WorldWideScience

Sample records for denser gases flow

  1. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  2. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    A new design is presented for a gas flow cell for reactive gases at high temperatures. The design features three heated sections that are separated by flow windows. This design avoids the contact of reactive gases with the material of the exchangeable optical windows. A gas cell with this design ......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  3. The electron energy distribution function of noble gases with flow

    International Nuclear Information System (INIS)

    Karditsas, P.J.

    1989-01-01

    The treatment of the Boltzmann equation by several investigators, for the determination of the electron energy distribution function (EEDF) in noble gases was restricted to static discharges. It is of great interest to magnetoplasmadynamic power generation to develop the Boltzmann equation to account for the effect of the bulk fluid flow on the EEDF. The two term expansion of the Boltzmann equation, as given, results in additional terms introduced to the equations due to the bulk fluid flow, with velocity u

  4. Flow-Control Unit For Nitrogen And Hydrogen Gases

    Science.gov (United States)

    Chang, B. J.; Novak, D. W.

    1990-01-01

    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  5. Device for accurately measuring mass flow of gases

    Science.gov (United States)

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  6. Near-surface flow of volcanic gases on Io

    International Nuclear Information System (INIS)

    Lee, S.W.; Thomas, P.C.

    1980-01-01

    Significant near-surface flow of gas several hundred kilometers from Pele (Plume 1) on Io is indicated by a series of bright, elongate albedo markings. Particles produced at small, local vents are apparently carried as much as 70 km farther 'downwind' from Pele. The gas densities and velocities necessary to suspend 0.1 to 10 micron particles at such a distance imply mass flow rates of 10 to the 7th - 10 to the 9th g/sec. Such flow rates are consistent with other estimates of mass transport by the plume. The large flow rates so far from the source allow an estimate of the rate of resurfacing of Io by lava flows and pyroclastics that is independent of estimates based on meteorite flux or on the amount of solids carried within the plumes themselves

  7. Device for measuring the temperature of flowing hot gases

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R D

    1977-05-12

    The invention pertains to a device to measure the temperature of a hot gas flowing through a closed tube. The device will have a simple and inexpensive design and avoid heat losses due to heat radiation near the thermal sensor.

  8. THE LAWS OF MOLECULAR AND VISCOUS FLOW OF GASES THROUGH TUBES. Die Gesetze der Molekularstroemung und der inneran Reibungsstroemung der Gase durch Roehren

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, M

    1909-07-01

    Experimental data from studies of the flow of H/sub 2/, O/sub 2/, and CO/ sub 2/ through glass capillary tubes were collected and treated to determine the effect of tube dimensions and physical properties of the gases on molecular flow. Laws governing the transition from viscous to molecular flow were also sought. (T.R.H.)

  9. Quantifying, characterizing, and controlling information flow in ultracold atomic gases

    International Nuclear Information System (INIS)

    Haikka, P.; McEndoo, S.; Maniscalco, S.; De Chiara, G.; Palma, G. M.

    2011-01-01

    We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

  10. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  11. Aspects of the dispersion of denser-than-air vapours relevant to gas cloud explosions

    International Nuclear Information System (INIS)

    Wheatley, C.J.; Webber, D.M.

    1985-01-01

    The essential aim of the study presented here is to improve upon the understanding and prediction of the atmospheric dispersion of denser-than-air vapours, and thereby reduce the uncertainties in predicting hazards which might arise from the accidental release of a dense, flammable vapour cloud. In the first phase of the study, models for dispersion in the atmosphere of denser-than-air vapours are reviewed. It is found that a significant source of uncertainty in predictions of all models is the calculation of dilution caused by turbulence. This is due to spreading and stratification caused by the excess density of the cloud and to the interaction of the cloud motion with the ambient flow field. These effects lead to a complex field of turbulence. An additional, significant source of uncertainty is found to be present in '3D' models due to the use of coarse computational grids. A number of experimental tests are proposed which permit fundamental discrimination between the models with the object of reducing uncertainties. In the second phase of the study, a new 'box' model is proposed (A 'box' model is one in which only gross properties of the flow are predicted). All sources of turbulence are included in a way consistent with laboratory studies of entrainment in stratified flows. The prescribed concentration distribution models the initial 'mixed layer'/'gravity spreading' phase and the final 'passive' phase of dispersion with a smooth transition between the two. In the third phase of the study, implications of dispersion of denser-than-air flammable vapour clouds in open terrain for flame speeds following ignition by a weak source are assessed. It is concluded that flame speeds sufficient to cause significant overpressures cannot occur in unobstructed terrain. (author)

  12. Buoyancy and Pressure Driven Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    Science.gov (United States)

    Tamm, Gunnar; Jaluria, Yogesh

    2003-11-01

    An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.

  13. Non-equilibrium blunt body flows in ionized gases

    International Nuclear Information System (INIS)

    Nishida, Michio

    1981-01-01

    The behaviors of electrons and electronically excited atoms in non-equilibrium and partially ionized blunt-body-flows are described. Formulation has been made separately in a shock layer and in a free stream, and then the free stream solution has been connected with the shock layer solution by matching the two solutions at the shock layer edge. The method of this matching is described here. The partially ionized gas is considered to be composed of neutral atoms, ions and electrons. Furthermore, the neutral atoms are divided into atoms in excited levels. Therefore, it is considered that electron energy released due to excitation, and that gained due to de-excitation, contribute to electron energy. Thus, the electron energy equation including these contributions is solved, coupled with the continuity equations of the excited atoms and the electrons. An electron temperature distribution from a free stream to a blunt body wall has been investigated for a case when the electrons are in thermal non-equilibrium with heavy particles in the free stream. In addition, the distributions of the excited atom density are discussed in the present analysis. (author)

  14. Multidimensional flow of radioactive gases through the soil surrounding an underground nuclear power plant

    International Nuclear Information System (INIS)

    Dinkelacker, A.

    1980-01-01

    In connection with the underground siting of nuclear power plants the spreading of radioactive gases that are released into the soil coverage after a hypothetical accident is investigated. A physical model is presented that includes the isothermal one- and two-component flow of ideal gases through an inhomogeneous porous medium on the basis of Darcy's law. Based on this model a computer code has been developed that permits the calculation of transient pressure and concentration distributions in inhomogeneous porous media in one to three dimensions, as well as the determination of retention times. (orig.) [de

  15. Wind energy: an application of Bernoulli's theorem generalized to isentropic flow of ideal gases

    International Nuclear Information System (INIS)

    De Luca, R; Desideri, P

    2013-01-01

    By considering the extension of Bernoulli's theorem to the case of the isentropic flow of ideal gases we conceive a small-scale wind–energy system able to work in the presence of low wind velocities in any direction. The flow of air inside a hyperbolically shaped pipe is studied using elementary physics concepts. The results obtained show that wind velocity in the system increases for decreasing cross-sectional areas, allowing a lower cut-in wind speed and an increase in the annual energy production of the device. (paper)

  16. Numerical analysis of isothermal JET injection into a denser liquid pool using RD-MPS Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of); Park, H. S. [POSTECH, Pohang (Korea, Republic of); Jeun, G. [Hanyang Univ., Seoul (Korea, Republic of)

    2012-03-15

    In this study, the rigid body dynamics coupled moving particle semi-implicit (RD-MPS) method was used to simulate a plunging liquid jet penetrating into a denser liquid pool. The phenomenon is related to fuel-coolant interactions (FCI) during severe accidents in nuclear power plants when coolant water is forcedly injected into a melt pool. A numerical particle method like MPS enables to simulate the complex multiphase flow in that significant deformation of fluids occurs due to its inherent grid less algorithm. However, the MPS method alone cannot continue the calculation for a long time as shown in the Ikea's work due to the large deformation of fluid surfaces and the difference in both liquid densities. In the RD-MPS method, the rigid body dynamics was coupled with the moving particle semi-implicit method to increase the overall stability of calculations and to calculate the multi-phase behavior of fluids. We performed two and three dimensional calculations to simulate jet penetration behaviors in a denser liquid pool, and the result was in good agreement with that of experiment. The simulation results suggested that the coupled model be useful in simulating dynamic interactions of multi-phase incompressible fluids as well as that the 3-D simulation for the plunging jet in a confined geometry predicted better agreement with experimental results than the 2-D simulation did.

  17. Numerical analysis of isothermal JET injection into a denser liquid pool using RD-MPS Method

    International Nuclear Information System (INIS)

    Park, S.; Park, H. S.; Jeun, G.

    2012-01-01

    In this study, the rigid body dynamics coupled moving particle semi-implicit (RD-MPS) method was used to simulate a plunging liquid jet penetrating into a denser liquid pool. The phenomenon is related to fuel-coolant interactions (FCI) during severe accidents in nuclear power plants when coolant water is forcedly injected into a melt pool. A numerical particle method like MPS enables to simulate the complex multiphase flow in that significant deformation of fluids occurs due to its inherent grid less algorithm. However, the MPS method alone cannot continue the calculation for a long time as shown in the Ikea's work due to the large deformation of fluid surfaces and the difference in both liquid densities. In the RD-MPS method, the rigid body dynamics was coupled with the moving particle semi-implicit method to increase the overall stability of calculations and to calculate the multi-phase behavior of fluids. We performed two and three dimensional calculations to simulate jet penetration behaviors in a denser liquid pool, and the result was in good agreement with that of experiment. The simulation results suggested that the coupled model be useful in simulating dynamic interactions of multi-phase incompressible fluids as well as that the 3-D simulation for the plunging jet in a confined geometry predicted better agreement with experimental results than the 2-D simulation did

  18. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Tobin, M.J.; Vives-Batlle, J.; Yoon, S.R.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min. This paper presents the design features, operational methods, calibration, and detector applications. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    Science.gov (United States)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  20. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Vives-Batlle, J.; Yoon, S.R; Tobin, M.J.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, operational methods, calibration, and detector applications

  1. Fluid Flow Behaviour under Different Gases and Flow Rate during Gas Metal Arc Welding

    OpenAIRE

    Jaison Peter

    2013-01-01

    Gas metal arc welding (GMAW) is a highly efficient and fast process for fabricating high quality weld. High quality welds are fabricated by proper selection of consumable includes gas and filler metals. The optimum flow rate of gas will ensure the proper quality of weld. In this project, a fluid flow behavior of different flow rate is modeled and the change quality will be studied.

  2. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  3. MOLECULAR FLOW OF GASES THROUGH ORIFICES AND EFFUSION. Die Molekularstroemung der Gase durch Oeffnungen und die Effusion

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, M

    1909-07-01

    It is shown that whenever a gas flows through a tube whose cross- sectional dimension is small in comparison with the mean free path of the gas molecules, the amount of gas flowing per unit time is dependent only upon the dimensions of the tube, the square root of the specific gravity of the gas, and the difference in pressure. (W.L.H.)

  4. Estimated flows of gases and carbon within CEEF ecosystem composed of human, crops and goats

    Science.gov (United States)

    Tako, Y.; Komatsubara, O.; Honda, G.; Arai, R.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation necessary for long term missions such as Lunar and Mars exploration. In the experiment conducted under closed condition in FY2003, rice and soybeans were cultivated sequentially in two chambers and a chamber, each having a cultivation area of 30 m2 and floor area of 43 m2, inside the Plantation Module with artificial lighting of the CEEF. In the chamber having a cultivation area of 60 m2 and floor area of 65 m2, inside the Plantation Module with natural and artificial lighting, peanuts and safflowers were also cultivated. Stable transplant (or seeding) and harvest of each crop were maintained during a month. Flows of CO2, O2 and carbon to and from the crops were analyzed during the stable cultivation period. Simulated works and stay in the CEEF lasting five days were conducted two times under ventilating condition in FY2003. Gas exchange of human was estimated using heart rate data collected during the experiments and correlation between gas exchange rate and heart rate. Gas exchange rate and carbon balance of female goats were determined using an open-flow measurement system with a gastight chamber. From these results, flows of gases and carbon in the CEEF were discussed.

  5. Fracture detection and groundwater flow characterization in poorly exposed ground using helium and radon in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.

    1991-05-01

    Radon and helium in soil gases have been used to identify locations of groundwater discharge and the presence of fractures outcropping beneath overburden in two areas near the Underground Research Laboratory (URL), Lac du Bonnet, Manitoba, Canada. In particular, groundwater discharge from a known, inclined fracture zone at the URL was clearly identified by a helium excess in overlying soil gases. A model was developed to describe gas phase flow in bedrock and overburden at this location, from gas injection in an adjacent borehole. Predictions were made of gas transport pathway and breakthrough time at the surface, in preparation for a gas injection test

  6. Development of a pressure based vortex-shedding meter: measuring unsteady mass-flow in variable density gases

    International Nuclear Information System (INIS)

    Ford, C L; Winroth, M; Alfredsson, P H

    2016-01-01

    An entirely pressure-based vortex-shedding meter has been designed for use in practical time-dependent flows. The meter is capable of measuring mass-flow rate in variable density gases in spite of the fact that fluid temperature is not directly measured. Unlike other vortex meters, a pressure based meter is incredibly robust and may be used in industrial type flows; an environment wholly unsuitable for hot-wires for example. The meter has been tested in a number of static and dynamic flow cases, across a range of mass-flow rates and pressures. The accuracy of the meter is typically better than about 3% in a static flow and resolves the fluctuating mass-flow with an accuracy that is better than or equivalent to a hot-wire method. (paper)

  7. Long term high flow humidified oxygen treatment in COPD – effect on blood gases

    DEFF Research Database (Denmark)

    Storgaard, Line; Weinreich, Ulla; Hockey, Hans

    2017-01-01

    .Aim: To investigate the treatment effect on arterial blood gases (PaO2, PaCO2 and SaO2) in patients with resting hypoxemia over 12 months.Method: In this prospective, randomized controlled, one-year study, 200 COPD patients treated with LTOT, all GOLD class 4, were randomized to NHF (n=100) or usual care (n=100......) between March 2013 and June 2015.Results: The groups are comparable in average days in study, age, gender, smoking status, pack years, BMI, FEV1%, 6 minutes walking test, administered oxygen (L/min), PaO2 PaCO2 and Sa02 at baseline and number of exacerbations and admissions one year prior to study start....... Treated with a mean NHF-flow of 20 L/min, no significant difference was seen in PaO2 or SaO2 over the study, but a significantly different change in PaCO2 was seen after 6 months (p<0.05) and after 12 months (p<0.01) in favor of patients treated with NHF. Increase in PaCO<2 was approximately 0...

  8. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  9. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  10. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  11. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.

    Science.gov (United States)

    Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady

    2008-02-01

    We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald

  12. Nets solution of flow for gases, using the Balance Pattern of Nodes and the method of linealization of equations

    International Nuclear Information System (INIS)

    Narvaez, Paulo Cesar

    1999-01-01

    The dimension of nets of distribution of gases is a complex problem, so much for the diversity of the phenomena that they are presented, like for the variation of the properties of the fluids, especially, the density for effect of the changes in the pressure along the net. This work presents a model for its simulation starting from the deduction of the general equation of flow in stable and isothermal state, its inclusion in the pattern of balance of nodes and the solution of this for the method of linealization of equations. Additionally, a summary of the empiric equations more used is made for the calculation of the fall of pressure for gases flowing in pipes and an example that it illustrates the application of the pattern and the developed method

  13. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  14. Determination of splenic blood flow by inhalation of radioactive rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Huchzermeyer, H; Schmitz-Feuerhake, I; Reblin, T [Medizinische Hochschule Hannover (Germany, F.R.). Abt. fuer Nuklearmedizin und Spezielle Biophysik; Medizinische Hochschule Hannover (Germany, F.R.). Abt. fuer Gastroenterologie)

    1977-10-01

    We have evaluated the /sup 133/Xenon inhalation method for the determination of splenic blood flow. In twenty-two healthy persons the blood flow was on average 109 +- 4 ml/100 g x min, which is equivalent to a total blood flow of about 170 ml/min. In patients with chronic fatty liver hepatitis specific blood flow was reduced (81 +- 10 ml/100 g x min) as it was in patients with cirrhotic liver without splenomegaly (75 +- 2 ml/100 g x min.). With increasing weight of the spleen, the total blood flow rises, although specific blood flow is low. Our results obtained by the /sup 133/Xenon inhalation method are similar to results obtained by others using intraarterial injection of tracer gas. The advantages of the inhalation method as a non-traumatic method are: 1) the stress for the patient is very small; 2) blood flow measurements can be repeated within short periods of time. We consider for the present the /sup 133/Xenon inhalation method to be the method of choice for the determination of the splenic blood flow.

  15. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  16. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  17. Flow immune photoacoustic sensor for real-time and fast sampling of trace gases

    Science.gov (United States)

    Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.

  18. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  19. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  20. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  1. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    Science.gov (United States)

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  2. Must Star-forming Galaxies Rapidly Get Denser before They Quench?

    Science.gov (United States)

    Abramson, L. E.; Morishita, T.

    2018-05-01

    Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching—where rapid increases in galaxy density truncate star formation—over a null hypothesis in which galaxies age at constant surface density ({{{Σ }}}e\\equiv {M}* /2π {r}e2). Results from two fully empirical analyses and one quenching-free model calculation support this claim at all z ≤ 3: (1) qualitatively, galaxies’ mean U–V colors at 6.5 ≲ {log}{{{Σ }}}e/{\\text{}}{M}ȯ {kpc}}-2≲ 10 have reddened at rates/times correlated with {{{Σ }}}e, implying that there is no density threshold at which galaxies turn red but that {{{Σ }}}e sets the pace of maturation; (2) quantitatively, the abundance of {log}{M}* /{\\text{}}{M}ȯ ≥slant 9.4 red galaxies never exceeds that of the total population a quenching time earlier at any {{{Σ }}}e, implying that galaxies need not transit from low to high densities before quenching; (3) applying d{log}{r}e/{dt}=1/2 d{log}{M}* /{dt} to a suite of lognormal star formation histories reproduces the evolution of the size–mass relation at {log}{M}* /{\\text{}}{M}ȯ ≥slant 10. All results are consistent with evolutionary rates being set ab initio by global densities, with denser objects evolving faster than less-dense ones toward a terminal quiescence induced by gas depletion or other ∼Hubble-timescale phenomena. Unless stellar ages demand otherwise, observed {{{Σ }}}e thresholds need not bear any physical relation to quenching beyond this intrinsic density–formation epoch correlation, adding to Lilly & Carollo’s arguments to that effect.

  3. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  4. Numerical study on the effect of non-condensable gases on the bi-phasic flow in geothermal wells; Estudio numerico del efecto de gases incondensables sobre el flujo bifasico en pozos geotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Santoyo Gutierrez, Edgar; Garcia Gutierrez, Alfonso; Santoyo Gutierrez, Socrates; Morales Rosas, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1993-09-01

    The objective of this paper is to describe a numerical study to determine the flow characteristics that predominate in geothermal wells and that produces a significant amount of non-condensable gases. It is known that these gases affect the thermodynamic conditions that dominate the fluid transport in the well or inclusively within the proper producing reservoir, therefore, it is extremely important to evaluate this effect. For this purpose the numerical model Geopozo V2.0 was developed. This model considers the carbon dioxide (CO{sub 2}) as the representative gas of the non-condensable gases present in the geothermal fluid. Due to this consideration, Geopozo V2.0 includes a methodology or the estimation of the thermodynamic and transport properties of geothermal fluids, considering these as a mix of two components: H{sub 2}O (vapor and liquid) and CO{sub 2}, under conditions of monophasic and biphasic flow. The application of Geopozo V2.0 for a typical case of flow in geothermal wells with high CO{sub 2} content revealed that the presence of this gas affects significantly the location of the flashing point inside the well and consequently, the amount of steam produced. This is of importance or the design and selection of the surface and generation equipment, aspect that to this date has been ignored (Suwana, 1991). [Espanol] El objetivo de este trabajo es describir un estudio numerico para determinar las caracteristicas del flujo que predominan en pozos geotermicos y que producen una cantidad significante de gases incondensables. Se tiene conocimiento de que estos gases afectan las condiciones termodinamicas que dominan el transporte de fluidos en el pozo o incluso dentro del mismo yacimiento geotermico productor, por lo que es de suma importancia evaluar dicho efecto. Para ello fue desarrollado el modelo numerico Geopozo V2.0. Este modelo considera al dioxido de carbono (CO{sub 2}) como el gas representativo de los incondensables presentes en el fluido geotermico

  5. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  6. Electronegative gases

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1981-01-01

    Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined

  7. Greenhouse Gases

    Science.gov (United States)

    ... also produced by human activities. Some, such as industrial gases, are exclusively human made. What are the types ... Carbon dioxide (CO2) Methane (CH4) Nitrous oxide (N2O) Industrial gases: Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur hexafluoride (SF6 Nitrogen ...

  8. Umidificação e aquecimento do gás inalado durante ventilação artificial com baixo fluxo e fluxo mínimo de gases frescos Humidificación y calentamiento del gas inhalado durante ventilación artificial con bajo flujo y flujo mínimo de gases frescos Inhaled gases humidification and heating during artificial ventilation with low flow and minimal fresh gases flow

    Directory of Open Access Journals (Sweden)

    Susane Bruder Silveira Gorayb

    2004-02-01

    from the contact of cold and dry gas with the airways. This study aimed at evaluating the effect of respiratory circle systems with carbon dioxide absorbers from Dräger's Cicero anesthesia machine (Germany as to inhaled gases heating and humidification ability using low fresh gases flow (1 L.min-1 or minimum flow (0.5 L.min-1. METHODS: Participated in this study, 24 patients, physical status ASA I, aged 18-65 years, submitted to general anesthesia using Dräger's Cicero workstation (Germany for abdominal surgery, who were randomly distributed in two groups: low flow group (LF received 0.5 L.min-1 oxygen and 0.5 L.min-1 nitrous oxide, and minimum flow group (MF received 0.5 L.min-1 oxygen only. Evaluated attributes were temperature, relative and absolute humidity of the operating room and of respiratory circuit gas. RESULTS: There were no significant differences in inhaled gas temperature, relative and absolute humidity between groups, but they have increased along time in both groups, with influence of operating room temperature on inhaled gas temperature for both groups. Near optimal levels of humidity and temperature were reached as from 90 minutes in both groups. CONCLUSIONS: There have been no significant differences in inhaled gas humidity and temperature with fresh gases low flow or minimum flow.

  9. Development of a flow controller for long-term sampling of gases and vapors using evacuated canisters.

    Science.gov (United States)

    Rossner, Alan; Farant, Jean Pierre; Simon, Philippe; Wick, David P

    2002-11-15

    Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.

  10. Seismic effects on bedrock and underground constructions. A literature survey of damage on constructions; Changes in groundwater levels and flow; Changes in chemistry in groundwater and gases

    International Nuclear Information System (INIS)

    Roeshoff, Kennert.

    1989-06-01

    This report is a literature review of direct and indirect effects of earthquakes on underground constructions as tunnels, caverns and mines. The direct damage will cause vibrations, shaking and displacement, which may lead to partial or total destruction of the underground facility. Damage caused by shaking has been reported in several studies, and several hundreds of events have been reported both from mines and tunnels. These reports are mainly from active earthquake areas. There are very few reports of damage caused by displacements on an existing fault. The damage, which may be severe, is generally concentrated to the vicinity of the fault zone. The report also includes a review of the effects caused by earthquakes on groundwater level, flow, pressure, chemistry and constituents in the ground. Such changes are mainly reported from studies in wells near active faults. The interesting coupling of changes in groundwater characteristics around an underground construction is, unfortunately, very seldom reported. The groundwater level and pressure changes are discussed in Chapter 4. The bases for this part of the review is taken from the Alaska earthquake 1964. Other observations are reported from wells and reservoirs located near existing faults. Changes of the geochemistry in groundwater and soil gases are reviewed in Chapter 4. The mechanisms of seismochemical anomalies are discussed and examples of short and long term monitoring are given from USA, Soviet Union and China. Gases in ground water and soil is reported in Chapter 5. Radon is so far one of the most studied species and its variation in short, medium and long term with seismic activity is rather well understood. Other gases or isotopes that have been studied include helium, carbon dioxide, hydrogen, argon and methane, radium and uranium. The paper also includes same statements for repository design based on the result of the review. (81 refs.)

  11. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  12. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Khazaee, I.; Sabadbafan, H.

    2016-01-01

    The performance of a PEM (proton exchange membrane) fuel cell depends on design and operating parameters such as relative humidity, operation pressure, and number of channels and direction of the flow of reactant gases. In this study, a three-dimensional, two-phase model has been established to investigate the water management and performance of PEM fuel cell with rectangular geometry and 1-serpentine and 4-serpentine with parallel flow, counter flow and cross flow for hydrogen and oxygen. The numerical simulation was realized with a PEM fuel cell model based on the FLUENT. The active area of each cell is 24.8 cm 2 that its weight is 1300 gr. The material of the gas diffusion layer is carbon clothes, the membrane is nafion117 and the catalyst layer is a plane with 0.004 g cm −2 platinum. Pure hydrogen is used on the anode side and oxygen on the cathode side. Simulation results are obtained for voltage as a function of current density at different humidity. The simulation results are compared with the experimental data, and the agreement is found to be good. The results show that the cell performance at lower voltages increases with increasing humidity in cell with 4-Serpentine flow channel and also in cell with 1-Serpentine flow channel, cell performance at all voltages increases with increasing humidity. In cell with 4-Serpentine and parallel flow channel cell performance is better than counter and cross flow in low voltage and in cell with 1-Serpentine and parallel flow, performance is better than counter and cross flow in high voltage. - Highlights: • Investigation new geometries of a fuel cell. • The effect of geometry on current density, oxygen and water distribution. • The effect of humidity on current density, oxygen and water distribution. • Seeing the interacting and complex electrochemical phenomena.

  13. Custom real-time ultrasonic instrumentation for simultaneous mixture and flow analysis of binary gases in the CERN ATLAS experiment

    CERN Document Server

    Alhroob, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Hasib, A.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    Custom ultrasonic instruments have been developed for simultaneous monitoring of binary gas mixture and flow in the ATLAS Inner Detector. Sound transit times are measured in opposite directions in flowing gas. Flow rate and sound velocity are respectively calculated from their difference and average. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database, based on the direct dependence of sound velocity on component concentrations in a mixture at known temperature and pressure. Five devices are integrated into the ATLAS Detector Control System. Three instruments monitor coolant leaks into N2 envelopes of the silicon microstrip and Pixel detectors. Resolutions better than ±2×10−5±2×10−5 and ±2×10−4±2×10−4 are seen for C3F8 and CO2 leak concentrations in N2 respectively. A fourth instrument detects sub-percent levels of air ingress into the C3F8 condenser of the new thermosiphon coolant recirculator. Following extensive studies a fifth instrument was b...

  14. Industrial gases

    International Nuclear Information System (INIS)

    Hunter, D.; Jackson, D.; Coeyman, M.

    1993-01-01

    Industrial gas companies have fought hard to boost sales and hold margins in the tough economic climate, and investments are well down from their 1989-'91 peak. But 'our industry is still very strong long term' says Alain Joly, CEO of industry leader L'Air Liquide (AL). By 1994, if a European and Japanese recovery follows through on one in the U.S., 'we could see major [investment] commitments starting again,' he says. 'Noncryogenic production technology is lowering the cost of gas-making possible new applications, oxygen is getting plenty of attention in the environmental area, and hydrogen also fits into the environmental thrust,' says Bob Lovett, executive v.p./gases and equipment with Air Products ampersand Chemicals (AP). Through the 1990's, 'Industrial gases could grow even faster than in the past decade,' he says. Virtually a new generation of new gases applications should become reality by the mid-1990s, says John Campbell, of industry consultants J.R. Campbell ampersand Associates (Lexington, MA). Big new oxygen volumes will be required for powder coal injection in blast furnaces-boosting a steel mill's requirement as much as 40% and coal gasification/combined cycle (CGCC). Increased oil refinery hydroprocessing needs promise hydrogen requirements

  15. Evolution of disturbances in the shock layer on a flat plate in the flow of a mixture of vibrationally excited gases

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.; Maslov, A. A.

    2017-05-01

    The results of the numerical and experimental investigations of the evolution of the disturbances in a hypersonic shock layer on a flat plate streamlined by a flow of the mixture of vibrationally excited gases are presented. The experimental study was conducted in the hot-shot high-enthalpy wind tunnel IT-302 of the ITAM SB RAS. The numerical simulation was carried out with the aid of the ANSYS Fluent package using the solution of the unsteady two-dimensional Navier-Stokes equations with the incorporation of the user-created modules and enabling the consideration of the vibrational non-equilibrium of the carbon dioxide molecules within the framework of the model of the two-temperature aerodynamics. It was obtained that an increase in the carbon dioxide concentration in the mixture with air leads to a reduction of the intensity of pressure disturbances on the surface. The efficiency (up to 20 %) of the method of sound absorbing coatings in the vibrationally excited flows of the mixture of the carbon dioxide and air has been shown.

  16. Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Science.gov (United States)

    Gumm, L. P.; Bense, V. F.; Dennis, P. F.; Hiscock, K. M.; Cremer, N.; Simon, S.

    2016-02-01

    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10-4 cm3 (STP) g-1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ˜107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study's geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.

  17. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  18. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (I) - Effect of Type and Flow Rate of Shielding Gases on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    In this study, welding of pure titanium was carried out by using a continuous wave fiber laser with a maximum output of 6.3 kW. Because brittle regions form easily in titanium as a result of oxidation or nitriding, the weld must be protected from the atmosphere by using an appropriate shielding gas. Experiments were performed by changing the type and the flow rate of shielding gases to obtain the optimal shielding condition, and the weldability was then evaluated. The degree of oxidation and nitriding was distinguished by observing the color of beads, and weld microstructure was observed by using an optical microscope and a scanning electron microscope. The mechanical properties of the weld were examined by measuring hardness. When the weld was oxidized or nitrified, the bead color was gray or yellow, and the oxygen or nitrogen content in the bead surface and overall weld tended to be high, as a result of which the hardness of the weld was thrice that of the base metal. A sound silvery white bead was obtained by using Ar as the shielding gas.

