WorldWideScience

Sample records for density boiling point

  1. Estimation of boiling points using density functional theory with polarized continuum model solvent corrections.

    Science.gov (United States)

    Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C

    2011-09-01

    An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  2. Boiling point: government neglect, corporate abuse, and Canada's water crisis

    National Research Council Canada - National Science Library

    Barlow, Maude

    2016-01-01

    "In Boiling Point, bestselling author and activist Maude Barlow lays bare the issues facing Canada's water reserves, including long-outdated water laws, unmapped and unprotected groundwater reserves...

  3. Correlations estimate volume distilled using gravity, boiling point

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  4. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    Science.gov (United States)

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  5. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    Science.gov (United States)

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  6. Prediction of boiling points of organic compounds by QSPR tools.

    Science.gov (United States)

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crystallization fouling of finned tubes during pool boiling: effect of fin density

    Energy Technology Data Exchange (ETDEWEB)

    Esawy, M.; Malayeri, M.R. [University of Stuttgart, Institute for Thermodynamics and Thermal Engineering (ITW), Stuttgart (Germany); Mueller-Steinhagen, H. [University of Stuttgart, Institute for Thermodynamics and Thermal Engineering (ITW), Stuttgart (Germany); German Aerospace Centre (DLR), Institute of Technical Thermodynamics, Stuttgart (Germany)

    2010-11-15

    Bubble characteristics such as density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led to the widely accepted design recommendation to maintain the heat transfer surface temperature below the boiling point if fouling may occur, e.g., in seawater desalination. The present paper aims at investigating the formation of deposits on finned tubes during nucleate pool boiling of CaSO{sub 4} solutions. The test finned tubes are low finned tubes with fin densities of 19 and 26 fins/in. made from Cu-Ni. The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 kW/m{sup 2} and a CaSO{sub 4} concentration of 1.6 g/L. For the sake of comparison, similar runs were performed with smooth stainless steel tubes. The results show that: (1) the fouling resistance decreases with increasing fin density, (2) fouling on the finned tubes was reduced with increasing nucleate boiling activity and (3) if any fouling layer occurred on the finned tubes it could be removed easily. (orig.)

  9. Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6.

    Science.gov (United States)

    Yu, Xiaojuan; Hou, Hua; Wang, Baoshan

    2017-04-15

    Developing the environment-friendly insulation gases to replace sulfur hexafluoride (SF6 ) has attracted considerable experimental and theoretical attentions but without success. A computational methodology was presented herein for prediction on dielectric strength and boiling point of arbitrary gaseous molecules in the purpose of molecular design and screening. New structure-activity relationship (SAR) models have been established by combining the density-dependent properties of the electrostatic potential surface, including surface area and the statistical variance of the surface potentials, with the molecular properties including polarizability, electronegativity, and hardness. All the descriptors in the SAR models were calculated using density functional theory. The substitution effect of SF6 by various functional groups was studied systematically. It was found that CF3 is the most effective functional group to improve the dielectric strength due to the large surface area and polarizability. However, all the substitutes exhibit higher boiling points than SF6 because the molecular hardness decreases. The balance between Er and Tb could be achieved by minimizing the local polarity of the molecules. SF5 CN and SF5 CFO were found to be the potent candidates to replace SF6 in view of their large dielectric strengths and low boiling points. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    Science.gov (United States)

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  11. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  12. Explaining Melting and Evaporation below Boiling Point. Can Software Help with Particle Ideas?

    Science.gov (United States)

    Papageorgiou, George; Johnson, Philip; Fotiades, Fotis

    2008-01-01

    This paper reports the findings of a study exploring the use of a software package to help pupils understand particulate explanations for melting and evaporation below boiling point. Two matched classes in a primary school in Greece (ages 11-12, n = 16 and 19) were involved in a short intervention of six one hour lessons. Covering the same…

  13. Explaining Melting and Evaporation below Boiling Point. Can Software Help with Particle Ideas?

    Science.gov (United States)

    Papageorgiou, George; Johnson, Philip; Fotiades, Fotis

    2008-01-01

    This paper reports the findings of a study exploring the use of a software package to help pupils understand particulate explanations for melting and evaporation below boiling point. Two matched classes in a primary school in Greece (ages 11-12, n = 16 and 19) were involved in a short intervention of six one hour lessons. Covering the same…

  14. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  15. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  16. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point.

    Science.gov (United States)

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Boiling Point

    Science.gov (United States)

    Jansen, Michael C.

    2002-01-01

    The author recounts his experiences he helped to investigate the accident which destroyed the Space Shuttle Challenger. The focus was on how he used novel approaches to investigate heat transfer in the shuttle's hydrogen tank, after an expert he sought for advice proved unhelpful.

  18. Structural Vector Description and Estimation of Normal Boiling Points for 66 Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The correlation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907° C for 66 AHs. The RMS obtained by cross-validation is 9.131° C, which implies the relationship model having good prediction ability.

  19. Physical concept and calculation of boiling point in a pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. N.

    2014-06-01

    Full Text Available LED development is accompanied by the need to ensure a constructive solution for the thermal conditions problem. For this purpose one can use pulsating heat pipes (PHP, that operate more efficiently after the start of heat carrier boiling. This article describes the physical representation and formula that allows determining the boiling point, which is a lower bound of the PHP effective operating range. It is shown that the main factors influencing the required heat flow are driving capillary pressure and velocity of the vapor bubble. The formula was obtained for the closed PHP made of the copper with water as a heat carrier. Information about this heat flux can be used for further design of cooling systems for heat-sensitive elements, such as LED for promising lighting devices.

  20. Morphological control in polymer solar cells using low-boiling-point solvent additives

    Science.gov (United States)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  1. SYNTHESIS OF POLYMER-STABILIZED RUTHENIUM COLLOIDS BY LOW BOILING POINT ALCOHOL REDUCTION

    Institute of Scientific and Technical Information of China (English)

    Ya-li Su; Xiu-ru Li; Yue-jin Tong; Yue-sheng Li

    2003-01-01

    Stable and well-dispersed poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloidal clusters were prepared via the reduction of ruthenium(Ⅲ) chloride by refluxing with low boiling point alcohols. Investigation of the size of Ru colloids by transmission electron microscopy (TEM) indicated that the average diameters could be controlled in the range of 1.2-1.6 nm with relative standard deviations of less than 0.33 by changing the molar ratio of PVP to Ru. The X-ray photoelectron spectroscopy (XPS) characterization verified the formation of elemental ruthenium colloids.

  2. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES USING MOLECULAR DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    B. Souyei

    2013-12-01

    Full Text Available A quantitative structure–property relationship (QSPR study is carried out to develop correlations that relate the molecular structures of organic compounds (Aliphatic Alkanes to their normal boiling point (NBP and two correlations were proposed for constitutionals and connectivity indices Models. The correlations are simple in application with good accuracy, which provide an easy, direct and relatively accurate way to calculate NBP. Such calculation gives us a model that gives results in remarkable correlations with the descriptors of blokes constitutionals (CON, and connectivity indices (CI (R2 = 0.950, δ = 0.766 (R2 = 0.969, δ = 0.782 respectively.

  3. Experimental research on dryout point of flow boiling in narrow annular channels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An experimental research on the dryout point of flow boiling in narrow annular channels under low mass flux with 1.55 mm and 1.05 mm annular gap, respectively, is conducted. Distilled water is used as working fluid and the range of pressure is limited within 2.0~4.0 MPa and that of mass flux is 26.0~69.0 kg·m-2·s-1. The relation of critical heat flux (CHF) and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the increasing mass flux and increase with the increasing inlet qualities in externally heated annuli.Under the same conditions, critical qualities in the outer tube are always larger than those in the inner tube. The appearance of dryout point in bilaterally heated narrow annuli can be judged according to the ratio of qo/qi.

  4. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.

    Science.gov (United States)

    Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

    2013-11-08

    Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Correlation of normal boiling points of dialkylalkyl phosphonates with topological indices on the gas chromatographic retention data

    Energy Technology Data Exchange (ETDEWEB)

    Panneerselvam, K., E-mail: kpselvam@igcar.gov.in; Rao, C.V.S. Brahmmananda; Antony, M.P.

    2015-01-20

    Highlights: • Normal boiling points of dialkylalkyl phosphonates measured by using GC technique. • Retention times have been determined by using temperature programmed technique. • Topological indices derived to encode the structural aspects of phosphonates. • QSPR discipline have been developed for predicting normal boiling points. • Statistical characteristics were used for validity of the QSPR discipline. - Abstract: The normal boiling point of twelve dialkylalkyl phosphonates has been determined using gas chromatographic technique. Dibutylhydrogen phosphonate has been used as reference for computing normal boiling point of dialkylalkyl phosphonates. Retention times of dialkylalkyl phosphonates have been measured by using temperature programmed technique. The topological indices namely, odd–even index, atom type index and steric effect index have been designed to capture surface interaction parameters. It was found to exhibit excellent correlation of the topological indices to the normal boiling point of dialkylalkyl phosphonates. Multiple linear regression analysis has been performed for development of quantitative structure property relationships discipline. It exhibited good predictive power (R{sup 2} = 0.998)

  6. Nickel Catalyzed Conversion of Cyclohexanol into Cyclohexylamine in Water and Low Boiling Point Solvents

    Directory of Open Access Journals (Sweden)

    Yunfei Qi

    2016-04-01

    Full Text Available Nickel is found to demonstrate high performance in the amination of cyclohexanol into cyclohexylamine in water and two solvents with low boiling points: tetrahydrofuran and cyclohexane. Three catalysts, Raney Ni, Ni/Al2O3 and Ni/C, were investigated and it is found that the base, hydrogen, the solvents and the support will affect the activity of the catalyst. In water, all the three catalysts achieved over 85% conversion and 90% cyclohexylamine selectivity in the presence of base and hydrogen at a high temperature. In tetrahydrofuran and cyclohexane, Ni/Al2O3 exhibits better activity than Ni/C under optimal conditions. Ni/C was stable during recycling in aqueous ammonia, while Ni/Al2O3 was not due to the formation of AlO(OH.

  7. Airborne Lidar Point Cloud Density Indices

    Science.gov (United States)

    Shih, P. T.; Huang, C.-M.

    2006-12-01

    Airborne lidar is useful for collecting a large volume and high density of points with three dimensional coordinates. Among these points are terrain points, as well as those points located aboveground. For DEM production, the density of the terrain points is an important quality index. While the penetration rate of laser points is dependent on the surface type characteristics, there are also different ways to present the point density. Namely, the point density could be measured by subdividing the surveyed area into cells, then computing the ratio of the number of points in each respective cell to its area. In this case, there will be one density value for each cell. The other method is to construct the TIN, and count the number of triangles in the cell, divided by the area of the cell. Aside from counting the number of triangles, the area of the largest, or the 95% ranking, triangle, could be used as an index as well. The TIN could also be replaced by Voronoi diagrams (Thiessen Polygon), and a polygon with even density could be derived from human interpretation. The nature of these indices is discussed later in this research paper. Examples of different land cover types: bare earth, built-up, low vegetation, low density forest, and high density forest; are extracted from point clouds collected in 2005 by ITRI under a contract from the Ministry of the Interior. It is found that all these indices are capable of reflecting the differences of the land cover type. However, further investigation is necessary to determine which the most descriptive one is.

  8. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents

    DEFF Research Database (Denmark)

    Chang, J.F.; Sun, B.Q.; Breiby, Dag Werner

    2004-01-01

    Chloroform is a general solvent for poly(3-hexylthiophene) (P3HT) active layers in field-effect transistors. However, its low boiling point and rapid evaporation limit the time for crystallization during the spin-coating process, and field-effect mobilities achieved for P3HT films spin-coated from...

  9. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.

    Science.gov (United States)

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-03-14

    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    Science.gov (United States)

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  11. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    Science.gov (United States)

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  12. Boiling Point Distribution of Hydrocarbon Types in Diesel Using Solid-Phase Extraction Followed by GC/FID-EIMS

    Institute of Scientific and Technical Information of China (English)

    Li Chengwei; Tian Songbai; Liu Zelong; Zhu Xinyi

    2008-01-01

    In this paper, a method was established to determine the boiling point distribution of hydro-carbon types in diesel. The diesel sample was separated into the saturate and aromatic fractions by means of solid-phase extraction (SPE), and each fraction was analyzed by GC/FID-EIMS. According to the relationship between boiling point and retention time of n-paraffins in the chromatogram, the percent-ages of saturates and aromatics at each temperature interval were calculated. According to the average mass spectra of the saturate and aromatic fractions at each temperature interval, the hydrocarbon types of the sample were identified through summation of characteristic mass fragments. Using this method,the changes in composition of diesel during hydrotreating process were studied. The results showed that hydrogenation of aromatics is the main reaction during the hydrotreating process. The more rings the aromatics have, the easier the hydrogenation reactions would take place. The aromatics were converted into cycloparaffins via the hydrogenation and saturation process, leading to an increase in low boiling point fractions in the hydrotreated oil.

  13. Measurement of nucleation site density, bubble departure diameter and frequency in pool boiling of water using high-speed infrared and optical cameras

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-wen; McKrell, Thomas [Massachusetts Institute of Technology, Cambridge, MA (United States)], e-mail: jacopo@mit.edu

    2009-07-01

    A high-speed video and IR thermometry based technique has been used to obtain time and space resolved information on bubble nucleation and boiling heat transfer. This approach provides a fundamental and systematic method for investigating nucleate boiling in a very detailed fashion. Data on bubble departure diameter and frequency, growth and wait times, and nucleation site density are measured with relative ease. The data have been compared to the traditional decades-old and poorly-validated nucleate-boiling models and correlations. The agreement between the data and the models is relatively good. This study also shows that new insights into boiling heat transfer mechanisms can be obtained with the present technique. For example, our data and analysis suggest that a large contribution to bubble growth comes from heat transfer through the superheated liquid layer in addition to micro layer evaporation. (author)

  14. Identification of polybrominated diphenyl ether metabolites based on calculated boiling points from COSMO-RS, experimental retention times, and mass spectral fragmentation patterns.

    Science.gov (United States)

    Simpson, Scott; Gross, Michael S; Olson, James R; Zurek, Eva; Aga, Diana S

    2015-02-17

    The COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) was used to predict the boiling points of several polybrominated diphenyl ethers (PBDEs) and methylated derivatives (MeO-BDEs) of monohydroxylated BDE (OH-BDE) metabolites. The linear correlation obtained by plotting theoretical boiling points calculated by COSMO-RS against experimentally determined retention times from gas chromatography-mass spectrometry facilitated the identification of PBDEs and OH-BDEs. This paper demonstrates the applicability of COSMO-RS in identifying unknown PBDE metabolites of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and 2,2',4,4',6-pentabromodiphenyl ether (BDE-100). Metabolites of BDE-47 and BDE-100 were formed through individual incubations of each PBDE with recombinant cytochrome P450 2B6. Using calculated boiling points and characteristic mass spectral fragmentation patterns of the MeO-BDE positional isomers, the identities of the unknown monohydroxylated metabolites were proposed to be 2'-hydroxy-2,3',4,4'-tetrabromodiphenyl ether (2'-OH-BDE-66) from BDE-47, and 2'-hydroxy-2,3',4,4',6-pentabromodiphenyl ether (2'-OH-BDE-119) and 4-hydroxy-2,2',3,4',6-pentabromodiphenyl ether (4-OH-BDE-91) from BDE-100. The collective use of boiling points predicted with COSMO-RS, and characteristic mass spectral fragmentation patterns provided a valuable tool toward the identification of isobaric compounds.

  15. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  16. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    Science.gov (United States)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  17. On Use of the Variable Zagreb vM2 Index in QSPR: Boiling Points of Benzenoid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Albin Jurić

    2004-12-01

    Full Text Available The variable Zagreb vM2 index is introduced and applied to the structure-boiling point modeling of benzenoid hydrocarbons. The linear model obtained (thestandard error of estimate for the fit model Sfit=6.8 oC is much better than thecorresponding model based on the original Zagreb M2 index (Sfit=16.4 oC. Surprisingly,the model based on the variable vertex-connectivity index (Sfit=6.8 oC is comparable tothe model based on vM2 index. A comparative study with models based on the vertex-connectivity index, edge-connectivity index and several distance indices favours modelsbased on the variable Zagreb vM2 index and variable vertex-connectivity index.However, the multivariate regression with two-, three- and four-descriptors givesimproved models, the best being the model with four-descriptors (but vM2 index is notamong them with Sfit=5 oC, though the four-descriptor model contaning vM2 index isonly slightly inferior (Sfit=5.3 oC.

  18. Uncertainty evaluation of brake fluid equilibrium reflux boiling point%制动液平衡回流沸点不确定度的评定

    Institute of Scientific and Technical Information of China (English)

    王静; 张志芳; 唐林

    2014-01-01

    ERBP is the basic indicator of brake fluid performance. Five aspects of the brake fluid equilibri-um reflux boiling point uncertainty are evaluated in this article and to determine which one contributes most. The conclusions have certain significance to guide the brake fluid boiling point test.%平衡回流沸点是衡量制动液产品性能优劣的最基本指标。本文从五个方面对制动液平衡回流沸点不确定度进行评定,以确定哪些分量对最终不确定贡献最大,所得结论对指导制动液沸点检测具有一定意义。

  19. Prediction of Boiling Point of Alkanes by Artificial Neural Network%利用人工神经网络法预测烷烃的沸点

    Institute of Scientific and Technical Information of China (English)

    李谦; 王黎; 李伟; 房晓敏

    2001-01-01

    有机物沸点是有机物的一种非常重要的性质. 采用人工神经网络模型,选用结构描述码作为输入特征参数对烷烃的沸点进行预测,得到了很高的预测精度. 该方法还可作为对有机化合物的其他性质进行预测的一种有效手段.%The boiling point is a very important property of organics. The paper uses the structural discribing code as input data to predict precisely the boiling point of alkanes by artificial neural network. This method proves effective on predicting other important properties of organics.

  20. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature

    Science.gov (United States)

    Schmidtke, B.; Petzold, N.; Kahlau, R.; Rössler, E. A.

    2013-08-01

    We determine the reorientational correlation time τ of a series of molecular liquids by performing depolarized light scattering experiments (double monochromator, Fabry-Perot interferometry, and photon correlation spectroscopy). Correlation times in the range 10-12 s-100 s are compiled, i.e., the full temperature interval between the boiling point and the glass transition temperature Tg is covered. We focus on low-Tg liquids for which the high-temperature limit τ ≅ 10-12 s is easily accessed by standard spectroscopic equipment (up to 440 K). Regarding the temperature dependence three interpolation formulae of τ(T) with three parameters each are tested: (i) Vogel-Fulcher-Tammann equation, (ii) the approach recently discussed by Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)], and (iii) our approach decomposing the activation energy E(T) in a constant high temperature value E∞ and a "cooperative part" Ecoop(T) depending exponentially on temperature [Schmidtke et al., Phys. Rev. E 86, 041507 (2012)], 10.1103/PhysRevE.86.041507. On the basis of the present data, approaches (i) and (ii) are insufficient as they do not provide the correct crossover to the high-temperature Arrhenius law clearly identified in the experimental data while approach (iii) reproduces the salient features of τ(T). It allows to discuss the temperature dependence of the liquid's dynamics in terms of a Ecoop(T)/E∞ vs. T/E∞ plot and suggests that E∞ controls the energy scale of the glass transition phenomenon.

  1. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water

    Science.gov (United States)

    Li, Hua; Fujigaya, Tsuyohiko; Nakajima, Hironori; Inada, Akiko; Ito, Kohei

    2016-11-01

    This study attempts to optimize the properties of the anode current collector of a polymer electrolyte membrane water electrolyzer at high temperatures, particularly at the boiling point of water. Different titanium meshes (4 commercial ones and 4 modified ones) with various properties are experimentally examined by operating a cell with each mesh under different conditions. The average pore diameter, thickness, and contact angle of the anode current collector are controlled in the ranges of 10-35 μm, 0.2-0.3 mm, and 0-120°, respectively. These results showed that increasing the temperature from the conventional temperature of 80 °C to the boiling point could reduce both the open circuit voltage and the overvoltages to a large extent without notable dehydration of the membrane. These results also showed that decreasing the contact angle and the thickness suppresses the electrolysis overvoltage largely by decreasing the concentration overvoltage. The effect of the average pore diameter was not evident until the temperature reached the boiling point. Using operating conditions of 100 °C and 2 A/cm2, the electrolysis voltage is minimized to 1.69 V with a hydrophilic titanium mesh with an average pore diameter of 21 μm and a thickness of 0.2 mm.

  2. Influence Factor Analysis of FCC Heavy Gasoline End Boiling Point%催化重汽油干点的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    庞春天; 张颖; 李雅华

    2014-01-01

    国内某石化公司1 Mt/a 的催化裂化装置出现了重汽油干点偏高的情况。通过分析装置现有操作数据并针对该数据进行了详细核算,找到了导致重汽油干点偏高的具体原因。分析讨论了重汽油干点的影响因素,并提出了降低重汽油干点的调整方案。%The heavy gasoline from 1 Mt/a FCC unit in a domestic petrochemical company has higher end boiling point. In this paper, through analyzing and calculating the existed operating data, specific reasons to cause higher end boiling point were determined. The influence factors of heavy gasoline end boiling point were discussed, and the solutions were put forward.

  3. The Density of Coronal Null Points from Hinode and MDI

    CERN Document Server

    Longcope, Dana; DeForest, Craig

    2009-01-01

    Magnetic null points can be located numerically in a potential field extrapolation or their average density can be estimated from the Fourier spectrum of a magnetogram. We use both methods to compute the null point density from a quiet Sun magnetogram made with Hinode's NFI and from magnetograms from SOHO's MDI in both its high-resolution and low-resolution modes. All estimates of the super-chromospheric column density (z>1.5 Mm) agree with one another and with the previous measurements: 0.003 null points per square Mm of solar surface.

  4. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  5. DENSITY OF POINT CLOUDS IN MOBILE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Warchoł Artur

    2015-12-01

    Full Text Available The LiDAR (Light Detection And Ranging technology is becoming a more and more popular method to collect spatial information. The acquisition of 3D data by means of one or several laser scanners mounted on a mobile platform (car could quickly provide large volumes of dense data with centimeter-level accuracy. This is, therefore, the ideal solution to obtain information about objects with elongated shapes (corridors, and their surroundings. Point clouds used by specific applications must fulfill certain quality criteria, such as quantitative and qualitative indicators (i.e. precision, accuracy, density, completeness.Usually, the client fixes some parameter values that must be achieved. In terms of the precision, this parameter is well described, whereas in the case of density point clouds the discussion is still open. Due to the specificities of the MLS (Mobile Laser Scanning, the solution from ALS (Airborne Laser Scanning cannot be directly applied. Hence, the density of the final point clouds, calculated as the number of points divided by "flat" surface area, is inappropriate. We present in this article three different ways of determining and interpreting point cloud density on three different test fields. The first method divides the number of points by the "flat" area, the second by the "three-dimensional" area, and the last one refers to a voxel approach. The most reliable method seems to be the voxel method, which in addition to the local density values also presents their spatial distribution.

  6. Changes of Petroleum Acid Distribution Characterized by FT-ICR MS in Heavy Acidic Crude Oil after True Boiling Point Distillation

    Institute of Scientific and Technical Information of China (English)

    Liu Yingrong; Zhang Qundan; Wang Wei; Liu Zelong; Zhu Xinyi; Tian Songbai

    2014-01-01

    The molecular transformations of carboxylic acids in heavy acidic SL crude before and after true boiling point distillation were examined by ultra-high resolution negative-ion electrospray ionization (ESI) Fourier transform ion cyclo-tron resonance mass spectrometry (FT-ICR MS). The acid class (heteroatom number), type (z numbers) and carbon number distributions were positively characterized. It was found out that the total acid number (TAN) of SL crude decreased after true boiling point distillation, and the abundance of O2 class in mass spectra was also found to be reduced from 67.6%to 34.5%in SL TBP mixed crude as measured by MS spectra, indicating to a potential carboxylic acid decomposition. However, it was interesting that the carboxylic acids type distribution in both oils was almost the same although their relative abundance in SL TBP mixed crude turned to be much lower, suggesting that various petroleum carboxylic acid types have the similar thermal decomposition reaction behavior. Furthermore, for each O2 type of acids in SL TBP mixed crude, the abundance of carboxylic acids with carbon number higher than 35 was reduced greatly, especially for those with carbon number higher than 60, the mass peaks of which were nearly totally removed, indicating that the large carboxylic acid molecules in heavy fractions decomposed more signiifcantly because of longer heating time during the true boiling point distillation process. As a result, the reduction of TAN may be caused by the thermal decomposition of carboxylic acids especially those with high carbon number, suggesting that quick distillation or much lower pressure is required to avoid the thermal decomposition.

  7. Micro distillation of crude oil to obtain TBP (True Boiling Points) curve; Micro destilacao de petroleo para obtencao da curva PEV (Ponto de Ebulicao Verdadeiro)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria de Lourdes S.P.; Mendes, Luana de Jesus [Fundacao Gorceix, Ouro Preto, MG (Brazil); Medina, Lilian Carmen [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    PETROBRAS and others petroleum companies adopt the ASTM norms as reference method for oil distillation, ASTM D2892 (2005) that uses columns with 14 to 18 theoretical plates and the ASTM D 5236 (2003) , that distills mixture of heavy hydrocarbons with boiling point over 150 deg C. The result of these two distillations is the TBP (True Boiling Point) curve that is the main tool to define the yield of oil derivatives, the 'royalties' payment, the oil price for commercialization and the logistic support of oil location or in new plants projects of distillation and optimization studies. This procedure has some limitations as the volume sample, at least 1L, and the time of distillation, 2 to 4 days. The objective of this work is to propose a new alternative to attain de PEV curve, developing a new methodology using micro scale distillation that uses a more efficient column than the conventional method. Graphics of both methods were created and the results between the conventional and the micro distillation received statistical treatment to prove the equivalence between them. (author)

  8. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Zhao, Sen; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-01

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  9. Variation of Boiling Point with Salting Effect in Vapor-Liquid Equilibrium%汽液平衡盐效应中的沸点变化

    Institute of Scientific and Technical Information of China (English)

    孙仁义; 朱元举; 冷春莉

    2003-01-01

    测定了在恒压(100.0kPa)条件下若干含盐双液系(甲醇-水,乙醇-水,正丙醇-水)的沸点变化.实验结果表明引起溶液沸点降低"反常现象"发生的必要条件是易挥发组分被盐析或难挥发组分被盐溶.经热力学分析表明上述实验结果是一个具有普遍意义的结论.%The influence of some nonvolatile salts on boiling point of methanol-water, ethanol-water andn-propanol-water systems was determined at fixed liquid composition and given pressure (100.0 kPa).The experimental results indicate that the requisite of boiling point depression is that the more volatilecomponent must be salted out, the less volatile component must be salted in. This conclusion, basedon thermodynamical consideration, can be taken as a universal rule that governs the variation of boilingpoint when a little nonvolatile salt dissolves in liquid mixture with constant composition.

  10. Matrix product density operators: Renormalization fixed points and boundary theories

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)

    2017-03-15

    We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).

  11. 打造英语课堂沸点培养学生学科兴趣%Creating a Boiling Point in English Class and Cultivating Students' Interest in the Subject

    Institute of Scientific and Technical Information of China (English)

    洪曼林

    2015-01-01

    要培养小学生英语兴趣,必须提高小学英语课堂质量,努力打造英语课堂的“沸点”,使学生在沸点中,感受英语魅力,收获学习英语的成果,享受学习英语的快乐。为此教师要置情于境,营造课堂沸点;突破教学重点、难点,形成课堂沸点;抓住师生互动,引爆课堂沸点;让课堂精彩到底,在教学结尾处设置教学沸点。%To cultivate the English interest of primary school stu-dents, the English class quality in primary school must be im-proved to strive to create a boiling point in class so that students are in their boiling point, feeling the charm of English and gain-ing English learning results and enjoying the learning happiness. For this purpose, teachers shall be in the actual atmosphere and create a boiling point in class, breaking through key teaching points and difficulties to form the boiling point, igniting the class-room boiling point in interactions between teachers and students to fully make the class exciting and set a boiling point at the end of teaching.

  12. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    Science.gov (United States)

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-valueheating/cooling rates) was controlled.

  13. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  14. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  15. Fixed-Point Optimization of Atoms and Density in DFT.

    Science.gov (United States)

    Marks, L D

    2013-06-11

    I describe an algorithm for simultaneous fixed-point optimization (mixing) of the density and atomic positions in Density Functional Theory calculations which is approximately twice as fast as conventional methods, is robust, and requires minimal to no user intervention or input. The underlying numerical algorithm differs from ones previously proposed in a number of aspects and is an autoadaptive hybrid of standard Broyden methods. To understand how the algorithm works in terms of the underlying quantum mechanics, the concept of algorithmic greed for different Broyden methods is introduced, leading to the conclusion that if a linear model holds that the first Broyden method is optimal, the second if a linear model is a poor approximation. How this relates to the algorithm is discussed in terms of electronic phase transitions during a self-consistent run which results in discontinuous changes in the Jacobian. This leads to the need for a nongreedy algorithm when the charge density crosses phase boundaries, as well as a greedy algorithm within a given phase. An ansatz for selecting the algorithm structure is introduced based upon requiring the extrapolated component of the curvature condition to have projected positive eigenvalues. The general convergence of the fixed-point methods is briefly discussed in terms of the dielectric response and elastic waves using known results for quasi-Newton methods. The analysis indicates that both should show sublinear dependence with system size, depending more upon the number of different chemical environments than upon the number of atoms, consistent with the performance of the algorithm and prior literature. This is followed by details of algorithm ranging from preconditioning to trust region control. A number of results are shown, finishing up with a discussion of some of the many open questions.

  16. Numerical Investigation of Boiling

    Science.gov (United States)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  17. 脂肪族含氧有机物沸点的定量构效关系%Quantitative structure-property relationship of normal boiling point of aliphatic oxygen-containing organic compounds

    Institute of Scientific and Technical Information of China (English)

    刘万强; 曹晨忠

    2012-01-01

    The descriptors of polarizability effect index (PEI),the number of effective carbon (Nc,e(f)> the differences in PEI and Nc,eff between the branching chain and straight chain isomers,SPEI and δ Nc,eff,are derived from molecular structure. The quantitative structure-property relationships (QSPRs) between these descriptors and boiling points of 520 aliphatic alcohols,ethers,aldehydes,ketones,acids,and esters were obtained separately. The QSPRs between these descriptors and boiling points were developed for 520 aliphatic oxygen-containing organic compounds by best subsets regression method. For the training set,the correlation coefficient R2 is 0. 9946 and the standard deviation GO is 6. 70 K. For the test set,R2 is 0. 9857 and s is 6. 10 K. The average relative error is 1. 19%. According to the regression equation,the influences of the number of effective carbon of alkyl,the role of functional groups and their interaction on the boiling point were analyzed. These results showed a good correlation between the boiling points of organic compounds and these descriptors derived from PEI for aliphatic alcohols,ethers,aldehydes,ketones,acids,and esters.

