattice constants and predicts the correct ground states of antiferromagnetic (AFM) structure. The calculated phonon spectra suggest that PuC and PuC0.75 are dynamically stable. Values of the Helmholtz free energy ΔF, internal energy ΔE, entropy S, and constant-volume specific heat C v of PuC and PuC0.75 are given. The results are in good agreement with available experimental or theoretical data. As for the chemical bonding nature, the difference charge densities, the partial densities of states and the Bader charge analysis suggest that the Pu-C bonds of PuC and PuC0.75 have a mixture of covalent character and ionic character. The effect of carbon vacancy on the chemical bonding is also discussed in detail. We expect that our study can provide some useful reference for further experimental research on the phonon density of states, thermodynamic properties of the plutonium monocarbide. Project supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

  7. Dileptons from a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density

    Institute of Scientific and Technical Information of China (English)

    GUAN Na-Na; HE Ze-Jun; LONG Jia-Li; CAI Xiang-Zhou

    2008-01-01

    We perform a complete calculation for the delepton production from the processes q(q-) →l(l-), Compton-like (qg→ql(l-),(q-)g→ql(l-)), q(q-)→gl(l-), gluon fusion g(g-)→c(c-), annihilation q(q-)→c(c-) as well as multiple scattering of quarks in a chemically equilibrating quark-gluon plasma system at finite baryon density. It is found that quark-antiquark annihilation,Compton-like, gluon fusion and multiple scattering of quarks give important contribution. Moreover, the increase of the quark phase life-time with increasing initial quark chemical potential makes the dilepton yield as an increasing function of the initial quark chemical potential.

  8. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    Science.gov (United States)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  9. Higher dimensional bipartite composite systems with the same density matrix: separable, free entangled, or PPT entangled?

    Science.gov (United States)

    Cheng, Wei; Xu, Fang; Li, Hua; Wang, Gang

    2014-04-01

    Given the density matrix of a bipartite quantum state, could we decide whether it is separable, free entangled, or PPT entangled? Here, we give a negative answer to this question by providing a lot of concrete examples of density matrices, some of which are well known. We find that both separability and distillability are dependent on the decomposition of the density matrix. To be more specific, we show that if a given matrix is considered as the density operators of different composite systems, their entanglement properties might be different. In the case of density matrices, we can look them as both and bipartite quantum states and show that their entanglement properties (i.e., separable, free entangled, or PPT entangled) are completely irrelevant to each other.

  10. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  11. Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors

    Directory of Open Access Journals (Sweden)

    Christian P. Deck

    2013-01-01

    Full Text Available Silicon carbide fiber/silicon carbide matrix (SiC-SiC composites exhibit remarkable material properties, including high temperature strength and stability under irradiation. These qualities have made SiC-SiC composites extremely desirable for use in advanced nuclear reactor concepts, where higher operating temperatures and longer lives require performance improvements over conventional metal alloys. However, fabrication efficiency advances need to be achieved. SiC composites are typically produced using chemical vapor infiltration (CVI, where gas phase precursors flow into the fiber preform and react to form a solid SiC matrix. Forced flow CVI utilizes a pressure gradient to more effectively transport reactants into the composite, reducing fabrication time. The fabrication parameters must be well understood to ensure that the resulting composite has a high density and good performance. To help optimize this process, a computer model was developed. This model simulates the transport of the SiC precursors, the deposition of SiC matrix on the fiber surfaces, and the effects of byproducts on the process. Critical process parameters, such as the temperature and reactant concentration, were simulated to identify infiltration conditions which maximize composite density while minimizing the fabrication time.

  12. Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.

    1998-01-01

    Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels we

  13. Algorithms for density and composition-discrimination imaging for fourth-generation CT systems.

    Science.gov (United States)

    Busono, P; Hussein, E M

    1999-06-01

    This paper shows that if the off-beam idle detectors in the detection ring of a fourth-generation x-ray computed tomography (CT) system are used to measure the scattered radiation, it is numerically feasible to reconstruct electron-density images to supplement the conventional attenuation-coefficient images of transmitted radiation. It is also shown that by combining these two images, composition changes can be detected with the aid of an effective-atomic-number indicator. The required image-reconstruction algorithms are developed and tested against Monte Carlo simulated measurements, for a variety of phantom configurations. In spite of the relatively poor statistical quality of scattering measurements, it is demonstrated that electron-density images of reasonable quality can be obtained. In addition, it is shown that composition discrimination is possible for materials of effective atomic number greater than five, in the photon energy range of a typical medical x-ray CT system operating at 102 kVp. The obtained supplementary electron-density and composition images can be useful in radiotherapy planning and for studying tumour histology, as well as in industrial and security applications where identification of materials based on density and composition is important.

  14. Dislocation-density based description of the deformation of a composite material

    Science.gov (United States)

    Schulz, K.; Sudmanns, M.; Gumbsch, P.

    2017-09-01

    Composite materials consisting of hard particles in a ductile metallic matrix are of major interest since their strength and deformability can be dramatically changed by varying volume fraction, size and shape of the particles. Understanding dislocation motion in composite materials as the cause of plastic deformation therefore is an important task. Recently, advanced dislocation-based continuum theories of plasticity have been developed for performing meaningful averages over systems of straight and curved dislocation lines in a continuum approach. In this paper, we focus on a single slip heterogeneous microstructure and investigate how the dislocation interactions can be represented in an averaged dislocation density based continuum description. The representation of strong dislocation density gradients is discussed in the context of a formulation, which aims at a coarse-grained resolution. We introduce a set of dislocation density evolution equations which account for the formation and dissolution of dislocation dipoles. By applying the model to a composite structure, we demonstrate that the dislocation density based description can well describe the physical processes in the microstructure and a comparison to discrete dislocation dynamics simulations shows good agreement for the relaxation behavior of the considered composites.

  15. Pharmacogenetic risk factors for altered bone mineral density and body composition in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    M.L. te Winkel (Mariël Lizet); R.D. van Beek (Robert Diederik); S.M.P.F. de Muinck Keizer-Schrama (Sabine); A.G. Uitterlinden (André); W.C.J. Hop (Wim); R. Pieters (Rob); M.M. van den Heuvel-Eibrink (Marry)

    2010-01-01

    textabstractBackground This study investigates pharmacogenetic risk factors for bone mineral (apparent) density (BM(A)D) and body composition in pediatric acute lymphoblastic leukemia Design and Methods We determined the influence of SNPs in 4 genes (vitamin-D receptor (VDR: BsmI/ApaI/TaqI and Cdx-2

  16. Mechanical properties of high density polyethylene--pennycress press cake composites

    Science.gov (United States)

    Pennycress press cake (PPC) is evaluated as a bio-based fiber reinforcement. PPC is a by-product of crop seed oil extraction. Composites with a high density polyethylene (HDPE) matrix are created by twin screw compounding of 25% by weight of PPC and either 0% or 5% by weight of maleated polyethyle...

  17. Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia

    NARCIS (Netherlands)

    Abebe, T.; Sterck, F.J.; Wiersum, K.F.; Bongers, F.

    2013-01-01

    Diversity of trees and shrubs in agricultural systems contributes to provision of wood and non-wood products, and protects the environment, thereby, enhancing socioeconomic and ecological sustainability of the systems. This study characterizes the diversity, density and composition of trees in the a

  18. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests

    Science.gov (United States)

    Guo, Xiaoping; Meng, Miaojing; Zhang, Jinchi; Chen, Han Y. H.

    2016-07-01

    Changes in the chemical composition of soil organic carbon (SOC) might strongly affect the global carbon cycle as it controls the SOC decomposition rate. Vegetation change associated with long-term land use changes is known to strongly impact the chemical composition of SOC; however, data on the impacts of vegetation change following disturbance events of short durations and succession that occur frequently in forest ecosystems via diverse management objectives on SOC chemical composition are negligible. Here we examined the impacts of vegetation changes on the chemical composition of SOC by sampling soils of native broad-leaved forests, planted mixed broad-leaved and coniferous forests, and tea gardens in eastern China. We used nuclear magnetic resonance spectroscopy to quantify SOC chemical composition. We found that among all components of SOC chemical composition, alkyl carbon (C) and aryl C were more liable to change with vegetation than other SOC components. Soil pH was negatively correlated to the relative abundances of alkyl C and N-alkyl C, and Shannon’s index of overstory plant species was positively correlated to the relative abundances of phenolic C and aromaticity. Our results suggest that vegetation changes following short disturbance events and succession may strongly alter SOC chemical composition in forest ecosystems.

  19. The effect of composition anomalies on the conductivity and density of seawater

    Science.gov (United States)

    Pawlowicz, R. A.; Wright, D.; Millero, F. J.

    2010-12-01

    As seawater circulates through the global ocean, its relative composition undergoes small variations. This results in changes to the conductivity/salinity/density relationship, which is currently well-defined only for Standard Seawater obtained from a particular area in the North Atlantic. Although these changes have been ignored for 30 years, they are in fact the largest source of errors in the determination of the thermodynamic properties of real seawater using the equation of state (either EOS80 or the newer TEOS-10). Here we describe a theoretical model that relates seawater composition, conductivity, and density. A numerical implementation of the model can be used to predict density anomalies resulting from observed conductivities, carbonate-system parameters, and nutrient concentrations. Predictions of density anomalies made this way for a number of hydrographic sections are shown below. Calculations replicate direct observations of density anomalies in both laboratory experiments and in the open ocean. Theoretical analysis suggests that a hierarchy of salinity variables are required to fully describe the effects of anomalous seawater, but numerical experimentation shows that simple conversion factors can be used to relate them all in typical open-ocean situations. These results are incorporated into the new seawater manual (IOC, SCOR, and IAPSO, The International Thermodynamic Equation of Seawater - 2010: Calculation and Use of Thermodynamic Properties,UNESCO, 2010, also at www.teos-10.org) and should be useful in future attempts to understand and model global ocean circulation. Model-calculated density anomalies over several trans-oceanic sections

  20. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    2016-01-01

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  1. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  2. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Yossifova, Mariana G. [Geological Institute, Acad. G. Bonchev Str., Bl.24, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-11-22

    The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that

  3. Fog water chemical composition in different geographic regions of Poland

    Science.gov (United States)

    Błaś, Marek; Polkowska, Żaneta; Sobik, Mieczysław; Klimaszewska, Kamila; Nowiński, Kamil; Namieśnik, Jacek

    2010-03-01

    The fog water samples were collected with the use of both passive and active fog collectors during 2005-2006 at 3 sites: lowland in northern Poland (Borucino; 186 m a.s.l.), valley basin in southern Poland (Zakopane; 911 m a.s.l.) and mountain top (Szrenica Mt.; 1330 m a.s.l.) in south-western Poland. For all daily samples (Borucino—25; Zakopane—4 and Szrenica—155), electric conductivity, pH, and concentrations of some anions: Cl -, F -, Br -, NO 2-, NO 3-, SO 42-, PO 43-and cations: NH 4+, Ca 2+, K +, Na + and Mg 2+ were measured. The selected ions were determined using ion suppressed chromatography (IC). Fog consists of a specific type of atmospheric phenomena. Results obtained on the basis of analysis of suitable fog samples can be treated as a source of valuable information on the chemistry of the atmosphere. Statistical analysis revealed significant differences depending on region, altitude, local morphology and, last but not least, fog origin. A distinct contrast is evident in the concentration and chemical composition between lowland radiation fog (represents lower layers of the atmosphere which are more influenced by continental emissions) versus orographic slope fog represented by a summit station, Mt Szrenica. It is partly induced by a distinction in weather conditions favouring fog existence, height of fog formation and its microphysical parameters. Acidity was associated with high concentrations of excess sulphate and nitrate in the fog water samples. Ammonium and calcium concentrations represent the most important neutralizing inputs. Collected cloud water at Szrenica Mt. includes solute contributions from emission sources located at much larger upwind distances. The fact that 95% of fog/cloud deposition is concentrated during SW-W-NW-N-NE, atmospheric circulation exerts an influence on the environmental quality of montane forests in the Sudety Mts. At numerous conspicuous convex landforms, where fog/cloud deposition becomes at least as important

  4. Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory.

    Science.gov (United States)

    Cárdenas, Carlos; Ayers, Paul W; Cedillo, Andrés

    2011-05-07

    Density-functional-theory-based chemical reactivity indicators are formulated for degenerate and near-degenerate ground states. For degenerate states, the functional derivatives of the energy with respect to the external potential do not exist, and must be replaced by the weaker concept of functional variation. The resultant reactivity indicators depend on the specific perturbation. Because it is sometimes impractical to compute reactivity indicators for a specific perturbation, we consider two special cases: point-charge perturbations and Dirac delta function perturbations. The Dirac delta function perturbations provide upper bounds on the chemical reactivity. Reactivity indicators using the common used "average of degenerate states approximation" for degenerate states provide a lower bound on the chemical reactivity. Unfortunately, this lower bound is often extremely weak. Approximate formulas for the reactivity indicators within the frontier-molecular-orbital approximation and special cases (two or three degenerate spatial orbitals) are presented in the supplementary material. One remarkable feature that arises in the frontier molecular orbital approximation, and presumably also in the exact theory, is that removing electrons sometimes causes the electron density to increase at the location of a negative (attractive) Dirac delta function perturbation. That is, the energetic response to a reduction in the external potential can increase even when the number of electrons decreases.

  5. Mechanical and Thermal Properties of Muscovite and Density Polyethylene-reinforced and-toughened Polypropylene Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lingyan; WEI Tingting; CHEN Huijie; LAI Weiqiang; BU Junfen

    2009-01-01

    The mechanical and thermal properties of polypropylene(PP)/muscovite/ low-density polyethylene(LDPE)/polypropylenegraftmaleic anhydride(PP-g-MAH)ternary com-posites were investigated.In PP matrix,muscovite,LDPE,and PP-g-MAH were added as strength-ening agent,toughening agent,and compatibilizer,respectively.The effects of dosages of the added materials were analyzed.The experimental results show that the optimum recipe of PP/muscovite/LDPE/PP-g-MAH composites is 100/10/6/20(mass ratio).Compared with the pure PP, the mechanical properties of PP/muscovite/LDPE/PP-g-MAH composites,including notched impact strength,Rockwell hardness and flexural strength,are improved.Although tensile strength is slightly decreased,they have better toughness.Filled with muscovite,the heat-resistance and heat-decompostion of the composites are improved.

  6. Areca Fiber Reinforced Epoxy Composites: Effect of Chemical Treatments on Impact Strength

    Directory of Open Access Journals (Sweden)

    S. Dhanalakshmi

    2015-06-01

    Full Text Available In this research work, impact strength of untreated, alkali treated, potassium permanganate treated, benzoyl chloride treated and acrylic acid treated areca fiber reinforced epoxy composites were studied under 40%, 50%, 60% and 70% fiber loadings. Impact strength increased with increase in fiber loading up to 60% and then showed a decline for all untreated and chemically treated areca fiber reinforced epoxy composites. The acrylic acid treated areca fiber reinforced epoxy composites with 60% fiber loading showed highest impact strength of 28.28 J/mm2 amongst all untreated and chemically treated areca/epoxy composites with same 60% fiber loading.

  7. Comparing intake estimations based on food composition data with chemical analysis in Malian women.

    Science.gov (United States)

    Koréissi-Dembélé, Yara; Doets, Esmee L; Fanou-Fogny, Nadia; Hulshof, Paul Jm; Moretti, Diego; Brouwer, Inge D

    2017-06-01

    Food composition databases are essential for estimating nutrient intakes in food consumption surveys. The present study aimed to evaluate the Mali food composition database (TACAM) for assessing intakes of energy and selected nutrients at population level. Weighed food records and duplicate portions of all foods consumed during one day were collected. Intakes of energy, protein, fat, available carbohydrates, dietary fibre, Ca, Fe, Zn and vitamin A were assessed by: (i) estimating the nutrient intake from weighed food records based on an adjusted TACAM (a-TACAM); and (ii) chemical analysis of the duplicate portions. Agreement between the two methods was determined using the Wilcoxon signed-rank test and Bland-Altman plots. Bamako, Mali. Apparently healthy non-pregnant, non-lactating women (n 36) aged 15-36 years. Correlation coefficients between estimated and analysed values ranged from 0·38 to 0·61. At population level, mean estimated and analysed nutrient intakes differed significantly for carbohydrates (203·0 v. 243·5 g/d), Fe (9·9 v. 22·8 mg/d) and vitamin A (356 v. 246 µg retinol activity equivalents). At individual level, all estimated and analysed nutrient intakes differed significantly; the differences tended to increase with higher intakes. The a-TACAM is sufficiently acceptable for measuring average intakes of macronutrients, Ca and Zn at population level in low-intake populations, but not for carbohydrate, vitamin A and Fe intakes, and nutrient densities.

  8. Titanium dioxide nanoparticles: synthesis, X-Ray line analysis and chemical composition study

    Energy Technology Data Exchange (ETDEWEB)

    Chenari, Hossein Mahmoudi, E-mail: mahmoudi_hossein@guilan.ac.ir, E-mail: h.mahmoudiph@gmail.com [University of Guilan, Rasht (Iran, Islamic Republic of); Seibel, Christoph; Hauschild, Dirk; Reinert, Friedrich [Karlsruhe Institute of Technology - KIT, Gemeinschaftslabor für Nanoanalytik, Karlsruhe (Germany); Abdollahian, Hossein [Nanotechnology Research Center of Urmia University, Urmia, (Iran, Islamic Republic of)

    2016-11-15

    TiO{sub 2} nanoparticles have been synthesized by the sol-gel method using titanium alkoxide and isopropanol as a precursor. The structural properties and chemical composition of the TiO{sub 2} nanoparticles were studied using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction. The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nano powders. The scanning electron microscopy image shows clear TiO{sub 2} nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO{sub 2} nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO{sub 2}. (author)

  9. Chemical composition of nanomodified composite binder with nano- and microsized barium silicate

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-08-01

    Full Text Available There are several possibilities to improve cement-based binders. In particular, many properties of cement stone can be enhanced by means of micro- and nanoscale modification. In a number of previous works we had shown that application of barium hydrosilicates leads to such improvement. The present article is devoted to the investigation of the chemical composition of the cement stone which is modified by means of addition of barium hydrosilicates. The modification was performed on different scales: micro- and nanoscale; the results of simultaneous multi-scale modification are also presented. The examination was carried out with help of different modern research techniques – FT IR spectroscopy, differential thermal analysis and X-ray phase analysis. Identification of the new phases and comparative quantitative assessment of their content are performed. It is found that the use of nano- and micro-sized barium hydrosilicates as additives leads to reduction of portlandite by 27...28%; by means of multi-scale modification it is possible to reduce the content of portlandite much more (by 83.3%. Due to addition of nano- and micro-sized barium-based modifiers both the amount of calcium hydrosilicates in reaction products is enlarged, and structure of the mentioned hydrosilicates is changed (the formation of a fine-grained structure of hydration products takes place. Micro-sized barium hydrosilicates are chemically active additives and promote the formation of an additional quantity of calcium hydrosilicates of type CSH (I. The use of nanoscale barium hydrosilicates promotes the formation of CSH (I and CSH (II calcium hydrosilicates, and also both riversidite and xonotlite. As a result of simultaneous application of nano- and micro-sized barium hydrosilicates the content of CSH (II increases. This can be confirmed by means of differential thermal and X-ray analysis. The amount of CSH (I, riversidite and various tobermorites is also increases. It is

  10. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.

    Science.gov (United States)

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe(3)O(4) nanoparticles and chemically reduced graphene oxide (Fe(3)O(4)/rGO) is synthesized as the anode material. The Fe(3)O(4)/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg.

  11. Expanding the Scope of Density Derived Electrostatic and Chemical Charge Partitioning to Thousands of Atoms.

    Science.gov (United States)

    Lee, Louis P; Limas, Nidia Gabaldon; Cole, Daniel J; Payne, Mike C; Skylaris, Chris-Kriton; Manz, Thomas A

    2014-12-01

    The density derived electrostatic and chemical (DDEC/c3) method is implemented into the onetep program to compute net atomic charges (NACs), as well as higher-order atomic multipole moments, of molecules, dense solids, nanoclusters, liquids, and biomolecules using linear-scaling density functional theory (DFT) in a distributed memory parallel computing environment. For a >1000 atom model of the oxygenated myoglobin protein, the DDEC/c3 net charge of the adsorbed oxygen molecule is approximately -1e (in agreement with the Weiss model) using a dynamical mean field theory treatment of the iron atom, but much smaller in magnitude when using the generalized gradient approximation. For GaAs semiconducting nanorods, the system dipole moment using the DDEC/c3 NACs is about 5% higher in magnitude than the dipole computed directly from the quantum mechanical electron density distribution, and the DDEC/c3 NACs reproduce the electrostatic potential to within approximately 0.1 V on the nanorod's solvent-accessible surface. As examples of conducting materials, we study (i) a 55-atom Pt cluster with an adsorbed CO molecule and (ii) the dense solids Mo2C and Pd3V. Our results for solid Mo2C and Pd3V confirm the necessity of a constraint enforcing exponentially decaying electron density in the tails of buried atoms.

  12. Computational insights of water droplet transport on graphene sheet with chemical density

    Science.gov (United States)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  13. Interfacial stick–slip transition in hydroxyapatite filled high density polyethylene composite

    Indian Academy of Sciences (India)

    Roy Joseph; M T Martyn; K E Tanner; P D Coates

    2006-02-01

    Effect of filler addition and temperature on the stick–slip transition in high density polyethylene melt was studied. Results showed that shear stresses corresponding to stick–slip transition increases with the addition of filler. Increase in temperature also increases the shear stresses for stick–slip transition. The features of the flow curves of composites and that of unfilled system remain identical. Filler addition lowers the shear rate at which the transition occurs. The composite extrudate did not show characteristic extrudate distortions associated with the unfilled polymer.

  14. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status.

    Science.gov (United States)

    Rodrigues Filho, Edil de Albuquerque; Santos, Marcos André Moura Dos; Silva, Amanda Tabosa Pereira da; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara E Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). With the exception of upper limb bone mineral content, significantly higher (pstudents, particularly in overweight individuals.

  15. Particle size distribution and physico-chemical composition of clay.

    African Journals Online (AJOL)

    HP USER

    obtained after acid digestion of clay samples were used in determining the elements by Atomic. Absorption ... ignition (LOI) reveal a general reduction in composition as particles sizes reduces. However, Mg .... Murray, H.H. Diagnostic Tests for.

  16. Level and Chemical Composition of Cryoglobulins in Schizophrenia

    Science.gov (United States)

    Khoyetsyan, Aren; Boyajyan, Anna; Melkumova, Maya

    The blood samples of 40 schizophrenic patients were tested for the presence of cryoglobulins (Cgs) and composition of Cgs was examined. The elevated levels of type III Cgs, containing complement components, were detected in all study subjects.