  19. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  20. A Study of the Mortar Firing Process Taking into Account the Propellant Gases Flow from the Tail Tube into the Space Behind the Shell

    Directory of Open Access Journals (Sweden)

    A. K. Efremov

    2015-01-01

    Full Text Available Characteristics of inertial forces driving the arming process of fuse safety system mechanisms are determined by the parameters of shell motion in the barrel. The motion of the elements of fuse mechanisms is studied in a non-inertial coordinate system. Reasonable consideration of the reliability of unlocking the safety stages during the shot is obviously possible only when there is an adequate description of the inertia forces. The arming of inertial type safety mechanism should be completed before the moment when the level of the axial inertia force reaches a certain value rated to the maximum level (determined by the arming safety factor. Classical methods of internal ballistics do not identify the parameters of the part of the setback which is important for fuse arming.In the traditional method of calculating the process of mortar firing the pressure required to break the perforations in the tail stabilizer tube of the mortar shell performs the role of a "forcing pressure", and consequently the combustion of the main charge is supposed to begin instantaneously, i.e. it acts merely as an igniter for the additional charge. In reality (physically there is some initial portion of the pressure rise and, correspondingly, the force of inertia (setback.An approach is proposed to the study of a shot from a mortar based on consideration of the temporal process of the propellant gases flow after breaking the stabilizer tube perforations in the space behind the mortar shell. It is assumed that the ignition of the additional charge and the movement of shell begin simultaneously. This approach allows one to identify the leading portion of the setback curve, allowing a more adequate description of fuse mechanisms functioning during arming. The periods of shot are considered consecutively in cases of absence and availability of the additional charge. Differential equations are reduced to dimensionless form simplifying the procedure of computer aided solution

  1. Permeability of cork to gases.

    Science.gov (United States)

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.

  2. Polarization (ellipsometric) measurements of liquid condensate deposition and evaporation rates and dew points in flowing salt/ash-containing combustion gases

    Science.gov (United States)

    Seshadri, K.; Rosner, D. E.

    1985-01-01

    An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.

  3. Method of contacting solids and gases

    Energy Technology Data Exchange (ETDEWEB)

    1942-08-06

    A continuous method is described for contacting solids and gases. The process involves passing a confined stream of gases through an extended path including a treating zone and imposing a pressure on the stream of gases at least sufficient to overcome the resistence of said path to the flow of said gases. A solid in finely divided form is then introduced into said stream of gases, maintaining a vertical column of finely divided solid in fluidized state of a height which will produce a pressure at the column bottom at least equal to the gas pressure at the point of entry of the solids into the stream. The solids then pass from the bottom of the column into the stream.

  4. Selective noble gases monitoring

    International Nuclear Information System (INIS)

    Janecka, S.; Jancik, O.; Kapisovsky, V.; Kubik, I.; Sevecka, S.

    1995-01-01

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: 88 Kr(67; 22) Bq/m 3 ; 85m Kr(17; 7) Bq/m 3 ; 135m Xe(7.1; 0.5) Bq/m 3 ; 138 Xe(5.9; 0.9) Bq/m 3 . (J.K.)

  5. Selective noble gases monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Janecka, S; Jancik, O; Kapisovsky, V; Kubik, I; Sevecka, S [Nuclear Power Plants Research Institute, a.s., Trnava (Slovakia)

    1996-12-31

    The monitoring of leak releases from ventilation stack of NPP requires a system by several orders more sensitive then currently used radiometer Kalina, designed to cover the range up to a design-based accident. To reach this goal a noble gases monitor with a germanium detector (MPVG) has been developed. It enables nuclide selective monitoring of current value of volume activity of particular nuclides in ventilation stack and daily releases of noble gases (balancing). MPVG can be viewed as a system build of three levels of subsystem: measuring level; control level; presentation level. Measuring level consists of gamma-spectroscopy system and operational parameters monitoring unit (flow rate, temperature, humidity). Control level provides communication between presentation and measuring level, acquisition of operational parameters and power supply. The presentation level of MPVG enables: 1) the measured data storage in predetermined time intervals; 2) the presentation of measured and evaluated values of radiation characteristics. The monitored radionuclides - default set: argon-41, krypton-85m, krypton-87, krypton-88, krypton-89, xenon-131m, xenon-133, xenon-133m, xenon-135, xenon-135m, xenon-137 and xenon-138. The values of volume activities observed at maximum releases have been approximately ten times higher. In that case in balancing some other nuclides exceed corresponding detection limits: {sup 88}Kr(67; 22) Bq/m{sup 3}; {sup 85m}Kr(17; 7) Bq/m{sup 3}; {sup 135m}Xe(7.1; 0.5) Bq/m{sup 3}; {sup 138}Xe(5.9; 0.9) Bq/m{sup 3}. (J.K.).

  6. Mechanics of liquids and gases

    CERN Document Server

    Loitsyanskii, L G; Jones, W P

    1966-01-01

    Mechanics of Liquids and Gases, Second Edition is a 10-chapter text that covers significant revisions concerning the dynamics of an ideal gas, a viscous liquid and a viscous gas.After an expanded introduction to the fundamental properties and methods of the mechanics of fluids, this edition goes on dealing with the kinetics and general questions of dynamics. The next chapters describe the one-dimensional pipe flow of a gas with friction, the elementary theory of the shock tube; Riemann's theory of the wave propagation of finite intensity, and the theory of plane subsonic and supersonic flows.

  7. [Gases in vitreoretinal surgery].

    Science.gov (United States)

    Janco, L; Vida, R; Bartos, M; Villémová, K; Izák, M

    2012-02-01

    To evaluate the importance and benefits of using gases in vitreoretinal surgery. The gases represent a wide group of substances used in eye surgery for more than 100 years. The role of intraocular gases in vitreoretinal surgery is irreplaceable. Their use is still considered to be the "gold standard". An important step in eye surgery was the introduction of expanding gases--sulfur hexafluoride and perfluorocarbons into routine clinical practice. The most common indications for the use of intraocular gases are: retinal detachment, idiopathic macular hole, complications of vitreoretinal surgery and others. The introduction of intraocular gases into routine clinical practice, along with other modern surgical techniques resulted in significant improvement of postoperative outcomes in a wide range of eye diseases. Understanding the principles of intraocular gases use brings the benefits to the patient and physician as well. Due to their physical and chemical properties they pose far the best and most appropriate variant of intraocular tamponade. Gases also bring some disadvantages, such as difficulties in detailed fundus examination, visual acuity testing, ultrasonographic examination, difficulties in application of intravitreal drugs or reduced possibility of retina laser treatment. The gases significantly change optical system properties of the eye. The use of gases in vitreoretinal surgery has significantly increased success rate of retinal detachment surgery, complicated posterior segment cases, trauma, surgery of the macula and other diseases.

  8. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  9. Influence of the reclamation method of spent moulding sands on the possibility of creating favourable conditions for gases flow in a mould

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-03-01

    Full Text Available The results of investigations concerning the influence of the applied sand matrix (fresh sand, reclaim on the properties of moulding sands used for production of large dimensional castings (ingot moulds, ladles, are presented in the hereby paper. The performed investigations were aimed at determining the influence of various reclamation methods of spent moulding sands on the quality of the obtained reclaimed material. Moulding sands were prepared on the fresh quartz matrix as well as on sand matrices obtained after various reclamation methods. The selected moulding sand parameters were tested (strength, permeability, grindability, ignition losses, pH reactions. It can be stated, on the basis of the performed investigations, that the kind of the applied moulding sand matrix is of an essential meaning from the point of view of creating conditions minimising formation of large amounts of gases and their directional migration in a casting mould.

  10. Extraction with supercritical gases

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G M; Wilke, G; Stahl, E

    1980-01-01

    The contents of this book derives from a symposium on the 5th and 6th of June 1978 in the ''Haus der Technik'' in Essen. Contributions were made to separation with supercritical gases, fluid extraction of hops, spices and tobacco, physicochemical principles of extraction, phase equilibria and critical curves of binary ammonia-hydrocarbon mixtures, a quick method for the microanalytical evaluation of the dissolving power of supercritical gases, chromatography with supercritical fluids, the separation of nonvolatile substances by means of compressed gases in countercurrent processes, large-scale industrial plant for extraction with supercritical gases, development and design of plant for high-pressure extraction of natural products.

  11. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  12. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  13. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  14. Deviation from the Knudsen law on quantum gases

    International Nuclear Information System (INIS)

    Babac, Gulru

    2014-01-01

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases

  15. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  16. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  17. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  18. Reale Gase, tiefe Temperaturen

    Science.gov (United States)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  19. Gases in uranium exploration

    International Nuclear Information System (INIS)

    Wright, R.J.; Pacer, J.C.

    1981-01-01

    Interest continues to grow in the use of helium and radon detection as a uranium exploration tool because, in many instances, these radiogenic gases are the only indicators of deeply buried mineralization. The origin of these gases, their migration in the ground, the type of samples and measurement techniques are discussed. Case histories of comparative tests conducted on known uranium deposits at three geologically diverse sites in the United States of America are also presented. (author)

  20. Noble gases in nuclear medicine

    International Nuclear Information System (INIS)

    Calderon, M.; Burdine, J.A.

    1973-01-01

    Radioactive noble gases have made a significant contribution to diagnostic nuclear medicine. In the area of regional assessment of pulmonary function, 133 Xe has had its greatest clinical impact. Following a breath of 133 Xe gas, pulmonary ventilation can be measured using a scintillation camera or other appropriate radiation detector. If 133 Xe dissolved in saline is injected intravenously, both pulmonary capillary perfusion and ventilation can be measured since 90 percent of the highly insoluble xenon escapes into the alveoli during the first passage through the lungs. Radionuclide pulmonary function tests provide the first qualitative means of assessing lung ventilation and blood flow on a regional basis, and have recently been extended to include quantification of various parameters of lung function by means of a small computer interfaced to the scintillation camera. 133 Xe is also used in the measurement of organ blood flow following injection into a vessel leading into an organ such as the brain, heart kidneys, or muscles

  1. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  2. Pre-study of exhaust gases of diesel engines with 'open' and 'wall-flow' diesel particulate filters and their toxicity

    International Nuclear Information System (INIS)

    Verbeek, R.; Rabe, E.

    2007-04-01

    The Dutch Ministry of VROM (Housing, Spatial Planning and the Environment) has recently introduced financial support programmes for the installation of Diesel Particulate Filters on both passenger cars and trucks. To obtain funding, the minimum filtration efficiency for passenger cars should be 30%. For trucks there are 2 categories: minimally 50% and minimally 90%. The 30 to 50% filtration efficiency is in practice realized with so called 'open' filters. More than 90% filtration efficiency is accomplished with the 'wall-flow' or 'closed' diesel particulate filter. All filters are combined with an integrated oxidation catalyst. The oxidation catalyst is necessary for the regeneration of the particulate matter captured within the filter; it will also oxidize and hence reduce components like unburned hydrocarbons and carbon monoxide. For any automotive catalytic after-treatment system there is theoretically a risk of undesirable reactions that might occur under certain conditions. Therefore, a number of international studies were conducted during the last decade to investigate the emission of potentially toxic components from diesel engines equipped with wall-flow diesel particulate filters and with oxidation catalysts. The results of these studies were generally positive: a reduction of many potentially toxic components and particulate mass although in some cases certain potentially toxic components had increased. The open filters have a very similar oxidation catalyst but a different way of filter trapping. The question was raised whether there would be significant risks of formation of certain potentially toxic components or ultra-fine particles that might be harmful for human health. VROM asked TNO to conduct this pre-study, which was also meant as a preparation for an experimental study. Several international studies as well as studies conducted by TNO during the past 8 years were evaluated with the focus on information on known toxic components, on particle

  3. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  4. Need for denser geodetic network to get real constrain on the fault behavior along the Main Marmara Sea segments of the NAF, toward an optimized GPS network.

    Science.gov (United States)

    Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.

    2016-12-01

    Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.

  5. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua presents three major topics, which are the fourth to sixth parts of this volume. These topics are the remarks on units of physical quantities; kinetic theory of gases and gaseous flow; and theory of vacuum diffusion pumps. The first topic aims to present concisely the significance of units of physical quantities, catering the need and interest of those who take measurements and make calculations in different fields of vacuum sciences. The technique and applications of this particular topic are also provided. The second main topic focuses sp

  6. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  7. Curiosities of arithmetic gases

    International Nuclear Information System (INIS)

    Bakas, I.; Bowick, M.J.

    1991-01-01

    Statistical mechanical systems with an exponential density of states are considered. The arithmetic analog of parafermions of arbitrary order is constructed and a formula for boson-parafermion equivalence is obtained using properties of the Riemann zeta function. Interactions (nontrivial mixing) among arithmetic gases using the concept of twisted convolutions are also introduced. Examples of exactly solvable models are discussed in detail

  8. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  9. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  10. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  11. Process of radioactive waste gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.; Schroter, H.J.

    1975-01-01

    A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)

  12. [Effect of hemodilution with 10% hydroxyethyl starch solution (MW 200,000/9.5) on the flow properties of blood, arterial blood gases and conjunctival oxygen partial pressure in patients with cerebral infarct].

    Science.gov (United States)

    Staedt, U; Hütt, M; Herrmann, B; Seufzer, U; Leweling, H

    1989-06-01

    Hemorheological parameters, arterial blood gases and conjunctival oxygen tension were measured in 15 patients with acute ischemic stroke and compared with values obtained in an age matched reference group. Since the conjunctival capillary bed is perfused by the ophthalmic artery, it reflects the oxygen delivery to the areas supplied by the internal carotid artery. Measurements of conjunctival oxygen tension are simple and safe. Patients with acute ischemic stroke showed a lowered conjunctival oxygen tension; this holds true especially to the ipsilateral side, i.e. the side where the attack occurred, and to a lesser extent to the other side. By contrast, the ratio of arterial/conjunctival pO2 was disturbed only on the ipsilateral side. Furthermore, these patients had pathologically elevated values for red cell aggregation, whole blood and plasma viscosity. After infusing 500 ml 10% middle-molecular-weight hydroxyethyl starch (10% HAES-steril) and phlebotomy (250 ml) blood fluidity was normalized, although the hematokrit was only slightly reduced. Arterial pO2 improved slightly while pCO2 remained unchanged. Conjunctival oxygen tension improved by 30% on the ipsilateral and by 10% on the contralateral side, the ipsilateral values always remaining significantly lower. The ratio conjunctival/arterial pO2 raised only on the ipsilateral side where it was below the reference range before hemodilution. In addition to the well known improvement of blood fluidity and augmentation of cerebral blood flow following hemodilution in patients with acute ischemic stroke, there seems to be an increase in oxygen supply in the territories of both internal carotid arteries, especially on the ipsilateral side as indicated by the values of conjunctival oxygen tension and the ratio of conjunctival to arterial pO2.

  13. Fuel gases in Algeria

    International Nuclear Information System (INIS)

    Arachiche, B.; Elandaloussi, H.

    1996-01-01

    For a country like Algeria, fuel gases represent an important economical challenge. To answer the increasing energy demand in the transportation sector, the use of fuel gases allows to preserve the petroleum reserves and to create specific industrial structures devoted to LPG-f (liquefied petroleum gas-fuel) and NGV (natural gas for vehicles). This paper presents the energy policy of Algeria, its reserves, production, and exportations of hydrocarbons and the internal rational use of energy sources according to its economic and environmental policy and to its internal needs. The energy consumption of Algeria in the transportation sector represents 2/3 of the petroleum products consumed in the internal market and follows a rapid increase necessary to the socio-economic development of the country. The Algerian experience in fuel gases is analysed according to the results of two successive experimentation periods for the development of NGV before and after 1994, and the resulting transportation and distribution network is described. The development of LPG-f has followed also an experimental phase for the preparation of regulation texts and a first statement of the vehicles conversion to LPG-f is drawn with its perspectives of development according to future market and prices evolutions. (J.S.)

  14. Splitting of inviscid fluxes for real gases

    Science.gov (United States)

    Liou, Meng-Sing; Van Leer, Bram; Shuen, Jian-Shun

    1990-01-01

    Flux-vector and flux-difference splittings for the inviscid terms of the compressible flow equations are derived under the assumption of a general equation of state for a real gas in equilibrium. No necessary assumptions, approximations for auxiliary quantities are introduced. The formulas derived include several particular cases known for ideal gases and readily apply to curvilinear coordinates. Applications of the formulas in a TVD algorithm to one-dimensional shock-tube and nozzle problems show their quality and robustness.

  15. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  16. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  17. Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed; Elreedy, Ahmed; Pascal, Peu; Sophie, Le Roux; Tawfik, Ahmed

    2017-01-01

    Highlights: • Bio-hythane production from polyester wastewater via UASG reactor was assessed. • Impacts of influent contamination by 1,4-dioxane and heavy metals were discussed. • Maximum volumetric H 2 and CH 4 productions of 0.12 and 1.06 L/L/d were achieved. • Significant drop in CH 4 production was resulted at OLR up to 1.07 ± 0.06 gCOD/L/d. • Bioenergy recovery through UASG economically achieved a net profit of 10,231 $/y. - Abstract: A long-term evaluation of hythane generation from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals was investigated in a continuous up-flow anaerobic self- separation gases (UASG) reactor inoculated with mixed culture. The reactor was operated at constant hydraulic retention time (HRT) of 96 h and different organic loading rates (OLRs) of 0.31 ± 0.04, 0.71 ± 0.08 and 1.07 ± 0.06 gCOD/L/d. Available data showed that volumetric hythane production rate was substantially increased from 0.093 ± 0.021 to 0.245 ± 0.016 L/L/d at increasing OLR from 0.31 ± 0.04 to 0.71 ± 0.08 gCOD/L/d. However, at OLR exceeding 1.07 ± 0.06 gCOD/L/d, it was dropped to 0.114 ± 0.016 L/L/d. The reactor achieved 1,4-dioxane removal efficiencies of 51.8 ± 2.8, 35.9 ± 1.6 and 26.3 ± 1.6% at initial 1,4-dioxane concentrations of 1.14 ± 0.28, 1.97 ± 0.41 and 4.21 ± 0.30 mg/L, respectively. Moreover, the effect and potential removal of the contaminated by heavy metals (i.e., Cu 2+ , Mn 2+ , Cr 3+ , Fe 3+ and Ni 2+ ) were highlighted. Kinetic modelling and microbial community dynamics were studied, according to each OLR, to carefully describe the UASG performance. The economic analysis showed a stable operation for the anaerobic digestion of unsaturated polyester resin wastewater using UASG, and the maximum net profit was achieved at OLR of 0.71 ± 0.08 gCOD/L/d.

  18. Critical discharge of fluids and gases

    International Nuclear Information System (INIS)

    Seewald, Michael

    2012-01-01

    The thermal hydraulic relations during discharge of fluids and gases are complex and a closed solution does not seem to be available. For the modeling of leakage accidents in nuclear power plants basic considerations are suitable for statements on the maximum mass flow, and thus the leak rate. The maximum mass flow is reached when the critical velocity is reached in the smallest cross section. This allows the appropriate design of safety systems for one-phase and two-phase flows. For German NPP simulators the hydrodynamics simulation program RELAP5-3D is used. The simulator center operates a 1:10 scale gas model of a two-loop PWR type reactor. The observable phenomena have occurred in nuclear power plants. The characteristics for a visualization of two-phase flows are not available in the simulation software and have to be added by correlations with experimental results. The realization of expectations on digital visualization techniques is discussed.

  19. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  20. Functional renormalization and ultracold quantum gases

    International Nuclear Information System (INIS)

    Floerchinger, Stefan

    2010-01-01

    Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)

  1. Determining air distribution during outbursts of gases and rocks

    Energy Technology Data Exchange (ETDEWEB)

    Struminski, A; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses use of the KPW-1 iterative and autocorrelation method developed by A. Struminski for forecasting effects of rock bursts on ventilation systems of underground coal mines with increased content of methane or carbon dioxide in coal seams and adjacent rock strata. The method is used for prediction of air flow changes caused by a rock burst accompanied by violent outburst of gases. Directions of air flow, flow rate and concentration of gases emitted from surrounding strata to mine workings are predicted. On the basis of this prediction concentration of gases from a coal outburst is determined for any point in a ventilation network. The prediction method is used for assessing hazards for coal mines during and after a rock burst. Use of the method is explained on the example of the Thorez and Walbrzych coal mines. Computer programs developed for ODRA and IBM/XT computers are discussed. 6 refs.

  2. Process for separation of inert fission gases for waste gas of a reprocessing plant for nuclear fuel

    International Nuclear Information System (INIS)

    Schnez, H.

    1980-01-01

    The inert fission gases Kr and Xe released in the resolver and other waste gases are taken to an acid regeneration plant. Part of the inert fission gases is separated by compression, cooling and filtering and deposited. The other part flows back to the resolver as flushing gas so that a flushing gas circuit is formed, which prevents explosive gas mixtures occurring. (DG) [de

  3. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  4. Economic Hazardous Gases Management for SOX Removal from Flue Gases

    International Nuclear Information System (INIS)

    Isaack, S.L.; Mohi, M.A.; Mohamed, S.T.

    1995-01-01

    Hazardous gases emerging from industries accumulate as pollutants in air and falls as acid rains resulting also in water and soil pollution. To minimize environmental pollution, the present process is suggested in order to desulfurize flue gases resulting from burning fuel oil in a 100/MWh steam power plant. The process makes use of the cheap Ca C O 3 powder as the alkaline material to sequistre the sulphur oxide gases. The resulting sulphur compounds, namely calcium sulphate and gypsum have a great market demand as reducing and sulphiting agents in paper industry and as an important building material. About 44000 ton of gypsum could be produced yearly when treating flue gases resulting from a 100 MWh unit burning fuel oil. Feasibility study shows that a great return on investment could be achieved when applying the process. 1 fig

  5. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  6. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  7. Quotation systems for greenhouse gases

    International Nuclear Information System (INIS)

    Trong, Maj Dang

    2000-01-01

    The article surveys recommendations from a Norwegian committee for implementing at a national level, the Kyoto protocol aims for reducing the total emissions of greenhouse gases from the industrial countries through quotation systems

  8. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  9. Retention of nitrous gases in scrubber columns

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.C.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F. de

    1988-01-01

    During the UO 2 dissolution in nitric acid, some different species of NO (sub)x are released. The off gas can either be refluxed to the dissolver or be released and retained on special colums. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scrubber colums containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evaluation before and after scrubing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum absorption in the scrubber columns. (author) [pt

  10. Device for determining heat capacity of gases and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nachev, N

    1980-01-01

    This article describes the use of a capillary-flow colorimeter to determine the heat capacity of gases and gaseous mixtures. The research and tests confirm the possibility and advisability of making these measurements. The calorimeters are graduated to allow for the influence of the pressure and temperature of the investigated gas and exchange with the environment.

  11. Thermal diffusion baro-effect in cluster gases

    International Nuclear Information System (INIS)

    Kurlapov, L.M.; Segeda, T.A.

    2003-01-01

    Thermal diffusion baro-effect as a difference of pressure under which action in the established process in the close device the particles flow of an irreversible nature is counterbalanced by current of gas is considered. For not ideal gases the settlement formula is received, in which no ideality is taken into account through the compressibility factor and also for cluster mixture. (author)

  12. Radioactive gases monitor system: tritium, radon, noble gases

    International Nuclear Information System (INIS)

    Egey, J.Z.; Matatagui, E.

    2015-01-01

    A system for monitoring the radioactive gases tritium, radon and noble gases is described. We present the description of the sensor and the associated electronics that have been developed to monitor the presence of radioactive gases in air or other gaseous effluents. The system has a high sensitivity and a wide range of operation. The sensor is an ionization chamber, featuring the internal circulation of the gas to monitor and the associated electronics has a resolution better than 10 E-15A (fA). It allows the detection of the individual pulses that are produced during the alpha decay of radon and its daughter elements. The measurement system is made up of a commercial data acquisition system connected to a computer. The acquired data is presented on a graphical display and it is stored for later processing and analysis. We have a system that is of simple construction and versatile. Here we present the experimental results. (authors) [es

  13. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  14. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.

    1986-07-01

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  15. Device for adsorbing exhaled radioactive gases and process

    International Nuclear Information System (INIS)

    Glasser, H.; Panetta, P.F.

    1976-01-01

    Sorption means are provided for sorbing radioactive gases, as in the exhalations of a living subject, especially for nuclear diagnostic test studies, comprising means for adsorbing the radioactive gas onto activated carbon, the carbon being contained in a plurality of independent, series-connected, chambers. The sorption means are especially adapted for the adsorption of radioactive inert gases such as xenon-133 ( 133 Xe). There can also be provided indicator means for indicating the flow-through of xenon comprising an indicator which changes color upon contact with xenon, such as dioxygenylhexafluoroantimoniate. 14 claims, 7 drawing figures

  16. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  17. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry

    Science.gov (United States)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram

    1990-01-01

    Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.

  18. Process for separating radioactive gases

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Awada, Yoshihisa.

    1976-01-01

    Object: To efficiently and safely separate and recover raw gases such as krypton which requires radioactive attenuation by a long term storage. Structure: A mixture of krypton and xenon is separated by liquefaction from raw gases at a first distillation column, using latent heat of liquid nitrogen. The krypton and xenon mixture separated by liquefaction at the first distillation column is separated into krypton and xenon, by controlling operation pressure of a second distillation column at about 3 - 5 atm., using sensible heat of low temperature nitrogen gas discharged from a top of the first distillation column and a condenser. (Aizawa, K.)

  19. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  20. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  1. Transport processes in ionized gases

    International Nuclear Information System (INIS)

    Kremer, G.M.

    1997-01-01

    Based on kinetic theory of gases and on the combined of Chapman-Enskog and Grad, the laws of Ohm, Fourier and Navier-Stokes are derived for a non-relativistic fully ionized gas. Moreover, the combined method is applied to the BGK model of the relativistic Boltzmann equation and the Ohm's law is derived for a relativistic fully ionized gas. (author)

  2. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  3. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  4. Two-phase flows during a discharge of liquefied gases, initially at saturation. Effect of the nature of the fluid; Ecoulements diphasiques lors de la vidange de gaz liquefies initialement a saturation. Influence de la nature du fluide

    Energy Technology Data Exchange (ETDEWEB)

    Alix, P.

    1997-10-03

    In the case of a confinement loss (breakage of a connection piece) on a pressurized liquefied gas tank, a critical two-phase (liquid-vapour) flow is generated. This thesis is aimed at the validation of models describing these flows with various fluids (water, R 11, methanol, ethyl acetate, pure butane, commercial butane), using a pilot experimental plant. Results show that reduced upstream pressure is the main parameter, thus indicating that a model can be validated using minimal fluids. The homogenous models DEM and HRM appear to be more precise

  5. Two-phase flows during draining of liquefied gases initially undersaturated. Validation by water and CFC11; Ecoulements diphasiques lors de la vidange de gaz liquifies initialement sous satures. Validation par l`eau et le CFC11

    Energy Technology Data Exchange (ETDEWEB)

    May, L.

    1996-12-11

    In petroleum industry, the safety studies require to estimate the two-phase flow during accidental draining of pressurized liquefied gas storages. Meanwhile the mass flow strongly depends of initial conditions. Then it is primordial to be able to reckon it in the case where it is the highest, that is to say when the fluid is initially undersaturated. An experimental installation has been carried out. The used fluids are water and CFC11. The experimental measures show that the thermodynamic conditions at the inlet of the pipe (P at +/- 15 mbar and T at +/- 0.15 degrees Celsius) are well controlled. The measured mass flows are compared to different models. The frictions in the monophase domain have been taken into account. It has been shown that the extensive H.E.M. model perfectly estimates the mass flow (as well as for water than for CFC11) for large deviations to saturation. In order to correctly predict the domain of weak variation to saturation, D.E.M. (out of equilibrium) models or H.R.M. (homogeneous model of relaxation) models have to be used. (O.M.) 50 refs.

  6. Soliton Gases and Generalized Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien

    2018-01-01

    We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.

  7. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  8. Centrifugal separation of mixture gases

    International Nuclear Information System (INIS)

    Zhou, M.S.; Chen, W.N.; Yin, Y.T.

    2008-01-01

    An attempt for single centrifugal separation of mixtures with different molecular formula was presented in this paper. The mixtures of SF 6 and CCl 3 F, and SF 6 and CCl 4 were chosen as the processing gases, which were prepared in three mass ratios, 0.5, 0.8 and 0.2, respectively. The separating characteristics such as the overall separation factors and the variation of cuts were studied. (author)

  9. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  10. Stress analysis of the O-element pipe during the process of flue gases purification

    Directory of Open Access Journals (Sweden)

    Nekvasil R.

    2008-11-01

    Full Text Available Equipment for flue gases purification from undesired substances is used throughout power and other types of industry. This paper deals with damaging of the O-element pipe designed to remove sulphur from the flue gases, i.e. damaging of the pipe during flue gases purification. This purification is conducted by spraying the water into the O-shaped pipe where the flue gases flow. Thus the sulphur binds itself onto the water and gets removed from the flue gas. Injection of cold water into hot flue gases, however, causes high stress on the inside of the pipe, which can gradually damage the O-element pipe. In this paper initial injection of water into hot pipe all the way to stabilization of temperature fields will be analyzed and the most dangerous places which shall be considered for fatigue will be determined.