  18. Lidar point density analysis: implications for identifying water bodies

    Science.gov (United States)

    Worstell, Bruce B.; Poppenga, Sandra; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  19. 烃类及其衍生物闪点、沸点的定量构效关系%QSPR study for predicting flash points and boiling points of hydrocarbon and their derivatives

    Institute of Scientific and Technical Information of China (English)

    杨惠; 陈利平; 谢传欣; 石宁; 陈网桦

    2011-01-01

    The quantitative relationships existed between flash points, boiling points and molecular structures of hydrocarbon and their derivatives were investigated based on the quantitative structure-property relationship ( QSPR) study. 384 molecular descriptors of hydrocarbon and their derivatives were calculated by CODESSA, and these descriptors were pre-selected by best multilinear regression method. Then QSPR models about flash points and boiling points were built. As a result, the five-descriptor linear models were developed to describe the relationship between the molecular structures and the flash points or the boiling points. The non-linear regression models were built based on support vector machine using the five descriptors selected by best multilinear regression method. The compounds were divided into a training set and a test set. The squared correlation coefficient, cross-validation coefficient and mean squared error of each model were calculated. The test set was used to validate the prediction performance of the resulting models. The predicted results indicated that, the prediction results were in good agreement with the experimental values. The models of flash points had robustness, strong generative ability and small prediction error. The predicted results were satisfactory. But the predicted results of boiling points remained to be improved. Compared to the models of hydrocarbons, the performance of the models which added derivatives was decreased. It can be very helpful to expand the applied scope of QSPR study.%基于定量结构-性质相关性( QSPR)原理,研究了烃类及其衍生物闪点、沸点与其分子结构间的内在定量关系.应用CODESSA软件计算384种烃类及其衍生物的分子结构描述符,建立了闪点和沸点的QSPR模型.用最佳多元线性回归(B-MLR)方法筛选得到的分子描述符建立了线性回归模型.用B-MLR方法所选择的5个描述符作为支持向量机(SVM)的输入建立了非线性模型.

  20. 气相色谱法测定苯类的初馏点和干点%Determination of Initial Boiling Point and Dry Point of Benzenes by Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    陈志运; 李志勇

    2001-01-01

    在工业生产中,用气相色谱法测定纯苯和甲苯产品的初馏点、干点及焦炉煤气中的含苯量,该法与常规方法相比,不仅具有测定速度快、结果准确和操作简单等优点,而且还可做到一柱多用。%In the commercial production,the initial boiling point,dry point of pure benzene and toluene products as well as benzol content in COG are determined with gas chromatography.Compare with the conventional method,the gas chromatography not only has advantages of rapid measurement, accurate measurement and simple operation,but also one column can have more applications.

  1. 估算有机物正常沸点的基团贡献法的研究进展%Research Progress of Group - contribution Methods for Estimating Normal Boiling Point of Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    王小艳; 司继林

    2012-01-01

    Normal boiling points are one of the most important properties for organic compounds. Although there are many experimental values of the normal boiling point of organic compounds in the literature, but there are a few normal boiling point of the material cannot be obtained by experiment. We can obtain the normal boiling points by establishing the mathematical model, the group contribution method is the most important research methods to obtain the normal boiling point. A variety of group - contribution methods for estimating normal boiling point of organic compounds have been summarized. It has discussed the principles, advantages and disadvantages, application ranges of Joback method, C - G method, Xu - Wen method, position group contribution method, elements and bonds. The difference of these methods and the development trend of the methods for estimating normal boiling point of organic compounds was discussed.%有机物的正常沸点是重要的物性数据之一。尽管文献中有很多化合物正常沸点的实验值,但一些物质的正常沸点不能由实验获得,可以通过建立数学模型来估算缺少的有机物正常沸点,其中基团贡献法是人们获得正常沸点的最重要研究方法。本文对估算有机物正常沸点的基团贡献法进行了综述。主要介绍了Joback法、C—G法、许文法、定位分布贡献法、元素和化学键法等方法的原理、优缺点及应用范围;并对这些方法进行简单的比较;最后指出了有机物正常沸点的基团贡献法的发展趋势。

  2. Correlation of Boiling Points with Molecular Structure for Halogenated Propanes%卤代丙烷的沸点与分子结构的关联及预测

    Institute of Scientific and Technical Information of China (English)

    王克强; 孙献忠

    2000-01-01

    探讨了卤代丙烷沸点的变化规律,发展了一种直接根据分子结构信息计算和预测卤代丙烷沸点的方法.对53种卤代丙烷的计算结果表明,沸点计算值与实验值的一致性令人满意,平均误差1.18%.本文方法的提出,不仅在一定程度上揭示了卤代丙烷沸点与分子结构之间的定量关系,而且为工程上提供了一种预测卤代丙烷沸点的有效方法.%A correlation was investigated between the boiling points and molecular structure of halogenated propanes,and a method which can be used to calculate and predict the boiling points of halogenated propanes was developed.The results showed that the calculated boiling points are in good agreement with the experimental data,and the mean relative deviation was 1.18% for 53 halogenated propanes.The boiling points of 6 halogenated propanes were predicted for reference and testing in the future.Not only can the method be used to predict haloenated propance,but can help to understand the quantitative relation between boiling point and molecular structure of halogenated propanes as well.

  3. Analysis of Boiling of Water in a Fixed Container Volume--the reason of boiling and the condition without boiling for water in a container with unchangeable volume and the temperature higher than boiling point%关于固定容器中水沸腾的分析——固定容器中的水在温度高于沸点时发生沸腾的原因与不发生沸腾的物理条件

    Institute of Scientific and Technical Information of China (English)

    罗烛红

    2012-01-01

    In real life; the water in a container with fixed volume will boil, as the temperature of water is increased and reaches the boiling point, However, is there a physical conditioin, under which the water in the closed vessel never boils? It is very interesting for teachers and classmates to answer the above question. Motivated by this, in this paper, we do qualitative analysis of the principle on the ebullition of water in the closed vessel and further discuss the physical condition that makes the water still keep liquid state.%从对应态方程出发定性分析在固定体积和升高温度时水沸腾的原因,也探讨了固定体积和温度达到沸点时水不发生沸腾的物理条件.

  4. The Development of Nufreq-N AN Analytical Model for the Stability Analysis of Nuclear Coupled Density-Wave Oscillations in Boiling Water Nuclear Reactors.

    Science.gov (United States)

    Park, Goon Cherl

    A state-of-the-art one-dimensional thermal-hydraulic model has been developed to be used for the linear analysis of nuclear-coupled density-wave oscillations in a boiling water nuclear reactor (BWR). The model accounts for phasic slip, distributed spacers, subcooled boiling, space/time -dependent power distributions and distributed heated wall dynamics. In addition to a parallel channel stability analysis, a detailed model was derived for the BWR loop analysis of both the natural and forced circulation modes of operation. In its final form, this model constitutes a multi -input, multi-output(MIMO) linear system, which features a general nodal neutron kinetics model. Kinetics parameters for use in the kinetics model have been obtained by utilizing self-consistent nodal data and power distributions. The stability characteristics of a typical BWR/4 has been investigated with the Nyquist criterion. The computer implementation of this model, NUFREQ -N, was used for the parametric study of a typical BWR/4 and comparisons were made with existing in-core and out -of-core data. Also, NUFREQ-N was used to analyze the expected stability characteristics of a typical BWR/4. The parametric results revealed important factors influencing BWR stability margin. It was found that NUFREQ -N generally agreed well with out-of-core data. This was especially true for the predicted power-to-flow transfer function, which is the most important transfer function in thermal-hydraulic stability analysis. In the stability analysis of a typical BWR/4 it was found that it is very important to use accurate models of thermal-hydraulic and neutron kinetic phenomena. Moreover, the accuracy of the nuclear input data is extremely important.

  5. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    Science.gov (United States)

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  6. Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.

    Science.gov (United States)

    Sheeran, Paul S; Rojas, Juan D; Puett, Connor; Hjelmquist, Jordan; Arena, Christopher B; Dayton, Paul A

    2015-03-01

    Many studies have explored phase-change contrast agents (PCCAs) that can be vaporized by an ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few investigations have been published on the utility and characteristics of PCCAs as contrast agents in vivo. In this study, we examine the properties of low-boiling-point nanoscale PCCAs evaluated in vivo and compare data with those for conventional microbubbles with respect to contrast generation and circulation properties. To do this, we develop a custom pulse sequence to vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. Results indicate that droplets can produce contrast enhancement similar to that of microbubbles (7.29 to 18.24 dB over baseline, depending on formulation) and can be designed to circulate for as much as 3.3 times longer than microbubbles. This study also reports for the first time the ability to capture contrast washout kinetics of the target organ as a measure of vascular perfusion.

  7. PREDICTING THE BOILING POINT OF PCDD/Fs BY THE QSPR METHOD BASED ON THE MOLECULAR DISTANCE-EDGE VECTOR INDEX

    Directory of Open Access Journals (Sweden)

    Long Jiao

    2015-05-01

    Full Text Available The quantitative structure property relationship (QSPR for the boiling point (Tb of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs was investigated. The molecular distance-edge vector (MDEV index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR and artificial neural network (ANN, respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

  8. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point.

    Science.gov (United States)

    Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten

    2012-11-01

    In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.

  9. THE RESULTS OF THE STUDY BOILING POINT OUT OZONE-SAFE REFRIGERANT R410A IN THE EVAPORATORS OF REFRIGERATING MACHINES

    Directory of Open Access Journals (Sweden)

    V. G. Bukin

    2012-01-01

    Full Text Available The results of experimental research boiling heat transfer of ozone-friendly R410A refrigerant in evaporators machines and the possibility of its use in place of the prohibited refrigerant R22.

  10. 过冷沸腾起始点和净蒸汽产生点的实验研究%EXPERIMENTAL STUDY ON ONSET OF SUBCOOLED BOILING AND POINT OF NET VAPOR GENERATION

    Institute of Scientific and Technical Information of China (English)

    杨瑞昌; 王彦武; 唐虹; 司徒荣

    2001-01-01

    This paper reports the experimental study of onset of subcooled boiling and point of net vapor generation in a natural circulation system with subcooled boiling. Freon-12 was used as the working medium. In the experiments the onset of subcooled boiling and the point of net vapor generation were determined byvisual observation. The influence of the system pressure, inlet subcooling of the working medium and the input power to the heated section on the onset of subcooled boiling and the point of net vapor generation were investigated in the experiments. Based on the data reduction, the calculation methods of the onset of subcooled boiling and the net vapor generation in the natural circulation system have been presented respectively.%本文报告了使用R-12作工质进行的自然循环过冷沸腾起始点和净蒸汽产生点的实验结果。实验过程中使用可视化方法观察确定过冷沸腾起始点和净蒸汽产生点. 在相当宽广的工质压力、入口过冷度及加热功率范围内研究了上述参数对过冷沸腾起始点和净蒸汽产生点的影响, 在此基础上提出了计算自然循环过冷沸腾起始点和净蒸汽产生点的计算方法。

  11. A Tentative Study on the Relationship Among External Pressure, Vapor Tension and Boiling Point%外压与沸点和蒸气压的关系浅论

    Institute of Scientific and Technical Information of China (English)

    李俊华; 陈彩虹; 屈景年; 曾荣英

    2009-01-01

    The relationship among external pressure, vapor tension and boiling point is discussed in single-component system and two-component system by thermodynamic formulas and phase diagrams. The relationship amongexternal pressure, vapor tension and boiling point is ascertained under different conditions. Meanwhile this relationships is also discussed ulteriorly from microcosmic points.%运用热力学基本公式和相图对单组分系统和二组分系统中外压与沸点和蒸气压之间的关系进行了讨论,明确了不同条件下三者之间的关系,同时从微观角度进行了进一步分析.

  12. 二甲基氯硅烷生产高沸物的综合利用研究进展%Progress in Application of Methyl Chlorosilane High-Boiling Point Residue

    Institute of Scientific and Technical Information of China (English)

    高风; 李永刚; 汪民康; 张文超; 周魁; 林萌; 黄世强

    2012-01-01

    The progress of comprehensive utilization of high-boiling point residue resulting from the production of methylchlorosilane by direct method within China and abroad was reviewed. The advantages and disadvantages of the methods were also summarized, and the directions for utilization of the high-boiling point residue were pointed.%介绍了国内外应用直接法生产甲基氯硅烷过程中产生的高沸物的综合利用研究进展,总结对比了各种方法的优势和不足,展望了高沸物综合利用前景并指出其发展方向.

  13. Application of Topology Index in Aliphatic Aldehydes,Fatty Amines and Aliphatic Hydrocarbons Boiling Point%拓扑指数在脂肪醛、脂肪胺及脂肪烃沸点中的应用

    Institute of Scientific and Technical Information of China (English)

    周长会; 吴启勋; 侯庆高; 高宴梓; 李洪囡; 张瑞

    2013-01-01

    Two matrices and a topological index W were defined,then,topological index W was put into nonlinear regression with the boiling point of aliphatic aldehydes, fatty amines and aliphatic hydrocarbons, respectively, and with good results,the correlation coefficient reaches a good level. The established topological index and two kinds of matrix are easy and convenient to use, which can quickly predict the boiling point of the molecule.%定义了两种矩阵和一种拓扑指数W,将拓扑指数W分别与脂肪醛、脂肪胺及脂肪烃的沸点进行非线性回归,取得了较好的结果,相关性系数达到了良好级别.建立的拓扑指数和两种矩阵简洁方便,可以快速预测分子的沸点.

  14. Molecular polarizability effect index and boiling point of aliphatic aldehydes and alkanones%分子极化效应指数与脂肪族醛酮的沸点

    Institute of Scientific and Technical Information of China (English)

    张秀利; 汪勇先; 林英武; 李俊玲

    2003-01-01

    Based on the molecular polarizabihty effect index,a formula of three parameters was proposed to calculate the boiling point of aliphatic aldehydes and alkanones. ln(820.5 - Tb) = 6.38330- 1.37357 × 10-1 Nc + 5.39350ΔEPI + 8.02603 × 10-2N Where the Nc is the effective length of carbon chain of alkyl group in the aliphatic aldehydes and alkanones. The ΔPEI is the polarizability effect index difference between the corresponding branched and normal alkyl isomer containing the same carbon atom number, which expressed the effcet of carbonyl group on the boiling point of aliphatic aldehydes and alkanones. N is the carbon numbers of aliphatic aldehydes and alkanones.

  15. 低沸点化学物质在无源轿车轮胎温度传感器中的应用%Application of Low-boiling Point Chemicals in Car Tire's Passive Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    张健伟; 赫广田; 董群; 王鉴; 胡林杰

    2012-01-01

    利用低沸点化学物质具有较高的饱和蒸汽压的特性,设计了一种无源轿车轮胎温度监测系统.系统中的温度传感器是将温度变化通过低沸点化学物质的饱和蒸汽压信号转变为磁铁的位移信号,再利用线性霍尔传感器检测位移信号,实现对轮胎内温度的实时监测.低沸点化学物质是温度传感器的核心之一,结合轮胎温度报警的实际条件,通过考察不同低沸点物质的饱和蒸汽压随温度和压力的变化规律,并考虑化学物质使用的安全性,最终确定了该温度传感器中所适用的感温物质.%Considering the fact that low-boiling point chemical substance has higher saturated steam pressure, a car tire' s temperature monitoring system was designed to have tire' s temperature change translated to the magnet displacement signals through saturated steam pressure change of low-boiling point chemical substance in temperature sensor, and then to have the displacement signals detected with liner Hall element and the tire temperature monitored in real time. The low-boiling point chemical substance means important to the temperature sensor, having the rules that saturated steam pressure of different low-boiling point chemicals varies with temperature and pressure studied, and the conditions of tire temperature alarm and chemical substance security considered, the best temperature sensitive substance for passive temperature sensor was determined.

  16. Duality of boiling systems and uncertainty phenomena

    Institute of Scientific and Technical Information of China (English)

    柴立合; 彭晓峰; 王补宣

    2000-01-01

    Interactions among dry patches at high heat flux are theoretically analyzed. The high heat flux boiling experiments on metal plate wall with different materials and thickness are correspondingly conducted. The duality of boiling system, i.e. hydrodynamic performance and self-organized performance is identified. A unified explanation of hydrodynamic models and dry patches models is given. The scatter and uncertainty in boiling data can be mainly attributed to the intrinsic duality, but not the sole surface effects. The present experimental results explain why the deviation point at high flux boiling is seen only on occasion and why the self-organization of dry patches is often ignored in available literature.

  17. Melting Point Of Metals In Relation Io Electron Charge Density

    Directory of Open Access Journals (Sweden)

    Boczkal G.

    2015-09-01

    Full Text Available The concept of spatial criterion of the electron charge concentration is applied to determine the metal melting point. Based on the model proposed for bcc metals, a model for hcp metals and general form for others has been developed. To calculate the melting point, only structural data and atomic number are required. The obtained results show good consistency with the experimental data for metals with atomic number Z < 70.

  18. Calculation of Boil-Off Gas (BOG Generation of KC-1 Membrane LNG Tank with High Density Rigid Polyurethane Foam by Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Jeong Hyeonwon

    2017-03-01

    Full Text Available Recently, a new type of LNG tank named “KC-1 membrane LNG tank” has been developed by Korean Gas Corporation (KOGAS, and Samsung Heavy Industries (SHI is currently building KC-1 membrane type LNG carriers. Unlike other LNG tanks, the KC-1 membrane LNG tank has a single-insulation structure rather than a double-insulation structure. For a given tank’s boundary condition, heat transfer analysis is performed from the external to the internal environment of the LNG tank by numerical simulation for three tanks. In each tank, the main thermally resistant layer of insulation is assembled with a High density rigid Polyurethane Foam (H-PUF, which is blown with one of three different types of hydrofluorocarbons-namely-HFC-365mfc, 245fa, and 245fa-e (enhanced. Advantage of such blowing agents is that it has a lower Ozone Depletion Potential (ODP than HCFC-141b or carbon dioxide (CO2 that has been used in the past as well as having low thermal conductivity. A Reduced Order Model is utilized to a 3-dimensional section of the insulation to calculate equivalent thermal conductivity. The equivalent thermal conductivity of the insulation is then applied to the rest of LNG tank, reducing the size of tank simulation domain as well as computation time. Tank’s two external and internal boundary conditions used are those defined by the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC and the United States Coast Guard (USCG conditions. Boil-off Rate (BOR of the tank that has the insulation with H-PUF blown with HFC-245fa resulted in 0.0927 %/day and 0.0745 %/day for IGC and USCG conditions, respectively.

  19. QSPR Calculation of Normal Boiling Points of Organic Molecules Based on the Use of Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2004-12-01

    Full Text Available We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.

  20. Using Boiling for Treating Waste Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this work we investigated the feasibility of using short time, low superheat boiling to treat biological sludge. The treated sludge exhibited reduced filterability and enhanced settleability. The boiling treatment released a large amount of extra-cellular polymers (ECPs) from the solid phase and reduced the microbial density levels of the total coliform bacteria and the heterotrophic bacteria. A diluted sludge is preferable for its high degree of organic hydrolysis and sufficient reduction in microbial density levels.

  1. Development of Lubricity Evaluation Bench for Low-boiling Point Dimethyl Ether Fuel%低沸点燃料二甲醚润滑性评估实验台的研制

    Institute of Scientific and Technical Information of China (English)

    宋磊; 陈晓玲; 张武高; 浦耿强

    2012-01-01

    二甲醚在常温常压下为气态,不能用传统方法评估其润滑性能.根据低沸点燃油的物理特性和高频往复机(HFRR)的基本原理,设计可加压的高频往复机,初步搭建用于低沸点燃油的摩擦磨损试验台架,并采用常规燃油进行油品的可分辨性试验.结果表明,该台架可以用于评价不同油品的润滑性,为二甲醚等低沸点燃油润滑性能评估方法的建立奠定了基础.%Because dimethyl ether (DME) is gaseous at normal temperature and pressure, it is impossible to evaluate the lubricity of DME by using traditional methods. According to the principle of High Frequency Reciprocating Rig (HFRR)and the physical properties of low-boiling point fuel,a HFRR with pressure control was designed, and a wear test device for low-boiling point fuel was constructed. A preliminary resolution test with some regular fuels was done. The results show that the lubricity of different fuels can be evaluated by this rig, and it lays a solid foundation for the establishment of lubricity evaluation method about low-boiling point fuel like DME.

  2. Point information gain, point information gain entropy and point information gain entropy density as measures of semantic and syntactic information of multidimensional discrete phenomena

    CERN Document Server

    Štys, Dalibor; Rychtáriková, Renata; Soloviov, Dmytro; Císař, Petr; Urban, Jan

    2015-01-01

    We generalize the Point information gain (PIG) and derived quantities, i.e. Point information entropy (PIE) and Point information entropy density (PIED), for the case of R\\'enyi entropy and simulate the behavior of PIG for typical distributions. We also use these methods for the analysis of multidimensional datasets. We demonstrate the main properties of PIE/PIED spectra for the real data on the example of several images, and discuss possible further utilization in other fields of data processing.

  3. MIMIC: An Innovative Methodology for Determining Mobile Laser Scanning System Point Density

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2014-08-01

    Full Text Available Understanding how various Mobile Mapping System (MMS laser hardware configurations and operating parameters exercise different influence on point density is important for assessing system performance, which in turn facilitates system design and MMS benchmarking. Point density also influences data processing, as objects that can be recognised using automated algorithms generally require a minimum point density. Although obtaining the necessary point density impacts on hardware costs, survey time and data storage requirements, a method for accurately and rapidly assessing MMS performance is lacking for generic MMSs. We have developed a method for quantifying point clouds collected by an MMS with respect to known objects at specified distances using 3D surface normals, 2D geometric formulae and line drawing algorithms. These algorithms were combined in a system called the Mobile Mapping Point Density Calculator (MIMIC and were validated using point clouds captured by both a single scanner and a dual scanner MMS. Results from MIMIC were promising: when considering the number of scan profiles striking the target, the average error equated to less than 1 point per scan profile. These tests highlight that MIMIC is capable of accurately calculating point density for both single and dual scanner MMSs.

  4. Basic research and industrialization of CANDU advanced fuel - Effect of transverse convex curvature on boiling heat transfer and ONB point of nucleate fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Chun; Lee, Young; Lee, Sung Hong [Pusan National University, Pusan (Korea)

    2000-04-01

    Recently, the effect of convex curvature on heat transfer should not be ignored when the radius of curvature tends to be small and/or associated with high heat transfer rate cases. Both analytical and experimental studies were performed to prove the effect of transverse convex curvature on the boiling heat transfer in concentric annuli flows. The effect of the transverse convex surface curvature on ONB are studied analytically in the case of reactor and evaporator. It is seen that the inner wall heat flux depends on R/sub i/, Rc, Re, Pr, {alpha}, and the {theta} of working fluid. An experimental study on the incipience of nucleate boiling is performed as a verification ad extension of previous analyses. Through flow visualization, the results show that the most dominant parameter to affect the heat flux at ONB is found to be the surface curvature. The heat flux data at ONB increases with the Re and the subcooling, and the effect of subcooling on ONB becomes smaller with decreasing Re. The heat flux at ONB increases rapidly as increase in {alpha} due to higher convective motion of bulk flow. Comparison between both results are accomplished with respect to the relative enhancement due to the convex curvature. The relative heat transfer enhancement ratio shows a good agreement between theory and experiment qualitatively and quantitatively. In conclusion, the obtained results suggest that the effect transverse convex curvature appears significantly in the boiling heat transfer. Therefore, it can be clearly expected that the effect should be more strong at the case of critical heat flux condition which is the most important design goal of the advanced nuclear fuel rods. 30 refs., 78 figs. (Author)

  5. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems

    Science.gov (United States)

    Cunningham, Charles G.

    1978-01-01

    Fluid inclusions in ore zones of porphyry systems indicate that extensive boiling of hydrothermal fluids accompanies deposition of ore and gangue minerals. The boiling commonly accompanied a change from a lithostatic to a hydrostatic environment during evolution of an epizonal stock. Pressure gradients near the margin of the stock can determine whether ore or only a diffuse zone of mineralization is formed. A sharp drop in pressure in an epizonal environment is more likely to cause extensive boiling than a comparable change in a deeper environment, as the slope of the boiling curve steepens with an increase 'in pressure. The drop in pressure causes the hydrothermal fluids to boil and creates a crackle (stockwork) breccia, which hosts the veinlets of gangue quartz and ore minerals. The boiling selectively partitions CO2, H2S, and HCl into the vapor phase, changing the pH, composition, ionic strength, and thus the solubility product of metal complexes in the remaining liquid and causing the ore and gangue to come out of solution. Fluid inclusions trapped from boiling solutions can exhibit several forms, depending on the physical and chemical conditions of the hydrothermal fluid from which they were trapped. In one case, inclusions when heated can homogenize to either liquid or vapor at the same temperature, which is the true boiling temperature. In another case, homogenization of various inclusions can occur through a range of temperatures. The latter case results from the trapping of mixture of liquid and vapor. Variations in salinity can result from boiling of the hydrothermal fluid, or intermittent incorporation of high-salinity fluids from the magma, or trapping of fluids of varying densities at pressure-temperature conditions above the critical point of the fluid. In places, paleopressure-temperature transition zones can be recognized by fluid-inclusion homogenization temperatures and phase relationships and by the presence of anhydrite daughter minerals

  6. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    Science.gov (United States)

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations. PMID:20207876

  7. Reexamination of Correlations for Nucleate Site Distribution on Boiling Surface by Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    YangChunxin

    1997-01-01

    Nucleate site distribution plays an essential role in nucleate boiling process.In this paper,it is pointed out that the size and spatial distributioin density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function,and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function.It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory.

  8. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  9. 利用DISLab传感器探究水的沸点与大气压强的关系%Exploring on the relation between boiling point of water and atmospheric pressure using DISLab

    Institute of Scientific and Technical Information of China (English)

    陈剑峰

    2016-01-01

    针对“密闭气体压强与温度间的关系”实验的不足,将DISLab 应用到实验中,通过 DISLab 的压强传感器和温度传感器可以直接精确地读出密闭气体的压强和温度,直观地显示出“压强减少、水的沸点降低”及“压强升高、水的沸点升高”的规律。%Aiming at the deficiency of the experiment of the relation between pressure and temper-ature of sealed gas,a method using DISLab was put forward.By using pressure sensor and tempera-ture sensor,the pressure and temperature could be read directly.It was showed that the lower the pressure,the lower the boiling point of water and the higher the pressure,the higher the boiling point of water.

  10. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Yu, Han

    2017-02-13

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heatmap. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  11. Gulf of Maine - Control Points Used to Validate the Accuracies of the Interpolated Water Density Rasters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature dataset contains the control points used to validate the accuracies of the interpolated water density rasters for the Gulf of Maine. These control...

  12. Critical point representations of electron density maps for the comparison of benzodiazepine-type ligands.

    Science.gov (United States)

    Leherte, L; Meurice, N; Vercauteren, D P

    2000-01-01

    A procedure for the comparison of three-dimensional electron density distributions is proposed for similarity searches between pharmacological ligands at various levels of crystallographic resolution. First, a graph representation of molecular electron density distributions is generated using a critical point analysis approach. Pairwise as well as multiple comparisons between the obtained graphs of critical points are then carried out using a Monte Carlo/simulated annealing technique, and results are compared with genetic algorithm solutions.

  13. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  14. Water boiling inside carbon nanotubes: toward efficient drug release.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  15. Point defect absorption by grain boundaries in α -iron by atomic density function modeling

    Science.gov (United States)

    Kapikranian, O.; Zapolsky, H.; Patte, R.; Pareige, C.; Radiguet, B.; Pareige, P.

    2015-12-01

    Using the atomic density function theory (ADFT), we examine the point defect absorption at [110] symmetrical tilt grain boundaries in body-centered cubic iron. It is found that the sink strength strongly depends on misorientation angle. We also show that the ADFT is able to reproduce reasonably well the elastic properties and the point defect formation volume in α -iron.

  16. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  17. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  18. 定位分布贡献方法估算有机物正常沸点%Position group contribution method for predicting the normal boiling point of organic compounds

    Institute of Scientific and Technical Information of China (English)

    王强; 马沛生; 王昶; 夏淑倩

    2009-01-01

    A new position group contribution model iS proposed for the estimation of normal boiling data of organic compounds involving a carbon chain from C2 to C18. The characteristic of this method iS the use of position distribution function.It could distinguish most of isomers that include cis-or trans-structure from organic compounds.Contributions for hydrocarbons and hydrocarbon derivatives containing oxygen,nitrogen,chlorine,bromine and sulfur,are given.Compared with the predictions,results made use of the most common existing group contribution methods,the overall average absolute difference of boiling point predictions of 417 organic compounds is 4.2 K:and the average absolute percent derivation is 1.0%,which iS compared with 1 2-3 K and 3.2%with the method of Joback.12.1 K and 3.1%with the method of Constantinou-Gani.This new position contribution groups mcthod is not only much more accurate but also has the advantages of simplicity and stability.

  19. Effects of lidar point density on bare earth extraction and DEM creation

    Science.gov (United States)

    Puetz, Angela M.; Olsen, R. Chris; Anderson, Brian

    2009-05-01

    Data density has a crucial impact on the accuracy of Digital Elevation Models (DEMs). In this study, DEMs were created from a high point-density LIDAR dataset using the bare earth extraction module in Quick Terrain Modeler. Lower point-density LIDAR collects were simulated by randomly selecting points from the original dataset at a series of decreasing percentages. The DEMs created from the lower resolution datasets are compared to the original DEM. Results show a decrease in DEM accuracy as the resolution of the LIDAR dataset is reduced. Some analysis is made of the types of errors encountered in the lower resolution DEMs. It is also noted that the percentage of points classified as bare earth decreases as the resolution of the LIDAR dataset is reduced.

  20. Microlayer during boiling in narrow slot channels

    Science.gov (United States)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  1. High flux film and transition boiling

    Science.gov (United States)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  2. Aspects of subcooled boiling

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G. [Northwestern Univ., Evanston, IL (United States)

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  3. Kernel Density Feature Points Estimator for Content-Based Image Retrieval

    CERN Document Server

    Zuva, Tranos; Ojo, Sunday O; Ngwira, Seleman M

    2012-01-01

    Research is taking place to find effective algorithms for content-based image representation and description. There is a substantial amount of algorithms available that use visual features (color, shape, texture). Shape feature has attracted much attention from researchers that there are many shape representation and description algorithms in literature. These shape image representation and description algorithms are usually not application independent or robust, making them undesirable for generic shape description. This paper presents an object shape representation using Kernel Density Feature Points Estimator (KDFPE). In this method, the density of feature points within defined rings around the centroid of the image is obtained. The KDFPE is then applied to the vector of the image. KDFPE is invariant to translation, scale and rotation. This method of image representation shows improved retrieval rate when compared to Density Histogram Feature Points (DHFP) method. Analytic analysis is done to justify our m...

  4. CONNECTIVITY INDEX OF ENVIRONMENT VALENCE AND QSPR RESEARCH FOR BOILING POINTS OF SATURATED HYDROCARBON%环价连接性指数与饱和烃沸点的QSPR研究

    Institute of Scientific and Technical Information of China (English)

    沐来龙; 冯长君

    2004-01-01

    In this paper, according to the peak numbers of the nuclear magnetic resonance and the Randic embranchment degree (δi) of carbon atom i, the carbon atom's environment valence gi is defined as. gi =(ti+δi)/2. The gi reflect the characteristic of each carbon atom, and as well as the conjunction detail of the carbon atom with other carbon atoms. So, the gi could distinguish better the chemical environment of each carbon atom in the molecule than δi. A connectivity index of environment valence (mS) and its athwart index (mS') are proposed based on the adjacency matrix and the carbon atom's environment valence gi. Among them, the 0S and 0S' include the characteristic and the connectivity of each carbon atom, the 1S and 1S' reflect the second conjunction between carbon atoms. Based on 0S' and N (the number of carbon atom), a new structural parameter symmetry degree (N∝), is defined as. N∝ =[ (0S's0Sc') N]2/3, and the N∝ reflect the size of the molecule as well as the symmetry of the molecule.The N∝, 0S and Rn (the biggest ring's edge numbers of cycloalkanes) of 474 saturated hydrocarbons (216 paraffins and 258 cycloalkanes) were calculated and correlated with their boiling points. The best regression equation was obtained as follow: In ( 1056 - Tb ) = 6. 9480 - 0. 1040N∝ - 0. 0086890S -0. 009614Rn+0. 01998Rm0.5, n=474, R=0. 9989, F=52627, S=5.63K. The model was checked up by the Jackknife's method. It should have overall steadiness and could be used for predicting the boiling point of saturated hydrocarbons.