  17. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available Natural fibres are often used for reinforcing thermoplastics, like polypropylene, to manufacture composite materials exhibiting numerous advantages such as high mechanical properties, low density and biodegradability. The mechanical properties of a...

  18. Chemical Composition of Atmospheric Aerosols in Iowa City

    Science.gov (United States)

    Jayarathne, T. S.; Stone, E.

    2013-12-01

    In this study, the seasonal and spatial variability of chemical components in atmospheric PM2.5 were investigated in Iowa City, Iowa for the first time. Daily PM samples were collected from 25 August to 10 November 2011 at two sites in Iowa City (West and East) that were separated by approximately four miles. During this time, daily average PM2.5 mass concentrations ranged from 3 - 26 μg m-3, within attainment of EPA National Ambient Air Quality Standard of 35 μg m-3. The average PM2.5 concentration was 11.2×4.9 μg m-3 (arithmetic mean × one standard deviation for n = 72). Carbonaceous aerosol (elemental carbon and organic matter) was the dominant component of PM2.5, contributing 40% of PM2.5 mass. Another 30% was due to water soluble inorganic ions (SO42-, NO3-, Cl-, Na+, NH4+, K+, Mg2+, Ca2+) with major contributions from SO42- (13%), NO3- (6%), NH4+ (6%) and Ca2+ (3%). Among the inorganic ions, SO42- exhibited the highest individual ion concentration at both sites with an average concentration of 1.5×1.2 μg m-3 at West Site and 1.5×1.3 μg m-3 at East Site. The average NO3- concentrations for this period were 0.5×0.4 μg m-3 and 0.7×0.5 μg m-3 at West and East Sites, respectively. Comparison of aerosol composition data from the two sites indicated that concentrations of SO42-, NO3-, NH4+ and organic carbon were not statistically different at the 95% confidence interval, indicating that these species were primarily influenced by regional atmospheric processes. Meanwhile, Ca2+ and elemental carbon concentrations were statistically different across the two study sites, indicating the influence of local PM sources. Unlike other ions, Ca2+ concentrations were significantly elevated at both sites in October, during the agricultural harvest, showing that re-suspended soil dust is a temporally-variable source of fine particles that peaks during the agricultural harvest season. Several episodes of elevated PM2.5 occurred in late August to early October, with

  19. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China

    National Research Council Canada - National Science Library

    Liang, Linghong; Wu, Xiangyang; Zhu, Maomao; Zhao, Weiguo; Li, Fang; Zou, Ye; Yang, Liuqing

    2012-01-01

    Mulberry (Morus, Moraceae) is widely distributed in the temperate, subtropical, or tropical regions of the world, while there are no conclusive reports on the chemical composition, nutritional value, and antioxidant properties...

  20. A study of the chemical composition of peat humic acids by adsorption liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Surasinkha, S.; Platonova, M.V.; Taran, N.A. [Lev Tolstoi State Pedagogical University, Tula (Russian Federation)

    1998-12-01

    The chemical composition of peat humic acids was studied in detail by IR and UV spectroscopy, elemental, emission spectral X-ray fluorescence, and structural-group analyses, cryoscopy, and capillary gas chromatography.

  1. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined. Anti

  2. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined.

  3. Variation in size, morphology and chemical composition of polymetallic nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Karisiddaiah, S.M.; Parthiban, G.

    Chemical composition of 613 polymetallic nodules from 150 stations in the Central Indian Ocean Basin (CIOB) are determined and variations in Mn, Fe, Cu, Ni, Co, Zn and moisture content are studied with respect to their size and surface texture...

  4. Effects of chemical composition on the corrosion of dental alloys

    OpenAIRE

    GALO, Rodrigo; RIBEIRO, Ricardo Faria; RODRIGUES, Renata Cristina Silveira; Rocha, Luís Augusto; Mattos,Maria da Glória Chiarello de

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the g...

  5. Variation in the chemical composition, physical characteristics and ...

    African Journals Online (AJOL)

    Mariaan Viljoen

    detergent fibre (ADF) and in vitro organic matter digestibility (IVOMD). .... Results pertaining to the chemical analyses, physical properties and energy values of ...... presented in this paper may be valuable, especially when specific cultivars are ...

  6. Chemical composition and volatile compounds in the artisanal ...

    African Journals Online (AJOL)

    Araceli

    2012-09-27

    Sep 27, 2012 ... ends, the fermented product is transferred to copper ..... Clostridium bacteria or Kloeckera spp. yeast .... Evolution of chemical compounds during fermentation of A. angustifolia musts with and without addition of ammonium ...

  7. Chemical composition and insecticidal properties of essential oil ...

    African Journals Online (AJOL)

    chromatography/mass spectrometry (GC/MS) analysis was performed, and the contact (topical application) ... Results: Thirty-nine chemical compounds were identified by GC-MS analysis of M. .... negative control, and pyrethrum extract (25 %.

  8. Influence of the fatty acid composition of high-density lipoprotein phospholipids on the cholesterol efflux from cultured fibroblasts.

    Science.gov (United States)

    Esteva, O; Baudet, M F; Lasserre, M; Jacotot, B

    1986-02-12

    The purpose of this work was to determine whether the changes induced by dietary manipulations in the chemical composition of high-density lipoproteins (HDL) (particularly phospholipid fatty acid composition) modified their capacity to promote [3H]cholesterol efflux from cultured fibroblasts. Plasma HDL were obtained from subjects fed for six successive long periods on diets consisting of one predominant fat: peanut oil, corn oil, olive oil, soybean oil, low erucic acid rapeseed oil or milk fats. The [3H]cholesterol efflux from cells in the presence of plasma HDL was studied by means of normal adult human fibroblasts in culture. The [3H]cholesterol efflux from fibroblasts appeared to be independent of the overall composition of HDL and of the degree of saturation of the HDL phospholipid fatty acids, but it was correlated with the phospholipid fatty acid chain length. The [3H]cholesterol efflux from fibroblasts is highly and positively correlated with the sum of the HDL phospholipid C20, C22, C24 fatty acids, and negatively correlated with the sum of the HDL phospholipid C18 fatty acids.

  9. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition

    Science.gov (United States)

    Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong

    2016-06-01

    A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.

  10. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    OpenAIRE

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, El Asma; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial...

  11. Superfluid density in cuprates: hints on gauge compositeness of the holes

    CERN Document Server

    Marchetti, P A

    2016-01-01

    We show that several features (the three-dimensional XY universality for moderate underdoping, the almost-BCS behaviour for moderate overdoping and the critical exponent) of the superfluid density in hole-doped cuprates hint at a composite structure of the holes. This idea can be implemented in a spin-charge gauge approach to the $t - t' - J$ model and provides indeed good agreement with available experimental data.

  12. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    Directory of Open Access Journals (Sweden)

    Sabrina G. Sobel

    2009-01-01

    Full Text Available Imperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines, and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue propagate into a background of low ferriin concentration (red; their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe3+ with colorless SCN− to form the blood-red Fe(SCN2+ complex ion in aqueous solution. Careful addition of one drop of Fe(NO33 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.

  13. Anatomical and chemical properties and density of Coffea arabica L. wood

    Directory of Open Access Journals (Sweden)

    Marisa Aparecida Pereira

    2014-09-01

    Full Text Available The state of Minas Gerais is the largest producer of coffee in Brazil and the amount of residue in crops seems adequate to support production of solid wood products of Coffea arabica L., which is currently used for energy purposes or remains in the area. This activity adds insignificant value the coffee products and release CO2, which has harmful effects to the environment. This study was conducted with the aim of characterizing technologically Coffea arabica L. wood to enhance its use in furniture, to characterize its anatomical, chemical and wood basic density. The density showed an average of 0.608g.cm-3. The anatomical analysis showed distinct growth layers, semiporosos vessels with simple perforation plates. The axial parenchyma is apotracheal and diffuse in the aggregate with heterogeneous rays, not laminated and fiber libriformes not septate with bordered pits distinct. The chemical content of extract in hot and cold water were respectively 6.1% and 9.6%. The ash content was found to be 0.68%. Data were comparable to those of mahogany (Swietenia macrophylla and Piptadenia peregrina Benth, (angico-vermelho used for the production of furniture.

  14. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2017-04-01

    Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m(3), which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl(-), S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl(-) and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.

  15. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Góral, Anna, E-mail: a.goral@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Nowak, Marek [Institute of Non-Ferrous Metals Gliwice, Light Metals Division Skawina, 19 Pilsudskiego St., 32-050 Skawina (Poland); Berent, Katarzyna; Kania, Bogusz [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland)

    2014-12-05

    Highlights: • Current density of the electrodeposition affects the incorporation of Al{sub 2}O{sub 3} in Ni matrix. • Ni/Al{sub 2}O{sub 3} composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al{sub 2}O{sub 3} coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al{sub 2}O{sub 3} nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al{sub 2}O{sub 3} particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix.

  16. Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite

    Science.gov (United States)

    Shafiq, Muhammad; Yasin, Tariq

    2012-01-01

    Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature ( Tm) and crystallization temperature ( Tc) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation.

  17. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles.

  18. The Effect of Modification Methods on the Performance Characteristics of Composites Based on a Linear Low-Density Polyethylene and Natural Hemp Fibers

    Science.gov (United States)

    Kajaks, J.; Zelca, Z.; Kukle, S.

    2015-11-01

    Influence of the content of hemp fibers (harvested in 2012) and their modification methods (treatment with boiling water, sodium hydroxide, and acetic anhydride) and addition of an interfacial modifier, maleated polyethylene (MAPE), on the performance characteristics (tensile strength, modulus, elongation at break, microhardness, and water resistance) of composites based on a linear low-density polyethylene (LLDPE) was investigated. The results obtained are compared with data found earlier for the same type of hemp fibers, but harvested in 2011. It is shown that optimum content of untreated hemp fibers in the LLDPE matrix is 30 wt.% and optimum length of the fibers is less than 1 mm. An increase in the content of hemp fibers (to 30 wt.%) raised the tensile strength and modulus of the composites, but reduced their elasticity and deformation ability. Simultaneously, the microhardness of the composite materials grew. Pretreating the fibers with sodium hydroxide improved the mechanical properties of the composites only slightly, but treating with acetic anhydride allowed us to elevate the content of the fibers up to 40 and 50 wt.%. The best results were achieved by addition of 50 wt.% MAPE, when the tensile modulus increased by about 47% and the tensile strength by 27% as compared with those of composites with fibers pretreated by other methods. To estimate the processing possibilities of the composites, the melt flow index (MFI) was determined. It is established that the pretreatment of the fibers significantly affects the numerical values of MFI. For example, upon treatment with acetic anhydride, a sufficiently high fluidity of the composites was retained even at a 50 wt.% content of fibers. The lowest fluidity was observed for composites with alkali-pretreated hemp fibers. The surface microhardness decreased upon their chemical pretreatment. The highest microhardness showed composites with 30 wt.% untreated fibers. The chemical pretreatment considerably raised the

  19. Mechanical and Chemical Properties of Bamboo/Glass Fibers Reinforced Polyester Composites

    Directory of Open Access Journals (Sweden)

    K.Sudha Madhuri,

    2016-01-01

    Full Text Available The chemical resistance of Bamboo/Glass reinforced Polyester hybrid composites to acetic acid, Nitric acid, Hydrochloric acid, Sodium hydroxide, Sodium carbonate, Benzene, Toluene, Carbon tetrachloride and Water was studied. The tensile and impact properties of these composites were also studied. The effect of alkali treatment of bamboo fibers on these properties was studied. It was observed that the tensile and impact properties of the hybrid composites increase with glass fiber content. The author investigated the interfacial bonding between Glsss/Bamboo fiber composites by SEM. These properties found to be higher when alkali treated bamboo fibers were used in hybrid composites. The hybrid fiber composites showed better resistance to the chemicals mentioned above. The elimination of amorphous hemi-cellulose with alkali treatment leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations.

  20. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites.

    Science.gov (United States)

    Liu, Tian; Wood, Weston; Zhong, Wei-Hong

    2011-12-01

    We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  1. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Liu Tian

    2011-01-01

    Full Text Available Abstract We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated-reinforced high-density polyethylene (HDPE composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  2. Milk production and chemical composition of milk of Ukrainian mountain Carpathian sheep in pasture period

    OpenAIRE

    CHOKAN T.

    2011-01-01

    The comparative analysis of the milk chemical composition depending on milk productivity of Ukrainian Mountain Carpathian sheep during the pasture period were studied. It was found changes of milk composition (increasing of protein content, fat, dry matter and nutritive value) with a decrease of milk yield in the end period of lactation.

  3. Dielectric Elastomer Generator with Improved Energy Density and Conversion Efficiency Based on Polyurethane Composites.

    Science.gov (United States)

    Yin, Guoling; Yang, Yu; Song, Feilong; Renard, Christophe; Dang, Zhi-Min; Shi, Chang-Yong; Wang, Dongrui

    2017-02-15

    Dielectric elastomer generators (DEGs), which follow the physics of variable capacitors and harvest electric energy from mechanical work, have attracted intensive attention over the past decade. The lack of ideal dielectric elastomers, after nearly two decades of research, has become the bottleneck for DEGs' practical applications. Here, we fabricated a series of polyurethane-based ternary composites and estimated their potential as DEGs to harvest electric energy for the first time. Thermoplastic polyurethane (PU) with high relative permittivity (∼8) was chosen as the elastic matrix. Barium titanate (BT) nanoparticles and dibutyl phthalate (DBP) plasticizers, which were selected to improve the permittivity and mechanical properties, respectively, were blended into the PU matrix. As compared to pristine PU, the resultant ternary composite films fabricated through a solution casting approach showed enhanced permittivity, remarkably reduced elastic modulus, and relatively good electrical breakdown strength, dielectric loss, and strain at break. Most importantly, the harvested energy density of PU was significantly enhanced when blended with BT and DBP. A composite film containing 25 phr of BT and 60 phr of DBP with the harvested energy density of 1.71 mJ/cm(3) was achieved, which is about 4 times greater than that of pure PU and 8 times greater than that of VHB adhesives. Remarkably improved conversion efficiency of mechano-electric energy was also obtained via cofilling BT and DBP into PU. The results shown in this work strongly suggest compositing is a very promising way to provide better dielectric elastomer candidates for forthcoming practical DEGs.

  4. Culture density influence on the photosynthetic efficiency of microalgae growing under different spectral compositions of light.

    Science.gov (United States)

    Kula, M; Kalaji, H M; Skoczowski, A

    2017-02-01

    A density in algal suspension causes a significant change in the intensity and spectral composition of light reaching individual cells. Measurements of chlorophyll fluorescence allow us to observe any general changes in the bioenergetic status of photosynthesis. The aim of the study was to determine the effect of cultivation density on the PSII photochemical efficiency of three species of algae (Chlorella vulgaris, Botryococcus braunii and Chlorella emersonii), each with a different rate of growth - high, medium and low - respectively. The cell density of algae in suspension differentiated through the cultivation time (2, 4, and 8days) and the spectral composition of light. The results showed that the density of cultivation led to change in the photosynthetic apparatus of algae. The differences described between each day of cultivation (2, 4, and 8) in the kinetics of chlorophyll a fluorescence intensity in cells of the algal strains under study probably resulted from the different phases of growth of these cultures. In addition the results showed the beneficial effect of far red light on the photosynthetic apparatus and the growth of biomass in investigated algal strains.

  5. Chemical erosion of different carbon composites under ITER-relevant plasma conditions

    NARCIS (Netherlands)

    Westerhout, J.; Borodin, D.; Al, R.S.; Brezinsek, S.; Hoen, Mhjt; Kirschner, A.; Lisgo, S.; van der Meiden, H. J.; Philipps, V.; van de Pol, M.J.; Shumack, A. E.; De Temmerman, G.; Vijvers, W. A. J.; Wright, G. M.; Cardozo, N. J. L.; Rapp, J.; van Rooij, G. J.

    2009-01-01

    We have studied the chemical erosion of different carbon composites in Pilot-PSI at ITER-relevant hydrogen plasma fluxes (similar to 10(24) m(-2) s(-1)) and low electron temperatures (T-e similar to 1 eV). Optical emission spectroscopy on the CH A-X band was used to characterize the chemical

  6. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    Science.gov (United States)

    2015-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780

  7. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.

    Science.gov (United States)

    Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit

    2014-08-13

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.

  8. The Influence of Chemical Composition of Steels on the Numerical Simulation of a Continuesly Cast of Billet

    Directory of Open Access Journals (Sweden)

    František KAVIČKA

    2010-12-01

    Full Text Available The chemical composition of steels has significant influence on the actual concasting process, and on the accuracy of its numerical simulation and optimization. The chemical composition of steel affects the thermophysical properties (heat conductivity, specific heat capacity and density in the solid and liquid states often requires more time than the actual numerical calculation of the temperature fields of a continuously cast steel billet. Therefore, an analysis study of these thermophysical properties was conducted. The order of importance within the actual process and the accuracy of simulation were also determined. The order of significance of the chemical composition on thermophysical properties was determined with respect to the metallurgical length. The analysis was performed by means of a so-called calculation experiment, i.e. by means of the original numerical concasting model developed by the authors of this paper. It is convenient to conduct such an analysis in order to facilitate the simulation of each individual case of concasting, thus enhancing the process of optimization.

  9. Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg-Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijun [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Yuan, Yi, E-mail: yi.yuan@hrbeu.edu.cn [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Jing, Xiaoyan [Key Laboratory of Superlight Materials and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The PEO coatings exhibit tunable characteristics by controlling the current density. Black-Right-Pointing-Pointer The coating formed at 5 A/dm{sup 2} exhibits the highest corrosion resistance. Black-Right-Pointing-Pointer Anti-corrosion properties of PEO coatings are related to coating surface composition. - Abstract: The effect of current density on the oxidation process, morphology, composition and anti-corrosion properties of coatings are elucidated. X-ray photoelectron spectroscopy and X-ray diffraction analysis of coatings show that coatings prepared at different current densities are composed of MgO and {gamma}-Mg{sub 2}SiO{sub 4} and {alpha}-Mg{sub 2}SiO{sub 4} phase. The chemical composition of PEO coatings varies from surface to the interior of the oxide coating. The PEO coatings exhibit tunable thickness, composition ratio, and porosity by controlling the current density, which ultimately affects film morphology and anti-corrosion properties. The superior corrosion resistance of coating obtained at 5 A/dm{sup 2} is attributed to the compactness of the barrier layer and the highest MgO/Mg{sub 2}SiO{sub 4} ratio.

  10. Recent Advances in the Chemical Composition of Propolis

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2014-11-01

    Full Text Available Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.

  11. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  12. Pasta added with chickpea flour: chemical composition, In vitro starchdigestibility and predicted glycemic index

    OpenAIRE

    2008-01-01

    Pasta was prepared with of durum wheat flour mixed with chickpea flour at two different levels and its chemical composition, in vitro starch digestibility and predicted glycemic index were assessed. Protein, ash, lipid, and dietary fiber content increased while total starch decreased with the chickpea flour level in the composite pasta, all in accordance to the composition of the legume flour. Potentially available starch decreased and resistant starch (RS) increased by adding chickpea flour ...

  13. Chemical composition of acid precipitation in central Texas

    Science.gov (United States)

    Hal B. H., Jr. Cooper; Jerry M. Demo; Jose A. Lopez

    1976-01-01

    Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constituents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5...

  14. Effect of Chemical and Mineralogical Composition of Rocks on the ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... composition of rocks on the chemistry of the groundwater quality. ... The predominant cations trend in both the groundwater and rock samples the study ... Therefore, it is concluded that the local rock chemistry is seriously affecting the groundwater chemistry.

  15. Chemical composition and in vitro dry matter digestibility of lichens

    Directory of Open Access Journals (Sweden)

    Torstein H. Garmo

    1986-06-01

    Full Text Available The chemical composition and in vitro dry matter digestibility of 45 samples of different species of lichen are reported. Mean content (g/100 g dry matter of the main nutrients was: crude protein 4.2, crude fat 3.2, crude fibre 16.6, ash 1.9, Ca 0.15, P 0.09, Mg 0.05, K 0.13, Na 0.035, S 0.07. The content of microminerals (mg/kg dry matter was: Cu 2.5, Mo 0.11, Zn 27.2, Se 0.12, Fe 898, Mn 154. The mean in vitro dry matter digestibility was 35%. However, the in vitro method do underestimate the dry matter digestibility of lichens. Stereocaulon spp. showed higher levels of crude protein, P, S, Cu and Mo than Cetraria spp. and Cladonia spp. Cetraria nivalis showed higher digestibility and contained more NFE, ash, Ca, Mg, but less crude fibre than Cladonia stellaris. Lichens contained less amounts of most nutrients compared with grasses (Fig. 1, exept for crude fat, NFE, Se and Fe.Kjemisk innhald og in vitro fordøyelsesgrad av lav.Abstract in Norwegian / Samandrag: Kjemisk innhald og in vitro fordøyelsesgrad av tørrstoffet er bestemt i 45 prøver av beitelav frå to stader i Sør-Noreg. Middel innhald (g/100g tørrstoff av følgjande næringsstoff var: protein 4.2, feitt 3.2, trevlar 16.6, oske 1.9, kalsium 0.15, fosfor 0.09, magnesium 0.05, kalium 0.13, natrium 0.035, svovel 0.07. Innhaldet (mg/kg tørrstoff av mikronæringsstoffa var: kopar 2.5, molybden 0.11, sink 27.2, selen 0.12, jern 898 og mangan 154. Den midlare fordøyelsesgraden av tørrstoffet i lav-prøvene var 35%, men in vitro fordøyelsesanalyser undervurderer fordøyelsesgraden av lav. Det var ein stor variasjon mellom dei ulike lavartane for dei fleste næringsstoffa og fordøyelsesgraden. Stereocaulon spp. inneheldt meir protein, fosfor, svovel, kopar og molybden enn Cetraria spp. og Cladonia spp. Gulskinn hadde høgare fordøyelsesgrad, og innehaldet av NFE, oske, kalsium og magnesium var høgre enn i kvitkrull, medan trevleinnhaldet var størst i kvitkrull. Lav inneheldt

  16. The chemical composition and biological activities of essential oil ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... INTRODUCTION. Schinus terebinthifolius ... belongs to the Anacardiaceae family of plants (Manrique et al., 2008). ... among some of the ancient Chilean Amerindians. In ..... tation to a specific habitat, many plants produce chemical compounds ... London, U.K.: Crown Agents for Overseas Governments and.

  17. Chemical composition of essential oil of Psidium cattleianum var ...

    African Journals Online (AJOL)

    rajuc

    2012-04-24

    Apr 24, 2012 ... Research into plant essential oils have also gained momentum due to their fumigant .... 1 based on their chemical structures in which they are classified. The GC-MS ... It is also well known as a preservative in food, drugs and ...