  11. Origin and Evolution of Reactive and Noble Gases Dissolved in Matrix Pore Water

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F. [Hydroisotop GmbH, Schweitenkirchen (Germany); Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Bern (Switzerland); Waber, H. N. [Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Bern (Switzerland); Smellie, J. A.T. [Conterra AB, Stockholm (Sweden)

    2013-07-15

    Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the first time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in situ production and accumulation rates deliver information about the residence time of pore water. (author)

  12. Removal of rare gases from large volume airstreams

    International Nuclear Information System (INIS)

    Hopke, P.K.; Leong, K.H.; Stukel, J.J.; Lewis, C.; Jebackumar, R.; Illinois Univ., Urbana; Illinois Univ., Urbana

    1986-01-01

    The cost-effective removal of low levels of rare gases and particularly radon from large volume air flows is a difficult problem. The use of various scrubbing systems using non-conventional fluids has been studied. The parameters for both a packed tower absorber and a gas scrubber have been calculated for a system using perfluorobenzene as the fluid. Based on these parameters, a packed bed tower of conventional proportions is feasible for the removal of >95% of 37 Bq/m 3 of radon from a flow of 4.7 m 3 /second. (author)

  13. Interaction of slow electrons with high-pressure gases ('Quasi-liquids'): synthesis of our knowledge on slow electron-molecule interactions. Progress report

    International Nuclear Information System (INIS)

    McCorkle, D.L.; Christophorou, L.G.

    1985-01-01

    A crucial step in our efforts to develop not only a coherent picture of radiation interaction with matter, but also to understand radiation effects and mechanisms, as well as the effects of chemical pollutants and toxic compounds, is to relate the often abundant knowledge on isolated molecules (low pressure gases) to that on liquids or solids. To understand the roles of the physical and chemical properties of molecules in biological reactions, we must know how these isolated-molecule properties change as molecules are embedded in gradually thicker and thicker (denser and denser) gaseous and, finally, liquid environments. The work initiated by us both at the Physics Department of The University of Tennessee and at the Oak Ridge National Laboratory addresses itself to this question. At both places, high pressure (40 to approx.8000 kPa) electron swarm experiments are currently in operation yielding information as to the effects of the density and nature of the environment on fundamental electron-molecule interaction processes at densities intermediate to those corresponding to low pressure gases and liquids, and the gradual transition from isolated molecule to condensed phase behavior

  14. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  15. The method of determination of mercury adsorption from flue gases

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2017-01-01

    Full Text Available For several recent years Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow conduct intensive studies on the occurrence of mercury contained in thermal and coking coals, as well as on the possible reduction of fossil-fuel mercury emissions. This research focuses, among others, on application of sorbents for removal of mercury from flue gases. In this paper we present the methodology for testing mercury adsorption using various types of sorbents, in laboratory conditions. Our model assumes burning a coal sample, with a specific mercury content, in a strictly determined time period and temperature conditions, oxygen or air flow rates, and the flow of flue gases through sorbent in a specific temperature. It was developed for particular projects concerning the possibilities of applying different sorbents to remove mercury from flue gases. Test stand itself is composed of a vertical pipe furnace inside which a quartz tube was mounted for sample burning purposes. At the furnace outlet, there is a heated glass vessel with a sorbent sample through which flue gases are passing. Furnace allows burning at a defined temperature. The exhaust gas flow path is heated to prevent condensation of the mercury vapor prior to contact with a sorbent. The sorbent container is positioned in the heating element, with controlled and stabilized temperature, which allows for testing mercury sorption in various temperatures. Determination of mercury content is determined before (coal and sorbent, as well as after the process (sorbent and ash. The mercury balance is calculated based on the Hg content determination results. This testing method allows to study sorbent efficiency, depending on sorption temperature, sorbent grain size, and flue-gas rates.

  16. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  17. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  18. Emissions of biogenic sulfur gases from northern bogs and fens

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  19. Device for the elimination of noxious components of exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, A

    1975-04-24

    A device for the removal of noxious components from the exhaust gases of an internal combustion engine is described. It consists of a chemical reactor installed in the tail-pipe. Behind the reactor, in the flow direction of the exhaust gases, there is a catalytic temperature sensor whose electrical output is transmitted to an analyzer which provides a signal if the reactor fails. The temperature sensor is situated directly in the waste gas duct or in a branch of the tail-pipe which is supplied with air. There is also another, catalytically inactive, temperature sensor. A failure is signalled (a) if the chemical reactor has failed, and (b) if there is not enough oxygen in the exhaust gas to keep up a chemical reaction.

  20. Energy efficiency and greenhouse gases

    International Nuclear Information System (INIS)

    Hamburg, A.; Martins, A.; Pesur, A.; Roos, I.

    1996-01-01

    Estonia's energy balance for 1990 - 1994 is characterized by the dramatic changes in the economy after regaining independence in 1991. In 1990 - 1993, primary energy supply decreased about 1.9 times. The reasons were a sharp decrease in exports of electric energy and industrial products, a steep increase in fuel prices and the transition from the planned to a market-oriented economy. Over the same period, the total amount of emitted greenhouse gases decreased about 45%. In 1993, the decrease in energy production and consumption stopped, and in 1994, a moderate increase occurred (about 6%), which is a proof stabilizing economy. Oil shale power engineering will remain the prevailing energy resource for the next 20 - 25 years. After stabilization, the use of oil shale will rise in Estonia's economy. Oil shale combustion in power plants will be the greatest source of greenhouse gases emissions in near future. The main problem is to decrease the share of CO 2 emissions from the decomposition of carbonate part of oil shale. This can be done by separating limestone particles from oil shale before its burning by use of circulating fluidized bed combustion technology. Higher efficiency of oil shale power plants facilitates the reduction of CO 2 emissions per generated MWh electricity considerably. The prognoses for the future development of power engineering depend essentially on the environmental requirements. Under the highly restricted development scenario, which includes strict limitations to emissions (CO 2 , SO 2 , thermal waste) and a severe penalty system, the competitiveness of nuclear power will increase. The conceptual steps taken by the Estonian energy management should be in compliance with those of neighboring countries, including the development programs of the other Baltic states

  1. Gases vacuum dedusting and cooling

    Directory of Open Access Journals (Sweden)

    Alexey А. Burov

    2015-03-01

    Full Text Available Represented are the results of operating the ladle degassing vacuum plant (productivity: 120 tons of liquid steel with various dust collectors. The process gases’ cooling and dedusting, obtained in the closed loop buran study, provides opportunity to install a bag filter after that closed loop and its efficient use. Proven is the effectiveness of the cylindrical cyclone replacement with a multichannel (buran dust collector, based on a system of closed-loop (return coupling serially connected curved ducts, where the dusty gas flow rotation axis is vertically positioned. The system of closed-loop serially connected curvilinear channels creates preconditions for the emergence of a negative feedback at the curvilinear gas flow containing transit and circulating flows. These conditions are embodied with circulating flows connecting the in- and outputs of the whole system each channel. The transit flow multiple continuous filtration through the circulating dust layers leads to the formation and accumulation of particles aggregates in the collection chamber. The validity of such a dusty flow control mechanism is confirmed by experimental data obtained in a vacuum chamber. Therefore, replacing one of the two buran’s forevacuum pumps assemblies with the necessary number of curved channels (closed loop is estimated in a promising method.

  2. 40 CFR 89.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... determined to calibration gas tolerances by chromatographic analysis of total hydrocarbons plus impurities or.... (2) Mixtures of gases having the following chemical compositions shall be available: (i) C3H8 and... check gases shall contain propane with 350 ppmC ±75 ppmC hydrocarbon. The three oxygen interference...

  3. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  4. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  5. Method for storing radioactive rare gases

    International Nuclear Information System (INIS)

    Watabe, Atsushi; Nagao, Hiroyuki; Takiguchi, Yukio; Kanazawa, Toshio; Soya, Masataka.

    1975-01-01

    Object: To safely and securely store radioactive rare gases for a long period of time. Structure: The waste gases produced in nuclear power plant are cooled by a cooler and then introduced into a low temperature adsorbing device so that the gases are adsorbed by adsorbents, and then discharged into atmosphere through the purifying gas discharge line. When the radioactive rare gases reach a level of saturation in the amount of adsorption, they are heated and extracted by a suction pump and heated by a heater. The gases are then introduced into an oxygen-impurity removing device and the purified rare gases containing no oxygen and impurities are cooled by a cooler and fed into a gas holder. When the amount of radioactive rare gases stored within the gas holder reaches a given level, they are compressed and sealed by a compressure into a storing cylinder and residual gases in the piping are sucked and recovered into the gas holder, after which the cylinder is removed and stored in a fixed room. (Kamimura, M.)

  6. Kinetic Theory of Granular Gases

    Energy Technology Data Exchange (ETDEWEB)

    Trizac, Emmanuel [Center of Theoretical Biological Physics, UC San Diego, La Jolla, CA 92093-0374 (United States); Laboratoire de Physique Theorique et Modeles Statistiques, Campus Universitaire, 91405 Orsay (France)

    2005-11-25

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution {epsilon} -a central quantity governing the

  7. Kinetic Theory of Granular Gases

    International Nuclear Information System (INIS)

    Trizac, Emmanuel

    2005-01-01

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ε -a central quantity governing the inelasticity of

  8. The storage of greenhouse gases

    International Nuclear Information System (INIS)

    Herzog, H.; Kaarstad, O.; Eliasson, B

    2000-01-01

    Since 1850, that is to say the beginning of the industrial era,the concentration of carbon dioxide in the atmosphere has risen from 280 ppm to 370 ppm, this increase is mainly due to the combustion of fossil fuels. Today fossil fuels represent 85% of all the energy used in the world. Fearing progressive climatic changes, more and more governments become aware of the necessity of reducing the emission of greenhouse gases. A more efficient use of energy and the promoting of renewable energies and of the nuclear energy are the most evident solutions but they appear to be insufficient. A third solution is the storage of carbon dioxide in geological layers. This technique has been put into use since 1996 in Norway. An off-shore natural gas platform injects carbon dioxide in a geological reservoir situated 1000 meters below the ocean bed. The injection of CO 2 could be used in oil fields in order to facilitate the extraction of petroleum. Far more large and efficient reservoirs would be the oceans, they already hold up 40000 10 9 tons of dissolved CO 2 . Even if the double of the carbon dioxide accumulated in the atmosphere since 1850 were injected, the concentration of carbon in sea waters would rise by less than 2%. The safety of CO 2 storage and the impact on the environment of ocean injection sites are being studied. (A.C.)

  9. Greenhouse gases and emissions trading

    International Nuclear Information System (INIS)

    LeBlanc, A.; Dudek, D.J.

    1993-01-01

    Global cooperation is essential in cutting greenhouse-gas emissions, say Alice LeBlanc and Daniel J. Dudek of the Environmental Defense in New York City. The first step, they continue, is agreement among nations on an overall global limit for all greenhouse gases, followed by an allocation of the global limit among nations. The agreements must contain effective reporting and monitoring systems and enforcement provisions, they add. The Framework Convention on Climate Change, signed by most nations of the world in Brazil in 1992, provides the foundation for such an agreement, LeBlanc and Dudek note. open-quotes International emissions trading is a way to lower costs and expand reduction options for the benefit of all,close quotes they contend. Under such an arrangement, an international agency would assign allowances, stated in tons of carbon dioxide. Countries would be free to buy and sell allowances, but no country could exceed, in a given year, the total allowances it holds. By emitting less than its allowed amount, a country would accumulate more allowances, which it could sell. The authors claim such a system would offer benefits to the world economy by saving billions of dollars in pollution-reduction costs while still achieving emission limits established in an international agreement

  10. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  11. Theory and Practice of a New Class of Equipment for Separation of Particulates from Gases: the Turbulent Flow Precipitator Le précipitateur turbulent : un nouveau type de dispositif de séparation de particules présentes dans un courant de gaz. Théorie et technologie

    Directory of Open Access Journals (Sweden)

    Dullien F. A. L.

    2006-12-01

    Full Text Available The main classes of separators of particulates from gases comprise inertial separators, filters, (wet scrubbers and electrostatic precipitators, each of which technique has its proper niche and each has its advantages and its disadvantages. In the present paper a new class of equipment, the turbulent flow precipitator (TFP for gas cleaning is described that, though at the present only in its infancy, is rapidly gaining popularity because it has some advantages over each and every known type of separator and it has very few limitations. TFPs are far more efficient for the removal of fine particles than inertial separators, unlike filters they do not plug up, they do not present secondary disposal problems and they require less maintenance (and are less expensive than electrostatic precipitators. They can be very efficient also in the submicron range of particle size and there are no practical limitations as far as high temperatures and/or corrosive atmospheres are concerned. They are equally suitable for the removal of solid and liquid particles from gases. Turbulent flow precipitators work on the principle of turbulent eddy penetration into deep regions where there is no net flow, where the eddies die out and where the fine particulates carried by the eddies deposit on collector surfaces. TFPs comprise two well defined regions:- straight, uniform and unobstructed flow passages in which the gas carrying the suspended fine particulates is passed in turbulent flow;- and adjacent collection regions where there is no net gas flow and where all of the separation of particles from the gas takes place. Hence, a TFP is a filter in which the separation of the particulates from the gas takes place outside the passages where the gas flows. Les principaux séparateurs de particules dans un courant de gaz existants sur le marché sont les séparateurs par inertie, les filtres, les laveurs et les électrofiltres. Chaque type de séparateur est destiné à une

  12. Improved process for contacting finely divided solid particles with gases

    Energy Technology Data Exchange (ETDEWEB)

    1952-07-30

    A process of contacting solids and gases of the type in which finely divided solids are maintained in a dense fluidized state in a treating zone by means of an upflowing gaseous fluidizing medium wherein solid packing in the form of a body static contiguous elements is maintained in the treating zone. The size, shape, and arrangement of the elements constituting the packing being such as to define a labyrinth of passageways in which the finely divided solids are maintained in a fluidized state, and the finely divided solids are adapted to flow freely downwardly through the passageways in the absence of a gaseous fluidizing medium.

  13. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    Science.gov (United States)

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  14. Greenhouse gases study in Amazonia

    International Nuclear Information System (INIS)

    D'Amelio, Monica Tais Siqueira

    2006-01-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO 2 sources. The Amazon forest is a significant source of N 2 O by soil process, and CH 4 by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO 2 , CH 4 , CO, H 2 , N 2 O and SF 6 have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO 2 flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO 2 flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H 2 gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO 2 sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and 2005 wet seasons and 2004 dry season comparison it was

  15. Dipolar quantum gases of erbium

    International Nuclear Information System (INIS)

    Frisch, A.

    2014-01-01

    Since the preparation of the first Bose-Einstein condensate about two decades ago and the first degenerate Fermi gas following four years later a plethora of fascinating quantum phenomena have been explored. The vast majority of experiments focused on quantum degenerate atomic gases with short-range contact interaction between particles. Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction. This kind of interaction is not only long-range but also anisotropic in character and imprints qualitatively novel features on the system. Prominent examples are the d-wave collapse of a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart, the spin magnetization and demagnetization dynamics observed by groups in Stuttgart, Paris, and Stanford, and the deformation of the Fermi surface observed by our group in Innsbruck. This thesis reports on the creation and study of the first Bose-Einstein condensate and degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes the experimental apparatus and the sequence for producing a dipolar quantum gas. There is an emphasis on the production of the narrow-line magneto-optical trap of erbium since this represents a very efficient and robust laser-cooling scheme that greatly simplifies the experimental procedure. After describing the experimental setup this thesis focuses on several fundamental questions related to the dipolar character of erbium and to its lanthanide nature. A first set of studies centers on the scattering properties of ultracold erbium atoms, including the elastic and the inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe that identical dipolar fermions do collide and rethermalize even at low temperatures

  16. Thermodynamics of ultracold Fermi gases

    International Nuclear Information System (INIS)

    Nascimbene, Sylvain

    2010-01-01

    Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7 Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)

  17. Rare gases in Samoan xenoliths

    Science.gov (United States)

    Poreda, R. J.; Farley, K. A.

    1992-09-01

    The rare gas isotopic compositions of residual harzburgite xenoliths from Savai'i (SAV locality) and an unnamed seamount south of the Samoan chain (PPT locality) provide important constraints on the rare gas evolution of the mantle and atmosphere. Despite heterogeneous trace element compositions, the rare gas characteristics of the xenoliths from each of the two localities are strikingly similar. SAV and PPT xenoliths have 3He/ 4He ratios of11.1 ± 0.5 R A and21.6 ± 1 R A, respectively; this range is comparable to the 3He/ 4He ratios in Samoan lavas and clearly demonstrates that they have trapped gases from a relatively undegassed reservoir. The neon results are not consistent with mixing between MORB and a plume source with an atmospheric signature. Rather, the neon isotopes reflect either a variably degassed mantle (with a relative order of degassing of Loihi Honda et al. that the 20Ne/ 22Ne ratio in the mantle more closely resembles the solar ratio than the atmospheric one. 40Ar/ 36Ar ratios in the least contaminated samples range from 4,000 to 12,000 with the highest values in the 22 RA PPT xenoliths. There is no evidence for atmospheric 40Ar/ 36Ar ratios in the mantle source of these samples, which indicates that the lower mantle may have 40Ar/ 36Ar ratios in excess of 5,000. Xenon isotopic anomalies in 129Xe and 136Xe are as high as 6%, or about half of the maximum MORB excess and are consistent with the less degassed nature of the Samoan mantle source. These results contradict previous suggestions that the high 3He/ 4He mantle has a near-atmospheric heavy rare gas isotopic composition.

  18. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  19. Anaesthetic gases: environmental impact and alternatives

    African Journals Online (AJOL)

    Little consideration has been given to the environmental impact of anaesthetic gas .... our practice to select gases with a lower environmental impact is also ... is used as raw material for new anaesthetics. ... none in the pipeline.1. Conclusion.

  20. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  1. Greenhouse gases - observed tendencies contra scenarios

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2006-01-01

    The article presents a study of the increase in greenhouse gases and concludes that it will be necessary to substantially reduce the CO2 concentrations in the atmosphere in order to avoid serious climatic changes

  2. Climate Change, Greenhouse Gases and Aerosols

    Indian Academy of Sciences (India)

    user

    their radiative properties are similar to the glass used in a green- house. Greenhouse gases in the Earth's atmosphere absorb 90% of the radiation emitted .... and wind speed and direction in each box is calculated using the physical laws gov-.

  3. Roadside management strategies to reduce greenhouse gases.

    Science.gov (United States)

    2010-06-01

    Californias Global Warming Solutions Act of 2006 (AB 32), Sustainable Communities and Climate Protection Act : (SB 375), and Executive Order S-14-08 direct Caltrans to develop actions to reduce greenhouse gases (GHGs). Air : pollution reduction is...

  4. Gases for an SSC muon detector

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Datskos, P.G.; Carter, J.G.; Tennessee Univ., Knoxville, TN

    1990-01-01

    Recent measurements of electron drift velocities as a function of the density-reduced electric field E/N are reported for a number of unitary gases and the mixtures CO 2 /CH 4 and NH 3 /CF 4 /Ar. Calculated values of the mean electron energy as a function of E/N are also reported for unitary gases and mixtures of CO 2 /CH 4 . 7 refs., 5 figs

  5. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  6. Gases and carbon in metals. Pt. 14

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Hehn, W.; Fromm, E.; Hoerz, G.

    1981-01-01

    This issue is part of a series of data on 'Gases and Carbon in Metals' which supplements the data compilation in the book 'Gase und Kohlenstoff in Metallen' (Gases and Carbon in Metals), edited by E. Fromm and E. Gebhardt, Springer-Verlag, Berlin 1976. The present survey includes results from papers published after the copy deadline and recommends critically selected data. Furthermore, it comprises a bibliography of relevant literature. For each element, firstly data on binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility, solubility limit, dissociation pressure of compounds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas absorption and gas desorption kinetics, compound formation kinetics, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. (orig./GE)

  7. Interaction of slow electrons with high-pressure gases (Quasi-liquids). Synthesis of our knowledge on slow electron-molecule interactions. Progress report for year ending June 15, 1984

    International Nuclear Information System (INIS)

    McCorkle, D.L.; Christophorou, L.G.

    1984-01-01

    A crucial step in efforts to develop not only a coherent picture of radiation interaction with matter, but also to understand radiation effects and mechanisms, as well as the effects of chemical pollutants and toxic compounds, is to relate the often abundant knowledge on isolated molecules (low pressure gases) to that on liquids or solids. To understand the roles of the physical and chemical properties of molecules in biological reactions, the way these isolated-molecule properties change as molecules are embedded in gradually thicker and thicker (denser and denser) gaseous and, finally, liquid environments must be known. The work reported here, carried out both at the Physics Department of the University of Tennessee and at the Oak Ridge National Laboratory addresses itself to this question. At both places, high pressure (40 to approx. 8000 kPa) electron swarm experiments are currently in operation yielding the first information as to the effects of the density and nature of the environment on fundamental electron-molecule interaction processes at densities intermediate to those corresponding to low pressure gases and liquids, and the gradual transition from isolated molecule to condensed phase behavior. Basic physical data on the electronic states of atmospheric halocarbons in general, and of polycyclic aromatic hydrocarbons in particular were also studied. Such data are of special significance because of the occurrence of these molecules in the atmosphere, and are presently lacking

  8. The comparative analysis of the compressible plasma streams generated in QSPA from the various gases

    International Nuclear Information System (INIS)

    Kozlov, A.N.; Drukarenko, S.P.; Seytkhalilova, E.I.; Velichkin, M.A.; Solyakov, D.G.

    2012-01-01

    The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed.

  9. Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel

    OpenAIRE

    Graur , I; Perrier , Pierre; Ghozlani , W ,; Méolans , J.Gilbert

    2009-01-01

    International audience; Mass flow rate measurements in a single silicon microchannel were carried out for various gases in isothermal steady flows. The results obtained from hydrodynamic to near free molecular regime by using a powerful experimental platform allowed us to deduce interesting information, notably about the reflection/accommodation process at the wall. In the 0–0.3 Knudsen range, a continuum analytic approach was derived from the NS equations, associated with first or second ord...

  10. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    International Nuclear Information System (INIS)

    Abu-Hamdeh, Nidal H.

    2003-01-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO x ), carbon dioxide (CO 2 ) and carbon monoxide (CO). In addition, O 2 concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO x ) and carbon dioxide (CO 2 ) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O 2 ) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO x gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO x but increased the particulate matter concentrations in the exhaust gases

  11. Effect of cooling the recirculated exhaust gases on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdeh, Nidal H. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2003-11-01

    Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Spiral fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NO{sub x}), carbon dioxide (CO{sub 2}) and carbon monoxide (CO). In addition, O{sub 2} concentration in the exhaust was measured. The two designs adopted in this study were exhaust pipes with solid and hollow fins around them. The first type uses air flow around the fins to cool the exhaust gases. The second type consists of hollow fins around the exhaust pipe to allow cooling water to flow in the hollow passage. Different combinations and arrangements of the solid and hollow fins exhaust pipes were used. It was found that decreasing the temperature of the EGR resulted in reductions in the oxides of nitrogen (NO{sub x}) and carbon dioxide (CO{sub 2}) but increased the carbon monoxide (CO) in the exhaust gases. In addition, the oxygen (O{sub 2}) concentration in the exhaust was decreased. As a general trend, the percentages of reduction in the NO{sub x} gas concentrations were lower than the percentages of increase in the CO emissions as a result of cooling the EGR of a Diesel engine by a heat exchanger. Using water as a cooling medium decreased the exhaust gases temperature and the amount of pollutants more than did air as a cooling medium. In a separate series of tests, increasing the cooled EGR ratios decreased the exhaust NO{sub x} but increased the particulate matter concentrations in the exhaust gases. (Author)

  12. Radiation treatment of combustion gases

    International Nuclear Information System (INIS)

    Machi, S.; Tokunaga, O.; Nishimura, K.; Hasimoto, S.; Kawakami, W.; Washino, M.; Kawamura, K.; Aoki, S.; Adachi, K.

    1977-01-01

    A pilot plant for the radiation treatment of combustion gas in a flow-system was planned and completed in 1974 at the Abara Mfg. Co. Ltd., Central Laboratory in Fujisawa. The plant has been successfully operated for more than one year. The capacity of the pilot plant is 1000 Nm 3 per hour of the gas with the use of an electron accelerator of 60 mA and 0.75 MeV. The objective of this paper is to review a series of the researches including recent unpublished results, and to discuss the characteristics of the process. The outline and typical results of the pilot plant are first reported here. (author)

  13. Shale gases, a windfall for France?

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-11-01

    After having recalled the definition and origin of shale gases, the different non conventional gases and their exploitation techniques (hydraulic fracturing and horizontal drilling) this report examines whether these gases are an opportunity for France. Some characteristics and data of the fossil and gas markets are presented and commented: world primary energy consumption, proved reserves of non conventional gases and their locations, European regions which may possess reserves of shale gases and coal-bed methane, origins of gas imports in France. The second part addresses shale gas deposits and their exploitation: discussion of the influence of the various rock parameters, evolution of production. The third part discusses the exploitation techniques and specific drilling tools. The issue of exploitation safety and security is addressed as well as the associated controversies: about the pollution of underground waters, about the fact that deep drillings result in pollution, about the risks associated with hydraulic fracturing and injections of chemical products, about the hold on ground and site degradation, about water consumption, about pollution due to gas pipeline leakage, about seismic risk, about noise drawbacks, about risks for health, about exploration and production authorization and license, and about air pollution and climate. The last part addresses the French situation and its future: status of the energy bill, recommendations made by a previous government, cancellation of authorizations, etc. Other information are provided in appendix about non conventional hydrocarbons, about shale gas exploitation in the USA, and about the Lacq gas

  14. Bose-Einstein condensation of atomic gases

    International Nuclear Information System (INIS)

    Anglin, J. R.; Ketterle, W.

    2003-01-01

    The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)

  15. Density Fluctuations in Uniform Quantum Gases

    International Nuclear Information System (INIS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2011-01-01

    Analytical expressions are given for the static structure factor S(k) and the pair correlation function g(r) for uniform ideal Bose-Einstein and Fermi-Dirac gases for all temperatures. In the vicinity of Bose Einstein condensation (BEC) temperature, g(r) becomes long ranged and remains so in the condensed phase. In the dilute gas limit, g(r) of bosons and fermions do not coincide with Maxwell-Boltzmann gas but exhibit bunching and anti-bunching effect respectively. The width of these functions depends on the temperature and is scaled as √(inverse atomic mass). Our numerical results provide the precise quantitative values of suppression/increase (antibunching and bunching) of the density fluctuations at small distances in ideal quantum gases in qualitative agreement with the experimental observation for almost non-trapped dilute gases.

  16. Method of processing radioactive rare gase

    International Nuclear Information System (INIS)

    Tagusagawa, Atsushi; Tuda, Kazuaki.

    1988-01-01

    Purpose: To obtain a safety processing method without using mechanical pumps or pressure-proof containers and, accordingly, with no risk for the leakage of radioactive rare gas. Method: A container filled with zeolige is inserted with a cover being opened into an autoclave. Meanwhile, krypton-containing gases are supplied to an adsorption tower filled with adsorbents, cooled, adsorbed and then heated to desorb adsorbed krypton. The krypton-containing gases are introduced due to the pressure difference to the autoclave thereby causing krypton to adsorb at ambient temperature to zeolite. Then, the inside of the autoclave is heated to desorb krypton and adsorbed moistures from zeolite and the pressure is elevated. After sending the gases under pressure to the adsorption tower, the zeolite-filled container is taken out from the autoclave, tightly closed and then transferred to a predetermined site. (Takahashi, M.)

  17. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  18. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  19. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  20. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  1. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  2. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  3. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  4. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  5. Indoor air pollution caused by geothermal gases

    International Nuclear Information System (INIS)

    Durand, Michael

    2006-01-01

    This paper discusses the little-known but potentially serious indoor air quality problems that may occur where buildings are constructed on geothermal ground. The main problems are related to seepage of carbon dioxide, hydrogen sulphide, radon and other gases from soil cavities directly into indoor air through perforations in the structure. These gases present a health hazard, and hydrogen sulphide, which is particularly corrosive, may cause problems electrical and electronic systems. Counter-measures are not always effective, so developments in such areas should only be undertaken with a clear understanding of site-specific issues and their possible solutions. (author)

  6. Ultracold Dipolar Gases in Optical Lattices

    OpenAIRE

    Trefzger, C.; Menotti, C.; Capogrosso-Sansone, B.; Lewenstein, M.

    2011-01-01

    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type m...

  7. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    International Nuclear Information System (INIS)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-01

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent (c) . The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  8. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  9. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  10. Acid dew point measurement in flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Struschka, M.; Baumbach, G.

    1986-06-01

    The operation of modern boiler plants requires the continuous measurement of the acid dew point in flue gases. An existing measuring instrument was modified in such a way that it can determine acid dew points reliably, reproduceably and continuously. The authors present the mechanisms of the dew point formation, the dew point measuring principle, the modification and the operational results.

  11. Properties and Bibliography of GaSe

    Science.gov (United States)

    1994-02-01

    Musaev, A. E. Bakhyshev, N. M. Gasanly and L. G. Musaeva . (1975). "Anisotropy of the optical constants of GaS and GaSe near the absorption edge." Sov...Phys. Semiconductors. 9 94-95 Russian ref.: Fiz. Tekh. Poluprovodn. 9 142-145 (January 1975). Akhundov, G. A., L. G. Musaeva and M. D. Khomutova

  12. Mitigation of greenhouse gases from agriculture

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.; de Klein, C. A. M.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach...