  5. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density

    Science.gov (United States)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2016-06-01

    We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.

  6. Odd-Boiled Eggs

    Science.gov (United States)

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  7. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points

    KAUST Repository

    Bučinský, Lukáš

    2014-06-01

    The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.

  8. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  9. Point Density Effects on Digital Elevation Models Generated from LiDAR Data

    Science.gov (United States)

    2009-06-01

    Weighted ( IDW ) and spline-based and geostatistic such as Kriging. Inverse Distance Weighted ( IDW ) assumes that each point has a local influence...the IDW method performs well if sampling data density is high, even for complex terrain (Liu, 2008). D. PREVIOUS DATA ANALYSIS RESULTS LiDAR data

  10. Tree crown delineation from high resolution airborne LiDAR based on densities of high points

    NARCIS (Netherlands)

    Rahman, M.Z.A.; Gorte, B.G.H.

    2009-01-01

    Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model (CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high resolution Airborne LiDAR. The DHP method relies

  11. The fitness effects of a point mutation in Escherichia coli change with founding population density.

    Science.gov (United States)

    Cao, Huansheng; Plague, Gordon R

    2016-08-01

    Although intraspecific competition plays a seminal role in organismal evolution, little is known about the fitness effects of mutations at different population densities. We identified a point mutation in the cyclic AMP receptor protein (CRP) gene in Escherichia coli that confers significantly higher fitness than the wildtype at low founding population density, but significantly lower fitness at high founding density. Because CRP is a transcription factor that regulates the expression of nearly 500 genes, we compared global gene expression profiles of the mutant and wildtype strains. This mutation (S63F) does not affect expression of crp itself, but it does significantly affect expression of 170 and 157 genes at high and low founding density, respectively. Interestingly, acid resistance genes, some of which are known to exhibit density-dependent effects in E. coli, were consistently differentially expressed at high but not low density. As such, these genes may play a key role in reducing the crp mutant's fitness at high density, although other differentially expressed genes almost certainly also contribute to the fluctuating fitness differences we observed. Whatever the causes, we suspect that many mutations may exhibit density-dependent fitness effects in natural populations, so the fate of new mutations may frequently depend on the effective population size when they originate.

  12. Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology.

    Science.gov (United States)

    Oesterling, P; Heine, C; Janicke, H; Scheuermann, G; Heyer, G

    2011-11-01

    We present a novel method to visualize multidimensional point clouds. While conventional visualization techniques, like scatterplot matrices or parallel coordinates, have issues with either overplotting of entities or handling many dimensions, we abstract the data using topological methods before presenting it. We assume the input points to be samples of a random variable with a high-dimensional probability distribution which we approximate using kernel density estimates on a suitably reconstructed mesh. From the resulting scalar field we extract the join tree and present it as a topological landscape, a visualization metaphor that utilizes the human capability of understanding natural terrains. In this landscape, dense clusters of points show up as hills. The nesting of hills indicates the nesting of clusters. We augment the landscape with the data points to allow selection and inspection of single points and point sets. We also present optimizations to make our algorithm applicable to large data sets and to allow interactive adaption of our visualization to the kernel window width used in the density estimation.

  13. ETBP (Extended True Boiling Point) curve extension of extra heavy crudes; Extensao da curva PEV (Ponto de Ebulicao Verdadeiro) de petroleos extrapesados por destilacao molecular e ampliacao da caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Rodrigo S.; Batistella, Cesar B.; Maciel, Maria Regina W.; Maciel Filho, Rubens [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica; Medina, Lilian C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    For the determination of the TBP (True Boiling Point) Curve, which defines the yield of petroleum products, the ASTM D2892 method for petroleum distillation and ASTM D5236 method for vacuum distillation of heavy hydrocarbons were applied. Furthermore, from these distillations, cuts that are submitted to several analyses to determine its physical-chemical properties are obtained, and all this information generates the evaluation of petroleum. For heavy petroleum, these conventional methods have been limited, since the total distilled percentage determined for temperatures up to 565 deg C (maximum reached with ASTM D5236 method) is lower for these oils, reducing the points of the curve, limiting its information. To improve this data set for heavy oils, a methodology for the extension of TBP curve through molecular distillation was established. It was possible to reach values up to 700 deg C, representing a considerable progress for the extension of TBP curve. The objective of this work is to present the results of Extended TBP curve for a heavy petroleum and characterization carried out through the cuts and residues obtained in molecular distillation of the residue 'Zeta' 400 deg C+ (fancy name), made by ASTM D2892 method. (author)

  14. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...... simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g4(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) extracted from the small......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...

  15. Assessing accuracy in varying Lidar data point densities in Digital Elevation Maps

    OpenAIRE

    Anderson, Brian C.

    2008-01-01

    This thesis discusses the production of Digital Elevation Maps (DEM) using varying density of data points from a Lidar (Laser or Light Detection And Ranging) collection. Additionally, this thesis contains information on the multiple space missions that use laser altimetry or Lidar to gather data about planet earth, the moon, asteroids, Mars and Mercury. The thesis covers the accuracy of different amounts of data used when generating a DEM in Quick Terrain Modeler software package and the ...

  16. Vapor-like liquid coexistence densities affect the extension of the critical point's influence zone

    CERN Document Server

    Rivera, Jose Luis; Guerra-Gonzalez, Roberto

    2015-01-01

    The critical point affects the coexistence behavior of the vapor-liquid equilibrium densities. The length of the critical influence zone is under debate because for some properties, like shear viscosity, the extension is only a few degrees, while for others, such as the density order parameter, the critical influence zone range covers up to hundreds of degrees below the critical temperature. Here we show that for a simple molecular potential of ethane, the critical influence zone covers a wide zone of tens of degrees (below the critical temperature) down to a transition temperature, at which the apparent critical influence zone vanishes and the transition temperature can be predicted through a pressure analysis of the coexisting bulk liquid phase. The liquid phases within the apparent critical influence zone show low densities, making them behave internally like their corresponding vapor phases. Therefore, the experimentally observed wide extension of the critical influence zone is due to a vapor-like effect ...

  17. Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres

    Science.gov (United States)

    Uhlemann, C.; Codis, S.; Kim, J.; Pichon, C.; Bernardeau, F.; Pogosyan, D.; Park, C.; L'Huillier, B.

    2017-04-01

    We present simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts and grow as b(ρ) - b(1) ∝ (1 - ρ-13/21)ρ1 + n/3 with b(1) = -4/21 - n/3 for a power-law initial spectrum with index n. We carry out the derivation in the context of large-deviation statistics while relying on the spherical collapse model. We use a logarithmic transformation that provides a saddle-point approximation that is valid for the whole range of densities and show its accuracy against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow us to identify peaks are employed to obtain the conditional bias and a proxy for the BBKS extremum correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the per cent level down to scales of about 10 Mpc h-1 at redshift 0. Conversely, the joint statistics also provide us with optimal dark matter two-point correlation estimates that can be applied either universally to all spheres or to a restricted set of biased (over- or underdense) pairs. Based on a simple fiducial survey, we show that the variance of this estimator is reduced by five times relative to the traditional sample estimator for the two-point function. Extracting more information from correlations of different types of objects should prove essential in the context of upcoming surveys like Euclid, DESI and WFIRST.

  18. Fluid phase thermodynamics : I) nucleate pool boiling of oxygen under magnetically enhanced gravity and II) superconducting cavity resonators for high-stability frequency references and precision density measurements of helium-4 gas

    Science.gov (United States)

    Corcovilos, Theodore Allen

    Although fluids are typically the first systems studied in undergraduate thermodynamics classes, we still have only a rudimentary phenomenological understanding of these systems outside of the classical and equilibrium regimes. Two experiments will be presented. First, we present progress on precise measurements of helium-4 gas at low temperatures (1 K-5 K). We study helium because at low densities it is an approximately ideal gas but at high densities the thermodynamic properties can be predicted by numerical solutions of Schroedinger's equation. By utilizing the high resolution and stability in frequency of a superconducting microwave cavity resonator we can measure the dielectric constant of helium-4 to parts in 109, corresponding to an equivalent resolution in density. These data will be used to calculate the virial coefficients of the helium gas so that we may compare with numerical predictions from the literature. Additionally, our data may allow us to measure Boltzmann's constant to parts in 108, a factor of 100 improvement over previous measurements. This work contains a description of the nearly-completed apparatus and the methods of operation and data analysis for this experiment. Data will be taken by future researchers.The second experiment discussed is a study of nucleate pool boiling. To date, no adequate quantitative model exists of this everyday phenomenon. In our experiment, we vary one parameter inaccessible to most researchers, gravity, by applying a magnetic force to our test fluid, oxygen. Using this technique, we may apply effective gravities of 0-80 times Earth's gravitational acceleration (g). In this work we present heat transfer data for the boiling of oxygen at one atmosphere ambient pressure for effective gravity values between 1g and 16g . Our data describe two relationships between applied heat flux and temperature differential: at low heat flux the system obeys a power law and at high heat flux the behavior is linear. We find that the

  19. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  20. Fading probability density function of free-space optical communication channels with pointing error

    Science.gov (United States)

    Zhao, Zhijun; Liao, Rui

    2011-06-01

    The turbulent atmosphere causes wavefront distortion, beam wander, and beam broadening of a laser beam. These effects result in average power loss and instantaneous power fading at the receiver aperture and thus degrade performance of a free-space optical (FSO) communication system. In addition to the atmospheric turbulence, a FSO communication system may also suffer from laser beam pointing error. The pointing error causes excessive power loss and power fading. This paper proposes and studies an analytical method for calculating the FSO channel fading probability density function (pdf) induced by both atmospheric turbulence and pointing error. This method is based on the fast-tracked laser beam fading profile and the joint effects of beam wander and pointing error. In order to evaluate the proposed analytical method, large-scale numerical wave-optics simulations are conducted. Three types of pointing errors are studied , namely, the Gaussian random pointing error, the residual tracking error, and the sinusoidal sway pointing error. The FSO system employs a collimated Gaussian laser beam propagating along a horizontal path. The propagation distances range from 0.25 miles to 2.5 miles. The refractive index structure parameter is chosen to be Cn2 = 5×10-15m-2/3 and Cn2 = 5×10-13m-2/3. The studied cases cover from weak to strong fluctuations. The fading pdf curves of channels with pointing error calculated using the analytical method match accurately the corresponding pdf curves obtained directly from large-scale wave-optics simulations. They also give accurate average bit-error-rate (BER) curves and outage probabilities. Both the lognormal and the best-fit gamma-gamma fading pdf curves deviate from those of corresponding simulation curves, and they produce overoptimistic average BER curves and outage probabilities.

  1. Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres

    CERN Document Server

    Uhlemann, C; Kim, J; Pichon, C; Bernardeau, F; Pogosyan, D; Park, C; L'Huillier, B

    2016-01-01

    Simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation are presented. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts. The derivation is carried out in the context of large deviation statistics while relying on the spherical collapse model. A logarithmic transformation provides a saddle approximation which is valid for the whole range of densities and shown to be accurate against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow to identify peaks are employed to obtain the conditional bias and a proxy to BBKS extrema correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the percent level down to scales of about 10 Mpc/h at redshift 0. Conversely...

  2. What does the N-point function hierarchy of the cosmological matter density field really measure ?

    CERN Document Server

    Carron, Julien

    2015-01-01

    The cosmological dark matter field is not completely described by its hierarchy of $N$-point functions, a non-perturbative effect with the consequence that only part of the theory can be probed with the hierarchy. We give here an exact characterization of the joint information of the full set of $N$-point correlators of the lognormal field. The lognormal field is the archetypal example of a field where this effect occurs, and, at the same time, one of the few tractable and insightful available models to specify fully the statistical properties of the evolved matter density field beyond the perturbative regime. Nonlinear growth in the Universe in that model is set letting the log-density field probability density functional evolve keeping its Gaussian shape, according to the diffusion equation in Euclidean space. We show that the hierarchy probes a different evolution equation, the diffusion equation defined not in Euclidean space but on the compact torus, with uniformity as the long-term solution. The extract...

  3. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    Science.gov (United States)

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  4. Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation

    Science.gov (United States)

    Phillips, Nicholas G.; Hu, B. L.

    2000-10-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.

  5. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  6. Tailoring point counts for inference about avian density: dealing with nondetection and availability

    Science.gov (United States)

    Johnson, Fred A.; Dorazio, Robert M.; Castellón, Traci D.; Martin, Julien; Garcia, Jay O.; Nichols, James D.

    2014-01-01

    Point counts are commonly used for bird surveys, but interpretation is ambiguous unless there is an accounting for the imperfect detection of individuals. We show how repeated point counts, supplemented by observation distances, can account for two aspects of the counting process: (1) detection of birds conditional on being available for observation and (2) the availability of birds for detection given presence. We propose a hierarchical model that permits the radius in which birds are available for detection to vary with forest stand age (or other relevant habitat features), so that the number of birds available at each location is described by a Poisson-gamma mixture. Conditional on availability, the number of birds detected at each location is modeled by a beta-binomial distribution. We fit this model to repeated point count data of Florida scrub-jays and found evidence that the area in which birds were available for detection decreased with increasing stand age. Estimated density was 0.083 (95%CI: 0.060–0.113) scrub-jays/ha. Point counts of birds have a number of appealing features. Based on our findings, however, an accounting for both components of the counting process may be necessary to ensure that abundance estimates are comparable across time and space. Our approach could easily be adapted to other species and habitats.

  7. Oscillate boiling from microheaters

    Science.gov (United States)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  8. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    Science.gov (United States)

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  9. One-point fitting of the flux density produced by a heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Univ. Zaragoza, CPS-B, Dpto de Ingenieria Mecanica, Maria de Luna 3, 50018 Zaragoza (Spain)

    2010-04-15

    Accurate and simple models for the flux density reflected by an isolated heliostat should be one of the basic tools for the design and optimization of solar power tower systems. In this work, the ability and the accuracy of the Universidad de Zaragoza (UNIZAR) and the DLR (HFCAL) flux density models to fit actual energetic spots are checked against heliostat energetic images measured at Plataforma Solar de Almeria (PSA). Both the fully analytic models are able to acceptably fit the spot with only one-point fitting, i.e., the measured maximum flux. As a practical validation of this one-point fitting, the intercept percentage of the measured images, i.e., the percentage of the energetic spot sent by the heliostat that gets the receiver surface, is compared with the intercept calculated through the UNIZAR and HFCAL models. As main conclusions, the UNIZAR and the HFCAL models could be quite appropriate tools for the design and optimization, provided the energetic images from the heliostats to be used in the collector field were previously analyzed. Also note that the HFCAL model is much simpler and slightly more accurate than the UNIZAR model. (author)

  10. Boiling incipience and convective boiling of neon and nitrogen

    Science.gov (United States)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  11. A density functional theory based approach for predicting melting points of ionic liquids.

    Science.gov (United States)

    Chen, Lihua; Bryantsev, Vyacheslav S

    2017-02-01

    Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculate melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressed through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro

  12. Nanoscale cross-point diode array accessing embedded high density PCM

    Science.gov (United States)

    Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin

    2017-08-01

    The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.

  13. What does the N-point function hierarchy of the cosmological matter density field really measure?

    Science.gov (United States)

    Carron, J.; Szapudi, I.

    2017-08-01

    The cosmological dark matter field is not completely described by its hierarchy of N-point functions, a non-perturbative effect with the consequence that only part of the theory can be probed with the hierarchy. We give here an exact characterization of the joint information of the hierarchy within the lognormal field. The lognormal field is the archetypal example of a field where this effect occurs, and, at the same time, one of the few tractable and insightful available models to specify fully the statistical properties of the evolved matter density field beyond the perturbative regime. Non-linear growth in the Universe in that model is set letting the log-density field probability density functional evolve keeping its Gaussian shape, according to the diffusion equation in Euclidean space. We show that the hierarchy probes a different evolution equation, the diffusion equation defined not in Euclidean space but on the compact torus, with uniformity as the long-term solution. The extraction of the hierarchy of correlators can be recast in the form of a non-linear transformation applied to the field, 'wrapping', undergoing a sharp transition towards complete disorder in the deeply non-linear regime, where all memory of the initial conditions is lost.

  14. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    Science.gov (United States)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  15. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    Science.gov (United States)

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  16. A Multi-Point Sensor Based on Optical Fiber for the Measurement of Electrolyte Density in Lead-Acid Batteries

    Science.gov (United States)

    Cao-Paz, Ana M.; Marcos-Acevedo, Jorge; del Río-Vázquez, Alfredo; Martínez-Peñalver, Carlos; Lago-Ferreiro, Alfonso; Nogueiras-Meléndez, Andrés A.; Doval-Gandoy, Jesús

    2010-01-01

    This article describes a multi-point optical fiber-based sensor for the measurement of electrolyte density in lead-acid batteries. It is known that the battery charging process creates stratification, due to the different densities of sulphuric acid and water. In order to study this process, density measurements should be obtained at different depths. The sensor we describe in this paper, unlike traditional sensors, consists of several measurement points, allowing density measurements at different depths inside the battery. The obtained set of measurements helps in determining the charge (SoC) and state of health (SoH) of the battery. PMID:22319262

  17. Vacuum Energy Density Fluctuations in Minkowski and Casimir States via Smeared Quantum Fields and Point Separation

    CERN Document Server

    Phillips, N G; Phillips, Nicholas. G.

    2000-01-01

    We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universe, and for examining the design feasibility of real-life `time-machines'. For the Minkowski vacuum we find that the ratio of the var...

  18. Boiling liquid cauldron status report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.

    1980-12-28

    The progress made over the past year in assessing the feasibility of the high-temperature, boiling cauldron blanket concept for the tanden mirror reactor is reviewed. The status of the proposed experiments and recently revised estimates of the vapor void fraction in the boiling pool are discussed.

  19. 基于低沸点化学物质的无源轿车轮胎温度监测系统%A Passive Car Tire Temperature Monitoring System Using Low-boiling Point Chemical Substance

    Institute of Scientific and Technical Information of China (English)

    张健伟; 董群; 王鉴; 胡林杰

    2014-01-01

    利用低沸点化学物质具有较高的饱和蒸汽压的特性,设计了一种无源轿车轮胎温度监测系统。系统中的胎温传感器将温度变化通过低沸点化学物质的饱和蒸汽压的相应变化转变为磁铁的位移信号,再利用线性霍尔传感器转变为电压信号,最后通过信号检测系统对信号进行处理和转换,实现对轮胎温度的实时监测和高温报警。通过静态实验,选定了满足胎温传感器要求的感温物质;通过动态实验,考察了报警系统的检测精确度。结果表明,系统检测相对误差绝对值≤6%,测温精度为1℃。%By utilizing the property of higher saturated vapor pressure of low-boiling point chemical sub-stances, a passive car tire temperature monitoring system is designed, in which the change of temperature in tire temperature sensor is transformed into the displacement signal of magnet through the corresponding change in satu-rated vapor pressure of chemical substance. Then the displacement signal of magnet is transformed into voltage sig-nal by linear Hall sensor, and through certain signal processing and transform, the real time monitoring and high temperature alarm of tire temperature are realized. The temperature sensing chemical substance meeting the require-ments of tire temperature sensor are selected by static test, while the detection accuracy of warning system is investi-gated by dynamic test. The results show that the system achieves a relative error no more than 6% and a temperature measuring accuracy of 1℃.

  20. The Separation of Trace Substance With High Boiling Point and Refractory Volatility From Liquor%白酒中微量高沸点难挥发性物质的分离

    Institute of Scientific and Technical Information of China (English)

    戴惠东; 张良均; 黎金霞

    2013-01-01

      采用复合溶剂间歇萃取精馏提取白酒中的微量高沸点难挥发性物质(主要是邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二异丁酯(DIBP)),并同时考察溶剂种类、溶剂流率和回流比对分离效果的影响。实验结果表明:复合溶剂的最佳配比为7∶3(正戊烷与无水乙醚质量比);随着溶剂流率与回流比的增大,复合溶剂分离效果增强;在最佳配比下,当回流比为2、溶剂流率为13mL/min 时,塔釜中邻苯二甲酸二丁酯和邻苯二甲酸二异丁酯的质量分数可达95.56%。%The trace substances with high boiling point and refractory volatility in liquor (mainly are Dibutyl phthalate, DBP and Diisobutyl phthalate, DIBP) were extracted by batch extractive distillation with mixed solvent, at the same time the effect of different types of solvent, solvent flow rate and reflux ratio on separation efficiency was investigated. The results shows that the best proportion of n-pentane to diethyletheranhydrous is 7∶3, and the separation effect is improved with the increasing of solvent rate and reflux ratio, and under the conditions that the optimum value of solvent m (n-pentane):m (diethyletheranhydrous)=7∶3, reflux ratio is 2, and flow rate of solvent is 13mL/min, the mass fraction of DBP and DIBP in the bottom reaches 98.56%.

  1. Overview and Computational Approach for Studying the Physicochemical Characterization of High-Boiling-Point Petroleum Fractions (350°C+ Approche informatique pour l’étude des propriétés physico-chimiques de fraction pétrolière lourde (350°C+

    Directory of Open Access Journals (Sweden)

    Plazas Tovar L.

    2012-06-01

    Full Text Available The processing and upgrading of high-boilingpoint petroleum fractions, containing a large number of components from different groups (paraffins, olefins, naphthenes, aromatics require an in-depth evaluation. In order to characterize them, their thermodynamic and thermophysical properties must be determined. This work presents a computational approach based on the breakdown of the petroleum fraction into pseudocomponents defined by a trial-and-error exercise in which the mass- and molar-balance errors were minimized. Cases studies are illustrated to three heavy residues 400°C+ from “W, Y and Z” crude oil. This procedure requires the boiling point distillation curve and the density of the whole fraction as the input bulk properties. The methods proposed according to available correlations in the literature and standard industrial methods were mainly used to estimate properties that include the basic properties (normal boiling point, density and Watson factor characterization, the thermodynamic properties (molar mass and critical properties and the thermophysical and transport properties (kinematic viscosity, thermal conductivity, specific heat capacity and vapor pressure. The methodology developed has shown to be a useful tool for calculating a remarkably broad range of physicochemical properties of high-boiling-point petroleum fractions with good accuracy when the bulk properties are available, since computational approach gave an overall absolute deviation lower than 10% when compared with the experimental results obtained in the research laboratories LDPS/LOPCA/UNICAMP. Le traitement et la valorisation des fractions pétrolières lourdes nécessitent une étude très détaillée dans la mesure où le pétrole contient un très grand nombre de composants différents (paraffines, oléfines, naphtènes, arômes. Afin de caractériser les fractions, il est indispensable de déterminer les propriétés thermodynamiques et thermophysiques des

  2. Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Beysens, D

    2016-01-01

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  3. High-speed infrared thermography for the measurement of microscopic boiling parameters on micro- and nano-structured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjae; Kim, Hyungdae [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Hyungmo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Joonwon [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    Micro- and nano-scale structures on boiling surfaces can enhance nucleate boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A few studies were conducted to explain the enhancements of HTC and CHF using the microscopic boiling parameters. Quantitative measurements of microscopic boiling parameters are needed to understand the physical mechanism of the boiling heat transfer augmentation on structured surfaces. However, there is no existing experimental techniques to conveniently measure the boiling parameters on the structured surfaces because of the small (boiling on micro- and nano-structured surfaces. The visualization results are analyzed to obtain the microscopic boiling parameters. Finally, quantitative microscopic boiling parameters are used to interpret the enhancement of HTC and CHF. In this study, liquid-vapor phase distributions of each surface were clearly visualized by IR thermography during the nucleate boiling phenomena. From the visualization results, following microscopic boiling parameters were quantitatively measured by image processing. - Number density of dry patch, NDP IR thermography technique was demonstrated by nucleate pool boiling experiments with M- and N surfaces. The enhancement of HTC and CHF could be explained by microscopic boiling parameters.

  4. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube.

    Science.gov (United States)

    Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S; Yasuoka, Kenji; Zeng, Xiao Cheng

    2017-04-18

    Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called "no-man's land" under deeply supercooled condition, where only crystalline ices have been observed. Here, we show MD simulation evidence that, inside an isolated carbon nanotube (CNT) with a diameter of 1.25 nm, both low- and high-density liquid water states can be detected near ambient temperature and above ambient pressure. In the temperature-pressure phase diagram, the low- and high-density liquid water phases are separated by the hexagonal ice nanotube (hINT) phase, and the melting line terminates at the isochore end point near 292 K because of the retracting melting line from 292 to 278 K. Beyond the isochore end point (292 K), low- and high-density liquid becomes indistinguishable. When the pressure is increased from 10 to 600 MPa along the 280-K isotherm, we observe that water inside the 1.25-nm-diameter CNT can undergo low-density liquid to hINT to high-density liquid reentrant first-order transitions.

  5. Film boiling of mercury droplets

    Science.gov (United States)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  6. Numerical investigation of nucleate pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Stojanović Andrijana D.

    2016-01-01

    Full Text Available Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018 i br. OI-174014

  7. Infrared thermometry study of nanofluid pool boiling phenomena

    Directory of Open Access Journals (Sweden)

    Hu Lin-wen

    2011-01-01

    Full Text Available Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%. In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50% and an increase in the CHF (by as much as 100%. The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  8. Infrared thermometry study of nanofluid pool boiling phenomena.

    Science.gov (United States)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-03-16

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  9. Forest stand height determination from low point density airborne laser scanning data in Roznava Forest enterprise zone (Slovakia

    Directory of Open Access Journals (Sweden)

    Smreček R

    2013-01-01

    Full Text Available The presented paper discusses the potential of low point density airborne laser scanning (ALS data for use in forestry management. Scanning was carried out in the Rožnava Forest enterprise zone, Slovakia, with a mean laser point density of 1 point per 3 m2. Data were processed in SCOP++ using the hierarchic robust filtering technique. Two DTMs were created from airborne laser scanning (ALS and contour data and one DSM was created using ALS data. For forest stand height, two normalised DSMs (nDSMs were created by subtraction of the DSM and DTM. The forest stand heights derived from these nDSMs and the application of maximum and mean zonal functions were compared with those contained in the current Forest Management Plan (FMP. The forest stand heights derived from these data and the application of maxima and mean zonal functions were compared with those contained in the current Forest management plan. The use of the mean function and the contour-derived DTM resulted in forest stand height being underestimated by approximately 3% for stands of densities 0.9 and 1.0, and overestimated by 6% for a stand density of 0.8. Overestimation was significantly greater for lower forest stand densities: 81% for a stand density of 0.0 and 37% for a density of 0.4, with other discrepancies ranging between 15 and 30%. Although low point density ALS should be used carefully in the determination of other forest stand parameters, this low-cost method makes it useful as a control tool for felling, measurement of disaster areas and the detection of gross errors in the FMP data. Through determination of forest stand height, tree felling in three forest stands was identified. Because of big differences between the determined forest stand height and the heights obtained from the FMP, tree felling was verified on orthoimages.

  10. High flux film and transition boiling

    Energy Technology Data Exchange (ETDEWEB)

    Witte, L.C.

    1990-01-01

    This report is a bench-scale experiment on transition boiling. The author gives a detailed description on experimental apparatus and conditions. The visual observed boiling phenomena; nucleate boiling and film boiling, and the effect of heat transfer are also elucidated. 10 refs., 11 figs., 1 tab.

  11. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  12. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  13. From dilute matter to the equilibrium point in the energy--density--functional theory

    CERN Document Server

    Yang, C J; Lacroix, D

    2016-01-01

    Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.

  14. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.

    Science.gov (United States)

    Garcia, Mariano; Saatchi, Sassan; Ferraz, Antonio; Silva, Carlos Alberto; Ustin, Susan; Koltunov, Alexander; Balzter, Heiko

    2017-12-01

    Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them. Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m(-2). Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R(2) ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha(-1) for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha(-1) for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R(2) ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha(-1) [between 0.69-0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha(-1)] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R(2) was between 0.58-0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha(-1) for the echo-based model, whereas for the CHM R(2) was between 0.37-0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha(-1). Metrics derived from the CHM show a higher dependence on point density than

  15. Film boiling on vertical surfaces.

    Science.gov (United States)

    Suryanarayana, N. V.; Merte, H., Jr.

    1972-01-01

    Film boiling of a saturated liquid on a vertical surface is analyzed to determine the local heat-transfer rates as a function of height and heater-surface superheat. Experiments show that the laminar-flow model is inadequate. A turbulent-vapor-flow model is used, and the influence of the interfacial oscillations is incorporated on a semiempirical basis. Measurements of local film boiling were obtained with a transient technique using saturated liquid nitrogen.

  16. Pressure Fluctuation of 1/fα in the Film Boiling of He Ⅱ

    Institute of Scientific and Technical Information of China (English)

    张鹏; 村上正秀; 王如竹

    2002-01-01

    A detailed study of the pressure oscillation induced by the film boiling of He Ⅱ is presented. The film boiling state and the stability of the vapour film are determined by the governing parameter (i.e. the immersion depth). It is found that the power density spectrum of the pressure oscillation induced by the film boiling displays the 1/fα-behaviour. The exponent α was found to be within the range from one to two, which indicates the existence of self-organized criticality in the film boiling of He Ⅱ.

  17. The cholesterol-raising factor from boiled coffee does not pass a paper filter.

    NARCIS (Netherlands)

    Dusseldorp, van M.; Katan, M.B.; Vliet, van T.; Demacker, P.N.M.; Stalenhoef, A.F.H.

    1991-01-01

    Previous studies have indicated that consumption of boiled coffee raises total and low density lipoprotein (LDL) cholesterol, whereas drip-filtered coffee does not. We have tested the effect on serum lipids of consumed coffee that was first boiled and then filtered through commercial paper coffee

  18. The cholesterol-raising factor from boiled coffee does not pass a paper filter.

    NARCIS (Netherlands)

    Dusseldorp, van M.; Katan, M.B.; Vliet, van T.; Demacker, P.N.M.; Stalenhoef, A.F.H.

    1991-01-01

    Previous studies have indicated that consumption of boiled coffee raises total and low density lipoprotein (LDL) cholesterol, whereas drip-filtered coffee does not. We have tested the effect on serum lipids of consumed coffee that was first boiled and then filtered through commercial paper coffee fi

  19. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  20. DETECTION OF SINGLE TREE STEMS IN FORESTED AREAS FROM HIGH DENSITY ALS POINT CLOUDS USING 3D SHAPE DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    N. Amiri

    2017-09-01

    Full Text Available Airborne Laser Scanning (ALS is a widespread method for forest mapping and management purposes. While common ALS techniques provide valuable information about the forest canopy and intermediate layers, the point density near the ground may be poor due to dense overstory conditions. The current study highlights a new method for detecting stems of single trees in 3D point clouds obtained from high density ALS with a density of 300 points/m2. Compared to standard ALS data, due to lower flight height (150–200 m this elevated point density leads to more laser reflections from tree stems. In this work, we propose a three-tiered method which works on the point, segment and object levels. First, for each point we calculate the likelihood that it belongs to a tree stem, derived from the radiometric and geometric features of its neighboring points. In the next step, we construct short stem segments based on high-probability stem points, and classify the segments by considering the distribution of points around them as well as their spatial orientation, which encodes the prior knowledge that trees are mainly vertically aligned due to gravity. Finally, we apply hierarchical clustering on the positively classified segments to obtain point sets corresponding to single stems, and perform ℓ1-based orthogonal distance regression to robustly fit lines through each stem point set. The ℓ1-based method is less sensitive to outliers compared to the least square approaches. From the fitted lines, the planimetric tree positions can then be derived. Experiments were performed on two plots from the Hochficht forest in Oberösterreich region located in Austria.We marked a total of 196 reference stems in the point clouds of both plots by visual interpretation. The evaluation of the automatically detected stems showed a classification precision of 0.86 and 0.85, respectively for Plot 1 and 2, with recall values of 0.7 and 0.67.