  18. Chemical Composition, In Situ Degradability and In Vitro Gas ...

    African Journals Online (AJOL)

    forage harvested at different re-growth stages by measuring the chemical ... production was higher for leaves followed by branches with mean value of 43.7 ... degradability parameters help not only to be able to maximize the nutrient .... produced at time t, b the potential gas production and c the rate of gas ..... Wolf, B, 1982.

  19. Floral Scent in Wisteria: Chemical Composition, Emission Pattern and Regulation

    Science.gov (United States)

    Volatile chemicals emitted from the flowers of Chinese wisteria (Wisteria sinenesis) and Japanese wisteria (W. floribunda) were collected using a dynamic headspace technique and identified by a gas chromatography-mass spectrometry. About 30 and 22 compounds were detected from Chinese wisteria and Ja...

  20. Influence of Breed, Parity and Food Intake on Chemical Composition of First Colostrum in Cow

    Directory of Open Access Journals (Sweden)

    Simona Zarcula

    2010-05-01

    Full Text Available The aim of this research was to establish the influence of breed, parity and food intake on chemical composition of first colostrum. We observed that fat, proteins, lactose and dry matter were higher in cows from second and third lactation compared to those in fourth lactation. Cow's breed also influenced the colostrum composition, superior quality being obtained in case of Romanian White and Black comparing Holstein Friesian cows. The unbalanced energo-proteic ratio had a negative impact on chemical composition of first colostrum.

  1. Relationship between chemical composition and in situ rumen degradation characteristics of maize silages in dairy cows.

    Science.gov (United States)

    Ali, M; van Duinkerken, G; Cone, J W; Klop, A; Blok, M C; Spek, J W; Bruinenberg, M H; Hendriks, W H

    2014-11-01

    Several in situ studies have been conducted on maize silages to determine the effect of individual factors such as maturity stage, chop length and ensiling of maize crop on the rumen degradation but the information on the relationship between chemical composition and in situ rumen degradation characteristics remains scarce. The objectives of this study were to determine and describe relationships between the chemical composition and the rumen degradation characteristics of dry matter (DM), organic matter (OM), CP, starch and aNDFom (NDF assayed with a heat stable amylase and expressed exclusive of residual ash) of maize silages. In all, 75 maize silage samples were selected, with a broad range in chemical composition and quality parameters. The samples were incubated in the rumen for 2, 4, 8, 16, 32, 72 and 336 h, using the nylon bag technique. Large range was found in the rumen degradable fractions of DM, OM, CP, starch and aNDFom because of the broad range in chemical composition and quality parameters. The new database with in situ rumen degradation characteristics of DM, OM, CP, starch and aNDFom of the maize silages was obtained under uniform experimental conditions; same cows, same incubation protocol and same chemical analysis procedures. Regression equations were developed with significant predictors (P<0.05) describing moderate and weak relationships between the chemical composition and the washout fraction, rumen undegradable fraction, potentially rumen degradable fraction, fractional degradation rate and effective rumen degradable fraction of DM, OM, CP, starch and aNDFom.

  2. Direct Monte Carlo simulation of the chemical equilibrium composition of detonation products

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.

    1993-06-01

    A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, ``exact`` EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman- Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly.

  3. Rapid Characterization of Woody Biomass Digestibility and Chemical Composition Using Near-infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Shen Hou; Laigeng Li

    2011-01-01

    Rapid determination of the properties of lignocellulosic material is highly desirable for biomass production and utilization. In the present study, measurements of woody biomass digestibility and chemical composition using near-infrared reflectance (NIR) spectroscopy were calibrated. Poplar and eucalyptus materials were recorded in NIR spectrum as well as determined for their chemical compositions of Klason lignin, α-celluiose, holocellulose, lignin syringyl/guaiacyl (S/G) ratio and enzymatic digestibility. Fitting of the NIR information with chemical properties and digestibility by partial least-squares (PLS) regression generated a group of trained NIR models that were able to be used for rapid biomass measurement. Applying the models for woody biomass measurements led to a reliable evaluation of the chemical composition and digestibility, suggesting the feasibility of using NIR spectroscopy in the rapid characterization of biomass properties.

  4. EFFECTS OF MATRIX MOLECULAR WEIGHT ON STRUCTURE AND REINFORCEMENT OF HIGH DENSITY POLYETHYLENE/MICA COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Yu-fang Xiang; Ke Wang; Qin Zhang; Rong-ni Du; Qiang Fu

    2011-01-01

    Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and Iow) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM, 2d-WAXS, DSC, DMA and tensile testing. Various structural factors including orientation, filler dispersion, interfacial interaction between HDPE and mica, etc., which can impact the macroscopic mechanics, were compared in detail among the three HDPE/mica composites. The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence. Obvious transcrystalline structure was found in the composite with Iow molecular weight HDPE, whereas it was hard to be detected in the composites with increased HDPE molecular weight. The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interracial adhesion between matrix and mica filler, which arises from the transerystallization mechanism.

  5. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Maryam Boshtam

    2013-01-01

    Full Text Available Introduction. Cardioprotective effect of high density lipoprotein (HDL is, in part, dependent on its related enzyme, paraoxonase 1 (PON1. Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA. PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  6. Mechanical behavior of chemically treated Jute/Polymer composites

    Directory of Open Access Journals (Sweden)

    Murali B

    2014-03-01

    Full Text Available Fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber reinforced plastics. Although glass and other synthetic fiber reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of jute , a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, jute composites are developed and their mechanical properties are evaluated. Mechanical properties of jute/polymer and compared with glass fiber/epoxy. These results indicate that jute can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  7. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  8. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  9. Chemical Composition of Ground Pearl (Eurhizococcus colombianus Cysts

    Directory of Open Access Journals (Sweden)

    Fernando Echeverri

    2008-01-01

    Full Text Available Ground pearl (Eurhizococcus colombianus is a crop pest in Colombia, withspecial impact on fig, grass, rubus and tomato plants. The insect is resistant to externalinsecticide application because it produces a thick waxy shell that isolates it from theenvironment. The composition of this shell was determined by NMR and MS as atriglyceride, whose fatty acid is transformed into other products with the metamorphosis ofthe insect. Additionally, several enzymatic inhibitors were assayed to control the insectwith negative results.

  10. Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite

    Energy Technology Data Exchange (ETDEWEB)

    Shafiq, Muhammad [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, PO Box 45650, Islamabad (Pakistan); Yasin, Tariq, E-mail: yasintariq@yahoo.com [Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, PO Box 45650, Islamabad (Pakistan)

    2012-01-15

    Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses ({<=}75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature (T{sub m}) and crystallization temperature (T{sub c}) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation. - Highlights: > We have studied the effect of {gamma} radiation on LLDPE containing Mg(OH){sub 2} and sepiolite. > IR spectra of the irradiated composites show reduction in the intensity of O-H band. > Reduction in OH band show a distinct structural change in Mg(OH){sub 2} at higher doses. > TGA results show two steps weight loss at low doses and one step at higher doses. > These results confirm that MH gradually loses its OH functionality with irradiation.

  11. Experimental determination of grain density function of AZ91/SiC composite with different mass fractions of SiC and undercoolings using heterogeneous nucleation model

    Directory of Open Access Journals (Sweden)

    J. Lelito

    2011-02-01

    Full Text Available The grain density, Nv, in the solid state after solidification of AZ91/SiC composite is a function of maximum undercooling, ΔT, of a liquid alloy. This type of function depends on the characteristics of heterogeneous nucleation sites and number of SiC present in the alloy. The aim of this paper was selection of parameters for the model describing the relationship between the grain density of primary phase and undercooling. This model in connection with model of crystallisation, which is based on chemical elements diffusion and grain interface kinetics, can be used to predict casting quality and its microstructure. Nucleation models have parameters, which exact values are usually not known and sometimes even their physical meaning is under discussion. Those parameters can be obtained after mathematical analysis of the experimental data. The composites with 0, 1, 2, 3 and 4wt.% of SiC particles were prepared. The AZ91 alloy was a matrix of the composite reinforcement SiC particles. This composite was cast to prepare four different thickness plates.They were taken from the region near to the thermocouple, to analyze the undercooling for different composites and thickness plates and its influence on the grain size. The microstructure and thermal analysis gave set of values that connect mass fraction of SiC particles, and undercooling with grain size. These values were used to approximate nucleation model adjustment parameters. Obtained model can be very useful in modelling composites microstructure.

  12. Investigation of electron density changes at the onset of a chemical reaction using the state-specific dual descriptor from conceptual density functional theory.

    Science.gov (United States)

    De Proft, Frank; Forquet, Valérian; Ourri, Benjamin; Chermette, Henry; Geerlings, Paul; Morell, Christophe

    2015-04-14

    The electron density changes from reactants towards the transition state of a chemical reaction is expressed as a linear combination of the state-specific dual descriptors (SSDD) of the corresponding reactant complexes. Consequently, the SSDD can be expected to bear important resemblance to the so-called natural orbitals for chemical valence (NOCV), introduced as the orbitals that diagonalize the deformation density matrix of interacting molecules. This agreement is shown for three case studies: the complexation of a Lewis acid with a Lewis base, a SN2 nucleophilic substitution reaction and a Diels-Alder cycloaddition reaction. As such, the SSDD computed for reactant complexes are shown to provide important information about charge transfer interactions during a chemical reaction.

  13. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites

    KAUST Repository

    Yudhanto, Arief

    2014-05-01

    The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; \\'stitched 6 × 6\\') and densely stitched composite (SD = 0.111/mm2; \\'stitched 3 × 3\\') are tested and compared with composite without stitch thread (SD = 0.0; \\'unstitched\\'). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination. © 2014 Elsevier Ltd. All rights reserved.

  14. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    Science.gov (United States)

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  15. Chemical composition of primary cosmic rays with IceCube

    Science.gov (United States)

    Xu, Chen

    Ground detector arrays have been used to measure high energy cosmic rays for decades to overcome their very low rate. IceCube is a special case with its 3D deployment and unique location---the South Pole. Although all 86 strings and 81 stations of IceCube were completed in 2011, IceCube began to take data in 2006, after the completion of the first 9 strings. In this thesis, experimental data taken in 2009 with 59 strings are used for composition analysis albeit some techniques are illustrated with the 40-string data. Simulation is essential in the composition work. Simulated data must be compared against the experimental data to find the right mix of cosmic ray components. However, because of limited computing resources and complexities of cosmic rays, the simulation in IceCube is well behind the experiment. The lower and upper bounds of primary energy in simulation for events that go through IceTop and the deep arrays of IceCube are 1014 eV and 1017 eV. However, since IceCube has a threshold energy about several hundred TeV, and an upper limit of 10 18 eV, the full energy range cannot be explored in this thesis. The approach taken to the composition problem in this thesis is a 2D Bayesian unfolding. It takes account of the measured IceTop and InIce energy spectrum and outputs the expected primary energy spectrum of different mass components. Studies of the uncertainties in the results are not complete because of limited simulation and understanding of the new detector and South Pole environment.

  16. Characterization of chemical composition of bee pollen in China.

    Science.gov (United States)

    Yang, Kai; Wu, Dan; Ye, Xingqian; Liu, Donghong; Chen, Jianchu; Sun, Peilong

    2013-01-23

    Bee pollen has been praised for its good nutrition and therapeutic values. China is the largest producer in the world. Twelve common varieties of monofloral bee pollen collected from China's main producing regions were selected for nutritional composition analysis, including proximate contents, dietary fibers, amino acid distribution, fatty acid composition, and mineral elements. The proximate compositions mostly met the specifications regulating pollen load quality of China. Proline and glutamic acids were found to be the predominant amino acids in the form of both total amino and free amino acids. Lysine was the relative limiting amino acid. The percentage of total essential amino acids (TEAA) to total amino acids (TAA) reached the nutrition recommendation of the Food and Agricultural Organization (FAO). The major fatty acids, presented as mean values, were C18:3 (25.1%), C16:0 (19.6%), C18:1 (17.3%), C18:2 (8.78%), C22:0 (4.07%), and C18:0 (2.96%) acids. The proportions of C18:3 were generally higher than those of C18:2, and the ratio of total unsaturated fatty acids (TUS) to total saturated fatty acids (TS) was >1.0, except for Nelumbo nucifera Gaertn. pollen for the characteristic absence of C18:3 acids. High levels of beneficial elements such as K, Ca, Mg, Zn, Fe, Mn. and Cu were observed in pollen samples. The contents of detrimental trace elements of Cd, Pb, and Hg were primarily lower or not detected. However, more attention should be paid to a large amount of Al, with a concentration of >100 mg/kg DW in most samples. There were some significant differences between samples. On the whole, the Chinese bee pollen was evaluated as a good complement to diet.

  17. Software for analysis of chemical mixtures--composition, occurrence, distribution, and possible toxicity

    Science.gov (United States)

    Scott, Jonathon C.; Skach, Kenneth A.; Toccalino, Patricia L.

    2013-01-01

    The composition, occurrence, distribution, and possible toxicity of chemical mixtures in the environment are research concerns of the U.S. Geological Survey and others. The presence of specific chemical mixtures may serve as indicators of natural phenomena or human-caused events. Chemical mixtures may also have ecological, industrial, geochemical, or toxicological effects. Chemical-mixture occurrences vary by analyte composition and concentration. Four related computer programs have been developed by the National Water-Quality Assessment Program of the U.S. Geological Survey for research of chemical-mixture compositions, occurrences, distributions, and possible toxicities. The compositions and occurrences are identified for the user-supplied data, and therefore the resultant counts are constrained by the user’s choices for the selection of chemicals, reporting limits for the analytical methods, spatial coverage, and time span for the data supplied. The distribution of chemical mixtures may be spatial, temporal, and (or) related to some other variable, such as chemical usage. Possible toxicities optionally are estimated from user-supplied benchmark data. The software for the analysis of chemical mixtures described in this report is designed to work with chemical-analysis data files retrieved from the U.S. Geological Survey National Water Information System but can also be used with appropriately formatted data from other sources. Installation and usage of the mixture software are documented. This mixture software was designed to function with minimal changes on a variety of computer-operating systems. To obtain the software described herein and other U.S. Geological Survey software, visit http://water.usgs.gov/software/.

  18. Testing chemical composition of highest energy comic rays

    CERN Document Server

    Nosek, D; Noskova, J; Ebr, J

    2013-01-01

    We study basic characteristics of distributions of the depths of shower maximum in air showers caused by cosmic rays with the highest energies. The consistency between their average values and widths, and their energy dependences are discussed within a simple phenomenological model of shower development independently of assumptions about detailed features of high--energy interactions. It is shown that reliable information on primary species can be derived within a partition method. We present examples demonstrating implications for the changes in mass composition of primary cosmic rays.

  19. Chemical Composition And Nutritional Evaluation Of Leea Guineensis Seed

    OpenAIRE

    Ajiboye B.O; Oso A.O; Kobomoje O.S

    2014-01-01

    The proximate composition, minerals, fatty acids and amino acids profile of Leea guineensis seeds were investigated. The results of the proximate analysis revealed that Leea guineensis seeds have crude protein of 22.30 ±0.45%, crude fiber of 14.38±1.20% and ash of 6.96 ±0.16%. The results also shows that Leea guineensis seeds is a good sources of dietary minerals especially potassium, phosphorus, magnesium, manganese and copper. Fatty acids profile of the s...

  20. Multi-functional composite materials for catalysis and chemical mechanical planarization

    Science.gov (United States)

    Coutinho, Cecil A.

    2009-12-01

    Composite materials formed from two or more functionally different materials offer a versatile avenue to create a tailored material with well defined traits. Within this dissertation research, multi-functional composites were synthesized based on organic and inorganic materials. The functionally of these composites was experimentally tested and a semi-empirical model describing the sedimentation behavior of these particles was developed. This first objective involved the fabrication of microcomposites consisting of titanium dioxide (TiO2) nanoparticles confined within porous, microgels of a thermo-responsive polymer for use in the photocatalytic treatment of wastewater. TiO2 has been shown to be an excellent photocatalyst with potential applications in advanced oxidative processes such as wastewater remediation. Upon UV irradiation, short-lived electron-hole pairs are generated, which produce oxidative species that degrade simple organic contaminants. The rapid sedimentation of these microcomposites provided an easy gravimetric separation after remediation. Methyl orange was used as a model organic contaminant to investigate the kinetics of photodegradation under a range of concentrations and pH conditions. Although after prolonged periods of UV irradiation (˜8-13 hrs), the titania-microgels also degrade, regeneration of the microcomposites was straightforward via the addition of polymer microgels with no loss in photocatalytic activity of the reformed microcomposites. The second objective within this dissertation involved the systematic development of abrasive microcomposite particles containing well dispersed nanoparticles of ceria in an organic/inorganic hybrid polymeric particle for use in chemical mechanical polishing/planarization (CMP). A challenge in IC fabrication involves the defect-free planarization of silicon oxide films for successful multi-layer deposition. Planarization studies conducted with the microcomposites prepared in this research, yield

  1. Simulation of aerosol chemical compositions in the Western Mediterranean Sea

    Science.gov (United States)

    Chrit, Mounir; Kata Sartelet, Karine; Sciare, Jean; Marchand, Nicolas; Pey, Jorge; Sellegri, Karine

    2016-04-01

    This work aims at evaluating the chemical transport model (CTM) Polair3d of the air-quality modelling platform Polyphemus during the ChArMex summer campaigns of 2013, using ground-based measurements performed at ERSA (Cape Corsica, France), and at determining the processes controlling organic aerosol concentrations at ERSA. Simulations are compared to measurements for concentrations of both organic and inorganic species, as well as the ratio of biogenic versus anthropogenic particles, and organic aerosol properties (oxidation state). For inorganics, the concentrations of sulphate, sodium, chloride, ammonium and nitrate are compared to measurements. Non-sea-salt sulphate and ammonium concentrations are well reproduced by the model. However, because of the geographic location of the measurement station at Cape Corsica which undergoes strong wind velocities and sea effects, sea-salt sulphate, sodium, chloride and nitrate concentrations are strongly influenced by the parameterizations used for sea-salt emissions. Different parameterizations are compared and a parameterization is chosen after comparison to sodium measurements. For organics, the concentrations are well modelled when compared to experimental values. Anthropogenic particles are influenced by emission of semi-volatile organic compounds (SVOC). Measurements allow us to refine the estimation of those emissions, which are currently missing in emission inventories. Although concentrations of biogenic particles are well simulated, the organic chemical compounds are not enough oxidised in the model. The observed oxidation state of organics shows that the oligomerisation of pinonaldehyde was over-estimated in Polyphemus. To improve the oxidation property of organics, the formation of extremely low volatile organic compounds from autoxidation of monoterpenes is added to Polyphemus, using recently published data from chamber experiments. These chemical compounds are highly oxygenated and are formed rapidly, as first

  2. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  3. Chemical composition of red Vranec wines from different locations

    OpenAIRE

    Neceva, Zaneta; Ivanova, Violeta

    2016-01-01

    In this study, red Vranec wines (vintage 2014) were produced from grapes grown at different locations: Barovo, Disan, Gradsko and Bitola. Wines were produced with same technology, applying traditional way of production. In addition, following chemical parameters which influence the wine quality were determined: total acidity, pH, volatile acidity, alcohol, SO2 (free and total) and reducing sugars. Wines contained total acids in range from 4.9 to 7.1 g/L and the volatile acidity was in range f...

  4. [Analysis of main chemical composition in hydrogenated rosin from Zhuzhou].

    Science.gov (United States)

    Duan, W G; Chen, X P; Wang, L L; Deng, S; Zhou, Y H; An, X N

    2001-01-01

    The acid fraction, the main part of the hydrogenated rosin produced by Zhuzhou Forest Chemicals Plant of China, was separated from neutral fraction by modified DEAE-Sephadex ion exchange chromatography and analyzed with GC-MS-DS technique by using DB-5 capillary column. Six dihydroabietic-type resin acids, four dihydropimaric/isopimaric-type resin acids and four tetrahydroabietic-type resin acids were identified. The hydrogenated rosin is composed mainly of 8-abietenoic acid, 18-abietanoic acid, 13-abietenoic acid, 8 alpha, 13 beta-abietanoic acid, 13 beta-8-abietenoic acid and 8-isopimarenoic acid etc.

  5. Chemical composition and fermentation characteristics of sugar cane silage enriched with detoxified castor bean meal

    Directory of Open Access Journals (Sweden)

    A.C. Oliveira

    2015-02-01

    Full Text Available This experiment was designed to evaluate the effects of the inclusion of detoxified castor bean meal (CM content on the chemical-bromatological composition, as well as the fermentation characteristics and dry matter losses of sugarcane silage. The treatments consisted of four levels (0, 7, 14 and 21% natural matter of addition of castor bean meal. The design was completely randomized, with five replicates. The material was ensiled in PVC silos of 50-cm in height and 10-cm in diameter, which were opened after 60 days. The density of fodder maintained in the silos was equal to 750kg of natural matter/m3. In order to quantify the gas and effluent losses, the silos were weighed at the beginning and at the end of the experiment. The addition of castor bean meal has increased the levels of DM and crude protein and reduced the levels of neutral detergent fiber, N-NH3, ethanol, and gas and effluent losses from silages, but did not affect pH values. During ensiling, alcoholic fermentation was controlled with the inclusion of the additive.

  6. Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrrez, L.F.; Rosada, L.M.; Jimenez, A.

    2011-07-01

    The seeds of Sacha inchi (Plukenetia volubilis L.) from Colombia were analyzed for their main chemical composition. Sacha inchi seeds (SIS) were rich in oil (41.4%) and protein (24.7%). The main minerals present in SIS were potassium (5563.5 ppm), magnesium (3210 ppm) and calcium (2406 ppm). A fatty acid analysis revealed that a-linolenic (50.8%) and linoleic (33.4%) acids were the main fatty acids in Sacha inchi oil (SIO). The lipid fractionation of SIO, obtained by solid phase extraction, yielded mainly neutral lipids (97.2%), and lower amounts of free fatty acids (1.2%) and phospholipids (0.8%). The physicochemical properties of the oil include: saponification number 185.2; iodine value 193.1; density 0.9187 g/cm3, refractive index 0.4791 and viscosity of 35.4 mPa.s. The melting profiles of SIO were characterized by the presence of one wide endothermic peak with a melting enthalpy of 23.2 J/g. Our results indicate that Sacha inchi is an important new crop with applications in the food and pharmaceutical industries. (Author).

  7. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey.