  13. Noble gases as cardioprotectants - translatability and mechanism

    NARCIS (Netherlands)

    Smit, Kirsten F.; Weber, Nina C.; Hollmann, Markus W.; Preckel, Benedikt

    2015-01-01

    Several noble gases, although classified as inert substances, exert a tissue-protective effect in different experimental models when applied before organ ischaemia as an early or late preconditioning stimulus, after ischaemia as a post-conditioning stimulus or when given in combination before,

  14. Toxicity of pyrolysis gases from polyether sulfone

    Science.gov (United States)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  15. Anaesthetic gases: environmental impact and alternatives ...

    African Journals Online (AJOL)

    Anaesthetic gases: environmental impact and alternatives. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... to be small when compared to gaseous emissions from industrial and agricultural sources, the actual percentage contribution to climate change is small. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  16. Cold quantum gases with resonant interactions

    NARCIS (Netherlands)

    Marcelis, B.

    2008-01-01

    We study ultracold gases of alkali-metal atoms in the quantum degenerate regime. The interatomic interactions in these type of systems can be tuned using resonances induced by magnetic or electric fields. The tunability of the interactions, together with the possibility of confining the atoms with

  17. Teacher's Guide for Balloons and Gases.

    Science.gov (United States)

    Griffith, Joe H.; And Others

    This guide was developed to provide children with an opportunity to prepare and collect several common gases and to discover and work with some of their properties. The guide is divided into five major sections: (1) introduction, (2) materials, (3) activities, (4) balloons aloft, and (5) an appendix. The introduction provides information…

  18. Plant for removing radioactive rare gases

    International Nuclear Information System (INIS)

    An, Buzai; Kanazawa, Toshio

    1977-01-01

    The outline of the pilot plant to remove and recover radioactive rare gases generated from nuclear power plants, reprocessing installations for nuclear fuel, nuclear research installations, etc. is described below. Among the studies of various processes such as liquefaction and distillation, absorption into solvents, active carbon adsorption, diaphragm method, etc., the liquefaction and distillation process by rectification at low temperature has been positively developed. It is in the stage of practical application for removing rare gases in waste gases from reprocessing and nuclear power plants. This is the process with high safety and excellent rare gas removing capability. Further research and development have been also made for selective adsorption and desorption method at low temperature which is very efficient as there is no release of long life nuclides such as Krypton-85. Rare gases recovered by the above mentioned removal systems must be stored safely for a long time as their half lives are long and specific radioactivities are high. The study has been made continuously on the storage methods including adsorption in cylinders and remotely automatically sealing storing system. (Kobatake, H.)

  19. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Pederson, L.R.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Meisel, D.; Jonah, C. (Argonne National Lab., IL (United States)); Ashby, E.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

  20. The technology available for more efficient combustion of waste gases

    International Nuclear Information System (INIS)

    Burrows, J.

    1999-01-01

    Alternative combustion technologies for open flare systems are discussed, stressing their advantages and limitations while meeting the fundamental requirements of personnel and plant safety, high destruction efficiencies, environmental parameters and industrial reliability. The use of BACT (Best Available Control Technologies) is dependent on the destruction efficiency of waste gas defined by regulatory agencies or industrial leaders. Enclosed vapour combustors and high destruction efficiency thermal oxidation are two of the technologies which result in more efficient combustion of waste gases. There are several conditions that should be considered when choosing combustion equipment for the disposal of waste gas. These include volatile organic compounds content, lower heating value, the composition of the waste gas, the specified combustion efficiency, design flow rates, smokeless operation, operating conditions, ground level radiation, SO 2 dispersion, environmental and social expectations, and economic limitation. 10 figs

  1. Computer exergonomics of power plants without exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Yantovskii, E I; Zvagolsky, K N; Gavrilenko, V A [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Energy Research

    1992-01-01

    The outlines and preliminary evaluations of some power cycles are presented. Instead of the external combustion, the internal one in artificial air, the mixture of oxygen in flue gases, is proposed. It seems to be a radical solution to the problem of atmospheric protection due to transfer of all the emissions to brine flows in the hydrolithosphere. The use of new, steam-like turbines with elevated temperatures as in modern gas turbines gives the hope to compensate the efficiency decline, caused by oxygen production. All the evaluations are restricted by the thermodynamics only, without any cost appraisal. Use is made of the exergy analysis branch, referred to as exergonomics. 11 refs., 7 figs., 2 tabs.

  2. New treating processes for sulfur-containing natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Kislenko, N.; Aphanasiev, A.; Nabokov, S.; Ismailova, H. [VNIIGAS, Moscow (Russian Federation)

    1996-12-31

    The traditional method of removing H{sub 2}S from sour natural gases is first to treat the gas with a solvent and then to recover the H{sub 2}S from the sour stream in a Claus plant. This method recovers up to 97% of the sulfur when a three-stage Claus unit is employed. Amine/Claus units have operating difficulties for small sulfur capacities (up to 5 tons/day) because the operation of the fired equipment (reaction furnace) is much more difficult. Therefore, for small scale sulfur recovery plants redox processes which exhibit a significant reduction in investment and operating costs are normally used. Many different factors influence the choice of gas desulfurization technology--composition and gas flow, environmental sulfur recovery requirements and CO{sub 2}/H{sub 2}S ratio.

  3. Purification of burned gases of domestic wastes; Moderna purificacion de gases quemados de las basuras domesticas

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, J.; Buttman, P.; Johansson, T.

    1997-09-01

    The author presents the technology to reduce the emission from the burned gases purification of domestic wastes combustion. The technology was demonstrated in Hobec, Denmark, and developed in Germany. (Author)

  4. Experimental Gasification of Biomass in an Updraft Gasifier with External Recirculation of Pyrolysis Gases

    Directory of Open Access Journals (Sweden)

    Adi Surjosatyo

    2014-01-01

    Full Text Available The updraft gasifier is a simple type of reactor for the gasification of biomass that is easy to operate and has high conversion efficiency, although it produces high levels of tar. This study attempts to observe the performance of a modified updraft gasifier. A modified updraft gasifier that recirculates the pyrolysis gases from drying zone back to the combustion zone and gas outlet at reduction zone was used. In this study, the level of pyrolysis gases that returned to the combustion zone was varied, and as well as measurements of gas composition, lower heating value and tar content. The results showed that an increase in the amount of pyrolysis gases that returned to the combustion zone resulted in a decrease in the amount of tar produced. An increase in the amount of recirculated gases tended to increase the concentrations of H2 and CH4 and reduce the concentration of CO with the primary (gasification air flow held constant. Increasing the primary air flow tended to increase the amount of CO and decrease the amount of H2. The maximum of lower heating value was 4.9 MJ/m3.

  5. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  6. 75 FR 57669 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-09-22

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the Final Mandatory Reporting of Greenhouse Gases Rule to require reporters... Numbers GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program HCFC hydrochlorofluorocarbon HFC...

  7. Geodesics in thermodynamic state spaces of quantum gases

    International Nuclear Information System (INIS)

    Oshima, H.; Obata, T.; Hara, H.

    2002-01-01

    The geodesics for ideal quantum gases are numerically studied. We show that 30 ideal quantum state is connected to an ideal classical state by geodesics and that the bundle of geodesics for Bose gases have a tendency of convergence

  8. Radiolytic generation of gases in reactors

    International Nuclear Information System (INIS)

    Ramshesh, V.; Venkateswarlu, K.S.

    1988-01-01

    Water or heavy water is used in different circuits in a reactor. Their most common use is as a moderator and/or as a coolant. Light water is used at other places such as in end shield, calandria vault etc., In the process they are exposed to intense ionizing radiation and undergo radiolytic degradation. The molecular produts of radiolysis are hydrogen, hydrogen peroxide and oxygen. As is commonly known if hydrogen is formed beyond a certain level, in the presence of oxygen it may lead to combustion or even explosion. Thus one should comprehend the basic principles of radiolysis and see whether the concentration of these gases under various conditions can be worked out. This report attempts to analyse in depth the radiolytic generation of gases in reactor systems. (author). 3 tabs

  9. Simulation of diffusion in concentrated lattice gases

    International Nuclear Information System (INIS)

    Kehr, K.W.

    1986-01-01

    Recently the diffusion of particles in lattice gases was studied extensively by theoretical methods and numerical simulations. This paper reviews work on collective and, in particular, on tracer diffusion. The diffusion of tagged particles is characterized by a correlation factor whose behavior as a function of concentration is now well understood. Also the detailed kinetics of the tracer transitions was investigated. A special case is the one-dimensional lattice gas where the tracer diffusion coefficient vanishes. An interesting extension is the case of tagged atoms with a different transition rate. This model allows to study various physical situations, including impurity diffusion, percolation, and diffusion in partially blocked lattices. Finally some recent work on diffusion in lattice gases under the influence of a drift field will be reported. (author)

  10. Properties of quantum self-gravitating gases

    International Nuclear Information System (INIS)

    Rumyantseva, E.N.

    1981-01-01

    Ways of development of the quantum field theory in the general relativity theory are under consideration. A direction, where consideration of quantum fields in strong nonstatic gravitational fields leads to such effects as particle production, is found out. Authors managed to explain properties of quantum self-gravitating gases on the base of an expansion the fugacity in power series for bose- and fermi gases. Expressions for fluctuations in statistical models of the Fridmann universe are presented. The spectrum density of relict neutrinos in Fridmann models is calculated. A characteristic low boundary of the neutrino energy spectrum constitutes 1 MeV. A number of neutrinos with such energies practically is equal to zero. A great number of neutrinos has energies 0 . It is precisely these neurinos, which are responsible for the closed state of the universe according to the built up model

  11. Detecting Friedel oscillations in ultracold Fermi gases

    Science.gov (United States)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  12. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  13. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  14. Oxygen partial pressure sensor for gases

    International Nuclear Information System (INIS)

    Barbero, J.A.; Azcona, M.A.; Orce, A.

    1997-01-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10 -6 -1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs

  15. Oxygen partial pressure sensor for gases

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, J.A.; Azcona, M.A.; Orce, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-10-01

    Precise measurement of very low oxygen partial pressure is important in both laboratories and industries. Particularly in nuclear industry, it is relevant in the different steps of the nuclear fuel fabrication. It is presented an instrument which is handy and of easy construction, suitable for the measurement of oxygen partial pressure of gases, in the range of 10{sup -6}-1 atm. It is based on a solid electrolyte galvanic cell, using Yttria doped zirconia as a ceramic membrane. Through an indirect measurement and calibration, the instrument can be used to measure the content of free oxygen in liquids. It is a import feature in NPP instrumentation. The equipment was calibrated with mixtures of special nonreactive gases. (author). 5 refs.

  16. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    Science.gov (United States)

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  17. Problems in fluid flow

    International Nuclear Information System (INIS)

    Brasch, D.J.

    1986-01-01

    Chemical and mineral engineering students require texts which give guidance to problem solving to complement their main theoretical texts. This book has a broad coverage of the fluid flow problems which these students may encounter. The fundamental concepts and the application of the behaviour of liquids and gases in unit operation are dealt with. The book is intended to give numerical practice; development of theory is undertaken only when elaboration of treatments available in theoretical texts is absolutely necessary

  18. Role of buffer gases in optoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Thomas III, L.J.; Kelly, M.J.; Amer, N.M.

    1978-01-01

    The dependence of an acoustically resonant optoacoustic signal on the molecular weight and thermodynamic and transport properpties of the buffer gas is reported. Our results show that careful selection of such gases can significantly increase the sensitivity and flexibility of optoacoustic spectroscopy. We also demonstrate that such thermodynamic quantities as γ (equivalentC/sub p//C/sub v/) and sound velocity can now be measured readily and accurately. Other potential applications are suggested

  19. The Osher scheme for real gases

    Science.gov (United States)

    Suresh, Ambady; Liou, Meng-Sing

    1990-01-01

    An extension of Osher's approximate Riemann solver to include gases with an arbitrary equation of state is presented. By a judicious choice of thermodynamic variables, the Riemann invariats are reduced to quadratures which are then approximated numerically. The extension is rigorous and does not involve any further assumptions or approximations over the ideal gas case. Numerical results are presented to demonstrate the feasibility and accuracy of the proposed method.

  20. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  1. Paschen's law studies in cold gases

    OpenAIRE

    Massarczyk, R.; Chu, P.; Elliott, S. R.; Rielage, K.; Dugger, C.; Xu, W.

    2016-01-01

    The break-through voltage over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. The breakthrough behavior of the fill gas in colder environments was tested as well. A significant shift of the curve relative to the results at room temperature was observed. The results can be explained by combining Paschen's law and the ideal gas law.

  2. Paschen's law studies in cold gases

    Science.gov (United States)

    Massarczyk, R.; Chu, P.; Dugger, C.; Elliott, S. R.; Rielage, K.; Xu, W.

    2017-06-01

    The break-through voltage behavior over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. At lower temperatures, a significant shift of the curve relative to the results at room temperature was observed. This behavior can be explained by combining Paschen's law and the ideal gas law.

  3. Paschen's law studies in cold gases

    International Nuclear Information System (INIS)

    Massarczyk, R.; Chu, P.; Elliott, S.R.; Rielage, K.; Xu, W.; Dugger, C.

    2017-01-01

    The break-through voltage behavior over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. At lower temperatures, a significant shift of the curve relative to the results at room temperature was observed. This behavior can be explained by combining Paschen's law and the ideal gas law.

  4. The effects of spin in gases

    International Nuclear Information System (INIS)

    Laloee, F.; Freed, J.H.

    1988-01-01

    Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids

  5. How to wrap up radioactive gases

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C

    1982-04-01

    Operating nuclear power stations produces not only solid waste. Not so well known - but they should by no means be ignored - are the radioactive gases released during fission which somehow have to be retained and 'packaged'. Gas cylinders, such as those used for oxygen or compressed air, are unsuitable for this purpose. Ingenious chemical tricks have been thought up to press the gas - especially crypton-85 - into plastic material in which it remains captured right down to its molecular structure.

  6. Glass Membrane For Controlled Diffusion Of Gases

    Science.gov (United States)

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  7. Flow-driven voltage generation in carbon nanotubes

    Indian Academy of Sciences (India)

    The flow of various liquids and gases over single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response generated by the flow of liquids is found to be logarithmic in the flow speed over a wide range. In contrast, voltage generated ...

  8. Agreements on emission of greenhouse gases

    International Nuclear Information System (INIS)

    Aulstad, Johan Greger

    2001-01-01

    Agreements on emission of greenhouse gases is one of the instruments used by Norwegian authorities to meet their obligations with respect to the Climate Convention and the Kyoto Protocol. This book discusses the legal issues raised by these agreements. A main topic is how the industrial emissions conform to the Pollution Act. Does the Pollution Act apply to these emissions? What is the impact of the sanction rules in this act on the emissions? The book also deals with the following general questions that arise in connection with the application of public authority: (1) Can the administration grant concessions and permits in the form of agreements? (2) What commitments can be imposed on a private party by the administration by agreement? (3) Should the procedures set down in the Pollution Act and in the Public Administration Act be followed fully when the pollution authorities make agreements? Is the opportunity of the administration to reverse more restricted when they make agreements than when they make one-sided decisions? Although this discussion primarily deals with the emission of greenhouse gases, the reasoning and conclusions are relevant in many other types of agreements in which the public administration is one of the parties. The agreement that regulates the emissions of greenhouse gases from the Norwegian aluminium industry is described in a special section. The book also gives a brief account of how agreements are used in the Danish climate policy

  9. Diffusion coefficients gases, dissolved in fluid of NPPs circulation contours

    International Nuclear Information System (INIS)

    Piontkovskij, A.I.

    2000-01-01

    In article is brought analysis of diverse gases diffusion coefficients computation methods, dissolved in liquid. On the basis of this analysis and treatment of being equalizations for concrete gases and certain parameters offers universal diffusion coefficients determination dependence for diverse gases in wide range of parameters, circulation contours typical for work NPP

  10. 30 CFR 75.322 - Harmful quantities of noxious gases.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Harmful quantities of noxious gases. 75.322... quantities of noxious gases. Concentrations of noxious or poisonous gases, other than carbon dioxide, shall... Governmental Industrial Hygienists in “Threshold Limit Values for Substance in Workroom Air” (1972). Detectors...

  11. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-11-29

    ... Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register / Vol. 76, No. 229 / Tuesday... 98 [EPA-HQ-OAR-2011-0147; FRL-9493-9] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial errors...

  12. 76 FR 47391 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2011-08-04

    ... Mandatory Reporting of Greenhouse Gases; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 150 / Thursday...-HQ-OAR-2011-0147; FRL-9443-1] RIN 2060-AQ85 Mandatory Reporting of Greenhouse Gases AGENCY... provisions in the Mandatory Reporting of Greenhouse Gases Rule to correct certain technical and editorial...

  13. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  14. Dissolved helium, inert gases, radium and radon in groundwaters from the Altnabreac research site

    International Nuclear Information System (INIS)

    Andrews, J.N.; Kay, R.L.F.

    1985-01-01

    A groundwater geochemical study has been carried out at Altnabreac, Cenithness, Scotland, to investigate the feasibility of disposal of high-level radioactive wastes in crystalline rock. A groundwater flow model was constructed for sampling a section at depths up to 300 m. Measurements of inert gases dissolved in groundwaters are used, with parallel measurements of 14 C, tritium, oxygen and hydrogen isotopes to infer groundwater ages and residence times. (UK)

  15. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  16. Numerical and experimental investigation on the performance of safety valves operating with different gases

    International Nuclear Information System (INIS)

    Dossena, V.; Marinoni, F.; Bassi, F.; Franchina, N.; Savini, M.

    2013-01-01

    A detailed analysis of the effect related to the expansion of different gases throughout safety relief valves is carried out both numerically and experimentally. The considered gases are air, argon and ethylene, representative of a wide range of specific heat ratios. A first experimental campaign performed in air and argon on a safety relief valve characterized by connection 1/2″ × 1″ and orifice designation D (diameter 10 mm) according to API 526 showed significant reduction both in disc lift and in exhausted mass flow rate, at the nominal overpressure, when operating with argon. In order to gain a deeper insight into the physics involved and to evaluate the valve behavior with other gases, an extensive numerical testing has been performed by means of an accurate CFD code based on discontinuous Galerkin formulation. Numerical results are at first validated against measurements obtained in air on a 2″ J 3″ safety relief valve proving a remarkable accuracy of the computational method. Then the validated solver is applied on the same computational grid using argon and ethylene as working fluids. The three gases are considered as thermally perfect gases. A critical discussion based on the numerical results allows to clarify the fluid dynamic and physical reasons causing the observed trends both in the opening force and in the discharge coefficient. The main conclusion is that particular care must be taken when a safety valve operates with a fluid characterized by a specific heat ratio greater than the one of the gas used during type testing. -- Highlights: ► Effects of different gases on the discharge capacity and operational characteristics on safety relief valves. ► Influence of different specific heat ratio on safety relief valves discharge coefficient. ► Skilful application of Discontinuous Galerkin CFD solver to safety valves performances prediction

  17. A quasi-linear formulation for chemically reacting compressible mixtures of imperfect gases

    Science.gov (United States)

    Lentini, D.

    2008-01-01

    A quasi-linear formulation is proposed for high-speed finite-rate chemically reacting mixtures of imperfect gases, i.e., thermally perfect gases with specific heat varying with temperature. It retains the same formalism of a well-tried counterpart formulation for perfect gases, which has been proven to be suited for application of accurate and fast algorithms. Equations for both quasi-monodimensional flows, and for axisymmetric viscous flows are presented. The approach is based on the definition of an appropriate function F of temperature and concentration, which allows to identify Riemann variables for the flow under consideration; the formulation also includes equations for the entropy and the mass fractions of the N chemical species present in the reacting mixture. The key function F must be computed by numerical quadrature, together with its derivatives with respect to the individual species mass fractions. An example of computation of these quantities is reported, with reference to conditions in the combustion chamber of the Vulcain engine powering the first stage of the Ariane 5 launcher. Such a computation is demonstrated to be both economic and accurate, thus proving the workability of the proposed approach. Further, an estimate of the variation of the mixture specific heat ratio with temperature is given, in order to underline the importance of the effect under consideration.

  18. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  19. Kinetic theory of nonideal gases and nonideal plasmas

    CERN Document Server

    Klimontovich, Yu L

    2013-01-01

    Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor

  20. Cost and Benefits of Denser Topologies for the Smart Grid

    NARCIS (Netherlands)

    Pagani, Giuliano Andrea; Aiello, Marco

    2013-01-01

    The Smart Grid promises to reshape how electricity is generated, distributed, and used. More delocalized generation based on renewable sources will transform end-users into prosumers (producers and consumers) of energy. These will require electric and supporting ICT infrastructures to be able to

  1. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    Villanueva Z, Loreto

    1998-01-01

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S O x and N O x , respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  2. Calculating Shocks In Flows At Chemical Equilibrium

    Science.gov (United States)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  3. Diffusive retention of atmospheric gases in chert

    Science.gov (United States)

    Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.

    2016-12-01

    Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal

  4. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  5. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  6. Characteristic of combustion of Colombian gases

    International Nuclear Information System (INIS)

    Gil B, Edison; Maya, Ruben; Andres, Amel A.

    1996-01-01

    The variety of gas locations in the country, makes that the gas that will be distributed by the net of present gas pipeline a very different composition, what bears to that these they behave in a different way during its use. In this work the main characteristics of the combustion are calculated for the Colombian gases, basically the properties of the combustion and the characteristics of the smoke, as basic information for the design and operation of the gas teams and their certification. These properties were calculated with the special help software for combustion developed by the authors

  7. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  8. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  9. Mean free path in soccer and gases

    Energy Technology Data Exchange (ETDEWEB)

    Luzuriaga, J, E-mail: luzuriag@cab.cnea.gov.a [Centro Atomico Bariloche - CNEA, Instituto Balseiro UNC (8400), Bariloche (Argentina)

    2010-09-15

    The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could be suitable for an introductory course in vacuum techniques or undergraduate courses in kinetic theory of gases. Without going into the slightly harder quantitative results, the analysis presented might be used for introducing some ideas of kinetic theory qualitatively to high school students.

  10. Mean free path in soccer and gases

    International Nuclear Information System (INIS)

    Luzuriaga, J

    2010-01-01

    The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could be suitable for an introductory course in vacuum techniques or undergraduate courses in kinetic theory of gases. Without going into the slightly harder quantitative results, the analysis presented might be used for introducing some ideas of kinetic theory qualitatively to high school students.

  11. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  12. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  13. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  14. On the velocity distributions of granular gases

    International Nuclear Information System (INIS)

    Polito, A.M.M.; Rocha Filho, T.M.; Figueiredo, A.

    2009-01-01

    We present a new approach to determine velocity distributions in granular gases to improve the Sonine polynomial expansion of the velocity distribution function, at higher inelasticities, for the homogeneous cooling regime of inelastic hard spheres. The perturbative consistency is recovered using a new set of dynamical variables based on the characteristic function and we illustrate our approach by computing the first four Sonine coefficients for moderate and high inelasticities. The analytical coefficients are compared with molecular dynamics simulations results and with a previous approach by Huthmann et al.

  15. Pressure Response of Various Gases in a Pneumatic Resistance Capacitance System and Pipe

    Science.gov (United States)

    Peng, J.; Youn, C.; Tadano, K.; Kagawa, T.

    2017-10-01

    City gas, such as propane and methane, is widely used as a fuel in households and factories. Recently, hydrogen as a clean and efficient fuel has been proposed for fuel cell vehicles. However, few studies have investigated pressure control and response of gases considering their properties. This study investigated the static flow rate characteristics in an orifice with four gases—air, propane, methane, and hydrogen. Then, a pressure response experiment was performed using a pneumatic resistance capacitance system comprising an isothermal chamber and a nozzle flapper, and the time constant of the pressure response with various gases was analysed with a mathematical model. The simulation results agreed with the experimental data. Finally, the differences in pressure propagation in a pipe with various gases were explicated by a pressure response experiment. The results showed that the pressure response speed of hydrogen is faster than that of the other three gases because of its small molecular weight. Therefore, the pressure control equipment of hydrogen needs a high response speed.

  16. Insertable fluid flow passage bridgepiece and method

    Science.gov (United States)

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  17. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  18. Spectral Line Shapes in Plasmas and Gases

    International Nuclear Information System (INIS)

    Oks, E.; Dalimier, D.; Stamm, R.; Stehle, CH.; Gonzalez, M.A.

    2011-01-01

    The subject of spectral line shapes (SLS), a.k.a. spectral line broadening, which embraces both shapes and shifts of spectral lines, is of both fundamental and practical importance. On the fundamental side, the study of the spectral line profiles reveals the underlying atomic and molecular interactions. On the practical side, the spectral line profiles are employed as powerful diagnostic tools for various media, such as neutral gases, technological gas discharges, magnetically confined plasmas for fusion, laser- and Z-pinch-produced plasmas (for fusion and other purposes), astrophysical plasmas (most importantly, solar plasmas), and planetary atmospheres. The research area covered by this special issue includes both the SLS dominated by various electric fields (including electron and ion micro fields in strongly ionized plasmas) and the SLS controlled by neutral particles. In the physical slang, the former is called plasma broadening while the latter is called neutral broadening (of course, the results of neutral broadening apply also to the spectral line broadening in neutral gases)

  19. Corrosion by cooling gases in nuclear reactors

    International Nuclear Information System (INIS)

    Darras, R.

    1960-01-01

    This article begins with a review of the various materials which can be used and the cooling gases in which they may be heated, emphasis being placed on the importance of reaching temperatures as high as possible. This is followed by a few general remarks on the dry oxidation of metals and alloys, particularly with regard to diffusion phenomena and their various possible mechanisms, and also the methods of investigation employed. Finally, the behaviour of the chief nuclear materials heated in the various gases is studied successively. Materials used for fuel (metallic uranium, uranium oxide, carbides and silicides), canning materials (magnesium, aluminium, zirconium, beryllium, stainless and refractory steels), structural materials (ordinary or slightly alloyed steels), and finally moderators (graphite, beryllium oxide) are deal with in this way. This account is backed up both by the results obtained at the CEA and by work published outside or abroad up to the present day. In conclusion, every effort has been made to direct future research on the basis of the foregoing. Reprint of a paper published in Industries Atomiques - no. 9/10, 1959, p. 3-23 [fr

  20. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  1. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  2. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  3. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  4. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  5. Experimental study of energy exchanges between two coupled granular gases

    OpenAIRE

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  6. Properties of gases, liquids, and solutions principles and methods

    CERN Document Server

    Mason, Warren P

    2013-01-01

    Physical Acoustics: Principles and Methods, Volume ll-Part A: Properties of Gases, Liquids, and Solutions ponders on high frequency sound waves in gases, liquids, and solids that have been proven as effective tools in examining the molecular, domain wall, and other types of motions. The selection first offers information on the transmission of sound waves in gases at very low pressures and the phenomenological theory of the relaxation phenomena in gases. Topics include free molecule propagation, phenomenological thermodynamics of irreversible processes, and simultaneous multiple relaxation pro

  7. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  8. Hydrogen Peroxide Enhances Removal of NOx from Flue Gases

    Science.gov (United States)

    Collins, Michelle M.

    2005-01-01

    Pilot scale experiments have demonstrated a method of reducing the amounts of oxides of nitrogen (NOx) emitted by industrial boilers and powerplant combustors that involves (1) injection of H2O2 into flue gases and (2) treatment of the flue gases by caustic wet scrubbing like that commonly used to remove SO2 from combustion flue gases. Heretofore, the method most commonly used for removing NOx from flue gases has been selective catalytic reduction (SCR), in which the costs of both installation and operation are very high. After further development, the present method may prove to be an economically attractive alternative to SCR.

  9. Reactions on carbonaceous materials with hydrogenating gases

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Simon, W; Kronig, W

    1933-02-08

    A process is given for the production of valuable hydrocarbons by treatment of distillable carbonaceous materials with added hydrogenating gases under pressure in contact with catalysts. The process comprises adding to the initial materials before or during the said treatment organic sulphonic acids together with metals of groups 4 to 8 of the periodic system or compounds thereof, or free organic carboxylic acids which when inorganic salts are simultaneously present do not combine therewith to form complex ansolvo acids, or acid salts of strong acids or acid salts of heavy metals, lithium, magnesium, and aluminum, with the exception of aluminum hydrosilicates, or inorganic oxygen containing acids of sulfur or nitrogen or the anhydrides of said inorganic oxygen-containing acids.

  10. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  11. Gender and Boyle's law of gases

    CERN Document Server

    Potter, Elizabeth

    2001-01-01

    Gender and Boyle''s Law of GasesElizabeth PotterRe-examines the assumptions and experimental evidence behind Boyle''s Law.Boyle''s Law, which describes the relation between the pressure and volume of a gas, was worked out by Robert Boyle in the mid-1600s. His experiments are still considered examples of good scientific work and continue to be studied along with their historical and intellectual contexts by philosophers, historians, and sociologists. Now there is controversy over whether Boyle''s work was based only on experimental evidence or whether it was influenced by the politics and religious controversies of the time, including especially class and gender politics.Elizabeth Potter argues that even good science is sometimes influenced by such issues, and she shows that the work leading to the Gas Law, while certainly based on physical evidenc...

  12. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  13. Electron beam processing of combustion flue gases

    International Nuclear Information System (INIS)

    1987-07-01

    This report contains the papers presented at the consultants' meeting on electron beam processing of combustion flue gases. The meeting provided an excellent opportunity for exchanging information and reviewing the current status of technology development. Characteristics of the electron beam processing recognized by the meeting are: capability of simultaneous removals of SO 2 and NO x , safe technology and simplicity of control, dry process without waste water to be treated, cost benefit of electron beam processing compared with conventional technology and the conversion of SO 2 and NO x to a by-product that can be used as agricultural fertilizer. A separate abstract was prepared for each of the 22 papers in this technical report

  14. Atmosphere-Ocean Coupling through Trace Gases

    Science.gov (United States)

    Tegtmeier, S.; Atlas, E. L.; Krüger, K.; Lennartz, S. T.; Marandino, C. A.; Patra, P. K.; Quack, B.; Schlundt, C.