  1. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)

    2015-05-15

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  2. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins

    DEFF Research Database (Denmark)

    Kingshott, P.; Thissen, H.; Griesser, H.J.

    2002-01-01

    The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution. Met...

  3. Effects of number of events and relay point density on accuracy of three-dimensional AE-tomography

    NARCIS (Netherlands)

    Kobayashi, Y.; Shiotani, T.; Oda, K.

    2013-01-01

    This paper introduces results of numerical investigations on accuracy of elastic wave velocity distribution in Three-dimensional AE-Tomography. A series of numerical analyses is conducted by changing number of events and density of relay points for the investigation. AE-Tomography is an identificati

  4. Optical Polarization M\\"obius Strips and Points of Purely Transverse Spin Density

    CERN Document Server

    Bauer, Thomas; Leuchs, Gerd; Banzer, Peter

    2016-01-01

    Tightly focused light beams can exhibit electric fields spinning around any axis including the one transverse to the beams' propagation direction. At certain focal positions, the corresponding local polarization ellipse can degenerate into a perfect circle, representing a point of circular polarization, or C-point. We consider the most fundamental case of a linearly polarized Gaussian beam, where - upon tight focusing - those C-points created by transversely spinning fields can form the center of 3D optical polarization topologies when choosing the plane of observation appropriately. Due to the high symmetry of the focal field, these polarization topologies exhibit non trivial structures similar to M\\"obius strips. We use a direct physical measure to find C-points with an arbitrarily oriented spinning axis of the electric field and experimentally investigate the fully three-dimensional polarization topologies surrounding these C-points by exploiting an amplitude and phase reconstruction technique.

  5. Thermodynamic and Gasdynamic Aspects of a Boiling Liquid Expanding Vapour Explosion

    NARCIS (Netherlands)

    Xie, M.

    2013-01-01

    The risk of explosion due to rupture of a tank filled with pressurized liquefied gas (PLG) is one of the risks to be considered in the context of studies on tunnel safety. When a vessel containing liquid well above its boiling point at normal atmospheric pressure fails catastrophically a Boiling Liq

  6. Stability monitoring for boiling water reactors

    Science.gov (United States)

    Cecenas-Falcon, Miguel

    1999-11-01

    A methodology is presented to evaluate the stability properties of Boiling Water Reactors based on a reduced order model, power measurements, and a non-linear estimation technique. For a Boiling Water Reactor, the feedback reactivity imposed by the thermal-hydraulics has an important effect in the system stability, where the dominant contribution to this feedback reactivity is provided by the void reactivity. The feedback reactivity is a function of the operating conditions of the system, and cannot be directly measured. However, power measurements are relatively easy to obtain from the nuclear instrumentation and process computer, and are used in conjunction with a reduced order model to estimate the gain of the thermal-hydraulics feedback using an Extended Kalman Filter. The reduced order model is obtained by estimating the thermal-hydraulic transfer function from the frequency-domain BWR code LAPUR, and the stability properties are evaluated based on the pair of complex conjugate eigenvalues. Because of the recursive nature of the Kalman Filter, an estimate of the decay ratio is generated every sampling time, allowing continuous estimation of the stability parameters. A test platform based on a nuclear-coupled boiling channel is developed to validate the capability of the BWR stability monitoring methodology. The thermal-hydraulics for the boiling channel is modeled and coupled with neutron kinetics to analyze the non-linear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and normalized modal kinetics are introduced to study out-of-phase oscillations. The coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate noisy power time series. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions

  7. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  8. Absolute Population Densities of the Lizards of Ritidian Point, Guam National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Intensive sampling for lizards of Guam NWR at Ritidian Point using a total removal methodology quantifies the lizard fauna in unprecedented detail, providing...

  9. Critical point search from an extended parameter space of lattice QCD at finite temperature and density

    CERN Document Server

    Ejiri, Shinji; Yamada, Norikazu

    2016-01-01

    Aiming to understand the phase structure of lattice QCD at nonzero temperature and density, we study the phase transitions of QCD in an extended parameter space, where the number of flavor and quark masses are considered as parameters. Performing simulations of 2 flavor QCD and using the reweighting method, we investigate (2+Nf) flavor QCD at finite density, where two light flavors and Nf massive flavors exist. Calculating probability distribution functions, we determine the critical surface terminating first order phase transitions in the parameter space of the light quark mass, the heavy quark mass and the chemical potential. Through the study of the many flavor system, we discuss the phase structure of QCD at finite density.

  10. Hysteresis of boiling for different tunnel-pore surfaces

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2015-01-01

    Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  11. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    Science.gov (United States)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  12. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  13. On mechanism of explosive boiling in nanosecond regime

    Science.gov (United States)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  14. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  15. Geologic Controls of Sand Boil Formation at Buck Chute, Mississippi

    Science.gov (United States)

    2017-06-30

    Geology ........................................................................................................................... 4 2.3 Description of...18 3.1 Geology of the Lower Mississippi River Valley...Hypothesis Sand boil formation at the Buck Chute site is the result of geology consisting of point bar and abandoned channel deposits with a thin

  16. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  17. Four-point high time resolution information on electron densities by the electric field experiments (EFW on Cluster

    Directory of Open Access Journals (Sweden)

    A. Pedersen

    Full Text Available For accurate measurements of electric fields, spherical double probes are electronically controlled to be at a positive potential of approximately 1 V relative to the ambient magnetospheric plasma. The spacecraft will acquire a potential which balances the photoelectrons escaping to the plasma and the electron flux collected from the plasma. The probe-to-plasma potential difference can be measured with a time resolution of a fraction of a second, and provides information on the electron density over a wide range of electron densities from the lobes (~ 0.01 cm-3 to the magnetosheath (>10 cm-3 and the plasmasphere (>100 cm-3. This technique has been perfected and calibrated against other density measurements on GEOS, ISEE-1, CRRES, GEOTAIL and POLAR. The Cluster spacecraft potential measurements opens the way for new approaches, particularly near boundaries and gradients where four-point measurements will provide information never obtained before. Another interesting point is that onboard data storage of this simple parameter can be done for complete orbits and thereby will provide background information for the shorter full data collection periods on Cluster. Preliminary calibrations against other density measurements on Cluster will be reported.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers Space plasma physics (spacecraft sheaths, wakes, charging; instruments and techniques

  18. Stratification Learning: Detecting Mixed Density and Dimensionality in High Dimensional Point Clouds (PREPRINT)

    Science.gov (United States)

    2006-09-01

    extending manifold learning to stratification learning. 1 Introduction Data in high dimensions is becoming ubiquitous, from image analysis and finances to...hard clustering technique based on the fractal dimension (box-counting). Starting from an initial clustering, they incrementally add points into the...References [1] D. Barbara and P. Chen. Using the fractal dimension to cluster datasets. In Proceedings of the Sixth ACM SIGKDD, pages 260–264, 2000. [2

  19. Lie symmetry analysis of the Lundgren–Monin–Novikov equations for multi-point probability density functions of turbulent flow

    Science.gov (United States)

    Wacławczyk, M.; Grebenev, V. N.; Oberlack, M.

    2017-04-01

    The problem of turbulence statistics described by the Lundgren–Monin–Novikov (LMN) hierarchy of integro-differential equations is studied in terms of its group properties. For this we perform a Lie group analysis of a truncated LMN chain which presents the first two equations in an infinite set of integro-differential equations for the multi-point probability density functions (pdf’s) of velocity. A complete set of point transformations is derived for the one-point pdf’s and the independent variables: sample space of velocity, space and time. For this purpose we use a direct method based on the canonical Lie–Bäcklund operator. Due to the one-way coupling of correlation equations, the present results are complete in the sense that no additional symmetries exist for the first leading equation, even if the full infinite hierarchy is considered.

  20. An Evaluation of the Plant Density Estimator the Point-Centred Quarter Method (PCQM Using Monte Carlo Simulation.

    Directory of Open Access Journals (Sweden)

    Md Nabiul Islam Khan

    Full Text Available In the Point-Centred Quarter Method (PCQM, the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1 and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns plant populations and empirical ones.PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3 show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition. If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1/(π ∑ R2 but not 12N/(π ∑ R2, of PCQM2 is 4(8N - 1/(π ∑ R2 but not 28N/(π ∑ R2 and of PCQM3 is 4(12N - 1/(π ∑ R2 but not 44N/(π ∑ R2 as published.If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process

  1. Boiling heat transfer in dilute emulsions

    CERN Document Server

    Roesle, Matthew Lind

    2013-01-01

    Boiling Heat Transfer in Dilute Emulsions synthesizes recent advances and established understanding on the subject of boiling in dilute emulsions. Experimental results from various sources are collected and analyzed, including contemporary experiments that correlate visualization with heat transfer data. Published models of boiling heat transfer in dilute emulsions, and their implementation, are described and assessed against experimental data.

  2. Gravity Effects in Microgap Flow Boiling

    Science.gov (United States)

    Robinson, Franklin; Bar-Cohen, Avram

    2017-01-01

    Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.

  3. Unsteady heat transfer during subcooled film boiling

    Science.gov (United States)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  4. Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography

    Science.gov (United States)

    Thomas, I. A.; Jordan, P.; Shine, O.; Fenton, O.; Mellander, P.-E.; Dunlop, P.; Murphy, P. N. C.

    2017-02-01

    Defining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m-2), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m-2) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70-100% and 10-84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of 'breakthrough' and 'delivery' points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75-100% and 0-100%, respectively). Optimal DEM resolutions of 1-2 m were identified for modelling HSAs, which balanced the need

  5. Extracting features buried within high density atom probe point cloud data through simplicial homology.

    Science.gov (United States)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Broderick, Scott; Rajan, Krishna

    2015-12-01

    Feature extraction from Atom Probe Tomography (APT) data is usually performed by repeatedly delineating iso-concentration surfaces of a chemical component of the sample material at different values of concentration threshold, until the user visually determines a satisfactory result in line with prior knowledge. However, this approach allows for important features, buried within the sample, to be visually obscured by the high density and volume (~10(7) atoms) of APT data. This work provides a data driven methodology to objectively determine the appropriate concentration threshold for classifying different phases, such as precipitates, by mapping the topology of the APT data set using a concept from algebraic topology termed persistent simplicial homology. A case study of Sc precipitates in an Al-Mg-Sc alloy is presented demonstrating the power of this technique to capture features, such as precise demarcation of Sc clusters and Al segregation at the cluster boundaries, not easily available by routine visual adjustment.

  6. High-density G-centers, light-emitting point defects in silicon crystal

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    2011-09-01

    Full Text Available We propose a new method of creating light-emitting point defects, or G-centers, by modifying a silicon surface with hexamethyldisilazane followed by laser annealing of the surface region. This laser annealing process has two advantages: creation of highly dense G-centers by incorporating carbon atoms into the silicon during heating; freezing in the created G-centers during rapid cooling. The method provides a surface region of up to 200 nm with highly dense carbon atoms of up to 4 × 1019 cm−3 to create G-centers, above the solubility limit of carbon atoms in silicon crystal (3 × 1017 cm−3. Photoluminescence measurement reveals that the higher-speed laser annealing produces stronger G-center luminescence. We demonstrate electrically-driven emission from the G-centers in samples made using our new method.

  7. Gauge-invariant two-point correlator of energy density in deconfining SU(2) Yang-Mills thermodynamics

    CERN Document Server

    Keller, Jochen

    2008-01-01

    The thesis is considering aspects of SU(2) Yang-Mills thermodynamics in its deconfining high-temperature phase. We calculate the two-point correlation function of the energy density of the photon in a thermalized gas, at first in the conventional U(1) gauge theory, followed by a calculation, where the photon is identified with the massless gauge mode in deconfining SU(2) Yang-Mills thermodynamics. Apart from the fact, that this calculation is interesting from a technical point of view, we can consider several aspects of phenomenological relevance. Since we interpret the two-point correlator of energy density as a measure for the energy transfer, and thus for the electromagnetic interaction of microscopic objects, such as atoms immersed into a photon gas, we are able to give an explanation for the unexpected stability of cold, innergalactic clouds consisting of atomic hydrogen. Subsequently, we evaluate the spatial string tension in deconfining SU(2) Yang-Mills thermodynamics, which can be regarded as measure ...

  8. A high-fidelity approach towards simulation of pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  9. A high-fidelity approach towards simulation of pool boiling

    Science.gov (United States)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  10. Mammographic density and factors determining it from the point of view of high oncological risks

    Directory of Open Access Journals (Sweden)

    D. A. Vasilyev

    2011-01-01

    Full Text Available There is now extensive proof that high percentage of mammographic density (MD is an independent risk factor for breast cance.r Taking this into account, the research data are summarized with regard to relation of MD to anthropometric, as well as hormonal, genetic and genotoxic factors. There is a negative correlation between MD and such risk factors as age, number of deliveries, BMI and waist-hip ratio. Most inves- tigations show a direct connection between MD and prolactin level or insulin-like growth factor in blood, mostly in premenopaus al women. Relations of MD with blood estrogens, testosterone, sex hormone binding globulin prove to be too diverse to be taken in account of. It is pos- sible that the action of hormones, especially estrogens, is mediated through their metabolites catecholestrogens and / or reactive oxygen spe- cies. There is certain evidence that a genetic component plays a role in MD. It refers to COMT Val158Met, IGF-I rs6220 A> G and UGT1A1 in premenopausal women, and to ESR1 (XbaI и PvuII in menopausal cases.Although it is obvious that the risk of breast cancer related to MD is brought about by many factors, there is a necessity for studying addi- tional criteria modifying the process, as well as for searching means for preventing it.

  11. Extracting features buried within high density atom probe point cloud data through simplicial homology

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Broderick, Scott; Rajan, Krishna, E-mail: krajan@iastate.edu

    2015-12-15

    Feature extraction from Atom Probe Tomography (APT) data is usually performed by repeatedly delineating iso-concentration surfaces of a chemical component of the sample material at different values of concentration threshold, until the user visually determines a satisfactory result in line with prior knowledge. However, this approach allows for important features, buried within the sample, to be visually obscured by the high density and volume (~10{sup 7} atoms) of APT data. This work provides a data driven methodology to objectively determine the appropriate concentration threshold for classifying different phases, such as precipitates, by mapping the topology of the APT data set using a concept from algebraic topology termed persistent simplicial homology. A case study of Sc precipitates in an Al–Mg–Sc alloy is presented demonstrating the power of this technique to capture features, such as precise demarcation of Sc clusters and Al segregation at the cluster boundaries, not easily available by routine visual adjustment. - Highlights: • Provides a data driven methodology to select appropriate concentration threshold. • Maps topology of APT data using persistent simplicial homology. • The application to Sc precipitates in an Al–Mg–Sc alloy is provided. • Capture features not easily available by routine visual adjustment.

  12. Experimental Study on Boiling Crisis in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    They postulated that failure in re-wetting of a dry patch by a cooling liquid is governed by microhydrodynamics near the wall. Chu et al. commonly observed that active coalescence of newly generated bubbles with preexisting bubbles results in a residual dry patch and prevents the complete rewetting of the dry patch, leading to CHF. In this work, to reveal the key physical mechanism of CHF during the rewetting process of a dry patch, dynamics of dry patches and thermal pattern of a boiling surface are simultaneously observed using TR and IR thermometry techniques. Local dynamics of dry patch and thermal pattern on a boiling surface in synchronized manner for both space and time using TR and IR thermometry were measured during pool boiling of water. Observation and quantitative examination of CHF was performed. - The hydrodynamic and thermal behaviors of irreversible dry patch were observed. The dry patches coalesce into a large dry patch and it locally dried out. Due to the failure of liquid rewetting, the dry patch is not completely rewetted, resulting in the burn out at which temperature is -140°C. - When temperature of a dry patch rises beyond the instantaneous nucleation temperature, several bubbles nucleate at the head of the advancing liquid meniscus and prevents the liquid front, and eventually the overheated dry patch remains alive after the departure of the massive bubble.

  13. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    Science.gov (United States)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  14. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  15. Remote sensing image classification based on block feature point density analysis and multiple-feature fusion

    Science.gov (United States)

    Li, Shijin; Jiang, Yaping; Zhang, Yang; Feng, Jun

    2015-10-01

    With the development of remote sensing (RS) and the related technologies, the resolution of RS images is enhancing. Compared with moderate or low resolution images, high-resolution ones can provide more detailed ground information. However, a variety of terrain has complex spatial distribution. The different objectives of high-resolution images have a variety of features. The effectiveness of these features is not the same, but some of them are complementary. Considering the above information and characteristics, a new method is proposed to classify RS images based on hierarchical fusion of multi-features. Firstly, RS images are pre-classified into two categories in terms of whether feature points are uniformly or non-uniformly distributed. Then, the color histogram and Gabor texture feature are extracted from the uniformly-distributed categories, and the linear spatial pyramid matching using sparse coding (ScSPM) feature is obtained from the non-uniformly-distributed categories. Finally, the classification is performed by two support vector machine classifiers. The experimental results on a large RS image database with 2100 images show that the overall classification accuracy is boosted by 10.1% in comparison with the highest accuracy of single feature classification method. Compared with other multiple-feature fusion methods, the proposed method has achieved the highest classification accuracy on this dataset which has reached 90.1%, and the time complexity of the algorithm is also greatly reduced.

  16. Structure Activity Relationship Study of Topological Index in Boiling Point and Molar Ref raction of Aliphatic Aldehydes,Ketones,Amines%拓扑指数在脂肪族醛酮胺沸点和摩尔折射中的构效关系研究

    Institute of Scientific and Technical Information of China (English)

    周长会; 吴启勋; 张瑞; 高宴梓

    2013-01-01

    通过对杂原子进行“染色”,建立了脂肪醛、脂肪酮和脂肪胺化合物分子的距离矩阵和邻接矩阵,在邻接矩阵和距离矩阵的基础上,构建了一种拓扑指数W,将拓扑指数W分别与脂肪醛、脂肪酮和脂肪胺化合物的沸点及摩尔折射进行非线性回归,取得的结果可以用来预测脂肪醛、脂肪酮和脂肪胺化合物的沸点及摩尔折射Rm ,这为脂肪族类化合物的研究提供理论基础。%In this paper the distance matrix and adjacency matrix of aliphatic aldehydes ,ketones , and amines compounds molecules were established primarily by tintaging the heteroatoms ,then on the basis of distance matrix and adjacency matrix a topological index was constructed .Subsequently , the topological index and the boiling point and the molar refraction of aliphatic aldehydes ,ketones , and amines compounds were put into nonlinear regression respectively .Fortunately a satisfactory re-sult was obtained which can be used to predict the boiling point and molar refraction of aliphatic alde-hydes ,ketones ,and amines .This work provides theoretical foundation for the investigation of the types of aliphatic compounds .

  17. Enhanced heat transfer in confined pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rops, C.M. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands)], E-mail: cor.rops@tno.nl; Lindken, R. [Laboratory for Aero and Hydrodynamics, Delft University of Technology (Netherlands); Velthuis, J.F.M. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Westerweel, J. [Laboratory for Aero and Hydrodynamics, Delft University of Technology (Netherlands)

    2009-08-15

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.

  18. Comparison between European and Iranian cutoff points of triglyceride/high-density lipoprotein cholesterol concentrations in predicting cardiovascular disease outcomes.

    Science.gov (United States)

    Gharipour, Mojgan; Sadeghi, Masoumeh; Dianatkhah, Minoo; Nezafati, Pouya; Talaie, Mohammad; Oveisgharan, Shahram; Golshahi, Jafar

    2016-01-01

    High triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) are important cardiovascular risk factors. The exact prognostic value of the TG/HDL-C ratio, a marker for cardiovascular events, is currently unknown among Iranians so this study sought to determine the optimal cutoff point for the TG/HDL-C ratio in predicting cardiovascular disease events in the Iranian population. The Isfahan Cohort Study (ICS) is an ongoing, longitudinal, population-based study that was originally conducted on adults aged ≥ 35 years, living in urban and rural areas of three districts in central Iran. After 10 years of follow-up, 5431 participants were re-evaluated using a standard protocol similar to the one used for baseline. At both measurements, participants underwent medical interviews, physical examinations, and fasting blood measurements. "High-risk" subjects were defined by the discrimination power of indices, which were assessed using receiver operating characteristic (ROC) analysis; the optimal cutoff point value for each index was then derived. The mean age of the participants was 50.7 ± 11.6 years. The TG/HDL-C ratio, at a threshold of 3.68, was used to screen for cardiovascular events among the study population. Subjects were divided into two groups ("low" and "high" risk) according to the TG/HDL-C concentration ratio at baseline. A slightly higher number of high-risk individuals were identified using the European cutoff points of 63.7% in comparison with the ICS cutoff points of 49.5%. The unadjusted hazard ratio (HR) was greatest in high-risk individuals identified by the ICS cutoff points (HR = 1.54, 95% CI [1.33-1.79]) vs European cutoff points (HR = 1.38, 95% [1.17-1.63]). There were no remarkable changes after adjusting for differences in sex and age (HR = 1.58, 95% CI [1.36-1.84] vs HR = 1.44, 95% CI [1.22-1.71]) for the ICS and European cutoff points, respectively. The threshold of TG/HDL ≥ 3.68 is the optimal cutoff point for predicting

  19. Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface with TiO2 nanotube arrays(TNTAs)is superhydrophilic and of great specific area.This paper investigates the pool boiling characteristics at the thermal interface with TNTAs.The results show that the TNTAs interface can enhance the pool boiling heat transfer compared to the pure Ti metal plate.The bubbles formed at the initial nucleation state are very small and released in higher frequency.The pool boiling heat transfer enhancement at the TNTAs interface may be attributed to the high density of nucleate site,high intrinsic heating area of nanotubes layer,superhydrophilicity and the vertically oriented nanotube structure.

  20. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  1. Density functional models of the interfacial tensions near the critical endpoints and tricritical point of three-phase equilibria.

    Science.gov (United States)

    Koga, K; Widom, B

    2016-06-22

    We treat two different density-functional models of the structures and tensions of the interfaces between phases on approach to the tricritical point of three-phase equilibrium. The major objective is to account for some of the results of earlier experimental measurements of these tensions. The thermodynamic background is first reviewed, including representations of the properties near the critical endpoints and tricritical point and of the wetting transitions that may occur on approach to those critical points. The first of the models treated is analytically soluble. Its properties are illuminating but at the price of some artificiality paid for its analytical solubility. The second model, called model T, is in a class of those treated in the past and analyzed numerically. Some of its properties are obtained with sufficient precision to allow one to conclude with near certainty what the analytically exact results would be. This model, too, illuminates the experimental measurements. It is noted where its properties are in accord with those of the analytically soluble model and where the two differ.

  2. Self-overcoming of the boiling condition by pressure increment in a water target irradiated by proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Hwan, E-mail: burnn@kirams.re.kr [Korea Institute of Radiological and Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Kang, Joonsun; Jung, In Su; Ram, Han Ga; Park, Yeun Soo [Korea Institute of Radiological and Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cho, Hyung Hee [Department of Mechanical Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-11-11

    An experiment was conducted to examine and visualize the boiling phenomena inside a water target by irradiating it with a proton beam from MC-50 cyclotron. The boiling phenomena were recorded with a CMOS camera. While an increase of the fraction of the water vapor volume is generally considered to be normal when water is boiled by a proton beam, our experiment showed the opposite result. The volume expansion of the liquid water exceeded the compressibility of the initial air volume. A grid structure in front of the entrance window foil held the target volume constant. Therefore, the phenomena inside the target underwent an isochoric process, and the pressure inside the target was increased rapidly beyond the pressure at the boiling point. Consequently, there was no more bulk boiling in the Bragg-peak region in the target water. Our results show that the boiling of the water can be controlled by controlling the equilibrium pressure of the water target.

  3. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  4. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  5. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  6. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Sex

    Institute of Scientific and Technical Information of China (English)

    崔珊; 何兰坡; 洪晓晨; 朱相德; Cedomir Petrovic; 李世燕

    2016-01-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk supercon-ductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3−x Sex near x≈0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3−x Sex single crystals (x=0.044 and 0.051) down to 80 mK. For both samples, the residual linear termκ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence ofκ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3−x Sex , which indicates conventional superconductivity despite of the existence of a CDW QCP.

  7. Efficient simulation of density and probability of large deviations of sum of random vectors using saddle point representations

    CERN Document Server

    Dey, Santanu

    2012-01-01

    We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed, light-tailed and non-lattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queuing and financial credit risk modeling. It has been extensively studied in literature where state independent exponential twisting based importance sampling has been shown to be asymptotically efficient and a more nuanced state dependent exponential twisting has been shown to have a stronger bounded relative error property. We exploit the saddle-point based representations that exist for these rare quantities, which rely on inverting the characteristic functions of the underlying random vectors. We note that these representations reduce the rare event estimation problem to evaluating certain integrals, which may via importance ...

  8. A review on saturated boiling of liquids on tube bundles

    Science.gov (United States)

    Swain, Abhilas; Das, Mihir Kumar

    2014-05-01

    A review of recent investigation on boiling of saturated liquids over plain and enhanced tube bundles has been carried out taking the earlier review works as reference point. The experimental observations of various geometry and performance parameters studied by researchers are analyzed keeping current demand of industries in design and development of compact, efficient heat exchanging devices. The study shows that tube spacing plays an important role in determination of compactness of the heat exchanger.

  9. Experimental investigation on partial pool boiling heat transfer in pure liquids

    Directory of Open Access Journals (Sweden)

    Fazel Seyed Ali Alavi

    2016-01-01

    Full Text Available Saturated partial pool boiling heat transfer has been experimentally investigated on a horizontal rod heater. The boiling liquids are including water and ethanol. The heating section is made by various materials including SS316, copper, aluminum and brass. Experiments have been performed at several degrees of surface roughness ranging between 30 and 360 micrometer average vertical deviation. The measurements are including boiling heat transfer coefficient, bubble departing diameter and frequency and also nucleation site density. The data have been compared to major existing correlations. It is shown that experimental data do not match with major correlations at the entire range of experiments with acceptable accuracy. In this article, the boiling heat transfer area has been divided in two complementary areas, the induced forced convection area and the boiling affected area. Based on two dimensionless groups, including Eötvös and Roshko numbers, a semi-empirical model have been proposed to predict the boiling heat transfer coefficient. It is shown that the proposed model provides improved performance in prediction of the boiling heat transfer coefficient in comparison with to existing correlations.

  10. Boiling Heat-Transfer Processes and Their Application in the Cooling of High Heat Flux Devices

    Science.gov (United States)

    1993-06-01

    large for very smooth surfaces or highly wettable fluids (e.g., refrigerants or liquid metals) which can lead to explosive boiling (known as bumping) that...of the high wettability of liquid metals, high superheats are normally required to initiate boiling, in some cases having an explosive transition that...About the same time, Staub and Walmet (Ref. 175) identified the two regions before and after the point of significant vapor generation (SNVG) where the

  11. Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture.

    Science.gov (United States)

    Hämmerle, Martin; Höfle, Bernhard

    2014-12-16

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up.

  12. Column number density expressions through M = 0 and M = 1 point source plumes along any straight path

    Science.gov (United States)

    Woronowicz, Michael

    2016-11-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path.

  13. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    Science.gov (United States)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  14. Numerical simulation of flow boiling for organic fluid with high saturation temperature in vertical porous coated tube

    Energy Technology Data Exchange (ETDEWEB)

    Yang Dong, E-mail: dyang@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Pan Jie; Wu Yanhua; Chen Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

    2011-08-15

    Highlights: > A model is developed for the prediction of flow boiling in vertical porous tubes. > The model assumes that the nucleate boiling plays an important role. > The present model can predict most of the experimental values within {+-}20%. > The results indicate the nucleate boiling contribution decreases from 50% to 15%. - Abstract: A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within {+-}20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.

  15. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    V S Duryodhan; S G Singh; Amit Agrawal

    2013-12-01

    An experimental study of flow boiling through diverging microchannel has been carried out in this work, with the aim of understanding boiling in nonuniform cross-section microchannel. Diverging microchannel of 4° of divergence angle and 146 m hydraulic diameter (calculated at mid-length) has been employed for the present study with deionised water as working fluid. Effect of mass flux (118–1182 kg/m2-s) and heat flux (1.6–19.2 W/cm2) on single and two-phase pressure drop and average heat transfer coefficient has been studied. Concurrently, flow visualization is carried out to document the various flow regimes and to correlate the pressure drop and average heat transfer coefficient to the underlying flow regime. Four flow regimes have been identified from the measurements: bubbly, slug, slug–annular and periodic dry-out/rewetting. Variation of pressure drop with heat flux shows one maxima which corresponds to transition from bubbly to slug flow. It is shown that significantly large heat transfer coefficient (up to 107 kW/m2-K) can be attained for such systems, for small pressure drop penalty and with good flow stability.

  16. Mathematical and experimental modeling of nucleate boiling heat transfer in liquid nitrogen

    Science.gov (United States)

    Fusco, Ciro

    The investigation of nucleate boiling heat transfer, because of its complexity, is usually carried out experimentally and by using phenomenological approximations. The purpose of this work is to capture the essential features of nucleate boiling heat transfer in liquid nitrogen and to formulate a theoretical description useful for the prediction of the temperature fluctuations and beat flux. Experimental analysis was coupled with mathematical modeling to elucidate nucleate boiling heat transfer. The experimental setting consists of a platinum wire immersed in liquid nitrogen. A current is passed through the wire while the resistance is measured. The orientation of the wire can be changed from horizontal to vertical. The fluctuations of the wire temperature are measured. Using high-speed analysis, we characterized nucleate boiling heat transfer from the wire as occurring in two distinct phases or regimes: discrete nucleate boiling and transition boiling. We defined discrete nucleate boiling as the phase during which the active nucleation sites are clearly distinguishable from one another with no bubble coalescence occurring between adjacent sites. The high-speed analysis helped also to compute the frequencies, diameters, and nucleation density of departing bubbles as well as the energy loss by a single bubble during the discrete nucleate boiling regime. These parameters were subsequently used to formulate a mathematical model to simulate by discrete time steps the discrete nucleate boiling heat transfer from the platinum wire. The average temperature of the wire can be adequately modeled with only one variable, the power input. In addition to predicting the average temperature of the wire in the discrete nucleate boiling regime the model predicts well the average temperature of the wire in the conduction and convection regime and the transition regime. The model also reproduces the fluctuation of temperature in the discrete nucleate boiling regime. The mathematical

  17. Bubble spreading during the boiling crisis: modelling and experimenting in microgravity

    Science.gov (United States)

    Nikolayev, V.; Beysens, D.; Garrabos, Y.; Lecoutre, C.; Chatain, D.