    Science.gov (United States)

    Özcan, Mehmet Musa; Al Juhaimi, Fahad Y

    2011-08-01

    The proximate composition and physico-chemical properties (moisture, crude lipid, crude protein, ash, and crude fiber, peroxide value, saponification value, acidity, relative density and refractive index) of prickly pear seed and corresponding oil were determined. The mineral contents (Ca, Cu, Fe, K, Mg, Na, P, Mn and Zn) of samples were analyzed by inductively coupled plasma atomic emission spectrometry. Minerals determined were: calcium 471.2 mg/kg, potassium 532.7 mg/kg, magnesium 117.3 mg/kg, phosphorus 1,627.5 mg/kg and natrium 71.3 mg/kg. The fatty acid profiles of seed oil from the Opuntia ficus indica were analyzed by gas chromatography. Linoleic acid was established as the major fatty acid (61.01%), followed by oleic (25.52%) and palmitic (12.23%) acids. Both myristic, stearic and arachidonic acids were detected in O. ficus indica seed oil in low amounts. As a result, O. ficus indica seeds are an important source of natural fiber and, given its high linoleic acid content, its oil can be used as a nutraceutic agent.

  8. Perspective: Fifty years of density-functional theory in chemical physics.

    Science.gov (United States)

    Becke, Axel D

    2014-05-14

    Since its formal inception in 1964-1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.

  9. Density functional theory molecular modeling, chemical synthesis, and antimicrobial behaviour of selected benzimidazole derivatives

    Science.gov (United States)

    Marinescu, Maria; Tudorache, Diana Gabriela; Marton, George Iuliu; Zalaru, Christina-Marie; Popa, Marcela; Chifiriuc, Mariana-Carmen; Stavarache, Cristina-Elena; Constantinescu, Catalin

    2017-02-01

    Eco-friendly, one-pot, solvent-free synthesis of biologically active 2-substituted benzimidazoles is presented and discussed herein. Novel N-Mannich bases are synthesized from benzimidazoles, secondary amines and formaldehyde, and their structures are confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. All benzimidazole derivatives are evaluated by qualitative and quantitative methods against 9 bacterial strains. The largest microbicide and anti-biofilm effect is observed for the 2-(1-hydroxyethyl)-compounds. Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software. Antimicrobial activity is correlated with the electronic parameters (chemical hardness, electronic chemical potential, global electrophilicity index), Mullikan atomic charges and geometric parameters of the benzimidazole compounds. The planarity of the compound, symmetry of the molecule, and the presence of a nucleophilic group, are advantages for a high antimicrobial activity. Finally, we briefly show that further accurate processing of such compounds into thin films and hybrid structures, e.g. by laser ablation matrix-assisted pulsed laser evaporation and/or laser-induced forward transfer, may indeed provide simple and environmental friendly, state-of-the-art solutions for antimicrobial coatings.

  10. Chemical-garden formation, morphology, and composition. I. Effect of the nature of the cations.

    Science.gov (United States)

    Cartwright, Julyan H E; Escribano, Bruno; Sainz-Daz, C Ignacio

    2011-04-05

    We have grown chemical gardens in different sodium silicate solutions from several metal-ion salts--calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate--with cations from period 4 of the periodic table. We have studied their formation process using photography, examined the morphologies produced using scanning electron microscopy (SEM), and analyzed chemical compositions using X-ray powder diffraction (XRD) and energy dispersive X-ray analysis (EDX) to understand better the physical and chemical processes involved in the chemical-garden reaction. We have identified different growth regimes in these salts that are dependent on the concentration of silicate solution and the nature of the cations involved.

  11. Essential oils from Taiwan: Chemical composition and antibacterial activity against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Po-Chen Lin

    2016-07-01

    Full Text Available The chemical compositions of seven essential oils from Taiwan were analyzed by gas chromatography-mass spectrometry. The eluates were identified by matching the mass fragment patents to the National Institute of Standards and Technology (NIST 08 database. The quantitative analysis showed that the major components of lemon verbena are geranial (26.9% and neral (23.1%; those of sweet marjoram are γ-terpinene (18.5%, thymol methyl ether (15.5%, and terpinen-4-ol (12.0%; those of clove basil are eugenol (73.6%, and β-(Z-ocimene (15.4%; those of patchouli are carvacrol (47.5% and p-cymene (15.2%; those of rosemary are α-pinene (54.8% and 1,8-cineole (22.2%; those of tea tree are terpinen-4-ol (33.0% and 1,8-cineole (27.7%; and those of rose geranium are citronellol (28.9% and 6,9-guaiadiene (20.1%. These components are somewhat different from the same essential oils that were obtained from other origins. Lemon verbena has the same major components everywhere. Tea tree, rose geranium, and clove basil have at least one major component throughout different origins. The major components and their amounts in sweet marjoram, patchouli, and rosemary vary widely from one place to another. These results demonstrate that essential oils have a large diversity in their composition in line with their different origins. The antibacterial activity of essential oils against Escherichia coli was evaluated using the optical density method (turbidimetry. Patchouli is a very effective inhibitor, in that it completely inhibits the growth of E. coli at 0.05%. Clove basil and sweet marjoram are good inhibitors, and the upper limit of their minimum inhibitory concentration is 0.1%.

  12. Chemical compositions and plasma parameters of planetary nebulae with Wolf-Rayet and wels type central stars

    CERN Document Server

    Girard, P; Acker, A

    2006-01-01

    Aims: Chemical compositions and other properties of planetary nebulae around central stars of spectral types [WC], [WO], and wels are compared with those of `normal' central stars, in order to clarify the evolutionary status of each type and their interrelation. Methods: We use plasma diagnostics to derive from optical spectra the plasma parameters and chemical compositions of 48 planetary nebulae. We also reanalyze the published spectra of a sample of 167 non-WR PN. The results as well as the observational data are compared in detail with those from other studies of the objects in common. Results: The central star's spectral type is clearly correlated with electron density, temperature and excitation class of the nebula, [WC] nebulae tend to be smaller than the other types. All this corroborates the view of an evolutionary sequence from cool [WC 11] central stars inside dense, low excitation nebulae towards hot [WO 1] stars with low density, high excitation nebulae. The wels PN, however, appear to be a separ...

  13. Chemical composition distribution analysis of photoresist copolymers and influence on ArF lithographic performance

    Science.gov (United States)

    Momose, Hikaru; Yasuda, Atsushi; Ueda, Akifumi; Iseki, Takayuki; Ute, Koichi; Nishimura, Takashi; Nakagawa, Ryo; Kitayama, Tatsuki

    2007-03-01

    For getting information about the distribution of chemical composition, several model polymers were prepared under different polymerization conditions and were measured by critical adsorption point-liquid chromatography (CAP-LC). In the copolymer system of 8- and 9- (4-oxatricyclo[5.2.1.0 2,6]decane-3-one) acrylate (OTDA) and 2-ethyl-2-adamantyl methacrylate (EAdMA), the peak shapes of the CAP-LC chromatogram varied according to the polymerization condition although they indicated same molecular weight and averaged chemical composition. The difference of the CAP-LC elution curves was related to the chemical composition distribution of copolymers for CAP-LC measurement combined with proton nuclear magnetic resonance (1H-NMR). The terpolymers consisted of α-hydroxy-γ-butyrolactone methacrylate (GBLMA), 2-methyl-2-adamantyl methacrylate (MAdMA) and 1-hydroxy-3-adamantyl methacrylate (HAdMA) were prepared under various polymerization conditions. In the terpolymer system that had same molecular weight and average chemical composition, the solubility parameter (δ) and the dissolution rate were measured. The δ value and the dissolution rate curve were different among these terpolymers. It was suggested that the δ value and the chemical composition distribution of these terpolymers have a significant influence on the lithographic performance.

  14. [Influence of specification on chemical composition of dissolution and hepatocytes toxicity of Polygonum multiflorum].

    Science.gov (United States)

    lI, Yu-Meng; Li, Rui-Yu; Niu, Ming; Li, Chun-Yu; Bai, Zhao-Fang; Feng, Wu-Wen; Zhang, Cong-En; Tan, Peng; Huang, Zhi-Pu; Ma, Wei-Guang; Wang, Jia-Bo; Xiao, Xiao-He

    2016-03-01

    According to different toxicities of various aqueous extracts of Polygonum multiflorum on hepatocyte, the impacts of chemical composition on the safety of P. multiforum was studied. In this study, 8 main chemical compositions in aqueous extracts of P. multiflorum were determined by the established HPLC method; at the same time, the inhibition ratios of different aqueous extracts of P. multiflorum on L02 cell were determined. Afterwards, the potential compounds related to the toxicity of P. multiforum were tentatively found through a multiple correlation analysis. The results showed that P. multiforum with different chemical compositions exhibited great differences in dissolution. The hepatocyte toxicity of P. multiflorum powder was much greater than P. multiflorum lumps. In addition, three constituents closely related to toxicity of P. multiflorum were found by multiple correlation analysis. The study revealed that chemical composition of P. multiflorum is closely related to the hepatotoxicity, and the hepatotoxicity of P. multiflorum powder is greater than that of other dosage forms. This study indicates that P. multiflorum with different chemical compositions show varying toxicity, which therefore shall be given high attention. Copyright© by the Chinese Pharmaceutical Association.

  15. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  16. Microstructural characterization and chemical compatibility of pulsed laser deposited yttria coatings on high density graphite

    Energy Technology Data Exchange (ETDEWEB)

    Sure, Jagadeesh [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mishra, Maneesha [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Tarini, M. [SRM University, Kattankulathur-603 203 (India); Shankar, A. Ravi; Krishna, Nanda Gopala [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Kuppusami, P. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India); Mallika, C. [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India); Mudali, U. Kamachi, E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam — 603 102 (India)

    2013-10-01

    Yttria coatings were deposited on high density (HD) graphite substrate by pulsed laser deposition method and subsequently annealing in vacuum at 1373 K was carried out to evaluate the thermal stability of the coatings. Yttria deposited on HD graphite samples were exposed to molten LiCl–KCl salt at 873 K for 3 h to evaluate the corrosion behavior of the coating for the purpose of pyrochemical reprocessing applications. The microstructure and the corrosion behavior of the yttria coating deposited on HD graphite in molten LiCl–KCl salt were evaluated by several characterization techniques. X-ray diffraction and Laser Raman patterns confirmed the presence of cubic phase of yttria in the coating. The surface morphology of yttria coating on HD graphite examined by scanning electron microscope and atomic force microscopy revealed the agglomeration of oxide particles and formation of clusters. After annealing at 1373 K, no appreciable grain growth of yttria particles could be observed. X-ray photoelectron spectroscopy analysis was carried out for elemental analysis before and after chemical compatibility test of the coated samples in molten LiCl–KCl salt to identify the corrosive elements present on the yttria coatings. The chemical compatibility and thermal stability of the yttria coating on HD graphite in molten LiCl–KCl salt medium have been established. - Highlights: • Y{sub 2}O{sub 3} coating was deposited on graphite by pulsed laser deposition method. • Chemical compatibility of Y{sub 2}O{sub 3} coating in LiCl–KCl salt at 873 K was studied. • Gibbs free energy change was positive for Y{sub 2}O{sub 3} reaction with Cl{sub 2}, U and UCl{sub 3}. • Y{sub 2}O{sub 3} coating exhibited better corrosion performance in molten LiCl–KCl salt.

  17. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    Science.gov (United States)

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement.

  18. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.

    Science.gov (United States)

    de Santana, Fernanda Carvalho; Shinagawa, Fernanda Branco; Araujo, Elias da Silva; Costa, Ana Maria; Mancini-Filho, Jorge

    2015-12-01

    The seed oils of different varieties of 4 Passiflora species cultivated in Brazil were analyzed and compared regarding their physicochemical parameters, fatty acid composition and the presence of minor components, such as phytosterols, tocopherols, total carotenoids, and phenolic compounds. The antioxidant capacities of the oil extracts were determined using the 2,2'azinobis [3-ethylbenzothiazoline-6-sulfonic acid] and oxygen radical absorbance capacity methods. The results revealed that all studied Passiflora seed oils possessed similar physicochemical characteristics, except for color, and predominantly contained polyunsaturated fatty acids with a high percentage of linolenic acid (68.75% to 71.54%). Other than the total phytosterol content, the extracted oil from Passiflora setacea BRS Pérola do Cerrado seeds had higher quantities (% times higher than the average of all samples), of carotenoids (44%), phenolic compounds (282%) and vitamin E (215%, 56%, 398%, and 100% for the α-tocopherol, β-tocopherol, γ-tocopherol, and δ-tocopherol isomers, respectively). The methanolic extracts from Passiflora setacea BRS Pérola do Cerrado seed oil also showed higher antioxidant activity, which was positively correlated with the total phenolic, δ-tocopherol, and vitamin E contents. For the first time, these results indicate that Passiflora species have strong potential regarding the use of their seeds for oil extraction. Due to their interesting composition, the seed oils may be used as a raw material in manufacturing industries in addition to other widely used vegetable oils.

  19. An estimate of the chemical composition of Titan's lakes

    CERN Document Server

    Cordier, D; Lunine, J -I; Lavvas, P; Vuitton, V

    2009-01-01

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer (GCMS) aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument (HASI). Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered as nonideal solutions. We find that the main constituents of the lakes are ethane (C2H6) (~76-79%), propane (C3H8) (~7-8%), methane (CH4) (~5-10%), hydrogen cyanide (HCN) (~2-3%), butene (C4H8) (~1%), butane (C4H10) (~1%) and acetylene (C2H2) (~1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  20. Chemical composition of meat in two cyprinid species

    Directory of Open Access Journals (Sweden)

    Valerica Macovei

    2009-06-01

    Full Text Available The biochemical analyses of the meat were determined in two species of carps, respectively Cyprinus carpio and Ctenopharyngodon idella. We worked on four groups of 10 fishes each (two groups for C. carpio and two groups for Ct. idella. One group from both species was fed with special fodder, and the other two groups were fed with clover (Trifolium pratense and reeds (Phragmites communis for C. carpio and Ct. idella respectively. The determination was made in the laboratory of chemical analyses of the Faculty of Animal Sciences, University of Agricultural Sciences and Veterinary Medicine Iaşi and we determined the content of the meat in proteins, fat, dry substance and minerals. The characteristic chemicals of the meat were determined on the extracted sample from the lateral musculature of the body. Biochemical analysis of meat from the four carp lots shows that protein content of meat is higher in groups which received combined feed compared to group which individuals were fed with natural food. Therefore, in case of feeding fish with combined fodder the protein content of meat increases, which proves a good recovery of protein in feed. Fat content and minerals in cyprinid meat are both higher in individuals fed with combined feed compared to those fed with natural components. When fat content in meat is higher, the dry matter content in meat is higher.

  1. Influence of the chemical composition on steel casting performance

    Directory of Open Access Journals (Sweden)

    Roney Eduardo Lino

    2017-01-01

    Full Text Available Improving the quality of steel and the steelmaking process has been a matter of routine for metallurgical engineers and steelmaking companies in a demanding market for quality products at highly competitive price. The chemical and temperature adjustment are made during the secondary refining process, as well as the inclusion modification required to product quality, and also the demand for castability accuracy. Continuous casting process is the most used solidification casting process, in which the flow of pouring liquid metal through the submerged entry nozzle is assured by the correct temperature and the formation of liquid inclusion in the casting temperature. Thermocalc and CEQCSI were the software used in this work to assess the effect of carbon, silicon and sulphur in the castability window of the aluminium vs calcium phase diagrams. They have proved to be highly suitable and effective and the results showed that the chemical elements used directly affected the position of the castability window of carbon steel. An analysis of a 0.2%C billet sample using Scanning Electron Microscopy showed that there is a great heterogeneity of inclusions in aluminium-killed and calcium-treated steel.

  2. Chemical Compositions of Kinematically Selected Outer Halo Stars

    CERN Document Server

    Zhang, Lan; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-01-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with Subaru/HDS. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including $\\alpha$-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn) and neutron-capture elements (Y, Ba), are determined by two independent data reduction and LTE analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [$\\alpha$/Fe] with increasing [Fe/H] for the range of $-3.5 <$ [Fe/H]$ < -1$, as found by Stephens and Boesgaard (2002). [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the ou...

  3. Chemical composition of fresh snowfalls at Palmer Station, Antarctica

    Science.gov (United States)

    DeFelice, T. P.

    A first time investigation was performed to establish a chemical baseline for snowfall at Palmer Station Antarctica (64°46'S, 64°05'W) since there was no such record. A chemical baseline for snow could be use to validate climate change studies based on ice core analyses. The snow samples contained (from high to low mass concentration) total organic carbon, chloride, inorganic carbon, sodium, sulfate, magnesium, calcium, potassium, fluoride, ammonium, and nitrate, excluding hydrogen and hydroxide. The pH of these samples ranged between 4.0-6.2. The relatively low nitrate and relatively high sulfate concentrations found in our samples are consistent with the results of other studies for this region of Antarctica. The ions and pH do not appear to favor a particular wind direction during this period. The total deposition of sulfate and flouride via snowfall between 10 January and 10 February is conservatively estimated to be 4.78 and 1.3 kg km -2, respectively.

  4. Chemical composition of water from roofs in Gdansk, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Tsakovski, Stefan, E-mail: stsakovski@chem.uni-sofia.b [Chair of Physical Chemistry, Faculty of Chemistry, University of Sofia, J Bourchier Blvd. 1, 1164 Sofia (Bulgaria); Tobiszewski, Marek [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Simeonov, Vasil, E-mail: vsimeonov@chem.uni-sofia.b [Chair of Analytical Chemistry, Faculty of Chemistry, University of Sofia, 1164 Sofia (Bulgaria); Polkowska, Zaneta [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland); Namiesnik, Jacek, E-mail: chemanal@pg.gda.p [Department of Analytical Chemistry, Chemical Faculty, Gdansk University of Technology (GUT), 11/12 G. Narutowicza St., 80-952 Gdansk (Poland)

    2010-01-15

    This study deals with the assessment of roof runoff waters from the region of Gdansk collected during the winter season (2007/2008). The chemical analysis includes 16 chemical variables: major ions, PAHs and PCBs measured at 3 sampling sites for 6-14 rain events. Although the data set is of limited volume the statistical data treatment using self-organizing maps (SOM) reveals the main factors controlling roof runoff water quality even for a data set with small dimension. This effort for explanation of the identified factors by the possible emission sources of the urban environment and air-particulate formation seems to be very reliable. Additionally to the roof runoff water quality factors the rain events patterns are found: 'background' group of events and groups formally named 'PAHs', 'PCBs' and 'air-borne particles' - dominated events. The SOM classification results give an opportunity to uncover the role of roof 'impact' on the runoff waters. Rain runoff water quality is described by four latent factors and the 'roof' impact is uncovered. - Identification of the urban roof runoff water quality factors and 'roof' impact by self-organizing map classification.

  5. Analysis of changes in the chemical composition of the blast furnace coke at high temperatures

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2012-12-01

    Full Text Available Purpose: The main purpose of this paper was to analyze the behavior of coke in the blast furnace. The analysis of changes in chemical composition of coke due to impact of inert gas and air at different temperatures was made. The impact of the application of the thermoabrasion coefficient on the porosity of coke was also analyzed.Design/methodology/approach: By applying the Computer Thermochemical Database of the TERMO system (REAKTOR1 and REAKTOR3 three groups of substances can be distinguished. The chemical composition of blast furnace coke and the results of calculations of changes of chemical composition of coke heat treated under certain conditions were compared. The structural studies of these materials were presented.Findings: The results of the analysis of ash produced from one of Polish cokes was taken for consideration. This is not the average composition of Polish coke ashes, nevertheless it is representative of most commonly occurring chemical compositions.Practical implications: Thanks to the thermochemical calculations it is possible to predict ash composition after the treatment in a blast furnace. Those information was crucial and had an actual impact on determining the coke quality.Originality/value: Presentation of the analytical methods which, according to author, can be very useful to evaluate and identify the heat treatment for blast furnaces cokes. The research pursued represents part of a larger project carried out within the framework of Department Extraction and Recycling of Metals, Czestochowa University of Technology.

  6. Influence of basal energy expenditure and body composition on bone mineral density in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Quirino MA

    2012-11-01

    menopause; 22.3% of bone mineral density variability at the femoral neck is related to body weight and age; 18.9% of bone mineral density variability at Ward's triangle is related to age and basal energy expenditure; and 39% of bone mineral density variability at the trochanter is related to body mass index, age, and menarche.Conclusion: Changes in bone mineral density, specific for each skeletal site, are influenced by age, time since menopause, body weight, body mass index, lean mass, and basal energy expenditure. Lean mass and basal energy expenditure positively influenced bone mineral density at the lumbar spine and Ward's triangle, with a predominance of trabecular bone.Keywords: women, menopause, bone mineral density, body composition, energy expenditure

  7. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  8. Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis

    Science.gov (United States)

    Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.

  9. Fabrication of very-low-density, high-stiffness carbon fiber/aluminum hybridized composite with ultra-low density and high stiffness (M-11)

    Science.gov (United States)

    Suzuki, Tomoo

    1993-01-01

    Fabrication of a composite material with ultra-low density and high stiffness in microgravity is the objective of the investigation. The composite structure to be obtained is a random three-dimensional array of high modulus, short carbon fibers bonded at contact points by an aluminum alloy coated on the fibers. The material is highly porous and thus has a very low density. The motivation toward the investigation, simulation experiments, choice of the component materials, and on-flight experiment during ballistic trajectory of a NASDA rocket, are described.

  10. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites.

    Science.gov (United States)

    White, Ashley A; Kinloch, Ian A; Windle, Alan H; Best, Serena M

    2010-10-06

    Hydroxyapatite-carbon nanotube (HA-CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the 'water-gas reaction') would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water-gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density.

  11. Spatial and Temporal Investigations of Laser Ablation Plasma Plume Density and Composition

    Science.gov (United States)

    Iratcabal, Jeremy; Bach, Bernhard; Beatty, Cuyler; Dutra, Eric; Darling, Timothy; Wiewior, Piotr; Covington, Aaron

    2016-10-01

    Laser ablation of solid targets with laser intensities of the order of 108-1011 W/cm2 provides a rich platform for investigating the density and composition of coexisting molecular, atomic, and ion species in the resulting plasma plume. Experiments measuring the spatial- and temporal-evolution of laser ablation plumes have been performed to simultaneously characterize the multiple parameters related to the energy and momentum partitioning of the incident laser energy as the ablation process occurs. The temperature, density, and relative populations of different molecular, atomic, and ion species can be determined by the simultaneous measurement of optical and charged particle spectroscopy, fast imaging cameras, and optical interferometric diagnostics. Additionally, background gas pressure, density, and species were carefully varied. A comparison of density measurements obtained with multiple interferometric, spectroscopic, and fast imaging diagnostics for a carbon ablation plume expanding into vacuum and into background gases with different Reynolds numbers will be presented. Atomic, molecular, and ion species population evolution will be presented as measured with optical and charged particle spectroscopy. This work was supported by the U.S. DOE NNSA Cooperative Agreement No. DE-NA0002075 and National Securities Technologies, LLC under Contract No. DE-AC52-06NA25946/subcontract No. 165819.

  12. Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density core.