    2017-12-01

    Halogen- and sulfur-containing trace gases, as well as other volatile organic compounds (VOCs, such as isoprene) from biogeochemical marine sources are important constituents of the ocean and the atmosphere. These compounds exert wide-ranging influence on atmospheric chemical processes and climate interactions, as well as on human health in coastal regions. In their reactive form, they can affect the oxidizing capacity of the air and lead to the formation of new particles or the growth of existing ones. In this contribution, marine derived halogen-, sulfur-, and oxygen-containing compounds will be discussed. Their net flux into the atmosphere and their impact on atmospheric processes is analyzed based on observations and model simulations.

  15. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  16. Report of Committee H. Liquefied gases

    International Nuclear Information System (INIS)

    Miyata, Yoshiaki

    1997-01-01

    Committee H covers liquefied gases, both liquefied natural gas (LNG) and liquefied petroleum gas (LPG). In this triennium (1994-1997), Subcommittee H-1 and H-2 carried out a general survey of LNG and LPG respectively including supply and demand, world LNG trade, LPG production facilities, LNG liquefaction plants, LNG schemes existing or under construction and future projects. Additionally five working groups were set up to cover the following work items selected from among major topics that the liquefied gas industries are facing or concerned with. The topics for LNG are ''Operational aspects of liquefaction plants'', ''Cost reduction of LNG chains'', ''Evolution of major cryogenic equipment'' and those for LPG are ''New developments in future LPG utilization'' and ''LPG: An optimal fuel for developing countries''. It should be noted that, in addition to traditional surveys, Committee H also tried making a cost analysis of LNG chains for the first time, in ''Cost reduction of LNG chains''. (au)

  17. Method of extracting shale with hot gases

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, M

    1874-12-05

    The raw rock is treated in a furnace composed of a series of compartments arranged in a circle around a hearth and communicating with one another by means of a chimney. The chargers receiving the rock communicate at the top directly with little cells in which terminate the chimneys for the circulation. These chambers are accessible to the combustion gases from the central hearth by means of flues. A damper, operated from outside, closes the chimney or flue at will. A grill is installed at the lower part of each chamber and supports the bituminous rocks to be treated, the rock being charged in at the top of the chamber. Each chamber is set on a reservoir of cast iron, the reservoir being slightly inclined toward the outside and receiving the liquid products separated from the rock.

  18. A New Perspective on Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Fabrice Philippe

    2013-08-01

    Full Text Available The ideal-gas barometric and pressure laws are derived from the Democritian concept of independent corpuscles moving in vacuum, plus a principle of simplicity, namely that these laws are independent of the kinetic part of the Hamiltonian. A single corpuscle in contact with a heat bath in a cylinder and submitted to a constant force (weight is considered. The paper importantly supplements a previously published paper: First, the stability of ideal gases is established. Second, we show that when walls separate the cylinder into parts and are later removed, the entropy is unaffected. We obtain full agreement with Landsberg’s and others’ (1994 classical thermodynamic result for the entropy of a column of gas submitted to gravity.

  19. Human activities affecting trace gases and climate

    International Nuclear Information System (INIS)

    Braatz, B.; Ebert, C.

    1990-01-01

    The Earth's climate has been in a constant state of change throughout geologic time due to natural perturbations in the global geobiosphere. However, various human activities have the potential to cause future global warming over a relatively short amount of time. These activities, which affect the Earth's climate by altering the concentrations of trace gases in the atmosphere, include energy consumption, particularly fossil-fuel consumption; industrial processes (production and use of chlorofluorocarbons, halons, and chlorocarbons, landfilling of wastes, and cement manufacture); changes in land use patterns, particularly deforestation and biomass burning; and agricultural practices (waste burning, fertilizer usage, rice production, and animal husbandry). Population growth is an important underlying factor affecting the level of growth in each activity. This paper describes how the human activities listed above contribute to atmospheric change, the current pattern of each activity, and how levels of each activity have changed since the early part of this century

  20. Explorative analysis of microbes, colloids and gases

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Pedersen, Karsten

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H 2 O/O 2 , NO 3 - /N 2 , Mn 2+ /Mn(IV), Fe 2+ /Fe(III), S 2- /SO 4 2- , CH 4 /CO 2 , CH 3 COOH/CO 2 , and H 2 /H + . The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10 -3 μm are regarded as colloids. Their small size prohibits them from settling, which gives them the potential to transport

  1. Dosimetry of the radioactive noble gases

    International Nuclear Information System (INIS)

    Soldat, J.K.; Bramson, P.E.; Parker, H.M.

    1973-01-01

    Methods are described that were used for estimations of the radiation dose rate to various human tissues from the radioactive gases of Ar, Kr, and Xe following inhalation or immersion in a semi-infinite cloud. Dose rates to the whole-body, lungs, adipose tissues, and testes were calculated following inhalation; and dose rates to the skin, whole-body, lungs, and testes from a semi-infinite cloud were calculated for 39 Ar, 41 Ar, 83 Kr, 85 Kr, 87 Kr, 88 Kr, 131 Xe, 133 Xe, 135 Xe, 137 Xe, 138 Xe, and also 88 Rb found in equilibrium with its parent 88 Kr and 138 Cs found in equilibrium with its parent 138 Xe. (U.S.)

  2. Lessons from geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.

    2015-12-01

    The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall, the gas chemistry reflects a broader view of mantle-crust dynamics than can be appreciated by studies of only dissolved solutes in the neutral and alkaline waters from Yellowstone geysers. Fournier (1989) Ann. Rev. Earth Planet. Sci. v. 17, p. 13-53. Lowenstern et al. (2015) JVGR, v. 302, 87-101.

  3. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  4. From ultracold Fermi Gases to Neutron Stars

    Science.gov (United States)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  5. Collision-free gases in spatially homogeneous space-times

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed

  6. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    Directory of Open Access Journals (Sweden)

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  7. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    Science.gov (United States)

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  8. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  9. Absorption of Greenhouse Gases in Liquids : A Molecular Approach

    NARCIS (Netherlands)

    Balaji, S.P.

    2015-01-01

    The increase in concentrations of greenhouse gases is responsible for global warming over the past few years. A major portion of the emitted greenhouse gases contains carbon dioxide (CO2). The capture of carbon dioxide from the effluent sources, its transport, and storage has been identified as the

  10. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  11. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  12. The challenges of the greenhouse gases emissions reduction in buildings

    International Nuclear Information System (INIS)

    Arnaud, E.

    2005-09-01

    The building sector is responsible of 18% of the greenhouse gases emissions in France. This document aims to evaluate the greenhouse gases emissions of the sector and then defines technical and financial avenues worth exploring to reduce them. (A.L.B.)

  13. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...

  14. 75 FR 48743 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-08-11

    ... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases...-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION... Greenhouse Gas Reporting Rule Hotline at telephone number: (877) 444-1188; or e-mail: [email protected] . To...

  15. Remote control flare stack igniter for combustible gases

    Science.gov (United States)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  16. Purification technology for flue/off gases using electron beams

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2004-01-01

    The present paper describes research and development on purification technology using electron beams for flue/off gases containing pollutants: removal of sulfate oxide and nitrogen oxide from flue gases of coal/oil combustion power plants, decomposition of dioxins in waste incineration flue gas, and decomposition/removal of toxic volatile organic compounds from off gas. (author)

  17. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  18. Solubility of gases in water at high temperature

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, R.J.; Japas, M.L.

    1981-01-01

    In the primary circuits of the PWR, it is usual to find apolar gases such as the noble gases like, nitrogen, hydrogen (deuterium) and oxygen. These gases enter into the circuit partly due to failures in the fuel elements, accidental entries of air into the system and corrosion processes and radiolisis in the coolant media. For the operation of several auxiliary systems in the primary circuit, it is important to know the solubility of these gases in the flux of the circuit and the evaluation of physicochemical processes that take place. A cell has been built that allows to carry out determinations of solubility in the range of 350 deg C and 100 Mega Pascal. Three alternative experimental techniques have been developed to determine the solubility of the gases which are compared to each other. Measures of solubility of argon in H2O and D2O have been made in a wide range of temperatures. (V.B.) [es

  19. Reduction of Climate Gases by Energy Efficiency

    International Nuclear Information System (INIS)

    Moe, N.

    1998-01-01

    Carbon dioxide cannot be depolluted in practice. However, there are two areas where measures can be taken to avoid CO 2 emissions: 1. Energy-efficiency. 2. Use of sustainable energy sources in energy production. It is characteristic that many measures which are good for the environment are also good from the point of view of cost efficiency, preparedness and employment. This is tru, for instance, of the greater use of biofuels instead of fossil fuels, collective heating systems as opposed to individual ones and economy measures - especially more efficient use of electricity. It is a question of thinking of the system as a whole. Methane is another factor which contributes to the greenhouse effect. Methane emissions can also be avoided, or reduced, by system-thinking. System-thinking is, for instance, not ro deposit combustible waste but to use it as an energy source. And why not produce electricity by using methane from existing landfill sites. Electrical energy is the most useful form of energy. Therefore, electricity should not, as a principal rule, be used for heating, or as process energy. The fact that energy-efficiency and emission of greenhouse gases are interrelated is shown in the following two examples. 1. Only about 25% of the energy content in extracted coal will reach the consumers as electricity when the production takes place in an ordinary, coal-fires condensing power station. 2. When district heating (room-heating and hot water) is produced in a modern heat-production plant by flue-gas condensation, about 90% of the energy is utilised for heating purposes. To obtain an overall picture of the amount of energy used for a purpose, e.g. heating or electricity, you must view the entire process from extraction to final use. Such a picture can show the energy efficiency and what losses arise. Efficiency measures can reduce the energy bill. They can also reduce pollution, greenhouse gases among other things. Examples will be given in this paper of energy

  20. Primordial Noble Gases from Earth's Core

    Science.gov (United States)

    Wang, K.; Lu, X.; Brodholt, J. P.

    2016-12-01

    Recent partitioning experiment suggests helium is more compatible in iron melt than in molten silicates at high pressures (> 10 GPa) (1), thus provide the possibility of the core as being the primordial noble gases warehouse that is responsible for the high primordial/radiogenic noble gas isotopic ratios observed in plume-related basalts. However, the possible transportation mechanism of the noble gases from the core to the overlying mantle is still ambiguous, understanding how this process would affect the noble gas isotopic characteristics of the mantle is critical to validate this core reservoir model. As diffusion is a dominant mass transport process that plays an important role in chemical exchange at the core-mantle boundary (CMB), we have determined the diffusion coefficients of helium, neon and argon in major lower mantle minerals, i.e. periclase (MgO), bridgemanite (MgSiO3-Pv) and post-perovskite (MgSiO3-PPv), by first-principles calculation based on density functional theory (DFT). As expected, the diffusion rate of helium is the fastest at the CMB, which is in the range of 3 × 10-10 to 1 × 10-8 m2/s. The neon diffusion is slightly slower, from 5 × 10-10 to 5 × 10-9 m2/s. Argon diffuses slowest at the rate from 1 × 10-10 to 2 × 10-10 m2/s. We have further simulated the evolution of noble gas isotopic ratios in the mantle near the CMB. Considering its close relationship with the mantle plumes and very likely to be the direct source of "hot-spot" basalts, we took a close investigation on the large low-shear-velocity provinces (LLSVPs). Under reasonable assumptions based on our diffusion parameters, the modelling results indicate that LLSVP is capable of generating all the noble gas isotope signals, e.g., 3He/4He = 55 Ra, 3He/22Ne = 3.1, 3He/36Ar = 0.82, 40Ar/36Ar = 9500, that are in good agreement with the observed values in "hot-spot" basalts (2). Therefore, this core-reservior hypothesis is a self-consistent model that can fits in multiple noble gas

  1. Which climate gases is it the most important to reduce?

    International Nuclear Information System (INIS)

    Godal, Odd; Fuglestvedt, Jan

    2002-01-01

    If the Kyoto Protocol had used another method for comparing the various climate gases, Norway might have had to implement more and more expensive measures. The selection of methods may be important for the making of new agreements after Kyoto. Calculations show the importance of the comparison methods for the various climate gases in negotiating new climate agreements. The Kyoto Protocol regulates the total emission of climate gases carbon dioxide (CO 2 ), methane (CH 4 ), laughing gas (N 2 O) and sulphur hexafluoride (SF 6 ), and halo fluoro carbons and perfluoro carbon. It is up to each country to choose which of these gases to concentrate on, and a tool is therefore needed to compare the effects of the various gases. In the Kyoto agreement, this is done by means of the global warming potential (GWP) of each gas over a period of 100 years. But different climate gases have different atmospheric residence times and it is not evident how the gases must be compared. Reducing the emission of methane has a strong and short-term effect while reducing the emission of carbon dioxide has a weaker but more lasting effect. Researchers have suggested other ways of comparison than the one used in the Kyoto Protocol. Among other things one may calculate the global warming potential for another time horizon than 100 years. Researchers at Cicero have investigated the consequences of two other ways of weighing climate gases: GWP(20) with time horizon of 20 years gives more weight to short-lived gases like methane, while GWP(500) with a time horizon of 500 years is more favourable to the long-lived gases. To see how much the selection of comparing method means in practice, the consequences for Norway using GWP(20) or GWP(500), have been calculated

  2. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases

    Science.gov (United States)

    Gupta, Ronak; Alam, Meheboob

    2018-01-01

    The nature of particle-wall interactions is shown to have a profound impact on the well-known "Knudsen paradox" [or the "Knudsen minimum" effect, which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn, reaching a minimum at Kn˜O (1 ) and increasing logarithmically with Kn as Kn→∞ ] in the acceleration-driven Poiseuille flow of rarefied gases. The nonmonotonic variation of the flow rate with Kn occurs even in a granular or dissipative gas in contact with thermal walls. The latter result is in contradiction with recent work [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523] that revealed the absence of the Knudsen minimum in granular Poiseuille flow for which the flow rate was found to decrease at large values of Kn. The above conundrum is resolved by distinguishing between "thermal" and "athermal" walls, and it is shown that, for both molecular and granular gases, the momentum transfer to athermal walls is much different than that to thermal walls which is directly responsible for the anomalous flow-rate variation with Kn in the rarefied regime. In the continuum limit of Kn→0 , the athermal walls are shown to be closely related to "no-flux" ("adiabatic") walls for which the Knudsen minimum does not exist either. A possible characterization of athermal walls in terms of (1) an effective specularity coefficient for the slip velocity and (2) a flux-type boundary condition for granular temperature is suggested based on simulation results.

  3. Subnanosecond breakdown in high-pressure gases

    Science.gov (United States)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  4. Beneficial Effects of Environmental Gases: Health Prospective

    International Nuclear Information System (INIS)

    Hussein, A.Z.; IBrahim, M.S.; Zakaria, Kh.M.

    2009-01-01

    Radioactive radon gas is widely considered to be a health hazard by environmental agencies in the United States and in Europe. Yet despite the warnings of these agencies, thousands of people annually expose themselves to radon for therapeutic purposes, in facilities ranging from rustic old mines, to upscale spas and clinics. The inert natural radioactive gas radon has been used since the beginning of the century in the treatment of rheumatic diseases. In many places in the world, radon is used for therapeutic purposes for various diseases. Radon inhalation is applied in a thermal gallery with atmospheric radon concentrations up to 100 kBq/m3, elevated temperature up to 41 EC , and humidity close to 100%, or in the form of radon baths where Rn is emanated from water with high natural Rn activity. Frequently, a combination of both treatment procedures is applied. Evidence from empirical experience and from clinical observational studies suggests that radon has analgesic, anti inflammatory and immune-stimulating effects. Ozone is one of nature's most powerful oxidants. It increases the effectiveness of the antioxidant enzyme system, which scavenge excess free radicals in the body. It is used in water purification and sewage treatment and is now being applied medically to treat many diseases from wounds and colitis to cancer, stroke and AIDS. According to the dosage and concentration range, medical ozone is a pharmaceutical agent that exerts specific properties and a well-defined range of efficacy. This paper describes the medical application of environmental gases: radon and ozone

  5. Collision Statistics of Driven Polydisperse Granular Gases

    International Nuclear Information System (INIS)

    Chen Zhiyuan; Zhang Duanming; Yang Fengxia; Guo Xinping; Li Zhongming

    2008-01-01

    We present a dynamical model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomogeneity of the disk size distribution can be measured by a fractal dimension d f . By Monte Carlo simulations, we have mainly investigated the effect of the inhomogeneity on the statistical properties of the system in the same inelasticity case. Some novel results are found that the average energy of the system decays exponentially with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state after a long evolution time. Furthermore, the inhomogeneity has great influence on the steady-state statistical properties. With the increase of the fractal dimension d f , the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with d f , but it is independent of time. Meanwhile, the velocity distribution deviates more strongly from the Gaussian one, but does not demonstrate any apparent universal behavior

  6. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  7. Thermodesorption of gases from various vacuum materials

    International Nuclear Information System (INIS)

    Beavis, L.C.

    1979-06-01

    A number of materials are commonly used as vacuum system walls. The desorption of gases from these materials may contribute significantly to the internal pressure of an unpumped device or to the gas load which a pump must handle in a dynamic system. This report describes the thermodesorption measurements made on a number of metals (molybdenum, nickel, Kovar alloy, copper, copper-2% beryllium alloy) and two insulators (molybdenum sealing glass ceramic and high alumina ceramic). All of the materials after typical cleaning and air exposure contain considerable gas. With a long 400 0 to 500 0 vacuum bake, however, all can be cleaned sufficiently so that they will not contribute appreciable gas to their surrounding when vacuum stored at room temperature for many years. Most materials display desorption kinetics which are first order (a single bond or trap energy must be overcome for desorption). It appears that the desorption of CO from Kovar is rate limited by carbon diffusion (D 0 approx. = .4 cm 2 /s and E/sub d/ approx. = 27,000 cal/mol). The desorption of hydrogen from glass ceramic also appears to be diffusion rate limited (D 0 approx. = 1 x 10 -3 cm 2 /s and E/sub d/ approx. = 11,000 cal/mol). Carbon monoxide is the major gas desorbed from metals, except copper for which hydrogen is the major desorbing species. The insulators desorb hydrogen primarily

  8. Hydropower may produce more greenhouse gases

    International Nuclear Information System (INIS)

    Kolshus, Hans H.; Folkestad, Tonje

    2002-01-01

    According to this article, dam projects in hydropower development may lead to increased emission of greenhouse gases and may create great inconveniences for the local community. Hence it is not without problems to sponsor such projects through the Clean Development Mechanism (CDM) of the Kyoto Protocol. In many countries the great era of hydroelectric development is over and the potential is now in the developing countries. The aim of the CDM is two-fold: sustainable development in the developing countries, and cheap reduction of greenhouse gas emission from developed nations. It has been agreed upon in the climate negotiations that it is the developing country receiving the investments that shall document that the projects conform to the goal of sustainable development of that country. The concept of sustain ability is a vague one, and it is a great challenge to make it more precise so that requirements may be posed on CDM projects. This is important as projects that are suitable from a climate point of view may have undesirable environmental or social effects, which may be in conflict with the goal of sustainable development. This also pertains to hydropower. It also appears that water reservoirs are not always as clean as has been assumed

  9. Coal pyrolysis under hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Sun, C.; Li, B.; Liu, Z. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion, Institute of Coal Chemistry

    1998-04-01

    To improve the economy of the pyrolysis process by reducing the hydrogen cost, it is suggested to use cheaper hydrogen-rich gases such as coke-oven gas (COG) or synthesis gas (SG) instead of pure hydrogen. The pyrolysis of Chinese Xianfeng lignite which was carried out with real COG and SG at 3-5 MPa, a final temperature of 650{degree}C and a heating rate of 5{degree}C/min in a 10g fixed-bed reactor is compared with coal pyrolysis with pure hydrogen and nitrogen under the same conditions. The results indicate that compared with hydropyrolysis at the same total pressure, the total conversion and tar yields from coal pyrolysis with COG and SG decreases while the unwanted water increases. However, at the same H{sub 2} partial pressure, the tar yields and yields of BBTX, PCX and naphthalene from the pyrolysis of coal with COG and SG are all significantly higher than those of hydropyrolysis. Therefore, it is possible to use COG and SG instead of pure hydrogen. 8 refs., 3 figs., 6 tabs.

  10. Brane gases in the early Universe

    International Nuclear Information System (INIS)

    Alexander, S.; Brandenberger, R.; Easson, D.

    2000-01-01

    Over the past decade it has become clear that fundamental strings are not the only fundamental degrees of freedom in string theory. D-branes are also part of the spectrum of fundamental states. In this paper we explore some possible effects of D-branes on early Universe string cosmology, starting with two key assumptions: firstly that the initial state of the Universe corresponded to a dense, hot gas in which all degrees of freedom were in thermal equilibrium, and secondly that the topology of the background space admits one-cycles. We argue by t duality that in this context the cosmological singularities are not present. We derive the equation of state of the brane gases and apply the results to suggest that, in an expanding background, the winding modes of fundamental strings will play the most important role at late times. In particular, we argue that the string winding modes will only allow four space-time dimensions to become large. The presence of brane winding modes with p>1 may lead to a hierarchy in the sizes of the extra dimensions

  11. Utilization of the waste gases from a petroleum refinery as fuel

    International Nuclear Information System (INIS)

    Torres Contreras, Jose Francisco

    2012-01-01

    The fuels waste gases that are burned in a flare stack were proposed as an alternative for its utilization. The current operation of the flare stack system of a petroleum refinery was analyzed. The historical information of the equipment and original design of the same was used. From the calculations that were performed, it is expected that the delivered heat for the flare gases approaching to 65 MJ/M 3 , so it would be an effective fuel for be used in furnaces and boilers. A new flare stack system and a system for recovery of the waste gases of process is proposed. The new flare stack system must have a liquid separator of 2,3 meters of diameter, a length of 6,4 meters and a capacity of 26,1 cubic meters. The velocity of the gas to the exit of the separator has been of 80,7 m/s. The liquid hydrocarbon flow that has exited the separator has been of 71 m 3 /h, with a speed of 0,91 m/s and a pump of 2,75 HP is required. The liquid seal of flare stack systems must have a minimum height of 1,05 m. The gas recovery system to burn in the flare stack should be located between the liquid separator and liquid seal of the flare stack systems. For an average consumption of 150 m 3 /h of fuel gas for furnaces and boilers, the gas recovery system must have with a compressor of 4,75 HP, a liquid separator of 50 m 3 and a pump of 2,50 HP. The gas recovery system has had with an absorber of 7 plates for washing of the stream acid gas with MEA, at 40 degrees celsius and an pressure of operating of 67 kPa, and a flow of 55,88 kg/h at amine solution. The flare gas flow has been recommended to be analyzed chemically, as well as the measurement of the flow of gas streams plant consumption and gases flare. A technical-economic feasibility study of the process should be realized. (author) [es

  12. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  13. Emission of greenhouse gases from Danish agriculture

    International Nuclear Information System (INIS)

    Olesen, J.E.; Petersen, S.O.; Fenhann, J.V.; Andersen, J.M.; Jacobsen, B.H.

    2001-01-01

    emission factors for nitrous oxide does not imply a correspondingly large uncertainty in the relative contribution of individual sources to the total emission. The different sources of nitrous oxide in the field are affected by the same mechanisms independent of location, and thus the uncertainty is mainly associated with the level of this emission in Denmark compared with other regions. In Denmark there has not previously been any concerted research effort to quantify emissions of greenhouse gases from agriculture. The existing, somewhat scattered research has mainly been a spin-off from research programmes with other main objectives. Accordingly there is no solid foundation for evaluation of neither emission levels nor mitigation options. A proposal for a research programme on emission of greenhouse gases from agriculture is therefore presented, which should provide a better basis for quantifying individual emission sources, their development over time, and the effect of reduction measures. Emphasis is given to improve our knowledge on emissions of methane and nitrous oxide, and to the possibilities of agriculture in storing carbon and in the reduction and substitution of fossil fuel use. (au)

  14. Temporal dynamics of Bose-condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Martinez, Mauricio

    2014-03-19

    We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

  15. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  16. Concept of Heat Recovery from Exhaust Gases

    Science.gov (United States)

    Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir

    2017-10-01

    The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.

  17. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    Ezekiel, R.; Wilson, P.

    2001-01-01

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  18. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  19. Effective collision frequency of electrons in noble gases

    International Nuclear Information System (INIS)

    Baille, P.; Chang, J.-S.; Claude, A.; Yau, A.W.; Hobson, R.M.; Ogram, G.L.

    1981-01-01

    The electron-neutral collision frequency in the noble gases has been calculated using recent numerical results for momentum transfer cross sections by assuming a Maxwellian distribution of electron velocities. In all these gases, except for argon, good agreement is obtained with most previously published experimental and theoretical data. Mean free path, mobilities and diffusion coefficients are also calculated from the resulting effective collision frequencies. The empirical formulae are presented for an electron temperature dependence of the electron-neutral collision frequency for all noble gases up to Tsub(e) < approximately 25.000 K. (author)

  20. Time-dependent behavior of positrons in noble gases

    International Nuclear Information System (INIS)

    Wadehra, J.M.

    1990-01-01

    Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z eff ) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs

  1. Teledetección de Gases mediante Sensores Infrarrojo (IR)

    OpenAIRE

    López Martínez, Fernando

    2008-01-01

    El LIR- UC3M, Laboratorio de Sensores IR de la Universidad Carlos III, ha desarrollado técnicas de análisis multi e hiperespectral IR para la teledetección de gases. Ofrece el diseño de sensores específicos para determinar la presencia de gases y su concentración. La práctica totalidad de los gases (CO2, CO, NO2, O3, HC o NH, etc.) implicados en la seguridad industrial, ambiental o militar pueden ser detectados. Se busca empresas o centros interesados en el uso de sensores de aplicación e...

  2. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  3. Cryogenic method for measuring nuclides and fission gases

    Science.gov (United States)

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  4. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Science.gov (United States)

    2010-12-01

    ...-mechanical systems (MEMS) manufacturing facilities. Fluorinated Gas Production....... 325120 Industrial gases... of Industrial Greenhouse Gases. Electrical Equipment Use General Stationary Fuel Combustion. Imports and Exports of Fluorinated Suppliers of Industrial Greenhouse GHGs Inside Pre-charged Equipment Gases...

  5. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    Science.gov (United States)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  6. Search for impurities of counting gases in ionization chambers

    International Nuclear Information System (INIS)

    Hofmann, T.

    1992-03-01

    In order to reach for the gas detectors applied at the ALADIN spectrometer of the GSI an as good as possible and timely remaining gas purity, a study on the kind and effects of impurities in different counting gases was performed. The gas purity was observed via the signal height of an α source after a drift path of the electrons of 50 cm. A steady decrease of the α-signals was measures, the steepness of which decreases slowly as function of the time. The half-life lies in the range of weeks, which lets conclude on a slow outgassing from the materials of the arrangement. By a gas chromatography and mass spectroscopy these impurities could be determined. Beside impurities by polar molecules as water and oxygen from the atmosphere, which are deposed in microscopical capillaries of the chamber materials and then outgassed in the samples after several days so-called softeners could be observed. Because these impurities in the arrangement at the ALADIN spectrometer cannot be avoided, a purification system in the flow-through operation was constructed and its effect tested. The gas quality can by this over several days be kept in the mean constant. In this dynamical process the fluctuations of the signal heights lie at ±0.7%. A ionization chamber as monitor for the gas purity was constructed and tested with different gas mixtures concerning observables like signal height and drift time. By this calibrated monitor in the experiment at the ALADIN spectrometer the gas quality can be independently determined. (orig.) [de

  7. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.

  8. Process for the removal of acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  9. A detailed analysis of inviscid flux splitting algorithms for real gases with equilibrium or finite-rate chemistry

    Science.gov (United States)

    Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram

    1989-01-01

    The extension of the known flux-vector and flux-difference splittings to real gases via rigorous mathematical procedures is demonstrated. Formulations of both equilibrium and finite-rate chemistry for real-gas flows are described, with emphasis on derivations of finite-rate chemistry. Split-flux formulas from other authors are examined. A second-order upwind-based TVD scheme is adopted to eliminate oscillations and to obtain a sharp representation of discontinuities.

  10. Buoyancy suppression in gases at high temperatures

    International Nuclear Information System (INIS)

    Kuczmarski, Maria A.; Gokoglu, Suleyman A.

    2007-01-01

    The computational fluid dynamics code FLUENT was used to study Rayleigh instability at large temperature differences in a sealed gas-filled enclosure with a cold top wall and a heated bottom wall (Benard problem). Both steady state and transient calculations were performed. Instability boundaries depending on the geometry, temperature, and pressure were defined that showed the system tended to become more unstable when the hot-wall temperature increased beyond a certain level, a result of the dampening effect of gas viscosity at higher temperatures. Results also showed that the eventual system stability depended on the final pressure reached at steady state, regardless of how fast the bottom-wall temperature was ramped up to minimize time spent in the unstable region of fluid motion. It was shown that the final system state can differ depending on whether results are obtained via a steady-state or transient calculation, demonstrating that the history of the flow structure development and corresponding temperature fields in this type of system has a profound effect on the final state. Finally, changes in the slope of the pressure-versus-time curve were found to be good indicators of flow pattern changes, and can be a convenient experimental tool for diagnosing the expected changes in flow behavior in such systems

  11. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  12. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  13. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  14. The application of isotope techniques to the analysis of gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Grosse, H.J.; Popp, P.; Thuemmel, H.W.