    2006-09-01

    Boiling is a very efficient way to transfer heat from a heater to the liquid carrier. We discuss the boiling crisis, a transition between two regimes of boiling: nucleate and film boiling. The boiling crisis results in a sharp decrease in the heat transfer rate, which can cause a major accident in industrial heat exchangers. In this communication, we present a physical model of the boiling crisis based on the vapor recoil effect. Under the action of the vapor recoil the gas bubbles begin to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes its spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. In the experiments both in the Mir space station and in the magnetic levitation facility, we directly observed an increase of the apparent contact angle and spreading of the dry spot under the bubble. Numerical simulations of the thermally controlled bubble growth show this vapor recoil effect too thus confirming our model of the boiling crisis.

  18. Assessing the microbiological performance and potential cost of boiling drinking water in urban Zambia.

    Science.gov (United States)

    Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas

    2011-07-15

    Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.

  19. Criticality in the slowed-down boiling crisis at zero gravity.

    Science.gov (United States)

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  20. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    Science.gov (United States)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  1. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good

  2. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good agreemen

  3. Boiling turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Lakkaraju, R.

    2013-01-01

    A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.

  4. Boiling turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Lakkaraju, R.

    2013-01-01

    A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.

  5. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  6. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  7. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joong; McKrell, Tom [Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Buongiorno, Jacopo, E-mail: jacopo@mit.ed [Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Hu Linwen [Nuclear Reactor Laboratory, Massachusetts Institute of Technology (United States)

    2010-05-15

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In a previous paper, we reported on subcooled flow boiling CHF experiments with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (<=0.1% by volume) at atmospheric pressure, which revealed a substantial CHF enhancement (approx40-50%) at the highest mass flux (G = 2500 kg/m{sup 2} s) and concentration (0.1 vol.%) for all nanoparticle materials (). In this paper, we focus on the flow boiling heat transfer coefficient data collected in the same tests. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient are similar (within +-20%). The heat transfer coefficient increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. A confocal microscopy-based examination of the test section revealed that nanoparticle deposition on the boiling surface occurred during nanofluid boiling. Such deposition changes the number of micro-cavities on the surface, but also changes the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found.

  8. Boiling as Household Water Treatment in Cambodia: A Longitudinal Study of Boiling Practice and Microbiological Effectiveness

    Science.gov (United States)

    Brown, Joseph; Sobsey, Mark D.

    2012-01-01

    This paper focuses on the consistency of use and microbiological effectiveness of boiling as it is practiced in one study site in peri-urban Cambodia. We followed 60 randomly selected households in Kandal Province over 6 months to collect longitudinal data on water boiling practices and effectiveness in reducing Escherichia coli in household drinking water. Despite > 90% of households reporting that they used boiling as a means of drinking water treatment, an average of only 31% of households had boiled water on hand at follow-up visits, suggesting that actual use may be lower than self-reported use. We collected 369 matched untreated and boiled water samples. Mean reduction of E. coli was 98.5%; 162 samples (44%) of boiled samples were free of E. coli (boiled water in a covered container was associated with safer product water than storage in an uncovered container. PMID:22826487

  9. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited)

    Science.gov (United States)

    Liu, H. Q.; Qian, J. P.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Li, W. M.; Lian, H.; Wang, S. X.; Yang, Y.; Zeng, L.; Lan, T.; Yao, Y.; Hu, L. Q.; Zhang, X. D.; Wan, B. N.

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  10. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    Science.gov (United States)

    Woronowicz, Michael

    2017-01-01

    Providers of payloads carried aboard the International Space Station must conduct analyses to demonstrate that any planned gaseous venting events generate no more than a certain level of material that may interfere with optical measurements from other experiments or payloads located nearby. This requirement is expressed in terms of a maximum column number density (CND). Depending on the level of rarefaction, such venting may be characterized by effusion for low flow rates, or by a sonic distribution at higher levels. Since the relative locations of other sensitive payloads are often unknown because they may refer to future projects, this requirement becomes a search for the maximum CND along any path.In another application, certain astronomical observations make use of CND to estimate light attenuation from a distant star through gaseous plumes, such as the Fermi Bubbles emanating from the vicinity of the black hole at the center of our Milky Way galaxy, in order to infer the amount of material being expelled via those plumes.This paper presents analytical CND expressions developed for general straight paths based upon a free molecule point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice. Among other things, in this Mach number range it is demonstrated that the maximum CND from a distant location occurs along the path parallel to the source plane that intersects the plume axis. For effusive flows this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43.

  11. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Yves

    2016-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis.

  12. Heat Transfer in Nucleate Pool Boiling of Binary and Ternary Refrigerant Mixtures

    Institute of Scientific and Technical Information of China (English)

    赵耀华; 刁彦华; 鹤田隆治; 西川日出男

    2004-01-01

    Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.

  13. Long-time behavior of the velocity autocorrelation function at low densities and near the critical point of simple fluids.

    Science.gov (United States)

    Dib, R F A; Ould-Kaddour, F; Levesque, D

    2006-07-01

    Numerous theoretical and numerical works have been devoted to the study of the algebraic decrease at large times of the velocity autocorrelation function of particles in a fluid. The derivation of this behavior, the so-called long-time tail, generally based on linearized hydrodynamics, makes no reference to any specific characteristic of the particle interactions. However, in the literature doubts have been expressed about the possibility that by numerical simulations the long-time tail can be observed in the whole fluid phase domain of systems in which the particles interact by soft-core and attractive pair potentials. In this work, extensive and accurate molecular-dynamics simulations establish that the predicted long-time tail of the velocity autocorrelation function exists in a low-density fluid of particles interacting by a soft-repulsive potential and near the liquid-gas critical point of a Lennard-Jones system. These results contribute to the confirmation that the algebraic decay of the velocity autocorrelation function is universal in these fluid systems.

  14. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  15. Zero Boil Off Cryogen Storage for Future Launchers

    Science.gov (United States)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would

  16. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  17. Development of a mechanistic model for forced convection subcooled boiling

    Science.gov (United States)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  18. Early-Evaporation of Microlayer for Boiling Heat Transfer Enhancement.

    Science.gov (United States)

    Zou, An; Singh, Dhirendra P; Maroo, Shalabh C

    2016-10-06

    For over five decades, enhancement in pool boiling heat transfer has been achieved by altering the surface wetting, wickability, roughness, nucleation site density and providing separate liquid/vapor pathways. In this work, a new enhancement mechanism based on the early-evaporation of the microlayer is discovered and validated. The microlayer is a thin liquid film present at the base of a vapor bubble. Presence of micro-ridges on the silicon-dioxide surface partitions the microlayer and disconnects it from bulk liquid causing it to evaporate sooner, thus leading to increase in bubble growth rate, heat transfer, departure frequency and critical heat flux (CHF). Compared to a plain surface, ~120% enhancement in CHF is obtained with only ~18% increase in surface area. A CHF enhancement map is developed based on ridge height and spacing, resulting in three regions of full, partial and no enhancement. The new mechanism is validated by comparing the growth rate of a laser created vapor bubble on ridge-structured surface and plain surface, and the corresponding prediction of CHF enhancement is found to be in good agreement with experimental boiling data. This discovery opens up a new field of CHF enhancement and can be coupled with existing techniques to further push the limits of boiling heat transfer.

  19. A NEW APPROACH FOR PROGRESSIVE DENSE RECONSTRUCTION FROM CONSECUTIVE IMAGES BASED ON PRIOR LOW-DENSITY 3D POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2017-09-01

    Full Text Available In recent years, the increasing incidence of climate-related disasters has tremendously affected our environment. In order to effectively manage and reduce dramatic impacts of such events, the development of timely disaster management plans is essential. Since these disasters are spatial phenomena, timely provision of geospatial information is crucial for effective development of response and management plans. Due to inaccessibility of the affected areas and limited budget of first-responders, timely acquisition of the required geospatial data for these applications is usually possible only using low-cost imaging and georefencing sensors mounted on unmanned platforms. Despite rapid collection of the required data using these systems, available processing techniques are not yet capable of delivering geospatial information to responders and decision makers in a timely manner. To address this issue, this paper introduces a new technique for dense 3D reconstruction of the affected scenes which can deliver and improve the needed geospatial information incrementally. This approach is implemented based on prior 3D knowledge of the scene and employs computationally-efficient 2D triangulation, feature descriptor, feature matching and point verification techniques to optimize and speed up 3D dense scene reconstruction procedure. To verify the feasibility and computational efficiency of the proposed approach, an experiment using a set of consecutive images collected onboard a UAV platform and prior low-density airborne laser scanning over the same area is conducted and step by step results are provided. A comparative analysis of the proposed approach and an available image-based dense reconstruction technique is also conducted to prove the computational efficiency and competency of this technique for delivering geospatial information with pre-specified accuracy.

  20. Boiling of an emulsion in a yield stress fluid

    Science.gov (United States)

    Guéna, Geoffroy; Wang, Ji; D'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50°C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  1. 21 CFR 872.6710 - Boiling water sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  2. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    Science.gov (United States)

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    Science.gov (United States)

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  4. How To Boil the Perfect Egg

    Institute of Scientific and Technical Information of China (English)

    小雨

    2007-01-01

    A British inventor says he has cracked(破解)the age-old riddle(难题)of how to boil the perfect egg,get rid of(摆脱)the water. Simon Rhymes uses powerful light bulbs instead of boiling water to cook the egg. The gadget(小发明)does the job in six minutes,and then chons off(削)the top of

  5. The investigation of boiling crisis of nanofluids

    Directory of Open Access Journals (Sweden)

    Minakov Andrey

    2016-01-01

    Full Text Available Saturated boiling of nanofluids on a cylindrical heater with different diameters is experimentally studied. Studied nanofluids were prepared using distilled water and different metal oxides nanoparticles. The volume concentration of the nanoparticles was changed from 0.05 to 1%. It has been measured that the critical heat flux for nanofluids was much higher than for water. A strong dependence of CHF on the material and size of the nanoparticles and duration of boiling and size of heater was shown.

  6. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  7. Bubble spreading during the boiling crisis: modelling and experimenting in microgravity

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Lecoutre, C; Chatain, D

    2016-01-01

    Boiling is a very efficient way to transfer heat from a heater to the liquid carrier. We discuss the boiling crisis, a transition between two regimes of boiling: nucleate and film boiling. The boiling crisis results in a sharp decrease in the heat transfer rate, which can cause a major accident in industrial heat exchangers. In this communication, we present a physical model of the boiling crisis based on the vapor recoil effect. Under the action of the vapor recoil the gas bubbles begin to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes its spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. In the experiments both in the Mir spa...

  8. High-Speed Visualization of Bubble Behaviors for Pool Boiling of R-141b

    Institute of Scientific and Technical Information of China (English)

    Yanhua DIAO; Yaohua ZHAO; Qiuliang WANG

    2006-01-01

    A visualization study on the behavior of bubbles has been carried out for pool boiling of R141b on a horizontal transparent heater at pressure 0.1 MPa. The behaviors of bubbles were recorded by a high-speed camera placed beneath the heater surface. The departure diameter, departure time of bubbles and nucleation site density at different heat flux were obtained. The visualization results show that bubble departure diameter and departure time decrease, while the nucleation site density increases as the heat flux increases. It is also observed that there is no liquid recruited into the microlayer in the experiment. Based on the experimental results, boiling curve for R141b was predicted by using the dynamic microlayer model. As a result, the agreement between the predictive result based on the dynamic microlayer model and the experiment data for boiling curve of R141b is good at high heat flux.

  9. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhoutao@mail.tsinghua.edu.cn; Wang Zenghui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang Ruichang [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well.

  10. Flow boiling heat transfer in circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang REN; Jiangdong ZHENG; Sefiane KHELLII; Arumemi-Ikhide MICHAEL

    2009-01-01

    In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boil-ing system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

  11. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  12. The density and cloud point of diesel oil mixtures with the straight vegetable oils (SVO): Palm, cabbage palm, cotton, groundnut, copra and sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Abolle, Abolle; Loukou, Kouakou; Henri, Planche [Unite de Chimie et Procedes de l' Ecole Nationale Superieure des Techniques Avancees, 32 boulevard Victor, 75739 Paris Cedex 15 (France)

    2009-12-15

    The densities and cloud points of six vegetable oils mixed in variable proportions to diesel oils (commercial vehicle fuels) are measured. Simple correlations are reported between these properties and the fatty acids vegetable oil composition. A simple modelling summarises experimental data informations. (author)

  13. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  14. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    CERN Document Server

    Li, Q; Francois, M M; He, Y L; Luo, K H

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the he...

  15. Cryogenic Boil-Off Reduction System

    Science.gov (United States)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  16. Prostate-specific antigen and prostate-specific antigen density cutoff points among Indonesian population suspected for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ahmad Anies Shahab

    2013-03-01

    Conclusions: PSA and PSAD cutoff point for Indonesian men in this series is relatively different from international consensus. Furthermore, these data show that PSA and PSAD cutoff point must be adjusted to racial variation to discriminate between malignant and benign disease. Urinary retention is a significant factor for PSA cutoff increase.

  17. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method

    Institute of Scientific and Technical Information of China (English)

    Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN

    2009-01-01

    Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.

  18. A review of film boiling at cryogenic temperatures.

    Science.gov (United States)

    Hsu, Y. Y.

    1972-01-01

    Film boiling occurs in the quenching of metals, the chilling of biological species, the regenerative cooling of rockets, and the cooling down of a cryogenic fuel tank. Occasionally film boiling is also found in a nuclear reactor or in a cryomagnet. Aspects of film boiling involving an unconstrained liquid mass are considered, giving attention to the evaporation time, the Leidenfrost temperature, solid-liquid contacts, the thermal properties of the solid, effects of coating or scale, wettability, the metastable condition, and the velocity effect on drops. Developments discussed with regard to pool boiling are related to vertical surfaces, film boiling from horizontal surfaces, film boiling from a horizontal cylinder, film boiling from a sphere, and film boiling of helium. Processes of film boiling in a channel are also analyzed.

  19. Adaptive Localization of Focus Point Regions via Random Patch Probabilistic Density from Whole-Slide, Ki-67-Stained Brain Tumor Tissue

    Directory of Open Access Journals (Sweden)

    Yazan M. Alomari

    2015-01-01

    Full Text Available Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved.

  20. Adaptive localization of focus point regions via random patch probabilistic density from whole-slide, Ki-67-stained brain tumor tissue.

    Science.gov (United States)

    Alomari, Yazan M; Sheikh Abdullah, Siti Norul Huda; MdZin, Reena Rahayu; Omar, Khairuddin

    2015-01-01

    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved.

  1. Did the big bang boil?

    CERN Multimedia

    Wilczek, Frank

    2006-01-01

    "Standard theories tell us that, at some point in the Universe's evolution, free quarks and gluons must have become bound together into the hadronic matter we see today. But was this transition abrupt or smooth?

  2. The entropy balance for boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco-Javier E-mail: fjk@posta.unizar.es

    2001-10-01

    Subcooled forced convection boiling of water is recognized as one of the best means of accommodating the very high heat fluxes that plasma facing components of fusion reactors have to withstand. The boiling curve, giving the wall temperature in function of the applied flux and flow conditions, is essential for the design of such cooling configurations. In this paper, a new entropy balance for subcooled boiling flow, which allows the wall temperature to be obtained, is presented and successfully compared with experimental data from the Joint US-EURATOM R and D Program. The derivation of this entropy balance is based on a new strict application of the Reynolds theorem to multiphase flows recently proposed by the author.

  3. Thermodynamics of Flow Boiling Heat Transfer

    Science.gov (United States)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  4. Void fraction prediction in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Francisco J Collado [Dpto de Ingenieria Mecanica-Motores Termicos, CPS-B, Universidad de Zaragoza, Maria de Luna 50018-Zaragoza (Spain)

    2005-07-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for

  5. Boiling on Microconfigured Composite Surfaces Enhanced

    Science.gov (United States)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  6. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    Energy Technology Data Exchange (ETDEWEB)

    Briere, E.; Larrauri, D.; Olive, J. [Electricite de France, Chatou (France)

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  7. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    Science.gov (United States)

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  8. Facilitating Students' Conceptual Understanding of Boiling Using a Four-Step Constructivist Teaching Method

    Science.gov (United States)

    Calik, Muammer

    2008-01-01

    The aim of the work presented here was to devise an activity associated with factors affecting boiling points. The intervention used a four-step constructivist-based teaching strategy, which was subsequently evaluated by a cohort of students. Data collection consisted of application of a purpose designed questionnaire consisting of four open-ended…

  9. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    Energy Technology Data Exchange (ETDEWEB)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  10. Application of fractal characteristic quantities of pressure fluctuation in subcooled boiling regime recognition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dynamical behavior of the subcoole d boiling two-phase system ws introduced and discussed. With the introduction of fractal concept, an analysis of the fractal feature of pressure wave signals fiom nonlinear dynamics point of view. was carried out. Meanwhile, the pseudo phase diagrans of typical time series of sound pressure were given. Finally, through dynamic clustering and on the basis of calculating correlation dimension and Hurst exponent of pressure wave time series on different subcooling conditions, the recognition of developing regime of the two-phase system was delivered, which might provide a promising approach of recognition and diagnosis of a boiling system.

  11. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    Energy Technology Data Exchange (ETDEWEB)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  12. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    Science.gov (United States)

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  13. Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces.

    Science.gov (United States)

    Shen, Biao; Yamada, Masayuki; Hidaka, Sumitomo; Liu, Jiewei; Shiomi, Junichiro; Amberg, Gustav; Do-Quang, Minh; Kohno, Masamichi; Takahashi, Koji; Takata, Yasuyuki

    2017-05-17

    For phase-change cooling schemes for electronics, quick activation of nucleate boiling helps safeguard the electronics components from thermal shocks associated with undesired surface superheating at boiling incipience, which is of great importance to the long-term system stability and reliability. Previous experimental studies show that bubble nucleation can occur surprisingly early on mixed-wettability surfaces. In this paper, we report unambiguous evidence that such unusual bubble generation at extremely low temperatures-even below the boiling point-is induced by a significant presence of incondensable gas retained by the hydrophobic surface, which exhibits exceptional stability even surviving extensive boiling deaeration. By means of high-speed imaging, it is revealed that the consequently gassy boiling leads to unique bubble behaviour that stands in sharp contrast with that of pure vapour bubbles. Such findings agree qualitatively well with numerical simulations based on a diffuse-interface method. Moreover, the simulations further demonstrate strong thermocapillary flows accompanying growing bubbles with considerable gas contents, which is associated with heat transfer enhancement on the biphilic surface in the low-superheat region.

  14. Energy gradients with respect to atomic positions and cell parameters for the Kohn-Sham density-functional theory at the Gamma point.

    Science.gov (United States)

    Weber, Valéry; Tymczak, Christopher J; Challacombe, Matt

    2006-06-14

    The application of theoretical methods based on density-functional theory is known to provide atomic and cell parameters in very good agreement with experimental values. Recently, construction of the exact Hartree-Fock exchange gradients with respect to atomic positions and cell parameters within the Gamma-point approximation has been introduced. In this article, the formalism is extended to the evaluation of analytical Gamma-point density-functional atomic and cell gradients. The infinite Coulomb summation is solved with an effective periodic summation of multipole tensors. While the evaluation of Coulomb and exchange-correlation gradients with respect to atomic positions are similar to those in the gas phase limit, the gradients with respect to cell parameters needs to be treated with some care. The derivative of the periodic multipole interaction tensor needs to be carefully handled in both direct and reciprocal space and the exchange-correlation energy derivative leads to a surface term that has its origin in derivatives of the integration limits that depend on the cell. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm to optimize one-dimensional and three-dimensional periodic systems at the density-functional theory and hybrid Hartree-Fock/density-functional theory levels. We also report the full relaxation of forsterite supercells at the B3LYP level of theory.

  15. Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1968-01-01

    Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.

  16. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  17. Bubble Behavior in Nucleate Boiling Experiment Aboard the Space Shuttle

    OpenAIRE

    Koeln, Justin P.; Boulware, Jeffrey C.; Ban, Heng

    2009-01-01

    Boiling dynamics in microgravity need to be better understood before heat transfer systems based on boiling mechanism can be developed for space applications. This paper presents the results of a nucleate boiling experiment aboard Space Shuttle Endeavor (STS- 108). The experiment utilized nickel-chromium resistance wire to boil water in microgravity, and the data was recorded with a CCD camera and six thermistors. This data was analyzed to determine the behavior of bubble formation, detachmen...

  18. Cryogenic Propellant Boil-Off Reduction System

    Science.gov (United States)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  19. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  20. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  1. Electrically Driven Liquid Film Boiling Experiment

    Science.gov (United States)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  2. Big Bubbles in Boiling Liquids: Students' Views

    Science.gov (United States)

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  3. Contact Angle Effects in Boiling Heat Transfer

    OpenAIRE

    Urquiola, Erwin; Fujita, Yasunobu

    2002-01-01

    This paper reports boiling experiments with pure water and surfactant solutions of SDS on horizontal heating surface. The static contact angle, rather than the surface tension value, was found to be the leading factor for the results and probably its prev

  4. Point defect dynamics in sodium aluminum hydrides - a combined quasielastic neutron scattering and density functional theory study

    DEFF Research Database (Denmark)

    Shi, Qing; Voss, Johannes; Jacobsen, H.S.

    2007-01-01

    we study hydrogen dynamics in undoped and TiCl3-doped samples of NaAlH4 and Na3AlH6 using a combination of density functional theory calculations and quasielastic neutron scattering. Hydrogen dynamics is found to be limited and mediated by hydrogen vacancies in both alanate phases, requiring......Understanding the catalytic role of titanium-based additives on the reversible hydrogenation of complex metal hydrides is an essential step towards developing hydrogen storage materials for the transport sector. Improved bulk diffusion of hydrogen is one of the proposed catalytic effects, and here...

  5. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: swkim@alaska.edu [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)

    2017-03-15

    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  6. Natural saltwater upconing by boils: field measurements and numerical modeling

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Vandenbohede, A.; Oude Essink, Gualbert; Werner, Adrian D.

    2013-01-01

    Natural saltwater upconing caused by the preferential groundwater discharge of boils is a key proce ss in the salinization of Dutch deep polders. The factors controlling upconing by boil discharge and boil water salinities are poorly constrained and have not been previously documented. We addressed

  7. Water flow boiling behaviors in hydrophilic and hydrophobic microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Yu, Dongin; Kim, Moohwan [Pohang University of Science and Technology (Korea, Republic of). Dept. of Mechanical Engineering

    2009-07-01

    The wettability is one of issues on two-phase flow in a microchannel. However, previous studies of wettability effect on two-phase flow have conducted only isothermal condition. Moreover, most studies have used conventional micro/mini-tubes due to difficulties of their fabrication. The objective of our study is to understand the wettability effect on flow boiling in a rectangular microchannel. In the first, new micro-electro-mechanical-system (MEMS) fabrication technique was developed to obtain a single glass rectangular microchannel and localized six micro heaters. A photosensitive glass was used as base material. The photosensitive glass is hydrophilic, so the hydrophobic microchannel was prepared by coating SAM, flow boiling experiments were conducted in hydrophilic and hydrophobic microchannels with micro heaters. The experiment range was the mass flux of 25 and 75 kg/m{sup 2}s, the heat flux of 30 - 430 k W/m2 and quality of 0 - 0.3. A working fluid was de-ionized and degassed water. The local heat transfer coefficient was evaluated at the local micro heater section. Also, flow regimes in the microchannel were visualized by using a high-speed camera with a long-distance microscope. Heat transfer was analyzed with visualization results. Heat transfer in the hydrophobic microchannel was enhanced by higher nucleation site density and delayed local dryout. The pressure drop in the hydrophobic microchannel was higher than that in the hydrophilic microchannel. (author)

  8. The law of stable equilibrium and the entropy-based boiling curve for flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J. [Universidad de Zaragoza (Spain). Dpto. Ingenieria Mecanica Motores Termicos

    2005-05-01

    Convective flow boiling in sub-cooled fluids is recognized as one of the few means of accommodating very high heat fluxes. There are many available correlations for predicting the inner wall temperature of the heated duct in the several regimes of the empirical Nukiyama boiling curve, although unfortunately there is no physical fundamentals of such curve. Recently, the author has shown that the classical entropy balance could contain key information about boiling heat transfer. So, it was found that the average thermal gap in the heated channel (the inner wall temperature minus the average temperature of the coolant fluid) was strongly correlated with the efficiency of a theoretical reversible engine placed in this thermal gap. From this new correlation, a new boiling curve plotting the wall temperature versus the average fluid temperature was derived and successfully checked against low- and high-pressure water data. This curve suggested a new and simple definition of the critical heat flux (CHF) namely, the value of the coolant average temperature at the maximum. In this work, after briefly reviewing the entropy balance of a non-equilibrium boiling flow and its relationship with the thermodynamic average temperature and the law of stable equilibrium (LSE), the possibilities of the new approach for the design of flow boiling cooling systems are highlighted. Finally, the strong correlation found between the reversible engine efficiency and the thermal driving force is verified again, now with high-pressure refrigerant 22 (R-22) data. (author)

  9. Anti-obesity effects of boiled tuna extract in mice with obesity induced by a high-fat diet.

    Science.gov (United States)

    Kim, Youngmin; Kwon, Mi-Jin; Choi, Jeong-Wook; Lee, Min-Kyeong; Kim, Chorong; Jung, Jaehun; Aprianita, Heny; Nam, Heesop; Nam, Taek-Jeong

    2016-10-01

    The aim of this study was to examine the anti-obesity effects of boiled tuna extract in C57BL/6N mice with obesity induced by a high-fat diet (HFD). We determined the anti-obesity effects of boiled tuna extract (100, 200, or 400 mg/kg) on the progression of HFD-induced obesity for 10 weeks. The mice were divided into 5 groups as follows: the normal diet (ND) group (n=10); the HFD group (n=10); the mice fed HFD and 100 mg/kg boiled tuna extract group (n=10); those fed a HFD and 200 mg/kg boiled tuna extract group (n=10); and those fed a HFD and 400 mg/kg boiled tuna extract group (n=10). Changes in body weight, fat content, serum lipid levels and lipogenic enzyme levels were measured. The consumption of boiled tuna extract lowered epididymal tissue weight and exerted anti-obesity effects, as reflected by the serum glucose, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL‑C), low-density lipoprotein cholesterol (LDL-C), insulin and leptin levels. In addition, we demonstrated changes in liver adipogenic- and lipogenic-related protein expression by western blot analysis. Boiled tuna extract downregulated the levels of the CCAAT/enhancer-binding protein α, β and δ (C/EBPα, β, δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ) adipocyte marker genes. Boiled tuna extract also attenuated adipogenic and lipogenic gene expression, namely the levels of fatty acid synthase (FAS), lipoprotein lipase (LPL), acetyl-CoA carboxylase (ACC), glucose transporter type 4 (Glut4) and phosphorylated adenosine monophosphate-activated protein kinase α and β (AMPKα, β) in a dose-dependent manner. Moreover, the consumption of boiled tuna extract restored the levels of superoxide dismutase (SOD), catalase (CAT), glutamic oxaloacetic transaminase (GOT), glutamic-pyruvate transaminase (GPT), aspartate transaminase (AST) and alanine transaminase (ALT) to those of the control group. These results

  10. A heat transfer model for slug flow boiling within microchannels

    Science.gov (United States)

    Magnini, Mirco; Thome, John

    2016-11-01

    We propose a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels, to update the widely used three-zone model for the design of multi-microchannel evaporators. The flow is modelled as the cyclic passage of a liquid slug, an elongated bubble which traps a thin liquid film against the channel wall, and a dry vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method considering bubble proximity effects, which may limit the radial extension of the film, is included. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies: 833 slug flow boiling data points covering R134a, R245fa and R236fa and channel diameters from 0.4 mm to 1 mm. The new model predicts more than 80% of the database to within +/- 30 % and it represents an important step toward a complete physics-based modelling of bubble dynamics and heat transfer within microchannels under evaporating flow conditions.

  11. Dynamics of pulsed laser ablation plasmas in high-density CO2 near the critical point investigated by time-resolved shadowgraph imaging

    Science.gov (United States)

    Urabe, Keiichiro; Kato, Toru; Himeno, Shohei; Kato, Satoshi; Stauss, Sven; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2013-09-01

    Pulsed laser ablation (PLA) plasmas generated in high-density gases and liquids are promising for the synthesis of nanomaterials. However, the characteristics of such plasmas are still not well understood. In order to improve the understandings of PLA plasmas in high-density fluids including gases, liquids, and supercritical fluids (SCFs), we have investigated the dynamics of PLA plasmas in high-density carbon dioxide (CO2) . We report on experimental results of time-resolved shadowgraph imaging, from the generation of plasma plume to the extinction of cavitation bubbles. Shadowgraph images revealed that the PLA plasma dynamics showed two distinct behaviors. These are divided by gas-liquid coexistence curve and the so-called Widom line, which separates gas-like and liquid-like SCF domains. Furthermore, cavitation bubble observed in liquid CO2 near the critical point showed peculiar characteristics, the formation of an inner bubble and an outer shell structure, which so far has never been reported. The experiments indicate that thermophysical properties of PLA plasmas can be tuned by controlling solvent temperature and pressure around the critical point, which may be useful for materials processing. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21110002) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  12. Influence of low-density polyethylene on the thermal characteristics and crystallinity of high melting point macro- and micro-crystalline waxes

    Energy Technology Data Exchange (ETDEWEB)

    Zaky, Magdy T., E-mail: magdytadrous@hotmail.com [Petroleum Refining Division, Egyptian Petroleum Research Institute (EPRI), 1-Ahmed El-Zomor Street, Hai Al-Zehour, Nasr City, P.O. Box 11727, Cairo (Egypt); Mohamed, Nermen H. [Petroleum Refining Division, Egyptian Petroleum Research Institute (EPRI), 1-Ahmed El-Zomor Street, Hai Al-Zehour, Nasr City, P.O. Box 11727, Cairo (Egypt)

    2010-02-20

    The influence of low-density polyethylene on the thermal characteristics and the crystallinity of high melting point macro- and micro-crystalline waxes were investigated. The samples were prepared through melt blending using mechanical stirrer. The thermal characteristics of the blended samples were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The crystallinity of the samples was obtained using X-ray diffraction analyzer (XRD). The observations are discussed in terms of possible changes when the polymer is mixed with two types of waxes. The wax-polymer miscibility differed with the type of the wax and the amount of polymer mixed into the wax. Also, the crystallinity and congealing point of the waxes differed with the amount of polymer mixed into the wax. Moreover, the resulting data indicate that, blending of polymer with high melting point micro-crystalline wax elevates its melting point to reach the limits of high melting point ceresin waxes which can be used in different industrial applications.