    Science.gov (United States)

    Sikdar, Shirsendu; Banerjee, Sauvik

    2016-09-01

    A coordinated theoretical, numerical and experimental study is carried out in an effort to interpret the characteristics of propagating guided Lamb wave modes in presence of a high-density (HD) core region in a honeycomb composite sandwich structure (HCSS). Initially, a two-dimensional (2D) semi-analytical model based on the global matrix method is used to study the response and dispersion characteristics of the HCSS with a soft core. Due to the complex structural characteristics, the study of guided wave (GW) propagation in HCSS with HD-core region inherently poses many challenges. Therefore, a numerical simulation of GW propagation in the HCSS with and without the HD-core region is carried out, using surface-bonded piezoelectric wafer transducer (PWT) network. From the numerical results, it is observed that the presence of HD-core significantly decreases both the group velocity and the amplitude of the received GW signal. Laboratory experiments are then conducted in order to verify the theoretical and numerical results. A good agreement between the theoretical, numerical and experimental results is observed in all the cases studied. An extensive parametric study is also carried out for a range of HD-core sizes and densities in order to study the effect due to the change in size and density of the HD zone on the characteristics of propagating GW modes. It is found that the amplitudes and group velocities of the GW modes decrease with the increase in HD-core width and density.

  13. Measurement of the optical density of packable composites: comparison between direct and indirect digital systems

    Directory of Open Access Journals (Sweden)

    Graziottin Luiz Felipe Rodrigues

    2002-01-01

    Full Text Available The aim of this study was to measure the optical density of four packable composite resins with widths of 1, 2, 3 and 4 mm, by means of Digora® (direct and DentScan DentView® (indirect digital imaging systems, in order to compare both methods. Twenty acrylic plates, with the proposed thicknesses, were used, each one containing a sample of each resin. Each acrylic plate was radiographed three times, under a standardized technique. For the Digora® system, an optical plate was used under each resin sample, and, for the DentScan DentView® system, occlusal films were employed, totalizing 60 exposures for each system. Optical plates and films were scanned and three consecutive optical readouts were carried out, totalizing 1,440 readouts. The results were submitted to statistical analysis and revealed that the average optical density of the four resins always increased as thickness increased. Regarding the comparisons between the composite resins, in both analysis the resin with the greater optical density was SurefilTM followed by ProdigyTM Condensable, AlertTM and Solitaire®. The correlations between the results of Digora® and DentScan DentView® were significant for the different thicknesses and materials. The observed tendency is that as the values obtained with the Digora® system increase, so do the values obtained with DentScan DentView®. While thickness increased, the values of optical density in both Digora® and DentScan DentView® tended to approach each other. The Digora® system presented smaller amplitude between the results obtained in adjacent thicknesses.

  14. Effect of energy density on color stability in dental resin composites under accelerated aging.

    Science.gov (United States)

    Zamarripa, Eliezer; Ancona, Adriana L; D'Accorso, Norma B; Macchi, Ricardo L; Abate, Pablo F

    2008-01-01

    The effects of the energy density that is used for polymerization on properties of dental resin composites are well known. However, few studies relate color stability to this factor. The aim of this study was to assess color changes (deltaE*), in vitro, in terms of accelerated aging under UV exposure of specimens prepared with different energy densities. Four commercial dental resin composites were included in the study. Thirty six specimens were prepared for each one of them, following the procedure established by ISO 4049 Standard, and assigned to three groups: A (3.75 J/cm2), B (9 J/cm2), C (24 J/cm2). Each group was further subdivided into four subgroups: 1 (no aging), 2 (500 hours aging), 3 (1000 hours aging) and 4 (1500 hours aging). The results were analyzed by means of ANOVA and Tukey's test (alpha = 0.05) to determine the effect of the factors. Correlation was performed in order to determine the possible relationship among variables. Energy density is not a significant factor in color stability. However aging is directly proportional to color changes. deltaE* depends on filler size; hybrid material presented deltaE* of 2.1(0.5), 2.4(0.6) and 3.3(0.3) at 500, 1000 and 1500 hours of accelerated aging respectively, and nanofilled material showed deltaE* of 3.0(0.6), 4.5(1.2) and 5.9(0.6) at the same times respectively. It can be concluded that deltaE* does not depend on energy density; however other factors are involved in color change. Further studies in this area are warranted.

  15. Chemical composition and food uses of teff (Eragrostis tef).

    Science.gov (United States)

    Zhu, Fan

    2018-01-15

    Teff (Eragrostis tef) is a cereal native to Ethiopia and Eritrea. It has an excellent adaptability to harsh environmental conditions and plays an important role in food security. In recent years, teff is becoming globally popular due to the attractive nutritional profile such as gluten free and high dietary fiber content. This review documents the recent advances in the genetic diversity, nutritional composition and food uses of teff grain. The attractive nutrients of teff include protein, dietary fiber, polyphenols, and certain minerals. Whole grain teff flour becomes increasingly important in healthy food market, and has been used to produce various gluten free food items such as pasta and bread. Efforts have been made to enhance the sensory quality of teff based products. There is great potential to adapt teff to the other parts of the world for healthy food and beverage production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical composition and biological activities of the Agaricus mushrooms

    Directory of Open Access Journals (Sweden)

    L Munkhgerel

    2014-10-01

    Full Text Available Two species of Agaricus mushroom grown in Mongolia were analyzed for their element content. Biological activity and chemical components study of Agaricus, grown in the Mongolian flora has been investigated for the first time. The ethanol extracts of dried Agaricus sp. mushrooms were analyzed for antioxidant activity on 1,1-diphenyl-2- picrylhydrazyl (DPPH radicals and interferon-like activity. The ethanol extracts from Agaricus arvensis showed the most potent radical scavenging activity. The IC50 of A. silvaticus and A. arvensis were 216 and 17.75 g/ml respectively. Among the twenty three mushroom extracts, the extracts from A. silvatisus and A. arvensis have shown the interferon-like activity. DOI: http://dx.doi.org/10.5564/mjc.v14i0.197Mongolian Journal of Chemistry 14 (40, 2013, p41-45

  17. Chemical composition of umbu (Spondias tuberosa Arr. Cam seeds

    Directory of Open Access Journals (Sweden)

    Soraia Vilela Borges

    2007-02-01

    Full Text Available The umbu tree (Spondias tuberosa Arr. Cam is an important fruit tree the economy of the semi-arid northeastern region of Brazil. With the objective of finding use for the seeds, physical and chemical characterizations of the seeds from 2 cultivars in 2 maturation stages were carried out and their fatty acid and mineral profiles determined. The results showed no differences between the seeds analyzed. The yield was about 10% and the dimensions as follows: length from 1.48 to 2.11 cm and width from 0.76 to 1.16 cm. The average lipid content was 55% of which 69% was unsaturated and the average protein content was 24%. The seeds were a good source of the following minerals: P, K, Mg, Fe and Cu. The overall results indicated that the oil or the seeds could be used for food stuffs if no toxic agents were found.

  18. A New Reference Chemical Composition for TMC-1

    CERN Document Server

    Gratier, P; Ohishi, M; Roueff, E; Loison, J -C; Hickson, K M; Wakelam, V

    2016-01-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agundez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  19. A New Reference Chemical Composition for TMC-1

    Science.gov (United States)

    Gratier, P.; Majumdar, L.; Ohishi, M.; Roueff, E.; Loison, J. C.; Hickson, K. M.; Wakelam, V.

    2016-08-01

    Recent detections of complex organic molecules in dark clouds have rekindled interest in the astrochemical modeling of these environments. Because of its relative closeness and rich molecular complexity, TMC-1 has been extensively observed to study the chemical processes taking place in dark clouds. We use local thermodynamical equilibrium radiative transfer modeling coupled with a Bayesian statistical method which takes into account outliers to analyze the data from the Nobeyama spectral survey of TMC-1 between 8 and 50 GHz. We compute the abundance relative to molecular hydrogen of 57 molecules, including 19 isotopologues in TMC-1 along with their associated uncertainty. The new results are in general agreement with previous abundance determination from Ohishi & Kaifu and the values reported in the review from Agúndez & Wakelam. However, in some cases, large opacity and low signal to noise effects allow only upper or lower limits to be derived, respectively.

  20. CHEMICAL COMPOSITION AND ANTI-INFLAMMATORY ACTIVITY OF Roldana platanifolia

    Directory of Open Access Journals (Sweden)

    Amira Arciniegas

    2015-11-01

    Full Text Available The chemical study of Roldana platanifolia led to the isolation of β-caryophyllene, five eremophilanolides, chlorogenic acid, and a mixture of β-sitosterol-stigmasterol, β-sitosteryl glucopyranoside, and sucrose. The anti-inflammatory activities of the extracts and isolated products were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA model of induced acute inflammation. The acetone and methanol extracts showed dose dependent activities (ID50 0.21 and 0.32 mg/ear, respectively, while none of the isolated compounds exhibited relevant edema inhibition. The active extracts were also evaluated with the myeloperoxidase assay technique (MPO to determine their ability to prevent neutrophil infiltration. Results showed that the anti-inflammatory activity was related to the compound’s ability to inhibit pro-inflammatory mediators such as neutrophils.

  1. Dielectric properties: A gateway to antibacterial assay-A case study of low-density polyethylene/chitosan composite films.

    Digital Repository Service at National Institute of Oceanography (India)

    Sunilkumar, M.; Gafoor, A.A; Anas, A; Haseena, A; Sujith, A

    The dielectric properties of low-density polyethylene–chitosan composite films were correlated with their antibacterial properties in this work. Films were designed on the molecular level using palm oil as a plasticizer in an internal mixer. Maleic...

  2. Electron Density Profile Data Contains Virtual Height/Frequency Pairs from a Profile or Profiles (Composite Months) of Ionograms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Electron Density Profile, N(h), data set contains both individual profiles and composite months. The data consist of virtual height/frequency pairs from a...

  3. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wei Cui; Hui Xu; Jian-hao Chen; Shu-bin Ren; Xin-bo He; Xuan-hui Qu

    2016-01-01

    Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering tempera-ture, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915°C when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for in-creasing the relative density of the composite.

  4. The CBS spectra investigation as method of the PN chemical composition analysis

    Science.gov (United States)

    Shimanskaya, N. N.; Bikmaev, I. F.; Shimansky, V. V.; Sakhibullin, N. A.; Zhuchkov, R. Ya.; Shigapov, R. R.

    2007-10-01

    We report the results of the investigations of chemical composition of close binaries which had gone through the stage of common envelope and which are the remnants of planetary nebular cores. High resolution spectra for different phases of orbital period of V471 Tau were taken by RTT-150 telescope and were investigated by the modified SYNTH program. The spectra show noticeable variability with an appearance of emission components dependent of the orbital period phase. For chemical composition determination, the "solar" oscillator strengths of 700 lines were determined. It was found that the chemical content of V471 Tau is a composite one and is characterized by excess of α-process elements in the contrast to small underabundance of iron-peak elements. An estimation of different element abundances in the star allows to determine their contents in planetary nebular phase.

  5. Indirect Determination of Chemical Composition and Fuel Characteristics of Solid Waste

    DEFF Research Database (Denmark)

    Riber, Christian; Christensen, Thomas Højlund

    Determination of chemical composition of solid waste can be performed directly or indirectly by analysis of combustion products. The indirect methodology instrumented by a full scale incinerator is the only method that can conclude on elements in trace concentrations. These elements are of great...... interest in evaluating waste management options by for example LCA modeling. A methodology description of indirect determination of chemical composition and fuel properties of waste is provided and validated by examples. Indirect analysis of different waste types shows that the chemical composition...... of toxic elements is shown exemplified by Hg. The average concentration is evaluated to be affected by three occurrences; background, rare items and very rare items (1/800 tonnes), that are all important to the Hg average concentration....

  6. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    Science.gov (United States)

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  7. Chemical composition of a sample of bright solar-metallicity stars

    CERN Document Server

    Caffau, E; Steffen, M; Bonifacio, P; Strassmeier, K G; Gallagher, A; Faraggiana, R; Sbordone, L

    2015-01-01

    We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from CaII are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested.

  8. Disentangling Hot Jupiters formation location from their chemical composition

    CERN Document Server

    Ali-Dib, Mohamad

    2016-01-01

    We use a population synthesis model that includes pebbles and gas accretion, planetary migration, and simplified chemistry scheme to study the formation of hot-Jupiters. Models have proposed that these planets can either originate beyond the snowline and then move inward via disk migration, or form "in-situ" inside the snowline. The goal of this work is to verify which of these two scenarios is more compatible with pebbles accretion, and if can we distinguish observationally between them via the resulting planetary C/O ratios and core masses. Our results show that, for solar system composition, the C/O ratios will vary but weakly between the two populations, since a significant amount of carbon and oxygen are locked up in refractories. In this case, we find a strong correlation between the carbon abundance and core mass. The C/O ratio variations are more pronounced in the case where we assume that all carbon and oxygen are in volatiles. On average, Hot-Jupiters forming "in-situ" inside the snowline will have ...

  9. Inorganic Chemical Composition of Swimming Pools in Amman-Jordan

    Directory of Open Access Journals (Sweden)

    Bety Saqarat

    2012-10-01

    Full Text Available Monitoring was carried out during summer 2011 in three types of swimming pools in Amman-Jordan. Thirty six water samples, collected from three users type of swimming pools (adults, family and infants, were examined for its major ionic composition (HCO3-, Cl-, NO3-, SO4=, Ca+2, Mg+2, Na+, K+ and PO4+4 in addition to its BOD and COD content. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards. The type and number of users as well as the maintenance of the swimming pool water influenced the water quality. The results showed that there was a noticeable increase in NO3, PO4 and Cl than other ions. All of the examined samples from the swimming pools water were acceptable according to the local and WHO standards and although the water of the infant’s users changed frequently, it showed the highest concentration of most of the parameters and Adults’ pool showed the lowest.

  10. Brazilian Red Propolis—Chemical Composition and Botanical Origin

    Directory of Open Access Journals (Sweden)

    Andreas Daugsch

    2008-01-01

    Full Text Available Propolis contains resinous substances collected by honey bees from various plant sources and has been used as a traditional folk medicine since ca 300 BC. Nowadays, the use of evidence-based complementary and alternative medicine (CAM is increasing rapidly and so is the use of propolis in order to treat or support the treatment of various diseases. Much attention has been focused on propolis from Populus sp. (Salicaceae and Baccharis dracunculifolia (Asteracea, but scientific information about the numerous other types of propolis is still sparse. We gathered six samples of red propolis in five states of Northeastern Brazil. The beehives were located near woody perennial shrubs along the sea and river shores. The bees were observed to collect red resinous exudates on Dalbergia ecastophyllum (L Taub. (Leguminosae to make propolis. The flavonoids of propolis and red resinous exudates were investigated using reversed-phase high-performance liquid chromatography and reversed-phase high-performance thin-layer chromatography. We conclude that the botanical origin of the reddish propolis is D. ecastophyllum. In areas where this source (D. ecastophyllum was scarce or missing, bees were collecting resinous material from other plants. Propolis, which contained the chemical constituents from the main botanical origin, showed higher antimicrobial activity.

  11. Conical intersection seams in polyenes derived from their chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur; Vivie-Riedle, Regina de [Department Chemie, Ludwig-Maximilians-Univerisitaet, Muenchen Butenandtstr. 11, 81377 Muenchen (Germany)

    2012-08-21

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)]. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  12. Conical intersection seams in polyenes derived from their chemical composition

    Science.gov (United States)

    Nenov, Artur; de Vivie-Riedle, Regina

    2012-08-01

    The knowledge of conical intersection seams is important to predict and explain the outcome of ultrafast reactions in photochemistry and photobiology. They define the energetic low-lying reachable regions that allow for the ultrafast non-radiative transitions. In complex molecules it is not straightforward to locate them. We present a systematic approach to predict conical intersection seams in multifunctionalized polyenes and their sensitivity to substituent effects. Included are seams that facilitate the photoreaction of interest as well as seams that open competing loss channels. The method is based on the extended two-electron two-orbital method [A. Nenov and R. de Vivie-Riedle, J. Chem. Phys. 135, 034304 (2011)], 10.1063/1.3608924. It allows to extract the low-lying regions for non-radiative transitions, which are then divided into small linear segments. Rules of thumb are introduced to find the support points for these segments, which are then used in a linear interpolation scheme for a first estimation of the intersection seams. Quantum chemical optimization of the linear interpolated structures yields the final energetic position. We demonstrate our method for the example of the electrocyclic isomerization of trifluoromethyl-pyrrolylfulgide.

  13. CHEMICAL COMPOSITION OF EUCALIPT WOOD WITH DIFFERENT LEVELS OF THINNING

    Directory of Open Access Journals (Sweden)

    Antônio José Vinha Zanuncio

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812359The objective of this study was to evaluate different thinning regimes in forest plantations of eucalypt(Eucalyptus grandis x Eucalyptus urophylla clones to produce timber for cellulose and charcoal to verifywhether this effect could affect the proportion of the chemical components of wood. The average initialspacing between plants was 3x3 m and the treatments were: T1= control, T2, T3and T4 with thinning 20%,35% and 50% of the basal area, respectively. The results were analyzed by Tukey test at 5% probability.According to the results found the lignin content from treatment T4 was higher than that of the others; thegroups of uronic acids of the T1 was similar to all other treatments, but the levels of T2 and T4 differedbetween them. The extractives content of T1was similar to the T2 and T3 and lower than that of theT4; thecarbohydrates of T1 were similar to that of T3 and higher than the others. It was concluded that thinningincreases the quality of the wood to be used as energy purposes, such as charcoal production, but it did notincrease productivity for wood pulp and paper production.

  14. Characterization of biomass burning particles: chemical composition and processing

    Science.gov (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  15. Biomass-burning particle measurements: Characteristic composition and chemical processing

    Science.gov (United States)

    Hudson, Paula K.; Murphy, Daniel M.; Cziczo, Daniel J.; Thomson, David S.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John; Jost, Hans-Jürg; Hübler, Gerd

    2004-12-01

    The NOAA Lockheed Orion WP-3D aircraft intercepted a forest fire plume over Utah on 19 May 2002 during the Intercontinental Transport and Chemical Transformation (ITCT) mission. Large enhancements in acetonitrile (CH3CN), carbon monoxide (CO) and particle number were measured during the fire plume interception. In the 100 s plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra from ionizing single particles in the 0.2-5 μm size range. These particles contained carbon, potassium, organics, and ammonium ions. No pure soot particles were sampled directly from the plume. By characterizing these particle mass spectra, a qualitative biomass-burning particle signature was developed that was then used to identify biomass-burning particles throughout ITCT. The analysis was extended to identify biomass-burning particles in four other missions, without the benefit of gas-phase biomass-burning tracers. During ITCT, approximately 33% of the particles sampled in the North American troposphere and 37% of the particles transported from Asia, not influenced by North American sources, were identified as biomass-burning particles. During the WB-57 Aerosol Mission (WAM), Atmospheric Chemistry of Combustion Emissions near the Tropopause (ACCENT) and ACCENT 2000 missions, 7% of stratospheric particles were identified as biomass-burning particles. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) this percentage increased to 52% because the regional stratosphere was strongly affected by an active fire season.

  16. Application of chemical vapor composites (CVC) to terrestrial thermionics

    Science.gov (United States)

    Miskolczy, Gabor; Reagan, Peter

    1995-01-01

    Terrestrial flame fired thermionics took a great leap forward in the earlier 1980's with the development of reliable long-lived hot shells. These results were presented by Goodale (1981). The hot shell protects the fractory emitter from oxidizing in the combustion environment. In earlier efforts with supralloys emitters it was found that superalloys were poor thermionic emitters since they operated at too low a temperature for practical and economical use as discussed by Huffman (1978). With the development of Chemical Vapor Deposited (CVD) silicon carbide and CVD tungsten, it became possible to fabricate long-lived thermionic converters. These results were shown by Goodale (1980). Further improvements were achieved with the use of oxygen additives on the electrodes. These developments made thermionics attractive for topping a power plant or as the energy conversion part of a cogeneration plant as described by Miskolczy (1982) and Goodale (1983). The feasibility of a thermonic steam boiler and a thermionic topped gas turbine plant become a possibility, as shown by Miskolczy (1980).

  17. The chemical composition of Galactic ring nebulae around massive stars

    CERN Document Server

    Esteban, C; Morisset, C; Garcia-Rojas, J

    2016-01-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C$^{++}$ and O$^{++}$ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O$^{++}$. The ADFs are larger than the typical ones of normal HII regions but similar to those found in the ionised gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrich...

  18. Brazilian red propolis--chemical composition and botanical origin.

    Science.gov (United States)

    Daugsch, Andreas; Moraes, Cleber S; Fort, Patricia; Park, Yong K

    2008-12-01

    Propolis contains resinous substances collected by honey bees from various plant sources and has been used as a traditional folk medicine since ca 300 BC. Nowadays, the use of evidence-based complementary and alternative medicine (CAM) is increasing rapidly and so is the use of propolis in order to treat or support the treatment of various diseases. Much attention has been focused on propolis from Populus sp. (Salicaceae) and Baccharis dracunculifolia (Asteracea), but scientific information about the numerous other types of propolis is still sparse. We gathered six samples of red propolis in five states of Northeastern Brazil. The beehives were located near woody perennial shrubs along the sea and river shores. The bees were observed to collect red resinous exudates on Dalbergia ecastophyllum (L) Taub. (Leguminosae) to make propolis. The flavonoids of propolis and red resinous exudates were investigated using reversed-phase high-performance liquid chromatography and reversed-phase high-performance thin-layer chromatography. We conclude that the botanical origin of the reddish propolis is D. ecastophyllum. In areas where this source (D. ecastophyllum) was scarce or missing, bees were collecting resinous material from other plants. Propolis, which contained the chemical constituents from the main botanical origin, showed higher antimicrobial activity.

  19. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  20. A Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the FQHE

    Science.gov (United States)

    Murthy, Ganpathy

    2000-03-01

    It is well known that the 2/5 FQH state can have two translationally invariant ground states, one of which is a singlet and the other fully polarized. A quantum phase transition occurs between these two as a function of the Zeeman field. This can be simply explained in terms of the crossing of Composite Fermion Landau levels. However, recently Kukushkin et al (PRL 82, 3665 (99)) have seen plateaus of half the maximal polarization in the 2/5 fraction at intermediate Zeeman fields. Similar plateaus, which are not allowed for translationally invariant CF states, are seen in other fractions as well. I propose a class of novel partially polarized spin/charge density wave states which display the co-existence of density wave and quantum Hall order (the Hall crystal state). The physical properties of the states, including gaps and collective excitations are computed using the formalism for the FQHE developed recently by Shankar and myself (for details see Murthy and Shankar in "Composite Fermions", Olle Heinonen, Editor).