    1978-01-01

    The development of devices for the detection of nuclear radiation has also led to systems permitting concentrations of gaseous components in gases or mixtures of gases to be determined with the aid of ionizing radiation. Such systems, which use either the ionization of gases in connection with recombination processes or the multiplication of charged particles, or the excitation of gases by means of α,β,γ or X-rays, are described. The most frequently used ionization detectors (electron capture detectors, aerosol ionization analysers, cross-section detectors, noble gas detectors and electron mobility detectors) are characterized with reference to their properties and main fields of application. It is shown that as a result of the development of sensitive energy-resolving detectors the possibilities for the utilization of excitation processes for gas analysis are increasing. The prospects for ionization detectors and systems based on the excitation of characteristic X-rays are discussed. (author)

  15. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  16. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  17. World Gas Conference 1997. Working committee H. Liquefied gases

    International Nuclear Information System (INIS)

    1997-01-01

    This volume of the proceedings contains the report of the International Gas Union's Working Committee H, Liquefied gases, and oral and poster papers presented at the conference. The committee report and each paper have been abstracted separately. (LN)

  18. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor...... pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead-rod model for the flexible polymer. In this model, we associate...... the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly...

  19. Photoacoustic absorption spectra of atmospheric gases near 7603 cm-1

    International Nuclear Information System (INIS)

    Lawton, S.A.; Bragg, S.L.

    1984-01-01

    Absorption spectra of carbon monoxide, water vapor, memane, and ammonia are presented as part of an effort to determine absolute absorption cross sections for some atmospheric gases at the iodine laser wavelength

  20. Conference report for nuclear fusion phenomena in ionized gases

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-10-01

    A summary of the Conference on Phenomena in Ionized Gases, held in Eindhoven, The Netherlands, is given. In particular, the format of the conference and the content of the review papers are summarized

  1. Device for removing radioactive solids in wet gases

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Miyo, Hiroaki.

    1981-01-01

    Purpose: To enable removal and decontamination of radioactive solids in wet gases simply, easily and securely by removing radioactive solids in gases by filteration and applying microwaves to filters to evaporate condensed moistures. Constitution: Objects to be heated such as solutions, sludges and solids containing radioactive substances are placed in an evaporation vessel and a microwave generator is operated. Microwaves are applied to the objects in the evaporation vessel through a shielding plate and filters. The objects are evaporated and exhausted gases are passed through the filters and sent to an exhaust gas processing system by way of an exhaust gas pipe. Condensed moistures deposited on the filters which would otherwise cause cloggings are evaporated being heated by the microwaves to prevent cloggings. The number of stages for the filters may optionally be adjusted depending on the extent of the contamination in the exhaust gases. (Kawakami, Y.)

  2. THE USE OF BIOFILTERS FOR DEODORISATION OF THE NOXIOUS GASES

    Directory of Open Access Journals (Sweden)

    Monika Wierzbińska

    2015-01-01

    Full Text Available One of the methods of deodorization of noxious gases is biofiltration. This method consists of pollutants biodegradation by using micro-organisms, what leads to the formation of nontoxic and innoxious compounds. In comparison with conventional techniques, bio-filtration requires lower investments and exploitation costs, moreover it is nature friendly. This technique is still developing. Scientists have carried out research on the optimization of biofiltration process, biofilters and selecting parameters of purified gases or improving the method of efficiency. However, industrial application of biofilters is still difficult for many reasons. In this paper we present the mechanism of biofiltration process, the parameters and conditions which have to be fulfilled by purified gases, installation structure for gases biofiltration, application field of this method and specific example of exploited biofilters, including practical operational guidelines.

  3. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    OpenAIRE

    Pappalardo Gelsomina

    2018-01-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evo...

  4. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Directory of Open Access Journals (Sweden)

    Pappalardo Gelsomina

    2018-01-01

    Full Text Available The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  5. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    Science.gov (United States)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  6. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  7. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  8. Warming Early Mars by Impact Degassing of Reduced Greenhouse Gases

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K.; Barlow, N. G.

    2018-01-01

    Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.

  9. μ+ charge exchange and muonium formation in low pressure gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.

    1982-04-01

    Using the basic muon spin rotation technique, the fractions of energetic positive muons thermalizing in diamagnetic environments (fsub(μ)) or as the paramagnetic muonium atom (fsub(Mu)) have been measured in low pressure pure gases (He, Ne, Ar, Kr, Xe, H 2 , N 2 , NH 3 , and CH 4 ) as well as in several gas mixtures (Ne/Xe, Ne/Ar, Ne/NH 3 , Ne/CH 4 ). In the pure gases, the muonium fractions fsub(Mu) are generally found to be smaller than expected from analogous proton charge exchange studies, particularly in the molecular gases. This is probably due to hot atom reactions of muonium following the charge exchange regime. Comparisons with monium formation in condensed matter as well as positronium formation in gases are also presented. In the gas mixtures, the addition of only a few hundred ppm of a dopant gas, which is exothermic for muonium formation (e.g. Xe), gives rise to an fsub(Mu) characteristic of the pure dopant gas itself, demonstrating the importance of the neutralization process right down to thermal energies. In all cases, the experimental signal amplitudes are found to be strongly pressure dependent, which is interpreted in terms of the time spent by the muon as neutral muonium in the charge exchange regime: tsub(n) < 0.2 ns. This time is generally shorter in the case of molecular gases than in rare gases

  10. Use of gases in dairy manufacturing: A review.

    Science.gov (United States)

    Adhikari, Bhaskar Mani; Truong, Tuyen; Bansal, Nidhi; Bhandari, Bhesh

    2017-06-13

    Use of gases (air, carbon dioxide and nitrogen) has been practiced in the manufacture of dairy products (i.e., ice cream, whipped cream and butter) to improve their texture, mouthfeel and shelf-life extension. Many attempts have also been made to incorporate other gases such as hydrogen, nitrous oxide, argon, xenon, and helium into the dairy systems for various product functionalities such as whipping, foaming, texture, aroma enhancement, and therapeutic properties. The gases can be dissolved in aqueous and fat phases or remain in the form of bubbles stabilized by protein or fat particles. The gas addition or infusion processes are typically simple and have been used commercially. This review focuses on the use of various gases in relation to their individually physical properties along with their specific roles in manufacturing and controlling quality of dairy products. It also recaps on how gases are included in the dairy systems. The information is important in understanding of addition of specific gas(es) into food systems, particularly dairy products, that potentially provide intervention opportunities for modifying and/or creating innovative food structures and functionalities.

  11. Electron thermalization in rare gases and their mixtures

    International Nuclear Information System (INIS)

    Bronic, I.K.; Kimura, M.

    1996-01-01

    The time evolution and temperature dependence of electron energy distribution functions (EDFs) are studied in pure rare gases (He, Ne, Ar, Kr, Xe) as well as in their mixtures by using solutions of the Boltzmann equation. A clear difference between the gases having the Ramsauer endash Townsend (RT) minimum in the momentum-transfer cross section, (RT gases: Ar, Kr, and Xe), and those without the RT minimum (non-RT gases: He and Ne) is pointed out. The influence of the position and the depth of the RT minimum on the EDF and time evolution is studied for three different initial electron energies. A formula proposed for describing thermalization time in a mixture is tested on (i) a non-RT endash non-RT gas mixture, (ii) a RT endash non-RT mixture and (iii) a RT endash RT gas mixture. The linear combination of the reciprocal thermalization times in gas mixture with the component concentrations as weighting factors is found to be valid for gases with a similar energy dependence of the momentum-transfer cross section, σ m , and also for all rare-gas binary mixtures if the initial electron energy is sufficiently below the RT minimum. Conspicuous deviations from the linear relationship are observed in mixtures of gases whose energy dependence of σ m (or the stopping cross section) are different, and theoretical rationales for these findings are provided. copyright 1996 American Institute of Physics

  12. DETERMINATION OF CO2 MASSES IN THE EXHAUST GASES OF THE MARINE DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Doru COSOFRET

    2016-05-01

    Full Text Available Currently, reducing CO2 emissions that contribute to the greenhouse effect is currently under attention of the relevant international bodies. In the field of maritime transport, in 2011 International Maritime Organization (IMO has taken steps to reduce emissions of CO2 from the exhaust gases of marine diesel engines on ships, by imposing their energy efficiency standards. In this regard, we conducted a laboratory study on a 4-stroke diesel engine naturally aspirated by using to power it diesel and different blends of biodiesel with diesel fuel. The purpose of the study was to determine the formulas for calculating the mass flow rates of CO2 from exhaust gases’ concentrations experimentally determined. Determining the mass flow of CO2 is necessary to calculate the energy efficiency coefficient of the ship to assess the energy efficiency of the board of the limits imposed by the IMO.

  13. Analysis of odorous gases with simultaneous GC-MS and sensory determination

    Energy Technology Data Exchange (ETDEWEB)

    Orko, I.; Lehtomaeki, J.; Sandell, E.; Arnold, M. [VTT Chemical Technology, Espoo (Finland). Environmental Technology

    1995-12-31

    Industrial odorous off-gases can consist of hundreds of different compounds giving cause to odour annoyance in the vicinity of the odour-emitting plant. For the identification of the odorous components in the gas, traditional analytical methods are not always sufficient since the odour threshold values cannot often be found in literature. This report describes the development of a GC-MS sniffing port method for identifying odorous compounds in off-gases. In the method the sample is injected into a gas chromatograph and divided into two flows. The compounds in these sample flows are separated in two identical columns and detected simultaneously in a mass spectrometer and by sensory means. The olfactory detections are marked in the iongram and the odorous compounds are identified. Tenax TA adsorbent is generally used for collecting the odorous sample for analysis. The compounds are released from the adsorbent for analysis by thermal desorption. The report also describes a case study where the GC-MS sniffing port method was applied to a gaseous emission from a food factory. Over ten odorous compounds could be identified. (author)

  14. Assessment of TRACE Condensation Model Against Reflux Condensation Tests with Noncondensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Cheong, Ae Ju; Shin, Andong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The TRACE is the latest in a series of advanced, best-estimated reactor systems code developed by U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. This special model is expected to replace the default model in a future code release after sufficient testing has been completed. This study assesses the special condensation model of TRACE 5.0-patch4 against the counter-current flow configuration. For this purpose, the predicted results of special model are compared to the experimental and to those of default model. The KAST reflux condensation test with NC gases are used in this assessment. We assessed the special model for film condensation of TRACE 5.0-patch4 against the data of the reflux condensation test in the presence of NC gases. The special condensation model of TRACE provides a reasonable estimate of HTC with good agreement at the low inlet steam flow rate.

  15. Assessment of TRACE Condensation Model Against Reflux Condensation Tests with Noncondensable Gases

    International Nuclear Information System (INIS)

    Lee, Kyung Won; Cheong, Ae Ju; Shin, Andong; Suh, Nam Duk

    2015-01-01

    The TRACE is the latest in a series of advanced, best-estimated reactor systems code developed by U.S. Nuclear Regulatory Commission for analyzing transient and steady-state neutronic-thermal-hydraulic behavior in light water reactors. This special model is expected to replace the default model in a future code release after sufficient testing has been completed. This study assesses the special condensation model of TRACE 5.0-patch4 against the counter-current flow configuration. For this purpose, the predicted results of special model are compared to the experimental and to those of default model. The KAST reflux condensation test with NC gases are used in this assessment. We assessed the special model for film condensation of TRACE 5.0-patch4 against the data of the reflux condensation test in the presence of NC gases. The special condensation model of TRACE provides a reasonable estimate of HTC with good agreement at the low inlet steam flow rate

  16. Safety characteristics. Vol. 1. Combustible liquids and gases; Sicherheitstechnische Kenngroessen. Bd. 1. Brennbare Fluessigkeiten und Gase

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, E.; Moeller, W. [Laboratorium ' Sicherheitstechnische Kenngroessen' , Braunschweig (Germany)

    2003-07-01

    This reference manual is based on the 2002 version of the CHEMSAFE database, which is produced since 1989 by the PTB (Physikalisch-Technische Bundesanstalt), the BAM (Bundesanstalt fuer Materialforschung und -pruefung) and the DECHEMA (Gesellschaft fuer Chemische Technik und Biotechnologie e.V.). About 1,900 combustible gases and vapours are listed, along with explosion protection characteristics like flame point, ignition temperature, explosion limits, minimum ignition energy, normal gap width, maximum explosion pressure, and maximum pressure increase over time. Important thermophysical data are presented as well, e.g. boiling temperature, vapour pressure as a function of temperature, melting temperature, and density. Definitions of the characteristics are presented. There are several indexis to facilitate acces (CAS number, sum formula, synonyms). [German] Anwender in Industrie, Handel, Handwerk und Behoerden benoetigen verlaessliche Daten, von Fachleuten bewertete Kenngroessen des Brand- und Explosionsschutzes, um Brand- und Explosionsgefahren beim Verarbeiten, Abfuellen, Lagern, Befoerdern und Entsorgen brennbarer Stoffe beurteilen und angemessene Schutzmassnahmen ergreifen zu koennen. Die 1989 gemeinsam mit der Bundesanstalt fuer Materialfoschung und -pruefung (BAM) und der Gesellschaft fuer Chemische Technik und Biotechnologie e.v (DECHEMA) erstellte Datenbank CHEMSAFE diente als Grundlage dieses Nachschlagewerkes. Die hier bei Drucklegung wiedergegebenen Kenngroessen entsprechen dem Update 2002 der Datenbank CHEMSAFE. Etwa 1.900 brennbare Gase und Daempfe, Kenngroessen des Explosionsschutzes wie Flammpunkt, Zuendtemperatur, Explosionsgrenzen, Mindestzuendenergie, Normspaltweite, maximaler Explosionsdruck und maximaler zeitlicher Druckanstieg sind ebenso aufgelistet wie auch einige wichtige thermophysikalische Groessen wie Siedetemperatur, Dampfdruck als Funktion der Temperatur, Schmelztemperatur und Dichte. Die Angaben werden eingeleitet durch Definitionen

  17. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    Science.gov (United States)

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  18. Biological processes for mitigation of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, John R. [California Univ., Dept. of Plant and Microbial Biology, Berkeley, CA (United States)

    1999-07-01

    Biological processes driven by photosynthesis cycle through the atmosphere well over an order of magnitude more CO{sub 2} than is currently emitted from the combustion of fossils fuels. Already human activities control and appropriate almost half the primary photosynthetic productivity of the planet. Better management of natural and man-made ecosystems affords many opportunities for mitigation of greenhouse gases, through sink enhancements, source reduction and substitution of fossil fuels with biofuels. Biofuels can be recovered from most organic wastes, from agricultural and forestry residues, and from biomass produced solely for energy use. However, the currently low costs of fossil fuels limits the market for biofuels. Accounting for the greenhouse mitigation value of biofuels would significantly increase their contribution to world fuel suppliers, estimated to be currently equivalent to about 15% of fossil fuel usage. Another limiting factor in expanding the use of biofuels is the relatively low solar energy conversion efficiencies of photosynthesis. Currently well below 1% of solar energy is converted into biomass energy even by intensive agricultural or forestry systems, with peak conversion efficiencies about 2 to 3% for sugar cane or microalgae cultures. One approach to increase photosynthetic efficiencies, being developed at the University of California Berkeley, is to reduce the amount of light-gathering chlorophyll in microalgae and higher plants. This would reduce mutual shading and also increase photosynthetic efficiencies under full sunlight intensities. Estimates of the potential of photosynthetic greenhouse mitigation processes vary widely. However, even conservative estimates for biofuels substituting for fossil fuels project the potential to reduce a large fraction of current increases in atmospheric CO{sub 2} levels. Biofuels production will require integration with existing agronomic, forestry and animal husbandry systems, and improved

  19. Electromagnetic circulation pump for corrosive gases

    International Nuclear Information System (INIS)

    Noe, P.; Delafosse, D.; Deletre, G.

    1965-01-01

    In order to transport very corrosive products (fluorinated compounds) we have been led to develop a totally metallic circulation pump capable of operating at above room temperatures and with a molecular vacuum. We have aimed at maximum simplicity both in its conception and in its operation. The tests showed that the compression ratios produced, although not high are interesting (1.5 at a pressure of 100 torr) (see curve I). The flow-rate range is very wide: about one hundred ccs/atm/min. to 3000 ccs/atm/min. (see curves IV, V, VI). The desorption of this pump presents no difficulty if both the aspiration and the reject sides are pumped together. A hole of 2 mm diameter drilled in the piston makes it possible to desorb the space between the two segments. The price of this pump is not high: 1300 F, with the electrical cabinet. (authors) [fr

  20. Dry purification of incenerator off-gases

    Energy Technology Data Exchange (ETDEWEB)

    Dejonghe, P.; Pyck, J.; Van de Voorde, N.

    1963-11-15

    During operation of an incinerator for radioactive wastes, black smoke is formed, primarily while burning plastics or rubber. The black smoke, which is not cleared in a cyclone, coagulates on the pre-filters and causes there an almost instanteous plugging. In order to solve this problem it was tried to pre-clean the gasses by filtration through different types of tissue or by electrofiltration. For gasses, containing 5 g of humidity per m3, one succeeded in retaining 93% of the carbon black in a double stage electrofilter. The life time of the tissue-filters was thus prolonged by a factor of approximately 10. The flow-rate through the electrofilter was between 0.4 and 1.0 m/sec.

  1. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  2. Interaction of Se and GaSe with Si(111)

    International Nuclear Information System (INIS)

    Meng, Shuang; Schroeder, B. R.; Olmstead, Marjorie A.

    2000-01-01

    Deposition of Se and GaSe on Si(111)7x7 surfaces was studied with low-energy electron diffraction, x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction to probe initial nucleation and interface structure for GaSe/Si(111) heteroepitaxy. Room-temperature deposition of Se on Si(111)7x7 results in an amorphous film. Subsequent annealing leads to Se evaporation without ordering or interdiffusion. Se deposition at 450 degree sign C saturates at submonolayer coverage with no diffusion of Se into the substrate. There is no clear evidence of ordered sites for the Se. Growth of GaSe on Si(111)7x7 above 500 degree sign C results in a pseudomorphic bilayer, with Si-Ga-Se bonding. Additional GaSe does not stick to the bilayer above 525 degree sign C. The resulting Se lone pair at the surface leads to an ideally passivated surface similar to As/Si(111). This stable surface is similar to the layer termination in bulk GaSe. The single domain bilayer is oriented with the Ga-Se bond parallel to the substrate Si-Si bond. (c) 2000 The American Physical Society

  3. [Prospects for Application of Gases and Gas Hydrates to Cryopreservation].

    Science.gov (United States)

    Shishova, N V; Fesenko, E E

    2015-01-01

    In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.

  4. Evaluation of a process for the removal of gases contained in geothermal steam through condensation and re-evaporation; Evaluacion de un proceso de remocion de gases contenidos en el vapor geotermico, por medio de la condensacion y de revaporacion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo C, Raul; Lam Rea, Luis; Garmino, Hector; Jimenez, Humberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Cerro Prieto I Geothermal Field, developed and operated by the Comision Federal de Electricidad (CFE), has currently an installed electric power generation capacity of 180 MW and is at a very advanced stage in the development of Cerro Prieto II and III, which will allow to raise the generation capacity to 620 MW. During the exploitation of a geothermal field, in producing steam with the purpose of generating electricity, brines and waste gases are obtained. The hydrogen sulfide exhaust to the environment implies pollution problems, for this reason processes have been developed for the oxidation of these gases downstream the turbogenerator either in the flow of separated gases in the steam condensation or in the condensate produced. The Instituto de Investigaciones Electricas (IIE) has collaborated with CFE in the evaluation of the environmental impact of this gas and in the development of the processes for its abatement. [Espanol] El campo geotermico de Cerro Prieto I, desarrollado y operado por la Comision Federal de Electricidad (CFE), actualmente tiene una capacidad instalada de generacion de energia electrica de 180 MW, y se encuentra en etapa muy avanzada, el desarrollo de Cerro Prieto II y III, lo que permitira incrementar la capacidad de generacion a 620 MW. Durante la explotacion de un campo geotermico, al producir vapor con el proposito de generar electricidad, se obtienen salmueras y gases de desecho. La descarga de acido sulfhidrico a la atmosfera implica problemas de contaminacion, por esta razon se han desarrollado procesos para la oxidacion de este gas aguas abajo de la turbina generadora, ya sea en la corriente de gases que se separan en la condensacion del vapor o en el condensado producido. El Instituto de Investigaciones Electricas (IIE) ha colaborado con la CFE en la evaluacion del impacto ambiental de este gas y en el desarrollo de sus procesos de abatimiento.

  5. Evaluation of a process for the removal of gases contained in geothermal steam through condensation and re-evaporation; Evaluacion de un proceso de remocion de gases contenidos en el vapor geotermico, por medio de la condensacion y de revaporacion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo C, Raul; Lam Rea, Luis; Garmino, Hector; Jimenez, Humberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    The Cerro Prieto I Geothermal Field, developed and operated by the Comision Federal de Electricidad (CFE), has currently an installed electric power generation capacity of 180 MW and is at a very advanced stage in the development of Cerro Prieto II and III, which will allow to raise the generation capacity to 620 MW. During the exploitation of a geothermal field, in producing steam with the purpose of generating electricity, brines and waste gases are obtained. The hydrogen sulfide exhaust to the environment implies pollution problems, for this reason processes have been developed for the oxidation of these gases downstream the turbogenerator either in the flow of separated gases in the steam condensation or in the condensate produced. The Instituto de Investigaciones Electricas (IIE) has collaborated with CFE in the evaluation of the environmental impact of this gas and in the development of the processes for its abatement. [Espanol] El campo geotermico de Cerro Prieto I, desarrollado y operado por la Comision Federal de Electricidad (CFE), actualmente tiene una capacidad instalada de generacion de energia electrica de 180 MW, y se encuentra en etapa muy avanzada, el desarrollo de Cerro Prieto II y III, lo que permitira incrementar la capacidad de generacion a 620 MW. Durante la explotacion de un campo geotermico, al producir vapor con el proposito de generar electricidad, se obtienen salmueras y gases de desecho. La descarga de acido sulfhidrico a la atmosfera implica problemas de contaminacion, por esta razon se han desarrollado procesos para la oxidacion de este gas aguas abajo de la turbina generadora, ya sea en la corriente de gases que se separan en la condensacion del vapor o en el condensado producido. El Instituto de Investigaciones Electricas (IIE) ha colaborado con la CFE en la evaluacion del impacto ambiental de este gas y en el desarrollo de sus procesos de abatimiento.

  6. Predictions of wet natural gases condensation rates via multi-component and multi-phase simulation of supersonic separators

    International Nuclear Information System (INIS)

    Shooshtari, Seyed Heydar Rajaee; Shahsavand, Akbar

    2014-01-01

    Proper correction of water and heavy hydrocarbon dew points of sweet natural gases is essential from various technical and economical standpoints. Supersonic separators (3S) are proved to be capable of achieving these tasks with maximum reliability and minimal expenses. The majority of the previous articles have focused on the flow behavior of pure fluids across a 3S unit. Multicomponent fluid flow inside 3S accompanied with condensation phenomenon will drastically increase the complexity of the simulation process. We tackle this issue by considering a proper combination of fundamental governing equations and phase equilibrium calculations to predict various operating conditions and composition profiles across two multi-component and multi-phase 3S units. Various Iranian sweet gases are used as real case studies to demonstrate the importance of 3S unit practical applications. Simulation results clearly illustrate the effectiveness of 3S units for faithful dehydration of various natural gases, while successfully controlling its dew point, suitable for any practical applications. Conventional HYSYS simulation software is used to validate the simulation results

  7. Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A multiphase fuel cell model based on computational fluid dynamics is used to investigate the possibility of operating a proton exchange membrane fuel cell at low stoichiometric flow ratios (ξ gases. A case study...

  8. Compact Mass Flow Meter Based on a Micro Coriolis Flow Sensor

    Directory of Open Access Journals (Sweden)

    Remco Wiegerink

    2013-03-01

    Full Text Available In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar. It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1 mg/h/°C. The meter is robust, has standard fluidic connections and can be read out by means of a PC or laptop via USB. Its performance was tested for several common gases (hydrogen, helium, nitrogen, argon and air and liquids (water and isopropanol. As in all Coriolis mass flow meters, the meter is also able to measure the actual density of the medium flowing through the tube. The sensitivity of the measured density is ~1 Hz.m3/kg.

  9. Kinematic Study of Ionized and Molecular Gases in Ultracompact HII Region in Monoceros R2

    Science.gov (United States)

    Kim, Hwihyun; Lacy, John H.; Jaffe, Daniel Thomas

    2017-06-01

    Monoceros R2 (Mon R2) is an UltraCompact HII region (UCHII) surrounded by several PhotoDissociation Regions (PDRs). It is an excellent example to investigate the chemistry and physics of early stage of massive star formation due to its proximity (830pc) and brightness. Previous studies suggest that the wind from the star holds the ionized gas up against the dense molecular core and the higher pressure at the head drives the ionized gas along the shell. In order for the model to work, there should be evidence for dense molecular gas along the shell walls, irradiated by the UCHII region and perhaps entrained into the flow along the walls.We obtained the Immersion Grating INfrared Spectrograph (IGRINS) spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the high resolution (R~45,000) H- and K-band (1.4-2.5μm) IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines; Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv ≈ 10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMTProject of KASI.

  10. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  11. Thermodynamic properties of rotating trapped ideal Bose gases

    International Nuclear Information System (INIS)

    Li, Yushan; Gu, Qiang

    2014-01-01

    Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.

  12. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  13. Emissions of exhaust gases and health of the person

    Science.gov (United States)

    Germanova, Tatiana; Kernozhitskaya, Anna

    2017-10-01

    The auto-road complex brings the considerable contribution to pollution and adverse change of environment. Influence of exhaust gases of cars is at the bottom of occurrence and developments of various forms of diseases. Every townsman feels the negative influence rendered by motor transport on himself. The modern city dweller is so accustomed to the smell of exhaust gases that he does not even notice it at all, continues to breathe a poisonous mixture, while neither the car nor the road can be isolated from the habitats of people. The higher the population density, the higher the need for motor transport. The health effects of emissions of exhaust gases and vapors, including regulated and unregulated pollutants, are discussed in this article.

  14. A cluster dynamics study of fission gases in uranium dioxide

    International Nuclear Information System (INIS)

    Skorek, Richard

    2013-01-01

    During in-pile irradiation of nuclear fuels a lot of rare gases are produced, mainly xenon and krypton. The behaviour of these highly insoluble fission gases may lead to an additional load of the cladding, which may have detrimental safety consequences. For these reasons, fission gas behaviour (diffusion and clustering) has been extensively studied for years.In this work, we present an application of Cluster Dynamics to address the behaviour of fission gases in UO_2 which simultaneously describes changes in rare gas atom and point defect concentrations in addition to the bubble size distribution. This technique, applied to Kr implanted and annealed samples, yields a precise interpretation of the release curves and helps justifying the estimation of the Kr diffusion coefficient, which is a data very difficult to obtain due to the insolubility of the gas. (author) [fr

  15. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  16. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  17. Holographic detection of hydrocarbon gases and other volatile organic compounds.

    Science.gov (United States)

    Martínez-Hurtado, J L; Davidson, C A B; Blyth, J; Lowe, C R

    2010-10-05

    There is a need to develop sensors for real-time monitoring of volatile organic compounds (VOCs) and hydrocarbon gases in both external and indoor environments, since these compounds are of growing concern in human health and welfare. Current measurement technology for VOCs requires sophisticated equipment and lacks the prospect for rapid real-time monitoring. Holographic sensors can give a direct reading of the analyte concentration as a color change. We report a technique for recording holographic sensors by laser ablation of silver particles formed in situ by diffusion. This technique allows a readily available hydrophobic silicone elastomer to be transformed into an effective sensor for hydrocarbon gases and other volatile compounds. The intermolecular interactions present between the polymer and molecules are used to predict the sensor performance. The hydrophobicity of this material allows the sensor to operate without interference from water and other atmospheric gases and thus makes the sensor suitable for biomedical, industrial, or environmental analysis.

  18. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. μ+ thermalization and muonium formation in noble gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.; British Columbia Univ., Vancouver

    1981-01-01

    One energy loss mechanism in μ + thermalization (in gases) is that due to charge exchange, in which muonium is repeatedly formed and lost in a series of charge-exchange cycles μ + +e - reversible Mu, a process which depends on the ionization potential of the moderator gas but one in which no depolarization of the μ + is expected at approx. 1 atm. pressure. However, if the time between collisions in a given energy regime can be made sufficiently long then additional depolarization may occur, which can provide further information on the charge-exchange process itself. Extensive data showing this effect has been found in gases; results for the noble gases are presented. (orig.)

  20. Multisensor system for toxic gases detection generated on indoor environments

    Science.gov (United States)

    Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.

    2016-11-01

    This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.