  13. Influence of point defects on the phonon thermal conductivity and phonon density of states of Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bedoya-Martinez, O.N.; Hashibon, A.; Elsaesser, C. [Fraunhofer IWM, Freiburg (Germany)

    2016-03-15

    The influence of point defects on the lattice thermal conductivity and vibrational properties of Bi{sub 2}Te{sub 3} were studied by using equilibrium and non-equilibrium molecular-dynamics simulations. Three types of point defects at various concentrations were considered, namely Bi and Te vacancies and Bi anti-sites. It is shown that point defects can result in a reduction of up to 80% of the bulk thermal conductivity. A detailed analysis of the phonon density of states (PDOS) of the studied systems is provided. Element (Bi or Te) and orientation (in-plane or cross-plane) resolved PDOS were calculated. In agreement with experimental observations and other simulations, features in the PDOS were identified with specific atomic and orientation contributions. Systems containing point defects exhibit a broadening of the PDOS peaks as the defect concentration increases, which is due to the disorder induced by the defects. Such disorder leads to a higher phonon scattering and thus to a lower lattice thermal conductivity. Tuning the point defect type and concentrations during growth may, therefore, provide a route for optimizing Bi{sub 2}Te{sub 3} based thermoelectric devices. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Correlation of pool boiling curves for the homogeous group freons

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, J.W. (Dept. of Chemical Engineering, Univ. of Illnois, Urban, IL (US)); Zinn, J.C. (Monsanto, Co., St. Louis, MO (US)); Brodbeck, K.J. (Clorox Corp., Pleasanton, CA (US))

    1989-02-01

    A knowledge of the complete boiling curve q verses {Delta}T for a liquid, including the regimes of nucleate boiling, transition boiling, and a film boiling is needed for the design and operation of various types of heat transfer equipment. No general method exists for predicting the complete curve. Most difficult is the prediction of the nucleate boiling curve, the transition curve, and the temperature that separates the two. If the curve for every liquid at every pressure must be determined experimentally, we are faced with a formidable task. This paper shows that some simplification is possible for members of a homologous group.

  15. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  16. Thermohydrodynamics of boiling in a van der Waals fluid.

    Science.gov (United States)

    Laurila, T; Carlson, A; Do-Quang, M; Ala-Nissila, T; Amberg, G

    2012-02-01

    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

  17. Automatic Evaluation of Photovoltaic Power Stations from High-Density RGB-T 3D Point Clouds

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2017-06-01

    Full Text Available A low-cost unmanned aerial platform (UAV equipped with RGB (Red, Green, Blue and thermographic sensors is used for the acquisition of all the data needed for the automatic detection and evaluation of thermal pathologies on photovoltaic (PV surfaces and geometric defects in the mounting on photovoltaic power stations. RGB imagery is used for the generation of a georeferenced 3D point cloud through digital image preprocessing, photogrammetric and computer vision algorithms. The point cloud is complemented with temperature values measured by the thermographic sensor and with intensity values derived from the RGB data in order to obtain a multidimensional product (5D: 3D geometry plus temperature and intensity on the visible spectrum. A segmentation workflow based on the proper integration of several state-of-the-art geomatic and mathematic techniques is applied to the 5D product for the detection and sizing of thermal pathologies and geometric defects in the mounting in the PV panels. It consists of a three-step segmentation procedure, involving first the geometric information, then the radiometric (RGB information, and last the thermal data. No configuration of parameters is required. Thus, the methodology presented contributes to the automation of the inspection of PV farms, through the maximization of the exploitation of the data acquired in the different spectra (visible and thermal infrared bands. Results of the proposed workflow were compared with a ground truth generated according to currently established protocols and complemented with a topographic survey. The proposed methodology was able to detect all pathologies established by the ground truth without adding any false positives. Discrepancies in the measurement of damaged surfaces regarding established ground truth, which can reach the 5% of total panel surface for the visual inspection by an expert operator, decrease with the proposed methodology under the 2%. The geometric evaluation

  18. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  19. Dynamic structure factor of density fluctuations from direct imaging very near (both above and below) the critical point of SF(6).

    Science.gov (United States)

    Oprisan, Ana; Oprisan, Sorinel A; Bayley, Brittany; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2012-12-01

    Large density fluctuations were observed by illuminating a cylindrical cell filled with sulfur hexafluoride (SF(6)), very near its liquid-gas critical point (|T-T(c)|critical wave number, which is related to the characteristic length of fluctuations, steadily decreases over time, supporting a sustained increase in the spatial scale of the fluctuating domains. The scaled evolution of the critical wave number obeys the universal evolution for the interconnected domains at high volume fraction with an apparent power law exponent of -0.35 ± 0.02. We also determined the correlation time of the fluctuations and inferred values for thermal diffusivity coefficient very near the critical point, above and below. The values were used to pinpoint the crossing of T(c) within 13 μK.

  20. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  1. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  2. Nanowires for enhanced boiling heat transfer.

    Science.gov (United States)

    Chen, Renkun; Lu, Ming-Chang; Srinivasan, Vinod; Wang, Zhijie; Cho, Hyung Hee; Majumdar, Arun

    2009-02-01

    Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation and refrigeration devices and systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF) limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant impact on system-level energy efficiency, safety, and cost, their values for water and other heat transfer fluids have essentially remained unchanged for many decades. Here we report that the high surface tension forces offered by liquids in nanowire arrays made of Si and Cu can be exploited to increase both the CHF and the HTC by more than 100%.

  3. Enhanced Droplet Control by Transition Boiling

    Science.gov (United States)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  4. Dynamic Bubble Behaviour during Microscale Subcooled Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M.Christopher

    2005-01-01

    @@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.

  5. Pool Boiling Heat Transfer on structured Surfaces

    Science.gov (United States)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  6. Self-propelled film-boiling liquids

    OpenAIRE

    Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.; Francis, M J; Dow-Hygelund, C. C.; Narayanan, V.; Taylor, R. P.; Stout, A.

    2005-01-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  7. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  8. Flow boiling test of GDP replacement coolants

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [comp.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  9. Pressure drop in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Universidad de Zaragoza, Zaragoza (Spain)

    2003-07-01

    A new mass balance for flow boiling have been recently suggested by the author following a quite simple idea: if the phases have different velocities, they can not cover the same distance -the control volume length for a 1-d system- in the same time. Thus, the time scales of the phases have to be different, and we should scale the time dependent magnitudes of one phase to the other one before combining them. Furthermore, it is reasonable to think that conservation equations should have to include in some manner this evident physical fact. In complete coherence with the former mass balance, a new energy balance, which does include the slip ratio has been also stated. This work, whilst reviews these new fundamentals for saturated flow boiling, stresses those aspects related with the prediction of the pressure drop in saturated flow boiling. The new correlations found for the data carefully measured by Thom during the Cambridge project would confirm the new two-phase flowapproach.

  10. CFD for Subcooled Flow Boiling: Parametric Variations

    Directory of Open Access Journals (Sweden)

    Roland Rzehak

    2013-01-01

    Full Text Available We investigate the present capabilities of CFD for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Very similar modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant nondimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12 as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, liquid temperature, and bubble size. Robust predictive capabilities of the modeling require that it is validated for a wide range of parameters. It is known that a careful calibration of correlations used in the wall boiling model is necessary to obtain agreement with the measured data. We here consider tests under a variety of conditions concerning liquid subcooling, flow rate, and heat flux. It is investigated to which extent a set of calibrated model parameters suffices to cover at least a certain parameter range.

  11. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  12. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  13. Nucleate pool boiling in microgravity: Recent progress and future prospects

    Science.gov (United States)

    Colin, Catherine; Kannengieser, Olivier; Bergez, Wladimir; Lebon, Michel; Sebilleau, Julien; Sagan, Michaël; Tanguy, Sébastien

    2017-01-01

    Pool boiling on flat plates in microgravity has been studied for more than 50 years. The results of recent experiments performed in sounding rocket are presented and compared to previous results. At low heat flux, the vertical oscillatory motion of the primary bubble is responsible for the increase in the heat transfer coefficient in microgravity compared to ground experiments. The effect of a non-condensable gas on the stabilisation of the large primary bubble on the heater is pointed out. Experiments on isolated bubbles are also performed on ground and in parabolic flight. The effect of a shear flow on the bubble detachment is highlighted. A force balance model allows determining an expression of the capillary force and of the drag force acting on the bubble.

  14. Experimental study about ONB and subcooled boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Changhong, P.; Myint, A.; Yun, G.; Dounan, J. [State Key Laboratory of Multiphase Flow in power engineering, Department of Nuclear and Thermal Power Engineering, Xian (China)

    2004-07-01

    Water subcooled boiling heat transfer were experimentally investigated in the vertical annuli with narrow gap. Subcooled flow boiling covers the region from the location where the bubbles forms on the wall to the location where the bulk temperature reaches saturated temperature. Three locations in the subcooled flow boiling have been identified by earlier researchers as the onset of nucleate boiling (ONB), the beginning of fully developed boiling, and the location where the thermodynamic quality is zero that is inferred from the enthalpy balance equation. The heat transfer regions are identified as single-phase heat transfer prior to ONB, partial boiling (PB) and fully developed boiling (FDB). In this study, the available models for predicting heat transfer in the different regions and the modified correlation can predict our experimental data: -) the heat flux of ONB can be predicted by the Unal correlation, nevertheless the h{sub FC} is calculated by the modified Dittus-Boelter correlations in the narrow annuli, -) Griffith's method can be modified to identify the beginning of fully develop boiling, -) in the partial boiling region, the heat transfer coefficient can be calculated by h{sub PB} equals (1-a)*h{sub L} + a*h{sub FDB}, and -) in the fully developed region, the correlation for saturated flow boiling can be employed to describe the heat transfer.

  15. Heat Transfer of Single and Binary Systems inPool Boiling

    Directory of Open Access Journals (Sweden)

    Abbas J. Sultan

    2010-01-01

    Full Text Available The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltmeter and ammeter readings. A water cooled coil condenses the vapor produced by the heat input and the liquid formed returns to the cylinder for re-evaporation.The boiling results show that the nucleate pool boiling heat transfer coefficients of binary mixtures were always lower than the pure components nucleate pool boiling heat transfer coefficients. This confirmed that the mass transfer resistance to the movement of the more volatile component was responsible for decrease in heat transfer and that the maximum deterioration that was observed at a point was the absolute concentration differences between vapor and liquid phases at their maximum. All the data points were tested with the most widely known correlations namely those of Calus-Leonidopoulos, Fujita and Thome. It was found that Thome's correlation is the more representative form, for it gave the least mean and standard deviations

  16. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    OpenAIRE

    Li, Q; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve togeth...

  17. Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging

    Directory of Open Access Journals (Sweden)

    Goovaerts Pierre

    2006-11-01

    Full Text Available Abstract Background Geostatistical techniques that account for spatially varying population sizes and spatial patterns in the filtering of choropleth maps of cancer mortality were recently developed. Their implementation was facilitated by the initial assumption that all geographical units are the same size and shape, which allowed the use of geographic centroids in semivariogram estimation and kriging. Another implicit assumption was that the population at risk is uniformly distributed within each unit. This paper presents a generalization of Poisson kriging whereby the size and shape of administrative units, as well as the population density, is incorporated into the filtering of noisy mortality rates and the creation of isopleth risk maps. An innovative procedure to infer the point-support semivariogram of the risk from aggregated rates (i.e. areal data is also proposed. Results The novel methodology is applied to age-adjusted lung and cervix cancer mortality rates recorded for white females in two contrasted county geographies: 1 state of Indiana that consists of 92 counties of fairly similar size and shape, and 2 four states in the Western US (Arizona, California, Nevada and Utah forming a set of 118 counties that are vastly different geographical units. Area-to-point (ATP Poisson kriging produces risk surfaces that are less smooth than the maps created by a naïve point kriging of empirical Bayesian smoothed rates. The coherence constraint of ATP kriging also ensures that the population-weighted average of risk estimates within each geographical unit equals the areal data for this unit. Simulation studies showed that the new approach yields more accurate predictions and confidence intervals than point kriging of areal data where all counties are simply collapsed into their respective polygon centroids. Its benefit over point kriging increases as the county geography becomes more heterogeneous. Conclusion A major limitation of choropleth

  18. Study on Calculation Model of Onset of Nucleate Boiling in Narrow Channels%窄通道欠热沸腾起始点计算模型的分析

    Institute of Scientific and Technical Information of China (English)

    张明; 周涛; 盛程; 傅涛; 肖泽军

    2011-01-01

    In the reactor engineering, narrow channels was used widely for its high power density,exceptional heat transfer and actual engineering requirements. The point of Onset of Nucleate Boiling(ONB) is the key point of boiling heat transfer in narrow channels. The point of ONB can directly influence the following flow and heat transfer characteristics in the reactor. Due to the special structure and complexity flow, the point of ONB in narrow channels are effected by many factors, which characteristics are not understood completely yet. Using B&R model, Su Shun-yu model, Pan Liang-ming model and Yang Rui-chang model, the heat flux of onset of nucleate boiling is compared and analyzed by taking water as the medium. And then the relationships of the heat flux with pressure, mass flow and wall temperature are obtained. Based on the differences of each model, the mechanisms for the main influence factors are suggested.%欠热沸腾起始点(ONB)是窄通道内沸腾传热的关键转变点,直接关系到其后的流动传热特性.窄通道内ONB点的产生受很多因素影响,目前对其特征的把握尚不完善.运用B&R模型、苏顺玉经验关系式、潘良明模型和杨瑞昌模型对以水为工质的ONB热流密度进行分析比较,得出其与压力、质量流速和壁面温度的关系曲线,进而根据各计算模型的差异,提出主要影响因素的作用机理.

  19. A review on boiling heat transfer enhancement with nanofluids.

    Science.gov (United States)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  20. Infrared thermometry study of nanofluid pool boiling phenomena

    Science.gov (United States)

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  1. Consumers' perception and acceptance of boiled and fermented sausages from strongly boar tainted meat.

    Science.gov (United States)

    Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel

    2016-08-01

    Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, Psausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts.

  2. Heat transport in boiling turbulent Rayleigh-B\\'{e}nard convection

    CERN Document Server

    Lakkaraju, Rajaram; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. We consider a cylindrical cell with a diameter equal to its height. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping the temperature difference constant and changing the liquid pressure we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between $2\\times10^6$ and $5\\times10^9$. We find a...

  3. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    Science.gov (United States)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  4. Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LinZhiping; MaTongze; 等

    1994-01-01

    Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.

  5. Pool boiling heat transfer performance of Newtonian nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Saide; Etemad, Seyed Gholamreza [Isfahan University of Technology, Department of Chemical Engineering, Isfahan (Iran); Thibault, Jules [University of Ottawa, Department of Chemical and Biological Engineering, Ottawa, ON (Canada)

    2009-10-15

    Experimental measurements were carried out on the boiling heat transfer characteristics of {gamma}-Al{sub 2}O{sub 3}/water and SnO{sub 2}/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of {gamma}-Al{sub 2}O{sub 3} and SnO{sub 2} nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles. (orig.)

  6. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  7. Pool boiling visualization on open microchannel surfaces

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available The paper presents visualization investigations into pool boiling heat transfer for open minichannel surfaces. The experiments were carried out wih saturated water at atmospheric pressure. Parallel microchannels fabricated by machining were about 0.3 mm wide and 0.2 to 0.4 mm deep. High-speed videos were used as an aid to understanding the heat transfer mechanism. The visualization study aimed at identifying nucleation sites of the departing bubbles and determining their diameters and frequency at various superheats.

  8. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  9. Subcooled pool boiling CHF in ethanol

    OpenAIRE

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2006-01-01

    Steady-state and transient critical heat fluxes (CHFs) were measured using a 1.0 mm diameter horizontal cylinder in a pool of highly wetting liquid, such as ethanol, due to steady and transient heat generation rate for wide range of subcoolings and pressures. Boiling CHF was assumed to happen based on a kind of hydrodynamic instability (HI) at CHF, and the model is supposed that the increase in vapor generation from the cylinder surface causes a limit of the steady-state vapor escape flow whe...

  10. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's.......Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  11. Modal control of unstable boiling states in three-dimensional nonlinear pool-boiling

    NARCIS (Netherlands)

    van Gils, R.W.; Speetjens, M.F.M; Zwart, Heiko J.; Nijmeijer, H.

    2014-01-01

    Topic is feedback stabilisation of a nonlinear pool-boiling system in three spatial dimensions (3D). Regulation of its unstable (non-uniform) equilibria has great potential for application in micro-electronics cooling and thermal-management systems. Here, as a first step, stabilisation of such 3D

  12. Modal control of unstable boiling states in three-dimensional nonlinear pool-boiling

    NARCIS (Netherlands)

    Gils, van R.W.; Speetjens, M.F.M; Zwart, H.J.; Nijmeijer, H.

    2014-01-01

    Topic is feedback stabilisation of a nonlinear pool-boiling system in three spatial dimensions (3D). Regulation of its unstable (non-uniform) equilibria has great potential for application in micro-electronics cooling and thermal-management systems. Here, as a first step, stabilisation of such 3D eq

  13. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    Directory of Open Access Journals (Sweden)

    Pezo Milada L.

    2016-01-01

    Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014

  14. An experimental investigation of critical heat flux performance of hypervapotron in subcooled boiling

    Science.gov (United States)

    Chen, Peipei

    The successful use of subcooled flow boiling for high heat flux components requires that the critical heat flux (CHF), i.e., a fast reduction in the boiling heat transfer, must be avoided. Among the many techniques available to enhance CHF, particular attention has been focused on the hypervapotron concept. In this study, the CHF characteristics of the hypervapotron were experimentally investigated using a simulant fluid, R134a, which has been found to be an effective modeling fluid to simulate CHF in water-cooled environments. An experimental and modeling study of the subcooled boiling heat transfer on plain surface and hypervapotron has been conduced. A test facility was designed and constructed to perform required boiling heat transfer experiments. A high speed visualization system was utilized to give details of bubble formation and departure and of nucleation site density. Surface measurements of various specimens were performed to investigate the relationship between nucleation sites and surface microstructure. Full characterization of the hypervapotron effect as a function of fluid thermal hydraulic conditions was accomplished. A non-dimensional CHF correlation for smooth rectangular channels and the hypervapotron channel was developed and compared with experimental data in this work. In addition, a hot-spot model was developed to give predictions of critical heat flux on both plain and hypervapotron surfaces. It was developed on observations of bubble formation, departure and coalescence, and on the confirmation of nucleation structure on the heating surface. Finally, a numerical code was successfully developed to give CHF predictions for hypervapotron configurations. The simulation indicates that the better performance of CHF in hypervapotron configurations is a result of high conductivity material with augmented heating surfaces in subcooled boiling environment. Different fin dimensions were also tested numerically to compare the experimental results, and

  15. A bifurcation analysis of boiling water reactor on large domain of parametric spaces

    Science.gov (United States)

    Pandey, Vikas; Singh, Suneet

    2016-09-01

    The boiling water reactors (BWRs) are inherently nonlinear physical system, as any other physical system. The reactivity feedback, which is caused by both moderator density and temperature, allows several effects reflecting the nonlinear behavior of the system. Stability analyses of BWR is done with a simplified, reduced order model, which couples point reactor kinetics with thermal hydraulics of the reactor core. The linear stability analysis of the BWR for steady states shows that at a critical value of bifurcation parameter (i.e. feedback gain), Hopf bifurcation occurs. These stable and unstable domains of parametric spaces cannot be predicted by linear stability analysis because the stability of system does not include only stability of the steady states. The stability of other dynamics of the system such as limit cycles must be included in study of stability. The nonlinear stability analysis (i.e. bifurcation analysis) becomes an indispensable component of stability analysis in this scenario. Hopf bifurcation, which occur with one free parameter, is studied here and it formulates birth of limit cycles. The excitation of these limit cycles makes the system bistable in the case of subcritical bifurcation whereas stable limit cycles continues in an unstable region for supercritical bifurcation. The distinction between subcritical and supercritical Hopf is done by two parameter analysis (i.e. codimension-2 bifurcation). In this scenario, Generalized Hopf bifurcation (GH) takes place, which separates sub and supercritical Hopf bifurcation. The various types of bifurcation such as limit point bifurcation of limit cycle (LPC), period doubling bifurcation of limit cycles (PD) and Neimark-Sacker bifurcation of limit cycles (NS) have been identified with the Floquet multipliers. The LPC manifests itself as the region of bistability whereas chaotic region exist because of cascading of PD. This region of bistability and chaotic solutions are drawn on the various

  16. Numerical study of subcooled boiling phenomena using a component analysis code, CUPID

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ba-Ro; Lee, Yeon-Gun [Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    In this study, a couple of subcooled boiling experiments at high- (> 10 bar) and low-pressure (near atmospheric pressure) conditions are analyzed using a three-dimensional thermal-hydraulic component code, CUPID. And then the analysis results compared with the results using MARS-KS code. Subcooled boiling experiments at high- and low pressure conditions are analyzed using a three dimensional thermal-hydraulic component code, CUPID. The predictions of the CUPID code shows good agreement with Christenses's data and Bartolomey's data obtained at high pressure conditions. Subcooled boiling is encountered in many industrial applications in the power and process industry. In nuclear reactors, under certain conditions, subcooled boiling may be encountered in the core. The movement of bubbles generated by subcooled boiling affect the heat transfer characteristics and the pressure drop of the system. Thus some experimental and analysis using safety codes works have been already performed by previous investigators. It has been reported that the existing safety analysis codes have some weaknesses in predicting subcooled boiling phenomena at low pressure conditions. Thus, it is required to improve the predictive capability of thermal-hydraulic analysis codes on subcooled boiling phenomenon at low-pressure conditions. At low pressure condition, the CUPID code generally is overestimated prediction of the void fraction. Thus, we did selected submodels in the heat partitioning model by sensitivity analysis. Selected submodels of M{sub c}ase 4 are Kocamustafaogullari and Ishii correlation model of active nucleate site density, N' and Fritz correlation model of bubble departure diameter, d{sub Bd} . And then, case 5 - 8 are reanalysis using submodels of M{sub c}ase 4. The calculated void fraction is compared the default CUPID code model to the modified CUPID code model. As a result, average void fraction error was reduced from 0.081 to 0.011 and 0.128 to 0.024, 0

  17. Optimizing the Combination of Smoking and Boiling on Quality of Korean Traditional Boiled Loin (M. longissimus dorsi).

    Science.gov (United States)

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Jung, Tae-Jun; Kim, Young-Boong; Kim, Cheon-Jei

    2015-01-01

    The combined effects of smoking and boiling on the proximate composition, technological quality traits, shear force, and sensory characteristics of the Korean traditional boiled loin were studied. Cooking loss, processing loss, and shear force were lower in the smoked/boiled samples than those in the control (without smoking treatment) (pboiled loin samples between the control and treatment did not differ significantly in protein, fat, or ash contents, or pH values (p>0.05). The treated samples had higher score for overall acceptability than the control (pboiled loin treated with smoking for 60 min before boiling had improved physicochemical properties and sensory characteristics.

  18. Optimizing minimum free-energy crossing points in solution: linear-response free energy/spin-flip density functional theory approach.

    Science.gov (United States)

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  19. Development boiling to sprinkled tube bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2016-01-01

    Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  20. Development boiling to sprinkled tube bundle

    Science.gov (United States)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  1. Zero boil-off system testing

    Science.gov (United States)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  2. Prospective Chemistry Teachers' Misconceptions about Colligative Properties: Boiling Point Elevation and Freezing Point Depression

    Science.gov (United States)

    Pinarbasi, Tacettin; Sozbilir, Mustafa; Canpolat, Nurtac

    2009-01-01

    This study aimed at identifying prospective chemistry teachers' misconceptions of colligative properties. In order to fulfill this aim, a diagnostic test composed of four open-ended questions was used. The test was administered to seventy-eight prospective chemistry teachers just before qualifying to teaching in secondary schools. Nine different…

  3. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    Science.gov (United States)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while

  4. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    Science.gov (United States)

    Alavi Fazel, S. Ali

    2017-03-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  5. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    Science.gov (United States)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  6. Influence of Pressure on Stable Film Boiling of Subcooled Liquid

    Science.gov (United States)

    Zabirov, A. R.; Yagov, V. V.; Kaban'kov, O. N.; Leksin, M. A.; Kanin, P. K.

    2016-11-01

    Film boiling of subcooled liquids is an integral part of the hardening process. Understanding of the mechanisms underlying film boiling is important for modeling processes in atomic power engineering and cryogenic technology. Stationary processes of film boiling of subcooled liquids under conditions of their free motion near cylindrical heaters, just as subcooled liquid turbulent flow past high-temperature surfaces, represent quite a different type of process. In cooling metal spheres heated to a high temperature by a subcooled water, a special regime of film boiling is observed (microbubble boiling) distinguished by high intensity of heat transfer. Such a regime has not been revealed up to now for nonaqueous liquids. The paper presents new experimental data on heat transfer regimes in cooling nickel spheres in subcooled isopropanol and perfluorohexane at pressures of up to 1 MPa. It has been established that stable film boiling is the main regime of heat transfer that accounts for the larger part of the total time of cooling. The regimes of highly intensive film boiling heat transfer were not observed in the entire range of operational parameters even in the case of extreme subcoolings of liquid below their saturation temperature (to 170 K). The intensity of heat transfer in stable film boiling increases noticeably with subcooling of a chilling liquid.

  7. Boiling treatment of ABS and PS plastics for flotation separation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling.

  8. Thermal-hydraulic performance of convective boiling jet array impingement

    Science.gov (United States)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  9. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  10. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  11. Rewetting and Flow Film Boiling Along Hot Surface

    Institute of Scientific and Technical Information of China (English)

    王补宣Thermal Engineering Department; Tsinghua University; Beijing 100084; PRC; 彭晓峰

    1994-01-01

    The recent investigations on the rewettmg and film boiling of liquid flowing along a hot/heated surface are briefly reviewed and discussed.Some advanced theoretical analyses are conducted and new conclusions achieved.These investigations describe the fundamental characteristics of liquid flow boiling and further the complicated rewetting phenomena,and have resulted in considerable insight intothe mechanism.

  12. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    Science.gov (United States)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  13. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    Science.gov (United States)

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  14. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  15. Experimental Investigation of Forced Convective Boiling Flow Instabilities in Horizontal Helically Coiled Tubes

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    An experimental investigation is described for the characteristics of convective boiling flow instabilities in horizontally helically coiled tubes using a steam-water two-phase closed circulation test loop at pressure from 0.5 MPa to 3.5MPa.Three kinds of oscillation are reported.density waves;pressure drop excorsions;thermal fluctuations.We describe their dependence on main system parameters such as system pressure,mass flowrate,inlet subcooling,compressible volume and heat flux.Utilising the experimental data together with conservation constraints,a dimensionless correlation is proposed for the occurrence of density waves.

  16. Experimental study of multi-scale heat transfer characteristics at pool boiling

    Science.gov (United States)

    Serdyukov, V.; Surtaev, A.

    2017-01-01

    This study presents the results of the experimental investigation of local and integral characteristics of heat transfer at liquid pool boiling. Saturated ethanol and water were used as the working fluids. Thin, resistively heated indium-tin oxide films deposited onto the sapphire substrates were used as the heaters. The synchronized measurements of the heater surface temperature field and dynamics of vapor bubbles were performed by high-speed infrared thermography with the frame rate of 1000 fps and resolution of up to 0.13 μm/px and high-speed video recording. In this paper new data on major local boiling characteristics, such as nucleation site density, dynamics of vapor bubbles, temporal characteristics and nucleation frequency at different heat fluxes and superheating and their comparison with correlations are presented.

  17. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces.

    Science.gov (United States)

    Bourdon, B; Bertrand, E; Di Marco, P; Marengo, M; Rioboo, R; De Coninck, J

    2015-07-01

    In this article we study systematically the effect of wettability on the onset of boiling on the same nanometrically smooth surface. By grafting different monolayers of molecules, we were able to explore the wettability from the equilibrium static contact angle, θ0=0° to θ0=110°, without changing the surface topography. The superheat temperature at the onset of pool boiling was measured and eventually a non-classical trend of TONB as a function of wettability was observed. The nucleation site densities for the different grafting cases were also measured by image analysis. Moreover, we propose a novel theoretical interpretation to this phenomenon linking nucleation and the molecular diffusion coefficient. MD simulation results support this approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. 多尺度点云噪声检测的密度分析法%Hierarchical Outlier Detection for Point Cloud Data Using a Density Analysis Method

    Institute of Scientific and Technical Information of China (English)

    朱俊锋; 胡翔云; 张祖勋; 熊小东

    2015-01-01

    Laser scanning and image matching are both effective ways to get dense point cloud data , however ,outliers obtained from both ways are still inevitable .A novel hierarchical outlier detection method is proposed for the automatic outlier detection of point cloud from image matching and airborne laser scanning .There are two main steps in this method .Firstly ,the hierarchical density estimation is used to remove single and small cluster outliers .Then a progressive TIN method is used to find non‐outliers removed in the previous steps .The experimental results indicate the effectiveness of this method in dealing with the two types of points cloud data .And this method can also handle low quality point cloud data from image matching .The quantitative analysis shows that the outlier detection rate is higher than 97% .%当前机载激光雷达数据和影像匹配得到的点云是密集点云数据的两类主要来源,但都不可避免存在着噪声点。本文提出一种新的点云去噪算法,可适用于这两类数据中所包含的噪声点的去除。算法主要包括两步:第1步利用多尺度的密度算法去除孤立噪声和小的簇状噪声;第2步利用三角网约束将第1步中误检测为噪声的点重新归为正常点。针对真实数据进行了剔噪试验,结果表明本文提出的基于密度分析的多尺度噪声检测算法对孤立噪声和簇状噪声都有较为效,且对于质量较差的影像匹配点云的检测也能有效处理。本文算法检测率达到97%以上。

  19. Influence of the wettability on the boiling onset.

    Science.gov (United States)

    Bourdon, B; Rioboo, R; Marengo, M; Gosselin, E; De Coninck, J

    2012-01-17

    Experimental investigation of pool boiling is conducted in stationary conditions over very smooth bronze surfaces covered by a very thin layer of gold presenting various surface treatments to isolate the role of wettability. We show that even with surfaces presenting mean roughness amplitudes below 10 nm the role of surface topography is of importance. The study shows also that wettability alone can trigger the boiling and that the boiling position on the surface can be controlled by chemical grafting using for instance alkanethiol. Moreover, boiling curves, that is, heat flux versus the surface superheat (which is the difference between the solid surface temperature and the liquid saturation temperature), are recorded and enabled to quantify, for this case, the significant reduction of the superheat at the onset of incipient boiling due to wettability. © 2011 American Chemical Society

  20. Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer

    Directory of Open Access Journals (Sweden)

    Michael Z. Podowski

    2009-01-01

    Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.

  1. Boiling in porous media; Ebullition en milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-11

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: `boiling in porous medium: effect of natural convection in the liquid zone`; `numerical modeling of boiling in porous media using a `dual-fluid` approach: asymmetrical characteristic of the phenomenon`; `boiling during fluid flow in an induction heated porous column`; `cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project`; `state of knowledge about the cooling of a particulates bed during a reactor accident`; `mass transfer analysis inside a concrete slab during fire resistance tests`; `heat transfers and boiling in porous media. Experimental analysis and modeling`; `concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies`. (J.S.)

  2. Assessment of RANS at low Prandtl number and simulation of sodium boiling flows with a CMFD code

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Guingo, M.; Lavieville, J.