  1. Temperature and composition-dependent density of states in organic small-molecule/polymer blend transistors

    Science.gov (United States)

    Hunter, Simon; Mottram, Alexander D.; Anthopoulos, Thomas D.

    2016-07-01

    The density of trap states (DOS) in organic p-type transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES ADT), the polymer poly(triarylamine) and blends thereof are investigated. The DOS in these devices are measured as a function of semiconductor composition and operating temperature. We show that increasing operating temperature causes a broadening of the DOS below 250 K. Characteristic trap depths of ˜15 meV are measured at 100 K, increasing to between 20 and 50 meV at room-temperature, dependent on the semiconductor composition. Semiconductor films with high concentrations of diF-TES ADT exhibit both a greater density of trap states as well as broader DOS distributions when measured at room-temperature. These results shed light on the underlying charge transport mechanisms in organic blend semiconductors and the apparent freezing-out of hole conduction through the polymer and mixed polymer/small molecule phases at temperatures below 225 K.

  2. Structure of the chondrules and the chemical composition of olivine in meteorite Jesenice

    Directory of Open Access Journals (Sweden)

    Bojan Ambrožič

    2013-06-01

    Full Text Available This paper presents a mineralogical analysis of various chondrule types and chemical analysis of olivine indifferent parts of meteorite Jesenice. Quantitative energy-dispersive X-ray spectroscopy with a scanning electronmicroscope was used in the analyses. The results showed that the chemical composition of the olivine was homogeneousthroughout the meteorite with an average olivine composition of Fa 26.4 ± 0.6. The results of this study werein agreement with previous study of the meteorite, which showed that the meteorite Jesenice was an equilibratedL chondrite.

  3. Chemical composition of Melicope belahe (Baill.) T. G. Hartley (Rutaceae) leaf essential oil from Madagascar.

    Science.gov (United States)

    Rabehaja, Delphin J R; Garcia, Gabriel; Charmillon, Julie-Marie; Désiré, Odile; Paoli, Mathieu; Ramanoelina, Panja A R; Tomi, Félix

    2017-01-01

    Melicope belahe (Baill.) T.G. Hartley (Rutaceae) is an endemic species to Madagascar. The chemical composition of leaf essential oil is reported for the first time. A sample was extracted by hydrodistillation and analysis was carried out by combination of chromatographic (GC), spectroscopic and spectrometric (MS, (13)C NMR) techniques. In total, 56 compounds have been identified. The chemical composition was dominated by α-pinene (42.6%) followed by linalool (6.2%) and (E)-β-caryophyllene (5.2%).

  4. Essential Oils from Thyme (Thymus vulgaris): Chemical Composition and Biological Effects in Mouse Model.

    Science.gov (United States)

    Vetvicka, Vaclav; Vetvickova, Jana

    2016-12-01

    Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.

  5. The chemical composition and biological properties of coconut (Cocos nucifera L.) water.

    Science.gov (United States)

    Yong, Jean W H; Ge, Liya; Ng, Yan Fei; Tan, Swee Ngin

    2009-12-09

    Coconut water (coconut liquid endosperm), with its many applications, is one of the world's most versatile natural product. This refreshing beverage is consumed worldwide as it is nutritious and beneficial for health. There is increasing scientific evidence that supports the role of coconut water in health and medicinal applications. Coconut water is traditionally used as a growth supplement in plant tissue culture/micropropagation. The wide applications of coconut water can be justified by its unique chemical composition of sugars, vitamins, minerals, amino acids and phytohormones. This review attempts to summarise and evaluate the chemical composition and biological properties of coconut water.

  6. Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses.

    Science.gov (United States)

    Derby, Charles D; Kicklighter, Cynthia E; Johnson, P M; Zhang, Xu

    2007-05-01

    Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense.

  7. Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.

    Science.gov (United States)

    Benyelles, Batoul; Allali, Hocine; El Amine Dib, Mohamed; Djabou, Nassim; Paolini, Julien; Costa, Jean

    2017-02-17

    The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90-99% of the total oil compositions. The main components were linalool (18; 12.5-22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2-20.2%), 2-methylbutyl isobutyrate (10; 4.2-12.2%), ammimajane (47; 2.6-37.1%), (E)-β-ocimene (15; 0.2-12.8%) and 3-methylbutyl isovalerate (19; 3.3-9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. This article is protected by copyright. All rights reserved.

  8. Milk yield and chemical composition of sheep milk in Srednostaroplaninska and Tetevenska breeds

    OpenAIRE

    Gerchev G.; Mihaylova G.

    2012-01-01

    The study was conducted from April to July on pastures located at different altitudes and of different sward composition during the milking period of Srednostaroplaninska and Tetevenska sheep. Morning bulk milk was sampled for analysis monthly between April and end of July. The purpose of the study was to establish the milk yield and to investigate the chemical composition of sheep milk obtained from Srednostaroplaninska and Tetevenska breeds reared on past...

  9. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla

    OpenAIRE

    Sheisa Cyléia Sargi; Beatriz Costa Silva; Hevelyse Munise Celestino Santos; Paula Fernandes Montanher; Joana Schuelter Boeing; Oscar Oliveira Santos Júnior; Nilson Evelázio de Souza; Jesuí Vergílio Visentainer

    2013-01-01

    The chemical composition and antioxidant capacity of five seeds, chia, golden flax, brown flax, white perilla, and brown perilla, were determined. The chemical properties analyzed included moisture, ash, crude protein, carbohydrates, total lipids, fatty acids, and antioxidant capacity (ABTS•+, DPPH•, and FRAP). The results showed the highest amounts of protein and total lipids in brown and white perilla. Perilla and chia showed higher amounts of alpha-linolenic fatty acid than those of flaxse...

  10. Chemical composition of phenols from tars produced in semicoking of lignite from the near Moscow fields

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Manuel, A.; Nechaeva, E.A. [Lev Tolstoi State Pedagogical University, Tula (Russian Federation)

    1998-10-01

    The chemical composition of phenols from semicoking tar produced in low-temperature carbonization of lignite from the near-Moscow fields was studied by elemental, chemical functional, emission spectral, and structural-group analyses, cryoscopy, IR, UV and {sup 1}H, and {sup 13}C NMR spectroscopy, capillary gas chromatography, and gas chromatography-mass spectrometry. A scheme was developed for adsorption liquid chromatography of phenols.

  11. Chemical composition of organic bases from semicoking tar of lignites from the near-Moscow fields

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Polovetskaya, O.S. [Lev Tolstoi State Pedagogical University, Tula (Russian Federation)

    1999-02-01

    The chemical composition of organic bases from the semicoking tar of lignite from the near-Moscow fields was studied in detail by chemical functional, emission spectrum, and structural-group analyses, LR, UV and {sup 1}H and {sup 13}C NMR spectroscopy, cryoscopy, capillary gas chromatography, and chromatography-mass spectrometry. A scheme was developed for separation of the organic bases by adsorption liquid chromatography.

  12. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  13. Effect of powder density variation on premixed Ti-6Al-4V and Cu composites during laser metal deposition

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-05-01

    Full Text Available This paper reports the effect of powder density variation on the premixed Ti-6Al-4V/Cu and Ti-6A-4V/2Cu Composites. Two sets of experiment were conducted in this study. Five deposits each were made for the two premixed composites. Laser powers were...

  14. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  15. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  16. NGC 6388: Chemical Composition of Its Eight Cool Giants

    Science.gov (United States)

    Wallerstein, G.; Kovtyukh, V. V.; Andrievsky, S. M.

    2007-04-01

    Eight cool giants in the unusual globular cluster NGC 6388 have been investigated in order to derive their elemental abundances. Effective temperatures from 3500 to 3850 K were derived using the method of line-depth ratios. Surface gravities were derived in two ways. Spectroscopic gravities, derived by the requirement that the abundance of iron be the same from Fe I and Fe II lines, were rather low, ranging from -0.3 to 0.0. Photometric gravities, derived from the assumed stellar mass of 0.7 Modot and the luminosity and Teff of the stars, fell between +0.25 and +0.70. Mean [Fe/H] values were -0.8 for spectroscopic gravities and -0.6 for photometric gravities. A test using spectra of the same resolution of the two coolest red giants in the globular cluster M4 obtained at the Apache Point Observatory were analyzed for comparison with the definitive analysis of Ivans et al. (1999). The very cool metal-poor red giant HD 232078 was also analyzed for comparison with the analysis of Gonzalez & Wallerstein (1998). Both comparisons showed that our methods yield the same abundance scale as previous works. We have compared the composition of stars in NGC 6388 with those of K giants with similar [Fe/H] in 47 Tuc and the Galactic bulge. The observed value of [O/Fe] is near zero, which is less than in 47 Tuc and bulge stars of similar metallicity. The α-elements behave similarly to oxygen and show only small excesses at about the same level as do the α-elements in the globular clusters associated with the Sgr system. It is unclear whether these differences are responsible for the unusual color-magnitude diagram of NGC 6388.

  17. Chemical composition of nuts and seeds sold in Korea.

    Science.gov (United States)

    Chung, Keun Hee; Shin, Kyung Ok; Hwang, Hyo Jeong; Choi, Kyung-Soon

    2013-04-01

    Eleven types of nuts and seeds were analyzed to determine their energy (326-733 mg), moisture (1.6-18.3 mg), carbohydrate (8.8-70.9 mg), protein (4.9-30.5 mg), lipid (2.5-69.8 mg), and ash (1.2-5.5 mg) contents per 100 g of sample. Energy content was highest in pine nuts (733 mg/100 g), carbohydrate level was highest in dried figs (70.9 mg/100 g) and protein was highest in peanuts (30.5 mg/100 g). The amino acid compositions of nuts and seeds were characterized by the dominance of hydrophobic (range = 1,348.6-10,284.6 mg), hydrophilic (range = 341.1-3,244.3 mg), acidic (range = 956.1-8,426.5 mg), and basic (range = 408.6-4,738.5 mg) amino acids. Monounsaturated fatty acids (MUFA) were highest in macadamia nuts (81.3%), whereas polyunsaturated fatty acids (PUFA) were highest in the walnuts (76.7%). Macadamia nuts did not contain any vitamin E, whereas sunflower seeds contained the highest level (60.3 mg/kg). Iron (Fe) content was highest in pumpkin seeds (95.85 ± 33.01 ppm), zinc (Zn) content was highest in pistachios (67.24 ± 30.25 ppm), copper (Cu) content was greatest in walnuts (25.45 ± 21.51 ppm), and lead (Pb) content was greatest in wheat nuts (25.49 ± 4.64 ppm), significantly (P < 0.05). In conclusion, current commercial nuts and seeds have no safety concerns, although further analysis of Pb contents is necessary to ensure safety.

  18. Chemical composition of atmospheric aerosols between Moscow and Vladivostok

    Directory of Open Access Journals (Sweden)

    S. Kuokka

    2007-05-01

    Full Text Available The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl, NO3, SO42−, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3–850 nm using a 10-min. time resolution. The continuous measurements were completed with 24-h. PM2.5 filter samples which were stored in a refrigerator and later analyzed in chemical laboratory. The analyses included mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn. The mass concentrations of PM2.5 varied in the range of 4.3–34.8 μg m−3 with an average of 21.6 μg m−3. Fine particle mass consisted mainly of BC (average 27.6%, SO42− (13.0%, NH4+ (4.1%, and NO3 (1.4%. One of the major constituents was obviously also organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to

  19. Compaction of an Oxisol and chemical composition of palisadegrass

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2013-08-01

    Full Text Available Compaction is an important problem in soils under pastoral land use, and can make livestock systems unsustainable. The objective of this research was to study the impact of soil compaction on yield and quality of palisade (UROCHLOA BRIZANTHA cv. Marandu. The experiment was conducted on an Oxisol in the State of Mato Grosso, Brazil. Treatments consisted of four levels of soil compaction: no compaction (NC, slight compaction (SC, medium compaction (MC and high compaction (HC. The following soil properties were evaluated (layers 0-0.05 and 0.05-0.10 m: aggregate size distribution, bulk density (BD, macroporosity, microporosity, total porosity (TP, relative compaction (RC, and the characteristics of crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and dry matter yield (DMY of the forage. Highly compacted soil had high BD and RC, and low TP (0-0.05 m. Both DMY and CP were affected by HC, and both were strongly related to BD. Higher DMY (6.96 Mg ha-1 and CP (7.8 % were observed in the MC treatment (BD 1.57 Mg m-3 and RC 0.91 Mg m-3, in 0-0.05 m. A high BD of 1.57 Mg m-3 (0-0.05 m did not inhibit plant growth. The N concentration in the palisade biomass differed significantly among compaction treatments, and was 8.72, 11.20, 12.48 and 10.98 g kg-1 in NC, SC, MC and HC treatments, respectively. Increase in DMY and CP at the MC level may be attributed to more absorption of N in this coarse-textured soil.

  20. Pulsed plasma chemical synthesis of SixCyOz composite nanopowder

    Science.gov (United States)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2017-05-01

    SixCyOz composite nanopowder with an average size of particles about 10-50 nm was produced using the pulsed plasma chemical method. The experiments on the synthesis of nanosized composite were carried out using a TEA-500 pulsed electron accelerator. To produce a composite, SiCl4, O2, and CH4 were used. The major part of experiments was conducted using a plasma chemical reactor (quartz, 140 mm diameter, 6 l volume). The initial reagents were injected into the reactor, then a pulsed electron beam was injected which initiated the chemical reactions whose products were the SixCyOz composite nanopowder. To define the morphology of the particles, the JEOL-II-100 transmission electron microscope (TEM) with an accelerating voltage of 100 kV was used. The substances in the composition of the composite nanopowder were identified using the infrared absorption optical spectrum. To conduct this analysis, the Nicolet 5700 FT-IR spectrometer was used.

  1. The costs of evaluating species densities and composition of snakes to assess development impacts in amazonia.

    Directory of Open Access Journals (Sweden)

    Rafael de Fraga

    Full Text Available Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities.

  2. The Costs of Evaluating Species Densities and Composition of Snakes to Assess Development Impacts in Amazonia

    Science.gov (United States)

    de Fraga, Rafael; Stow, Adam J.; Magnusson, William E.; Lima, Albertina P.

    2014-01-01

    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities. PMID:25147930

  3. The costs of evaluating species densities and composition of snakes to assess development impacts in amazonia.

    Science.gov (United States)

    Fraga, Rafael de; Stow, Adam J; Magnusson, William E; Lima, Albertina P

    2014-01-01

    Studies leading to decision-making for environmental licensing often fail to provide accurate estimates of diversity. Measures of snake diversity are regularly obtained to assess development impacts in the rainforests of the Amazon Basin, but this taxonomic group may be subject to poor detection probabilities. Recently, the Brazilian government tried to standardize sampling designs by the implementation of a system (RAPELD) to quantify biological diversity using spatially-standardized sampling units. Consistency in sampling design allows the detection probabilities to be compared among taxa, and sampling effort and associated cost to be evaluated. The cost effectiveness of detecting snakes has received no attention in Amazonia. Here we tested the effects of reducing sampling effort on estimates of species densities and assemblage composition. We identified snakes in seven plot systems, each standardised with 14 plots. The 250 m long centre line of each plot followed an altitudinal contour. Surveys were repeated four times in each plot and detection probabilities were estimated for the 41 species encountered. Reducing the number of observations, or the size of the sampling modules, caused significant loss of information on species densities and local patterns of variation in assemblage composition. We estimated the cost to find a snake as $ 120 U.S., but general linear models indicated the possibility of identifying differences in assemblage composition for half the overall survey costs. Decisions to reduce sampling effort depend on the importance of lost information to target-issues, and may not be the preferred option if there is the potential for identifying individual snake species requiring specific conservation actions. However, in most studies of human disturbance on species assemblages, it is likely to be more cost-effective to focus on other groups of organisms with higher detection probabilities.

  4. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.

    Science.gov (United States)

    Tsang, Melissa; Chun, Young Wook; Im, Yeon Min; Khang, Dongwoo; Webster, Thomas J

    2011-07-01

    Polyurethane (PU) is a versatile elastomer that is commonly used in biomedical applications. In turn, materials derived from nanotechnology, specifically carbon nanofibers (CNFs), have received increasing attention for their potential use in biomedical applications. Recent studies have shown that the dispersion of CNFs in PU significantly enhances composite nanoscale surface roughness, tensile properties, and thermal stability. Although there have been studies concerning normal primary cell functions on such nanocomposites, there have been few studies detailing cancer cell responses. Since many patients who require bladder transplants have suffered from bladder cancer, the ideal bladder prosthetic material should not only promote normal primary human urothelial cell (HUC) function, but also inhibit the return of bladder cancerous cell activity. This study examined the correlation between transitional (UMUC) and squamous (or SCaBER) urothelial carcinoma cells and HUC on PU:CNF nanocomposites of varying PU and CNF weight ratios (from pure PU to 4:1 [PU:CNF volume ratios], 2:1, 1:1, 1:2, and 1:4 composites to pure CNF). Composites were characterized for mechanical properties, wettability, surface roughness, and chemical composition by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and goniometry. The adhesion and proliferation of UMUC and SCaBER cancer cells were assessed by MTS assays. Cellular responses were further quantified by measuring the amounts of nuclear mitotic protein 22 (NMP-22), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha. Results demonstrated that both UMUC and SCaBER cell proliferation rates decreased over time on substrates with increased CNF in PU. In addition, with the exception of VEGF from UMUC (which was the same across all materials), composites containing the most CNF activated cancer cells (UMUC and SCaBER) the least, as shown by

  5. Photon Production in a Chemically Equilibrating Quark-Gluon Plasma at Finite Baryon Density: Complete Leading Order Results

    Institute of Scientific and Technical Information of China (English)

    LONG Jia-Li; HE Ze-Jun; MA Yu-Gang

    2006-01-01

    @@ We investigate hard photon production of the near-collinear bremsstrahlung and a new process called the inelastic pair annihilation, fully including the LPM effect, in a chemically equilibrating quark-gluon plasma at finite baryon density, and find that the effect of the system evolution on the photon production and large contribution of the bremsstrahlung make the total photon yield of the two processes as a strongly increasing function of the initial quark chemical potential.

  6. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.

    Science.gov (United States)

    Farley, M M; Swulius, M T; Waxham, M N

    2015-09-24

    Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.

  7. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  8. Nonlinear conductive properties and scaling behavior of conductive particle filled high-density polyethylene composites

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qiang; SHEN Lie; LI Wenchun; SONG Yihu; YI Xiaosu

    2005-01-01

    The blends prepared by incorporation of carbon black (CB) or graphite powder (GP) inHto high-density polyethylene (HDPE) matrix have been novel and extensively applied polymeric positive temperature coefficient (PTC) composites. A phenomenological model was proposed on the basis of the GEM equation and the dilution effect of filler volume fraction due to the thermal volume expansion of the polymer matrix. Accordingly, the contribution of the thermal expansion of the matrix to the jump-like PTC transition of the composites was quantitatively estimated and a mechanical explanation was given. It was proved that the contribution of the volume expansion to PTC effect decreased for HDPE/CB composites crosslinked through electron-beam irradiation. Furthermore, the influences of the filler content, temperature and crosslinking on the self-heating behavior as well as the nonlinear conduction characteristics at electrical-thermal equilibrium state were examined. Based on the electric-field and initial resistivity dependence of the self-heating temperature and resistance dependence of the critical field, the mechanisms of the self-heating of the polymeric PTC materials were evaluated. The intrinsic relations between macroscopic electrical properties and microscopic percolation network at electrical-thermal equilibrium state were discussed according to the scaling relationship between the self-heating critical parameter and the conductivity of materials.

  9. Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composite hollow spheres

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Zhenguo An; Bing Li; Jinjie Zhang

    2012-01-01

    Anatase TiO2 shells assembled on hollow glass microspheres (HGM) with tunable morphologies were successfully prepared through a controllable chemical precipitation method with urea as the precipitator.Thus,glass/TiO2 core/shell composite hollow spheres with low particle density (0.40 g/cm3) were fabricated.The phase structures,morphologies,particle sizes,shell thicknesses,and chemical compositions of the composite microspheres were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),and energy dispersive X-ray spectroscopy (EDS).The morphology of the TiO2 shell can be tailored by properly monitoring the reaction system component and parameters.The probable growth mechanism and fabrication process of the core/shell products involving the nucleation and oriented growth of TiO2 nanocrystals on hollow glass microspheres was proposed.A low infrared radiation study revealed that the radiation properties of the products are greatly influenced by the unique product shell structures.A thermal conductivity study showed that the TiO2/HGM possess low thermal conductivity that is similar to that of the pristine HGMs.This work provides an additional strategy to prepare low-density thermal insulating particles with tailored morphologies and properties.

  10. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Sun, W.; Xiong, X.; Huang, B. Y.; Li, G. D.; Zhang, H. B.; Xiao, P.; Chen, Z. K.; Zheng, X. L.

    2009-05-01

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl 4-C 3H 6-H 2-Ar source. Zirconium tetrachloride (ZrCl 4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm 3 by Archimedes' principle.

  11. Chemical composition and antioxidant activity of certain Morus species.

    Science.gov (United States)

    Imran, Mohammad; Khan, Hamayun; Shah, Mohibullah; Khan, Rasool; Khan, Faridullah

    2010-12-01

    In the present work, the fruits of four Morus species, namely Morus alba (white mulberry), Morus nigra (black mulberry), Morus laevigata (large white fruit), and Morus laevigata (large black fruit), were analyzed for proximate composition, essential minerals, and antioxidant potentials. For this purpose, the ripe fruits were collected from the northern regions of Pakistan. The major nutritional components (moisture, ash, lipids, proteins, fibres, carbohydrates, and total sugar) were found to be in the suitable range along with good computed energy. Total dry weight, pH, and titratable acidity (percent citric acid) were (17.60±1.94)-(21.97±2.34) mg/100 g, (3.20±0.07)-(4.78±0.15), and (0.84±0.40)%-(2.00±0.08)%, respectively. Low riboflavin (vitamin B(2)) and niacin (vitamin B(3)) contents were recorded in all the fruits, while ascorbic acid (vitamin C) was in the range from (15.20±1.25) to (17.03±1.71) mg/100 g fresh weight (FW). The mulberry fruits were rich with regard to the total phenol and alkaloid contents, having values of (880±7.20)-(1650±12.25) mg/100 g FW and (390±3.22)-(660±5.25) mg/100 g FW, respectively. Sufficient quantities of essential macro-(K, Ca, Mg, and Na) and micro-(Fe, Zn, and Ni) elements were found in all the fruits. K was the predominant element with concentration ranging from (1270±9.36) to (1731±11.50) mg/100 g, while Ca, Na, and Mg contents were (440±3.21)-(576±7.37), (260±3.86)-(280±3.50), and (240±3.51)-(360±4.20) mg/100 g, respectivly. The decreasing order of micro-minerals was Fe>Zn>Ni. The radical scavenging activity of methanolic extract of fruits was concentration-dependent and showed a correlation with total phenolic constituents of the respective fruits. Based on the results obtained, mulberry fruits were found to serve as a potential source of food diet and natural antioxidants.