  1. Sampling and analysis methods for geothermal fluids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.C.

    1978-07-01

    The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

  2. Opportunity to reduce the exhaust gases with engine adjust

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2002-01-01

    According to statistics in the Republic of Macedonia, the number of old vehicles is about 90%. These are vehicles produced between 1975 and 1990 with classical systems for forming and burning the fuel mixture. The most of them do not have system for processing exhaust gases (catalytic converter) and are serious air pollutants of carbon monoxide (CO). In this article we try to make an attempt to reduce exhaust gases in some kinds of these vehicles with adjusting to the system for burning fuel mixture and with adjusting to the system for forming fuel mixture (carburetor). At the same time the changes on the rotate bending moment and engine power are followed. It is noticed that with a proper adjustment the emission of exhaust gases can be reduced without a serious depreciation of the rotate bending moment and the engine power. (Author)

  3. A route to ultrathin quantum gases at polar perovskite heterointerfaces

    KAUST Repository

    Nazir, Safdar

    2012-09-07

    Oxide interfaces are attracting interest in recent years due to special functionalities of two-dimensional quantum gases. However, with typical thicknesses of at least 10-12 Å the gases still extend considerably in the third dimension, which compromises the size of quantum effects. To overcome this limitation, we propose incorporation of highly electronegative cations, such as Ag. By ab initio calculations, we demonstrate the formation of a mobile two-dimensional hole gas in AgNbO 3/SrTiO 3 that is confined to an ultrathin slab of only 5.6 Å thickness. Electronegative cations therefore are a promising way to enhance the quantum nature of hole gases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Adsorption of Dissolved Gases (CH4, CO2, H2, Noble Gases) by Water-Saturated Smectite Clay Minerals

    Science.gov (United States)

    Bourg, I. C.; Gadikota, G.; Dazas, B.

    2016-12-01

    Adsorption of dissolved gases by water-saturated clay minerals plays important roles in a range of fields. For example, gas adsorption in on clay minerals may significantly impact the formation of CH4 hydrates in fine-grained sediments, the behavior of CH4 in shale, CO2 leakage across caprocks of geologic CO2 sequestration sites, H2 leakage across engineered clay barriers of high-level radioactive waste repositories, and noble gas geochemistry reconstructions of hydrocarbon migration in the subsurface. Despite its importance, the adsorption of gases on clay minerals remains poorly understood. For example, some studies have suggested that clay surfaces promote the formation of CH4 hydrates, whereas others indicate that clay surfaces inhibit the formation of CH4 hydrates. Here, we present molecular dynamics (MD) simulations of the adsorption of a range of gases (CH4, CO2, H2, noble gases) on clay mineral surfaces. Our results indicate that the affinity of dissolved gases for clay mineral surfaces has a non-monotone dependence on the hydrated radius of the gas molecules. This non-monotone dependence arises from a combination of two effects: the polar nature of certain gas molecules (in particular, CO2) and the templating of interfacial water structure by the clay basal surface, which results in the presence of interfacial water "cages" of optimal size for intermediate-size gas molecules (such as Ne or Ar).

  5. Radiolytic and thermal generation of gases from Hanford grout samples

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.

    1993-10-01

    Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, 0.25, 0.63, and 130 krad/hr. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average G(H{sub 2}) = 0.047 molecules/100 eV was found, independent of dose rate. The rate of H2 production decreases above 80 Mrad. For other gases, G(N{sub 2}) = 0.12, G(O{sub 2}) = 0.026, G(N{sub 2}O) = 0.011 and G(CO) = 0.0042 at 130 krad/hr were determined. At lower dose rates, N{sub 2} and O{sub 2} could not be measured because of interference by trapped air. The value of G(H{sub 2}) is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at 130 krad/h has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 {degree}C, H{sub 2}, N{sub 2}, and N{sub 2}O were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

  6. Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Directory of Open Access Journals (Sweden)

    Travis J. Schuyler

    2017-10-01

    Full Text Available The emission of greenhouse gases (GHGs has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes <100 m above ground level that can achieve spatiotemporal resolution on the order of meters and seconds. Unmanned aerial systems (UASs can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1 micro aerial vehicles (MAVs; (2 vertical take-off and landing (VTOL; and, (3 low-altitude short endurance (LASE systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL, which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change.

  7. Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field, New Mexico

    Science.gov (United States)

    Sathaye, Kiran J.; Smye, Andrew J.; Jordan, Jacob S.; Hesse, Marc A.

    2016-06-01

    Budgets of 4He and 40Ar provide constraints on the chemical evolution of the solid Earth and atmosphere. Although continental crust accounts for the majority of 4He and 40Ar degassed from the Earth, degassing mechanisms are subject to scholarly debate. Here we provide a constraint on crustal degassing by comparing the noble gases accumulated in the Bravo Dome natural CO2 reservoir, New Mexico USA, with the radiogenic production in the underlying crust. A detailed geological model of the reservoir is used to provide absolute abundances and geostatistical uncertainty of 4He, 40Ar, 21Ne, 20Ne, 36Ar, and 84Kr. The present-day production rate of crustal radiogenic 4He and 40Ar, henceforth referred to as 4He* and 40Ar*, is estimated using the basement composition, surface and mantle heat flow, and seismic estimates of crustal density. After subtracting mantle and atmospheric contributions, the reservoir contains less than 0.02% of the radiogenic production in the underlying crust. This shows unequivocally that radiogenic noble gases are effectively retained in cratonic continental crust over millennial timescales. This also requires that approximately 1.5 Gt of mantle derived CO2 migrated through the crust without mobilizing the crustally accumulated gases. This observation suggests transport along a localized fracture network. Therefore, the retention of noble gases in stable crystalline continental crust allows shallow accumulations of radiogenic gases to record tectonic history. At Bravo Dome, the crustal 4He*/40Ar* ratio is one fifth of the expected crustal production ratio, recording the preferential release of 4He during the Ancestral Rocky Mountain orogeny, 300 Ma.

  8. Compact mass flow meter based on a micro coriolis flow sensor

    NARCIS (Netherlands)

    Sparreboom, Wouter; van de Geest, Jan; Katerberg, Marcel; Postma, F.M.; Haneveld, J.; Groenesteijn, Jarno; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Lötters, Joost Conrad

    2013-01-01

    In this paper we demonstrate a compact ready-to-use micro Coriolis mass flow meter. The full scale flow is 1 g/h (for water at a pressure drop < 1 bar). It has a zero stability of 2 mg/h and an accuracy of 0.5% reading for both liquids and gases. The temperature drift between 10 and 50 °C is below 1

  9. GAZVIL - Gases and gas mixtures for welding in protective medium

    International Nuclear Information System (INIS)

    Avram, I.; Constantin, N.; Cristescu, I.; Stefan, L.; Zamfirache, M.

    1996-01-01

    Gases and gas mixtures are used in machine building industry as protective environment in the welding by the procedures: MIG, MAG, TIG, plasma and micro-plasma. Also they are used in jet plasma production as well as controlled environment in materials heat treatments, passivation or protective procedures of equipment of chemical and petrochemical industries. Gases and gas mixtures are obtained in particular quality conditions while their purity is certified by specific methods making use of performing technology in laboratories to be qualified in the frame of the RELAR system

  10. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  11. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  12. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  13. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  14. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  15. Change in the atmospheric concentration of greenhouse gases

    International Nuclear Information System (INIS)

    GARREC, Jean-Pierre

    2000-01-01

    With the constant increase in industrial and agricultural activities since the beginning of the 20. Century, human societies have altered the chemical composition of the atmosphere both in their immediate vicinity and further afar. The most preoccupying problem today is the increase in the so-called greenhouse gases (CO 2 , CH 4 , N 2 O, CFC, O 3 ). Indeed, these pollutant gases generally have long life cycles and consequently have for the first time produced a change in the composition of the atmosphere on a global scale inducing deferred effects such as a likely change in the earth's climate. (author)

  16. Detection of gases and gas mixtures by correlation spectroscopy

    OpenAIRE

    Dakin, J.P.; Gunning, M.J.; Chambers, P.

    2002-01-01

    The reliable detection and monitoring of gases and gas mixtures is known to play a crucial role in many real-world environmental and industrial applications. It is of considerable importance to utilise techniques that are not susceptible to poisoning, are specific to a target gas in a mixture, are unaffected by contaminants, and can be adapted for in-process monitoring. Ever-more stringent requirements in this field dictate a need for ongoing research in this area. As many common gases exhibi...

  17. Capacitors on the basis of intercalate GaSe

    Directory of Open Access Journals (Sweden)

    Kovalyuk Z. D.

    2010-06-01

    Full Text Available The compound GaSe is obtained by the technique of intercalation of a GaSe single crystal in a melt of the ferroelectric salt KNO3. The x-ray analysis of its crystal structure has been carried out and dielectric frequency characteristics of samples has been measured. It is estab-lished, that accumulation of electric charges occurs in the examined examples in frequency area 100—1000 Hz. A sample of filter capacitor has been created on the basis of the re-ceived compounds.

  18. Measurement of Selected Organic Trace Gases During TRACE-P

    Science.gov (United States)

    Atlas, Elliot

    2004-01-01

    Major goals of the TRACE-P mission were: 1) to investigate the chemical composition of radiatively important gases, aerosols, and their precursors in the Asian outflow over the western Pacific, and 2) to describe and understand the chemical evolution of the Asian outflow as it is transported and mixed into the global troposphere. The research performed as part of this proposal addressed these major goals with a study of the organic chemical composition of gases in the TRACE-P region. This work was a close collaboration with the Blake/Rowland research group at UC-Irvine, and they have provided a separate report for their funded effort.

  19. Cost-effectiveness in the mitigation of green house gases

    International Nuclear Information System (INIS)

    Rey, Francisco Carlos

    2009-01-01

    This paper analyzes the cost-effectiveness in the mitigation of green house gases from solar, eolic and nuclear energy sources, concluding that nuclear is, not doubt, the mos efficient. On the other hand, nuclear is the unique source that can be installed without limit in magnitude and in the proximity of the demand, and is for all these reasons that several environmental referents in the world have changed their perception on this source and defend it as the unique actual alternative to fight against the emission of green house gases. (author) [es

  20. Gases emissions and excess air measurements for performance analysis of a wood stove

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Canto, Sergio Aruana Elarrat; Nogueira, Manoel Fernandes Martins; Maneschy, Carlos Edilson de Almeida; Santos, Tiago da Silva; Gazel, Hussein Felix [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: aruana@ufpa.br, mfmn@ufpa.br, cemaneschy@ufpa.br

    2010-07-01

    Millions of people in Africa, Central and South America and Asia rely on rudimentary and inefficient wood stove that causes respiratory diseases and demand for large quantity of biomass from native forest. The international agents as World Bank, UNESCO and International Energy Agency has pointed out the relevancy of wood stove. Research on this subject has been done by Shell Foundation and Aprovecho Research Center that indicates Rocket Stove technology as the most promising and able to provide efficiency together with low cost. This work presents performance results obtained from one wood rocket stove manufactured by a Brazilian company named Ecofogao. The stove performance was measured characterizing the amount of energy supplied to the stove in the biomass and characterizing the eluding gases. The incoming energy was quantified through the high heating value for the Jabot (using a bomb calorimeter) plus the Ultimate Analysis (content of carbon, hydrogen, nitrogen and oxygen), Proximate Analysis (content of moisture, fixed carbon, volatiles and ash) and the mass flow rate of biomass feed to the stoven. The leaving energy in the exhaustion gases was quantified measuring its temperature and composition immediately at the exit of the stoven what is the inlet of chimney. The results show the presence of CO{sub 2}, O{sub 2} and CO in the concentration ranges of (0.9% to 6.30%), (14.30% to 19.90%) and (0.17% to 2.50%) respectively. The excess air is in the range (3.33 to 23.33) based on carbon dioxide measurements in the eluted gases. These results provided information to promote also further improvements on the stoven design. (author)

  1. Fouling of heat exchanger surfaces by dust particles from flue gases of glass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mutsaers, P.L.M.; Beerkens, R.G.C.; Waal, H. de (Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Delft. Inst. of Applied Physics)

    1989-08-01

    Fouling by dust particles generally leads to a reduction of the heat transfer and causes corrosion of secondary heat exchangers. A deposition model, including thermodynamic equilibrium calculations, has been derived and applied to describe the deposition (i.e. fouling) process and the nature of the deposition products in a secondary heat exchanger. The deposition model has been verified by means of laboratory experiments, for the case of flue gases from soda-lime glass furnaces. Corrosion of iron-containing metallic materials, caused by the deposition products, has been briefly investigated with the same equipment. There is a close similarity between the experimental results and model calculations. The largest deposition rates from flue gases on cylindrical tubes in cross-flow configuration, are predicted and measured at the upstream stagnation point. The lowest deposition rates are determined at downstream stagnation point locations. At tube surface temperatures of approximately 520 to 550 K, the fouling rate on the tube reaches a maximum. In this temperature region NaHSO{sub 4} is the most important deposition product. This component is mainly formed at temperatures from 470 up to 540 K. The compound Na{sub 3}H(SO{sub 4}){sub 2} seems to be stable up to 570 K, for even higher temperatures Na{sub 2}SO{sub 4} has been found. These deposition products react with iron, SO{sub 3}, oxygen and water vapour forming the complex corrosion product Na{sub 3}Fe(SO{sub 4}){sub 3}. NaHSO{sub 4}, which is formed at tube surface temperatures below 540 K, causes more severe corrosion of iron-containing materials than Na{sub 2}SO{sub 4}. Maintaining temperatures of the heat exchanger surfaces above 550 to 600 K reduces the fouling tendency and corrosion in case of flue gases from oil-fired soda-lime glass furnaces. (orig.).

  2. Studies on the diffusional and electrical transport of the daughter aerosols of radon and thoron in moving gases

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sahni, D.C.

    1994-01-01

    This report presents a detailed theoretical study of the transport characteristics of the daughter products of radon and thoron gases in channel flow devices. Specific aspects examined include: (i) development of the Green's function of the convective-diffusion operator and its boundary layer forms with and without axial diffusion, (ii) transport probabilities of recoil atoms (RaB) emitted into stagnant and moving gases, due to alpha decays of the parent atoms (RaA) deposited on surfaces, (iii) a comprehensive theory of double filter systems and (iv) microscopic theory of particle transport in moving fluids based on the Fokker-Planck equation. Both uniform and parabolic velocity profiles are considered. Various applications of the solutions in interpreting the measured data are presented. Chief among them is the application of the advanced theory of double-filter systems employed in Trombay studies for the measurements of thoron in the exhaled breath of thorium workers. (author). 130 refs., 4 figs

  3. Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor

    International Nuclear Information System (INIS)

    Blum, J.; Marie, J.

    1976-01-01

    The present invention relates to the field of fused-salt nuclear reactors and its object is the extraction of the gases produced in the course of operation of these reactors. The process according to the invention consists in placing into position a piece of material permeable for gases and impermeable for the used fused salts, for instance, a piece of graphite, in such a way that part of the surface of this piece is in contact with the circuit of the radioactive salts and another part connected to a gas suction device. The piece could also be scavenged in its mass by a flow of inert gas. Application is contemplated in reactors using a mixture of lithium fluoride, beryllium fluoride, and uranium and/or thorium fluoride. 10 claims, 2 drawing figures

  4. Application of Parallel Time-Implicit Discontinuous Galerkin Finite Element Methods to Hypersonic Nonequilibrium Flow Problems

    Science.gov (United States)

    2014-05-01

    we however focus on the continuum regime, where we can use the governing equations like Euler equations or Navier Stokes equations. The flow chemistry can...assumption. Instead the flow is considered to be a mixture of ideal gases, and the flow chemistry accounts for production and destruction of all the species. A

  5. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  6. Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Gibbs Method and Statistical Physics of Electron Gases

    CERN Document Server

    Askerov, Bahram M

    2010-01-01

    This book deals with theoretical thermodynamics and the statistical physics of electron and particle gases. While treating the laws of thermodynamics from both classical and quantum theoretical viewpoints, it posits that the basis of the statistical theory of macroscopic properties of a system is the microcanonical distribution of isolated systems, from which all canonical distributions stem. To calculate the free energy, the Gibbs method is applied to ideal and non-ideal gases, and also to a crystalline solid. Considerable attention is paid to the Fermi-Dirac and Bose-Einstein quantum statistics and its application to different quantum gases, and electron gas in both metals and semiconductors is considered in a nonequilibrium state. A separate chapter treats the statistical theory of thermodynamic properties of an electron gas in a quantizing magnetic field.

  7. Effects of the high-flow modified to-and-fro anesthestic system on blood gas and respiratory rate in halothane anesthetized horses Efeitos do sistema anestésico de alto fluxo "to-and-fro" modificado sobre os gases sanguíneos e frequência respiratória em cavalos anestesiados com halotano

    Directory of Open Access Journals (Sweden)

    Cláudio Corrêa Natalini

    1997-12-01

    Full Text Available Ten healthy adult horses male or female, mean body weight of 424±44.1kg, were anesthetized with romifidine, tiletamine/zolazepam and halothane for 60 minutes using a modified to-and-fro rebreathing anesthetic system, added of 1 liter mechanical dead space. The gas flow rate was 10 liters oxygen/minute during all inhalation anesthetic time. Variables analysed were arterial blood pH, carbon dioxide partial pressure (PaCO2 and oxygen partial pressure (PaO2, and respiratory rate (RR. The horses were allowed to breath spontaneously, and were positioned in right lateral recumbency the arterial O2 values were significantly higher during halothane anesthesia when compared to the baseline values, and significantly lower after induction with tiletamine/zolazepam although arterial hypoxemia were not present. The arterial PaCO2 values were significantly higher from baseline values during halothane anesthesia occurring arterial hypercapnia and mild respiratory acidosis. The arterial pH changes paralleled the changes in PaCO2. Respiratory rate values were significantly lower during halothane anesthesia when compared to baseline values. All values remained within accepted range for lateral recumbent spontaneously breathing anesthetized horses.Dez cavalos adultos e sadios machos ou fêmeas, com peso médio de 424±44,1kg, foram anestesiados com romifidina, tiletamina/zolazepam e halotano por 60 minutos, sendo utilizado um sisterna anestésico reinalatório "to-and-fro" modificado pela adição de um litro de espaço morto mecânico. O fluxo de gás diluente foi de 10 litros de O2/minuto durante o período de anestesia com halotano. As variáveis estudadas no sangue arterial foram o pH, pressão parcial de dióxido de carbono (PaCO2 e pressão parcial de oxigênio (PO2 e freqüência respiratória (RR. Os cavalos foram mantidos sob respiração espontânea e posicionados em decúbito lateral direito. Os valores arteriais de oxigênio estiveram

  8. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yongjun [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)], E-mail: lclei@zju.edu.cn; Zhang Xingwang; Zhou Minghua; Zhang Yi [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  9. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    Science.gov (United States)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  10. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed

  11. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that

  12. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that, in the 2004 and

  13. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  14. EOSN: A TOUGH2 module for noble gases

    International Nuclear Information System (INIS)

    Shan, Chao; Pruess, Karsten

    2003-01-01

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations

  15. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  16. A route to ultrathin quantum gases at polar perovskite heterointerfaces

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo

    2012-01-01

    that is confined to an ultrathin slab of only 5.6 Å thickness. Electronegative cations therefore are a promising way to enhance the quantum nature of hole gases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interaction effects on dynamic correlations in noncondensed Bose gases

    NARCIS (Netherlands)

    Bezett, A.; Van Driel, H. J.; Mink, M. P.; Stoof, H. T C; Duine, R. A.

    2014-01-01

    We consider dynamic, i.e., frequency-dependent, correlations in noncondensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and we show how it depends on the

  18. Atomtronics: Material and Device Physics of Quantum Gases

    Science.gov (United States)

    matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials

  19. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  20. EOSN: A TOUGH2 module for noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Pruess, Karsten

    2003-03-07

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

  1. Inventory of greenhouse gases emissions from gasoline and diesel ...

    African Journals Online (AJOL)

    Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs) released into the environment through consumption of fuels (gasoline and diesel) in Nigeria from 1980 to 2014. The fuel consumption data ...

  2. Quantum statistics of ideal gases in confined space

    OpenAIRE

    Dai, Wu-Sheng; Xie, Mi

    2002-01-01

    In this paper, the effects of boundary and connectivity on ideal gases in two-dimensional confined space and three-dimensional tubes are discussed in detail based on the analytical result. The implication of such effects on the mesoscopic system is also revealed.

  3. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    Science.gov (United States)

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  4. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems ...

  5. Quantum statistics of ideal gases in confined space

    International Nuclear Information System (INIS)

    Dai Wusheng; Xie Mi

    2003-01-01

    In this Letter, the effects of boundary and connectivity on ideal gases in two-dimensional confined space and three-dimensional tubes are discussed in detail based on the analytical result. The implication of such effects on the mesoscopic system is also revealed

  6. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    bosonic systems and a ≃ 1.982 and b = 1 for ideal fermionic systems. These results obey the entropic uncertainty relation given by Beckner, Bialynicki-Birula and Myceilski. Keywords. Ultracold atomic gases; information entropy; foundations of quantum mechanics. PACS Nos 67.85.−d; 89.70.Cf; 03.65.Ta. 1. Introduction.

  7. Rare gases adsorption and separation on silver doped adsorbent

    International Nuclear Information System (INIS)

    Deliere, Ludovic

    2015-01-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) implements means for detecting nuclear tests in an International Monitoring System (IMS). The Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) has developed in the mid-90's, the SPALAX system (Systeme de Prelevement d'Air en Ligne avec l'Analyse des radioXenons). Xenon analysis, including radioactive isotopes from the fission reaction during the explosion, requires the development of highly efficient process for xenon concentration. In this work, the adsorption and diffusion phenomena of noble gases are studied in silver exchanged ZSM-5 zeolite. The 'experience/Monte Carlo simulation' coupling is used to determine the essential thermodynamic data on the adsorption of noble gases and to characterize the adsorption sites. The presence of a strong adsorption site, identified as silver nanoparticles and intervening at low concentration of noble gases (including xenon and radon) in some silver exchanged zeolites, achieves adsorption and selectivity performance to date unrivaled. These results allow considering their use in many critical applications in the field of capture and separation of rare gases: rare gas industrial production, reprocessing of spent fuel from gas, radon in air pollution control. (author) [fr

  8. Caldera de recuperación de gases perdidos

    OpenAIRE

    Camacho Thielepape, Daniel José

    2011-01-01

    El objeto de este proyecto es describir las instalaciones de la caldera de recuperación de gases perdidos. Más concretamente, las instalaciones de una nueva Planta de Reciclado de Aceite Lubricante en el Campo de Gibraltar, ubicada en el Polígono Industrial del término municipal de San Roque (Cádiz).

  9. 75 FR 66433 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-10-28

    ... Part II Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9213-5] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Mandatory Greenhouse Gas Reporting rule to correct certain technical and editorial errors that have been...

  10. 75 FR 33949 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-06-15

    ... Part III Environmental Protection Agency 40 CFR Parts 86 and 98 Mandatory Reporting of Greenhouse...; FRL-9158-6] RIN 2060-A079 Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection... Final Mandatory Greenhouse Gas Reporting rule (2009 Final MRR) to correct certain technical and...

  11. 75 FR 18455 - Mandatory Reporting of Greenhouse Gases

    Science.gov (United States)

    2010-04-12

    ... Mandatory Reporting of Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule amendment. SUMMARY: EPA is proposing to amend the Mandatory Greenhouse Gas (GHG) Reporting Rule, to require.... The Mandatory GHG Reporting Rule requires greenhouse gas emitting facilities and suppliers of fuels...

  12. Desulfurization of waste gases of the incinerator after petroleum refining

    International Nuclear Information System (INIS)

    Samesova, D.; Ladomersky, J.

    2001-01-01

    Desulfurization of waste gases of the incinerator after petroleum refining was developed. Mixing of wastes with lime (10% of additive of total volume of waste) was proved before introduction into incinerator. Concentrations of CO, CO 2 , O 2 , NO 2 , SO 2 and temperature of combustion products were measured by automatic analyser

  13. Muonium formation in noble gases and noble gas mixtures

    International Nuclear Information System (INIS)

    Stambaugh, R.D.; Casperson, D.E.; Crane, T.W.; Hughes, V.W.; Kaspar, H.F.; Souder, P.; Thompson, P.A.; Orth, H.; zu Putlitz, G.; Denison, A.B.

    1974-01-01

    An experiment is reported to study the behavior of positive muons stopped in He, Ne, and Xe in order to provide a more complete understanding of muonium formation in the noble gases. Free muon and muonium precession are plotted. (U.S.)

  14. Optical monitoring of gases with cholesteric liquid crystals

    NARCIS (Netherlands)

    Han, Y.; Pacheco Morillo, K.B.; Bastiaansen, C.W.M.; Broer, D.J.; Sijbesma, R.P.

    2010-01-01

    A new approach to optical monitors for gases is introduced using cholesteric liquid crystals doped with reactive chiral compounds. The approach is based on cholesteric pitch length changes caused by a change in helical twisting power (HTP) of the chiral dopants upon reaction with the analyte. The

  15. Development of proportional counters using photosensitive gases and liquids

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1984-10-01

    An introduction to the history and to the principle of operation of wire chambers using photosensitive gases and liquids is presented. Their use as light sensors coupled to Gas Scintillation Proportional Counters and BaF 2 , as well as their use in Cherenkov Ring imaging, is discussed in some detail. 42 references, 21 figures

  16. Noble Gases in the Hamlet Meteorite (LL4)

    Science.gov (United States)

    Amari, S.; Sabe, Y.; Shiraishi, T.; Matsuda, J.

    2014-09-01

    We analyzed noble gases in a bulk sample and an HF-HCl residue of Hamlet (LL4). The Xe composition of the residue shows that no diamond is contained in the residue. The 20Ne/22Ne ratio of Hamlet Ne-Q has been determined to be 11.0 ± 0.5.

  17. A retrospective analysis of blood gases with two different insulin ...

    African Journals Online (AJOL)

    A retrospective analysis of blood gases with two different insulin infusion protocols in patients undergoing cardiovascular surgery. ... In this study, we aimed to look into the effect of glycemic control on arterial blood gas parameters, serum electrolytes, and hemoglobin (Hb). Materials and Methods: We collected data from ...

  18. Discovery Mondays - Gases: more to them than meets the eye!

    CERN Multimedia

    2005-01-01

    We generally tend to think that if a space is empty there is nothing in it. However, did you know that at the Earth's surface there are 25 million million million (1018) molecules of gas in every cubic centimetre of atmosphere? CERN uses a lot of gas to operate its experiments. Above a few of the helium tanks for the LHC. At CERN, gases are put to multiple uses. Gases are used to protect, to cool and also to detect particles... Suffice to say that gases play a vital role at CERN. Why does the air supply to the accelerator tunnel 100 metres below the surface have to be treated and what treatment techniques are used? What are the different types of apparatus that enable you to breathe in confined spaces? How are gases used as a detection medium in the particle detectors? What is Brownian motion? To find out the answers, step on the gas to join us for the next Discovery Monday! This Discovery Monday will be taking place as part of the World Year of Physics, as its theme is closely associated with one of the ...

  19. Spin-charge separation in ultra-cold quantum gases

    OpenAIRE

    Recati, A.; Fedichev, P. O.; Zwerger, W.; Zoller, P.

    2002-01-01

    We investigate the physical properties of quasi-1D quantum gases of fermion atoms confined in harmonic traps. Using the fact that for a homogeneous gas, the low energy properties are exactly described by a Luttinger model, we analyze the nature and manifestations of the spin-charge separation. Finally we discuss the necessary physical conditions and experimental limitations confronting possible experimental implementations.

  20. Normal-superfluid interface for polarized fermion gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    Recent experiments on imbalanced fermion gases have proved the existence of a sharp interface between a superfluid and a normal phase. We show that, at the lowest experimental temperatures, a temperature difference between normal N and superfluid SF phases can appear as a consequence of the blocking

  1. 40 CFR 86.214-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.214-94 Section 86.214-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  2. Pure Gauge theory in crystal lattice and Coulomb gases

    International Nuclear Information System (INIS)

    Marchetti, D.H.U.

    1985-01-01

    A method for the construction of classical gases, starting from a pure gauge theory, is described. The method is applied to the U(1) gauge theory in two spatial dimensions. For this model it's seen the vaccua appearing as a consequence of the quantization ambiguity. The connection between the vaccua and the confinement is discussed. (Author) [pt

  3. An overview on non-CO2 greenhouse gases

    NARCIS (Netherlands)

    Pulles, T.; Amstel, van A.R.

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of

  4. The Common Agricultural Policy and the Greenhouse Gases Emissions

    OpenAIRE

    BRITO SOARES, F.; Ronco, R.

    2005-01-01

    The evolution of greenhouse gases emissions in the EU-15 countries is accessed. While the absolute level of emissions turns out to be declining in the last thirty years in EU-15 Member States, emissions per output tend to rise. A relationship between the adoption of the Common Agricultural policy and the emissions level can be detected for Spain, Austria, Finland and Sweden.

  5. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians

    Science.gov (United States)

    Kotarba, M.J.; Curtis, John B.; Lewan, M.D.

    2009-01-01

    This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 ??C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 ??C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. ??13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the ??13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than

  6. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  7. Impact Delivery of Reduced Greenhouse Gases on Early Mars

    Science.gov (United States)

    Haberle, R. M.; Zahnle, K. J.; Barlow, N. G.

    2017-12-01

    Reducing greenhouse gases are the latest trend in finding solutions to the early Mars climate dilemma. In thick CO2 atmospheres with modest concentrations of H2 and/or CH4, collision induced absorptions can reduce the outgoing long wave radiation enough to provide a significant greenhouse effect. To raise surface temperatures significantly by this process, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Volcanism, serpentinization, and impacts are possible sources for reduced gases. Here we investigate the delivery of such gases by impact degassing from comets and asteroids. We use a time-marching stochastic impactor model that reproduces the observed crater size frequency distribution of Noachian surfaces. Following each impact, reduced gases are added to the atmosphere from a production function based on gas equilibrium calculations for several classes of meteorites and comets at typical post-impact temperatures. Escape and photochemistry then remove the reduced greenhouse gases continuously in time throughout each simulation. We then conduct an ensemble of simulations with this simple model varying the surface pressure, impact history, reduced gas production and escape functions, and mix of impactor types, to determine if this could be a potentially important part of the early Mars story. Our goal is to determine the duration of impact events that elevate reduced gas concentrations to significant levels and the total time of such events throughout the Noachian. Our initial simulations indicate that large impactors can raise H2 concentrations above the 10% level - a level high enough for a very strong greenhouse effect in a 1 bar CO2 atmosphere - for millions of years, and that the total time spent at or above that level can be in the 10's of millions of years range. These are interesting results that we plan to explore more thoroughly for the meeting.