    2017-02-15

    Highlights: • Modelling of boiling sodium flows in a multiphase flow solver. • Rod heated with a constant heat flux in a pipe liquid metal flow. • Sodium boiling flow around a rod heated with a constant heat. • Computations in progress in an assembly constituted of 19 pins equipped with a wrapped wire. - Abstract: In France, Sodium-cooled Fast Reactors (SFR) have recently received a renewed interest. In 2006, the decision was taken by the French Government to initiate research in order to build a first Generation IV prototype (called ASTRID) by 2020. The improvement in the safety of SFR is one of the key points in their conception. Accidental sequences may lead to a significant increase of reactivity. This is for instance the case when the sodium coolant is boiling within the fissile zone. As a consequence, incipient boiling superheat of sodium is an important parameter, as it can influence boiling process which may appear during some postulated accidents as the unexpected loss of flow (ULOF). The problem is that despite the reduction in core power, when boiling conditions are reached, the flow decreases progressively and vapour expands into the heating zone. A crucial investigating way is to optimize the design of the fissile assemblies of the core in order to lead to stable boiling during a ULOF accident, without voiding of the fissile zone. Moreover, in order to evaluate nuclear plant design and safety, a CFD tool has been developed at EDF in the framework of the nuclear industry. Advanced models dedicated to boiling flows have been implemented and validated against experimental data for ten years now including a wall law for boiling flows, wall transfer for nucleate boiling, turbulence and polydispersion model. This paper aims at evaluating the generalization of these models to SFR. At least two main issues are encountered. Firstly, at low Prandtl numbers such as those of liquid metal, classical approaches derived for unity or close to unity fail to

  3. Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D

    2017-09-01

    This study aims to shed light on the changes provoked by boiling, steaming and sous-vide cooking on the lipids and volatile profile of farmed and wild European sea bass meat. None of the cooking techniques provoked changes due to hydrolytic or oxidation processes detectable by (1)H NMR on sea bass lipids. The lipid profile of main and minor lipidic components was maintained after cooking. However, study by SPME-GC/MS evidenced that steaming and sous-vide cooking modified the volatile profile of sea bass meat, especially in farmed specimens. The compounds generated came from the occurrence, to a very small extent, of lipid and protein degradation. By contrast, boiling scarcely modified the initial characteristics of raw sea bass. Thus, from a sensory point of view and considering the odour-active compounds generated, steaming and sous-vide cooking provoked more noticeable changes than boiling, especially in farmed sea bass meat. Copyright © 2017. Published by Elsevier Ltd.

  4. Efeito da temperatura ambiental na densidade e ponto de congelamento do leite de cabra Effects of ambiental temperature on density and freezing point of goat's milk

    Directory of Open Access Journals (Sweden)

    L.H.A. BRASIL

    1999-12-01

    14 days each one, during the which, the animals under heat stress were exposed to medium air temperature of 33,87ºC, between 8:00 and 17:00 hs including simulated solar radiation from 10:00 to 15:00 hs. On the second week of each experimental interval, individuality milk samples were collected dairy by morning and afternoon, adding preservative. In the end of the week, the samples of each milking were mixed, forming a composed samples which were effected pH, titratable acidity, density and crioscopic point. The results indicated that the obtained values for density and crioscopic point are compatible with the others authors have found it in other countries. It was verified biggers values for the density on the milk milked in the morning, in relation with the afternoon, being that the unequal interval between the milkings could influenced the results. It’s not observed significal statistic differences for this goat milk propriety in termoneutrality and heat stress conditions. To the crioscopic point it not verified statistical difference between the milk milked by morning and afternoon. There was significal statistic difference between the goat milk in termoneutrality and termic stress conditions, being the medium value bigger to the termoneutrality conditions.

  5. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density.

    Science.gov (United States)

    Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P

    2013-04-01

    The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field.

  6. High level disinfection of a home care device; to boil or not to boil?

    Science.gov (United States)

    Winthrop, K L; Homestead, N

    2012-03-01

    We developed a percutaneous electrical transducer for home therapy of chronic pain, a device that requires high level disinfection between uses. The utility of boiling water to provide high level disinfection was evaluated by inoculating transducer pads with potential skin pathogens (Staphylococcus aureus, Mycobacterium terrae, Pseudomonas aeruginosa, Candida albicans) and subjecting them to full immersion in water boiling at 4200 feet elevation (95 °C). Log10 reductions in colony-forming units (cfu) at 10 min were 7.1, >6.3 and >5.5 for S. aureus, P. aeruginosa and C. albicans, respectively, but only 4.6 for M. terrae. At 15 min the reductions had increased to 7.5, >6.8, >6.6 and >7.5 cfu, respectively.

  7. The Physics of Boiling at Burnout

    Science.gov (United States)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  8. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  9. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has......Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...

  10. Nucleate boiling of halogenated coolants - correlation analysis; Ebulicao nucleada de refrigerantes halogenados: analise de correlacoes

    Energy Technology Data Exchange (ETDEWEB)

    Ribatski, Gherhardt; Jabardo, Jose M. Saiz [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    1998-07-01

    Present study has been focused on a literature of heat transfer under nucleate boiling conditions of halocarbon refrigerants and their mixtures with lubricating oil. Two kind of correlations regarding the heat transfer mechanism have been found: strictly empirical, based on a straight curve fitting of experimental data, and semi-empirical, based on the particular point of view of the author regarding the physical mechanism but still fitted with experimental data. As a general rule, it has been noted that correlations present significant discrepancies among each other, a result which mostly reflects the wide range of experimental conditions used as a reference. A similar trend has been observed with refrigerant/oil mixtures. Given the current status of halocarbon refrigerants for refrigeration applications, there is clearly a need for further research regarding the nucleate boiling phenomenon related to those compounds. (author)

  11. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear

    2011-07-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  12. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  13. Effect of geometrical parameters of open microchannel surfaces on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available This study focuses on the effect of channel depth on the heat transfer coefficient during nucleate pool boiling. Experimental studies were performed for saturated deionized water, and Novec-649 as working fluids at atmospheric pressure. Copper surfaces were modified to form microchannels with different geometrical properties. The microchannels were from 0.2 mm to 0.4 mm deep, 0.3 mm wide and spaced every 0.1 mm. The experiment was conducted for increasing heat flux up to the critical heat flux point. The surface modification provided an appreciably higher heat transfer coefficient compared to the smooth surface for all boiling liquids. The maximum heat transfer coefficient obtained exceeded 60 kW/m2K.

  14. ELEVATION ON BOINLING POINT OF COFFE EXTRACT

    Directory of Open Access Journals (Sweden)

    J. Telis-Romero

    2002-03-01

    Full Text Available The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4ºBrix and pressures between 5.8 × 10³ and 9.4 × 10(4 Pa (abs.. Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2ºBrix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2ºBrix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration.

  15. 混合制冷工质核态沸腾的传热研究%Heat transfer in nucleate pool boiling of binary and ternary refrigerant mixtures

    Institute of Scientific and Technical Information of China (English)

    赵耀华; 刁彦华; 鹤田隆治; 西川日出男

    2004-01-01

    Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants,HFC-134a,HFC-32,and HFC-125,their binary and ternary mixtures under saturated conditions at 0.9MPa.Compared to pure components,both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased.Experimental data were compared with some empirical and semi-empirical correlations available in literature.For binary mixture,the accuracy of the correlations varied considerably with mixtures and the heat flux.Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome.For ternary mixture,the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points,and their concentration difference had important effects on boiling heat transfer coefficients.

  16. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  17. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions.

    Science.gov (United States)

    Kurudirek, Murat; Aygun, Murat; Erzeneoğlu, Salih Zeki

    2010-06-01

    The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients (mu/rho), photon interaction cross sections (sigma(t)), effective atomic numbers (Z(eff)) and effective electron densities (N(e)) by using X-rays at 22.1, 25keV and gamma-rays at 88keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition.

  18. Quantitative T1 and proton density mapping with direct calculation of radiofrequency coil transmit and receive profiles from two-point variable flip angle data.

    Science.gov (United States)

    Baudrexel, Simon; Reitz, Sarah C; Hof, Stephanie; Gracien, René-Maxime; Fleischer, Vinzenz; Zimmermann, Hilga; Droby, Amgad; Klein, Johannes C; Deichmann, Ralf

    2016-03-01

    Quantitative T1 mapping of brain tissue is frequently based on the variable flip angle (VFA) method, acquiring spoiled gradient echo (GE) datasets at different excitation angles. However, accurate T1 calculation requires a knowledge of the sensitivity profile B1 of the radiofrequency (RF) transmit coil. For an additional derivation of proton density (PD) maps, the receive coil sensitivity profile (RP) must also be known. Mapping of B1 and RP increases the experiment duration, which may be critical when investigating patients. In this work, a method is presented for the direct calculation of B1 and RP from VFA data. Thus, quantitative maps of T1 , PD, B1 and RP can be obtained from only two spoiled GE datasets. The method is based on: (1) the exploitation of the linear relationship between 1/PD and 1/T1 in brain tissue and (2) the assumption of smoothly varying B1 and RP, so that a large number of data points can be fitted across small volume elements where B1 and RP are approximately constant. The method is tested and optimized on healthy subjects. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Non-zero helicity extinction in light scattered from achiral (or chiral) small particles located at points of null incident helicity density

    Science.gov (United States)

    Nieto-Vesperinas, Manuel

    2017-06-01

    Based on a recent unified formulation on dichroism and extinction of helicity on scattering by a small particle, dipolar in the wide sense, magnetodielectric or not, chiral or achiral, we show that such extinction is enhanced not only at resonances of polarizabilities, but also due to interference between left and right circularly polarized components of the incident wave, which contributes with appropriate parameters of the illuminating field, even if the particle is achiral and is placed at points of the incident field at which the local incident helicity density is zero. This phenomenon goes beyond standard circular dichroism (CD), and we analyze it in detail on account of the values of several quantities involved in the process, both of the incident light and the particle. In addition, this interference produces a term in the helicity extinction that remarkably yields information on the real parts of the electric and/or magnetic polarizabilities, which are not provided by CD, and of which the helicity extinction phenomenon may be considered a generalization.

  20. Transition boiling heat transfer and the film transition regime

    Science.gov (United States)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  1. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  2. Transition boiling heat transfer and the film transition regime

    Science.gov (United States)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  3. Prediction of nucleate boiling heat transfer on horizontal U-shaped heat exchanger submerged in a pool of water using MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Nuclear Thermal-hydraulic Research, FNC Technology Co., Ltd., 46, Tapsil-ro, Giheung-gu, Yongin-si 446-902, Gyeonggi-do (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon [Department of Nuclear Thermal-hydraulic Research, FNC Technology Co., Ltd., 46, Tapsil-ro, Giheung-gu, Yongin-si 446-902, Gyeonggi-do (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-12-15

    . Process Des. Dev. 5 (3), 329) in MARS. A total of 366 data points were predicted with a mean deviation of 8.1%. Hence, the proposed nucleate boiling model appears to be usable to the reliable design and the safety analysis of the passive safety system using the best estimate codes.

  4. Numerical simulation of microlayer formation in nucleate boiling

    Science.gov (United States)

    Guion, Alexandre; Buongiorno, Jacopo; Afkhami, Shahriar; Zaleski, Stephane

    2016-11-01

    Numerical simulations of boiling resolve the macroscopic liquid-vapor interface of the bubble, but resort to subgrid models to account for microscale effects, such as the evaporation of the liquid microlayer underneath the bubble. Realistic time-dependent microlayer evaporation models necessitate initialization of the microlayer profile. In the recent simulations published in the literature, missing input data on initial microlayer geometry is replaced by estimated values from separate experimental measurements at similar pressure. Yet, the geometry of the initial microlayer not only depends on pressure for a given set of fluids, but also on bubble growth rate and that dependence is not known a priori. In this work, the Volume-of-Fluid (VOF) method, implemented in the open-source code Gerris (gfs.sf.net), is used to simulate, with unprecedented accuracy, the dynamics of microlayer formation underneath a growing bubble. A large numerical database is generated, yielding the microlayer thickness during the inertia controlled phase of bubble growth as a function of radial distance from the bubble root, time, contact angle, and capillary number associated with bubble growth. No significant dependence on density or viscosity ratios were found.

  5. Constant Boiling Substances,Constant Boiling Point and Constant Boiling Distillation of Alcohol%恒沸物、恒沸点与酒精恒沸蒸馏

    Institute of Scientific and Technical Information of China (English)

    金晶; 赵德炎; 赵德新; 赵开健

    2004-01-01

    酒精恒沸蒸馏是在有水酒精中加入第三种物质,如苯、戊烷、环己烷等,使水与添加物形成另一种恒沸物,并先行挥发,而得到无水酒精.该法在蒸馏时不需将原料全部汽化,也不需要很大回流比,只要能做到使新的恒沸物汽化即可,对设备规模的选型和能量消耗均有益.(陶然)

  6. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  7. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    Directory of Open Access Journals (Sweden)

    A. V. Оvsiannik

    2007-01-01

    Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.

  8. Experimental study on the explosive boiling in saturated liquid nitrogen

    Institute of Scientific and Technical Information of China (English)

    DONG Zhaoyi; HUAI Xiulan; LIU Dengying

    2005-01-01

    Studies on the heat-transfer characteristics of liquid nitrogen (LN2) have received increasing attention. When there is a transient high heatflux input to the LN2, explosive boiling may take place. In this paper, using the high-power short-duration pulsed laser heating method and the high-speed photography technology, the experimental result of explosive boiling in saturated LN2 is illustrated; and the two exclusive characteristics of explosive boiling in LN2: changeover time and the relative long-time adherence of the bubble cluster to the surface, are investigated.

  9. Subcooled boiling of nano-particle suspensions on Pt wires

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WANG Buxuan; PENG Xiaofeng

    2004-01-01

    An experimental investigation is conducted to explore the subcooled boiling characteristics of nano-particle suspensions on Pt wires. Some phenomena are observed for the boiling of water-SiO2 nano-particle suspensions on Pt wires. The experiments show that there exist not any evident differences for boiling of pure water and of nano-particle suspensions at high heat fluxes. However, bubble overlap phenomenon can be easily found for nano-particle suspensions at low heat fluxes, which probably results from the increase of the attracter force between bubbles and of the bubble mass.

  10. Impact of selected parameters on the development of boiling and flow resistance in the minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2015-01-01

    Full Text Available The paper presents results of flow boiling in a rectangular minichannel 1 mm deep, 40 mm wide and 360 mm long. The heating element for FC-72 flowing in the minichannel was the thin alloy foil designated as Haynes-230. There was a microstructure on the side of the foil which comes into contact with fluid in the channel. Two types of microstructured heating surfaces: one with micro-recesses distributed evenly and another with mini-recesses distributed unevenly were used. The paper compares the impact of the microstructured heating surface and minichannel positions on the development of boiling and two phase flow pressure drop. The local heat transfer coefficients and flow resistance obtained in experiment using three positions of the minichannel, e.g.: 0°, 90° and 180° were analyzed. The study of the selected thermal and flow parameters (mass flux density and inlet pressure, geometric parameters and type of cooling liquid on the boiling heat transfer was also conducted. The most important factor turned out to be channel orientation. Application of the enhanced heating surface caused the increase of the heat transfer coefficient from several to several tens per cent, in relation to the plain surface.

  11. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  12. Development of a novel infrared-based visualization technique to detect liquid-gas phase dynamics on boiling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Dae [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) under normal operation and during transients/accidents. These phenomena are typically characterized by the presence of a liquid vapor- solid contact line on the surface from/to which the heat is transferred. For example, in nucleate boiling, a significant fraction of the energy needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, underneath the bubble itself. As the liquid vapor- solid line at the edge of the meniscus retreats, a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is a measure of the ability of the surface to transfer heat to the bubble. At very high heat fluxes, near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the situation is characterized by larger dry areas on the surface, dispersed within an interconnected network of liquid menisci. In quenching heat transfer, which refers to the rapid cooling of a very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling. In film boiling a continuous vapor film completely separates the liquid phase from the solid surface: however, as the temperature gets closer to the Leidenfrost point, intermittent and short-lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid vapor- solid interfaces once again. Ultimately, if bubble nucleation ensues at such contact points, the vapor film is disrupted and the heat transfer regime transitions from film boiling to transition boiling. Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is where heat transfer is most intense. To gain insight into and enable mechanistic

  13. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    Energy Technology Data Exchange (ETDEWEB)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien, E-mail: tanguy@imft.fr

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  14. Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies

    Science.gov (United States)

    Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.

    2002-11-01

    Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this

  15. Numerical investigation of boiling heat transfer on the shell-side of spiral wound heat exchanger

    Science.gov (United States)

    Wu, Zhi-Yong; Wang, He; Cai, Wei-Hua; Jiang, Yi-Qiang

    2016-09-01

    The aim of this paper is to numerically study boiling heat transfer on the shell-side of spiral wound heat exchanger (SWHE). The physical model for the shell-side of SWHE is established and the volume of fluid (VOF) method is used in the calculation. For propane and ethane, there are thirty cases to be simulated . Through the comparison with experimental data, the cause which leads to the simulation distortion is found, and the satisfied results of calculation are finally achieved. The simulation results show that the VOF model can be adopted well to those calculations whose inlet quality are lower than 0.1 kg/kg, and the calculation deviations are generally within ±20 %. In falling film flow, the heat transfer performance for the shell-side of SWHE is primarily influenced by Reynolds number. The visualization of simulation results displays that the boiling bubbles have three flow directions, besides flowing down with liquid phase, one portion of bubbles flows reversely up, and another portion is blocked at axial gaps of coils where the heat transfer is reduced. The studies of boiling on the shell-side of SWHE not only reveal the characteristics of heat transfer, but also point out the improvement direction of SWHE.

  16. Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model

    Institute of Scientific and Technical Information of China (English)

    王斯民; 文键; 李亚梅; 杨辉著; 厉彦忠

    2013-01-01

    Multiple size group (MUSIG) model combined with a three-dimensional two-fluid model were em-ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu-tion patterns of void fraction in the wall-heated tube were analyzed. It was found that the average void fraction in-creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub-cooled temperature. The local void fraction exhibited a U-shape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient against experimental measurements, which demonstrated the accuracy of the numerical model.

  17. A theoretical model for coupled neutronic-thermohydraulic out-of-phase oscillations in Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bragt, D.D.B. van

    1995-10-01

    A theoretical model for out-of-phase power oscillations in BWRs is proposed. This model describes the dynamic behavior of the neutronic and thermohydraulic subsystems during out-of-phase oscillations, and the coupling of these subsystems via the fuel temperature dynamics and void- and Doppler feedback effects. The zero-power neutron kinetics of the out-of-phase flux density mode is derived by expanding the (time- and space-dependent) neutron flux density in the static solutions of the neutron transport equation. This procedure yields the modal point-kinetic equations for the (first-harmonic) out-of-phase mode. The fuel temperature dynamics is described by a lumped parameter first-order process, characterized by a typical fuel time constant. Using the quasistatic approach, the basic equations of the channel thermohydraulics are derived from the conservation laws of mass and energy and the momentum equation. The momentum equation is coupled with the appropriate boundary condition (constant core pressure drop) for out-of phase oscillations. This procedure yields a set of nonlinear equations describing the dynamic behavior of the boiling boundary, void fraction and mass flux density in the cooling channel. A frequency-domain parametric study confirms that if the out-of-phase mode has a more negative subcriticality, reactor stability increases. On the other hand, a more negative void reactivity coefficient has a destabilizing effect. Besides these two parameters, the fuel time constant was found to be an important parameter determining stability. Where possible, the linearized equations describing the channel thermohydraulics were compare with exact solutions of the governing partial-differential channel equations. This comparison shows that in the frequency range of interest, discrepancies between the proposed quasi-static model and more complicated exact solutions are to be expected. (orig.).

  18. 40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form. ...

  19. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Andrey [Paul Scherrer Institut, Villigen (Switzerland); Degueldre, Claude, E-mail: claude.degueldre@psi.ch [Paul Scherrer Institut, Villigen (Switzerland); Kaufmann, Wilfried [Kernkraftwerk Leibstadt, Leibstadt (Switzerland)

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  20. Prediction of bubble detachment diameter in flow boiling based on force analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Deqi [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400044 (China); Pan Liangming, E-mail: cneng@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400044 (China); Ren Song [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400044 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer All the forces acting on the growing bubbles are taken into account in the model. Black-Right-Pointing-Pointer The bubble contact diameter has significant effect on bubble detachment. Black-Right-Pointing-Pointer Bubble growth force and surface tension are more significant in narrow channel. Black-Right-Pointing-Pointer A good agreement between the predicted and the measured results is achieved. - Abstract: Bubble detachment diameter is one of the key parameters in the study of bubble dynamics and boiling heat transfer, and it is hard to be measured in a boiling system. In order to predict the bubble detachment diameter, a theoretical model is proposed based on forces analysis in this paper. All the forces acting on a bubble are taken into account to establish a model for different flow boiling configurations, including narrow and conventional channels, upward, downward and horizontal flows. A correlation of bubble contact circle diameter is adopted in this study, and it is found that the bubble contact circle diameter has significant effect on bubble detachment. A new correlation taking the bubble contact circle diameter into account for the evaluation of bubble growth force is proposed in this study, and it is found that the bubble growth force and surface tension force are more significant in narrow channel when comparing with that in conventional channel. A visual experiment was carried out in order to verify present model; and the experimental data from published literature are used also. A good agreement between predicted and measured results is achieved.

  1. Zero Boil Off System for Cryogen Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to develop a zero boil off (ZBO) dewar using a two-stage pulse-tube cooler together with two innovative, continuous-flow cooling loops and an...

  2. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  3. Boiling of HFE-7100 on a Straight Pin Fin

    Institute of Scientific and Technical Information of China (English)

    Z. W. Liu; W.W. Lin; D.J. Lee; J.P. Hsu

    2001-01-01

    This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS)branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation.

  4. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  5. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  6. Taylor stability of viscous fluids with application to film boiling

    Science.gov (United States)

    Dhir, V. K.; Lienhard, J. H.

    1973-01-01

    The dispersion relation is evaluated numerically for Taylor waves in a viscous unstable interface with surface tension. The solution takes account of transverse curvature and the numerical evaluations apply to horizontal cylindrical, as well as to plane, interfaces. The result is verified with frequency and wavelength data obtained during film boiling on horizontal wires. A very general empirical correlation is given, en passant, for the vapor blanket thickness during film boiling.

  7. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  8. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  9. Electrohydrodynamics of boiling on microstructured surfaces for space applications

    Science.gov (United States)

    Saccone, Giacomo; Moran, Jeffrey L.; Bucci, Matteo; Buongiorno, Jacopo; di Marco, Paolo; Mit-Nuclear Science; Engineering Team; University Of Pisa-Destec Dept. Team

    2016-11-01

    Surface wettability is a major parameter in boiling heat transfer. It affects the departure of bubbles from the boiling surface and consequently determines the maximum heat flux transferrable in safe conditions, known as critical heat flux (CHF). Surface wettability can be enhanced through passive techniques, including micro-engineered surfaces and coatings, or through active techniques, e.g. by applying a tunable electric field (electrowetting) that modifies the bubble shape in such a way as to drive bubble detachment. The latter technique is particularly interesting for space applications, where the electric field is used to create a body force that compensates for the absence of gravity. The present work is focused on boiling heat transfer on surfaces whose wettability has been modified by passive and active techniques. We have built a pool boiling apparatus composed of a micro-structured heater acting as boiling surface and an axisymmetric electrode High-speed optical and infrared imaging have been used to investigate the dynamics of boiling phenomena. The aims of this project are twofold: to achieve a superior understanding of wetting phenomena, and to improve the efficiency of cooling devices for space applications.

  10. Local pressure gradients due to incipience of boiling in subcooled flows

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.; McDuffee, J.L. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-09-01

    Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.

  11. Heat transfer mechanisms in microgravity flow boiling.

    Science.gov (United States)

    Ohta, Haruhiko

    2002-10-01

    The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

  12. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling of Liquids Occurs under Certain Conditions but is Mitigated by Stirring

    Directory of Open Access Journals (Sweden)

    Anthony Ferrari

    2015-12-01

    Full Text Available Temporary superheating and sustained nucleation-limited “superboiling” of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating and magnitude (of superheating and superboiling vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.

  13. Quantifying the density-quality of photogrammetrically created point-clouds of linear architectural/urban elements as a function of shooting distances and number of camera positions I.E. shooting-directions

    Directory of Open Access Journals (Sweden)

    Đorđević Đorđe

    2015-01-01

    Full Text Available This paper examines the impact of various object-to-camera distances and the number of station-points i.e. various shooting directions with regard to the obtained Density-quality of photogrammetrically created Point-clouds - as digital representations of the existent linear architectural/urban objects/elements. According to an artificial (purified experimental scene used, the conclusion is that with the chosen focal lengths/object-to-camera distances, with shooting directions perpendicular to the axis of that object, with station-points uniformly radially distributed around it (at a circle of 360deg, and with the obtained values of photogrammetric-software process-quality outputs which belong to the recommended ranges, the achieved density-level of the created Point-clouds may be treated as independent on the camera's radial-movement angle but dependent on the percentage of „Object's Photo-Coverage”: the lower the Coverage, the lower the density. Also, regardless of the Coverage level, the majority of the generated points are generally more "densimetrically" precise than they are "densimetrically" accurate.

  14. Study of film boiling collapse behavior during vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  15. Inspection of Pool Boiling with Superhydrophilic and Superhydrophobic Coating

    Energy Technology Data Exchange (ETDEWEB)

    Son, Gyumin; Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    In conventional nuclear power plants, increasing critical heat flux (CHF) margin by converting existing parts is economically meaningful since it means overall energy production increase without building additional power plants. There were researches to enhance margin from the very beginning of the commercialization of nuclear power plants and many efforts have led to current model of plants, optimized for both safety and production efficiency. Examples are mixing vane which is actually applied to plants nowadays, using nanofluids to enhance heat transfer coefficient (HTC), trying porous surfaces and so on. Takata et al. studied effects of surface wettability by using hydrophobic coating and observed enhanced nucleate boiling at coated surface regions. Betz et al. experimented superhydrophilic (SHPi), superhydrophobic (SHPo), and superbiphilic surfaces. Results indicate heat transfer coefficient enhancement due to increase of nucleation sites by hydrophobic regions and constrained diameter of growing bubbles by hydrophilic regions. Although it would be rough to apply their concept to real reactor coolant surface wall, understanding the possibility of enhanced boiling is meaningful. In this paper, SHPi and SHPo coatings were applied to wire at traditional pool boiling experiment by Nukiyama. By observing altered CHF margin and nucleate boiling, the effects of each coating and their tendencies are discussed. SHPi, SHPo and bare wire's pool boiling was investigated and their boiling graphs were discussed. SHPi shows enhancement in CHF while SHPo's case is more complicated since there were variables like partial CHF or micro scale bubbles. Additional experiment could be comparing HTC, checking whether hydrophobic wire's nucleate boiling enhancement can exceed the decreased CHF margin. More sophisticated method to remove unwanted bubbles should be considered such as using degassed water.

  16. NOAA Point Shapefile - 100m2 Fish Density of Grand Northeast Ecological Corridor, Puerto Rico, Project NF-12-01-PR, 2012, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  17. NOAA Point Shapefile - 100m2 Fish Density of Grand Northeast Ecological Corridor, Puerto Rico, Project NF-13-02-PR, 2013, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  18. NOAA Point Shapefile - 100m2 Fish Density of Grand Northeast Ecological Corridor, Puerto Rico, Project NF-12-01-PR, 2012, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  19. NOAA Point Shapefile - 100m2 Fish Density for Virgin Passage, United States Virgin Islands, Project NF-10-03-USVI, 2010, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  20. NOAA Point Shapefile - 100m2 Fish Density of St. Johns Shelf, United States Virgin Islands, Project NF-10-03-USVI, 2010, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  1. NOAA Point Shapefile - 100m2 Fish Density of El Seco, Puerto Rico, Project NF-09-01-USVI, 2009, WGS84 (NCEI Accession 0137091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  2. NOAA Point Shapefile - 100m2 Fish Density of El Seco, Puerto Rico, Project NF-09-01-USVI, 2009, WGS84

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains densities of fishes detected using mobile fisheries sonar on board the NOAA Ship Nancy Foster. The data were acquired in concert with a multibeam...

  3. Effect of boiling regime on melt stream breakup in water

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  4. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  5. Marangoni heat transfer in subcooled nucleate pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, S.; Robinson, T.; Judd, R.L. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2004-11-01

    The liquid motion induced by surface tension variation, termed the Marangoni effect, and its contribution to boiling heat transfer has been an issue of much controversy. Boiling heat transfer theory, although acknowledging its existence, considers its contribution to heat transfer to be insignificant in comparison with buoyancy induced convection. However, recent microgravity experiments have shown that although the boiling mechanism in a reduced gravity environment is different, the corresponding heat transfer rates are similar to those obtained under normal gravity conditions, raising questions about the validity of the assumption. An experimental investigation was performed in which distilled water was gradually heated to boiling conditions on a copper heater surface at four different levels of subcooling. Photographic investigation of the bubbles appearing on the surface was carried out in support of the measurements. The results obtained indicate that Marangoni convection associated with the bubbles formed by the air dissolved in the water which emerged from solution when the water was heated sufficiently, significantly influenced the heat transfer rate in subcooled nucleate pool boiling. A heat transfer model was developed in order to explain the phenomena observed. (author)

  6. Heater size effect on subcooled pool boiling of FC-72

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Rishi; Kim, Jungho [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

    2009-07-01

    Extensive research has been conducted on pool boiling using heaters larger than the capillary length. For large heaters and/or high gravity conditions, boiling is dominated by buoyancy, and the heat transfer is heater size independent. Much less is known about boiling on small heaters and at low gravity levels. The ratio of heater size L{sub h} to capillary length L{sub c} is an important parameter in the determination of heater size dependence on heat transfer. As the ratio L{sub h}/L{sub c} decreases due to a decrease in either heater size or gravity, surface tension forces become dominant. It is proposed that transition from buoyancy to surface tension dominated boiling occurs when the heater size and bubble departure diameter are of the same order. Previous work in variable gravity with flat surfaces has shown that the heat transfer was heater size independent only when the ratio L{sub h}/L{sub c} was considerably larger than 1. An array of 96 platinum resistance heater elements in a 10 x 10 configuration with individual elements 0.7 x 0.7 mm{sup 2} in size was used to vary heater size and measure the heat transfer. The threshold value of L{sub h}/L{sub c} above which pool boiling is heater size independent was found to be about 2.8. (author)

  7. Boiling crisis and non-equilibrium drying transition

    CERN Document Server

    Nikolayev, Vadim

    2016-01-01

    Boiling crisis is the rapid formation of the quasi-continuous vapor film between the heater and the liquid when the heat supply exceeds a critical value. We propose a mechanism for the boiling crisis that is based on the spreading of the dry spot under a vapor bubble. The spreading is initiated by the vapor recoil force, a force coming from the liquid evaporation into the bubble. Since the evaporation intensity increases sharply near the triple contact line, the influence of the vapor recoil can be described as a change of the apparent contact angle. Therefore, for the most usual case of complete wetting of the heating surface by the liquid, the boiling crisis can be understood as a drying transition from complete to partial wetting. The state of nucleate boiling, which is boiling in its usual sense, is characterized by a very large rate of heat transfer from the heating surface to the bulk because the superheated liquid is carried away from the heating surface by the departing vapor bubbles. If the heating p...

  8. A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy.

    Science.gov (United States)

    Maxwell, Adam D; Yuldashev, Petr V; Kreider, Wayne; Khokhlova, Tatiana D; Schade, George R; Hall, Timothy L; Sapozhnikov, Oleg A; Bailey, Michael R; Khokhlova, Vera A

    2017-08-14

    Boiling histotripsy is a method of focused ultrasound surgery that noninvasively applies millisecond-length pulses with high-amplitude shock fronts to generate liquefied lesions in tissue. Such a technique requires unique outputs compared to a focused ultrasound thermal therapy apparatus, particularly to achieve high in situ pressure levels through intervening tissue. This article describes the design and characterization of a system capable of producing the necessary pressure to transcutaneously administer boiling histotripsy therapy through clinically relevant overlying tissue paths using pulses with duration up to 10 ms. A high-voltage electronic pulser was constructed to drive a 1-MHz focused ultrasound transducer to produce shock waves with amplitude capable of generating boiling within the pulse duration in tissue. The system output was characterized by numerical modeling with the 3D Westervelt equation using boundary conditions established by acoustic holography measurements of the source field. Such simulations were found to be in agreement with directly measured focal waveforms. An existing derating method for nonlinear therapeutic fields was used to estimate in situ pressure levels at different tissue depths. The system was tested in ex vivo bovine liver samples to create boiling histotripsy lesions at depths up to 7 cm. Lesions were also created through excised porcine body wall (skin, adipose, muscle) with 3-5 cm thickness. These results indicate that the system is capable of producing the necessary output for transcutaneous ablation with boiling histotripsy.