  12. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    Science.gov (United States)

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  13. Aqueous acidities of primary benzenesulfonamides: Quantum chemical predictions based on density functional theory and SMD.

    Science.gov (United States)

    Aidas, Kęstutis; Lanevskij, Kiril; Kubilius, Rytis; Juška, Liutauras; Petkevičius, Daumantas; Japertas, Pranas

    2015-11-05

    Aqueous pK(a) of selected primary benzenesulfonamides are predicted in a systematic manner using density functional theory methods and the SMD solvent model together with direct and proton exchange thermodynamic cycles. Some test calculations were also performed using high-level composite CBS-QB3 approach. The direct scheme generally does not yield a satisfactory agreement between calculated and measured acidities due to a severe overestimation of the Gibbs free energy changes of the gas-phase deprotonation reaction by the used exchange-correlation functionals. The relative pK(a) values calculated using proton exchange method compare to experimental data very well in both qualitative and quantitative terms, with a mean absolute error of about 0.4 pK(a) units. To achieve this accuracy, we find it mandatory to perform geometry optimization of the neutral and anionic species in the gas and solution phases separately, because different conformations are stabilized in these two cases. We have attempted to evaluate the effect of the conformer-averaged free energies in the pK(a) predictions, and the general conclusion is that this procedure is highly too costly as compared with the very small improvement we have gained.

  14. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study.

    Science.gov (United States)

    Krajčí, M; Hafner, J

    2013-03-28

    The polar threefold surfaces of the GaPd compound crystallizing in the B20 (FeSi-type) structure (space group P2(1)3) have been investigated using density-functional methods. Because of the lack of inversion symmetry the B20 structure exists in two enantiomorphic forms denoted as A and B. The threefold {111} surfaces have polar character. In both nonequivalent (111) and (111) directions several surface terminations differing in structure and chemical composition are possible. The formation of the threefold surfaces has been studied by simulated cleavage experiments and by calculations of the surface energies. Because of the polar character of the threefold surfaces calculations for stoichiometric slabs permit only the determination of the average energy of the surfaces exposed on both sides of the slab. Calculations for nonstoichiometric slabs performed in the grand canonical ensemble yield differences of the surface energies for the possible terminations as a function of the chemical potential in the reactive atmosphere above the surface and predict a transition between Ga- and Pd-terminated surfaces as a function of the chemical potential. The {100} surfaces are stoichiometric and uniquely defined. The calculated surface energies are identical to the average energies of the {100} surfaces of the pure metals. The {210} surfaces are also stoichiometric, with an energy very close to that of the {100} surfaces. Assuming that for the {111} surfaces the energies of different possible terminations are in a proportion equal to that of the concentration-weighted energies of the {111} surfaces of the pure metals, surface energies for all possible {111} terminations may be calculated. The preferable termination perpendicular to the A direction consists of a bilayer with three Ga atoms in the upper and three Pd atoms in the lower part. The surface energy of this termination further decreases if the Pd triplet is covered by additional Ga atom. Perpendicular to the A direction

  15. Antioxidative effect of schisanhenol on human low density lipoprotein and its quantum chemical calculation

    Institute of Scientific and Technical Information of China (English)

    Ling-hong YU; Geng-tao LIU; You-min SUN; Hong-yu ZHANG

    2004-01-01

    AIM: To investigate the effect of schisanhenol (Sal) on copper ion-induced oxidative modulation of human low density lipoprotein (LDL). METHODS: The antioxidative activity of eight schisandrins (DCL) on microsome lipid peroxidation induced by Vit C/NADPH system was first observed, and then, the effect of Sal on Cu2+-induced human LDL oxidation was studied. The generation of malondialdehyde (MDA), lipofuscin, reactive oxygen species (ROS), consumption of α-tocopherol as well as electrophoretic mobility of LDL were determined as criteria of LDL oxidation. Finally, the quantum chemical method was used to calculate the theoretical parameters of eight DCL for elucidating the difference of their antioxidant ability. RESULTS: Sal was shown to be the most active one among eight schizandrins in inhibiting microsome lipid oxidation induced by Vit C/NADPH. Sal 100, 50, and 10 μrnol/L inhibited production of MDA, lipofuscin and ROS as well as the consumption of α-tocopherol in Cu2+-induced oxidation of human LDL in a dose-dependent manner. Sal also reduced electrophoretic mobility of the oxidized human LDL. Further study of quantum chemistry found that Sal was the strongest one among eight DCL to scavenge O-2, R·, RO·, and ROO· radicals. CONCLUSION: Sal has antioxidative effect on human LDL oxidation.The mechanism of Sal against LDL oxidation may be through scavenging free radicals.

  16. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Swaminathan, S; Ramkumaar, G R

    2015-02-25

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.

  17. Dynamic behavior of chemical reactivity indices in density functional theory: A Bohn-Oppenheimer quantum molecular dynamics study

    Indian Academy of Sciences (India)

    Shubin Liu

    2005-09-01

    Dynamic behaviors of chemical concepts in density functional theory such as frontier orbitals (HOMO/LUMO), chemical potential, hardness, and electrophilicity index have been investigated in this work in the context of Bohn-Oppenheimer quantum molecular dynamics in association with molecular conformation changes. Exemplary molecular systems like CH$^{+}_{5}$ , Cl- (H2O)30 and Ca2+ (H2O)15 are studied at 300 K in the gas phase, demonstrating that HOMO is more dynamic than LUMO, chemical potential and hardness often fluctuate concurrently. It is argued that DFT concepts and indices may serve as a good framework to understand molecular conformation changes as well as other dynamic phenomena.

  18. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case...

  19. A survey on the microbiological and chemical composition of buffalo milk in China

    NARCIS (Netherlands)

    Han, B.Z.; Meng, Y.; Li, M.; Yang, Y.; Ren, F.; Zeng, Q.; Nout, M.J.R.

    2007-01-01

    One hundred and twelve samples of raw buffalo milk were collected at four locations in China, and their microbiological and chemical composition was analyzed. Average levels of major components were: fat 7.59% (v/v), crude protein 4.86% (w/w), lactose 4.74% (w/w), total solids 18.44% (w/w), ash 0.85

  20. Chemical composition of hydrocarbons from semicoking tars of lignites from the near-Moscow fields

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Antonio, T.Z.; Platonova, M.V. [Lev Tolstoi Pedagogical University, Tula (Russian Federation)

    1998-09-01

    The chemical composition of hydrocarbons from the semicoking tar of lignites was studied by elemental, functional, emission spectrum, and structural-group analyses, cryoscopy, IR, UV and {sup 1}H and {sup 13}C NMR spectroscopy, capillary gas chromatography, and gas chromatography-mass spectrometry. A scheme was developed for adsorption liquid chromatography of the hydrocarbons.

  1. Numerical modeling of a compositional flow for chemical EOR and its stability analysis

    NARCIS (Netherlands)

    Druetta, P.; Yue, J.; Tesi, P.; De Persis, C.; Picchioni, F.

    A new two-dimensional surfactant flooding simulator for a three-component (water, petroleum, chemical), two-phase (aqueous, oleous) system in porous media is developed and analyzed. The compositional physical model is governed by a system of non-linear partial differential equations composed of

  2. Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM

    Science.gov (United States)

    Discerning the Chemical Composition and Mutagenic Effects of Soy Biodiesel PM David G. Nashab, Esra Mutluc, William T. Prestond, Michael D. Haysb, Sarah H. Warrenc, Charly Kingc, William P. Linakb, M. lan Gilmourc, and David M. DeMarinic aOak Ridge Institute for Science and Ed...

  3. Determination of the chemical composition of human renal stones with MDCT: influence of the surrounding media

    Science.gov (United States)

    Grosjean, Romain; Sauer, Benoît; Guerra, Rui; Kermarrec, Isabelle; Ponvianne, Yannick; Winninger, Daniel; Daudon, Michel; Blum, Alain; Felblinger, Jacques; Hubert, Jacques

    2007-03-01

    The selection of the optimal treatment method for urinary stones diseases depends on the chemical composition of the stone and its corresponding fragility. MDCT has become the most used modality to determine rapidly and accurately the presence of stones when evaluating urinary lithiasis treatment. That is why several studies have tempted to determine the chemical composition of the stones based on the stone X-ray attenuation in-vitro and invivo. However, in-vitro studies did not reproduce the normal abdominal wall and fat, making uncertain the standardization of the obtained values. The aim of this study is to obtain X-ray attenuation values (in Hounsfield Units) of the six more frequent types of human renal stones (n=217) and to analyze the influence of the surrounding media on these values. The stones were first placed in a jelly, which X-ray attenuation is similar to that of the human kidney (30 HU at 120 kV). They were then stuck on a grid, scanned in a water tank and finally scanned in the air. Significant differences in CT-attenuation values were obtained with the three different surrounding media (jelly, water, air). Furthermore there was an influence of the surrounding media and consequently discrepancies in determination of the chemical composition of the renal stones. Consequently, CT-attenuation values found in in-vitro studies cannot really be considered as a reference for the determination of the chemical composition except if the used phantom is an anthropomorphic one.

  4. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Science.gov (United States)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  5. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Science.gov (United States)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  6. Numerical modeling of a compositional flow for chemical EOR and its stability analysis

    NARCIS (Netherlands)

    Druetta, P.; Yue, J.; Tesi, P.; De Persis, C.; Picchioni, F.

    2017-01-01

    A new two-dimensional surfactant flooding simulator for a three-component (water, petroleum, chemical), two-phase (aqueous, oleous) system in porous media is developed and analyzed. The compositional physical model is governed by a system of non-linear partial differential equations composed of Darc

  7. Thermo-chemical simultion of a composite offshore vertical axis wind turbine blade

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The

  8. Calculation of chemical composition of zeolites in mordenite-clinoptilolite rocks

    Directory of Open Access Journals (Sweden)

    А.Д. Кустовська

    2005-01-01

    Full Text Available  Individual chemical composition of mordenite and clinoptilolite, which are both found in zeolite rocks and acid modification effect on them have been calculated. For the purpose of this study, samples of rocks of the same deposit (village Lypcha, Transcarpatia with different content of mordenite and clinoptilolite have been used.

  9. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria)

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Poel, van der A.F.B.

    2011-01-01

    An experiment was conducted to determine the effects of diet on the chemical composition of migratory locusts (Locusta migratoria L.). Fresh and dry weight and the contents of dry matter, ash, lipid, protein, Ca, K, Mg, Na, P, Cu, Fe, Zn, retinol, lutein, zeaxanthine, cryptoxanthin, carotenes, lycop

  10. Calculation of elastic properties in lower part of the Kola borehole from bulk chemical compositions of core samples

    Energy Technology Data Exchange (ETDEWEB)

    Babeyko, A.Yu.; Sobolev, S.V. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)]|[Univ. of Karlsruhe (Germany); Sinelnikov, E.D. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)]|[State Univ. of New York, Stony Brook, NY (United States); Smirnov, Yu.P. [Scientific Center SG-3, Zapoliarniy (Russian Federation); Derevschikova, N.A. [Shmidt Institute of Physics of the Earth, Moscow (Russian Federation)

    1994-09-01

    In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density and elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.

  11. Chemical composition, functional and sensory characteristics of wheat-taro composite flours and biscuits.

    Science.gov (United States)

    Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel

    2014-09-01

    The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p < 0.05) increased with increase in taro level. Conversely the dough elasticity index (range 59.8-0 %), extensibility (78-22 mm) and strength (range 281-139 × 10(-4) joules) significantly (p < 0.05) diminished with increase in wheat substitution. Up to 10 % substitution with RIN taro flour and 15 % with egg-like taro flour, the composite taro-wheat dough exhibited elasticity indices acceptable for the production of baking products, whereas at all levels of taro substitution, the composite biscuits samples were either acceptable as or better (5-10 % substitution with RIN flour) than 100 % wheat biscuit.

  12. Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents

    Science.gov (United States)

    Todd, Michael G.; Shi, Frank G.

    2003-10-01

    Recent research into the dielectric characteristics of polymer-ceramic composites has shown that the interphase region of the composite can have a dielectric constant significantly different from that of the polymer phase due to covalent bonding of the polymer molecules to the surface of the filler particles. Chemical coupling agents and surfactants such as functional silanes, organotitanates, organometallic chelating agents, phosphate esters, and various ionic and nonionic organic esters are commonly employed to enhance the compatibility between the polymer phase and dispersed filler phase of composite systems. Using experimental data and molecular dipole polarization calculations, we determine the effect of such coupling agents on the interphase dielectric constant. Our results show that the addition of functional silane coupling agents or nonionic surfactants at concentrations of 0.5 wt % or less of the total organics of a polymer-ceramic composite system has significant effects on the dielectric constant of the interphase region, yet has little or no effect on the dielectric constant values of the polymer phase. Furthermore, the chemical bonding of the coupling agents to the ceramic filler particles determine the dielectric constant of the interphase region as predicted by chemical polarization calculations. These results are fully consistent with experimental evidence and further validate the use of molecular polarization calculations of composite interphase regions to determine and predict the overall effective dielectric properties of packaging materials for a wide range of electrical, electronic, and rf applications.

  13. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  14. Cuticle structure in relation to chemical composition: re-assessing the prevailing model

    Directory of Open Access Journals (Sweden)

    Victoria eFernandez

    2016-03-01

    Full Text Available The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing towards the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth.

  15. Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model

    Science.gov (United States)

    Fernández, Victoria; Guzmán-Delgado, Paula; Graça, José; Santos, Sara; Gil, Luis

    2016-01-01

    The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing toward the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth. PMID:27066059

  16. CHEMICAL COMPOSITION VARIABILITY IN THE Uncaria tomentosa (cat’s claw WILD POPULATION

    Directory of Open Access Journals (Sweden)

    Evelyn Maribel Condori Peñaloza

    2015-03-01

    Full Text Available Uncaria tomentosa (cat's claw is a vine widely distributed throughout the South-American rainforest. Many studies investigating the chemical composition of cat's claw have focused on the pentacyclic (POA and tetracyclic oxindole alkaloids (TOA, quinovic acid glycosides (QAG, and polyphenols (PPH. Nevertheless, it is still uncertain how environmental factors affect chemical groups. The aim of this work was to better understand the influence of environmental factors (geographic origin, altitude, and season on cat's claw chemical composition. Stem bark, branches and leaf samples were extracted and analyzed by HPLC-PDA. The data obtained were explored by multivariate analysis (HCA and PCA. Higher amounts of oxindole alkaloids and PPH were found in leaves, followed by stem bark and branches. No clear relationship was verified among geographic origin or altitude and chemical composition, which remained unchanged regardless of season (dry or rainy. However, three oxindole alkaloid chemotypes were clearly recognized: chemotype I (POA with cis D/E ring junction; chemotype II (POA with trans D/E ring junction; and chemotype III (TOA. Thus, environmental factors appear to have only a minor influence on the chemical heterogeneity of the cat's claw wild population. Nevertheless, the occurrence of different chemotypes based on alkaloid profiles seems to be clear.

  17. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  18. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Directory of Open Access Journals (Sweden)

    Jhonny E. Alba-Mejía

    2016-06-01

    Full Text Available This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1 without additives, used as a control; 2 with bacterial inoculants; and 3 with chemical preservatives. The results indicated that the year factor (2012-2013 influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA and acetic acid (AA in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2% in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

  19. The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Mejía, J.E.; Skladanka, J.; Hilger-Delgado, A.; Klíma, M.; Knot, P.; Doležal, P.; Horky, P.

    2016-11-01

    This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process. (Author)

  20. Composition and chemical variability of leaf oil of Myrtus communis from north-eastern Algeria.

    Science.gov (United States)

    Bouzabata, Amel; Boussaha, Faffani; Casanova, Joseph; Tomi, Félix

    2010-10-01

    The chemical composition of 27 oil samples of Myrtus communis isolated from leaves collected in three locations in north-eastern Algeria was investigated by GC(RI) and 13C NMR spectroscopy. Yields ranged between 0.2-1.2% (w/w). The chemical composition of the oils was largely dominated by monoterpene hydrocarbons, with alpha-pinene (40.5-64.0%), 1,8-cineole (10.9-29.1%) and limonene (6.7-8.2%) being the major compounds. In all the samples, 3,3,5,5,8,8-hexamethyl-7-oxabicyclo[4.3.0]non-1(6)-ene-2,4-dione was identified (0.8-1.5%). The composition is similar to that reported for myrtle oils from Corsica, Sardinia and Tunisia, but differed from that of Moroccan and Spanish myrtle oils.

  1. Influence of seasonality on the chemical composition of oysters (Crassostrea rhizophorae).

    Science.gov (United States)

    Lira, Giselda M; Pascoal, Jadna C M; Torres, Elizabeth A F S; Soares, Rosana A M; Mendonça, Simone; Sampaio, Geni R; Correia, Meiryellen S; Cabral, Caterine C V Q; Cabral Júnior, Cyro R; López, Ana M Q

    2013-06-01

    This paper aimed to evaluate the influence of seasonality on the chemical composition of oysters (Crassostrea rhizophorae). Samples were collected during summer and winter from the estuary and lagoon complex of the municipality of Barra de São Miguel, Alagoas, Brazil. Statistical differences (p<0.05) between summer and winter were observed in relation to chemical composition. The oysters cultivated in the winter presented some nutritional advantages because of the higher levels of proteins and functional nutrients, such as the eicosapentaenoic-docosahexaenoic acid combination and percentages of polyunsaturated fatty acids (n-3 and n-6), and the lower levels of saturated fatty acids. Therefore, the animals in winter presented a higher content of cholesterol oxides. The levels of cholesterol oxides found in these products during winter may encourage researchers to investigate the composition of oysters cultivated in different climates all over the world. Copyright © 2012. Published by Elsevier Ltd.

  2. IMPROVEMENTS IN WOOD THERMOPLASTIC MATRIX COMPOSITE MATERIALS PROPERTIES BY PHYSICAL AND CHEMICAL TREATMENTS

    Directory of Open Access Journals (Sweden)

    Irena Zivkovic

    2016-03-01

    Full Text Available This paper presents a short overview of the developments made in the field of wood thermoplastic composites in terms of surface treatment, flammability, matrix/reinforcement model, properties and application of recycled polymer matrices. The usage of lignocellulosic fibers as reinforcement in composite materials demands well formed interface between the fiber and the matrix. Because of the different nature of reinforcement and matrix components some physical and chemical treatment methods which improve the fiber matrix adhesion were introduced, as well as the improvements of lignocellulosic fibers and thermoplastic polymer matrix based composites flammability characteristics. These physical and chemical treatments influence the hydrophilic character of the lignocellulosic fibers, and therefore change their physical and mechanical properties.

  3. Effect of Chemical Treatments on Flax Fibre Reinforced Polypropylene Composites on Tensile and Dome Forming Behaviour

    Directory of Open Access Journals (Sweden)

    Wentian Wang

    2015-03-01

    Full Text Available Tensile tests were performed on two different natural fibre composites (same constituent material, similar fibre fraction and thickness but different weave structure to determine changes in mechanical properties caused by various aqueous chemical treatments and whether any permanent changes remain on drying. Scanning electronic microscopic examinations suggested that flax fibres and the flax/polypropylene interface were affected by the treatments resulting in tensile property variations. The ductility of natural fibre composites was improved significantly under wet condition and mechanical properties (elongation-to-failure, stiffness and strength can almost retain back to pre-treated levels when dried from wet condition. Preheating is usually required to improve the formability of material in rapid forming, and the chemical treatments performed in this study were far more effective than preheating. The major breakthrough in improving the formability of natural fibre composites can aid in rapid forming of this class of material system.

  4. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    Science.gov (United States)

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive.

  5. Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations.

    Science.gov (United States)

    Ogunniyi, I O; Vermaak, M K G; Groot, D R

    2009-07-01

    Chemical composition and liberation are critical attributes in characterizing a resource stock for beneficiation investigations. Though end-of-life printed circuit board is recognized as a valuable secondary resource stock, no procedural standard exists for the determination of its chemical composition, nor for the -75 microm fines generated during its comminution. The effect of the digestion procedure on the final assays in wet spectroscopic analyses was assessed in this work. Liberation was also explored against literature background. Determination of assays of all constituent elements in printed circuit board comminution fines was found to require comparison of data from more than one digestion condition, while composite particles still persist at the fines sizes, though very few. The discussion reflects how these impact the beneficiation investigations.

  6. [Study on the chemical compositions of VOCs emitted by cooking oils based on GC-MS].

    Science.gov (United States)

    He, Wan-Qing; Nie, Lei; Tian, Gang; Li, Jing; Shao, Xia; Wang, Min-Yan

    2013-12-01

    Volatile organic compounds (VOCs) are key precursors of ozone and secondary organic aerosols in air, and the differences in the compositions of VOCs lead to their different contribution to atmospheric reaction. Cooking oil fume is one of the important sources of atmospheric VOCs, and its chemical compositions are distinct under different conditions of oil types, food types, cooking methods and heating temperatures etc. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the chemical compositions of VOCs. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. According to spectral library search and map analysis, using area normalized semi-quantitative method, preliminary qualitative and quantitative tests were conducted for the specific components of VOCs under different conditions.

  7. Chemical synthesis of nanocrystalline ZrO2-SnO2 composite powders

    Institute of Scientific and Technical Information of China (English)

    YANG Huaming; ZHANG Xiangchao; YANG Wuguo; HUANG Chenghuan; QIU Guanzhou

    2004-01-01

    ZrO2-SnO2 composite nanoparticles were prepared by heating the hydrate precursors synthesized by the chemical co-precipitation reaction of ZrOCl2 and SnCl4. The precursors were examined by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The composite powder was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and desorption isotherm (Barrett-Joyner-Halenda method). The average crystal size of the nanoparticle ranges from 15 to 30 nm for the sample containing 5%-25% ZrO2 (mass fraction). Most of the pores in the ZrO2-SnO2 nanoparticles are about 10-20 nm in diameter. The composite powder is promising for chemical sensors.