  8. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  9. Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices

    Science.gov (United States)

    Kunimi, Masaya; Danshita, Ippei

    2017-03-01

    We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.

  10. Gasometer: An inexpensive device for continuous monitoring of dissolved gases and supersaturation

    Science.gov (United States)

    Bouck, G.R.

    1982-01-01

    The “gasometer” is a device that measures differential dissolved-gas pressures (δP) in water relative to barometric pressure (as does the “Weiss saturometer”), but operates continuously without human attention. The gasometer can be plumbed into a water-supply system and requires 8 liters/minute of water or more at 60 kilopascals. The gasometer's surfaces are nontoxic, and flow-through water can be used for fish culture. The gasometer may be connected to a small submersible pump and operated as a portable unit. The gasometer can activate an alarm system and thus protect fish from hyperbaric (supersaturation) or hypobaric gas pressures (usually due to low dissolved oxygen). Instructions are included for calculating and reporting data including the pressure and saturation of individual gases. Construction and performance standards are given for the gasometer. Occasional cleaning is required to remove biofouling from the gas-permeable tubing.PDF

  11. Transport phenomena and kinetic theory applications to gases, semiconductors, photons, and biological systems

    CERN Document Server

    Gabetta, Ester

    2007-01-01

    The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...

  12. Membrane humidification--a new method for humidification of respiratory gases in ventilator treatment of neonates.

    Science.gov (United States)

    Hanssler, L; Tennhoff, W; Roll, C

    1992-01-01

    A humidifier system for neonatology that functions according to the 'membrane humidification' principle was subjected to a performance test in our laboratory. Humidification and heating of the respiratory gases took place in a module consisting of a net of hollow fibres placed inside the incubator. In 18 measurement combinations flow, respiratory gas temperature, and incubator temperature were varied. At respiratory gas temperatures within the range of 33-37 degrees C the minimum international standard for the absolute air humidity in the respiratory gas was achieved or exceeded in all measurements. No controlled clinical tests regarding the importance and long term effects of different temperatures and different humidity levels in the inspiratory air are yet available for the ventilation treatment of neonates. PMID:1444554

  13. Adsorption of trace gases to ice surfaces: surface, bulk and co-adsorbate effects

    Science.gov (United States)

    Kerbrat, Michael; Bartels-Rausch, Thorsten; Huthwelker, Thomas; Schneebeli, Martin; Pinzer, Bernd; Ammann, Markus

    2010-05-01

    Atmospheric ices frequently interact with trace gases and aerosol making them an important storage, transport or reaction medium in the global ecosystem. Further, this also alters the physical properties of the ice particles with potential consequences for the global irradiation balance and for the relative humidity of surrounding air masses. We present recent results from a set of laboratory experiments of atmospheric relevance to investigate the nature of the uptake processes. The focus of this talk will be placed on the partitioning of acidic acid and nitrous acid on ice surfaces.The presented results span from very simple reversible adsorption experiments of a single trace gas onto ice surfaces to more complex, but well controlled, experimental procedures that successfully allowed us to - Disentangle surface adsorption and uptake into the ice matrix using radioactive labelled trace gases. - Show that simultaneous adsorption of acetic acid and nitrous acid to an ice surface is consistent with the Langmuir co-adsorption model. The experiments were done in a packed ice bed flow tube at atmospheric pressure and at temperatures between 213 and 253 K. The HONO gas phase mixing ratio was between 0.4 and 137 ppbv, the mixing ratio of acetic acid between 5 and 160 ppbv . The use of the radioactive labelled nitrous acid molecules for these experiments enabled in situ monitoring of the migration of trace gas in the flow tube. The measurements showed that the interactions do not only occur through adsorption but also via diffusion into polycrystalline ice. A method is suggested to disentangle the bulk and the surface processes. The co-adsorption of acetic and nitrous acids was also investigated. The measurements are well reproduced by a competitive Langmuir adsorption model.

  14. Emissions, activity data, and emission factors of fluorinated greenhouse gases (F-Gases) in Germany 1995-2002

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Winfried [Oeko-Recherche, Buero fuer Umweltforschung und -beratung GmbH, Frankfurt am Main (Germany)

    2005-06-15

    Before the 1997 Kyoto Protocol on Climate Protection, the fluorinated greenhouse gases HFCs, PFCs, and SF6 (F-gases) aroused little public attention. Since then, the standards on surveying and reporting on national emissions have been rising constantly. Amongst others, the annual reporting to the UNFCCC secretariat makes detailed declarations on use and emissions of F-gases necessary, which have to be filled in specified formats for submission (Common Reporting Format = CRF). The scientific basis has been set out by the UNFCCC guidelines on reporting, in accordance with the instructions laid down in IPCC good practice guidance. Additionally, in Germany the Centralised System of Emissions (ZSE) shall provide a suitable tool to satisfy any quality needs of both activity data and emission factors. From 1995 onwards, activity data and emissions of each individual application sector shall be presented in a comprehensible and transparent way. Therefore, the way of data collection as well as the estimation methods applied must be well documented. Moreover, data has to be prepared for appropriate importation into ZSE. It is the objective of this study to provide the transparency demanded within 40 national application sectors of F-gases, for the period between 1995 and 2002. - Firstly, all the activity data as well as the emissions related to them are presented and commented. This applies to manufacturing of products, F-gases banked in operating systems, and decommissioning. - Secondly, the methodologies applied to calculate the emissions are described and all sources of information are revealed, e.g. literature, names of experts from the manufacturing industry, users, trade, and academia. - Thirdly, reliability and safety of data are discussed. - Fourthly, possible deviations from the IPCC default values are stated and given reasons for. Wherever this intensive reviewing of 40 sectors through eight years of reporting uncovers gaps or inconsistencies in previous reports

  15. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  16. Use of Normothermic Default Humidifier Settings Causes Excessive Humidification of Respiratory Gases During Therapeutic Hypothermia.

    Science.gov (United States)

    Tanaka, Shoichiro; Iwata, Sachiko; Kinoshita, Masahiro; Tsuda, Kennosuke; Sakai, Sayaka; Saikusa, Mamoru; Shindo, Ryota; Harada, Eimei; Okada, Junichiro; Hisano, Tadashi; Kanda, Hiroshi; Maeno, Yasuki; Araki, Yuko; Ushijima, Kazuo; Sakamoto, Teruo; Yamashita, Yushiro; Iwata, Osuke

    2016-12-01

    Adult patients frequently suffer from serious respiratory complications during therapeutic hypothermia. During therapeutic hypothermia, respiratory gases are humidified close to saturated vapor at 37°C (44 mg/L) despite that saturated vapor reduces considerably depending on temperature reduction. Condensation may cause serious adverse events, such as bronchial edema, mucosal dysfunction, and ventilator-associated pneumonia during cooling. To determine clinical variables associated with inadequate humidification of respiratory gases during cooling, humidity of inspiratory gases was measured in 42 cumulative newborn infants who underwent therapeutic hypothermia. Three humidifier settings of 37-default (chamber outlet, 37°C; distal circuit, 40°C), 33.5-theoretical (chamber outlet, 33.5°C; distal circuit, 36.5°C), and 33.5-adjusted (optimized setting to achieve 36.6 mg/L using feedback from a hygrometer) were tested to identify independent variables of excessively high humidity >40.7 mg/L and low humidity <32.9 mg/L. The mean (SD) humidity at the Y-piece was 39.2 (5.2), 33.3 (4.1), and 36.7 (1.2) mg/L for 37-default, 33.5-theoretical, and 33.5-adjusted, respectively. The incidence of excessive high humidity was 10.3% (37-default, 31.0%; 33.5-theoretical, 0.0%; 33.5-adjusted, 0.0%), which was positively associated with the use of a counter-flow humidifier (p < 0.001), 37-default (compared with 33.5-theoretical and 33.5-adjusted, both p < 0.001) and higher fraction of inspired oxygen (p = 0.003). The incidence of excessively low humidity was 17.5% (37-default, 7.1%; 33.5-theoretical, 45.2%; 33.5-adjusted, 0.0%), which was positively associated with the use of a pass-over humidifier and 33.5-theoretical (both p < 0.001). All patients who used a counter-flow humidifier achieved the target gas humidity at the Y-piece (36.6 ± 0.5 mg/L) required for 33.5-adjusted with 33.5-theoretical. During cooling, 37-default is associated with

  17. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  18. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  19. A new pilot absorber for CO2 capture from flue gases: Measuring and modelling capture with MEA solution

    DEFF Research Database (Denmark)

    Sønderby, Tim L.; Carlsen, Kim B.; Fosbøl, Philip Loldrup

    2013-01-01

    A pilot absorber column for CO2 recovery from flue gases was constructed and tested with aqueous 30wt% monoethanolamine (MEA), a primary amine, as capture solvent. The pilot plant data were compared with a mathematical rate based packed-column model. The simulation results compared well...... with the pilot plant data. The packed height of the column can be varied from 1.6 to 8.2. m by means of five different liquid inlets. The column has an inner diameter of 100. mm and is packed with structured Mellapak 250Y packing. Counter-current flow is used. The pilot plant performance was investigated...

  20. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  1. Preliminary simulation of degassing of natural gases dissolved in groundwater during shaft excavation in Horonobe underground research project

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Kunimaru, Takanori; Kurikami, Hiroshi

    2007-01-01

    In Neogene-Quaternary sedimentary basins, natural gases such as methane are often dissolved in groundwater significantly. In this paper, two-phase flow simulations incorporating the degassing of methane, and carbon dioxide, were performed for the shaft excavation in Horonobe underground research project. The results drawn from the simulations are summarized as follows. 1) As depth increases, degassing and gas inflow occurs significantly. 2) Degassing increases the compressibility of pore fluids, resulting in slow changes in groundwater pressures. 3) Although the occurrence of gas phase decreases water mobility, the influence of the dissolved gas on the groundwater inflow rate to the shaft was small. (author)

  2. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    Science.gov (United States)

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  3. 75 FR 17331 - Public Hearings for the Mandatory Reporting Rule for Greenhouse Gases

    Science.gov (United States)

    2010-04-06

    ... for Greenhouse Gases AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement of public... mandatory reporting of greenhouse gases, which will be published separately in the Federal Register. These proposed rules would [[Page 17332

  4. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  5. Method and apparatus for removing radioactive gases from a nuclear reactor

    International Nuclear Information System (INIS)

    Frumerman, R.; Brown, W.W.

    1975-01-01

    A description is given of a method for removing radioactive gases from a nuclear reactor including the steps of draining coolant from a nuclear reactor to a level just below the coolant inlet and outlet nozzles to form a vapor space and then charging the space with an inert gas, circulating coolant through the reactor to assist the release of radioactive gases from the coolant into the vapor space, withdrawing the radioactive gases from the vapor space by a vacuum pump which then condenses and separates water from gases carried forward by the vacuum pump, discharging the water to a storage tank and supplying the separated gases to a gas compressor which pumps the gases to gas decay tanks. After the gases in the decay tanks lose their radioactive characteristics, the gases may be discharged to the atmosphere or returned to the reactor for further use

  6. Study on Hot Gases Flow in Case of Fire in a Road Tunnel

    Directory of Open Access Journals (Sweden)

    Aleksander Król

    2018-03-01

    Full Text Available This paper presents the results of hot smoke tests, which were conducted in a real road tunnel. The tunnel is located within the expressway S69 in southern Poland between cities Żywiec and Zwardoń. Its common name is Laliki tunnel. It is a bidirectional non-urban tunnel. The length of the tunnel is 678 m and it is inclined by 4%. It is equipped with the longitudinal ventilation system. Two hot smoke tests have been carried out according to Australian Standard AS 4391-1999. Hot smoke tests corresponded to a Heat Release Rate (HRR equal to respectively 750 kW and 1500 kW. The fire source was located in the middle of the road lane imitating an initial phase of a car fire (respectively 150 m and 265 m from S portal. The temperature distribution was recorded during both tests using a set of fourteen thermocouples that were mounted at two stand poles located at the main axis of the tunnel on windward. The stand poles were placed at distances of 5 m and 10 m. The recorded data were applied to validate a numerical model, which was built and solved using Ansys Fluent. The calculated temperature distribution matched the measured values.

  7. Comparison of the Flow of Permanent and Condensable Gases through an Asymmetric Porous Membrane.

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina; Loimer, T.

    2016-01-01

    Roč. 88, č. 11 (2016), s. 1779-1787 ISSN 0009-286X Institutional support: RVO:67985858 Keywords : assymetric membrane * condensation * gas transport Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.877, year: 2016

  8. The influence of molecular complexity on expanding flows of ideal and dense gases

    NARCIS (Netherlands)

    Harinck, J.; Guardone, A.; Colonna, P.

    2009-01-01

    This paper presents an investigation about the effect of the complexity of a fluid molecule on the fluid dynamic quantities sound speed, velocity, and Mach number in isentropic expansions. Ideal-gas and dense-gas expansions are analyzed, using the polytropic ideal gas and Van der Waals thermodynamic

  9. On-line Analysis of Diesel Engine Exhaust Gases by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Dabill, D.; Cocker, J.; Rajan, B.

    2004-01-01

    Roč. 18, - (2004), s. 2830-2838 ISSN 0951-4198 Institutional research plan: CEZ:AV0Z4040901 Keywords : diesel exhaust analysis * NOx compounds * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.750, year: 2004

  10. Evaluation of the production of gases in the acetobutilic fermentation

    International Nuclear Information System (INIS)

    Duarte Torres, Alberto; Alarcon Granobles, John F; Pineros Forero, Edgar R

    1995-01-01

    The growing costs of the raw materials coming from the petroleum, base of the processes of acetone and butane, they have originated a renovated interest for the fermentative processes. These processes stopped to be applied in 1930 by their unfavorable economic conditions in comparison with the synthetic processes. The Institute of Biotechnology of the National University of Colombia, after considering that the country imports annually around 2500 tons of butanol and 80% of acetone, began in 1987 a program of development of the acetobutilic fermentation starting from cane molasses. In accordance with the study of economic pre feasible for the butanol and acetone production for fermentation, of Serrano and Pinzon, the gases constitute 83% of the total revenues received by sales, while the solvents, ethanol, butanol and acetone, only 16%, reason for which is necessary the evaluation of the gases produced in the fermentation

  11. Stable isotope measurement techniques for atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    2002-01-01

    The technical requirements to perform useful measurements of atmospheric greenhouse gas concentrations and of their isotope ratios are of direct relevance for all laboratories engaged in this field. A meaningful interpretation of isotopes in global models on sources and sinks of CO 2 and other greenhouse gases depends on strict laboratory protocols and data quality control measures ensuring comparable data in time and space. Only with this precondition met, the isotope techniques can serve as a potentially powerful method for reducing uncertainties in the global CO 2 budgets and for tracing pathways and interaction of terrestrial, oceanic, and atmospheric pools of carbon. This publication provides four contributions describing methods for the determination of the isotopic composition of trace gases in atmospheric air and in ice cores. These contributions have been indexed separately

  12. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))

    1992-08-31

    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  13. Treating distillable carbonaceous materials with hydrocarbon gases, etc

    Energy Technology Data Exchange (ETDEWEB)

    1935-12-04

    A process is described for the treatment of distillable carbonaceous materials with hydrogen gases in the presence of hydrogen halides to recover valuable hydrocarbon products, characterized by the stable halide forming the treating medium for the hot-test gasesous product of this treatment with hydrogen gases in combination with an alkaline metal or alkaline earth, able to be decomposed by an inorganic acid soluble in water, capable of driving off hydrogen halide from their salts and also with salts of ammonia of the mentioned inorganic acids, the halide being converted into halide of ammonia and halogen, and the ammonia halide or hydrogen halide being returned to the process alone or together with the feed of carbonaceous materials with which it began.

  14. Gases emissions of Green house Effect in Colombia

    International Nuclear Information System (INIS)

    Gonzalez B, Fabio

    1999-01-01

    Colombia when signing the agreement mark of the united nations for the global change in 1992 and to ratify it in 1996 committed, together with the other signatory countries, to elaborate and to publish national inventories of anthropogenic emissions of green house gases and plans for its reduction and control. In this reference mark a group of professionals inside the Colombian academy of exact, physical and natural sciences, began in July of 1995, the national inventory of greenhouse gases for Colombia, having the approval of the ministry of the environment, the financial support of the organization of German technical cooperation GTZ and the technical consultantship of the work group that it is carrying out the study in the case of Venezuela. This article presents a summary of the results of the project, making emphasis in the main anthropogenic activities responsible for these emissions, especially those related with the energetic sector

  15. Physical replicas and the Bose glass in cold atomic gases

    International Nuclear Information System (INIS)

    Morrison, S; Kantian, A; Daley, A J; Zoller, P; Katzgraber, H G; Lewenstein, M; Buechler, H P

    2008-01-01

    We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to the same disorder landscape. Such independent copies with the same disorder landscape are known as replicas. While, in general, these are not accessible experimentally in condensed matter systems, they can be realized using standard tools for controlling cold atomic gases in an optical lattice. Of special interest is the overlap function which represents a natural order parameter for disordered systems and is a correlation function between the atoms of two independent replicas with the same disorder. We demonstrate an efficient measurement scheme for the determination of this disorder-induced correlation function. As an application, we focus on the disordered Bose-Hubbard model and determine the overlap function within the perturbation theory and a numerical analysis. We find that the measurement of the overlap function allows for the identification of the Bose-glass phase in certain parameter regimes

  16. Fundamentals of charged particle transport in gases and condensed matter

    CERN Document Server

    Robson, Robert E; Hildebrandt, Malte

    2018-01-01

    This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.

  17. Membrane methods for separation of radioactive noble gases

    International Nuclear Information System (INIS)

    Bekman, I.N.; Bozhenko, E.I.; Ievlev, A.L.; Kazankin, Yu.N.; Nikonov, V.N.; Teplyakov, V.V.; Shvyryaev, A.A.

    1984-01-01

    Using the different ial permeability method at different temperatures (20-120 deg C) transport characteristics of inert gases, N 2 , O 2 , CH 4 , CQ 2 and H 2 as the main components of waste gases in homogeneous films of arylate-siloxane block-copolymer (silar) of different composition, as well as of its components - polydimethylsiloxane (PDMS) and polyarylate, have been measured. Dependences of diffusion and permeability coefficients on inert gas atom dimensions, and solubility coefficient - on strength constant of the Lennard-Jones potential, are analyzed. It is shown that selectivity of silar gas permbility is determined by the properties of siloxane component, and the values of permeability coefficients decrease with the increase of polyarylate block part due to dominating decrease in diffusion coefficients as compared with solubility coefficients

  18. Measurement of biocarbon in flue gases using 14C

    Energy Technology Data Exchange (ETDEWEB)

    Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J. [University of Helsinki, Helsinki (Finland). Radiocarbon Dating Laboratory

    2007-07-01

    A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

  19. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  20. Physical replicas and the Bose glass in cold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, S; Kantian, A; Daley, A J; Zoller, P [Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Katzgraber, H G [Theoretische Physik, ETH Zurich, CH-8093 Zuerich (Switzerland); Lewenstein, M [ICAO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels, Barcelona (Spain); Buechler, H P [Institute for Theoretical Physics III, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)], E-mail: sarah.morrison@uibk.ac.at

    2008-07-15

    We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to the same disorder landscape. Such independent copies with the same disorder landscape are known as replicas. While, in general, these are not accessible experimentally in condensed matter systems, they can be realized using standard tools for controlling cold atomic gases in an optical lattice. Of special interest is the overlap function which represents a natural order parameter for disordered systems and is a correlation function between the atoms of two independent replicas with the same disorder. We demonstrate an efficient measurement scheme for the determination of this disorder-induced correlation function. As an application, we focus on the disordered Bose-Hubbard model and determine the overlap function within the perturbation theory and a numerical analysis. We find that the measurement of the overlap function allows for the identification of the Bose-glass phase in certain parameter regimes.

  1. Radiation vulcanization of natural rubber latex sensitized with commercial gases

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, H.; Lugao, A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    The industrial activities using natural rubber latex are fully compatible with rural areas in Amazon and other places in Brazil, as well as in other tropical countries. However the classical sulfur vulcanization presents many occupational problems for the workers in rural areas. Radiation vulcanization of natural rubber latex is a much more friendly process as sulfur compounds are not needed for crosslinking, although chemicals as acrylate monomers, particularly multifunctional acrylates are still used as sensitizers for radiation processes. Two commercial gases, acetylene and butadiene, were selected as sensitizers for the radiation vulcanization of natural rubber latex instead of acrylates. These gases accelerate the crosslinking rates of the cure process and lower the radiation dose required to achieve vulcanization of natural rubber latex and improve the mechanical properties to reduce the tackiness of rubber goods. (author)

  2. Unexpected impact of RIE gases on lithographic films

    Science.gov (United States)

    Glodde, M.; Bruce, R. L.; Hopstaken, M. J. P.; Saccomanno, M. R.; Felix, N.; Petrillo, K. E.; Price, B.

    2017-03-01

    Successful pattern transfer from the photoresist into the substrate depends on robust layers of lithographic films. Typically, an alternating sequence of inorganic (most often Si containing) and organic hardmask (HM) materials is used. Pattern transfer occurs then by using reactive ion etch (RIE) chemistry that is selective to one particular layer (such as: flurorinated RIE for Si HM). The impact of these RIE gases onto the layers acting as hardmask for the layer to be etched is typically neglected, except for known sputtering effects. We found that components of the RIE gases can penetrate deep into the "inert" layers and significantly modify them. For example, nitrogen used as component to etch spin-on carbon layers was found to travel up to 70 nm deep into Si HM materials and create layers with different material properties within this film. The question is being raised and discussed to which extent this atom implantation may impact the pattern transfer of the ever shrinking features.

  3. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  4. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  5. Nanostructured carbon materials for adsorption of methane and other gases

    Science.gov (United States)

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  6. Radiation vulcanization of natural rubber latex sensitized with commercial gases

    International Nuclear Information System (INIS)

    Chirinos, H.; Lugao, A.

    2002-01-01

    The industrial activities using natural rubber latex are fully compatible with rural areas in Amazon and other places in Brazil, as well as in other tropical countries. However the classical sulfur vulcanization presents many occupational problems for the workers in rural areas. Radiation vulcanization of natural rubber latex is a much more friendly process as sulfur compounds are not needed for crosslinking, although chemicals as acrylate monomers, particularly multifunctional acrylates are still used as sensitizers for radiation processes. Two commercial gases, acetylene and butadiene, were selected as sensitizers for the radiation vulcanization of natural rubber latex instead of acrylates. These gases accelerate the crosslinking rates of the cure process and lower the radiation dose required to achieve vulcanization of natural rubber latex and improve the mechanical properties to reduce the tackiness of rubber goods. (author)

  7. The evolution of minor active and toxic gases in repositories

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.; Davies, A.A.; McGahan, D.J.; Rushbrook, P.E.

    1988-09-01

    This study has considered a number of toxic and active gases which could potentially form in relatively small amounts in a deep repository for radioactive wastes. It has been concluded that many of these would react under repository conditions or be highly soluble in groundwater. The minor amounts of the inert and relatively insoluble gas krypton-85 would dissolve in a small volume of repository water. The wide range of organic gases and vapours that could form in trace amounts has been shortened to a list of 21 by consideration of their toxicity, volatibility and extent of formation at a landfill site for non-radioactive waste. The amounts of the inert and inactive gas helium formed from α-particles and the decay of tritium will have only a very minor effect on the overall rate of gas production. (author)

  8. How to (really) reduce the greenhouse gases releases

    International Nuclear Information System (INIS)

    Masurel, J.; Frot, J.

    2009-01-01

    Based on the last 2008 GIEC report, 'Sauvons le Climat' presupposes the character essentially anthropic of the climatic change and concludes to the requirement to divide by four, between now and 2050, the releases of greenhouse gases of the OECD countries. The world energetic balance is composed, for 80% of carbonaceous energies: petroleum, coal and natural gas. At the world-wide level, the preoccupations of the energetic resources and those of climate protection go therefore hand in hand. It is the same thing for the European Union but not for France whose carbonaceous energies part is only of 50%. That is to say, in France, an energy savings has only one chance of two to improve its energetic independence and to protect the climate. Especially for France, 'Sauvons le Climat' gives then here some advices to really reduce the greenhouse gases releases. (O.M.)

  9. Comparing and contrasting nuclei and cold atomic gases

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Jensen, Aksel Stenholm

    2013-01-01

    The experimental revolution in ultracold atomic gas physics over the past decades has brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and contrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques......, and nomenclatures are common to both fields. However, nuclei are finite systems with interactions that are typically much more complicated than those of ultracold atomic gases. The similarities and differences must therefore be carefully addressed for a meaningful comparison and to facilitate fruitful......, interactions, and relevant length and energy scales of cold atoms and nuclei. Next we address some attempts in nuclear physics to transfer the concepts of condensates in nuclei that can in principle be built from bosonic alpha-particle constituents. We also consider Efimov physics, a prime example of nuclear...

  10. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  11. Design and construction of a air pollutant gases sampler equipment

    International Nuclear Information System (INIS)

    Gomez S, R.A.; Rodriguez, T.J.

    1996-01-01

    This thesis is about the sketch and construction of an equipment which samples contaminated gases in the air. The topic of this work, is to propose a solution for imported and national equipment. The solution consist on lower prices of imported and national equipment without loosing the accuracy and the precision of those now available. The investigation shows all process to sample gases and theirs measurement for which all the mechanical, electric and electronic equipment, and the necessary software for giving the results in a computerized way were outlined. With this work it was able to succeed in measurements with a national low price, accurate, reliable, programmable, completely automatic and easy to use. This equipment exceed in accuracy the Japanese and the american equipment

  12. Flow regimes

    International Nuclear Information System (INIS)

    Kh'yuitt, G.

    1980-01-01

    An introduction into the problem of two-phase flows is presented. Flow regimes arizing in two-phase flows are described, and classification of these regimes is given. Structures of vertical and horizontal two-phase flows and a method of their identification using regime maps are considered. The limits of this method application are discussed. The flooding phenomena and phenomena of direction change (flow reversal) of the flow and interrelation of these phenomena as well as transitions from slug regime to churn one and from churn one to annular one in vertical flows are described. Problems of phase transitions and equilibrium are discussed. Flow regimes in tubes where evaporating liquid is running, are described [ru

  13. Thermodynamics of partially confined Fermi gases at low temperature

    International Nuclear Information System (INIS)

    Toms, David J

    2004-01-01

    We examine the behaviour of non-interacting Fermi gases at low temperature. If there is a confining potential present the thermodynamic behaviour is altered from the familiar results for the unconfined gas. The role of de Haas-van Alphen type oscillations that are a consequence of the confining potential is considered. Attention is concentrated on the behaviour of the chemical potential and the specific heat. Results are compared and contrasted with those for an unconfined and a totally confined gas

  14. ''Inhalation lung imaging with radioactive aerosols and gases''

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1977-01-01

    Lung imaging procedures, performed after the inhalation of /sup 99m/Tc labeled aerosols, 133 Xe and /sup 81m/Kr gases, were used to visualize the sites of airway obstruction and regional abnormalities of ventilatory function in normal volunteers, patients with obstructive airway disease, and pulmonary embolism suspects. Comparisons were made of three methods regarding their functional significance, diagnostic merits, and limitations. A new nebulizer-radioaerosol delivery system is described

  15. Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    OpenAIRE

    Petrov, D. S.; Salomon, C.; Shlyapnikov, G. V.

    2005-01-01

    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be for...

  16. Method of purification of rare gases from oxygen

    International Nuclear Information System (INIS)

    Aleshin, Eh.G.; Goryashchenko, S.S.; Slovetskaya, K.I.; Rubinshtejn, A.M.; Nefedov, B.K.; Konoval'chikov, L.D.

    1989-01-01

    A method of thorough purification of inert gases from oxygen is suggested. High-silicon zeolite of the ZSM-5 type with the ratio SiO 2 /Al 2 O 3 =40 in case of chromium content 1.3-3.5 mass % is used as oxygen sorbent, which ensures increased absorbability. The method permits to realize multiple regeneration of sorbent without considerable loss of absorbability. 1 tab

  17. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  18. Ship with a double hull used to transport liquefied gases

    Energy Technology Data Exchange (ETDEWEB)

    1968-07-18

    A ship with a double hull is described which is used to transport liquefied gases in reservoirs which are held inside the inner hull by a glide support and surrounded by insulation. Troughs are situated at the bottom and along the adjacent ends of the side walls to catch leakage from the reservoirs. These catchers are made of a material which is tough when chilled. The catchers have a suction installation to remove the leaked fluid. (5 claims)

  19. Noble gases in ten stone meteorites from Antarctica

    International Nuclear Information System (INIS)

    Weber, H.W.; Schultz, L.

    1980-01-01

    The concentrations and isotopic composition of noble gases have been determined in all ten stone meteorites recovered in Antarctica during 1976-1977 by a U.S.-Japanese expedition. From a comparison of spallogenic and radiogenic gas components it is concluded that the chondrites Mt. Baldr (a) and Mt. Baldr (b) belong to the same fall but that all other stone meteorites are individual finds. (orig.)

  20. Quench gases for xenon- (and krypton-)filled proportional counters

    International Nuclear Information System (INIS)

    Ramsey, B.D.; Agrawal, P.C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. We present results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases. (orig.)