  9. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  10. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime

    2013-09-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  11. Visualization of pool boiling from complex surfaces with internal tunnels

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2012-04-01

    Full Text Available The paper presents experimental investigations of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structure (NTS, can be applied to electronic element cooling. The experiments were carried out with ethanol at atmospheric pressure. The tunnel external covers were manufactured out of 0.1 mm thick perforated copper foil (hole diameters 0.5 mm, sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. Visualization studies were conducted with a transparent structured model of joined narrow tunnels limited with the perforated foil. The visualization investigations aimed to formulate assumptions for the boiling model through distinguishing boiling types and defining all phases of bubble growth.

  12. Boiling heat transfer on fins – experimental and numerical procedure

    Directory of Open Access Journals (Sweden)

    Orzechowski T.

    2014-03-01

    Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  13. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  14. Changes of enthalpy slope in subcooled flow boiling

    Science.gov (United States)

    Collado, Francisco J.; Monné, Carlos; Pascau, Antonio

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, #58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance—the control volume length—in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored.

  15. Micro-column enhanced boiling structure and its ramification

    Institute of Scientific and Technical Information of China (English)

    汤勇; 陆龙生; 袁冬; 苏达士

    2008-01-01

    Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface with interaction high speed wire electrode discharge machining (HS-WEDM). The other was the ramification of MCAS, named micro-column-array and sintered-copper compound structure (MSCS), which was fabricated with sintered method on micro-column array structure. Considering the wall superheat and critical heat flux (CHF), comparisons were made between them. The results show that both MCAS and MSCS can enhance the boiling heat transfer. It is also found that the enhanced boiling heat transfer ability of MSCS is changed obviously while the porosity of the sintered copper layer is changed.

  16. High heat flux transport by microbubble emission boiling

    Science.gov (United States)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  17. Defluoridation of drinking water by boiling with brushite and calcite.

    Science.gov (United States)

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water.

  18. On Boiling of Crude Oil under Elevated Pressure

    CERN Document Server

    Pimenova, Anastasiya V

    2015-01-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  19. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  20. A Field Evaluation of the Time-of-Detection Method to Estimate Population Size and Density for Aural Avian Point Counts

    Directory of Open Access Journals (Sweden)

    Mathew W. Alldredge

    2007-12-01

    Full Text Available The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture-recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence, which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low homogenous rates per interval with those singing at (high and low heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant

  1. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  2. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  3. Effect of the permeability of the porous shell on the vapor film thickness during boiling of superfluid helium in microgravity

    Science.gov (United States)

    Korolev, P. V.; Kryukov, A. P.; Puzina, Yu. Yu.

    2015-07-01

    This paper presents a theoretically study of the boiling of superfluid helium on a cylindrical heater placed in a coaxial porous shell in microgravity. Steady-state transfer processes at the interface are studied using molecular-kinetic methods. The Boltzmann transport equation is solved by the moment method based on the four-moment approximation in the form of a two-sided Maxwellian. The obtained solution is used to calculate the heat flux density in film boiling on a cylindrical heating surface in the case where the film thickness is comparable to the diameter of the heater. The motion of the normal component of the superfluid liquid in pores is described by equations that take into account heat and mass transfer in superfluid helium. The relation between the vapor film thickness and the structural characteristics and geometrical dimensions of the porous shell is obtained. Analysis of the results of the calculations is given.

  4. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c

  5. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  6. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  7. A Study of the Influence of Solid Particles on Boiling Hysteresis

    Institute of Scientific and Technical Information of China (English)

    M.H.Shi; J.Ma

    1992-01-01

    Experiments have been performed to determine the effects on boiling hysteresis of locally fluidized particles contained in a liquid that serves as coolant for electronic equipment.The results show that Iocally fluidized particles can diminish boiling hysteresis.

  8. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  9. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR) standard...

  10. Development of nuclear thermal hydraulic verification test and evaluation technology; study on 3-dimension measurement of two-phase flow parameters in subcooled boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Kim, Moon Oh; Cho, Hyung Kyoo; Kim, Seong Jin [Seoul National University, Seoul (Korea)

    2002-04-01

    In this study, the experiments were conducted at different levels of inlet subcooling, flow rate and heat flux in a vertical concentric annulus channel located heater at the center with subcooled boiling conditions of atmosphere pressure and superficial velocity under 1.5m/s. The profiles of void fraction, vapor size, vapor frequency, vapor velocity and IAC were measured by 2 sensor conductivity probe in axially 3 points (L/D{sub h}=90.5,80.1,71.4) and those of liquid velocity by pitot tube. Based on the experiment data subcooled boiling models in MARS and multidimensional code, CFX-4.2 were evaluated was verified for analysis ability of these codes in subcooled boiling. 61 refs., 41 figs., 11 tabs. (Author)

  11. A Review of Boiling Heat Transfer Processes at High Heat Flux

    Science.gov (United States)

    1991-04-01

    liquid metals) which can lead to explosive boiling (known as bumping) that can lead to structural damage to hardware. 3 Transition boiling occurs between...to initiate boiling, in some cases having an explosive transition that can cause structural damage to hardware. A thorough understanding of boiling...graphical correlations for the pressure drops encountered in their experiments. About the same time, Staub and Walmet (Ref. 173) identified the two regions

  12. Measuring radon reduction in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan; Cichon, Dominick; Lindemann, Sebastian; Marrodan Undagoitia, Teresa; Simgen, Hardy [MPIK, Heidelberg (Germany)

    2016-07-01

    {sup 222}Rn, which originates from the decay of primordial {sup 238}U, is one of the major background sources for ultra-low background noble gas detectors. One of them is XENON1T, which is a dark matter direct detection experiment looking for hypothetical weakly interacting massive particles (WIMPs). It uses liquid xenon (LXe) as a detection medium and aims to be sensitive to spin-independent WIMP-nucleon cross-sections of σ∝2.10{sup -47} cm{sup 2} at a WIMP mass of ∝50 GeV/c{sup 2}. To achieve this goal, radon activity inside the detector must be limited to a few mBq/kg. One possible way for reducing the concentration of {sup 222}Rn inside such an LXe detector is using the so-called ''boil-off method''. It takes advantage of the fact, that the radon concentration in boil-off xenon is smaller compared to the concentration in the liquid xenon from which the boil-off xenon evaporated. This can be understood by the different vapor pressures of radon and xenon. In this talk, tests conducted at the MPIK are outlined which probe the feasibility and effectiveness of the boil-off method. The results prove, that a reduction of the radon concentration can indeed be achieved. In addition, an outlook for possible future applications of this technique is given.

  13. How long does it take to boil an egg? Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Buay, D [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Foong, S K [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Kiang, D [Department of Physics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Kuppan, L [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Centre for Research in Pedagogy and Practice, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Liew, V H [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore)

    2006-01-01

    How long does it take to boil an egg? Theoretical prediction, based on a simple adaptation of the solution to the exact thermal diffusion equation for a sphere, is consistent with experiments. The experimental data are also used to estimate an average value for the thermal diffusivity of an egg.

  14. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  15. Boiling heat transfer and droplet spreading of nanofluids.

    Science.gov (United States)

    Murshed, S M Sohel; de Castro, C A Nieto

    2013-11-01

    Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.

  16. Boiling on fins with wire screen of variable effective conductivity

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The high scale of integration of modern equipment used for medical, military and other purposes puts heavy demands as regards the removal of great heat fluxes. This can be achieved only in exchangers that apply the phase change phenomena. Among many methods to improve boiling heat transfer, the wire mesh covering demonstrates some advantages due to the possibilities of designing the desired microstructure parameters, availability on the market, and low cost. The wire mesh microstucture with specified geometrical parameters produces anisotropy in conductivity. The different arrangement of the mesh layers relative to the direction of the heat flux is a cause of the change of temperature distribution within the layer. The consequence is a respective change in the discharge conditions of the gas phase and liquid feed. The experiments were conducted on fins covered with a single layer of copper mesh with lumen of 38 % and boiling FC-72 at ambient pressure. Compared with the smooth surface, the wire mesh structures yield an increase in the heat transfer rate at boiling. It is also shown that nucleate boiling is initiated at lower wall superheat. Formulas for longitudinal and perpendicular thermal conductivity are given for different mesh structure arrangements.

  17. Treatment of cork boiling wastewater using chemical oxidation and biodegradation.

    Science.gov (United States)

    Dias-Machado, Manuela; Madeira, Luis M; Nogales, Balbina; Nunes, Olga C; Manaia, Célia M

    2006-06-01

    Three cultures were enriched from cork boiling wastewater using tannic acid as the selective carbon substrate, at 25 degrees C and pH 7.2, 25 degrees C and pH 4.7 and 50 degrees C and pH 4.7. The enrichment culture obtained at neutral pH was composed of five culturable isolates, whereas from each acidic enrichment two bacterial strains were isolated. Mesophilic isolates were Gram negative bacteria belonging to the genera Klebsiella, Pseudomonas, Stenotrophomonas and Burkholderia. Thermophilic isolates were members of the genus Bacillus. Despite the capability of the enrichment cultures to use tannic acid as single carbon and energy source, those cultures were unable to reduce the total polyphenols or the total organic carbon content of cork boiling wastewater. In order to increase the bioavailability of the organic carbon in cork boiling wastewater, biodegradation was preceded by Fenton oxidation. It was demonstrated that the combined process, using small amounts of Fenton reagents and biodegradative inoculum added almost simultaneously to cork boiling wastewater, leads to TOC reductions of more than 90%.

  18. On the eruptive boiling in silicon-based microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.C.; Pan, Chin [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30043 (China)

    2008-09-15

    This study investigates experimentally eruptive boiling in a silicon-based rectangular microchannel with a hydraulic diameter of 33.7 {mu}m, a width of 99.8 {mu}m and a depth-to-width ratio of 0.203. The microchannel is made of SOI wafer and prepared using bulk micro-machining and anodic bonding. The surface roughness for both the bottom and the side walls was measured using an atomic force microscope. The evolution of the eruptive boiling of water in the smooth microchannel was clearly observed using an ultra high-speed video camera (up to 50,000 frames/s) at mass fluxes of 417 and 625 kg/m{sup 2} s and a heat flux from 14.9 to 372 kW/m{sup 2}. It is confirmed that eruptive boiling is a form of rapid bubble nucleation after which the bubble merges with a slug bubble downstream in a short distance or evolve to a slug bubble. The bubble frequency in all of the cases studied is provided. Eruptive boiling may be predicted classically with nano-sized cavities that are consistent with the measured surface roughness. (author)

  19. Experimental demonstration of contaminant removal from fractured rock by boiling.

    Science.gov (United States)

    Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

    2010-08-15

    This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix.

  20. Elimination of character-resembling anomalies within a detected region using density-dependent reference point construction in an automated license plate recognition system

    Science.gov (United States)

    Chai, Hum Yan; Meng, Liang Kim; Mohamed, Hamam; Woon, Hon Hock; Lai, Khin Wee

    2016-11-01

    The problem of eliminating character-resembling blobs on a detected region in the plate detection stage of an automated license plate recognition system is addressed. The proposed method amplifies the slight differences between the noncharacter blobs (anomalies) and the character blobs (true signal) to enhance the tractability. This method postulates on two propositions: (1) the anomalies are usually located around the true signal and the suspected anomalies and (2) blobs should be given less emphasis in computing a reference point. The first proposition is based on prior knowledge and observation; the second proposition is based on the fact that a reference point that takes anomalies into account is contaminated and thus misleading. The gist of the method mainly focuses on the methodology to emphasize the blobs differently in accordance to their location in computing the reference point that approximates the representative value of true signal properties more accurately, thus giving the effect of amplifying the slight differences. The performance of the method is evaluated on both its capability and consistency in solving certain types of anomalies.

  1. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    Science.gov (United States)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  2. Leidenfrost Point and Estimate of the Vapour Layer Thickness

    Science.gov (United States)

    Gianino, Concetto

    2008-01-01

    In this article I describe an experiment involving the Leidenfrost phenomenon, which is the long lifetime of a water drop when it is deposited on a metal that is much hotter than the boiling point of water. The experiment was carried out with high-school students. The Leidenfrost point is measured and the heat laws are used to estimate the…

  3. Nucleate Pool Boiling Experiments (NPBX) on the International Space Station

    Science.gov (United States)

    Dhir, Vijay Kumar; Warrier, Gopinath R.; Aktinol, Eduardo; Chao, David; Eggers, Jeffery; Sheredy, William; Booth, Wendell

    2012-11-01

    During the period of March-May 2011, a series of boiling experiments was carried out in the Boiling Experimental Facility (BXF) located in the Microgravity Science Glovebox (MSG) of the International Space Station (ISS). The BXF Facility was carried to ISS on Space Shuttle Mission STS-133 on February 24, 2011. Nucleate Pool Boiling Experiment (NPBX) was one of the two experiments housed in the BXF. Results of experiments on single bubble dynamics (e.g., inception and growth), multiple bubble dynamics (lateral merger and departure, if any), nucleate pool boiling heat transfer, and critical heat flux are described. In the experiments Perfluoro-n-hexane was used as the test liquid. The system pressure was varied from 51 to 243 kPa, pool temperature was varied from 30° to 59°C, and test surface temperature was varied from 40° to 80°C. The test surface was a polished aluminum disc (1 mm thick, 89.5 mm in diameter) heated from below with strain gage heaters. Five cylindrical cavities were formed on the surface with four cavities located at the corners of a square and one in the middle. During experiments the magnitude of mean gravity level normal to the heater surface varied from 1.2 × 10 - 7g e to 6 × 10 - 7g e . The results of the experiments show that a single bubble continues to grow to occupy the size of the chamber without departing from the heater surface. During lateral merger of bubbles, at high superheats a large bubble may lift off from the surface but continues to hover near the surface. Neighboring bubbles are continuously pulled into the large bubble. At low superheats bubbles at neighboring sites simply merge to yield a larger bubble. The larger bubble mostly locates in the middle of the heated surface and serves as a vapor sink. The latter mode continues to persist when boiling is occurring all over the heater surface. Heat fluxes for steady state nucleate boiling and critical heat fluxes are found to be much lower than those obtained under earth

  4. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  5. 76 FR 78096 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Science.gov (United States)

    2011-12-16

    ... COMMISSION 10 CFR Part 52 RIN 3150-AI84 U.S. Advanced Boiling Water Reactor Aircraft Impact Design.... Advanced Boiling Water Reactor (U.S. ABWR) standard plant design to comply with the NRC's aircraft impact...--Design Certification Rule for the U.S. Advanced Boiling Water Reactor IV. Section-by-Section Analysis A...

  6. 77 FR 38338 - Dairyland Power Cooperative; La Crosse Boiling Water Reactor Exemption From Certain Security...

    Science.gov (United States)

    2012-06-27

    ... COMMISSION Dairyland Power Cooperative; La Crosse Boiling Water Reactor Exemption From Certain Security Requirements 1.0 Background The La Crosse Boiling Water Reactor (LACBWR) is owned and was operated by the..., which utilized a forced-circulation, direct-cycle boiling water reactor as its heat source. The plant is...

  7. 76 FR 3540 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Science.gov (United States)

    2011-01-20

    ... COMMISSION 10 CFR Part 52 RIN 3150-AI84 U.S. Advanced Boiling Water Reactor Aircraft Impact Design... the U.S. Advanced Boiling Water Reactor (ABWR) standard plant design to comply with the NRC's aircraft...--Design Certification Rule for the U.S. Advanced Boiling Water Reactor IV. Section-by-Section Analysis A...

  8. Pool boiling performance of Novec{sup TM} 649 engineered fluid

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Eric; Buongiorno, Jacopo; McKrell, Thomas [Massachusetts Institute of Technology, Cambridge (United States). Dept. of Nuclear Science and Engineering; Hu, Lin-Wen [Massachusetts Institute of Technology, Cambridge (United States). Nuclear Reactor Lab.], e-mail: lwhu@mit.edu

    2009-07-01

    A new fluorinated ketone, C{sub 2}F{sub 5}C(O)CF(CF{sub 3}){sub 2}, is currently being considered as an environmentally friendly alternative for power electronics cooling applications due to its high dielectric strength and low global warming potential (GWP). Sold commercially by the 3M Company as Novec{sup TM} 649 Engineered Fluid, C{sub 2}F{sub 5}C(O)CF(CF{sub 3}){sub 2} exhibits very low acute toxicity while maintaining long-term stability. To assess the general two-phase heat transfer performance of Novec{sup TM} 649, pool boiling tests were conducted by resistively heating a 0.01 in. diameter nickel wire at the fluid's atmospheric saturation temperature of 49 deg C. The nucleate boiling heat transfer coefficient and critical heat flux (CHF) obtained for the fluorinated ketone compare favorably with results obtained for FC-72, a fluorocarbon widely used for the direct cooling of electronic devices. Initial results indicate that Novec{sup TM} 649 may prove to be a viable alternative to FC-72 and other halo alkanes for the cooling of high power density electronic devices. (author)

  9. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  10. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  11. Modeling acid-gas generation from boiling chloride brines

    Directory of Open Access Journals (Sweden)

    Sonnenthal Eric

    2009-11-01

    Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual

  12. A Study of Nucleate Boiling with Forced Convection in Microgravity

    Science.gov (United States)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the

  13. Modeling acid-gas generation from boiling chloride brines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  14. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.

  15. Measurement of the forward charged particle pseudorapidity density in pp collisions at √s = 8 TeV using a displaced interaction point

    CERN Document Server

    Antchev, G.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Covault, C.; Csanád, M.; Csörgő, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Hilden, T.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lippmaa, J.; Lokajíček, M.V.; Losurdo, L.; Lo Vetere, M.; Lucas Rodriguez, F.; Macrí, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Peroutka, Z.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sodzawiczny, T.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Whitmore, J.; Wyszkowski, P.; Zielinski, K.

    2015-01-01

    The the pseudorapidity density of charged particles dN$_{ch}$/d$\\eta$ is measured by the TOTEM experiment in pp collisions at √s = 8 TeV within the range 3.9 0 MeV/c, produced in inelastic interactions with at least one charged particle in −7 < $\\eta$ < −6 or 3.7< $\\eta$ < 4.8. The dN$_{ch}$/d$\\eta$ has been found to decrease with |$\\eta$|, from 5.11 ± 0.73 at $\\eta$ =3.95 to 1.81 ± 0.56 at $\\eta$ = −6.925. Several MC generators are compared to the data and are found to be within the systematic uncertainty of the measurement.

  16. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    Science.gov (United States)

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  17. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability

    Science.gov (United States)

    Taylor, M. T.; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  18. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  19. Laboratory Density Functionals

    OpenAIRE

    Giraud, B G

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  20. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100).

    Science.gov (United States)

    Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans

    2012-04-23

    The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->////energies and overall energy profile are affected when zero-point energy (ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species.

  1. Comparing Two Photo-Reconstruction Methods to Produce High Density Point Clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain

    Directory of Open Access Journals (Sweden)

    Álvaro Gómez-Gutiérrez

    2014-06-01

    Full Text Available In this paper, two methods based on computer vision are presented in order to produce dense point clouds and high resolution DEMs (digital elevation models of the Corral del Veleta rock glacier in Sierra Nevada (Spain. The first one is a semi-automatic 3D photo-reconstruction method (SA-3D-PR based on the Scale-Invariant Feature Transform algorithm and the epipolar geometry theory that uses oblique photographs and camera calibration parameters as input. The second method is fully automatic (FA-3D-PR and is based on the recently released software 123D-Catch that uses the Structure from Motion and MultiView Stereo algorithms and needs as input oblique photographs and some measurements in order to scale and geo-reference the resulting model. The accuracy of the models was tested using as benchmark a 3D model registered by means of a Terrestrial Laser Scanner (TLS. The results indicate that both methods can be applied to micro-scale study of rock glacier morphologies and processes with average distances to the TLS point cloud of 0.28 m and 0.21 m, for the SA-3D-PR and the FA-3D-PR methods, respectively. The performance of the models was also tested by means of the dimensionless relative precision ratio parameter resulting in figures of 1:1071 and 1:1429 for the SA-3D-PR and the FA-3D-PR methods, respectively. Finally, Digital Elevation Models (DEMs of the study area were produced and compared with the TLS-derived DEM. The results showed average absolute differences with the TLS-derived DEM of 0.52 m and 0.51 m for the SA-3D-PR and the FA-3D-PR methods, respectively.

  2. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

    Science.gov (United States)

    2011-01-01

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741

  3. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes.

    Science.gov (United States)

    Cieslinski, Janusz T; Kaczmarczyk, Tomasz Z

    2011-03-15

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density.

  4. Experimental studies of heat exchange for sodium boiling in the fuel assembly model: Safety substantiation of a promising fast reactor

    Science.gov (United States)

    Khafizov, R. R.; Poplavskii, V. M.; Rachkov, V. I.; Sorokin, A. P.; Trufanov, A. A.; Ashurko, Yu. M.; Volkov, A. V.; Ivanov, E. F.; Privezentsev, V. V.

    2017-01-01

    Numerical simulation of the ULOF-type accident development in a fast reactor with sodium coolant performed using the COREMELT code indicates that sodium boiling in the active core takes place. The boiling is accompanied by oscillations of the technological parameters of the reactor installation; these oscillations can go on during several tens of seconds. In this case, it is possible that a stable regime of removal of heat from residual energy release is implemented. The model of the two-phase coolant flow applied in the code has an important effect on the numerical results; that is why this model needs experimental verification. For eliminating the development of an accident resulting in destruction of the active core elements, a structural solution is proposed; the essence of it is the application of the sodium void above the reactor active core. The experimental installation was developed and the heat exchange at sodium boiling in the model fuel assembly of the fast reactor in the regimes of natural and forced circulation in the presence of the sodium void and the top end shield was studied. It was demonstrated that, in the presence of the sodium void, it is possible to provide long-term cooling of the fuel assembly for a thermal flux density on the fuel element simulator surface of up to 140 and 170 kW/m2 in the natural and forced circulation modes, respectively. The obtained data are used for more precise determination of the numerical model of sodium boiling in the fuel assembly and verification of the COREMELT code.

  5. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided?

    Science.gov (United States)

    Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L

    2015-03-05

    We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.

  6. Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors

    Science.gov (United States)

    Karve, Atul A.

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR loop model that we develop is studied by carrying

  7. Critical heat flux enhancement regarding to the thickness of graphene films under pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Man; Park, Hyun Sun [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Park, Youngjae; Kim, Hyungdae [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Dong Eok [Kyungpook Nat. Univ., Sangju (Korea, Republic of); Kim, Moo Hwan [Korea Inst. of Nuclear Safety, Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat. Univ., Incheon (Korea, Republic of)

    2014-05-15

    The large thermal conductivity of the graphene films inhibits the formation of hot spots, thereby increasing the CHF. An infrared high-speed visualization showed graphene effect on boiling characteristics during operation. The graphene-coated heater showed an increase in BHT and CHF. As the thickness of the graphene films increased, the CHF also increased up to an asymptotic limit when the graphene layer was approximately 150 nm thick. The increased BHT was explained by the slight decrease in the wettability and the folded edges of the RGO flakes, which led to a decrease in the diameter of the departing bubbles, a larger bubble generation frequency, and an increase in the areal density of the bubble nucleation sites. The increase in the CHF was explained by considering the thermal activity of the graphene films, and the dependence thereof on the thickness and thermal properties of the layer, which was calculated based on high-speed IR visualization data.

  8. Effect of subcooling on critical heat flux during pool boiling on a horizontal heated wire

    Science.gov (United States)

    Inoue, T.; Kawae, N.; Monde, M.

    Critical heat flux(CHF) is measured during pool boiling of water and R113 on a heated horizontal wire submerged in a subcooled liquid. Experiments are conducted over a pressure range from 0.1 to 3.0MPa and subcooling up to 220K. CHF data reveal that the CHF increases in a linear fashion with an increase in subcooling, and that the increment of the CHF with increasing subcooling becomes larger with increasing pressure. The characteristics of the CHF obtained differ from those of existing correlations at high pressures, although it is a similar tendency to them in that the CHF is proportional to the subcooling. A new correlation is derived by taking into account the effect of both the density ratio, ρL/ρV, and the Peclet number, Pe, and it succeeds in predicting the CHF data up to higher pressure and higher subcooling ranges, more effectively than previous studies using existing applicable ranges.

  9. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  10. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  11. Rising and boiling of a drop of volatile liquid in a heavier one: application to the LMFBR severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Pigny, Sylvain L.; Coste, Pierre F. [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: The rising and, simultaneously the boiling, of a droplet of volatile liquid in a heavier one is computation-ally investigated. Our calculations are performed with the help of the SIMMER code, in which a specific DNS algorithm is developed, to represent surface tension between the different media in an explicit way. This is required to represent the physical contact that occurs between two liquids and the vapor from the lighter one, since interfacial heat transfers, and therefore boiling kinetics, merely depend on it. The behavior of the three fluids system is of interest as a key phenomenon related to the transition phase of LMFBR severe accidents, before the formation of a fully developed bubble column. The driven force due to the boiling of steel drops can play a major role in the relocation, and, consequently, the recriticality of UO{sub 2} fuel. The problem is investigated focusing first on analytical experiments, built-up with simulating materials, and for which accurate experimental results are provided. The dependence of results with regard to thermodynamical and physical properties is underlined. This point is of interest in view of some uncertainties in the knowledge of data concerning the materials present in the reactor at high temperature. The pressure level is a key parameter in the accident scenarios: its influence is uppermost on the volumic mass of the gas. It is also outlined. (authors)

  12. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  13. Radon depletion in xenon boil-off gas

    CERN Document Server

    Bruenner, S; Lindemann, S; Undagoitia, T Marrodán; Simgen, H

    2016-01-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of $^{222}$Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of $\\gtrsim 4$ for the $^{222}$Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based $\\alpha$-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the $10^{-15}\\,$mol/mol level.

  14. Catastrophe characteristics of the condensation and pool boiling phenomena

    Science.gov (United States)

    Ma, Xuehu; Xu, Dunqi; Lin, Jifang

    1995-02-01

    Recently, Utaka proposed two types of the transition modes of dropwise condensation, i.e. the continuous and the jumping modes, and presented a criterion for determining the condensation transition mode. Stylianous and Rose proposed two hypotheses, the coalescence-limited transition and the nucleation site saturation transition. Neither Utaka's criterion nor Rose's hypotheses could clearly interpret the physical mechanisms of the transition both from filmwise to dropwise and from dropwise to pseudofilm condensation, and explicitly presented the main factors affecting the transitions. Kalinin hs given a general review of the transition boiling heat transfer. The catastrophe theory will be applied here to eluicidate the complex phenomena of the transitions of the condensation and boiling pattern states.

  15. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  16. Radon depletion in xenon boil-off gas

    Science.gov (United States)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  17. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling

    Institute of Scientific and Technical Information of China (English)

    ZOU Yu; HUAI Xiu-Lan; LIANG Shi-Qiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range.

  18. Boiling heat transfer in horizontal and inclined rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.M.; Mobarak, A.; Hilal, M.; Mohareb, M.R. (Cairo Univ. (Egypt))

    1987-05-01

    The present experimental investigation is concerned with boiling heat transfer of water inside both horizontal and inclined rectangular channels under a relatively low heat flux. These configurations simulate the absorber channel of line-focus solar concentrations under boiling conditions. The experimental facility includes electrically heated aluminum rectangular channels with aspect ratios of 2.67 and 0.37. The experimental results of the two-phase Nusselt number for the two aspect ratios and for the inclination angles 0, 15, 30, and 45 deg were correlated in terms of a ratio of the two-phase to the liquid-phase Reynolds number for the forced-convection vaporization region. The proposed correlations agree well with previous investigations. In the present work, classifications of the various flow patterns were made by direct observation through a glass window at the end of the test section.

  19. Microlayer formation characteristics in pool isolated bubble boiling of water

    Science.gov (United States)

    Yabuki, Tomohide; Nakabeppu, Osamu

    2016-10-01

    Investigation of microlayer formation characteristics is important for developing a reliable nucleate boiling heat transfer model based on accurate physical mechanisms. Although formation mechanisms of the thin liquid film in two-phase flow of confined spaces, such as micro-tubes and closely positioned parallel plates, have been thoroughly studied, microlayer formation mechanisms of pool boiling have been sparsely studied. In a previous study (Yabuki and Nakabeppu in Int J Heat Mass Transf 76:286-297, 2014; Int J Heat Mass Transf 100:851-860, 2016), the spatial distribution of initial microlayer thickness under pool boiling bubbles was calculated by transient heat conduction analysis using the local wall temperature measured with a MEMS sensor. In this study, the hydrodynamic characteristics of microlayer formation in pool boiling were investigated using the relationship between derived initial microlayer thickness and microlayer formation velocity determined by transient local heat flux data. The trend of microlayer thickness was found to change depending on the thickness of the velocity boundary layer outside the bubble foot. When the boundary layer thickness was thin, the initial microlayer thickness was determined by the boundary layer thickness, and the initial microlayer thickness proportionally increased with increasing boundary layer thickness. On the other hand, when the boundary layer was thick, the initial microlayer thickness decreased with increasing boundary layer thickness. In this thick boundary layer region, the momentum balance in the dynamic meniscus region became important, in addition to the boundary layer thickness, and the microlayer thickness, made dimensionless using boundary layer thickness, correlated with the Bond number.

  20. Prediction of film boiling heat transfer coefficients for binary mixtures

    Science.gov (United States)

    Liu, Ming-Huei; Yang, Yu-Min; Maa, Jer-Ru

    Film boiling of binary liquid mixtures may be significantly different from that of single-component liquids due to the mass diffusion effect. A theoretical analysis is performed to outline the effects of mass diffusion phenomena on film boiling heat transfer process from a horizontal cylinder heating surface to the binary liquid mixtures of ethylene oxide/water and ethanol/benzene over whole range of compositions. These two binary systems are chosen for illustrating the strong and weak mass diffusion effects, respectively, on film boiling. Furthermore, a simple correlation for predicting heat transfer coefficient is proposed to demonstrate the idea that the dimensionless F factor can satisfactorily account for the mass diffusion effect on film boiling heat transfer of binary mixtures. Zusammenfassung Infolge des Stoffdiffusionseffektes kann sich das Filmsiedeverhalten binärer Flüssigkeitsgemische ganz wesentlich von dem der Einzelkomponentenfluide unterscheiden. In einer theoretischen Studie sollen die Einflüsse der Stoffdiffusionsphänomene auf den Wärmeübergang beim Filmsieden untersucht werden, und zwar bezüglich einer horizontalen zylindrischen Heizfläche, die Wärme an die Binärgemische Ethylenoxid/Wasser und Ethanol/Benzol bei beliebigen Konzentrationsverhältnissen abgibt. Die beiden Binärsysteme wurden ausgewählt, um einmal starken und dann schwachen Einfluß des Stoffdiffusionseffektes auf das Filmsieden zu zeigen. Schließlich wird eine einfache Korrelationsbeziehung zur Berechnung von Wärmeübergangskoeffizienten vorgeschlagen, die darlegen soll, daß der dimensionslose F-Faktor geeignet ist, den Einfluß des Stoffdiffusionseffektes auf das Filmsieden binärer Gemische befriedigend zu berücksichtigen.