  8. High-T{sub c} superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhadrakumari, S [Department of Physics, St. Berchman' s College, Changanassery, Kerala (India); Predeep, P [Condensed Matter Physics Laboratory, Department of Physics, Sree Narayana College, Kollam 691 001, Kerala (India)

    2006-08-15

    A series of composite samples of YBa{sub 2}Cu{sub 3}O{sub 7-x} and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  9. Chemical sputtering of graphite by low temperature nitrogen plasmas at various substrate temperatures and ion flux densities

    NARCIS (Netherlands)

    Bystrov, K.; Morgan, T. W.; Tanyeli, I.; De Temmerman, G.; M. C. M. van de Sanden,

    2013-01-01

    We report measurements of chemical sputtering yields of graphite exposed to low temperature nitrogen plasmas. The influence of surface temperature and incoming ion energy on the sputtering yields has been investigated in two distinct ion flux density regimes. Sputtering yields grow consistently with

  10. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  11. Chemical composition of AY Ceti: A flaring, spotted star with a white dwarf companion

    CERN Document Server

    Tautvaišienė, G; Berdyugina, S; Ilyin, I; Chorniy, Y

    2012-01-01

    The detailed chemical composition of the atmosphere AY Cet (HD 7672) is determined from a high-resolution spectrum in the optical region. The main atmospheric parameters and the abundances of 22 chemical elements, including key species such as 12C, 13C, N, and O, are determined. A differential line analysis gives T_eff=5080 K, log g=3.0, [Fe/H]=-0.33, [C/Fe]=-0.17, [N/Fe]=0.17, [O/Fe]=0.05, C/N=1.58, and 12C/13C=21. Despite the high chromospheric activity, the optical spectrum of AY Cet provides a chemical composition typical for first ascent giants after the first dredge-up.

  12. Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density

    DEFF Research Database (Denmark)

    Schutt, Derek; Lesher, Charles

    2010-01-01

    garnet and clinopyroxene enrichment. Using the parameterization of Schutt and Lesher (2006) we show that at cratonic mantle temperatures and pressures, orthopyroxene enrichment results in little change in bulk density (ρbulk) and shear-wave velocity (VS), but decreases compressional wave velocities (VP...... and clinopyroxene enrichment possibly as a consequence of melt infiltration. More than half of the mineral mode variance among Kaapvaal Craton xenoliths can be accounted for by opx enrichment. Melt depletion effects can account for as much as 30% of the variance, while less than 20% of the variance is associated......) and VP/VS. In contrast, melt depletion has little effect on VP, but leads to an increase in VS and a decrease in ρbulk and VP/VS. Garnet (gt) and clinopyroxene (cpx) enrichment cause an increase in ρbulk, VP, VS, and VP/VS. The isolation of the major contributions to xenolith compositional variations...

  13. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study

    DEFF Research Database (Denmark)

    Møller, U K; Við Streym, S; Mosekilde, L

    2012-01-01

    In a controlled cohort study, bone mineral density (BMD) was measured in 153 women pre-pregnancy; during pregnancy; and 0.5, 4, 9, and 19 months postpartum. Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Pregnancy and breastfeeding cause a reversible bone...... loss, which, initially, is most pronounced at trabecular sites but also involves cortical sites during prolonged breastfeeding. INTRODUCTION: Conflicting results have been reported on effects of pregnancy and breastfeeding on BMD and body composition (BC). In a controlled cohort study, we elucidate...... changes in BMD and BC during and following a pregnancy. METHODS: We measured BMD and BC in 153 women planning pregnancy (n = 92 conceived), once in each trimester during pregnancy and 15, 129, and 280 days postpartum. Moreover, BMD was measured 19 months postpartum (n = 31). Seventy-five age...

  14. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  15. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  16. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour.

  17. Continental igneous rock composition: A major control of past global chemical weathering.

    Science.gov (United States)

    Bataille, Clément P; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-03-01

    The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [((87)Sr/(86)Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of ((87)Sr/(86)Sr)seawater variations to the strontium isotopic composition ((87)Sr/(86)Sr) in igneous rocks generated through time. We demonstrate that the (87)Sr/(86)Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the (87)Sr/(86)Sr ratio in zircon-bearing igneous rocks. The reconstructed (87)Sr/(86)Sr variations in igneous rocks are strongly correlated with the ((87)Sr/(86)Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on ((87)Sr/(86)Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the ((87)Sr/(86)Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the ((87)Sr/(86)Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times.

  18. Chemical composition of glass and crystalline phases in coarse coal gasification ash

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Matjie; Zhongsheng Li; Colin R. Ward; David French [Sasol Technology (Pty) Ltd., Sasolburg (South Africa)

    2008-05-15

    A procedure has been developed for determining the chemical composition and relative abundance of the amorphous or glassy material, as well as crystalline phases, present in coarse coal gasification ash, in order to assist in predicting the behaviour of the material in cement/brick/concrete applications. The procedure is based on a combination of quantitative X-ray diffraction (XRD), chemical analysis and electron microprobe studies. XRD analysis indicates that the clinker samples contain a number of crystalline high temperature phases, including anorthite, mullite, cristobalite, quartz and diopside. Quantitative evaluation using Rietveld-based techniques has been used to determine the percentages of both the individual crystalline phases and the glass component. These data were then combined with the chemistry of the crystalline phases and the overall chemical composition of the ash to estimate the chemical composition of the glass phase, which is typically the most abundant component present in the different materials. Although there is some degree of scatter, comparison between the inferred glass composition from XRD and bulk chemistry and actual data on the glass composition using electron microprobe techniques suggest that the two approaches are broadly consistent. The microprobe further indicates that a range of compositions are present in the glassy and crystalline components of the ashes, including Si-Al-rich glass, metakaolin and Fe-Ca-Mg-Ti phases, as well as quartz, anorthite and an aluminophosphate material. Electron microprobe and XRD studies also show that pyrrhotite (FeS), representing a high temperature transformation product of pyrite, is present in some clinker and partially burnt carbonaceous shale samples. 27 refs., 5 figs., 7 tabs.

  19. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies.

    Science.gov (United States)

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1-3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4-6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3-52.6% and 9.4-64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration.

  20. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    Science.gov (United States)

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  1. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Rivera

    Full Text Available In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35% of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  2. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Science.gov (United States)

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  3. Carbohydrate composition of circulating multiple-modified low-density lipoprotein

    Science.gov (United States)

    Zakiev, Emile R; Sobenin, Igor A; Sukhorukov, Vasily N; Myasoedova, Veronika A; Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Atherogenic modification of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis, as modified LDL, but not native LDL, induces pronounced accumulation of cholesterol and lipids in the arterial wall. It is likely that LDL particles undergo multiple modifications in human plasma: desialylation, changes in size and density, acquisition of negative electric charge, oxidation, and complex formation. In a total LDL preparation isolated from pooled plasma of patients with coronary atherosclerosis and from healthy subjects, two subfractions of LDL could be identified: desialylated LDL bound by a lectin affinity column and normally sialylated (native) LDL that passed through the column. The desialylated LDL subfraction therefore represents circulating modified LDL. In this work, we performed a careful analysis of LDL particles to reveal changes in the composition of glycoconjugates associated with proteins and lipids. Protein fraction of LDL from atherosclerotic patients contained similar amounts of glucosamine, galactose, and mannose, but a 1.6-fold lower level of sialic acid as compared to healthy donors. Lipid-bound glycoconjugates of total LDL from patients with coronary atherosclerosis contained 1.5–2-fold less neutral monosaccharides than total LDL from healthy donors. Patient-derived LDL also contained significantly less sialic acid. Our results demonstrate that carbohydrate composition of LDL from atherosclerotic patients was altered in comparison to healthy controls. In particular, prominent decrease in the sialic acid content was observed. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression.

  4. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2010-12-01

    Full Text Available OBJECTIVES: The aim of the present study was to assess the effect of the exposure to food-simulating liquids prior to brushing simulation on the surface roughness of five composite materials (Quixfil, Filtek Supreme, Esthet-X, Filtek Z250, Tetric Ceram. Material and METHODS: Twenty cylinders (5 mm diameter and 4 mm height of each composite were randomly allocated to 4 groups (n=5, according to the food-simulating liquid in which they were immersed for 7 days at 37°C: artificial saliva, heptane, citric acid, and ethanol. After this period, the top surface of composite cylinders was submitted to 7,500 brushing cycles (200 g load. Measurements of the surface roughness (Ra, ¼m were carried out before and after the exposure to the chemicals/brushing simulation. Changes on the morphology of composite surfaces were observed through scanning electron microscopy (SEM. RESULTS: The statistical analysis (ANOVA with cofactor / Tukey's test, α=5% detected a significant interaction between solutions and composite resins. Esthet-X, Filtek Z250 and Tetric Ceram were not affected by the food-simulating liquids/toothbrushing. Citric acid and ethanol increased the surface roughness of Quixfil and Filtek Supreme, respectively. SEM images corroborate the surface roughness findings, demonstrating the negative effect from chemical solutions and mechanical abrasion. CONCLUSIONS: The surface roughness of composite resin materials are differently affected by the food-simulating solutions, depending on the immersion media.

  5. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.

    Science.gov (United States)

    Cartwright, Julyan H E; Escribano, Bruno; Sainz-Díaz, C Ignacio; Stodieck, Louis S

    2011-04-05

    We studied the growth of metal-ion silicate chemical gardens under Earth gravity (1 g) and microgravity (μg) conditions. Identical sets of reaction chambers from an automated system (the Silicate Garden Habitat or SGHab) were used in both cases. The μg experiment was performed on board the International Space Station (ISS) within a temperature-controlled setup that provided still and video images of the experiment downlinked to the ground. Calcium chloride, manganese chloride, cobalt chloride, and nickel sulfate were used as seed salts in sodium silicate solutions of several concentrations. The formation and growth of osmotic envelopes and microtubes was much slower under μg conditions. In 1 g, buoyancy forces caused tubes to grow upward, whereas a random orientation for tube growth was found under μg conditions.

  6. Chemical reactivity in nucleophilic cycloaddition to C70: vibronic coupling density and vibronic coupling constants as reactivity indices.

    Science.gov (United States)

    Haruta, Naoki; Sato, Tohru; Tanaka, Kazuyoshi

    2012-11-02

    The chemical reactivity in nucleophilic cycloaddition to C70 is investigated on the basis of vibronic (electron-vibration) coupling density and vibronic coupling constants. Because the e1″ LUMOs of C70 are doubly degenerate and delocalized throughout the molecule, it is difficult to predict the regioselectivity by frontier orbital theory. It is found that vibronic coupling density analysis for the effective mode as a reaction mode illustrates the idea of a functional group embedded in the reactive sites. Furthermore, the vibronic coupling constants for localized stretching vibrational modes enable us to estimate the quantitative reactivity. These calculated results agree well with the experimental findings. The principle of chemical reactivity proposed by Parr and Yang is modified as follows: the preferred direction is the one for which the initial vibronic coupling density for a reaction mode of the isolated reactant is a minimum.

  7. An overview of a uranium acidic mining lake (Caldas, Brazil): composition of the zooplankton community and limno-chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, H.; Ferrari, C.; Roque, C.V.; Nascimento, M.R. [Brazilian Nuclear Energy Commission/Pocos de Caldas Laboratory (Brazil); Wisniewski, M.J. [Alfenas Federal University/Limnology Laboratory (Brazil); Rodgher, S. [Universidade Estadual Paulista Julio de Mesquita Filho/Science and Technology Laboratory (Brazil)

    2014-07-01

    This research represents an attempt to fill a gap in the information on the zooplankton composition and limno-chemical aspects of the uranium pit lake (Osamu Utsumi Pit, Brazil), affected by acid mine drainage. In the present study water samples were collected three-monthly, for a period of one year (2008-2009). The water samples from the uranium pit lake showed moderately acidic pH values (3.6 to 4.1), high values of the electrical conductivity, sulfate, uranium, fluoride, zinc, manganese and aluminum concentrations. The Rotifera cephalodella sp., Keratella americana, K. cochlearis, Bdelloidea order and the Cladocera Bosminopsis deitersi, Bosmina sp., were registered in the samples from the uranium pit lake with ADM. Of the species registered the Bdelloidea order was the most important in terms of density (17,500 - 77,778 ind m{sup -3}), since it occurred throughout the whole sampling period. In this study, probably the combined effect of moderately acid pH values and other potentially co-stressors factors, for example the high concentrations of stable and radioactive chemical species, could have influenced this richness and also the composition of the zooplankton species in the water samples from the uranium pit lake. Document available in abstract form only. (authors)

  8. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  9. Effect of stocking density on water quality and (Growth, Body Composition and Plasma Cortisol Content) performance of pen-reared rainbow trout ( Oncorhynchus mykiss)

    Science.gov (United States)

    Liu, Qun; Hou, Zhishuai; Wen, Haishen; Li, Jifang; He, Feng; Wang, Jinhuan; Guan, Biao; Wang, Qinglong

    2016-08-01

    The goal of the study was to examine the effect of stocking density on the water quality of culture area, as well as the growth, body composition and cortisol content of rainbow trout ( Oncorhynchus mykiss). Pen-reared trout were stocked in densities of 40, 60, 80 fish individuals m-3 (4.6, 6.6, 8.6 kg m-3, SD1, SD2 and SD3 groups, respectively) for 300 days. Compared to the water from SD1 and SD2, that from SD3 exhibited significantly higher NH 4 + -N content and COD (chemical-oxygen-demand), and a significant reduction of dissolved oxygen in day 180 (40.6 kg m-3). Stocking density was significantly associated with body weight, standard length, VSI (viscerosomatic index), CF (condition factor) and FC (food coefficient) in group SD3, particularly in day 240 and day 300 (45 or 49.3 kg m-3). Increased crude fat and decreased crude protein were displayed in high density group when the density reached to 36 kg m-3. As a cumulative effect of density-related stress, VSI, CF, FC, moisture, and crude protein content varied over time in each density group (SD1, SD2, and SD3). In summary, trout exhibited a better growth performance in low density (26.3 kg m-3) than those reared in high densities (36 and 45 kg m-3). The results indicate that rainbow trout (114.44 g ± 6.21 g, 19.69 cm ± 0.31 cm) initially stocked in 6.6 or 8.6 kg m-3 should be lightened to less than 36 kg m-3 after an intensive rearing for 240 days.

  10. Density, heating value, and composition of pellets made from lodgepole pine (Pinus concorta Douglas) infested with mountain pine beetle (Dendroctonus ponderosae Hopkins)

    Energy Technology Data Exchange (ETDEWEB)

    Zaini, P.; Kadla, J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Wood Science; Sokansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Oak Ridge National Laboratory, Oak Ridge, TN (United States). Environmental Sciences Div., Bioenergy Resource and Engineering Systems; Bi, X.; Lim, C.J. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Mani, S. [Georgia Univ., Athens, GA (United States). Faculty of Engineering; Melin, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Delta Research Corp., Delta, BC (Canada)

    2008-07-01

    BC is currently experiencing the largest recorded mountain pine beetle (MPB) infestation in North America that has killed nearly 7 million hectares of pine. The dead trees gradually lose their suitability for dimension lumber and pulp chips due to excessive cracking and spoilage. The economic losses can be partly averted by recovering the killed wood and processing it into pellets for bioenergy and other applications. Currently, Canada exports roughly 750,000 tons of wood pellets to Europe as a fuel for heat and power. The most important physical properties of wood pellets are bulk and pellet density, heating value, moisture content, and durability. In light of the chemical and structural changes reported with MPB attack, it is important to develop engineering data on properties of MPB-affected pine for wood pellets. The objective of this study was to compare chemical composition, density, and heat value of pellets made from MPB-infested wood and to compare these properties with those measured for pellets made from uninfested wood. Chemical analysis showed minor decrease in lignin and sugar contents of pellets made from MPB wood. Pellets made from MPB-infested pine had a mean value for density larger than those made from uninfested pine but the difference was not statistically significant. Heating values of the pellets from MPB-infested wood were similar to those measured for pellets from uninfested wood. A preliminary observation of mold growth did not show any further staining or other decay fungi growth for the pellets made from MPB-infested wood. The pellets made from MPB-infested wood were found to be similar to pellets made from uninfested wood in density, heating value, and most chemical constituents. The overall conclusion was that MBP infested wood can be used to produce comparable pellets to non infested wood pellets. 37 refs., 6 tabs., 2 figs.

  11. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    Science.gov (United States)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  12. Potential of Using Recycled Low-Density Polyethylene in Wood Composites Board

    Directory of Open Access Journals (Sweden)

    A. C. Igboanugo

    2011-03-01

    Full Text Available The aim of this study was to investigate the suitability of using recycled low density polyethylene (RLDPE in wood board manufacturing. The composite board was produced by compressive moulding by increasing the percentage LDPE from 30 to 50wt% with interval of 10wt% at a temperatures of 140 and 180oC, pressure of 30-40 Kg/cm2 and pressing time 7-13minutes. The microstructure and mechanical properties: modulus of rupture (MOR, modulus of elasticity (MOE, Tensile strength, impact strength properties of boards were determined. The results showed that high modulus of rupture of 20.31N/mm2and MOE of 1363N/mm2 were obtained from board produced at 140oC, 60/40wt% wood particles/LDPE content. The uniform distribution of the particles and the recycled LDPE in the microstructure of the composites board is the major factor responsible for the improvement in the mechanical properties. The results showed that the MOE, MOR meets the minimum requirements of the European standards, for general purpose. The boards produced had tensile strength that is within the requirement. Hence this LDPE can be used in board production for general purpose applications.

  13. Bone Mineral Density and Body Composition of Adult Premenopausal Women with Three Levels of Physical Activity

    Directory of Open Access Journals (Sweden)

    Fernando D. Saraví

    2013-01-01

    Full Text Available Weight-bearing and resistance physical activities are recommended for osteoporosis prevention, but it is unclear whether an intensity level above current recommendations has a positive effect on adult premenopausal women. Body composition and bone mineral density (BMD by DXA were compared in three groups of women as follows: Sedentary, Maintenance exercise, and federated Sport Team (n=16 for each group. Physical activity was estimated from the International Physical Activity Questionnaire (IPAQ. The groups did not differ in age, height, weight, or body mass index. Bone mineral content and non-fat soft tissue mass were higher and fat mass was lower in the Sport Team group than in the other groups. The same was true for BMD of total skeleton, lumbar spine, femoral neck, and total hip. A test for linear trend of body composition and BMD showed significant results when including all three groups. Simple and multiple regression analyses showed significant associations between physical activity level (or alternatively, years of participation in programmed physical activity and bone mass measures at all sites except for the middle third of radius. It is concluded that a level of physical activity higher than that usually recommended benefits bone health in adult premenopausal women.

  14. Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density

    Science.gov (United States)

    Kearsley, Anton T.; Burchell, Mark J.; Price, Mark C.; Cole, Michael J.; Wozniakiewicz, Penelope J.; Ishii, Hope A.; Bradley, John P.; Fries, Marc; Foster, Nicholas J.

    2012-04-01

    The Stardust collector shows diverse aerogel track shapes created by impacts of cometary dust. Tracks have been classified into three broad types (A, B, and C), based on relative dimensions of the elongate "stylus" (in Type A "carrots") and broad "bulb" regions (Types B and C), with occurrence of smaller "styli" in Type B. From our experiments, using a diverse suite of projectile particles shot under Stardust cometary encounter conditions onto similar aerogel targets, we describe differences in impactor behavior and aerogel response resulting in the observed range of Stardust track shapes. We compare tracks made by mineral grains, natural and artificial aggregates of differing subgrain sizes, and diverse organic materials. Impacts of glasses and robust mineral grains generate elongate, narrow Type A tracks (as expected), but with differing levels of abrasion and lateral branch creation. Aggregate particles, both natural and artificial, of a wide range of compositions and volatile contents produce diverse Type B or C shapes. Creation of bulbous tracks is dependent upon impactor internal structure, grain size distribution, and strength, rather than overall grain density or content of volatile components. Nevertheless, pure organic particles do create Type C, or squat Type A* tracks, with length to width ratios dependent upon both specific organic composition and impactor grain size. From comparison with the published shape data for Stardust aerogel tracks, we conclude that the abundant larger Type B tracks on the Stardust collector represent impacts by particles similar to our carbonaceous chondrite meteorite powders.

  15. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Feihong Liu

    2015-01-01

    Full Text Available Temperature and relative humidity (RH are two major external factors, which affect equilibrium moisture content (EMC of wood-plastic composites (WPCs. In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP-high density polyethylene (HDPE composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB. The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  16. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    Science.gov (United States)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  17. High critical current densities in industrial scale composites made from high homogeneity NB 46. 5 TI

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, D.C.; Hemachalam, K.; Lee, P.; McDonald, W.K.; O' Larey, P.; Scanlan, R.; Starch, W.; Taylor, C.; Warnes, W.; West, A.W.; Zeitlin, B.

    1985-03-01

    Recent work in our group on the fabricationmicrostructure-superconducting properties of composites of Nb-Ti has produced much new information about the precipitate morphology and origins of high critical current density (J /SUB c/ ) in these materials./sup 1 -4/ Precipitation of Ti-rich phase is seen to commence as a grain boundary film 2 - 4 nm thick, the film then developing into approximately equiaxed particles of ..cap alpha..-Ti at the boundary triple points. The typical size of such precipitates is 50 - 100 nm. Controlled drawing of such a structure produces an array of locally ordered ribbon precipitates. These precipitates are typically 3 - 5 nm thick by 100 - 300 nm long (when observed in transverse section). Their length in longitudinal section appears to be several hundred nm, indicating great ductility in these small ..cap alpha..-Ti precipitates. The typical separation of the precipitates is 20 - 30 nm. Thus the dimensions of the precipitate array are quite comparable to that of the flux lattice since the fluxoid separation is 22 nm at 5 T and the fluxoid diameter of Nb 46.5 wt% Ti is approximately 10 nm. The flux pinning behavior of these precipitate structures is expected to be complex: /SUP 2.4/ the defect density is very high, the precipitate morphology has a very high aspect ratio and the extreme thinness of the precipitates must permit some superconductivity to be induced in them by the proximity effect./sup 5/

  18. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  19. Density and composition analysis using focused MeV ion mubeam techniques

    Science.gov (United States)

    Antolak, A. J.; Bench, G. S.; Pontau, A. E.; Morse, D. H.; Heikkinen, D. W.; Weirup, D. L.

    1994-12-01

    Nuclear muscopy uses focused MeV ion mubeams to non-destructively characterize materials and components with mun scale spatial resolution. Although a number of accelerator-based mubeam methods are available for materials analysis, this paper centers on the techniques of Ion mutomography (IMT) and Particle-Induced X-ray Emission (PIXE). IMT provides quantitative three-dimensional density information with mun-scale spatial resolution and 1% density variation sensitivity. Recently, IMT has become more versatile because greater emphasis has been placed on understanding the effects of reconstruction artifacts, beam spatial broadening, and limited projection data sets. PIXE provides quantitative elemental information with detection sensitivities to 1 μg/g or below in some instances. By scanning the beam, two-dimensional maps of elemental concentration can also be recorded. However, since X-rays are produced along the entire path of the ion beam as it penetrates the sample, these measurements only give depth-averaged information in general. PIXE tomography (PIXET) is the natural extension from conventional PIXE analysis to the full three-dimensional measurement and forms the bridge linking the complementary techniques of PIXE and IMT. This paper presents recent developments and applications of these ion beam techniques in a diverse range of fields including characterizing metal-matrix composites, biological specimens and inertial confinement fusion targets.

  20. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2